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We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study 
the projective invariance of general Lovelock actions and show that all connections constructed by acting 
with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically 
equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for 
the specific case of the four-dimensional metric-affine Gauss–Bonnet action, for arbitrary vector fields. 
The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss–
Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is 
physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that 
the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical 
structure of the set of solutions within the space of connections.
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1. Introduction

Metric-affine gravity (sometimes also called the Palatini formal-
ism) is a set of theories in which the metric gμν and the affine 
connection �μν

ρ are taken to be independent variables. They are 
extensions of the more familiar metric theories of gravity, which 
consider only the metric as a dynamical variable and presuppose 
invariably the affine connection to be the Levi-Civita connection of 
the metric,

�̊μν
ρ = 1

2 gρλ
(
∂μgλν + ∂ν gμλ − ∂λgμν

)
. (1.1)

In metric-affine theories, however, the idea is that the affine con-
nection �μν

ρ should be determined by its own equation of mo-
tion, just as any other dynamical variable of the theory.

It has been shown [1,2] (see also [3]) that the physics described 
by the Einstein–Hilbert–Palatini action, S = 1

2κ

∫
dD x

√|g|R(�)

with D > 2, possibly extended with a minimally coupled matter 
Lagrangian, is equivalent to the usual metric Einstein–Hilbert ac-
tion, even though it allows a more general affine connection,

�̄μν
ρ = �̊μν

ρ + Aμ δ
ρ
ν , (1.2)
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with Aμ an arbitrary vector field. Indeed, the vector field Aμ does 
not have any physically measurable influence, as can be seen in 
the fact that the Einstein equation and the geodesic equation are 
identical in the metric and the Palatini formalism. However, one 
can assign a geometrical meaning to Aμ , since Aμ can be related 
to the reparametrisation freedom of geodesics [2]: affine geodesics 
of the connection �̄μν

ρ turn out to be pre-geodesics of the Levi-
Civita connection �̊μν

ρ , through the reparametrisation

dτ

dλ
(λ) = exp

⎡
⎣

λ∫

0

Aρ
dxρ

dλ′ dλ′
⎤
⎦ , (1.3)

where λ is the affine parameter for the �̄μν
ρ geodesics and τ the 

proper time along the Levi-Civita ones.
Both the existence of the non-trivial solution (1.2) and the ab-

sence of physical meaning for Aμ can be understood as a conse-
quence of the projective symmetry

�μν
ρ → �μν

ρ + Aμ δ
ρ
ν (1.4)

of the metric-affine Einstein–Hilbert action [4,5]. Indeed, the Rie-
mann tensor transforms under the projective transformation as 
Rμνρ

λ →Rμνρ
λ + 2∂[μ Aν] δλ

ρ , leaving hence the Ricci scalar R =
gμρ δν

λ Rμνρ
λ invariant. Being �̊μν

ρ a straightforward solution to 
the connection equation, any connection generated by applying a 
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projective transformation on it is also a (physically equivalent) so-
lution.

The equivalence between the metric and metric-affine formal-
ism does not extend in general to other gravitational actions (see 
for example [6]). Often the non-equivalence of the corresponding 
gravitational actions is used to construct models of modified grav-
ity, with new affine degrees of freedom, that might yield resolution 
of singularities, alternatives to inflation, dark matter or dark energy 
[7–21].

There is a class of metric-affine theories for which the Levi-
Civita connection is guaranteed to be a solution of the connection 
equation. Indeed, in [22–24] it was shown that the Levi-Civita 
connection is a solution for metric-affine lagrangians of the type 
L(gμν, Rμνρ

λ), only if the lagrangian is of the Lovelock type (or 
at least mimics the symmetries of curvature tensors in the Love-
lock lagrangian [23]). Hence, for Lovelock gravities, the metric for-
malism is a consistent truncation of the Palatini formalism [24]. 
However it is by no means clear whether for these theories both 
formalisms are equivalent, as in the case of the Einstein–Hilbert 
action, in the sense that all allowed solutions of the connection 
equation of the metric-affine Lovelock lagrangians yield the same 
physics as the metric formalism. In other words, whether the Levi-
Civita connection (possibly up to a projective transformation) is the 
only solution to the connection equation.

The aim of this paper is to show that in fact they are not, 
by presenting an explicit counterexample of a very specific Love-
lock theory, the Weyl connection in four-dimensional metric-affine 
Gauss–Bonnet theory, though we believe the result is general for 
any metric-affine k-th order Lovelock term in D = 2k dimensions. 
Note that the k-th order Lovelock term in D = 2k dimensions is a 
topological term in the metric formalism [25], but not necessarily 
for metric-affine gravity. We will argue that the solution is phys-
ically not equivalent to the Levi-Civita connection, which in our 
opinion is an indication for the non-topological character of gen-
eral D = 4 metric-affine Gauss–Bonnet theory.

