
coatings

Article

Oscillating Magnetic Drop: How to Grade
Water-Repellent Surfaces

Angelica Goncalves Dos Santos 1, Francisco Javier Montes-Ruiz Cabello 2, Fernando Vereda 2 ,
Miguel A. Cabrerizo-Vilchez 2 and Miguel A. Rodriguez-Valverde 2,*

1 Department of Physics, Florida State University, Tallahassee, FL 32306, USA; amg16k@my.fsu.edu
2 Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences,

University of Granada, 18071 Granada, Spain; fjmontes@ugr.es (F.J.M.-R.C.); fvereda@ugr.es (F.V.);
mcabre@ugr.es (M.A.C.-V.)

* Correspondence: marodri@ugr.es; Tel.: +34-958-243-229

Received: 19 February 2019; Accepted: 17 April 2019; Published: 21 April 2019
����������
�������

Abstract: Evaluation of superhydrophobic (SH) surfaces based on contact angle measurements is
challenging due to the high mobility of drops and the resolution limits of optical goniometry. For this
reason, some alternatives to drop-shape methods have been proposed such as the damped-oscillatory
motion of ferrofluid sessile drops produced by an external magnetic field. This approach provides
information on surface friction (lateral/shear adhesion) from the kinetic energy dissipation of the
drop. In this work, we used this method to compare the low adhesion of four commercial SH
coatings (Neverwet, WX2100, Ultraever dry, Hydrobead) formed on glass substrates. As ferrofluid,
we used a maghemite aqueous suspension (2% v/v) synthesized ad hoc. The rolling magnetic drop is
used as a probe to explore shear solid–liquid adhesion. Additionally, drop energy dissipates due
to velocity-dependent viscous stresses developed close to the solid–liquid interface. By fitting the
damped harmonic oscillations, we estimated the decay time on each coating. The SH coatings were
statistically different by using the mean damping time. The differences found between SH coatings
could be ascribed to surface–drop adhesion (contact angle hysteresis and apparent contact area).
By using this methodology, we were able to grade meaningfully the liquid-repelling properties of
superhydrophobic surfaces.
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1. Introduction

Liquid-repellent surfaces are identified as surfaces with low contact angle hysteresis (<10◦) and
high contact angles (>150◦) [1]. Hysteresis is directly related to the energy cost during the total or
partial detachment of a drop from a solid surface. Preparation of superhydrophobic (SH) surfaces is
well-established and their water repelling property is commonly evaluated with contact angle or critical
sliding angle measurements by using optical goniometry, as happens with the tilting plate method
(inclined sessile drop) [2]. However, although this method is useful to illustrate water repellency,
it provides low-resolution values of contact angle or critical sliding angle for SH surfaces. The difficult
localization of the contact points of non-wetting drops, the insufficient resolution for high contact angles
with both the conventional optical devices and numerical fitting of drop profiles [3], the resolution of
standard inclinometers working at very low tilt angles (<5◦) and the monitoring of “restless” drops
placed on SH surfaces [4] required to establish new methodologies. Since the high drop mobility
observed on a surface reveals its liquid repellency, the kinetic energy dissipation of a moving sessile
drop might quantify the surface friction due to adhesion hysteresis.

Coatings 2019, 9, 270; doi:10.3390/coatings9040270 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0002-2744-9161
https://orcid.org/0000-0003-4361-6721
http://www.mdpi.com/2079-6412/9/4/270?type=check_update&version=1
http://dx.doi.org/10.3390/coatings9040270
http://www.mdpi.com/journal/coatings


Coatings 2019, 9, 270 2 of 9

A magnetic drop can be manipulated with an external magnetic field (magneto-wetting) [5–11].
The damped-oscillatory motion of a water-based ferrofluid sessile drop driven by a fixed permanent
magnet [12] might be used to evaluate experimentally, without further theoretical treatment, the water
repellency of non-magnetizable SH surfaces. It is known that, on SH surfaces, a moving sessile drop
really rolls, it does not slide [13]. Far from the contact region, the rolling drop moves in a similar way to
a rolling rigid-solid. This way, the bulk effect of viscosity may be ignored and the viscous forces mainly
act near the contact area [14]. Moreover, this viscous dissipation is further reduced on SH surfaces
where the actual drop contact area is particularly low. This approach is different to the viscous forces
considered by Timonen et al. [12]. Otherwise, solid–liquid adhesion friction depends on contact angle
hysteresis and contact line length of the drop. In this scenario, the plausible differences found with
moving drops on SH surfaces would be exclusive to the surface-drop interaction.

