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In this work, we analyze how scaling properties of Yang-Mills field theory manifest as self-similarity of
truncated n-point functions by scale evolution. The presence of such structures, which actually behave as
fractals, allows for recurrent nonperturbative calculation of any vertex. Some general properties are indeed
independent of the perturbative order, what simplifies the nonperturbative calculations. We show that for
sufficiently high perturbative orders a statistical approach can be used, the nonextensive statistics is
obtained, and the Tsallis index, q, is deduced in terms of the field theory parameters. The results are applied
to QCD in the one-loop approximation, where q can be calculated, resulting in a good agreement with the
value obtained experimentally. We discuss how this approach allows us to understand some intriguing
experimental findings in high energy collisions, as the behavior of multiplicity against collision energy,
long-tail distributions, and the fractal dimension observed in intermittency analysis.
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I. INTRODUCTION

Yang-Mills field (YMF) theory is a prototype theory to
describe three among the four known natural interactions,
namely, strong, weak, and electromagnetic, with only
gravitational force left aside.1 The importance of such
category of field theory is summarized in the Standard
Model, which is a single framework to describe all three
interactions in a unified formalism. Renormalization group
invariance is a fundamental aspect of the Yang-Mills field
theory, playing an important role in the renormalization of
the theory after the ultraviolet divergences are subtracted
[1–3]. The theory was extremely successful in calculations
for QED and weak interactions, providing accurate and
precise descriptions for the observed phenomena. QCD has
proved to be more challenging, since the calculation
methods applied to the other two forces are not appropriate
to provide accurate results for strong interacting systems. In
this scenario, QCD has been tested in high energy elemen-
tary particle interactions, where asymptotic freedom allows

for the application of perturbative methods, and by lattice
QCD (LQCD), which is a numerical approach based on
QCD first principles.
Fractals are complex systems with internal structure

presenting scale invariance and self-similarity. Fractal
measures, contrary to more conventional quantities for
which an increase in resolution results in the same
measured value with increased precision, yield different
values for different resolutions. A classical example is the
length of coastlines [4]. Since its proposal about three
decades ago, the concept of fractals has found many
applications in Mathematics, Arts, Biology and Complex
Systems in general. A nice introduction to the subject and
its applications can be found in Refs. [4,5] and more formal
descriptions in Ref. [6]. Among the most important features
of fractals are the scaling properties, where the internal
structure of the fractal is equal to the main fractal but with a
reduced scale, self-symmetry, and fractional dimensions.
Tsallis statistics generalizes Boltzmann-Gibbs one by

introducing a nonadditive form for entropy, what leads to
nonextensivity of some quantities. The effects of Tsallis
statistics have been explored since it was proposed, in the
late 80s [7,8], but its full meaning and fundamentals are still
far from being completely understood. The q-deformed
entropy functional that underlies nonextensive statistics
depends on a real parameter, q, that determines the degree
of nonadditivity of the functional, and in the limit q → 1,
it becomes additive and the standard Boltzmann-Gibbs
entropy is recovered.
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Our goal is to show a subtle link between renormaliza-
tion group invariance of YMF, fractals, and the Tsallis
nonextensive statistics. For that aim, we analyze how the
scaling properties of a Yang-Mills field theory lead to
recurrence relations that allow nonperturbative calcula-
tions, which amount to a self-similar behavior of truncated
n-point diagrams by scale evolution. Essentially, these
amplitudes are shown to behave as fractals by evolving
the scale to the ultraviolet region and the calculation of
vertices even in high perturbative orders becomes possible
due to a simple recurrence formula. For sufficiently high
perturbative order, the nonextensive statistics are obtained,
and the Tsallis index, q, is deduced in terms of the field
parameters.
Our work is organized as follows: we first introduce the