The organisation of this paper is as follows: in sections 2 and 
3 we review the metric-affine Gauss–Bonnet term in arbitrary di-
mensions, study the symmetries of the action and write down the 
equations of motion in a closed form. In section 4 we show that 
the Weyl connection is a general solution to both the equations of 
motion of the metric and the connection for the four-dimensional 
Gauss–Bonnet action. In section 5, we relate the existence of the 
solution to the projective symmetry of any Lovelock action and a 
vector symmetry the four-dimensional Gauss–Bonnet in the pres-
ence of metric-compatible connections. Finally, in section 6, study 
the structure of the space of solutions of the Gauss–Bonnet action 
and state our conclusion.

2. Metric-affine Lovelock theory

The D-dimensional k-th order Lovelock term in the metric-
affine formalism is defined as

S =
∫

dD x
√|g| δ

μ1ν1...μkνk
α1β1...α1βk

Rμ1ν1
α1β1(�) . . . Rμkνk

αkβk (�),

(2.1)

where we used the following conventions for the Riemann tensor 
and the antisymmetrised Kronecker delta,

Rμν
ρλ(�) = gρσ Rμνσ

λ(�),

Rμνσ
λ(�) = ∂μ�νσ

λ − ∂ν�μσ
λ + �μκ

λ �νσ
κ − �νκ

λ �μσ
κ ,
δ
μ1ν1...μkνk
α1β1...αkβk

= δ
[μ1
α1 δ

ν1
β1

. . . δ
μk
αk

δ
νk]
βk

= (−1)D−1

(2k)!(D−2k)! |g| εμ1ν1...μkνkσ1...σD−2k

× εα1β1...αkβkσ1...σD−2k , (2.2)

with εμ1...μD the completely alternating Levi-Civita symbol.
When varying the action in metric-affine gravity, it is often use-

ful to define the tensor

�μνα
β = 1√|g|

δS

δRμνα
β
, (2.3)

which for the Lovelock action (2.1) is given by

�μν
αβ = gασ �μνσ

β

= k δ
μνρ2λ2...ρkλk
αβγ2ε2...γkεk

Rρ2λ2
γ2ε2 . . . Rρkλk

γkεk . (2.4)

Note that in general �μν
αβ is antisymmetric in the first pair of 

indices and for Lovelock actions (2.1) also in the last pair, but that 
the latter is not true in general.

In terms of �μνα
β , the k-th order Lovelock action (2.1) can be 

written as

S = 1

k

∫
dD x

√|g| Rμνα
β �μνα

β, (2.5)

and hence the equations of motion of the metric and the connec-
tion respectively are given by

Rμνρ
λ �μν

σλ +Rμνσ
λ �μν

ρλ − 1

k
gρσ Rμναβ �μναβ = 0,

(2.6)

∇μ�μνα
β − 1

2 Q μλ
λ �μνα

β + Tσμ
σ �μνα

β

− 1
2 Tμσ

ν �μσα
β = 0, (2.7)

with ∇μ the covariant derivative, Q μνρ = −∇μgνρ the non-
metricity tensor and Tμν

ρ = 2�[μν]ρ the torsion of the general 
connection �μν

ρ .
Both equations (2.6) and (2.7) can be simplified considerably. 

Taking the trace of (2.6) tells us that Rμναβ �μναβ = 0 in any di-
mension except D = 2k, such that the traceless part of the metric 
equation in D �= 2k is given by

Rμνρ
λ �μν

σλ + Rμνσ
λ �μν

ρλ = 0. (2.8)

On the other hand, splitting the general connection �μν
ρ in its 

Levi-Civita part and a tensorial part,

�μν
ρ = �̊μν

ρ + Kμν
ρ, (2.9)

the connection equation (2.7) can be written in the simple form

∇̊μ�μνα
β + Kμρ

α �μνρ
β − Kμβ

ρ �μνα
ρ = 0, (2.10)

where ∇̊ is the covariant derivative with respect to the Levi-Civita 
connection. It is worth observing that both (2.7) and (2.10), writ-
ten in terms of �μνα

β , are in fact completely general, for any 
lagrangian of the type L(gμν, Rμνρ

λ), not just for the Lovelock 
lagrangian (2.1).

Furthermore, using the antisymmetry of the Lovelock �μν
αβ

in the lower indices, it is easy to show that from (2.10) one can 
deduce the necessary (thought not sufficient) condition for the 
connection,
(

Kμρα + Kμαρ

)
�μνρ

β +
(

Kμρβ + Kμβρ

)
�μνρ

α = 0. (2.11)
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3. Levi-Civita as a solution and projective symmetry

It is well known [22–24] that the Levi-Civita connection is a so-
lution of all order Lovelock terms in arbitrary dimensions (D ≥ 2k). 
The proof is particularly easy in terms of �μν

αβ and the decom-
position (2.9): since for the Levi-Civita connection we have that 
K̊μν

ρ ≡ 0 identically, the connection equation (2.10) takes the form

0 = ∇̊μ�̊μνα
β

= k(k − 1) δ
μνρ2λ2...ρkλk
αβγ2ε2...γkεk

∇̊μR̊ρ2λ2
γ2ε2 R̊ρ3λ3

γ3ε3 . . . R̊ρkλk
γkεk ,

(3.1)

which is automatically satisfied due to the second Bianchi identity 
for the Levi-Civita Riemann tensor, ∇̊[μR̊νρ]λσ = 0. On the other 
hand, the metric equation (2.6),

R̊μνρ
λ �̊μν

σλ + R̊μνσ
λ �̊μν

ρλ − 1

k
gρσ R̊μναβ �̊μναβ = 0,

(3.2)

reduces to the equation of motion for gμν of the Lovelock action 
in the metric formalism, without imposing any extra conditions 
on the connection. This proves that the Levi-Civita connection is a 
consistent truncation in metric-affine Lovelock theory [24].