In this work, we compared four commercial SH coatings on glass by using the decay time of
an oscillating ferrofluid drop released far from its equilibrium. We found the optimal magnetic field
to minimize the drop shape distortion and to reproduce longer oscillating motions. We studied the
dependence of the damping time on the surface-drop contact area and the drop volume.

2. Materials and Methods

2.1. Fabrication of Superhydrophobic Glass Samples

We evaluated four commercial superhydrophobic coatings: Neverwet Multi-Surface
(RUST-OLEUM, Coventry, UK), WX-2100 (Cytonix LLC, Beltsville, MD, USA), Ultra-Ever Dry (Tap
Iberica., Burjassot, Spain), and Hydrobead (Hydrobead, San Diego, CA, USA). They were sprayed on
clean glass slides, as each supplier recommended. We assumed that these coatings are organic, without
metal traces.

2.2. Ferrofluid Preparation

The aqueous ferrofluid was prepared at 2% v/v as described elsewhere [15,16]. The process
starts with the synthesis of the magnetite nanoparticles by means of the well-known coprecipitation
method. These particles are subsequently oxidized to maghemite (γ-Fe2O3) with Fe(NO3)3 and then
functionalized with citrate. The electric charge of citrate carboxyl groups at neutral pH prevents
particle aggregation. In addition, the small size of the particles (typically 10 nm) in combination to the
thermal agitation make the dispersion sedimentation unlikely. As a result, the ferrofluid remains stable
for months. The values of density and surface tension of the ferrofluid are 1.04 g/mL and 67.4 mN/m,
respectively, which are close to those of pure water. The surface tension indicates that the magnetic
nanoparticles have no significant interfacial activity.

2.3. Contact Angle Measurements

The contact angle measurements were conducted with the tilting plate method [2]. We used
100 µL drops of Milli-Q water to increase the density of metastable drop configurations separated by
smaller energy barriers and the spatial resolution of the method. Drops were gently deposited at the
center of the sample, which is fixed to the tilting platform, oriented horizontally. The drop placement
was non-trivial because the drops rolled off the samples very easily. Once the drop was deposited and
static, the platform was automatically inclined at a constant rate (5◦/s). Side views of the drop were
captured simultaneously at 16 fps. We measured the Advancing Contact Angle (ACA) and Receding
Contact Angle values (RCA), at both sides of the profile of the deformed drop by using independent
elliptical fittings [2]. From these values, we calculated the Contact Angle Hysteresis (CAH) as the
difference ACA-RCA.
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2.4. Oscillating Magnetic Drop Set-up

