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Abstract 

A new family of tensegrity structures is presented: the Z-octahedron family. A tensegrity 

family is a group of tensegrity structures that share a common connectivity pattern. The 

members of the Z-octahedron family have been obtained replacing the elementary 

rhombic cells of the members of the octahedron family with elementary Z-shaped cells. 

In addition, a higher number of possible force density or force:length ratio values have 

been considered. The values of the force:length ratio of the members of the family that 

lead to super-stable tensegrity forms have been computed analytically. Two members of 

the family have been obtained: the Z-expanded octahedron and the Z-double-expanded 

octahedron. Finally it has been proved that the Z-double-expanded octahedron obtained 

here from topological rules can also be defined from a truncated cube based on purely 

geometrical intuition. 
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1. Introduction 

Tensegrity structures were first introduced by Fuller [1]. They are pin-jointed free-

standing pre-stressed structures composed of a set of compression (struts) and tension 

(cables) members that are self-equilibrated. Tensegrity structures have an extensive range 

of important and novel applications in many fields such as biology [2,3], aerospace 

engineering [4], robotics [5] and civil engineering [6,7] due to their light-weight, 

innovative forms and deployability. They have had a great development in recent years 

due to the growing interest in mechanical metamaterials [8]. 

Unlike conventional structural forms such as trusses and frames where the geometries are 

generally known, in the case of tensegrity structures its geometrical configuration and the 

prestress state of the members are interdependent with each other. The process of 

determining a suitable prestress state and its corresponding equilibrium shape is called 

form-finding. A review of form-finding methods of tensegrity structures can be seen in 

the work carried out by Tibert and Pellegrino [9]. The Force Density Method (FDM) 

proposed by Schek [10,11] is a form-finding method of pin-jointed structures originally 

conceived for tension structures. The FDM is present in several form-finding methods of 

tensegrity structures [12–14], and it is based on the concept of force:length ratio or force 

density q. Otter [15] presented the dynamic relaxation method which has also been used 

in the form-finding problem of tensegrity structures [16,17]. 

The existing form-finding methods can be generally classified into two categories: 

analytical and numerical. Analytical methods find the equilibrium shape of simple 

tensegrity forms with a high order of symmetry through a symbolic analysis (see [13,18–
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20]). Regarding numerical methods, they can be applied to relatively complicated 

tensegrities with a high number of members or with lack of symmetry; examples of them 

can be seen in [12,14,21–23]. 

A tensegrity family is defined as a group of tensegrity structures that share a common 

connectivity pattern [20]. The octahedron family is a good example of tensegrity family 

[20]. The members of this family are: the octahedron, the expanded octahedron and the 

double-expanded octahedron. Each member of the family comes from the expansion of a 

previous member. In addition, each member of the family has as folded forms all the 

previous members of the family. Folded forms are tensegrity structures with nodes having 

the same coordinates (i.e. the nodes have the same position in the space) [18]. On the 

contrary, full forms are tensegrity structures all nodes have different coordinates one to 

one. 

One of the main advantages of a tensegrity family is the possibility of defining new 

tensegrity forms based on topology rules. A tensegrity family can be considered as a 

source of new tensegrity forms that share the same connectivity pattern. On the other 

hand, there are other sources of tensegrity structures based purely on geometry as the 

tensegrity forms obtained from truncated regular polyhedrons [19,24,25].  

In this work a new tensegrity family is defined: the Z-octahedron family. The members 

of the Z-octahedron family have been obtained replacing the elementary rhombic cells of 

the members of the octahedron family presented by [20] by elementary Z-shaped cells. 

