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Abstract: In this work, we deal with a kinetic model of cell movement that takes into consideration the
structure of the extracellular matrix, considering cell membrane reactions, haptotaxis, and chemotaxis,
which plays a key role in a number of biological processes such as wound healing and tumor cell
invasion. The modeling is performed at a microscopic scale, and then, a scaling limit is performed to
derive the macroscopic model. We run some selected numerical experiments aimed at understanding
cell movement and adhesion under certain documented situations, and we measure the alignment of
the cells and compare it with the pathways determined by the extracellular matrix by introducing
new alignment operators.
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1. Introduction

Studying and understanding cell movement is crucial in biological sciences and medicine, since
it is essential to a variety of biological processes such as morphogenesis, wound healing, cancer
metastasis, and immune response, among others [1]. Haptotaxis is understood as the movement of
the cells due to interactions with the substances that form the extracellular matrix (ECM), and it is
influenced by its structure. Depending on the cell type, its size, and if the migration is individual or
collective, we can find different types of haptotactic movements [2,3]. Haptotaxis occurs either due to
the presence of an oriented compound on the ECM, like a filament or a proteic fiber, or by a difference
in the concentration of certain chemical compounds that stick to the ECM and promote binding of
cells. The latter might be seen as a similar mechanism to chemotaxis; however, chemotaxis should
not be seen as a special case of haptotaxis [4]. One of the structures that appears when studying the
haptotactic movement of cells is the integrins, cell membrane adhesion proteins that bind with the
substances on the ECM [5,6].

On the other hand, chemotaxis is a process by which cells change their state of movement reacting
to the presence of a certain free chemical compound in the surrounding media of the cell population.
Usually, cells are affected by both phenomena simultaneously, even it is possible to be caused by the
same substance on different states. This is the case of thrombospondin 1, forcing both haptotaxis and
chemotaxis on the movement of melanoma cells [7–9].

Both processes, chemotaxis and haptotaxis, constitute directional mobilities of cells whose driving
forces are gradients: for haptotaxis, a gradient of cellular adhesion sites, while for chemotaxis,
a chemical concentration gradient in a soluble fluid. These gradients are naturally present in the
ECM of the body during processes such as angiogenesis or artificially-induced in biomaterials where
gradients are established by altering the concentration of adhesion sites on a polymer substrate.

Symmetry 2019, 11, 1003; doi:10.3390/sym11081003 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4477-5639
https://orcid.org/0000-0002-4303-1574
https://orcid.org/0000-0002-4366-0741
http://www.mdpi.com/2073-8994/11/8/1003?type=check_update&version=1
http://dx.doi.org/10.3390/sym11081003
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 1003 2 of 19

The binding of cells to the ECM and the different processes that modify the state of the integrins
have been studied from a mathematical point of view. We refer the reader to [10] for some models
focused on cell reactions involving these compounds. In [11], these reactions were incorporated into
a kinetic model for cell motility, adding the concentration of integrins as a new microscopic variable,
taking the main role in promoting the movement of the cellular population.

In the literature, chemotaxis has received much more attention than haptotaxis, starting with the
classical model due to Patlak [12], and Keller and Segel in the 1970s [13]. The mathematical properties
of this classical model for chemotaxis, in particular the blow-up of the solutions for finite time, have led
to the development of new ways of studying chemotaxis from a mathematical point of view, many of
them modifying the aforesaid model. The survey by Hillen and Painter [14] collected several different
variations of this classical model, and they incorporated new mathematical terms modeling biological
phenomena, such as nonlinear diffusion, non-constant sensibility to the chemoattractant, and control
of the population by direct or indirect ways, among others. These models can also be deduced from a
microscopic point of view by using the tools of hydrodynamical limits [15,16].

More recent results on this challenging topic were reviewed in the surveys [17,18], while some
recent achievements have enlightened the role of anomalous diffusion [19,20] and of the environment
where the dynamics develops [21]. Indeed, our paper considers models in the complex environment
constituted by the ECM, where cells move.

On the other hand, the development of mathematical models studying haptotaxis is relatively
recent. Starting with the first model of Oster et al. in the early 1980s [22], early models for haptotactic
movement were proposed as a particular case of chemotaxis with a non-diffusing signal. Later, in [23],
the authors introduced both the adhesion of cells to the ECM, as well as the cell-membrane integrins,
responsible for the aforementioned adhesion and promoters of cell migration. Recent works [11,24]
have two important differences from the previous ones: first, the modeling was done through a kinetic
approach to haptotaxis; second, the directionality of the structural compounds of the ECM, and not
the gradient of said compounds, took the main role in cell motility.

There exists a wide literature related to the mathematical modeling of cell motility, which due to
the biological nature of the phenomena, involves an appreciable complexity. One of the most visited
topics is the modeling of the invasion of healthy tissues by tumors. In particular, we remark about
the contribution by Chaplain et al. [25], where a complete model containing haptotaxis due to the
ECM, chemotaxis due to different chemical compounds in the surrounding media, and interactions
between all the involved cells was deduced for the cancer cell invasion of a tissue. In this line, many
more rigorous and numerical approaches have been tackled (see [23,24,26–28] among others) by using
kinetic and/or macroscopic models, each of them with its own mathematical complexity.