basic concepts of the Yang Mills theory and how a system
of interacting partons relates to fractals. Then a connection
between the partonic self-similarity and the nonextensive
statistics is established. In other words, we will demonstrate
that renormalizable field theories lead to fractal structures,
which can be studied, from a thermodynamical point of
view, with Tsallis statistics. Finally, as an application, well-
known QCD scaling properties are used to calculate, for
the first time, the q value in terms of QCD fundamental
parameters. Some consequences of our results are dis-
cussed, in particular the fractal dimension, which is
experimentally observed by intermittency analysis, and
the behavior of particle multiplicity as a function of the
collision energy, which is here related to the nonextensivity
and to the fractal dimension of the hot and dense system
formed at high energy collisions. This is an intriguing
aspect of experimental data which can be explained in a
simple way from QCD by the present approach, as well as
other properties of high energy collisions, such as multi-
plicity dependence on the collision energy, long-tail dis-
tributions, and fractal dimension observed in intermittency
studies.

II. FORMALISM

The simplest scale free non-Abelian gauge field theory
has Lagrangian density including bosons and fermions
given by

L ¼ −
1

4
Fa
μνFaμν þ iψ̄ jγμD

μ
ijψ j; ð1Þ

where

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν ð2Þ

and

Dμ
ij ¼ ∂μδij − igAaμTa

ij; ð3Þ
where ψ and A represent, respectively, the fermion and the
vector fields, with fabc being the structure constants of the

group and Ta the matrices of the group generators in
the fermion representation.
The UV regularized vertex functions are related to the

renormalized vertex functions with renormalized parame-
ters, m̄ and ḡ, as

Γðp;m; gÞ ¼ λ−DΓðp; m̄; ḡÞ: ð4Þ

This property is mathematically described by the re-
normalization group equation, which introduce the beta
function, which allowed to show that QCD is asymptoti-
cally free [9–11]. Such equation is known as Callan-
Symanzik equation [12–14] and is given by

�
M

∂
∂M þ βḡ

∂
∂ḡþ γ

�
Γ ¼ 0; ð5Þ

where M is the scale parameter, and the β function is
defined as

βḡ ¼ M
∂ḡ
∂M : ð6Þ

D ¼ Do þ d, with Do being the natural dimension of the
phase space. In general, d is not an integer; therefore, the
scaling dimension, D, may be fractionary. The parameter γ
is the anomalous dimension given by a combination of the
scaling dimensions of the fields ψ and A.
In the irreducible one-particle representation, self-energy

is taken into account by using the effective parton mass, m̄,
what allows a reduction of complexity in the calculation,
since only proper vertices must be considered. As sche-
matically shown in Fig. 1, the renormalization group
invariance means that, after proper scaling, the loop in a
higher order graph is identical to a loop in lower orders
[9–11]. The renormalization group invariance of the vertex
function is a direct consequence of the Callan-Symanzik
equation, and it is of fundamental importance in what
follows. When effective charges and masses are used, the
line of the respective field in Feynman diagram represent
an effective particle or state, since parts of the diagram

FIG. 1. Diagrams showing the scaling properties of Yang-Mills
fields: a loop in higher order is identical, after proper scaling, to a
diagram in lower order.
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representing self-energy contribution are omitted because
they are already taken into account by the renormalization.
Such diagrams are called irreducible graphs. We will next
refer to the physical system represented by irreducible
graphs as effective parton. In irreducible graphs, the only
allowed vertices, called proper vertices, are related to the
creation of an effective parton.
Despite the great reduction in complexity when irreduc-

ible graphs are used, still complex graphs are unavoidable
in performing perturbative calculations, especially for
QCD, since vertex functions may include several orders
in perturbative approximation. We will show that some
additional simplification may be achieved under some
circumstances that are relevant in hadron structure and
in multiparticle production. Preliminary results of the
approach developed here were discussed in Ref. [15].
From now on, we refer to proper vertices as interactions.

