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ABSTRACT Most anomaly-based intrusion detectors rely on models that learn from training datasets whose
quality is crucial in their performance. Albeit the properties of suitable datasets have been formulated,
the influence of the dataset size on the performance of the anomaly-based detector has received scarce
attention so far. In this work, we investigate the optimal size of a training dataset. This size should be
large enough so that training data is representative of normal behavior, but after that point, collecting more
data may result in unnecessary waste of time and computational resources, not to mention an increased
risk of overtraining. In this spirit, we provide a method to find out when the amount of data collected at
the production environment is representative of normal behavior in the context of a detector of HTTP URI
attacks based on 1-grammar. Our approach is founded on a set of indicators related to the statistical properties
of the data. These indicators are periodically calculated during data collection, producing time series that
stabilize when more training data is not expected to translate to better system performance, which indicates
that data collection can be stopped. We present a case study with real-life datasets collected at the University
of Seville (Spain) and a public dataset from the University of Saskatchewan. The application of our method
to these datasets showed that more than 42% of one trace, and almost 20% of another were unnecessarily
collected, thereby showing that our proposed method can be an efficient approach for collecting training
data at the production environment.

INDEX TERMS Anomaly-based intrusion detection, dataset assessment, training.

I. INTRODUCTION
Anomaly-based Intrusion Detection Systems (AIDS) enable
the identification of suspicious behavior that significantly
differs from normal activities in a computer system or
network [1]. To this end, AIDS model the normal activ-
ity of a system adopting diverse approaches (e.g., statisti-
cal, knowledge-based, or machine learning techniques) [2].
A prerequisite of AIDS is to train their model with a dataset
(training dataset) that represents the normal operation of the
protected system. Once trained, normal activity profiles are
formed and the system performance can be evaluated by
rating the events included in a testing dataset.
Public benchmark datasets are commonly used to com-

pare different research results [3]. However, in real-life
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deployments, AIDS need to be trained and validated with
datasets that faithfully represent the traffic seen in production.
Indeed, inadequate or outdated datasets may lead to false
alarms because new behaviors, or changes in the protected
system, can be interpreted as anomalies, which is a gen-
eral issue with AIDS [4]. Therefore, besides their particular
models and techniques, the success of anomaly-based detec-
tors strongly depends on the availability of suitable training
datasets [5].

The creation of training datasets with real-life properties is
not trivial. AIDS in production require to be (re)trained with
datasets that at least: (a) are free of attacks (or else these are
properly labeled), and (b) represent normal traffic (e.g., up-to-
date traffic similar to production). Other desirable properties
of a dataset described by Viegas et al. [6] include: easily
updatable, variant, correct, reproducible (so researchers can
compare), and shareable (i.e., with no confidential data).
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Additionally, Sharafaldin et al. [7] also pointed to the inclu-
sion of variant protocols and appropriate documentation
as two desirable properties of datasets. From the previous
requirements, one can infer that extracting suitable datasets
from real-life traces is not straightforward and may require
a process of sanitization [8], [9] to, at least, identify attacks
embedded in the trace (an example of sanitization of HTTP
traces can be found in [10]). However, the workload asso-
ciated with this process grows linearly with the size of the
trace. And, although unsupervised sanitization approaches
have been suggested (e.g., analysis of entropy [11], or fil-
tering known-attacks with signature-based IDS [12]), manual
supervision may be unavoidable in order to discover attacks
(e.g., 0-day) unnoticed by fully automatedmethods [13], [14].

The size of a dataset is a factor that has not received
much attention in the scientific literature. One possible rea-
son is that it is commonly assumed to be a given in the
experimental outline. A generally accepted idea is that a
large volume of data is more representative of normal activ-
ity, and as such, it translates to better AIDS performance,
which also seems intuitive. Indeed, a tiny dataset may lead
to insufficient training and, consequently, poor performance.
However, a large dataset may exhibit some drawbacks. First,
the data collection may take weeks or even months, which
besides increasing the time-to-train the AIDS (and thus, delay
the start of operation), can also be associated with higher
resource consumption in terms of storage or computational
power during data preprocessing or training [15]. This fact
might limit applicability in devices with limited processing
ability or storage capacity such as those commonly found in
industrial control systems, or in the field of IoT (especially
with computationally-intensive algorithms [16]). Secondly,
the workload associated with the sanitization of a large trace
can be prohibitive if done manually, or else, if the sanitization
process is fully automated or skipped, the risk of having
unnoticed attacks in the resulting dataset increases with the
dataset size. Last but not least, large datasets occasionally
may lead to the over-training problem in which models are
over-adapted to the training set and, as such, AIDS perfor-
mance deteriorates [17].

In this paper, we investigate the impact of the size of a
training dataset on the performance of an anomaly-based
intrusion detector. The underlying hypothesis is that there
is an optimum size from a cost-benefit perspective, which
depends on the detection techniques and model used by the
AIDS, as well as the characteristics of the captured traf-
fic [18]. With this in mind, we propose a novel method to
find the optimal size of a dataset suited for training AIDS
based on 1-grammar models. We use indicators that charac-
terize the learning value of data collected over time. When
these indicators stabilize, the amount of data collected is
considered optimum for training (i.e., more data would not
produce better AIDS performance). A case study applies
this methodology to three real-life service traces from our
university, and one public dataset from the University of
Saskatchewan [19].

The novelty and originality of this work are:
• We study the effect of the dataset size on the per-
formance of detectors of HTTP URI attacks based on
1-grammar models.

• We provide a method to estimate the representativeness
of a training dataset with respect to normal behavior,
which is applied in a real-life case study.

• We suggest indicators applicable to 1-grammar models
that enable the comparison of two evolutionary ver-
sions of the same dataset in terms of the training data
sufficiency.

The main contribution of this paper is a method to deter-
mine when the data collected is representative of normal
behavior. This can be useful for reducing the size of existing
datasets (e.g., to reduce the risk of overtraining), to reduce the
time spent collecting data at the production environment (e.g.,
to reduce the time needed to put the AIDS in production),
or to estimate when (re)training is necessary. Although this
work is restricted to AIDS based on 1-grammar, the principles
and ideas revealed could be partially reused by the research
community to investigate extensions to different models.

The remainder of this paper is as follows. Section II
presents related works. Section III introduces the reference
AIDS model, definitions and terminology used. Section IV
describes the datasets and the resulting dictionaries used in
our study. The temporal evolution of these dictionaries is
studied in Section V. Our method for on-line data collection
is described in Section VI, and Section VII describes the
limitations of this work. Finally, Section VIII concludes the
paper and outlines future work.