It is worth mentioning that the mathematical modeling of biological phenomena and, in particular,
of the dynamics of multicellular systems has recently taken advantage of the framework delivered by
the so-called Kinetic Theory of Active Particles (KTAP) [29]. The main difference of the KTAP approach
with respect to the classical kinetic theory to model living systems is that the microscopic state of the
interacting entities, which are called active particles, includes, in addition to mechanical variables,
another variable called activity, which models biological functions specific for each system under
consideration. This is the approach used in the present paper, by highlighting that the activity variable
allows us, in contrast with other approaches, to consider several microscopic biological variables as
independent variables, and not as unknowns, whose dynamics is well defined, obtaining an important
reduction of the complexity of the final model.

Some specific tools of the KTAP approach have so far been used in many other applications.
For instance, competition between tumor and immune cells [30] and social dynamics [31,32], crowd
dynamics [17,18,33–36], and swarming [37]. Thus, the contents of this paper may be useful for the
modeling of other phenomena in life sciences. Notice that the modeling of these specific systems
needs a deep understanding of the interactions between living entities, as in the case of cell dynamics,
where the “living behavior” belongs to the specific functions expressed by cells. Mathematical models



Symmetry 2019, 11, 1003 3 of 19

require the application of computational methods appropriate for capturing the specific features of
multi-agent systems. Monte Carlo particle methods have shown the ability to handle this challenging
problem of numerical analysis [38].

Finally, let us mention some specific applications on the derivation of macroscopic equations from
the underlying description at the microscopic scale delivered by kinetic theory models. Various types of
regular and singular perturbation methods have been applied for different types of models, as examples
in vehicular traffic [34], as well as in the dynamics of cells [20,21,39]. The unified approach of a method
inspired to the Hilbert problem was developed in [40], while a general reference was given by [41].

The paper is organized as follows. Section 2 presents the kinetic model for the movement of
a cell population whose physical-biological properties were described in [42,43] and performs the
hyperbolic scaling for the underlying description at the micro- and meso-scopic scales. Section 3 is
devoted to the numerical scheme, and three case-studies are proposed and analyzed with special
insight into a measure of alignment for the adaptation of cells to the ECM. Finally, Section 4 presents
the conclusions and some research perspectives.

2. Description of the Model

This section is devoted to the description of the model presented in [43] and the hyperbolic scaling.
The model describes the movement of a cell population in RN and the evolution of two chemical
compounds, each one related to one of the processes described before: an oriented protein fiber,
denoted by Q(t, x, θ), where θ ∈ SN−1 represents its orientation, and a degenerated chemical L(t, x),
responsible for chemotaxis. The density of proteic fibers at time t and position x is denoted by Q̄(t, x):

Q̄(t, x) :=
∫
SN−1

Q(t, x, θ)dθ.

We describe the cell population by means of a distribution function f (t, x, v, y) depending on time
t, space x, velocity v, and activity y (which will be described below), verifying the following equation
deduced in [42],

∂ f
∂t

+ v · ∇x f +∇y · (G(y, Q̄, L) f ) = H( f , Q) + L( f ) + C( f , L), (1)

where the right-hand side models the cell mobility by way of velocity changes and the y-divergence
term is related to the cell membrane reactions. Concretely,

• the termH, modeling haptotaxis, is:

H( f , Q)(t, x, v, y) :=
∫

V

∫
SN−1

ph(t, x, v′, y)ψ(v; v′, θ) f (t, x, v′, y)Q(t, x, θ)dθ dv′

− ph(t, x, v, y) f (t, x, v, y)
∫

V

∫
SN−1

ψ(v′; v, θ)Q(t, x, θ)dθdv′;

• the turning operator Lmodels random changes in velocity,

L( f )(t, x, v, y) :=
∫

V
pl(t, x, v′, y)α1(y)T(v, v′) f (t, x, v′, y)dv′

− pl(t, x, v, y)α1(y) f (t, x, v, y)
∫

V
T(v′, v)dv′;

• and the chemotactic term, C, reads:

C( f , L)(t, x, v, y) :=
∫

V
pc(t, x, v′, y)α2(y)K[∇L](v, v′) f (t, x, v′, y)dv′

− pc(t, x, v, y)α2(y) f (t, x, v, y)
∫

V
K[∇L](v′, v)dv′.
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Here, ph, pl , and pc are the interaction frequencies, ψ, T and K are the interaction kernels, and αi
are nonnegative weight functions satisfying α1 + α2 = 1. V is the domain of velocities, which is given
by the velocities verifying 0 < s1 ≤ |v| ≤ s2.