It is straightforward to see [3] that the Lovelock action (2.1) is 
also invariant under projective transformations,

�μν
ρ → �̄μν

ρ = �μν
ρ + Aμ δ

ρ
ν , (3.3)

in fact almost trivially so. Indeed, since the Riemann tensor trans-
forms under projective transformations as

Rμνρ
λ(�) → R̄μνρ

λ(�̄) = Rμνρ
λ(�) + Fμν(A) δλ

ρ, (3.4)

with Fμν(A) = 2∂[μ Aν] , the Lovelock �-tensor (2.4) is invariant 
under (3.3),

�μν
αβ → �̄μν

αβ = k δ
μνρ2λ2...ρkλk
αβγ2ε2...γkεk

[
Rρ2λ2

γ2ε2 + Fρ2λ2 gγ2ε2
]

. . .
[
Rρkλk

γkεk + Fρkλk gγkεk

]
= �μν

αβ, (3.5)

due to the antisymmetry of the δ-tensor and the symmetry of the 
metric. For the same reason we have that

R̄μν
αβ �̄μν

αβ =
[
Rμν

αβ + Fμν(A) gαβ
]
�μν

αβ

= Rμν
αβ �μν

αβ (3.6)

and hence the action (2.5) is invariant.
Just as in the case of the Einstein–Hilbert action, the projec-

tive invariance of the Lovelock action allows for solutions of the 
connection equation of the type (1.2). Moreover, given an affine 
connection �μν

ρ (not necessarily Levi-Civita) that is a solution to 
the equations (2.6) and (2.10), we can always build a new connec-
tion

�̄μν
ρ = �μν

ρ + Aμ δ
ρ
ν , (3.7)

that also solves the same equations of motion. Just as for the 
Einstein–Hilbert case, the projective symmetry of the action guar-
antees that �̄μν

ρ and �μν
ρ are physically indistinguishable. There-

fore, the space of affine connections allowed by the equations of 
motion of Lovelock theories consists of a set of equivalence classes 
[�], where different elements within the same class are related as 
in (3.7) with arbitrary Aμ , while connections from different classes 
describe different physics.

a
t
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m
p
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4

t
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s

�

W
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a

�̃

c
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r
m
t

R

�̃

P
t

b

L

w

R
p

It is sometimes said that the metric and the Palatini formalism 
re equivalent for all Lovelock theories. However strictly speaking 
his would only be the case if the space of solutions contains [�̊]
s unique equivalence class. In other words, if the only allowed so-
tions are of the form (1.2). While this is clearly the case for the 

instein–Hilbert action [1–3], it remains an open question for the 
igher-order Lovelock theories. What distinguishes the Einstein–
ilbert action from the rest of the Lovelock terms is the fact that 
μν

αβ does not depend on � and therefore the connection equa-
ion (2.10) is an algebraic equation. In the general case, however, 
2.10) is a non-linear second-order differential equation for �.

We will show that in general the metric and the Palatini for-
alisms are not equivalent for higher-order Lovelock theories, by 

resenting a concrete counterexample for a specific theory: the 
eyl connection for the four-dimensional Gauss–Bonnet term.

. The Weyl connection as a solution

We now consider the D-dimensional second-order Lovelock 
erm, also known as the Gauss–Bonnet action,1

(D)
GB (g,�) = √|g| δ

μνρλ
αβγ ε Rμν

αβ(�)Rρλ
γ ε(�), (4.1)

uch that the �-tensor (2.4) takes the form

μν
αβ = 2 δ

μνρλ
αβγ ε Rρλ

γ ε(�). (4.2)

e will try to find a non-trivial connection �μν
ρ (i.e. not of the 

rm (1.2)) that solves the metric and connection equations (2.6)
nd (2.10) for the case k = 2.