The set-up for the oscillating magnetic drop experiments is illustrated in Figure 1. Below the
surface, a cylindrical NdFeB magnet with 1.20 cm-diameter and 0.53 cm-height (Supermagnete,
Gottmadingen, Germany) was assembled to a vertical aluminum screw. This screw allowed for
the adjustment of the surface-to-magnet distance. The magnetic field strength was measured with
a teslameter (5170 Gauss/Tesla Meter, FW BELL-EuroMC, Stains, France). Once the SH coating was
placed on the stage, the system was leveled out to ensure that the magnetic drop moved randomly
on the surface in the absence of the external magnetic field. We deposited three ferrofluid drops
with a handheld micropipette on each SH coating. We studied two volumes: 5 and 10 µL. Each drop
was initially static thanks to a secondary weak magnet (0.44 cm-height) placed below the surface,
at a horizontal distance of 1.76 cm from the primary magnet. The action of this secondary magnet was
allowed from an adjustable stop. Once the secondary magnet was moved down, the ferrofluid drop
was released, describing a damped oscillatory motion around the primary magnet. During the overall
motion, we acquired side views (512 × 128 pixel, 212 pixel/cm) of the back-illuminated drop with
a high-speed camera (Phantom, Miro) at 1000 fps. The geometrical drop parameters, such as centroid,
contact angles, and contact radius, were calculated by elliptical fitting of each drop contour. The value
of contact angle at each side of the drop contour was calculated from the corresponding slope of the
best fit evaluated at the contact point (initial and final points of contour). Our resolution was enough
to find meaningfully the horizontal positions of drop centroid. We measured the decay time τ of
drop motion by fitting the centroid positions to a damped sine wave function (Aexp(−t/τ)sin(ωt + ϕ)).
We discarded the initial and final oscillations as suggested by Timonen et al. [12].
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Figure 1. Set-up for oscillating magnetic drop experiments.

3. Results

3.1. Contact Angle Measurements

In Table 1, we show the ACA, RCA, and CAH values measured with the tilting plate method
(100 µL-water drops) for the coatings used in this study. These values were averaged over, at least,
three experiments. We identify all the coatings as superhydrophobic but no significant difference was
found between them.

Table 1. Contact angles of Milli-Q water drops (100 µL) measured with the tilting plane method on the
Superhydrophobic (SH) coatings. ACA: Advancing Contact Angle, RCA: Receding Contact Angle and
CAH: Contact Angle Hysteresis.

Coating ACA (◦) RCA (◦) CAH (◦)

WX-2100 149 ± 2 147 ± 4 2 ± 6
Hydrobead 152 ± 1 146 ± 3 6 ± 4

Ultra-Ever-Dry 148 ± 2 146 ± 2 2 ± 4
Neverwet 151 ± 3 148 ± 3 3 ± 6
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3.2. Magnetic Field Strength

We evaluated the magnetic field strength on the sample stage. This field was maximum close to
the primary magnet axis, as expected. We varied the magnet-to-surface distance (r) and the results
are shown in Figure 2a. The (maximum) magnetic field strength scales as 1/r, as predicted by theory.
We also measured the magnetic field strength at different distances from the primary magnet axis (d)
(Figure 2b), for four surface-to-magnet distances.
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3.3. Drop Shape Distortion Induced by the Magnetic Field

Magnetic force depends on the field gradient and the ferrofluid magnetization depends on the
field strength. Besides, it is known that (surface) magnetic forces alter the wetting response of magnetic
drops on solids such as electric forces in electrowetting. The magnetic sessile drop is pressed against the
surface by the effect of the external magnetic field, which increases the apparent wet area. We intended
to find an optimal surface-to-magnet separation that balances the minimum drop shape distortion and
at the same time produces a significantly damped-oscillating drop motion. In particular, we analyzed
how the values of drop contact area and contact angle, averaged during the entire drop motion,
were modified by the magnetic field. We monitored these parameters for oscillating 5 µL-drops over
the Hydrobead coating. In Figure 3a, we show how the inverse of the average drop contact area
(1/<A>) scales as the surface-to-magnet distance (r). From Figure 2a, one may conclude that the contact
area increases linearly with the magnetic field strength. In Figure 3b, we show how the average contact
angle <θ> decreases linearly with the average contact area (<A>), as surface-to-magnet distance
becomes smaller. The magnetic drop is squashed against the surface as the magnetic force (normal
net force) increases, and this increases noticeably the contact area and decreases the contact angle.
Short surface-to-magnet distances might produce a total or partial transition in the drop [10] from
the Cassie regime (heterogeneous wetting) to the Wenzel regime (homogeneous wetting). In our
experiments, for a fixed surface-to-magnet distance, the drop contact area also oscillates because the
external magnetic field is not uniform on the SH coating: a greater contact area was observed close
to the equilibrium position. This effect complicates the overall drop motion, with a variable period
(not pure harmonic). We found that 0.96 cm was the optimal surface-to-magnet distance (peak field of
50 mT) to reproduce a significantly damped-oscillating motion of almost undistorted drops.