In order to define the activity y and the cell membrane reaction terms, we need to recover the law
of mass action of the reactions produced at the cell membrane involving the two chemicals in the ECM
and the receptors on the cell,

Q̄ + R
k1⇀↽

k−1
Q̄R, L + R

k2⇀↽
k−2

LR, (2)

where R stands for the free enzyme on the cell surface and Q̄R and LR represent the respective
complexes once the enzyme binds the ECM chemical. Then, y is defined as the two-component
vector of microscopic concentrations of the two cell-membrane compounds Q̄R and LR, respectively.
It is defined in the set:

Y = {(y1, y2) ∈ (0, R0)× (0, R0) : y1 + y2 < R0},

where R0 > 0 represents the maximum concentration of receptors on the cell surface. The function G
is given by the expression:

G(y, q, l) :=

(
k1(R0 − y1 − y2)q− k−1y1

k2(R0 − y1 − y2)l − k−2y2

)
,

whose rows represent the equations associated with (2).
Finally, we introduce the macroscopic equations for the free chemicals Q and L in the ECM:

∂Q
∂t

=− κ

(∫
V

∫
Y

(
1−

∣∣∣∣θ · v
|v|

∣∣∣∣) f dvdy
)

Q

− k1Q
∫

V

∫
Y
(R0 − y1 − y2) f dvdy +

k−1

|SN−1|

∫
V

∫
Y

y1 f dvdy, (3)

and:

∂L
∂t

= κ
∫
SN−1

(∫
V

∫
Y

(
1−

∣∣∣∣θ · v
|v|

∣∣∣∣) f dvdy
)

Qdθ − rLL + DL∆xL

− k2L
∫

V

∫
Y
(R0 − y1 − y2) f dvdy + k−2

∫
V

∫
Y

y2 f dvdy. (4)

The Hyperbolic Scaling

We have so far referred to macroscopic and microscopic models. However, they are not
independent of each other, since they are two different ways of viewing the same reality. If we face
the same real situation, whose nature requires different scales, we must describe it by combining
models of the two types, which should be related in some way. This is the underlying concept of
multiscale modeling: modeling the same real situation with different scales, and their relationship.
The relationship between the different scales is given by scaling limit: broadly speaking, it is performed
by “zooming out” the window through which we observe a phenomenon, and by transforming
a microscopic model into a macroscopic model.

In this subsection, we perform the calculations leading to the nondimensionalization and scaling
of the system(1)–(3)–(4) [43].

In the following, the interaction frequencies ph, pl , and pc are considered to be constant (otherwise,
the scaling does not make sense). First of all, we define the dimensionless (“hat”) variables:

t := t̂τ, x := x̂R, v := v̂s2, y := ŷR0,

f (t, x, v, y) := f̄ f̂ (t̂, x̂, v̂, ŷ), Q(t, x, θ) := R0Q̂(t̂, x̂, θ), L(t, x) := R0 L̂(t̂, x̂),
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pk(t, x, v, y) := p̄k, (k = h, l, c), G(t, Q, L) := ḠĜ(ŷ, Q̂, L̂),

αj(y) := α̂j(ŷ), (j = 1, 2), T(v, v′) :=
1
sn

2
T̂(v̂, v̂′),

ψ(v; v′, θ) =
1

R0sn
2

ψ̂(v̂; v̂′, θ), K(v, v′) :=
1
sn

2
K̂(v̂, v̂′),

where τ, R, f̄ , p̄k, and Ḡ are typical quantities of their respective variables. The new variables are
defined in the sets:

V̂ :=
1
s2

V, Ŷ :=
1

R0
Y.

Our system then becomes:

∂ f̂
∂t̂

+
s2τ

R
v̂ · ∇x̂ f̂ +

τḠ
R0
∇ŷ · (Ĝ f̂ ) = p̄hτĤ( f̂ , Q̂) + p̄lτL̂( f̂ ) + p̄cτĈ( f̂ , L̂),

∂Q̂
∂t̂

= − τR2
0sn

2 f̄ κ

(∫
V̂

∫
Ŷ

(
1−

∣∣∣∣θ · v̂
|v̂|

∣∣∣∣) f̂ dv̂dŷ
)

Q̂

− τR3
0sn

2 f̄ k1Q̂
∫

V̂

∫
Ŷ
(1− ŷ1 − ŷ2) f̂ dv̂dŷ + τR2

0sn
2 f̄

k−1

|SN−1|

∫
V̂

∫
Ŷ

ŷ1 f̂ dv̂dŷ,

∂L̂
∂t̂

= τR2
0sn

2 f̄ κ
∫
SN−1

(∫
V̂

∫
Ŷ

(
1−

∣∣∣∣θ · v̂
|v̂|

∣∣∣∣) f̂ dv̂dŷ
)

Q̂dθ − τrL L̂ +
τ

R2 DL∆x̂ L̂

− τR3
0sn

2 f̄ k2 L̂
∫

V̂

∫
Ŷ
(1− ŷ1 − ŷ2) f̂ dv̂dŷ + τR2

0sn
2 f̄ k−2

∫
V̂

∫
Ŷ

ŷ2 f̂ dv̂dŷ.

We impose first the normalization restrictions s2τ
R = 1 and τ

R2 DL = 1. The hyperbolic scaling
corresponds to the choice:

τ p̄l =
1
ε

,

i.e., the turning time 1
p̄l

is very small compared to the typical time τ.
There are three other phenomena (cell membrane reactions, haptotaxis, and chemotaxis) to

consider. We rescale the corresponding terms, assuming also that their frequencies are small compared
to the turning frequency p̄l . More precisely, we choose the following relations:

Ḡ
R0

= εa p̄l , p̄h = εb p̄l , p̄c = εd p̄l ,

where 0 < a < 1, b, d ≥ 1.
To scale the other two equations, we recall that they are actually macroscopic, so they will preserve

their form. This is why we only define the scaled dimensionless constants involved:

κ̂ := τR2
0sn

2 f̄ κ, r̂L := τrL,

k̂i := τR3
0sn

2 f̄ ki, k̂−i := τR2
0sn

2 f̄ k−i, (i = 1, 2).