II. RELATED WORKS
As stated earlier, the quality of the datasets used by
anomaly-based intrusion detectors has a decisive influence on
their performance. In the scientific literature, the performance
of different models and techniques is commonly compared
using public benchmark datasets whose quality have been
subject of criticism by some authors such as Sommer and
Paxson [4] or Sharafaldin et al. [7]. It is also possible to
find some works [18], [20] aimed at defining how to carry
out a correct comparison of different AIDS according to the
characteristics of the datasets. However, as mentioned earlier,
public benchmark datasets, albeit necessary for comparing
research results, are not suitable for training models in prac-
tice due to the lack of real-life properties similar to those seen
in production.

The problem of capturing representative data suitable for
training or validating models has been addressed in the past
in the research field of machine learning [21], as well as
in the anomaly-based intrusion detection research field [22].
The generation of realistic datasets from captured traffic
may be a resource-intensive task that some authors have
tried to alleviate. In [23], the authors propose techniques
for instrumenting network warfare competitions to collect
scientifically valid labeled datasets, which otherwise would
be resource-intensive. Similarly, Velarde-Alvarado et al. [11]
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remark the scarcity of suitable datasets for AIDS develop-
ment and propose a semi-automated process for the sanitiza-
tion of the traffic captured based on the entropy of embedded
traffic flows. This enables the collection of large volumes
of data without excessive resource consumption in terms of
manual supervision or computational resources. However,
as stated earlier, fully automated sanitization methods can
never guarantee that the resulting datasets are free of attacks.

Few authors have studied the influence of the training
dataset on the performance of the AIDS. In [24], the authors
studied the effect of partitioning a dataset to obtain separate
pieces for training and evaluation. They found that different
data blocks produced different results in AIDS performance,
which suggests that the entire dataset exhibited heteroge-
neous characteristics over time. Maxion and Tan [25], [26]
have studied the structure and regularity of captured data
and its influence in the performance of an HTTP-attack
AIDS based on n-grams. The authors generated artificial
datasets of the same size but with increased complexity
(according to the relative conditional entropy) obtaining a
rate of false positives that increased exponentially with the
inverse of the complexity of the data. The authors concluded
that training should be adapted to the characteristics of the
dataset, including its variability over time, which leads to the
consideration of a temporal window in the training dataset.
A similar conclusion was drawn by Lee et al. in [27], where
the authors analyzed the problems associated with the use
of multiple configurations and datasets for evaluating AIDS
performance.

The size of the training dataset has received scarce atten-
tion in the research literature. Kishimoto et al. [17] studied
the appropriate size of a learning dataset for anomaly-based
intrusion detection based on machine learning. In their work,
the authors collected Internet traces from a honeypot and
analyzed the effect of trace size on the performance of their
classifiers. They found that when the learning dataset was
too small (e.g., one day), the rate of false positives was
high due to insufficient training. On the other hand, when
the size of learning dataset was extremely large (e.g., ten
days), overfitting caused the deterioration of performance.
Therefore, they experimentally concluded that the appropri-
ate size was five days of capture when using Kyoto2006+
public dataset for validation. This supports our initial hypoth-
esis that there is an optimum size for the training dataset,
which depends on the techniques and models used, and the
properties of the captured traffic. A similar claim is sup-
ported in [28], where the influence of the size of the training
data in two classifiers was studied. One of the classifiers
compared (Naive Bayes Classifier) was also successfully
tested in another work related to anomaly-based intrusion
detection [29].

Finally, some works have pointed to the need for
re-training the models [4], [5] as a sound solution to the prob-
lem of data shift [30]. However, few works actually address
the issue of model adaptation to dynamic changes. In [31]
the authors propose a batch-based approach that involves

manual work to determine the level of performance degra-
dation, which indicates when re-training is necessary. In a
more generic context, the authors in [32] have proposed the
use of EWMA and Kolmogorov-Smirnoff tests to determine
the occurrence of data shift in non-stationary environments.
Our contribution can also be applied to find if the dataset
used for training is still representative of normal behav-
ior, and therefore, to find whether re-training is necessary
or not.

III. REFERENCE AIDS AND TERMINOLOGY
A dataset has to be suited for the specific model and parame-
ters used by the anomaly detector. In this regard, the findings
of this work are limited to detectors of anomalous HTTP
requests based on probabilistic models (e.g., n-gram [33],
or Markov-based models [34]). In particular, the AIDS used
in this work is based on 1-grammar since the authors are
largely experienced in this technique (see [35]), which is
simple enough as to let the reader stay focused on the
contribution.

In our reference AIDS, the goal of the training phase is to
form a dictionary that will be used afterward to classify Uni-
versal Resource Identifiers (URIs) received in HTTP requests
as normal or anomalous. As such, the datasets used in this
work are a collection of URIs extracted from HTTP trace
files.

A. DICTIONARY FORMATION
Let U = {ui |i ∈ N} be the set of URIs contained in a training
dataset. RFC 3986 [36] defines the structure of a URI, which
is basically a text string composed of an optional protocol,
an optional host, a sequence of one or more path segments,
namely absolute path and, optionally, a query composed of a
sequence of attributes, each of them with an optional value.
This is generally expressed as:
"http://"host[":"port][abs_path["?"query]]

A URI can be parsed using a set of standard delimiters
(:/?#[]@!$&’()*+,;=),1 obtaining a set of sub-strings
or words that are central to our AIDS. For the purpose of
anomaly-detection, only those words extracted from the path,
attribute or value fields are considered of interest in this work
(i.e., we assume that host and port are invariant throughout the
trace).

Let us define the vocabulary learned from a training dataset
(U), as the set of words observed after segmenting all the
URIs contained in U :

W(U) = {wi|1 ≤ i ≤ M} (1)

where M is the cardinality of the vocabulary.
LetO(U) = {oi|1 ≤ i ≤ M} be the number of occurrences

(i.e., absolute frequency) of the words observed in the training
dataset U .

1We consider both gen-delims and sub-delims, as defined in the
standard, to be able to parse the queries.
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Let us define a dictionary, or equivalently, a 1-grammar2

as the set of different words (and their absolute frequency)
observed after segmenting the URIs contained in a dataset U
as:

D(U) = {(wi, oi)|wi ∈W(U), oi ∈ O(U))} (2)

Given a dictionary, the relative frequency (or empirical
probability) of word wi can be readily obtained as:

pi =
oi
O

(3)

where O is the overall number of observations:

O =
M∑
i=1

oi (4)

Finally, let P(U) be the set of relative frequencies of the
words observed:

P(U) = {pi|1 ≤ i ≤ M} (5)

As an example, consider the following URI:

http://traj.us.es/set/index.php?set=200&theme=blue

It is possible to segment this URI in 8 strings (http,
traj.us.es, set, index.php, set, 200,
theme, blue) using standard delimiters. Then, using only
strings from the attribute, path and value fields, the extracted
dictionary would be:

D = {(set, 2), (index.php, 1), (theme, 1),
(200, 1), (blue, 1)} (6)

The overall number of observations would be O = 6, and the
relative frequency of the words would be 1/6 for all but the
first one which would be p1 = 2/6.