The first two members of this presented family are the Z-expanded octahedron and the Z-

double-expanded octahedron, both super-stable. The values of the force densities or 

force:length ratios that satisfy the super-stability conditions have been computed 

analytically for all the members of the Z-octahedron family.  
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2. Equilibrium, rank deficiency and super-stability of tensegrity structures 

2.1 Equilibrium of tensegrity structures 

The FDM [11] is a well-known form-finding method for general networks. A mesh is 

composed by n free nodes, nf fixed nodes and m members. The difference between free 

and fixed nodes is that the former ones are free to move in the space while the latter ones 

have a fixed position (they act as supports). The connectivity between the nodes of the 

mesh is defined by the connectivity matrix CS ∈	Âm´(n+nf). If a branch of the mesh j links 

nodes i and k (with i < k), CS is defined as follows: 

 (1) 

In Eq.(1) r denotes the rth column of the jth row in CS. Matrix CS must be known at the 

beginning of the form-finding procedure; Hernández-Montes et al. [26] proposed some 

topological rules in order to define CS for a general mesh. 

Schek [11] proposed to number the fixed nodes at the end of the sequence. By doing so, 

CS can be partitioned into two matrices C ∈	Âm´n and Cf ∈	Âm´nf (CS = [C Cf]). 

The equilibrium equations of the mesh are linearized by assigning specific values of 

force:length ratios q to each member of the mesh [10,11]. The force:length ratio is defined 

as the ratio between the axial force and the length of each member, and it is considered 

to be an input in the form-finding problem. 

In tension structures [27] all the members are in tension, that corresponds with q > 0, and 

the self-weight is ignored (see Figure 1.e). On the contrary, in compression structures 

[28] all the members are in compression (q < 0) and the self-weight is the dominant load 

(see Figure 1.d). Compression structures with tensions members (Figure 1.a) is a new 

type of structures recently introduced by the authors [29] composed by a compression 

structure and tensions members that connect two points of the compression structure. As 
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in the case of compression structures, self-weight cannot be ignored. Cable-strut 

structures (Figure 1.b) are pin-jointed structures composed by tension (cables, q > 0) and 

compression members (struts, q < 0). Special cases of cable-strut structures are cable 

domes [30,31] and cable-stiffened arches [32]. As in tension structures, the self-weight 

of cable-strut structures is usually ignored. Finally, tensegrity structures (Figure 1.c) are 

free-standing cable-strut structures, and so no supports exist. Taking all of the above into 

account, the equilibrium equations of tensegrity structures can be formulated as [11,12]: 

 (1) 

In Eq. (1) D is the force density matrix, which is computed as D = CTQC ∈	Ân´n and x = 

[x1, …, xn]T, y = [y1, …, yn]T and z = [z1, …, zn]T are the nodal coordinate vectors. Matrix 

Q ∈	Âm´m is the diagonal square matrix of vector q = [q1, …, qm]T, which collects the 

force: length ratio of each member of the tensegrity. 

 

Figure 1. Examples of (a) compression structures with tension members (adapted from [29]), (b) 

cable-strut structures (adapted from [30]), (c) tensegrity structures, (d) compression structures and 

(e) tension structures. 

2.2 Rank deficiency 

In both tension (Figure 1.e) and compression (Figure 1.d) structures the corresponding 
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matrix D is nonsingular and the form-finding problem is well-solved ([27] and [28] 

respectively). In compression structures with tension members matrix D can be singular 

and some additional conditions must be taken into account regarding its condition number 

[29]. 

In the case of tensegrity structures and according to the definition of D, the sum of the 

elements of each row or column of D is zero. Due to this, matrix D in tensegrity structures 

is always singular and special considerations have to be taken into account in the form-

finding process. The non-degeneracy condition of tensegrity structures states that in order 

to obtain a tensegrity of dimension d, it is necessary that its corresponding matrix D must 

have a rank deficiency of at least d + 1 [14,18]. The rank-nullity theorem of linear algebra 

states that the rank plus the nullity of a matrix is equal to its number of columns. The 

nullity of a matrix corresponds with the dimension of ker(D). As ker(D) is the eigenspace 

of eigenvalue 0, the dimension of ker(D) coincides with the multiplicity of the eigenvalue 

0. Consequently, in order to obtain a tensegrity structure of dimension d, the multiplicity 

of the eigenvalue 0 of D must be at least d +1. 