Skipping the “hat” for the dimensionless variables, our system becomes:

ε

(
∂ fε

∂t
+ v · ∇x fε

)
+ εa∇y · (G(y, Qε, Lε) fε) = εbH( fε, Qε) + L( fε) + εdC( fε, Lε) (5)
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for the cell population, where:

H( fε, Qε)(t, x, v, y) =
∫

V

∫
SN−1

ψ(v; v′, θ) fε(t, x, v′, y)Qε(t, x, θ)dθdv′ − fε(t, x, v, y)Q̄ε(t, x), (6)

L( fε)(t, x, v, y) =
∫

V
α1(y)T(v, v′) fε(t, x, v′, y)dv′ − α1(y) fε(t, x, v, y), (7)

C( fε, Lε)(t, x, v, y) =
∫

V
α2(y)K[∇Lε](v, v′) fε(t, x, v′, y)dv′ − α2(y) fε(t, x, v, y), (8)

and:

∂Qε

∂t
= − κ

(∫
V

∫
Y

(
1−

∣∣∣∣θ · v
|v|

∣∣∣∣) fεdvdy
)

Qε

− k1Qε

∫
V

∫
Y
(1− y1 − y2) fεdvdy +

k−1

|SN−1|

∫
V

∫
Y

y1 fεdvdy, (9)

∂Lε

∂t
= κ

∫
SN−1

(∫
V

∫
Y

(
1−

∣∣∣∣θ · v
|v|

∣∣∣∣) fεdvdy
)

Qεdθ − rLLε + ∆xLε

− k2Lε

∫
V

∫
Y
(1− y1 − y2) fεdvdy + k−2

∫
V

∫
Y

y2 fεdvdy, (10)

for the chemicals, where:

V = [s, 1]× SN−1, Y = {(y1, y2) ∈ (0, 1)× (0, 1) : y1 + y2 < 1}, (11)

and s := s1/s2. In order to close the macroscopic system that will appear, we choose the turning
operator:

L( f ) := λ
∫

V
f (t, x, v′, y)dv′ + βv ·

∫
V

v′ f (t, x, v′, y)dv′ − λ|V| f (t, x, v, y),

with λ = β 1−sn+2

(1−sn)(n+2) . If we study the equations verified by the moments of fε,

ρε :=
∫

V

∫
Y

fεdvdy, ρεUε :=
∫

V

∫
Y

v fεdvdy, ρεWε :=
∫

V

∫
Y

y fεdvdy,

we obtain the following equations:

∂ρε

∂t
+∇x · (ρεUε) = 0, (12)

∂(ρεUε)

∂t
+∇x · (Pε + ρεUε ⊗Uε) = εb−1

∫
V

∫
Y

vH( fε, Qε)dvdy + εd−1
∫

V

∫
Y

vC( fε, Lε)dvdy, (13)

ε∂tρεWε + ε∇x ·
∫

V

∫
Y

y⊗ v f dvdy + εa(AεWε − bε)ρε = 0. (14)

Here, Pε(t, x) :=
∫

V

∫
Y(v−Uε)⊗ (v−Uε) fεdvdy, is the pressure tensor, and the matrix Aε and

the vector bε are respectively given by:

Aε :=

(
k1Q̄ε + k−1 k1Q̄ε

k2Lε k2Lε + k−2

)
, bε =

(
k1Q̄ε

k2Lε

)
.

Then, we make ε = 0 on (5) to deduce that the limiting distribution function f0 has to be on
the kernel of the turning operator, i.e., L( f0) = 0, and then, we assume that the solutions are small
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perturbations of it, fε = f0 + ε f1, hence a Hilbert expansion of fε around f0. Inserting the explicit form
of f0 (see [43] for details) into (12)–(13)–(14), we formally obtain the following macroscopic equations:

∂ρ

∂t
+∇x · (ρU) = 0,

∂(ρU)

∂t
+ 2

1− sn+2

(n + 2)(1− sn)
∇xρ = δb−1H(ρ, U, Q) + δd−1C(ρ, U, L),

ρW =
ρ

k1k−2Q̄ + k−1k2L + k−1k−2

(
k1k−2Q̄
k−1k2L

)
. (15)

Here, the macroscopic integral operators are defined as:

H(ρ, U, Q) :=
ρ

|V|

(∫ (
Ψ1(θ) +

β

λ
Ψ2(θ) ·U

)
Q(θ)dθ − Q̄|V|U

)
,

C(ρ, U, L) :=
ρ α2

|V|

(
K1[L] +

(
β

λ
K2[L]− |V|I

)
·U
)

,

where the macroscopic functions that appear are given by:

Ψ1(θ) :=
∫

V

∫
V

vψ(v; v′, θ)dvdv′, Ψ2(θ) :=
∫

V

∫
V

v⊗ v′ψ(v; v′, θ)dvdv′,

K1[L] :=
∫

V

∫
V

vK[∇L](v, v′)dvdv′, K2[L] :=
∫

V

∫
V

v⊗ v′K[∇L](v, v′)dvdv′.