B. AIDS PERFORMANCE
Figure 1 illustrates a generic scheme for the assessment of the
performance of AIDS. This scheme relies on three disjoint
datasets:
• Training dataset: it contains URIs that represent normal
behavior, and as such, it should be free of attacks. This
dataset is used to train the model and is the subject of
our study (i.e., U).

• Evaluation dataset (clean): this dataset is also composed
of (different) instances from the normal behavior and it
should be free of attacks. In this work, the evaluation-
clean dataset is similar to the training dataset (indeed,
it comes from halving the collected traces).

• Evaluation dataset (attacks): this dataset contains mali-
cious URIs used to evaluate the performance of the
detector. In our work, it is composed of 2 200 mali-
cious URIs from a public repository [37] (category

2An analysis on a per-field basis is also possible by arranging words into
field-based dictionaries as in the original SSM technique proposed in [35].
Nevertheless, for the sake of simplicity and clarity, we consider a single state,
merging all words in a single dictionary. Experiments carried out using three
states did not show differences in the behavior of the proposed method.

FIGURE 1. AIDS performance evaluation.

ML-driven-Web-Application-Firewall) that can be
downloaded from [38].

After processing the training dataset (training mode in
Figure 1), the dictionary is formed and AIDS performance
can be evaluated. The AIDS (in evaluation mode) uses the
dictionary when assigning an anomaly score to each URI
found in the evaluation datasets. Given a URI ui composed
of a set of words Wui = {wi |i = 1, · · · ,L}, its anomaly
score is calculated as follows:

AS(ui) = −
1
L

L∑
i=1

log(xi) (7)

where

xi =

{
pi, if wi ∈W(U)
poov, if wi /∈W(U)

(8)

being poov a default value assigned to the words not included
in the dictionary (i.e., out of vocabulary words). In this work,
after some tuning, we selected poov = p3min, where pmin is the
lowest probability in P(U). This is an effective solution to
deal with the problem of insufficient training [35].

Finally, if the anomaly score exceeds a threshold θ

(i.e., AS(ui) > θ ), the URI ui is classified as anomalous.
Otherwise, it is considered normal.

In the evaluation process illustrated in Figure 1, the AIDS
classifies registers from the clean datasets as either normal
(i.e., True Negative –TN–) or anomalous (i.e., False Pos-
itive –FP–), whereas registers from the attack dataset can
be classified as either normal (i.e., False Negative –FN–) or
anomalous (i.e., True Positive –TP–). These four basic indi-
cators allow one to evaluate AIDS performance through var-
ious metrics such as Detection Rate (DR) and False Positive
Rate (FPR):

DR =
TP

TP+ FN
, FPR =

FP
FP+ TP

(9)

Other metrics are possible (e.g., accuracy or sensibil-
ity) [3], but good performance is always a synonym of very
high DR and very low FPR. However since we are going to
compare performance in different scenarios, and the classes
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normal and anomalous are clearly unbalanced (the attack
dataset is several times smaller than the others), we will use
the metric geometric mean [39] as performance indicator.
This metric combines recall and specificity, and hence, it is
sensitive to both detection capacity and false positives. Thus,
for the remainder of this paper, the AIDS performance metric
will be given by:

η =
√
DR · (1− FPR) (10)

IV. CHARACTERIZING THE TRAINING DATASETS AND
DICTIONARIES OF THIS STUDY
Without loss of generality, for the remainder of this work,
we can assume that dictionaries are arrays arranged so words
are sorted by their frequency (i.e., words more frequent are
first). That is:

D(U) = {(wi, oi)|1 ≤ i ≤ M , or ≥ ok ∀r ≤ k} (11)

A. STATISTICAL PROPERTIES OF A DICTIONARY
A dictionaryD(U) is statistically characterized by the empir-
ical probability of its words P(U) (i.e., probability mass
function). Since we are assuming that words are sorted by
their frequency, a plot of P(U) should show a monotonically
decreasing function such as the one illustrated in Figure 2,
where the horizontal axis represents the index of the ele-
ments in P(U) (i.e., word index). Observe that the maximum
and minimum empirical probabilities are pmax = p1 and
pmin = pM respectively.

FIGURE 2. Generic probability mass function of a typical dictionary.

According to our experience, the probability mass function
of URI-based dictionaries is likely to exhibit a tail formed
by words rarely observed. If so, the plot of this function can
be split into two contiguous regions: core, with the more fre-
quent words, and tail with the less frequent words, by simply
defining a lower threshold for the empirical probability of
words that belong to the core (see pth in Figure 2). Then, a tail
sub-dictionary T (U) ⊆ D(U) can be defined as:

T (U) = {(wi, oi) | (wi, oi) ∈ D(U), pi < pth} (12)

Similarly, a core sub-dictionary C(U) ⊆ D(U) can be defined
as:

C(U) = {(wi, oi) | (wi, oi) ∈ D(U), pi ≥ pth} (13)

In Figure 2, the number of words that belong to the core is
represented by nc = |C(U)|.
Regarding the value of the threshold pth, it should be lower

than the average word frequency, and also should account for
the dynamic range of the probability mass function. After
some experimentation, we found that the following value
provided good results:

pth =
1− (pmax − pmin)

M
=

1+ pM − p1
M

(14)

Besides P(U), a dictionary can be further characterized by
the following statistics:
• Average relative frequency of words.

R =
M
O

(15)

• Entropy of the dictionary.

S = −
M∑
i=1

pi · log2 pi (16)

• Entropy of the core sub-dictionary.

Score = −
nc∑
i=1

pi · log2 pi , pi ≥ pth (17)

• Cumulative empirical probability of core-words:

Pcore =
nc∑
i=1

pi , pi ≥ pth (18)

Note that Ptail = 1− Pcore.
Next, we introduce the experimental datasets used in this

work and characterize the dictionaries formed after training
our reference AIDS with them.

B. TRAINING DATASETS AND BASELINE
DICTIONARIES FORMED
In order to perform a comprehensive study, we have used
four HTTP traces collected at different experimental testbeds,
which has produced datasets with heterogeneous characteris-
tics. The experimental datasets used in this work are:
• Biblio: this dataset is formed by the daily traces col-
lected by the web server of the Library of the Uni-
versity of Seville (http://bib.us.es). It includes
1 002 000 HTTP requests received from 1/1/2017 to
17/07/2017.