A. Statistical description of the partonic state

The time evolution of an initial partonic state is

jΨi≡ jΨðtÞi ¼ e−iHtjΨoi: ð7Þ

The state Ψ can be written as

jΨi ¼
X
n

hΨnjΨijΨni; ð8Þ

with the basis states jΨni corresponding to a fixed number,
n, of interactions in the vertex function. In the perturbative
method, each proper vertex gives rise to a term in the Dyson
series, and at any time, t, the partonic state is given by

jΨi¼
X
fng

ð−iÞn
Z

dt1…dtne−iHoðtn−tn−1Þg…e−iHoðt1−toÞjΨoi;

ð9Þ

where g represents the interaction and tn > tn−1 > …
> t1 > to, and

P
fng runs over all possible terms with n

interaction vertices. Observe that hΨn0 jΨni ¼ δn0n. The
symbol fng indicates that the summation is performed
over all possible configuration of fields with n interactions.
The number of particles in the state jΨni is not directly

related to n, since high order contributions to the N
particles states can be important, but certainlyN ≤ MðnÞ ≔
nðÑ − 1Þ þ 1, where Ñ is the number of particles created
or annihilated at each interaction. In Yang-Mills field
theory, Ñ ¼ 2.2

We can introduce states of well-defined number of
effective partons, jψNi, so that

jΨni ¼
X
N

hψN jΨnijψNi: ð10Þ

The states jψNi are autovectors ofHo with fixed number of
particles, N. Of course, hΨnjψNi ¼ 0 whenever N > MðnÞ
and hΨN0 jΨNi ¼ δN0N .
Since the number of partons is fixed and they do not

interact but by contact interaction, the states jψNi can be
understood as the states of an ideal gas of N partons.
Therefore,

jψNi ¼ Sjγ1; m1; p1;…; γN;mN; pNi; ð11Þ

where mi and pi are the mass and momentum of the i
partonic state, and γi represents all relevant quantum
numbers necessary to completely characterize the partonic
state. S is the symmetrization operator acting over fermions
and bosons. Since the mass of the effective partons varies
continuously, S gives a negligible modification of the
single parton states, so mass and momentum of each
parton can vary independently, as far as the total energy
is conserved.
Notice that the states with N partons can be obtained in

several ways, since

jΨðtÞi ¼
X
n

X
N

hΨnjΨðtÞihψN jΨnijψNi; ð12Þ

with hψN jΨni ≠ 0 for MðnÞ ≥ N. For sufficiently high
number of interactions, n, there are so many ways to obtain
a N particle system that the possibility to get a particular
configuration becomes insensitive to the initial state. This
situation is similar to that of complex systems where a
statistical approach is possible. Therefore, we assume that
the probability to get a particular macrostate configuration
where the total energy of the system is E and one of the
partons has quantum numbers, effective mass, and four-
momentum given by ðγo; mo; poÞ can be calculated, aside
the statistical weight corresponding to Boltzmann factor, on
the sole basis of the number of microstate configurations
corresponding to that macrostate, and assumed that all
microstates configurations have the same probability to be
observed.
The probability to find a state where at least one parton

has mass between mo and mo þ dmo, and momentum
coordinates between poi and poi þ dpoi is given by matrix
elements like

hγo;mo;po;…jΨðtÞi
¼
X
n

X
N

hΨnjΨðtÞihψN jΨnihγo;mo;po;…jψNi: ð13Þ
2Here diagrams with four external lines are not considered,

since they give a nonrenormalizable contribution. However, when
all diagrams are summed up, the contribution of the contact
interaction is null.
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We will analyze each of the three brackets in the right-hand
side of the equation above individually.
The bracket hΨnjΨi is related to the probability that an

effective parton with energy between E and Eþ dE at time
t ¼ 0will evolve in such a way that at time t it will generate
an arbitrary number of secondary effective partons in a
process with n interactions. This probability depends on the
probability to find the initial particle with energy between E
and Eþ dE, which we write as PðEÞdE, where PðEÞ is
to be determined, and on the probability that exactly n
interaction will occur in the elapsed time, which we write
as Gn. Therefore, we have

hΨnjΨi ¼ GnPðEÞdE: ð14Þ

The second bracket depends on the relative number of
possibilities to get the configuration withN particles after n
interactions, so