We fixed the surface-to-magnet distance to 0.96 cm to evaluate the shape variations of oscillating
drops over the SH coatings. In Figure 4, we show the results for two representative coatings (Hydrobead
and Neverwet). We plot the average dynamic contact angle (estimated by averaging the contact angles
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measured at both sides of the drop profile) in terms of the instantaneous contact area, during the
complete oscillating motion of three magnetic drops. This plot does not illustrate the response of
contact angle hysteresis for each coating. A sessile drop in the Cassie-Baxter regime (on SH surfaces)
may reach different configurations (different penetration depths into the asperities) according to
the stability of each drop configuration against an external body force (size-dependent). In Table 2,
we collect the values of oscillating contact area averaged during the entire drop motion on each coating.
Except for Neverwet, the values of mean contact area were very similar. It is also remarkable the
significant disagreement for this coating between the contact angles measured with the oscillating drop
and the tilting plate method (see Table 1). This behavior will be confirmed in Section 3.4.
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Figure 4. Average dynamic contact angle (measured at both sides of the drop) in terms of the
instantaneous contact area for 5 µL-magnetic drops oscillating over glass slides coated with Hydrobead
(a) and Neverwet (b). Each parameter was determined by image analysis of the single frames captured
during the complete drop motion.

Table 2. Values of the mean contact area (<A>) during the complete drop motion (5 µL) on the
SH coatings.

Coating <A> (mm2)

WX-2100 5.7 ± 0.4
Hydrobead 5.2 ± 0.4

Ultra-Ever-Dry 5.1 ± 0.4
Neverwet 7.8 ± 0.4
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3.4. Dynamics of Oscillating Magnetic Drops

With the surface-to-magnet distance fixed to 0.96 cm, we performed dynamic experiments based
on the analysis of the motion of 5 µL-magnetic drops over each SH coating. In Figure 5, we show
the evolution of the horizontal position of the drop centroid with time. In all cases, once the drop is
released, it oscillates around the equilibrium position but following an underdamped motion with
a decay time different for each coating. The horizontal magnetic force acts like a restorative force for
horizontal distances below 1 cm respect to the equilibrium position (see Figure 2b). A moving drop
on a SH surface describes a superposition of a solid rotation (producing no bulk dissipation) with
a viscous friction localized in the contact area. The viscous dissipation is mainly governed by internal
flows near contact area rather than in bulk. However, the energy dissipation is also caused by adhesion
hysteresis. We reasonably assume that the rolling drops in our experiments undergo a synergetic
dissipation due to the viscous stresses developed close to the solid–liquid interface (further reduced in
SH surfaces) and the shear adhesion hysteresis. We postulate that a single exponential law, as fit model
for the amplitude decay of oscillating drops, enables the capture of the dissipative effects of irreversible
solid–liquid adhesion as well as velocity-dependent friction. The goodness of fit was appropriate.

We fitted the horizontal position of the drop centroid (Figure 5) to a damped-harmonic function to
determine the damping time (τ). We repeated the experiments with drops of 10 µL and the results are
shown in Table 3. In a simplistic scenario of velocity-dependent friction, we would expect greater drop
inertia and greater damping. However, this is only found for the Neverwet coating (larger contact
area). We found that the Ultra-Ever-Dry coating is the most water repellent (higher damping time),
while the WX-2100 coating has the lowest repelling property (lower damping time).
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Figure 5. Damped oscillating motion of 5µL-magnetic drops on the SH coatings, for a surface-to-magnet
distance of 0.96 cm. The XCM corresponds to the horizontal deviation of the drop centroid from the
equilibrium (primary magnet position).

Table 3. Damping time values for oscillating magnetic drops of 5 and 10 µL on the SH coatings.