• Teulada: this dataset is formed by the traces of a
web application server devoted to interwork with a
research-oriented IoT sensor network deployed in the
city of Seville.

• UofS: this is a public dataset from the University of
Saskatchewan [19] that includes 2.3 million HTTP
requests (method + URI).
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TABLE 1. Most relevant statistics for the considered datasets (training partitions).

FIGURE 3. Probability mass function for the dictionaries formed from: a) Teulada, b) Inves, c) Biblio, d) UofS.

• Inves: this dataset is created from the traces of a
document-search web service of the University of
Seville geared toward research (http://fama.us.
es). It includes about 4.6 million requests received dur-
ing May 2018.

The previous traces have been sanitized to remove existing
attacks. Then, the datasets have been halved to create the
training and validation (clean) partitions. For the remainder
of this paper (but when addressing performance evaluation),
we will only refer to the training partition.

Table 1 provides information about the training datasets
created on each experimental environment, and some statis-
tics of the dictionary formed with each dataset. These prop-
erties show diversity in size, number of words observed,
etc. For example, Teulada exhibits a reduced vocabulary
(e.g., 1 101 different words) while Inves exhibits a large one
(153 653 different words). This difference is attributable to
the service provided in each case (e.g., Teulada is more
similar to a static website whereas Inves provides a search
service). This information is complemented with a plot of the
mass probability function of the dictionaries formed shown

in Figure 3. Note that axes are represented in log scale for
clarity, which, albeit improves the visualization of the core,
distorts the actual shape.

Results from Table 1 and Figure 3 show that the core
sub-dictionary is always composed of a reduced number of
words (less than 1% of each vocabulary) that accounts for
the bulk of the empirical probability in each vocabulary.
As shown in Table 1, core words account for a cumulative
probability ranging from 83% (Teulada) to 95% (Biblio).
This suggests that the choice of pth, according to Eq. (39),
is reasonable, as tails are commonly expected to represent
less than 20% of the distribution. Note also that the entropy of
the core is a significant fraction of the entropy of the dataset.
On the other hand, the transition between the core and the
tail is more abrupt in T eulada and Inves than in Biblio and
UofS, which might show that the latter two datasets are more
sensitive to the choice of the threshold.

V. TEMPORAL EVOLUTION OF DICTIONARIES
In this section, we study the evolution of the probability mass
function of a dictionary with the number of URIs processed.
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FIGURE 4. Temporal Evolution of the core and the tail in our datasets.

In the datasets, URIs are assumed to be in chronological
order. As such, we can regard this study as a temporal evo-
lution. We expect three different behaviors in this temporal
evolution that let us classify the dictionaries accordingly as:

1) Stable dictionary: its probability mass function remains
mostly steady after a certain number of URIs. This
would be the case of websites with a closed set of
potential words in their URIs (e.g., static website) when
the behavior of users (i.e., requests) is regular over
time.

2) Core-stable dictionary: the probability mass function
of the core-subdictionary remains mostly steady after
processing a certain number of URIs, but it does not
stabilize in the tail-subdictionary. It would be the case
of websites that include variable parts in their URIs
such as timestamps, auto-incremental values, hashes,
etc. Although some words are frequently observed
(core words), some others (tail words) are scarcely seen
(maybe one or two times), having little influence in the
anomaly score of a URI.

3) Non-stable dictionary: new URIs might produce sig-
nificant changes in the probability mass function
of the dictionary. As such, neither core nor tail
sub-dictionaries stabilize with the number of URIs pro-
cessed. This is probably the case of dynamic websites
with highly changing resources.

Figure 4 shows the temporal evolution of the dictionaries
formed with our datasets. For each dataset, we have plotted

themass probability function obtained after processing differ-
ent percentages of the dataset size. For a clearer view, the tail
and core have been represented using two separate scales. The
temporal evolution of the tail and the core shown in Figure 4
confirms the types of dictionaries suggested earlier. Teulada
remains stable after processing a minimum portion of the
dataset (i.e., stable dictionary), Biblio exhibits significant
changes in his tail but, after a certain number of URIs, its core
remains steady (i.e., core-stable dictionary), and UofS and
Inves show unsteadiness in both core and tail sub-dictionaries
(i.e., non-stable dictionaries). Regarding the lower threshold
probability pth (transition zone in Figure 4), its variations
with the number of URIs processed are minimal. Indeed,
as demonstrated in Appendix, there is a point after which its
variations are negligible.

For the remainder of this section, we investigate how some
datasets may hold registers that barely impact the statistical
properties of a dictionary. We work under the assumption that
in some cases, there should be a minimum-sized dataset that
exhibits the same statistical properties as that of a bigger one
and, consequently, processing more registers does not pay off
from the perspective of AIDS performance. This idea will be
used in the next section to stop data collection.

A. STABILITY CONDITIONS OF A DICTIONARY
In this section, we study the conditions that can help us decide
when the statistical properties of a dictionary of a certain type
become invariant to more data from the same dataset.
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1) STABLE DICTIONARY (TYPE 1)
Let U = {ui |1 ≤ i ≤ U} be the set of URIs contained in a
dataset in chronological order. Then, we say that a dictionary
is stable if there is a value Us that meets:

W(U ′) = W(Us), ∀U ′ > Us (19)

P(U ′) = P(Us), ∀U ′ > Us (20)

where U ′ is the subset composed of the firstU ′ URIs from U ,
and Us is the subset composed of the first Us URIs from U ′.
The first condition –Eq. (19)– can be put in amore tractable

form by simply using the cardinality of the vocabularies
(i.e., |W(U ′)| = Us ∀U ′ > Us) since Us ⊂ U ′ and URIs
are processed in chronological order.

The second condition –Eq. (20)–, however, is impossible to
meet in a strict sense in practice, as every new URI processed
impacts the frequency distribution. Thus, this condition has
to be relaxed from equality of distributions to similarity of
distributions.