hψN jΨni ¼ CNðnÞ; ð15Þ

with

X
n

CNðnÞ ¼ 1: ð16Þ

The last bracket in the expression above is calculated
statistically; see the Appendix for technical details. The
result is

fðpjÞd4pj¼
1

8π

Γð4NÞ
Γð4ðN−1ÞÞE

−4
�
1−

p0
j

E

�4N−5
d4pj: ð17Þ

The component p0
j is the energy of the particle inside

the system with N particles, εj; therefore, p0
j ¼ εj. Then,

Eq. (17) can be written as

fðεjÞd4pj ¼ AðNÞPN

�
εj
E

�
d4
�
pj

E

�
; ð18Þ

with

PN

�
εj
E

�
¼

�
1 −

εj
E

�
4N−5

ð19Þ

and

AðNÞ ¼ Γð4NÞ
8πΓð4ðN − 1ÞÞ : ð20Þ

From the expression for AðNÞ, we see that the number of
states increases with N4, so those configurations with large
number of particles are favored. The maximum number
possible is

MðnÞ ¼ nðÑ − 1Þ þ 1; ð21Þ

so the probability to get a configuration withN particles will
be, for sufficiently large n, approximately ðN=ðnÑ−nÞÞ4,
so using Eqs. (14) and (15), we obtain

P̃ðεjÞd4podE ¼
X
n

X
N

Gn

�
N

nÑ − n

�
4
�
1 −

εj
E

�
4N−5

× d4
�
p
E

�
PðEÞdE: ð22Þ

Observe that when N is sufficiently large and εj=E
sufficiently smaller than unit, we have

�
1 −

εj
E

�ð4N−5Þ�
1þ εj

E

�ð4N−5Þ
¼

�
1 −

ε2

E2

�ð4N−5Þ
∼ 1: ð23Þ

Therefore, we can set

�
1 −

εj
E

�ð4N−5Þ
¼

�
1þ εj

E

�
−ð4N−5Þ

ð24Þ

and finally obtain

P̃ðεÞd4podE ¼
X
n

X
N

Gn

�
N

nÑ − n

�
4
�
1þ ε

E

�
−ð4N−5Þ

× d4
�
p
E

�
PðEÞdE: ð25Þ

Below we will show that the general form for the
probability densities P̃ðεjÞ and PðEÞ can be obtained from
considerations about self-similarity.

III. SELF-SIMILARITY AND FRACTAL
STRUCTURE

The result obtained in Eq. (25) shows that for an ideal
gas with finite number of particles, the probability depends
on a power-law function of the ratio εj=E. While this is
valid for an ideal gas, where particles have no internal
structure, the same result cannot be directly applied to the
gas of effective partons because effective partons always
have internal structure related to self-energy contributions
coming from interaction with the vacuum. We will now
investigate how the scaling properties determined by the
renormalization group equation can be used to obtain the
result for effective partons.
The scaling properties represented by the Callan-

Symanzik equation demands that effective partons at any
scale are similar to any other parton after the proper
rescaling is performed. In other words, if partonic proper-
ties are expressed in terms of scale free variables they must
be described by the same functions of those variables.
The energy distribution of a parton, as given by Eq. (25),
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depends on the ratio χ ¼ εj=E. Now, let us consider that the
system with energy E in which the parton with energy εj is
one among N constituents, is itself a parton inside a larger
system with energyM. Then the ratio E=M is represented
by the same variable, χ, that describes the ration εj=E. In
addition, we can write PðEÞ in Eq. (25) as PðE=MÞ, and
this probability density must follow that same function as
Pðεj=EÞ, i.e.,