Finally, the limiting equations for Q and L can be written as follows:

∂Q
∂t

= −κ
ρ

|V| g(θ)Q +
k1k−1k−2ρ

k1k−2Q̄ + k−1k2L + k−1k−2

(
−Q +

Q̄
|SN−1|

)
,

∂L
∂t

= κ
ρ

|V|

∫
SN−1

g(θ)Q(θ)dθ − rLL + ∆xL,

where g(θ) =
∫

V
(1−

∣∣∣ θ · v|v| ∣∣∣)dv.

We remark here that this obtained fluid-type macroscopic model (15) contains an equation,
the third one, which relates in an algebraic direct way (and not by a differential equation, thus reducing
the usual complexity of these models) the macroscopic density of moving cells ρ with the two densities
of ECM compounds, Q̄ and L, associated with the haptotaxis and chemotaxis phenomena. A simple
first application of this fact is described in Section 3.2, where a comparison of simulations at micro-
and macro-scales is stated.

3. The Numerical Scheme

This section is devoted to some numerical experiments designed to test in silico the accuracy of
the model and to predict cell behavior. We were mainly interested in the study of the spreading of
a tumor population through a formed living structure. Depending on the cancer type and the host
tissue, this invasion can occur in either an individual or collective manner (see [24]) and can give rise
to several type of patterns. In this sense, there is a huge literature of mathematical models for cancer
invasion (see [44]), which denotes the complexity and heterogeneity of these phenomena. Therefore,
we studied several simple situations, by using the presented model, which can reproduce many of
these interactions between the moving cells and the surrounding ECM, and will try to measure the
accuracy of the cells in adapting their invasion by following the orientation of the ECM fiber.

Simulations were obtained by solving the system (1)–(3)–(4), endowed with initial conditions
f0 and Q0 for the cell population and the ECM, respectively, which will be described for each
different situation. The system was set in a spatially-square domain (thus N = 2), S1 for velocities
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(fixed modulus s), and y supported in the set Y defined on (11). We considered periodic boundary
conditions in x and zero-flux in the activity y. These sets were discretized using a rectangular grid for
position and activity and choosing eight directions in S1.

The numerical solution of the system was obtained by using a splitting method. The idea behind
this approach was to write, at least formally, the overall evolution operator as the sum of evolution
operators for each term in the model, then to pick an appropriate scheme for each term and attach the
pieces together. We refer the reader to [45] for more details on the technique of splitting for numerically
solving partial differential equations.

Therefore, the system was split into the following subequations:

∂ fn

∂t
+ v · ∇x fn +∇y · (G(y, Q̄n−1, Ln−1) fn) = 0,

∂ fn

∂t
= H( fn, Qn−1) + L( fn) + C( fn, Ln−1),

∂Qn

∂t
= −κ

(∫
S1

∫
Y

(
1−

∣∣∣∣θ · v
|v|

∣∣∣∣) fndvdy
)

Qn

−k1Qn

∫
S1

∫
Y
(R0 − y1 − y2) fndvdy +

k−1

2π

∫
S1

∫
Y

y1 fndvdy,

∂Ln

∂t
= κ

∫
S1

(∫
S1

∫
Y

(
1−

∣∣∣∣θ · v
|v|

∣∣∣∣) fndvdy
)

Qndθ − rLLn + DL∆xLn

−k2Ln

∫
S1

∫
Y
(R0 − y1 − y2) fndvdy + k−2

∫
S1

∫
Y

y2 fndvdy.

The system was separated into three different blocks, namely: the transport equation, the integral
operators that rules the changes of velocities, and the two equations for the ECM. The order in which
these blocks are solved is a key point in the modeling (therefore, in the numerical scheme): a different
order could give a different behavior of the system. Then, the system was solved in the same order as
the blocks have been presented, i.e.:

1. First, we solved the transport term, related to the evolution of position and cell activity;
2. Second, the integral operators were treated, thus giving the new velocities;
3. Finally, we dealt with the equations for the ECM compounds, Q and L.

We proceed to describe the techniques used in each step.
The first part of the splitting solved the modifications on position and activity of the cells. We

split it again, obtaining two terms: the first one, related to the pure transport part of the equation,
was solved using a finite volume scheme; the second term, ∂t fn = (k1y1Q̄n−1 + k2y2Ln−1) fn, obtained
from the divergence of the activity, was in fact an ODE in time, where the other variables acted as
parameters, so it was directly solved using a first order Euler method to go forward in time (i.e.,
explicit Euler).

In the second step of the splitting, for each of the three different integral operators, we had to
determine the interaction kernels. In the numerical schemes for kinetic equations, this is equivalent
to building a certain table (table of games) for each one of them, containing the different transition
probabilities. These will describe how, from an initial velocity θn−1 coming from the previous step of
the simulation, we obtained a new exit orientation θn as a weighted sum of the candidates proposed
for each operator.