We use the Chi-squared test (χ2 test) to compare the sim-
ilarity of two distributions. This test indicates whether there
is a significant difference between the expected frequencies
and the observed frequencies in one ormore categories. In our
case, the set of categories is the set of words W(U ′) whose
cardinality is M ′. Let’s assume that D′ = D(U ′) has an
unknown probability distribution P ′ = P(U ′) and an overall
number of observations O′, and that D = D(U) has a known
distribution P = P(U). Then, we would like to validate the
following hypothesis:

H0 : P = P ′, (21)

H1 : P 6= P ′ (22)

The χ2 statistic can be calculated according to the follow-
ing equation:

χ2(D,D′) =
M ′∑
k=1

(o′k − pk · O
′)2

pk · O′
(23)

If χ2(D,D′) is 0, the distribution of the observations in
D and D′ is identical. If not, we can consider that both
distributions are similar (i.e., accept the null hypothesis)
with a certain statistical significance α if its pvalue (indicator
to support or reject the null hypothesis) is greater than α
(i.e., pvalue(D,D′) = Prob(χ2

(M ′−1) > χ2(D,D′)) > α)).3

Finally, notice that in order to have a reliable application
of the Chi-squared test, the following has to be met: (a) the
overall number of observations has to be large, (b) the fre-
quency of each word should be greater than a lower thresh-
old (typically 2). In our case, the first condition is met in
all datasets, and the second condition has been applied by
excluding words whose frequency is less than that lower
threshold from both D and D′.

Therefore, the requirement for a dictionary to be consid-
ered stable with a statistical significance of α, is that there is

3Typical accepted values for α are: 0.05, 0.01 and 0.001.

a value Us that meets the following conditions:

|W(U ′)| = |W(Us)|, ∀U ′ > Us (24)

pvalue(D,D′) > α, ∀U ′ > Us (25)

2) CORE-STABLE DICTIONARY (TYPE 2)
In this case, both the mass probability function and the num-
ber of words in the core-subdictionary stabilize after some
point, but the number of new words (in the tail) is contin-
uously growing. Therefore, this type of dictionaries can be
characterized by:

|W(U ′)| ≥ |W(Us)|, ∀U ′ > Us (26)

C(U ′) = C(Us), ∀U ′ > Us (27)

In this case, stability conditions can be set based on the
stability of the core-subdictionary C(U):

|C(U ′)| = |C(Us)|, ∀U ′ > Us (28)

pvalue(C(U ′), C(Us)) > α, ∀U ′ > Us (29)

As shown in Appendix, in type 2 dictionaries, pth tends
to stabilize after a certain point, and so does the number of
core-words and their cumulative probability. Nevertheless,
pvalue(C(U ′), C(Us)) is particularly sensitive to fluctuations in
the core-tail delimitation, which depends on pth. Therefore,
it would be desirable to replace Eq. (29) with an alternative
condition that let us compare the similarity of the distributions
and has better tractability. We believe that entropy, although
is a softer condition, can be used to this end.
Lemma 1: Given a core-stable dataset U , of size U, there

is a minimal subset, of size Us < U, whose entropy would be
equal to the entropy of the full dataset if U was large enough.

Proof: see Appendix.
Then, for the remainder of this work, we consider that

a dictionary is core-stable if there is a value Us that meets
Eq. (28) and:

S(U ′) = S(Us)± σ, ∀U ′ > Us (30)

where σ is a constant that accounts for minimal differences
which tends to 0 with the dataset size.

Obviously, those dictionaries that can not be classified as
type-1 or type-2, will be considered non-stable (type 3)4 for
which no stability conditions can be set.

B. APPLICATION OF THE STABILITY CONDITIONS
TO FIND DISPENSABLE DATA IN OUR DATASETS
In this section, we seek the previous stability conditions in
our experimental datasets in order to find the minimum value
of U ′, namely Us, so that the statistical properties of the
resulting dictionary were similar to that of the dictionary
formedwith the full dataset. In this process, we first divide the
original datasets in data chunks of 1U URIs. Then, we look

4A given training dataset can be classified as type 3 even if its associated
source could correspond to type 1 or type 2 due to insufficiency of the
acquired training dataset. In any case, the conclusion is that additional
observations are needed.
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FIGURE 5. Evolution of the number of words (M) for different dataset
sizes.

FIGURE 6. Evolution of the Entropy (S) and word in the Core (nc ) for
different dataset sizes.

for the minimum number of pieces that meets the stability
conditions.

The first condition for type 1 dictionaries is related to the
number of words contained in the dataset–Eq. (24)–. Figure 5
shows the evolution of this indicator (M ) with the number of
chunks processed for each dataset under study. The size of
the chunk on each case is a divisor of the dataset size.

The results in Figure 5 show that only Teulada
meets this condition. The other requirement for a dataset
to be considered type 1 was similarity of distribution
–Eq. (25)–. Therefore, we want to find the minimum value
of U ′, namely Us so both dictionaries D(U) and D(Us) are
similar with a statistical significance of α.

Figure 6 shows the evolution of the entropy and the number
of core-words (nc) in the datasets. It can be noticed that,
besides Teulada, only Biblio exhibits a stable behavior. Thus,
according to Lemma 1 and Eqs. (25), (28) and (29), Teulada
is definitively a dataset that produces a stable (type-1) dictio-
nary, whereas Biblio can be classified as core-stable (type-2).

Algorithm 1 Us Search Algorithm for Stable (Type=1) and
Core-Stable (Type=2) Dictionaries

Input: U , U , α, 1U , σ , Type
Output: Us

1: function: D (n)
2: d = {ui ∈ U |i ≤ n}
3: return d
4: end function
5: D← D(U )
6: U ′ = U −1U
7: D′← D(U ′)
8: if Type = 1 then
9: while ((α ≤ pvalue(D,D′)) & (|W(U)| =

|W(U ′)|) & (U ′ > 1U )) do
10: U ′← U ′ −1U
11: D′← D(U ′)
12: end while
13: if α > pvalue(D,D′) then
14: Us← U ′ +1U
15: else
16: Us← U ′

17: end if
18: else
19: while ((σ ≤ |S(D) − S(D′)|) & (|W(C(U))| =

|W(C(U ′))|) & (U ′ > 1U )) do
20: U ′← U ′ −1U
21: D′← D(U ′)
22: end while
23: if σ > |S(D)− S(D′))| then
24: Us← U ′ +1U
25: else
26: Us← U ′

27: end if
28: end if
29: return Us

As such, we want to find the minimal subset Us so the
difference of the entropy in both dictionariesD(U) andD(Us)
is lower than σ .
Algorithm 1 shows a pseudocode that finds the value ofUs

in datasets that produce stable or core-stable dictionaries. It
takes as input the initial dataset considered, U , its size, U ,
and type, the α value considered for similarity’s statistical
significance, the σ value considered in Eq. 30, and the dataset
size reduction step1. It first builds the dictionaryD = D(U )
using the full dataset. Then, it builds a second dictionary
D′ = D(U ′) that excludes the last 1U URIs. The similarity
condition (pvalue or Entropy difference) is then examined and,
if met, the size is reduced by another 1U URIs, and D′ is
rebuilt. Then, the similarity condition is examined again. This
process continues until both are not similar, or the dataset
size cannot be further reduced. The algorithm returns Us.
Note that Us, will be lower than U only when it is applied to
the correct dataset type. Thus, if applied to Inves and UofS,
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TABLE 2. Dataset size reduction results.

the value ofUs returned should be similar toU . Also note that
datasets that produce type 1 dictionaries, like Teulada, also
meet the type 2 conditions. In this case, the most restrictive
option (Type=1) will be applied.