The force density matrix D is a symmetric real matrix due to its definition (D = CTQC) 

and, according to the spectral theorem, it is orthogonally diagonalizable: A = P-1DP. The 

diagonal matrix A contains all the eigenvalues of D (l1, …, ln) and P is an orthogonal 

matrix (that is, P-1 = PT) where its columns are an orthonormal base of eigenvectors of D. 

The eigenvalues of D are the solutions of the characteristic polynomial p(l) = ln + an-1 

ln-1 + … + a1 l + a0. As in tensegrity structures the sum of the elements of each row or 

column of D is zero, a0 = 0 [18]. Coefficients an-1, …, a1 are expressed in terms of the 

force:length ratio of all the members of the tensegrity. In order to obtain a three-

dimensional tensegrity (d = 3), the eigenvalue 0 must have at least a multiplicity of 4 and 

consequently coefficients a3, a2 and a1 of the characteristic polynomial must be 0. The 
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previous condition leads to the system of equations shown in Eq. (2), which can be solved 

analytically if some relations between q values are imposed. These imposed conditions 

are based on symmetry and/or topology. 

 (2) 

A more detailed description of the analytical form-finding procedure used in the work 

can be seen in [18,20]. 

2.3 Super-stability of tensegrity structures 

A tensegrity is considered to be stable if it returns to its equilibrium configuration after 

release of small enforced deformations. The stability of tensegrity structures has been 

discussed in detail in [20,33,34]. In this work the super-stability criterion of tensegrity 

structures has been adopted. A tensegrity is called super-stable if it is always stable, 

regardless its prestress and material properties [34,35]. The super-stability conditions of 

tensegrities are [33–35]: 

i. The rank deficiency of the force density matrix D is exactly d + 1. 

ii. The force density matrix D is positive semi-definite. 

iii. The rank of the geometry matrix G is (d 2 + d )/2. 

The definition of the geometry matrix G can be seen in [33]. 

 

3. Tensegrity families and truncated regular polyhedral tensegrities: topological and 

geometrical construction of tensegrity structures 

Tensegrity structures can be constructed by assembling elementary cells [36,37]. In Pugh 

[36] two patterns are identified (among others): the diamond and the zigzag patterns. In 

the diamond pattern cables form diamonds or rhombic cells with a strut defining one 

  

a3(q1,…,qm ) = 0

a2(q1,…,qm ) = 0

a1(q1,…,qm ) = 0

⎫
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diagonal (see Figure 2.a). In the case of the zigzag pattern, an opposite pair of cables of 

a diamond cell are removed and a new cable is added in such a way that form a Z shape 

between the ends of the strut (see Z-shaped cell in Figure 2.b). 

 

Figure 2. Diamond or rhombic (a) and zigzag or Z-shaped (b) elementary cells (black and grey lines 

correspond to cables and struts respectively). 

3.1 Tensegrity families. The octahedron family 

A group of tensegrity structures that share a common connectivity pattern forms a 

tensegrity family [20]. The octahedron family is composed by the octahedron, the 

expanded octahedron and the double-expanded octahedron [20]. The first member of the 

family (the octahedron in Figure 3.a) is composed by 12 cables, 3 struts and 6 nodes that 

conform 3 rhombic cells [20]. The second member is the expanded octahedron (see Figure 

3.b), which is composed by 24 cables, 6 struts and 12 nodes that conform 6 rhombic cells 

[20]. The expanded octahedron comes from the expansion of the octahedron, by 

duplicating all its members and nodes following the topological rules of the family. In 

addition, it was demonstrated that the octahedron is a folded form the expanded 

octahedron [20]. Finally, the third component of the octahedron family (the double 

expanded-octahedron, see Figure 3.c) was obtained in [20] from the expansion of the 

expanded octahedron taking into consideration the particular topological rules of the 

family. The double-expanded octahedron has 48 cables, 12 struts and 24 nodes that 

conform 12 rhombic cells [20]. In the three members of the octahedron family shown in 

Figure 3 only two possible values of q were considered: cables and struts. 