Our Ansatz will be the generalised Weyl connection,

μν
ρ = �̊μν

ρ + Aμ δ
ρ
ν + Bν δ

ρ
μ − Cρ gμν, (4.3)

haracterised by three arbitrary vector fields Aμ , Bμ and Cμ . 
trictly speaking, Aμ represents the projective symmetry of the 
ction and can be gauged away completely. However for future 
eference, we prefer to maintain the calculation general for the 

oment. The Riemann and the �-tensor for this connection are 
hen given by

˜ μνρ
λ = R̊μνρ

λ + Fμν(A) δλ
ρ +

[
∇̊μBρ − BμBρ

]
δλ
ν

−
[
∇̊ν Bρ − Bν Bρ

]
δλ
μ −

[
∇̊μCλ − CμCλ

]
gνρ

+
[
∇̊νCλ − CνCλ

]
gμρ − Bσ Cσ

[
δλ
μgνρ − δλ

ν gμρ

]

μν
αβ = �̊μν

αβ + 1
2 (D − 3)δ

μνρ
αβγ

[
∇̊ρ Bγ − Bρ Bγ

]

+ 1
2 (D − 3)δ

μνρ
αβγ

[
∇̊ρCγ − CρCγ

]

+ 1
6 (D − 2)(D − 3)δ

μν
αβ Bσ Cσ . (4.4)

lugging the Ansatz (4.3) in the necessary condition (2.11), we find 
hat

1 Written out explicitly in terms of the curvature tensors, the action (4.1) is given 
y

= 1

3!
√|g|

[
R2 − R(1)

μνR(1)νμ + 2 R(1)
μνR(2)νμ − R(2)

μνR(2)νμ

+RμνρλRρλμν
]
,

here R(1)
μν = Rμλν

λ is the Ricci tensor, R(2)
μν = gρλRμρλν the co-Ricci tensor and 

 = gμνR(1)
μν the Ricci scalar. However, we will prefer to work throughout this 

aper with the �-tensor notation.
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0 ≡
(

K̃μρα + K̃μαρ

)
�̃μνρ

β +
(

K̃μρβ + K̃μβρ

)
�̃μνρ

α

= 2
(

Bρ − Cρ

)
�̃(α

νρ
β) +

(
B(α − C(α

)
�̃μν

β)μ, (4.5)

which is satisfied only when Bμ = Cμ . If we then gauge fix the 
projective symmetry by choosing also Aμ = Bμ , so that we can 
write the Ansatz (4.3) as a non-integrable Weyl connection,

�̃μν
ρ = �̊μν

ρ + Bμ δ
ρ
ν + Bν δ

ρ
μ − Bρ gμν, (4.6)

with Bμ for the moment an arbitrary vector field, whose precise 
form should be determined by the equations of motion. Filling in 
the Ansatz (4.6) into the connection equation (2.10) yields

0 ≡ ∇̊μ�̃μν
αβ + K̃μρα �̃μν

λβ gρλ − K̃μβρ �̃μν
αλ gρλ

= 1
12 (D − 4)

[
2B[βR̊ δν

α] + 4BλR̊λ[αδν
β] − 2BλR̊αβλ

ν
]

+ 1
6 (D − 4)(D − 3)

[
2Bρ∇̊[α Bρδν

β] − 2B[α∇̊|ρ|Bρδν
β]

+ 2B[α∇̊β]Bν
]

− 1
6 (D − 4)(D − 3)(D − 2) Bσ Bσ B[αδν

β],

(4.7)

which is satisfied for arbitrary vector fields Bμ in D = 4. On the 
other hand, the metric equation (2.6) becomes

0 = R̃μνα
λ �̃μν

βλ + R̃μνβ
λ �̃μν

αλ − 1
2 gαβ R̃μνρλ �̃μνρλ

= R̊μνα
λ �̊μν

βλ + R̊μνβ
λ �̊μν

αλ − 1
2 gαβ R̊μνρλ �̊μνρλ

+ 1
3 (D − 4)

[
∇̊(α Bβ)R̊ + 2∇̊μBμ(R̊αβ − 1

2 gαβR̊)

+ 2∇̊μBνR̊μ(αβ)ν − 2∇̊(α BμR̊β)μ

− 2∇̊μB(αR̊β)
μ + 2∇̊μBνR̊μν gαβ

]

+ 1
3 (D − 4)

[
(D − 5)BμBμ(R̊αβ − 1

2 gαβR̊) − Bα BβR̊

− 2BμBνR̊μν gαβ + 4(D − 3)BμB(αR̊β)μ

− 2BμBνR̊μ(αβ)ν

]

+ 1
3 (D − 4)(D − 3)

[
2∇̊(α Bβ)∇̊μBμ − 2∇̊μB(α∇̊β)Bμ

− ∇̊μBμ∇̊ν Bν gαβ + ∇̊μBν∇̊ν Bμgαβ

]

+ 1
3 (D − 4)(D − 3)

[
(D − 4)∇̊(α Bβ)BμBμ

− 2∇̊μBμBα Bβ + 2∇̊μB(α Bβ)Bμ + 2BμB(α∇̊β)Bμ

− 2BμBν∇̊μBν gαβ + (D − 4)BμBμ∇̊ν Bν gαβ

]

+ 1
12 (D − 4)(D − 3)(D − 2)

[
4BμBμBα Bβ

+ (D − 5)BμBμBν Bν gαβ

]
, (4.8)

which in D = 4 reduces to equation of motion for gμν in the met-
ric formalism,
R̊μνα
λ �̊μν

βλ + R̊μνβ
λ �̊μν

αλ − 1
2 gαβ R̊μνρλ �̊μνρλ = 0.

(4.9)

In other words, the Weyl connection (4.6) is a solution of four-
dimensional metric-affine Gauss–Bonnet gravity for any gμν that 
satisfies the equations of the metric formalism.