Coating τ (s)-5 µL τ (s)-10 µL

WX-2100 0.25 ± 0.04 0.40 ± 0.03
Hydrobead 0.61 ± 0.05 0.61 ± 0.06

Ultra-Ever-Dry 0.70 ± 0.10 0.84 ± 0.10
Neverwet 0.66 ± 0.04 0.52 ± 0.09

Like in a typical damper, the frictional force should be a function of the average contact area,
but the dependence of the damping time on the size of the contact line is still unclear. We intend
to explore the plausible effect of drop contact area on the damping time. In Figure 6a, we plot the
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inverse of the damping time of 5 µL-magnetic drops on the Hydrobead coating versus the average
contact area (modified by varying the surface-to-magnet distance). Below values of 0.1 cm2 (low
magnetic fields), the inverse of the damping time scales linearly with the average contact area of the
drop. This is expected because contact angle hysteresis on rough composite surfaces depends on the
fractional solid-liquid contact area [17]. However, above 0.1 cm2, the damping time saturates due to the
squashing effect on the magnetic drop, and the possible occurrence of drop configurations far from the
‘fakir’ state (maximum volume of air entrapped below the drop). In addition to the different wetting
properties, the slope of the linear part of Figure 6a (amplified in Figure 6b) may be related to how
the water-repelling properties (Cassie regime) of each coating are preserved as the magnetic drop is
pressed against the surface. The drops may penetrate sufficiently into the particular surface asperities.
Lower values of 1/(τ<A>) for a fixed drop volume would point out to more stable configurations of
drop within a well-established Cassie regime because the damping time would be less sensitive to wet
area changes. In Table 4, we show the values of the slope 1/(τ<A>) for each coating. This analysis was
carried out for drops of 5 and 10 µL. Larger drops typically attain a more stable Cassie configuration.
Instead, we observed that the values of 1/(τ<A>) for the Neverwet coating were very similar for both
drop volumes. The magnetic force nearly altered the incomplete hybrid wetting regime developed in
this coating. In the rest of coatings, the Ultra-Ever-Dry coating was the most stable. This suggest that
the Cassie regimen reproduced would be more robust, independent of the drop size.
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Figure 6. (a) Inverse of the damping time (1/τ) of 5 µL-magnetic drops versus the average
contact area (<A>), changed through the external magnetic field, on the Hydrobead coating.
(b) Linear fit to the section of the same curve corresponding to low average areas (small fields,
large surface-to-magnet distances).

Table 4. Values of 1/(τ<A>) (cm−2 s−1) corresponding to 5 and 10 µL for the SH coatings.

Coating 1/(τ<A>) (cm−2 s−1)-5 µL 1/(τ<A>) (cm−2 s−1)-10 µL

WX-2100 70 ± 16 33 ± 7
Hydrobead 32 ± 5 23 ± 9

Ultra-Ever-Dry 28 ± 6 17 ± 3
Neverwet 19 ± 2 19 ± 5

4. Discussion

Direct contact angle and hysteresis measurements of large drops (100 µL) showed that all the
coatings were superhydrophobic, but this methodology was unable to identify the more efficient
coating. Furthermore, the mapping of average contact angle of small drops (5 µL) in motion in
terms of their contact area evidenced the contact angle hysteresis of each surface, but it did not
resolve the corresponding water-repelling property. Instead, we were able to grade meaningfully
non-magnetizable superhydrophobic surfaces by using the damping time of oscillating magnetic
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drops ruled by the solid–liquid shear adhesion. We confirmed that this method is more sensitive than
goniometry-based methods to validate superhydrophobic surfaces. We recommend using small drops
(5–10 µL) of dilute aqueous ferrofluids (2% v/v). Moreover, an intense magnetic field (peak value of
50 mT) is recommended to produce a damped oscillating motion with minor changes in the average
contact area and contact angle of the drop as compared to the magnetic field-off case. Further work
should be addressed to explore the relationship between the damping time of water-repellent surfaces
and their contact angle hysteresis, measured with force-based techniques.
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