P

�
εj
E

�
∼ P

�
E
M

�
∼ PðχÞ; ð26Þ

where the sign ∼ indicates that the three functions above
are indeed the same function of the scale free variable χ.
The same conclusion is valid for any parton with energy ε
which is a component of another parton with energy Λ,
and to let it clear in the following calculations we write
χ ¼ ε=Λ. The reasoning just used here is the same that
applies to fractal structures, so what we are doing is to
introduce the mathematical tools common to fractals
studies in the analysis of Yang-Mills fields.
The self-similarity among the partons implies that the

probability that the parent parton with mass E inside a
larger system with mass M is similar to the probability
given in Eq. (25), so the dependence on N that appears in
the exponent must be changed to a parameter α, which
remains to be determined. This parameter represents the
total number of degrees of freedom of the fractal, playing
the same role of the exponent 4N − 5 in the case of the ideal
gas. We can write

P

�
E
M

�
¼

�
1þ E

M

�
−α
; ð27Þ

and the function being integrated in Eq. (25) contains the
term

�
P

�
E
M

��
ν

PN

�
ε

E

�
d

�
ε

E

�

∼
�
1þ ε

Λ

�
−αν

�
1þ ε

Λ

�
−ð4N−5Þ

d

�
ε

Λ

�
: ð28Þ

Notice that the parameters α and ν describe the complexity
of the interaction involved in the gauge field interaction,
and in this sense they measure the sensibility of the
effective parton to its internal degrees of freedom.
The self-similarity implies, from relation (28), that

ð4N − 5Þ þ αν ¼ α; ð29Þ

since the same probability governs any parton distribution.
Therefore,

α ¼ 4N − 5

1 − ν
: ð30Þ

The parameter ν represents the fraction of total number of
degrees of freedom of the state jψNi that is involved in each
interaction. Observe that we expect ν ≤ 1; therefore, α is
positive.
Observe that q is related to the resolution parameter ν

and to the number of particles, N. But these two parameters
are not independent, since N increases as the resolution
increases. In fact, we can write

Λ ¼ αλ; ð31Þ
where λ is a reduced scale, independent of the number of
degrees of freedom relevant to the system. Since variable χ
must follow a universal distribution for any parton that is
independent of the level in the fractal structure, and since
the smallest parton is the one obtained in one-loop
approximation, where N ¼ Ñ, and therefore is constant,
then also 1=α ¼ λ=Λ is independent of the position the
system occupies in the fractal structure, and so α is
constant. We can introduce a parameter q such that

1

α
¼ q − 1; ð32Þ

with q > 1 been constant for any parton in the fractal
system. Then, we obtain

Pðε=λÞ ¼
�
1þ ðq − 1Þ ε

λ

� −1
q−1
: ð33Þ

This result shows that the distribution of parton energy
created by a system governed by Yang-Mills fields depends
only on the ratio between the parton energy, ε, and the
energy scale per degree of freedom λ. Furthermore, it shows
that the energy distribution follows the q-exponential
function commonly found in Tsallis nonextensive statistics.
Similar results have been obtained through a different

approach using the concept of thermofractals, introduced in
Ref. [16] and studied in details in Ref. [17]. There it is
shown that the fractal structure leads to the nonextensive
statistics, and it is discussed the relations between thermo-
fractals and Hagedorn’s self-consistent thermodynamics
developed to study high energy collisions [18,19], and that
was extended to nonextensive statistics [20].
In Refs. [15,17], it is discussed that the probability

density given by Eq. (33) describes how the energy
received by the initial parton flows to its internal degrees
of freedom. In the context of the theory developed here, this
probability density describes how the energy flows from
the initial parton to partons at higher perturbative orders.
Since new orders are associated to new vertices, we assume
that the q exponential plays the role of an effective coupling
constant in the vertex function, i.e.,

Γ ¼ hΨnþ1jgeiHotnþ1 jΨni; ð34Þ
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with

g ¼
ỸN
i¼1

G

�
1þ ðq − 1Þ εi

λ

�
−1=ðq−1Þ

: ð35Þ

IV. DISCUSSION AND APPLICATIONS

As an application of the formalism proposed here, let us
consider a vertex in two different orders, as depicted in
Fig. 2. The vertex function is