5. A vector symmetry of D = 4 Gauss–Bonnet theory

In section 3 we have seen that the existence of the nontrivial 
connection (1.2) �̄μν

ρ = �̊μν
ρ + Aμδ

ρ
ν , as a solution in any metric-

affine Lovelock theory is a consequence of the projective symmetry 
�μν

ρ → �̄μν
ρ = �μν

ρ + Aμδ
ρ
ν . In this section we will argue that 

our new solution (4.6) is also related to a symmetry, namely the 
conformal invariance of the four-dimensional Gauss–Bonnet action.

Conformal invariance and Weyl transformation have not been 
studied much in the context of metric-affine gravity. In [26] con-
formal rescalings of the metric are used to discuss the relations 
between the metric and Palatini formalism of in f (R) gravity in 
both the Einstein and the Jordan frame. More recently, in [27] a 
detailed classification was given of the metric-affine theories in 
terms of their scale invariance under rescalings of the metric, the 
coframe and/or the connection.

It is well known that the metric Gauss–Bonnet theory in D = 4
is invariant under conformal transformations of the metric,

gμν → g̃μν = e2φ gμν, (5.1)

which on its turn change the Christoffel symbols as

�̊μν
ρ → �̃μν

ρ = �̊μν
ρ + ∂μφ δ

ρ
ν + ∂νφ δ

ρ
μ − ∂ρφ gμν. (5.2)

On the other hand, as any metric-affine quadratic curvature term 
[28], the four-dimensional metric-affine Gauss–Bonnet theory is 
easily seen to have conformal weight zero, i.e. to be invariant un-
der the conformal transformations (5.1) of the metric, though in 
this context without a accompanying transformation in the affine 
connection, as the latter is independent of the metric.

The invariance of the D = 4 metric-affine Gauss–Bonnet term 
under the metric transformation (5.1) shows that in the metric 
formalism the transformation of the metric (5.1) and of the con-
nection (5.2) are in fact quite independent of each other: (5.1)
acts effectively only on the explicit metrics in the contraction of 
the Riemann tensors and the effect of (5.2) remains constrained 
to the curvature tensors. One could therefore ask the question 
whether the metric-affine Gauss–Bonnet action is also invariant 
under (something similar to) the transformation (5.2), indepen-
dently of a metric transformation.

In [29–31] it was already observed that actions with Gauss–
Bonnet-like quadratic curvature invariants (i.e. general combina-
tions of quadratic contractions of the Riemann tensor, that reduce 
to the metric Gauss–Bonnet action when the Levi-Civita connection 
is imposed), when equipped with the (non-integrable) Weyl con-
nection (4.6), can be written as the standard (Levi-Civita) Gauss–
Bonnet action plus a series of non-minimal coupling terms for 
the Weyl field Bμ , plus a kinetic term Fμν(B)F μν(B). Curiously 
enough, the non-minimal couplings vanish precisely in D = 4 and 
the kinetic term is multiplied by a coefficient that vanishes when 
the parameters of the extended Gauss–Bonnet term are chosen 
such that the action is the actual metric-affine Gauss–Bonnet term 
(4.1). In other words, the metric-affine Gauss–Bonnet action (4.1)
does not see the difference between the substituting the Weyl or 
the Levi-Civita connection.

Inspired by this and by the fact that in the previous section we 
found that the integrable Weyl connection (4.6) is a solution to the 
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metric and the connection equation, it seems logical to check the 
invariance of the action (4.1) under the transformation

�μν
ρ → �̃μν

ρ = �μν
ρ + Bμ δ

ρ
ν + Bν δ

ρ
μ − Bρ gμν, (5.3)

not just as a deformation of the Levi-Civita connection (as in 
[29–31]), but as a transformation acting on general connections 
in the action (4.1), much in the same way as the projective trans-
formations (1.4). Note that the Bμδ

ρ
ν term can be undone by a 

projective transformation with parameter −Bμ , so we can actually 
simplify the transformation (5.3) to

�μν
ρ → �̃μν

ρ = �μν
ρ + Bν δ

ρ
μ − Bρ gμν. (5.4)

Up to boundary terms coming from integrating by parts, the four-
dimensional action then transforms as

LGB(g,�) → L̃GB(g, �̃), (5.5)

with

L̃GB(g, �̃) = LGB(g,�) − 4BμBν
[
R(1)

μν + R(2)
μν

]

− 2Q μνρ
[

Bμ(R(1)
νρ + R(2)

νρ ) + Bλ(Rλνμρ + Rλνρμ)

− BλBν(Q λμρ − 2Q ρλμ) − BμBν(Q (1)
ρ − Q (2)

ρ )

+ 2Bμ∇ν Bρ + 4Bν∇ρ Bμ

+ 2Bν BλTλρμ + 2BμBν Tρλ
λ
]

− 2Q (1)μ
[

Bν(R(1)
νμ − R(2)

νμ − gνμR) − 2BμBν Bν

− 2Bμ∇ν Bν + 2Bν∇ν Bμ + 3BμBν Q (2)
ν

]