(a) (b)
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Figure 3. Members of the octahedron family: the octahedron (a), the expanded-octahedron (b) and 

the double-expanded octahedron (c). Black and grey lines correspond to cables and struts 

respectively. 

Tensegrity families can be considered as a great source of new tensegrity forms whose 

members are obtained based on topology. These new forms can be obtained either from 

an expansion process or by introducing a higher number of different force:length ratio 

values for both cables and struts. 

3.2 Truncated regular polyhedral tensegrities 

Truncated regular polyhedral tensegrities are tensegrity structures defined geometrically 

from truncated regular polyhedrons [19,24,25]. Nodes in this type of tensegrities coincide 

with the vertices of a truncated polyhedron. Then tensegrities are constructed following 

the procedure proposed by Li et al. [37]. Let us consider the truncated tetrahedron shown 

in Figure 4.a as an example. In a truncated regular tetrahedral tensegrity each cable 

corresponds with an edge of the truncated tetrahedron (see Figure 4.b). The struts connect 

some vertices following the pattern of the Z-shaped elementary cells proposed in [37]. In 

Figure 4.b only a Z-shaped cell is depicted. The diamond or rhombic truncated 

tetrahedron can be constructed from a Z-based one simply by replacing Z-shaped cells 

with rhombic cells (see Figure 4.c). As in Figure 4.b, in Figure 4.c only a rhombic cell is 

represented for the sake of clarity of the figure. Similarly, rhombic truncated tetrahedral, 

cubic, octahedral, dodecahedral and icosahedral tensegrities can be obtained following 

(a) (b) (c) 
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the same rules (see [19]). 

 

Figure 4. (a) Truncated regular tetrahedron, (b) connectivity rules of the truncated regular 

tetrahedral tensegrity and (c) connectivity rules of the rhombic truncated tetrahedron. In (b) and (c) 

only a Z-shaped cell and a rhombic cell are drawn. Red, blue and gray lines correspond to type 1 

cables, type 2 cables and struts, respectively. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article). 

It is obvious that the number of cables in a rhombic tensegrity is higher than in a Z-based 

tensegrity. As can be seen in Figure 4.b and 2.c the cables of truncated tensegrities 

constructed by both elementary rhombic or Z-based cells can be grouped into two types: 

type 1 (truncating cables) and type 2 (remaining cables). So, each Z-shaped cell consists 

of two type 1 cables and one type 2 cable while each rhombic cell consists of two cables 

of both type 1 and type 2.  

 

4. The Z-octahedron family: a new family of tensegrity structures 

All the members of the octahedron family presented in [20] were formed by rhombic 

cells. In this piece of work, a new tensegrity family (the Z-octahedron family) is defined 

replacing the rhombic cells with Z-shaped cells. In addition, a higher number of possible 

values of q is considered. 

4.1 The Z-octahedron 

Figure 5 shows the plane connection graph of both the Z-octahedron (a) and the 

octahedron (b). A plane connection graph is a graphical representation of the connectivity 

between the nodes of a tensegrity structure [20] and it is defined following certain 

(a) (b) (c)
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topological rules, which are specific for each family (in the case of Figure 5.b, the 

octahedron family [20]).  

 

Figure 5. Plane connection graph of the Z-octahedron (a) and of the octahedron (adapted from [20]) 

(b). 

Diamond cells of the octahedron (Figure 5.b) are replaced by Z-shaped cells in order to 

obtain the plane connection graph of the Z-octahedron (Figure 5.a). In the form-finding 

process of the octahedron carried out in [20] it was considered that all the struts and ties 

have the same force:length ratio value respectively. In this work three different values of 

force:length ratio are going to be considered in the definition of the Z-octahedron family: 

qc1 for type-1 cables (continuous black lines in Figure 5.a), qc2 for type-2 cables (dashed 

black lines in Figure 5.a) and qb for struts (grey lines in Figure 5.a). Type-1 and type 2 

cables have been identified following the rule of the Z-shaped elementary cell depicted 

in Figure 4.b. 