The turning operator is simpler: the candidate orientation θL is given by either a uniform
distribution or by a normal distribution in S1 centered on the initial orientation θn−1.

Turning is weighted with chemotaxis by αi, so this will be the next to be described. For each
point, we calculated the gradient of the chemoattractant, ∇xL. Next, given the entry velocity θn−1,
we calculated the direction of the vector (cos(θn−1), sin(θn−1)) + K∇xL, named θC. Here, K was
associated with the sensitivity to the signal. Then, the table of games was given by a normal distribution
centered on θC with variance σC.
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The joint table was then built, where each value was the weighted sum (by αi) of each
correspondent value.

For the haptotactic phenomena, the candidate orientation, θH , was given in each position by the
mean orientation of the fibers on the said position:

θH := direction of
∫
S1

θQ(t, x, θ)dθ.

In order to take this velocity to the grid of possible velocities, and to build the table, we applied
a normal distribution centered on θH with (small) variance σH .

Once we had both tables, we weighed them accordingly (giving more importance to haptotaxis),
and we constructed the final table of games. To avoid big leaps in the changes of velocities, the new
velocity was taken as the nearest orientation from the initial velocity, in the direction of the orientation
given by the calculated game. Finally, the new orientation was chosen between the candidate velocity,
previously calculated, and the velocity the cell already had, representing the “decision” of a cell to
follow the dictated movement.

It remains to solve the equations for both chemical compounds, Q and L. The equation for Q is
essentially an ODE in time (the dependence with x and θ is parametric). To solve it, for each position
x and orientation θ, we numerically computed the three integrals that appeared on the right-hand
side and used a first order Euler method to advance in time. For L, the first step was to compute
the diffusion term. To do that, first, L(t) was regularized using an implemented MATLAB function,
SmoothN, to avoid problems with subsequent steps; then, we calculated ∆xL(t) using the implemented
function Del2, which computed the discrete Laplacian. Then, the dependence of the equation with
respect to the spatial variable could be considered parametrical, so we solved the equation as an
ODE in time: numerical computation of the integral terms, and used the explicit Euler to obtain the
next iteration.

From the nondimensionalization performed in the previous section, it is worth noticing
that, in fact, we had two different concentrations: one, the cell-membrane concentrations of the
bounded compounds (R0, yi), whose units were (number of whatever)/(“area” units); and the
concentrations of the free compounds (Q̄, L), with units (number of whatever)/(“volume” units).
Therefore, a well-designed numerical scheme must take this into consideration and modify the
constants in a suitable way. We modified the cell-membrane constants, now in units of (number of
whatever)/(“volume”), by way of calculating the ratio between the area and the volume of a cell,
and we converted the concentrations accordingly. Then,

integrins
volume

=
integrins

area
× area of a cell

volume of a cell
,

which has units of concentration in a “volume”. We are in dimension N = 2, then the “area” reads for
the length unit in the cell-membrane, and the “volume” is an area. If, for example, we assume that
cells have the shape of a circle of diameter d, the conversion factor reads:

Integrins per “volume” unit =
4
d

Integrins per “area” unit.

In the following, we will incorporate these computations into the numerical computations,
and then, both concentrations will be equally named where there is no possibility of misunderstanding.

3.1. Adaptation of Cells to the ECM: A Measure of Alignment

In this subsection, we introduce some alignment functions in order to measure and understand
the degradation of the ECM and the adaptation of cells to its structure. We focus our 2D simulations
on three situations, as suggested in [24]: straight line-oriented fiber (following the OY axis),
radially-oriented fiber, and randomly-oriented fiber. In order to measure the orientation of the fiber
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and the final adaptation of the invading cells to this tissue, we can define, for any fixed orientation
ω ∈ S1, the normalized operators: the fiber alignment function:

Fω(t, a) :=

∫
Q(t, x, θ)|θ ·ω| dθ db∫

Q(t, x, θ) dθ db
, x = aω⊥+ bω,

which measures, at any time t and any perpendicular position a, the mean orientation of the fiber along
the straight line aω⊥ + 〈ω〉 (note that |θ ·ω| = 1, its maximum value, fits exactly the ω-orientation).
Analogously, we can define the cell alignment function:

Cω(t, a) :=

∫
f (t, x, v, y)

|v ·ω|
|v| dy dv db∫

ρ(t, x)db
. x = aω⊥+ bω,

which measures, at any time t and any perpendicular position a, the relative density of cells being on
the straight line aω⊥ + 〈ω〉 and moving with velocity on the same straight line, i.e., the ratio of cells
that “follow” the orientation of the ECM fiber.

For the radial case, we can decompose the position as x = r(cos a, sin a) = rx̂ and use the
following radial fiber alignment function,

RF(t, a) :=

∫
Q(t, x̂r, θ) |x̂ · θ| dθ dr∫

Q(t, x, θ) dθ db
,

in order to measure the radial orientation of the fiber, a standing for the selected angle. In this case,
the relative density of cells following the radial pattern can be given by:

RC(t, a) :=

∫
f (t, x̂r, v, y)

|v · x̂|
|v| dy dv dr∫

ρ(t, x̂r) dr
, x = r(cos a, sin a) = rx̂.