+ 2Q (2)μ
[

Bν(R(1)
νμ + R(2)

νμ) + 2Bμ∇ν Bν + 2Bν∇ν Bμ

+ 2BμBν Tνλ
λ
]
, (5.6)

where R(1)
μν =Rμλν

λ is the Ricci tensor, R(2)
μν = gρλRμρλν the co-

Ricci tensor, R = gμνRμν the Ricci scalar and Q (1)
μ = Q μλ

λ and 
Q (2)

μ = Q λ
λμ the two traces of the non-metricity tensor Q μνρ =

−∇μgνρ .
We can see then that in fact the four-dimensional metric-affine 

Gauss–Bonnet term (4.1) with general connection �μν
ρ is not in-

variant under (5.4). However, taking into account that the Ricci and 
the co-Ricci tensor are in general related to each other as

R(2)
μν = −R(1)

μν + gρλ∇μ Q ρνλ + gρλ∇ρ Q μνλ + gρλTμρ
σ Q σνλ,

(5.7)

it is clear that the difference between LGB(g, �) and L̃GB(g, �̃)

is proportional to the non-metricity tensor, its derivatives and its 
traces. In other words, the transformation (5.4) is indeed a sym-
metry, not of the full four-dimensional metric-affine Gauss–Bonnet 
action, but of the restriction of this theory to the subset of metric-
compatible connections, which turns out to be a consistent trunca-
tion of the full theory (see Appendix A). The symmetry transforma-
tion (5.4) not only generalises the results of [29–31], but also ex-
plains why the Weyl connection (4.6) appears as a solution to the 
Palatini formalism in the four-dimensional Gauss–Bonnet action: it 
arises by acting on the Levi-Civita solution first with the new vec-
tor symmetry (5.4) and then with a projective transformation (3.7)
with the same parameter. Note that the order of these transforma-
tions is important, as the vector transformation is only a symmetry 
on the subset of metric-compatible connections. This subset itself 
is not invariant under projective transformations, since any projec-
tive transformation necessarily induces a non-trivial non-metricity: 
Q μνρ → Q̄ μνρ = Q μνρ + 2Aμgνρ .

6. Conclusions

While looking for solutions of the connection equation of 
metric-affine Gauss–Bonnet theory LGB(g, �) (4.1), we have iden-
tified a number of transformations in the theory. Besides the in-
variance under projective transformations,

�μν
ρ → �̄μν

ρ = �μν
ρ + Aμ δ

ρ
ν , (6.1)

present in any dimension, we also found a vector transformation

�μν
ρ → �̂μν

ρ = �μν
ρ + Bν δ

ρ
μ − Bρ gμν, (6.2)

which is a symmetry specifically in four-dimensions and only if we 
consider the theory to be restricted to metric-compatible connec-
tions (LGB|Q =0). However, this vector transformation will play an 
important role in the full (four-dimensional) theory LGB.

To our knowledge, this vector symmetry (6.2) of the truncated 
theory LGB|Q =0 is new, although a special case was already ob-
served in [29–31]. Both the Aμ and Bμ transformations seem 
somehow to be related to the conformal invariance of the four-
dimensional Gauss–Bonnet action in the metric formalism,

gμν → g̃μν = e2φ gμν,

�̊μν
ρ → �̃μν

ρ = �̊μν
ρ + ∂μφ δ

ρ
ν + ∂νφ δ

ρ
μ − ∂ρφ gμν.

(6.3)

Note that the conformal weight of the four-dimensional Gauss–
Bonnet term is zero, both in the metric as in the metric-affine 
formalism. Therefore, in the metric case, the (∂φ)-terms that come 
from the transformation of the Levi-Civita connection cancel out 
amongst each other, and hence the transformation rules (6.3) for 
the metric and the connection do not interfere with each other in 
the variation of the action (4.1). Moreover, in the metric-affine for-
malism, where the metric and the affine connection are indepen-
dent variables, one can separate both transformations completely, 
finding that the action is invariant under both of them separately, 
at least in the subset of metric-compatible connections. The re-
markable thing is that the metric-compatible Gauss–Bonnet term 
allows not only for integrable Weyl vectors Bμ = ∂μφ, but also for 
non-integrable ones, Bμ �= ∂μφ, as the transformation is no longer 
related to a conformal transformation of the metric.