Γo ¼ hγ2p2γ3p3jgðλoÞeiHotjγ1p1i: ð36Þ

The next order in perturbative approximation is given by
the vertex with one additional loop, which results in a
vertex function,

Γ ¼ hγ2p2γ3p3jgðλoÞeiHot3 jγ2p6; γ3p3; γ4p4i
× hγ2p6; γ3p3; γ4p4jgðλÞeiHot2 jγ1p5; γ4p4i
× hγ1p5; γ4p4jgðλoÞeiHot1 jγ1p1i; ð37Þ

where the loop involves particles with the same quantum
numbers as the initial vertex, as represented by the quantum
numbers γ1, γ2, and γ3, which are repeated in the internal
vertex. This expression can be simplified to

Γ ¼ hγ2p2γ3p3jḡeiHotjγ1p1i; ð38Þ

where ḡ is the effective coupling given by

ḡ ¼ gðλoÞeiHot3 jγ2p6; γ3p3; γ4p4iΓMhγ1p5; γ4p4jgðλoÞ;
ð39Þ

with

ΓM ¼ hγ2p6; γ3p3; γ4p4jgðλÞeiHot2 jγ1p5; γ4p4i: ð40Þ

Notice that the vertex function in Eq. (38) is similar to the
vertex function in Eq. (36), but in the first one we have an
effective coupling encompassing the effects of the added
loop, as described in Eq. (39). Moreover, the vertex
function in Eq. (40) involves particles with the same
quantum numbers, γ1, γ2, γ3, as in the initial vertex, but

includes the fields of particle 4, which appears in the initial
and remains unchanged in the final state, and therefore is
not involved in the interaction. The scaling properties of
Yang-Mills fields prescribe that apart form multiplying
constants related to the fields of particle 4, the vertex
function in Eq. (40) is related to the vertex function in
Eq. (36) by simple scale rules.
Observe that the effect of the effective coupling as

defined by Eq. (35) is to increase the contribution of
low energy partons and decrease the contribution of high
energy partons. At each vertex, the creation of a parton with
energy much higher than that expected for partons at the
fractal level, as determined by the scale λ, is strongly
suppressed. The same is valid for the parton annihilation:
partons with high energy are more likely to remain in the
system with small probability to interact with the less
energetic and therefore less massive partons in the medium.
Depending on its color content, the heavy parton can reach
the surface of the medium and escape. In this way, a
complete description of the behavior of those heavy partons
must include the possibility of color exchange and coales-
cence, and some works in this direction, using power-law
distributions, have already been done [25]. Keeping
these aspects in mind, we continue here with a purely
cinematic description of the partonic evolution ofQCD.Due
to energy-momentum conservation constraint, ε5 þ ε6 ∼ λ,
so the coupling strongly favors configurations where
ε5 ∼ ε6 ∼ λ=2. In this way, the effective coupling controls
how the energy transferred to an effective parton is distrib-
uted among its internal degrees of freedom.
Note that ΓM and Γo are similar, differing only by the

presence of the noninteracting field ðγ4p4Þ and by the
different energies of the fields at each vertex. The scaling
properties of Yang-Mills fields allow us to relate ΓM to Γo
by an appropriate scale, λ. This scale must take into account
that this is a one-loop contribution, so λ=λo ¼ Ñ−1, and
the coupling constant and fields in ΓM must be modified
accordingly to [1,2]

ϕiðp; m̄Þ ¼ Z−1
i ϕiðp;mÞ; ð41Þ

where m is the mass of the parton at scale λo and m̄ is
its mass at scale λ. Here ϕi refers to the field of parton i,
and Zi are multiplicative factors arising from the vertex
renormalization.
The renormalization properties impose that [1,2]

Z−1
i ¼ 1þ

Z
λ

λo

γiðm=λ; ḡÞ dλ
λ
: ð42Þ

For one-loop approximation, we have λ ¼ λo þ dλ, where
dλ < 0, and the integration above turns into

Z−1
i ¼ 1þ g2

16π2
γi logðλ=λoÞ; ð43Þ

FIG. 2. Vertex functions at scale (a) λo and (b) λ.
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from where it follows that