The results of applying Algorithm 1 to our experimental
datasets are shown in Table 2. The parameters used were:
α = 0.001, σ = 0.0001 and the step reduction size 1U
(shown in column 2) has been set proportional to the size of
the dataset to avoid unnecessary computation. Column 5 in
Table 2 (1M ), stands for the percentage of missing words in
D(Us) with respect toD(U ). The last two columns (Reduction
and Type) show the percentage of URIs from the original
dataset excluded in the smallest dataset and the type of dic-
tionary formed, respectively.

Note that only Teulada is stable and Biblio is core-stable,
so dataset size reduction (Us < U ) can only be obtained
in these cases (81.13% for Teulada and 29.7% for Biblio).
Observe also that the dictionary formed with the shortest
dataset from Biblio contains fewer words (a 1.79% less) than
that formed with the full dataset. Finally, as expected, UofS
and Inves datasets do not achieve any reduction of their size
as in type-3 datasets stability conditions do not hold. This
simply suggests that in these two datasets, the amount of data
collected may not be sufficient to be representative of normal
behavior.

Next, we examine the performance of our AIDS trained
with the smallest dataset of size Us.

C. PERFORMANCE OF OUR AIDS TRAINED WITH
THE SMALLEST DATASET
In this section, we follow the procedure described in
Section III-B to assess AIDS performance when trained with
both dictionaries, i.e., D(U s) and D(U). According to our
hypothesis, performance degradation should pass unnoticed
in stable dictionaries such as Teulada. For core-stable dic-
tionaries, performance degradation mainly depends on the
Anomaly Score calculation method. In our case, the impact
is expected to be proportional to the probability that a word
from a new URI belongs to the tail sub-dictionary. Therefore,
a very limited impact it is expected.

On each experiment, we have set the decision threshold θ
so that η is maximized (in order to be able to compare the best
case on each dataset). We have also gauged η every time that
we have decreased the training dataset by1U in our previous
algorithm.

Table 3 shows the performance obtained with D(U)
(i.e., η(D(U))), and also with D(U s). For comparative pur-
poses, Table 3 also shows the maximum and minimum

TABLE 3. Performance of the AIDS after training datasize reduction.

values of η achieved over the process. The last column (1η)
indicates the difference in performance obtained as a result
of using D(U s) instead of D(U). Results suggest that the
AIDS performance is not impacted despite the significant size
reduction in Teulada, which confirms our initial hypothesis.
In the case of Biblio, the size reduction using the conditions
of core-stable dictionaries has improved the AIDS perfor-
mance, which suggests that the Biblio dataset exhibits an
over-training problem. This can be inferred from the fact
that there is a peak of ηmax = 0.9407 with a dataset size
smaller than U . After this point, performance decreases to
η = 0.9384 with more URIs.

Experimental results have confirmed our hypothesis. How-
ever, despite its theoretical interest, reducing the size of
a dataset that has already been collected has a limited
interest in practice since it requires to have the full trace
(i.e., dataset) plus the algorithm perform several training
stages for comparison. Thus, although the risk of overtraining
may be reduced, no resource savings is obtained (e.g., time,
sanitization, computation).

Next, we apply our previous findings to develop a method
for real-time collection of traces.

VI. SCHEME FOR ON-LINE DATA COLLECTION
Data collection for anomaly detection has traditionally be
founded on the belief that larger data volumes produce better
AIDS performance due to better representativeness of nor-
mal system behavior. Nevertheless, in the previous section,
we showed that this is not always the case, especially in
datasets that produce stable dictionaries. In this section,
we apply our findings to design a procedure that determines
the sufficiency of a dataset during its acquisition.

A. COLLECTION SCHEME
In Section V-A we showed how, according to the type of
dataset, some properties of a dictionary tend to stabilize
after processing a certain number of URIs. Based on this
idea, in this section we suggest a simple collection scheme
based on the observation of a set of indicators. This idea is
illustrated in Figure 7. We start the dataset collection with a
minimum chunk of registers, U(0), of size n0, that is,

U(0) = {ui|1 ≤ i ≤ n0} (31)

Then, when a step of 1U additional registers are collected,
we (re)evaluate the dataset,

U(n) = {ui|1 ≤ i ≤ no + n1U} (32)
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FIGURE 7. Algorithm for on-line capture.

TABLE 4. Stability conditions considered.

where n stands for the step index. During each evaluation,
a set of indicators are calculated. After a number of evalua-
tions, these indicators can be interpreted as a set of discrete
temporal series used to determine when the collection of data
can be interrupted according to a stop criteria based on the
stabilization of the temporal series.

Next, we discuss the indicators proposed and the possible
stability conditions that flag the end of the collection.

B. INDICATORS AND STABILITY
As studied in Section V-A, some properties of a dictionary
tend to stabilize with the number of URIs processed accord-
ing to its type (see Table 4 for a summary).

Based on these properties, and in order to evaluate the
dataset U(n), the following indicators will be calculated every
time that 1U new URIs are collected.

1) INDICATORS DEFINITION
• i1, vocabulary size: i1 is an integer that stands for the
number of different words observed since the beginning
of data collection. Therefore, at step n, the number of
elements in the vocabulary is calculated as:

i1(n) = |W(U(n))| = M (n) (33)

• i2, index of the most recent smallest dictionary with
similar distribution: remember that pvalue can be used
to check if two dictionaries D and D′ have a similar
distribution with statistical significance α.
In this case, at a given step n, we would like to find
out the smallest value of the index nmin for which

the dictionary D(U(nmin)) bears statistical similarity
with the last dictionary collected D(U(n)). This can be
achieved with Algorithm 2:

Algorithm 2 Minimum Slot Search Algorithm
Input: U(n), no, n, 1U
Output: nmin

1: D′← D(U(n)) // last collected
2: i← 0
3: while (i ≤ n ) do
4: D← D(U(i)) = D({wj ∈ U(n)|1 ≤ j ≤ n0 + i1U})
5: if α > pvalue(D,D′) then
6: nmin← i
7: break;
8: else
9: i← i+ 1
10: end if
11: end while
12: return nmin

Note that dictionaries D(U(i)), nmin < i < n, also bear
statistical similarity with D(U(n)). Since we would like
to have growing values for this second indicator, we will
define it as:

i2(n) = max(i2(n− 1),Algorithm2(U(n), n0, n,1U ))

(34)

This indicator is expected to remain constant in datasets
that produce type 1 dictionaries.