To understand the mathematical structure of the space of solu-
tions of the full four-dimensional Gauss–Bonnet action LGB (4.1), 
it is necessary to see how the transformations (6.1) and (6.2) act 
on the connections. It is straightforward to see that the projective 
transformation changes both the trace of the torsion and the non-
metricity, but that the Bμ transformation only acts on the trace of 
the torsion and leaves Q μνρ invariant:

Tμν
ρ → Tμν

ρ + 2(A[μ + B[μ)δ
ρ
ν],

Q μνρ → Q μνρ + 2Aμgνρ. (6.4)

There is a certain similarity, although also mayor differences, 
between our transformation (6.2) and the torsion/non-metricity 
duality discussed in [32]. There it was shown that in f (R) gravity 
the same physical situation can be described by different geomet-
rical descriptions, either in terms of the torsion or in terms of 
the non-metricity, due to the fact that the projective symmetry 
of these theories interchanges the degrees of freedom of Tμρ

ρ and 
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Q μρ
ρ (see also [2] for a similar observation in the context of the 

Einstein–Hilbert action). As can be seen from (6.4), this property 
is not limited to four-dimensional f (R) gravity, but is present in 
any projectively invariant theory that allows the Weyl connection 
as a solution. However, an important difference between our case 
and [32] is that the Bμ transformation in general is not a duality 
that relates physically equivalent situations, but, as we will show, a 
solution generating transformation, that maps certain connections 
onto other physically inequivalent ones.

As we mentioned before, the Bμ transformation is a symmetry 
when the theory is restricted to the subset of metric-compatible 
connections, but not of the full theory. This means that the con-
nection space in the truncated theory LGB|Q =0 can be divided into 
equivalence classes, which are the orbits of the Bμ transforma-
tions. Two connections in the same orbit differ by the trace of the 
torsion and are physically indistinguishable, as the Bμ transforma-
tion is a symmetry in LGB|Q =0. Two connections in distinct orbits 
differ also in the traceless parts of the torsion.

However, from the point of view of the full theory LGB, the 
Bμ transformation is not a symmetry, but a solution-generating 
transformation, as different solutions of the (consistently) trun-
cated theory LGB|Q =0 are guaranteed to be also solutions of the 
full theory. Within the Q = 0 subset of the full theory, the Bμ

transformation hence maps solutions of the connection equation 
in other, physically inequivalent solutions. On the other hand, out-
side the Q = 0 subset, the flow of the Bμ transformations also 
exists, but possibly map solutions of the theory into connections 
that do not satisfy the equations of motion.

Finally, the projective transformation (6.1) does not maintain 
solutions inside the Q = 0 subset, as it changes the trace of the 
non-metricity (as well as the trace of the torsion). The orbits of 
the Aμ transformation that cross the Q = 0 subset have a pure-
trace non-metricity, Q μνρ = 1

4 Q μσ
σ gνρ , while the connections 

that have an additional non-trivial parts of Q μνρ lay on orbits of 
Aμ that do not intersect the Q = 0 subset. Since the projective 
transformation is a symmetry of the full action LGB, all connec-
tions on the same orbit of Aμ are indistinguishable and hence 
physically equivalent.

With this structure in mind, we can see that the two-vector-
family of solutions we have found for the metric-affine Gauss–
Bonnet action is of the general form

�̃μν
ρ = �̊μν

ρ + Aμ δ
ρ
ν + Bν δ

ρ
μ − Bρ gμν. (6.5)

These solutions span a subset that is generated on the one hand 
by the Bμ orbit in the Q = 0 subset that contains the Levi-Civita 
connection and on the other hand by the Aμ flow intersecting pre-
cisely this �̊μν

ρ orbit (see Fig. 1). As far as we know, these are the 
only connections that are known to be solutions to LGB. But it 
should be clear that if a new solution �̆μν

ρ were to be found on 
another one of the Bμ orbits in the Q = 0 subset, the flows of 
the Aμ and Bμ transformation would generate a new two-vector-
family of solutions �μν

ρ = �̆μν
ρ + Aμδ

ρ
ν + Bνδ

ρ
μ − Bρ gμν . It seems 

therefore reasonable to expect a (discrete or continuous) family of 
non-intersecting subset of solutions, each one characterised by the 
orbits of the Bμ transformation that form the intersection with the 
Q = 0 plane.

We believe this structure not to be unique for the four-
dimensional Gauss–Bonnet action, but for any Lovelock theory in 
critical dimensions (i.e. for the k-th order Lovelock term in D = 2k
dimensions). We believe the existence of the non-trivial solu-
tions is an indication of the non-topological character of Lovelock 
theories in critical dimensions, in the presence of non-metric-
compatible connections.
Fig. 1. The structure of the space of connections in four-dimensional metric-affine 
Gauss–Bonnet theory: the Bμ transformations (6.2) act as a solution-generating 
transformation in the subset of metric-compatible connections (Q = 0), while the 
Aμ transformation relate physically equivalent connections, thanks to projective 
symmetry of the theory. The solutions �̃ given in (6.5) form a subset spanned by 
the orbit of the Bμ transformation that contains the Levi-Civita connection �̊ and 
the orbits of the Aμ transformation intersecting the aforementioned Bμ orbit. The 
orbits of Aμ that do not cross the Q = 0 subset have a non-metricity tensor that is 
not pure trace, Q μνρ �= 1

4 Q μσ
σ gνρ .

On the other hand, not much is known about the solutions of 
the four-dimensional Gauss–Bonnet action that are not generated 
through the flows of the Aμ and Bμ transformations from the Q =
0 subset, i.e. that have at least one part of the non-metricity that 
is not pure trace, Q μνρ �= 1

4 Q μσ
σ gνρ (besides the general prop-

erty that they can be divided in the equivalence classes formed by 
the Aμ orbits). Similarly, to our knowledge, there are no connec-
tions, other than (1.2), known to be a solution of the Gauss–Bonnet 
action in dimensions D > 4.