3.2. Comparison between the Behavior of Activity ρW and Its Limiting Counterpart ρ0W0

When we obtained the macroscopic limiting system in the previous section, we defined the
activity moment of the solution ρW, which can be interpreted as the two-component vector of the
mean concentration on the cells of the two cell-membrane compounds related to the binding with the
chemicals of the ECM. The evolution of this quantity can be related to the modifications on the ECM,
and the movement of fibers and L due to being carried by the cells.

We checked that, in the limit (15), ρW could be obtained from a linear system of equations that
yields the following explicit expression (related to the equilibrium state of the cell-membrane reactions):

ρ0W0 =
ρ

k1k−2Q̄ + k−1k2L + k−1k−2

(
k1k−2Q̄
k−1k2L

)
. (16)

Then, we can compute ρW, both via:

ρW :=
∫

y f (t, x, v, y)dy dv,

and the previous quantity. The comparison between both quantities can measure how far the different
cell-membrane reactions are from the equilibrium state.
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Now, we will describe each simulation, giving the initial data for the cell population f0 and
the ECM fibers Q0. Furthermore, each numerical experiment assumed that initially L = 0, which
represents the fact that there was no chemoattractant in the environment, and it only appeared because
of the degradation of the fibers Q. For each simulation, we will explain its motivation and the expected
behavior, and we will interpret the results. The constants used in the numerical scheme are given
in Table 1.

Table 1. Constants used in the numerical scheme.

Symbol Description of the Constant Value Reference

R0
Maximum concentration of integrins on the
cell membrane 1000 integrins/µm2 [10,46]

ki
Binding rate of the integrins with the
chemical compounds

1.5–0.34 s−1,
1.4–2.3 × 10−4 µm2/s

[10,47,48]

k−i
Unbinding rate of the integrins with the
chemical compounds 0.1–3.4 s−1, 2.42–0.6 s−1 [10,47,48]

α1
Relative influence of the random turning in
the cellular movement 1/27 [9]

α2
Relative influence of the chemotaxis in the
cellular movement 26/27 [9]

RC Typical size of cells 20–200 µm [2]

s Typical migration speed for the cells 0.1–1.0 µm/min [2]

rL Degradation rate of the chemoattractant 5× 10−3 mol/s [49]

DL Diffusion coefficient of the chemical L 8× 10−6cm2/s [49]

3.3. First Example: Fully-Oriented ECM

We start with the first proposed scenario: initially, we had a fully-oriented ECM, in the direction of
the OX2 axis, distributed following parallel (regularized) strips in said direction, creating “pathways”
of oriented fiber. Therefore, at time t = 0, the alignment function of the fiber with respect to the vertical
direction (0, 1) was equal to one, F(0,1)(0, a) = 1 (at least where there was some fiber), and zero in any
other direction, as shown in Figure 1.
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Figure 1. First example: initial conditions for the ECM fibers (oriented in the direction (0,1)),
cell population, and the alignment functions C(0,1) (dotted) and F(0,1) (dashed).

For the cell population, we aimed to represent the cell invasion on a living tissue (tumoral
invasion) or the creation of new structures following previously-established signals and pathways
(growth of neural networks). Thus, we chose an initial cell population concentrated near the border
{y = 0} and regularized, with velocities (v1, v2) randomly chosen such that v2 ≥ 0, and initial activities
y1 and y2 were small (around 0.1R0). Then, the alignment of the cells with respect to the direction (0, 1)
was not one on every horizontal position a.
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Ideally, this is better represented by a fully-concentrated population in the line {x2 = 0} with
completely random velocities. However, some regularizations and restrictions had to be made, in order
to be able to perform the numerical scheme.

In this situation, we expected that C(0,1)(t, a) would come closer to one as time went on,
meaning the alignment of the cells with the ECM; meanwhile, F(0,1)(1, a) should be kept close to
one, as any change on the relative orientation should arise from new Q incorporated by means of the
cell-membrane reactions. Furthermore, the cells should move upwards, more likely following the
stripes of oriented fibers, and chemical L should appear from the degradation of the ECM. Finally, we
expected that the cell-membrane reactions would come closer to the equilibrium state, as determined
by (16). The numerical experiments confirmed our expectations: we saw that the cell population
approached the strips of Q and, as they reached these strips, aligned with them, following their
direction. This behavior is explicit in the joint graphic for both alignment functions (Figure 2), due to
the coincidence of the peaks of C(0,1) and F(0,1). In these simulations, we did not see significant ECM
degradation due to the action of cells. In conclusion, we numerically confirmed that, in this example,
haptotaxis dominated chemotaxis when leading cellular migration.
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Figure 2. Cont.
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Figure 2. Graph representing the evolution of the ECM (left), cell population (center), and the alignment
functions C(0,1) (dotted) and F(0,1) (dashed) for the first example.