• i3, entropy: this indicator simply returns the entropy of
the considered dictionary. Therefore, given a step, n, it is
calculated as:

i3(n) = S (D(U(n))) (35)

where S is calculated as expressed in Eq. (16). The
entropy tends to stabilize in datasets that produce dic-
tionaries of type 1 and 2.

• i4, the number of words that belong to the core: given
U(n), the core sub-dictionary C(U(n)) is obtained. Then
i4(n) is calculated as:

i4(n) = |C(U(n))| = nc(n) (36)

Recall that this indicator tends to stabilize in datasets
that produce dictionaries of type 1 and 2.

2) STABILITY CRITERIA
A central aspect of our method is the actual criteria used for
considering when each of the previous indicators has stabi-
lized. For indicators i1, i2, i3, and i4, our stability criterion
will be based on the ExponentiallyWeightedMovingAverage
(EWMA) [40]. This method obtains the average value of a
sequence of sample values considering recent values with an
exponential weight and a decay factor, λ. EWMA has been
proved to be a good estimator to forecast future values of a
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Algorithm 3 Dataset Collection Algorithm
Input: 1U , n0, L, Umax
Output: U

1: n← 0
2: U ←collect(n0)
3: while ((n ·1U ) < Umax − n0) do
4: n← n+ 1
5: U ← U ∪ collect(1U )
6: calculate i1(n), i2(n), i3(n), i4(n)
7: calculate stability for all indicators
8: if n ≥ L then
9: calculate δ(n) for all indicators
10: check stability condition for all indicators
11: if (i1 & i2 are stable) | (i3 & i4 are stable) then
12: break
13: end if
14: end if
15: end while
16: return U

variable [41], [42]. The value of EWMA at the instant n for
the indicator ix is given by:

E(n) = λ · ix(n)+ (1− λ) · E(n− 1) (37)

To determine the stabilization point of the series E(n),
we use a temporal window of L samples, over which we will
calculate the variation coefficient, δ, as the ratio of the sample
standard deviation and the mean:

δ(n) =
σ

µ
=

√
1/L

∑L
i=1(E(n− i)− Ē)2

Ē
, ∀n > L (38)

where Ē stands for the mean value of E(n) in the sliding
window of L samples, i.e., Ē = 1/L

∑L
i=1 E(i).

Then, indicators i1(n), i2(n), i3(n), and i4(n) are considered
stable when their coefficient δ(n) is lower than a certain
threshold (φ) for a number of consecutive times (lmin). Values
for φ and lmin should be adjusted on a per case basis. Typical
values used in our experiment are φ = 10−4 and lmin = 15,
although these parameters could be individually arranged for
each indicator.

3) STOP CRITERIA
The stop criteria follows the stability conditions shown
in Table 4. As such, if i1 and i2 stabilize, the dictionary
is considered type 1 and therefore, the collection can stop.
However, if either i1 or i2 do not stabilize but i3 and i4 do,
the dictionary is considered type 2 and the collection stops.
Otherwise, the collection stops when the capture reaches
an administrative value Umax .5 In Algorithm 3 we show a
high-level pseudocode of the collection algorithm proposed.

5In a softer alternative approach, the collection could be stopped when
variations in i3 and i4 were considered very small.

FIGURE 8. Evolution of the indicator i2 for the different datasets.

TABLE 5. Stabilization point for each indicator and breakpoint for
collection.

C. APPLICATION TO OUR EXPERIMENTAL DATASETS
We have applied the proposed collection method to our
datasets by re-collecting their URIs in chronological order.
This will let us study the evolution of the indicators, find the
size that would have been captured with our proposal, and
most importantly, verify that the size reduction in Biblio and
Teulada has a limited impact on AIDS performance.

The evolution of indicators i1, i3 and i4 has been already
shown in Figures 5 and 6. Figure 8 shows the evolution of
i2 with the dataset size for the four training datasets under
study. It can be observed that, as expected, i2 only stabi-
lizes in the case of Teulada (stable-dictionary, type 1). The
stabilization point for these indicators is shown in Table 5,
where column U stands for the number of URIs processed
until the stop criteria is met. The other columns from Table 5
show both the number of steps in which the algorithm has
met the stop criteria, and the number of URI collected at
such point (in brackets). Results show that our on-linemethod
accurately ’detects’ the different dictionary types, and saves
a significant number of URIs in the collection phase for
the dictionaries Teulada and Biblio (stable and core-stable
dictionaries respectively). For type-3 dictionaries (Inves and
UofS) our method only stops after reaching the maximum
administrative value (Umax).
In order to evaluate the influence of our on-line collection

method in AIDS performance, we have followed a procedure
similar to that of subsection V-C. Table 6 shows the results,
where column η(U ) shows the performance obtained when
the AIDS is trained with the datasets determined by our
algorithm; column η(Umax) shows the AIDS performance
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TABLE 6. Size reduction and performance comparison.

obtained with the full training dataset, and column1η stands
for the difference in performance (i.e., η(U ) − η(Umax) ).
The dataset size reduction obtained with Algorithm 3 is
also shown in column Reduction (= 1 − (U/Umax)). It
can be observed that, despite a size reduction of 42.95%,
the AIDS performance is not impacted in Teulada.6 In the
case of Biblio, we obtain a size reduction of 19.36%, but
the AIDS performance is slightly better than obtained with
the full dataset. This suggests that the algorithm also works
with overtrained datasets. In the case of Inves and UofS, our
algorithm produced no size reduction, and thereby unaffected
AIDS performance.

D. COMPUTATIONAL EFFORT
In order to apply the proposed algorithm in real-time, the time
devoted to processing a new chunk with 1U URIs should
be less than its collection time. For each URI processed,
the computational effort includes vocabulary extraction and
dictionary update (including searching in a dictionary with
M words). After that, indicators i1 to i4 should be calcu-
lated and stability and stop criteria computed. This exhibits
a complexity of O(1U · M logM ). In Figure 9 we show
the execution time of the on-line collection algorithm imple-
mented in Python and ran in a computer with a Xeon(R)
E5645@2.40GHz processor. As expected, the execution time
grows with the chunk size (1U ) and the vocabulary size
(M ). Note that for 100 000 URIs, the vocabulary size in UofS
and Biblio is about 3 800 words, while for Inves is about
27 700 words. This results in a different slope for the Inves
dataset in Figure 9. In the worst case, Inves, we achieved a
throughput of 4 500 URIs by second, which suffices to be
applicable to most real-life scenarios.