However, the fact that we have found non-trivial (that is, non-
equivalent) solutions for the specific four-dimensional case, dis-
proves the commonly accepted statement that the metric and the 
Palatini formalism are equivalent for general Lovelock lagrangians. 
Indeed, even though the Levi-Civita connection is always a so-
lution to the metric-affine Lovelock actions, it is now clear that 
in general, higher-order Lovelock theories can allow for physically 
distinct connections. It would be interesting to find explicit non-
trivial solutions for Lovelock theories in non-critical dimensions.
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Appendix A. Q = 0 as a consistent truncation

In this Appendix we will show that metric-affine Lovelock the-
ories restricted to the subset of metric-compatible connections are 
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consistent truncations of the full theories. We will work in the tan-
gent space description, where the metric degrees of freedom are 
represented by the Vielbeins ea

μ , which are the components of a 
local orthonormal coframe, and the affine connection is substituted 
by the components of the connection one-form, ωμa

b , through the 
appropriate basis transformation (sometimes called the Vielbein 
Postulate). The reason is that the non-metricity of the connection 
in this set-up is given by the symmetric part of the spin connec-
tion, Q μ

ab = Dμηab = 2ωμ
(ab) .

We start by considering a general action of the form S =∫
dD x L(e, R(ω)). The variation of the action with respect to the 

affine connection, up to boundary terms coming from partial inte-
gration, is given by

δω S =
∫

dD x |e| �μνa
b δRμνa

b(ω)

= −2
∫

dD x |e|
[
(∇λ − 1

2 Q λσ
σ + Tλσ

σ )�λμa
b

− 1
2 Tλσ

μ �λσa
b

]
(δωμa

b), (A.1)

where �μνa
b = ea

α eβ
b �μνα

β , with �μνα
β as in (2.3). The equa-

tion of motion, restricted to metric-compatible affine connections 
is then of the form(
∇̃λ + T̃λσ

σ
)

�λμa
b

∣∣∣
Q =0

− 1
2 T̃λσ

μ �λσa
b

∣∣∣
Q =0

= 0. (A.2)

Here we used the notation ω̃μa
b ≡ ωμa

b|Q =0 for metric-compatible 
connections and ∇̃μ and T̃μν

σ for their covariant derivative and 
their torsion. Furthermore, �μνa

b|Q =0 is the �μνa
b-tensor (2.3), 

constrained to metric-compatible connections, i.e.

�μνα
β

∣∣∣
Q =0

= 1√|g|
δS

δRμνα
β

∣∣∣∣
Q =0

. (A.3)

On the other hand, consider now the same theory S|Q =0 =∫
dD x L(e, R̃(ω̃)), but restricted to connections that are metric-

compatible, already at the level of the action. The variation of this 
action with respect to the connection is then given by

δω̃(S|Q =0) =
∫

dD x |e| �̃μνa
b δR̃μνa

b(ω̃)

= −2
∫

dD x |e|
[
(∇̃λ + T̃λσ

σ ) �̃λμa
b

− 1
2 T̃λσ

μ �̃λσa
b

]
(δω̃μa

b), (A.4)

where now �̃μνα
β is the �-tensor that arises from the variation 

with respect to ω̃μa
b ,

�̃μνα
β = 1√|g|

δS

δR̃μνα
β
. (A.5)

The connection equation of S|Q =0 = ∫
dD x L(e, R̃(ω̃)) is therefore 

of the form(
∇̃λ + T̃λσ

σ
)

�̃λμa
b − 1

2 T̃λσ
μ �̃λσa

b = 0. (A.6)

In general, it turns out that �μνα
β |Q =0 �= �̃μνα

β . One way of 
seeing this is by realising that R̃μνα

β (and hence also �̃μνα
β ) 

is always antisymmetric in the last two indices, but Rμνα
β in 

general is not. Therefore, the connection equation (A.6) of the trun-
cated theory S|Q =0 is in general not identical to the truncated 
connection equation (A.2) of the full theory S .

In fact, S|Q =0 is a consistent truncation of S if and only if the 
two �-tensors coincide: �μνα

β |Q =0 = �̃μνα
β . In particular, this 

turns out to be the case for the Gauss–Bonnet action (4.1) and, 
more generally, for all metric-affine Lovelock theories (2.1). Indeed, 
from (2.4) it is straightforward to see that

�̃μνα
β = k δ

μνρ2λ2...ρkλk
αβγ2ε2...γkεk

R̃ρ2λ2
γ2ε2 . . . R̃ρkλk

γkεk

= k δ
μνρ2λ2...ρkλk
αβγ2ε2...γkεk

Rρ2λ2
γ2ε2

∣∣∣
Q =0

. . . Rρkλk
γkεk

∣∣∣
Q =0

= �μνα
β

∣∣∣
Q =0

, (A.7)

since by definition R̃μνα
β =Rμνα

β |Q =0.
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