λ
∂ϕi

∂λ ¼ γiϕi: ð44Þ

The field ðγ4p4Þ in ΓM does not interact at this vertex and it
does not need to be scaled, so it will be omitted in the
following calculation for the sake of clarity.
The scaling behavior of the ΓðMÞ function is obtained

from dimensional analysis, and it results to be ΓMðλÞ ¼
ðλ=λoÞ4, after energy-momentum conservation is taken into
account, so

M
∂Γ
∂λ ¼ dΓ; ð45Þ

with d ¼ 4 in the present case. From these considerations
and from Callan-Symanzik equation, it results that

βḡ
∂Γ
∂g ¼ −ðdþ γ5 þ γ6ÞΓ: ð46Þ

The contribution to the scaling transformation from ḡ
appears through gðλÞ, while the other two vertex are at the
initial scale, i.e., g ¼ gðλoÞ. Also, in order to compare with
QCD results, we study the behavior of gðλÞ at λ ¼ λo=μ.
With the introduction of the scaling factor, μ, the asymp-
totic limit μ → ∞ corresponds to the QCD limit p → ∞
where asymptotic freedom is expected. From Eq. (35),
we have

gðμÞ ¼
Y6
i¼5

G

�
1þ ðq − 1Þ εiμ

λo

�
−1=ðq−1Þ

: ð47Þ

Substituting Eq. (47) into Eqs. (40) and (39), we can
calculate the beta function in the one-loop approximation

taking into account that the derivatives are calculated at
λ ¼ λo and the asymptotic limit

ðq − 1Þμ ≫
λo
εi

ð48Þ

is assumed [22]. Then, we obtain

βḡ ¼ −
1

16π2
1

q − 1
ḡ3: ð49Þ

The behavior of βḡ as a function of g and as a function of
the scale μ is displayed in Fig. 3, alongside the behavior of
g versus μ.
Scaling properties of QCD have been extensively studied

in the one-loop approximation. The beta function for
QCD is [21,22]

βQCD ¼ −
ḡ3

16π2

�
11

3
c1 −

4

3
c2

�
; ð50Þ

where

c1δab ¼ facdfbcd ð51Þ

and

c2δab ¼ TrðTaTbÞ; ð52Þ

therefore relating the entropic index, q, from Tsallis
statistics to fundamental parameters of the field theory.
Quantitatively, the parameters c1 and c2 are related to the

number of colors and flavors by c1 ¼ Nc and c2 ¼ Nf=2.
Using Nc ¼ Nf=2 ¼ 3, we get
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FIG. 3. Behavior of (a) beta function against effective coupling, as given by Eq. (49), (b) the logarithmic derivative of the effective
coupling with respect to the scale μ, obtained by the same equation when the dependence of g on μ is considered, and (c) effective
coupling, as calculated by Eq. (47). The values G ¼ 752 and ε5 ¼ ε6 ¼ λ=2 in (a) and G ¼ 3.67 were used in the computation of plots
(b) and (c). The dashed line represents the value from QCD in one-loop approximation [21,22], and the dash-dotted line represents β as
calculated in four-loop approximation [23,24]. The different value for the constantG in plot (a) corresponds to a change of scale in the g
axis and is chosen to allow a better visualization of the behavior of the curves.
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3
c1 −

4

3
c2 ¼ 7; ð53Þ

which leads to q ¼ 1.14. From experimental data analysis
[26–28], we have q ¼ 1.14� 0.01, showing a good agree-
ment between theory and experiments.