VII. LIMITATIONS OF THIS WORK
This work is only a first step into the study of the impact of
the volume of training data on AIDS performance. Besides
the fact of studying four specific datasets, several factors
limit the generalization of the results presented in this work.
The main ones are:
• We implicitly assume that, after the stabilization of
some indicators, the statistical properties of future URIs
will not change. This ergodic behavior could be a
hard assumption in many real scenarios. Therefore, one

6Note that datasets that produce stable dictionaries also meet the stop
criteria for core-stable dictionaries. To sort this out, we could add extra time
(an extra transient period) to allow for the stabilization of indicators i1 and
i2. In our experiments, however, stabilization of i1 and i2 happened earlier
than i3 and i4.

FIGURE 9. Computation time for different chunk sizes.

should periodically verify if this assumption holds and,
if not, initiate a new collection period for re-training the
AIDS.

• The parameters used have a decisive impact on the
results. For example, Umax, the parameters used for
stability δ and L, the number of URIs to be initially
collected until pth is considered stable, the step size1U ,
etc. Researchers are advised to investigate and perform
fine tuning of these parameters on a per case basis.

• The dictionary-based model (or 1-grammar) is only
one possible method that AIDS can employ to detect
anomaly in HTTP attacks [2]. Thus, this work is limited
by this and it is only applicable to similar models.

These limitations pave the way for further research, as dis-
cussed next.

VIII. CONCLUSIONS AND FURTHER WORKS
In this work, we have investigated the size of the training
dataset and its effect on AIDS performance in the context of
HTTPURI-attack detection.We have proposed a set of stabil-
ity conditions to determine when data captured at the produc-
tion environment is representative of normal behavior and,
as such, is suited for training an AIDS based on 1-grammar.
Using these conditions, we have proposed a method to deter-
mine in real-time when the data collection can be stopped.
This method has been applied to four real-life datasets con-
cluding that, in some cases, smaller datasets would have
produced the same AIDS performance. Thus, depending on
the properties of the data being captured, it may be possible to
perform a more efficient data collection in anomaly detectors
similar to the one used in our study. Collecting less data will
allow one to reduce the cost of collection and sanitization
of real-life traces, and reduce the risk of overtraining. The
former includes reducing the data collection time span which
might speed up the time to (re)training and facilitate an earlier
deployment of the AIDS.

A number of issues can be appointed for further work.
A sensitivity study of the parameters used would be interest-
ing to provide finer guidance to the reader in the application
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of the proposed collection method. A finer study of type-
3 dictionaries might produce new stability conditions with
affordable performance degradation. We would also like to
explore the use of our method for deciding when re-training
is necessary by comparing the properties of the current dic-
tionary with that of the dictionary that would be obtained
with current traffic. Finally, the extension of our method to
other models such as n-grammars (n > 1) should also be
investigated. In particular, the use of sequences of words
rather than word frequencies would increase the possibility
of applying other information-theoretical concepts like the
asymptotic equipartition property.

APPENDIX
ROOF OF LEMMA
Lemma 1 states that:

Given a core-stable dataset U , of sizeU , there is a minimal
subset, of size Us < U , whose entropy would be equal to the
entropy of the full dataset if U was large enough.

Proof: Remember that core-stable dictionaries include
not only nc core-words, but also tail-words (i.e., rarely
observed words, maybe one or two times) which commonly
have little impact in the anomaly score of a URI. We can
assume that tail-words have a similar common frequency
(a small number, A). As such, the tail-words’ empirical prob-
ability can be assumed to be pi = A/O ,∀wi ∈ T (U) (where
O was the overall number of observations in the dictionary
D(U)).
We are interested first in confirming that pth stabilizes

for larges values of U . To this end, we can rewrite pth (see
Eq. (39)) taking into account that the cardinality of the dic-
tionary can be also expressed asM = nc+O ·Ptail/A, (where
nc was the number of core-words in the dictionary). Then:

pth =
1− (pmax − pmin)

M
=

1− pmax + A/O
nc + O · Ptail/A

(39)

Note thatO grows at least linearly withU (i.e., in each URI
there will be at least one word). Then, for very large values of
U (U � 1), A/O → 0, and, since core-words probabilities
remain stable, we can assume that pmax and nc remain stable.
Then we can state that for a large value of U , pth tend to
stabilize, or equivalently:

pth(U +1U )− pth(U )

= (1− pmax) · (
1

M +1M
−

1
M

)

=
1− pmax

nc + O · Ptail/A · (
ncO
1O + 1)

−−−→
U�1

0

where 1O is the increment in words observations associated
to the new 1U URIs (1U � U ).
Since pth can be considered constant for larges values ofU ,

and the probabilities pi of the words in the core remains the
same according to Eq. (27), nc does not change either. This
lead us directly to:

1) Score(U) = Score(Us) (due to condition in (27))
2) Ptail(U) = Ptail(Us), (as Ptail = 1− Pcore).

Due to 1) any difference in the entropy between U and
U ′ = U −1U (U ′ > Us) is attributable to the tail. As such:

S(U)− S(U ′) = Stail(U)− Stail(U ′) (40)

Then, to prove that the entropy S does not change is
equivalent to prove that the entropy in the tail does not
change. To simplify this demonstration, and without loss of
generality, we will assume that the frequency of tail words
is one (A = 1). Due to 2), and the fact that new words are
being added only to the tail, we can re-write the tail entropy
difference as:

Stail(U)− Stail(U ′)
=

∑
i∈T (U ′)

pi · log2 pi −
∑

i∈T (U )
pi · log2 pi

= |T (U ′)| ·
1
O′

log2
1
O′
− |T (U)| ·

1
O

log2
1
O

= |T (U)| ·
(
log2 O

′−1

O′
·
|T (U ′)|
|T (U )|

−
log2 O

−1

O

)
where O′ and O are the overall number of observations in the
dictionaries D(U) and D(U ′) respectively.
But since |T (U )| = O · Ptail , the previous expression is

equivalent to:

O · Ptail ·

(
log2 O

′−1

O′
·
O′Ptail
OPtail

−
log2 O

−1

O

)

= O · Ptail ·

(
log2 O

′−1

O
−

log2 O
−1

O

)
= Ptail ·

(
log2 O

′−1
− log2 O

−1
)

= Ptail · log2
O
O′

(41)

For a number sufficiently large of URIs (i.e U � 1U ) the
ratio O/O′ = O/(O−1O)→ 1, as and as such:

Stail(U)− Stail(U −1U) ' Ptail × log2(1)) = 0 (42)
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