The plane connection graph shown in Figure 5.a proves that the construction of the Z-

octahedron is impossible and so it does not exist. Note that there are members that are 

simultaneously defined as both strut and cable (see, for example, the two members 

connecting nodes 1 and 2 in Figure 5.a). 

 

4.2 The Z-expanded octahedron 

qc1 
qc2 
qb 

1 

2 
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5 
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The plane connection graph of the Z-expanded octahedron can be seen in Figure 6.a. As 

in the previous case, it has been constructed based on the plane connection graph of the 

second member of the octahedron family (i.e. the expanded octahedron, see Figure 6.b) 

by replacing the rhombic cells by Z-shaped cells. The Z-expanded octahedron has 24 

members (6 struts and 18 cables) and 12 nodes. The connectivity matrix CÎÂ24×12 of the 

Z-expanded octahedron is defined based on its plane connection graph (see Figure 6.a). 

 

Figure 6. Plane connection graph of the Z-expanded octahedron (a) and of the expanded octahedron 

(adapted from [20]) (b). 

Let us consider again three different values of q: qc1 for type-1 cables, qc2 for type-2 cables 

and qb for struts (continuous black lines, dashed black lines and grey lines in Figure 6.a 

respectively), resulting in QÎÂ24×24. Once matrices C and Q are defined, the force 

density matrix DÎÂ12×12 is computed. Then the characteristic polynomial p(l) of D is 

computed and the non-degeneracy condition of a three dimensional tensegrity shown in 

Eq. (2) is imposed. For the sake of simplicity, two independent normalized force:length 

ratios taken as Q1 = -qc1/qb > 0 and Q2 = -qc2/qb > 0 are considered as in [19]. By doing 
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qc2 
qb 
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so, coefficients a3, a2 and a1 of p(l) are expressed in terms of Q1 and Q2 (see Eqs. (A1), 

(A2) and (A3) of the Appendix A). The resultant system of equations a1 (Q1, Q2) = a2 

(Q1, Q2) = a3 (Q1, Q2) = 0 has the following solutions: {qb = 0} (not considered), {Q1 = 

0, Q2 = 0} (not considered), {Q1 = 0, Q2 = 1} (not considered), {Q1 = 1, Q2 = -1} (not 

possible because Q2 < 0) and the expressions shown in Eqs. (3) and (4). 

 (3) 

 (4) 

All the equilibrium shapes of the Z-expanded octahedron considering three different 

values of q are collected in Eqs. (3) and (4). However, not all of them fulfill the super-

stability conditions defined in Subsection 2.3. Hence, a study about the super-stability of 

the tensegrity forms resulting from Eqs. (3) and (4) must be carried out. 

Figure 7.a shows the Q1 – Q2 curves resulting from Eqs. (3) and (4). Firstly, the condition 

Q1 and Q2 > 0 is checked. If this condition is not fulfilled, cables have become struts or 

vice versa. According to this criterion, curve 1 of Eq. (4) and the part of the curve of Eq. 

(3) which is not in the region Q1 > 0 and Q2 > 0 must be excluded from the study. 

Secondly, condition (i) of the super-stability criterion is imposed, for which the rank 

deficiency of the resulting matrix D must be exactly d+1 (in this case 4). Tensegrity forms 

obtained from curve 2 of Eq. (4) and from the region Q1 > 0 and Q2 > 0 of Eq. (3) (which 

coincides with 0 < Q1 < 2/3) have exactly 4 zero-eigenvalues. Thirdly, condition (ii) of 

the super-stability criterion is imposed, for which matrix D must be positive semi-

definite. Figure 7.b shows the minimum eigenvalue of matrix D for all the Q1 – Q2 pairs 

obtained from Eq. (3) in the region Q1 > 0 and Q2 > 0 considering qc = -1. It can be seen 

from Figure 7.b that there is always a negative eigenvalue, so tensegrity forms resulting 

  
Q2 =

−2+ 6Q1 − 3Q1
2 − 4−8Q1 +8Q1

2 −12Q1
3 + 9Q1

4

4 −1+Q1( )
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4
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from Eq. (3) do not fulfill condition (ii) of super-stability and they are excluded from the 

analysis. On the contrary, the matrix D of the tensegrities obtained from curve 2 of Eq. 