3.4. Second Example: Radially-Oriented ECM

In this case study, we started with a radially-oriented distribution of proteic fibers, centered at
a fixed point of the grid, which for simplicity was chosen as (0, 0), distributed following four straight
lines equally distributed from the origin. This choice for the origin is consistent with the previous
definitions of the radial orientation measures. Furthermore, the origin point would be at the center
of the domain. Then, the initial radial fiber alignment function RF(0, a) was equal to one on the four
values of the arc a corresponding to the straight lines (and zero, if there was no Q compound there);
see Figure 3.
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Figure 3. Second example: initial conditions for the ECM fibers, cell population, and the alignment
functions CR (dotted) and FR (dashed).

For the cell distribution, this situation would resemble in vitro experiments for development and
invasion of a growing bacterial population. Then, f0 was chosen as a (regularized) cut-off function of
a small circular domain centered at the origin (0, 0), the same point from where the fiber originated.
The initial velocities of cells were randomly chosen in S1. Then, the initial radial alignment operator for
the cells was a random distribution, taking values between zero and one. As in the previous example,
the initial activities were set small.

In this situation, we expected the same behavior as in the previous example, now with the radial
alignment operators RF and RC, instead of the fixed direction ones, Fω and Cω, respectively. In short,
RC should come closer to one, meaning that cells follow the orientation ruled by the ECM, RF should
decrease slightly, L should appear from the degradation of the matrix, and the activity should approach
its equilibrium state.

Simulations partially confirmed our expectations: cells concentrate at those regions where the Q
compound is present and align to its orientation, following the movement along the trail, as we can
see in Figure 4. We also see, in the graphic of the alignment functions FR and CR, that the peaks of
both functions are close to each other, which correspond to the influence of the other two modeled
phenomena, chemotaxis and random motility. We barely see ECM degradation by means of interactions
with the cell population, so these deviations must come from the random cell movement. We confirm
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again, numerically, that in this example haptotaxis dominates chemotaxis when leading the migration
of cell populations.
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Figure 4. Graph representing the evolution of the ECM (left), cell population (center), and the alignment
functions CR(0,1) (dotted) and FR(0,1) (dashed) for the second example.

3.5. Third Example: Random ECM

The last scenario proposed a randomly-distributed matrix, which was modified to include a
certain pathway. This resembled the case of tissue development, where the ECM directs the growing
of the cell population, leading to complex structures.
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For the cell distribution, we used the same initial conditions as in the first example (concentrated
around {x2 = 0} with random velocities and small activity). Note that, in this case, measuring the
alignment of the cells or the ECM with respect to a certain direction (or radial orientation), a priori,
does not give any interesting information: the matrix originally did not have a preferred orientation.
However, it is possible that, in subsequent steps, cells will remodel the ECM in a way that a preferential
direction arises.

We expected that the cell population would concentrate in the established pathway, following
this track, and few cells would remain outside the pathway. The behavior for the chemical L and
the limiting activity was expected to be similar to the previous examples. Furthermore, we tracked
C(0,1)(t, a) and F(0,1)(1, a), to check possible remodeling on the ECM due to cell interactions or possible
cell alignment caused by the creation of L and the remodeled matrix. Initial conditions and results are
shown in Figures 5 and 6, respectively.
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Figure 5. Third example: initial conditions for the ECM fibers (oriented in the direction (0,1)),
cell population, and the alignment functions C(0,1) (dotted) and F(0,1) (dashed).
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Figure 6. Graph representing the evolution of the ECM (left), cell population (center), and the alignment
functions C(0,1) (dotted) and F(0,1) (dashed) for the third example.

4. Conclusions

In the previous sections, we presented a multiscale approach to study cell movement, caused by
two important driving phenomena, namely haptotaxis and chemotaxis. The modeling was performed
at the microscopic scale, and the kinetic theory of active particles allowed us to obtain a mesoscopic
model. Then, a hyperbolic scaling led to the macroscopic model.

The numerical experiments aimed to explore cell behavior through three selected case studies of
biological significance, as proposed in [24]. The obtained results confirmed that cells tend to follow
paths and to align according to the ECM structure. In this sense, it is worth noticing the analogy
with crowd dynamics [33], vehicular traffic [34], or swarming phenomena [37], where individual
entities also receive some stimulus from the surrounding environment, interact among themselves,
and generate certain emergent behaviors.

The alignment functionals were introduced to measure numerically the alignment of the
trajectories of the cells in order to compare with the structure of the surrounding ECM. These operators
could be used in the future to establish and measure similar behaviors in more complex tissue
structures, as they only need the density function of the given structure.

Finally, the macroscopic fluid model obtained from the KTAP theory includes an algebraic third
equation binding the densities of the two main compounds of the ECM involved in the haptotaxis
and chemotaxis processes with the macroscopic density of the cell-membrane receptors, which can
be used to measure, at the level of these receptors, how far the kinetic model is from the macroscopic
equilibrium counterpart.

Future research perspectives include some modifications of this model in order to consider more
realistic ECM structures and/or other kinds of interactions within the cells and the extracellular
matrix. For instance, the incorporation of the saturation dynamics of the medium due to cellular
overpopulation [27] or the inclusion of two or more subpopulations of tumor cells interacting mutually
and with the surrounding tissue [28]. Furthermore, a simple kinetic system could be proposed to
include biological cancer mutations involving different cell populations (quiescent, active, etc.) with
different abilities, in order to obtain a more realistic measure of the alignment and the invasion profile.
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