(4) are always positive semi-definite. Finally, condition (iii) of the super-stability states 

that the rank of the geometry matrix G must be (d 2 + d)/2 = 6 (with d = 3, three-

dimensional tensegrity). The tensegrity forms obtained from curve 2 of Eq. (4) have a 

geometry matrix with a rank of six. Consequently, all the Q1 – Q2 pairs defined by curve 

2 of Eq. (4) lead to tensegrity forms that fulfills all the super-stability conditions given in 

Section 2.3 and they can be considered as super-stable tensegrity structures. 

 

Figure 7. (a) Q1 - Q2 self-equilibrium curves of the Z-expanded octahedron (Eqs. (3) and (4)) and (b) 

minimum eigenvalue of D for the Q1 - Q2 curve of Eq. (3) in the region Q1 > 0 and Q2 > 0. 

Figure 8 shows three equilibrium configurations of the Z-expanded octahedron 

considering different Q1 – Q2 pairs of curve 2 of Eq. (4). It can be seen that, as Q1 

increases in Eq. (4), the resultant tensegrity resembles more a truncated tetrahedron (see 

Figure 8). In [25] the truncated regular tetrahedral tensegrity is obtained by geometrical 

intuition based on a regular truncated tetrahedron and following the procedure proposed 

by Li et al. [37]. The connectivity of the nodes of this tensegrity coincides with the one 

of the Z-expanded octahedron (indicated in Figure 6.a) being the only difference that the 
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latter is obtained based only on topology. In Tibert and Pellegrino [9] an equilibrium 

configuration of a truncated tetrahedral tensegrity was defined: qs1 = 1, qs2 = 1.3795 and 

qc = -0.6672 (which corresponds with Q1 = 1.499 and Q2 = 2.068). This solution is in 

complete agreement with the analytical study presented in the work, because it 

corresponds to one of the Q1 - Q2 pairs of curve 2 of Eq. (4). The solution obtained in 

Tibert and Pellegrino [9] is the one shown in Figure 8.a. If condition Q1 = Q2 is imposed 

in Eq. (4), the analytical solution is Q1 = Q2 = (1 + Ö41)/10 (see Figure 8.b).  

 

Figure 8. Equilibrium shapes of the Z-expanded octahedron obtained from the plane connection 

graph shown in Figure 6.a considering different values of q. (a) Q1 = 1.499 & Q2 = 2.068 (Eq. (4)) & 

qb = -1, (b) Q1 = (1 + Ö41)/10 & Q2 = (1 + Ö41)/10 (Eq. (4))  & qb = -1 and (c) Q1 = 3 & Q2 = 1.297 (Eq. 

(4)) & qb = -1. Black continuous and dashed lines and grey lines correspond to qc1, qc2 and qb 

respectively in accordance with Figure 6.a. 

4.3 The Z-double-expanded octahedron 

The plane connection graph of the Z-double-expanded octahedron can be seen in Figure 

9.a. It is constructed based on the plane connection graph of the double-expanded 

octahedron (see Figure 9.b) replacing the rhombic cells by Z-shaped cells. Consequently, 

the Z-double-expanded octahedron has 48 members (12 struts and 36 cables) and 24 

nodes. As in the previous cases, the connectivity matrix of the Z-double-expanded 

octahedron CÎÂ48×24 is constructed based on its plane connection graph (see Figure 9.a).  

(b) 
Q1 = Q2 = (1+√41)/10  

qb = -1 

(a) 
Q1 = 1.499; Q2 = 2.068  

qb = -1 

(c) 
Q1 = 3; Q2 = 1.297  
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Figure 9. Plane connection graph of the Z-double-expanded octahedron (a) and of the double-

expanded octahedron (adapted from [20]) (b). 

Three different values of q are considered: qc1 for type-1 cables, qc2 for type-2 cables and 

qb for struts (continuous black lines, dashed black lines and grey lines in Figure 9.a 

respectively), resulting in QÎÂ48×48. As in the previous case, matrix D ÎÂ24×24 is 

computed and the coefficients a3, a2 and a1 of its corresponding characteristic polynomial 

p(l) are expressed in terms of Q1 and Q2. The expressions of a1 and a2 can be seen in Eqs. 

(A4) and Eq. (A5); the expression of a3 is not shown due to its length. The resultant 

system of equations a1 (Q1, Q2) = a2 (Q1, Q2) = a3 (Q1, Q2) = 0 has the following solutions: 

{qb = 0} (not considered), {Q1 = 0} (not considered), {Q1 = 0, Q2 = 1} (not considered), 

{Q1 = 1, Q2 = -1} (not possible because Q2 < 0), {Q1 = 2/3, Q2 = 0} (not considered) and 

the expressions shown in Eqs. (3), (4) and (5). 

 (5) 

It can be noted that the solutions shown in Eqs. (3) and (4) are present in both the Z-
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expanded octahedron and the Z-double-expanded octahedron. In this case Eqs. (3) and 

(4) correspond to a Z-expanded octahedron but with two nodes sharing the same position 

in the space (that is, duplicated nodes). This proves that the Z-expanded octahedron is a 

folded form of the Z-double-expanded octahedron and so they belong to the same family 

[20]. 

The next step is to study wheter the superstability condition of the equilibrium 

configurations of the Z-double-expanded octahedrons collected in Eqs. (3), (4) and (5) is 

fulfilled. Figure 10.a shows the Q1 - Q2 curves of the expressions shown in Eqs. (3), (4) 

and (5). First of all, the condition Q1 > 0 and Q2 > 0 is checked. Curve 2 of Eqs. (4) and 

(5) and the region 0 < Q1 < 2/3 of Eq. (3) are the only solutions which fulfill this condition. 

So the rest of the curves are excluded from the analysis. Then the three super-stability 

conditions defined in Section 2.3 are checked. Condition (i) of the super-stability implies 

that the resulting matrix D must have 4 zero-eigenvalues in order to obtain a three-

dimensional tensegrity. This condition is fulfilled by curve 2 of Eqs. (4) and (5) and by 

the region 0 < Q1 < 2/3 of Eq. (3). Secondly, condition (ii) implies that the corresponding 

matrix D must be positive semi-definite. Figure 10.b shows the minimum eigenvalue of 

D corresponding to the Q1 - Q2 pairs defined by curve 2 of Eqs. (4) and (5) and the region 

0 < Q1 < 2/3 of Eq. (3) considering qc = -1. It can be seen that curve 2 of Eq. (4) and the 

region 0 < Q1 < 2/3 of Eq. (3) always have a negative eigenvalue. As Q1 increases, the 

minimum eigenvalue of curve 2 of Eq. (4) approaches zero from the bottom and so the 

condition (ii) of the super-stability criterion is not fulfilled. Consequently, curve 2 of Eq. 

(4) and the region 0 < Q1 < 2/3 of Eq. (3) are excluded from the analysis. Finally, 

condition (iii) of the super-stability criterion states that the rank of the geometry matrix 

G must be 6 (in the case of a three-dimensional tensegrity). The tensegrity forms obtained 

from curve 2 of Eq. (5) have a geometry matrix with a rank of six. Therefore, all the Q1 
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– Q2 pairs defined by curve 2 of Eq. (5) lead to a tensegrity form that fulfills all the super-

stability conditions given in Section 2.3 and they can be considered as super-stable 

tensegrity structures. 

 

Figure 10. (a) Q1 - Q2 self-equilibrium curves of the Z-double-expanded octahedron (Eqs. (3), (4) and 

(5)) and (b) minimum eigenvalue of D for the Q1-Q2 curves of Eqs. (3), (4) and (5) when both Q1 > 0 

and Q2 > 0 are fulfilled. 

Figure 11 shows some equilibrium configurations of the Z-double-expanded octahedron 

considering different q values according to Eq. (5). If condition Q1 = Q2 is imposed in 

Eq. (5), the analytical solution Q1 = Q2 = 7/3 is obtained (see Figure 11.b). 

 

Figure 11. Equilibrium shapes of the Z-double-expanded octahedron obtained from the plane 

connection graph shown in Figure 9.a considering different values of q. (a) Q1 = 5/3 & Q2 = 5 (Eq. (5)) 

& qb = -1, (b) Q1 = 7/3 & Q2 = 7/3 (Eq. (5))  & qb = -1 and (c) Q1 = 6 & Q2 = 1.286 (Eq. (5)) & qb = -1. 
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Black continuous and dashed lines and grey lines correspond to qc1, qc2 and qb respectively in 

accordance with Figure 9.a. 

As can be seen in Figure 11, as Q1 increases in Eq. (5), the Z-double-expanded octahedron 

resembles more a truncated cube. 

In [25] a truncated regular cubic tensegrity was defined by purely geometrical intuition 

following the procedure proposed by Li et al. [37]. However, the connectivity between 

the nodes of the tensegrity in [25] is not the same than the one of the Z-double-expanded 

octahedron represented in Figure 9.a. In both cases the cables coincide with the edges of 

the regular truncated cube but the connectivity of the struts is different. Figure 12.a and 

12.b show the connectivity pattern of the struts of both the truncated regular cubic 

tensegrity [25] and the Z-double-expanded octahedron. As can be seen in Figure 12.c, 

struts in the Z-double-expanded octahedron connects nodes located in the same face of 

the polyhedron while, on the contrary, in the truncated regular cubic tensegrity [25] struts 

connect nodes located at different faces. It must be highlighted that the truncated regular 

cubic tensegrity [25] was defined by geometrical intuition, whereas the Z-double-

expanded octahedron has been obtained from topology. 

 

Figure 12. Truncated cube with: (a) strut connectivity of the truncated regular cubic tensegrity [25], 

(b) strut connectivity corresponding to the Z-double-expanded octahedron and (c) detail of the 

difference between (a) and (b). 

 

(a) (b) (c) 
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5. Conclusions 

A new tensegrity family is presented: the Z-octahedron family. The members of the 

family are constructed assembling Z-shaped elementary cells following its connectivity 

pattern. In particular, the rhombic cells of the members of the octahedron family (the 

octahedron, the expanded octahedron and the double-expanded octahedron) have been 

replaced by Z-shaped cells, leading to the definition of a new family. Consequently, it 

can be considered that the octahedron family presented in [20] is a good source of 

tensegrity forms. 

In contrast with [20], where only two possible values of q were considered (cables and 

struts), in this work three different values of q are considered: one for struts and two for 

cables. An analytical analysis has been carried out during the form-finding process and 

super-stable tensegrity forms have been obtained. It has been demonstrated the 

inexistence of the Z-octahedron because for this particular case the connectivity pattern 

leads to some incongruences. However, the Z-expanded octahedron and the Z-double-

expanded octahedron have been presented. The Z-double-expanded octahedron contains 

as folded forms all the equilibrium configurations of the Z-expanded octahedron, which 

is a necessary condition for tensegrity families. 

It has been proved from topology that both the Z-expanded octahedron and the Z-

double-expanded octahedron can also be obtained by purely geometrical intuition from 

a truncated regular tetrahedron and cube respectively.  

 

Appendix A. Polynomials a1, a2 and a3. 

For the Z-expanded octahedron presented in Section 4.2 the polynomials a1, a2 and a3 

are the following:  
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 (A1) 

 (A2) 

 (A3) 

For the Z-double-expanded octahedron presented in Section 4.3 the polynomials a1, a2 

and a3 are the following:  

 (A4) 

 (A5) 
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