V. THE BETA FUNCTION AND THE
EFFECTIVE COUPLING

The discussion made so far refers to an idealized fractal
structure where the mass of the field theory is null or
negligible. Let us now discuss the effects of finite parton
mass in the theoretical approach used here and what are the
limits of its applicability.
The scale λ in the effective coupling expression is a

parameter that indicates the resolution adopted for studying
the fractal structure: when fluctuations of internal energy
are small compared to λ, they have small or negligible
effects on the system. A consequence of the physical
meaning of this parameter is that, when there is a finite
mass, m, as the current quark mass in QCD, it is mean-
ingless to adopt λ < m. Then, there is a critical value, μc for
the scaling factor, such that

μc ¼
λo
m
: ð54Þ

Since λo in QCD is usually adopted of the order of the pion
mass, which is much larger than the current quark mass, it
means that μc is very large and we are in the region of the
asymptotic freedom; therefore, the effects of the finite
quark mass are negligible. In the cases where μc is not large
enough, we can redefine the scale factor as

μ ¼ λo
λ − λc

; ð55Þ

with λo; λ > λc.
The modifications to the scale λ and scaling factor μ

mentioned above allow us to extend our approach to a
region where the fractal structure is not valid anymore and
has to be considered as a phenomenological approach to the
more fundamental problem of a structural transition, which
may be related to a nonthermal phase transition [29], but it
is important to notice that for the case of hot systems, which
is our focus here, the effects of quark finite mass are
negligible. This phase transition might be associated to
the trace anomaly, and in this context it is interesting to
notice that the nonextensive generalization of Hagedorn’s
self-consistent theory is able to describe trace anomaly and
results in good agreement with LQCD calculations [30].
It is interesting to note that the scaling invariance can

be used in two ways: one can fix a value for λ, based on
experimental resolution or some physical change in the
system that makes the scale invariance invalid or useless,

and then the several fractal layers are obtained by consid-
ering systems of large and large energies corresponding to
different values of Λ; the other way is to fix the total energy
and let λ vary, meaning that the system is observed with
better resolution, and therefore deeper layers of the system
are investigated, i.e., the better the resolution, the lower
the λ. The first way finds application in high energy
collisions, and the second, in studies of hadron structure.
The results obtained here have shown that a system with

fractal structure, similar to the thermofractals introduced in
Ref. [16] and studied in [17], can be understood as a natural
consequence of the renormalization group invariance of
gauge field theories. There is shown that the fractal structure
leads to the nonextensive statistics, and it is discussed the
relations between thermofractals and Hagedorn’s self-
consistent thermodynamics developed to study high energy
collisions [18,19], and that was extended to nonextensive
statistics [20]. This fractal structure has been already used to
investigate properties of hadrons [31], phase transition in hot
hadronic matter [32], and neutron stars [33]. The power-law
distribution of energy and momentum, which is a direct
consequence of the fractal structure, was used to describe
pT distributions from high energy collisions experiments
[27,28,34] and to describe hadron mass spectrum [27,35].
The results obtained here give a stronger basis for the
interpretation of those experimental and phenomenological
studies in terms of nonextensive statistics.

VI. MULTIPLICITY

It is possible to understand, from the considerations
made here, that the fractal structure of YMF is the basis for
investigations of hadron properties [31], phase-transition
in hot hadronic matter [32], neutron stars [33], and cosmic-
ray [36]. These phenomenological approaches are, in
fact, implementations of scaling symmetries observed in
Yang-Mills fields. The fractal structure also allows the
understanding of the self-similarity [37–39] and scaling
properties observed in high energy experimental data. In
fact, these findings are direct consequences of the scaling
properties of YMF, as discussed here. Moreover, the fact
that the entropic index, q, is obtained from well-known
field-theoretical parameters; the results we have obtained
allow a new interpretation of Tsallis statistics in terms of
fractal structure in the same lines it was obtained in
thermofractals approach [35].
The fractal structure presents at least one fractal dimension,

and the Haussdorf dimension is a characteristic dimension
that can be calculated by using the box-counting technique
[6], where the dimensionD is related to the number of boxes,
N , necessary to completely cover all possible values for
the measured quantity and Dt is the topological dimension.
At some scale r, these quantities are related by [6]

N r−D ∝ r−Dt: ð56Þ

DEPPMAN, MEGÍAS, and MENEZES PHYS. REV. D 101, 034019 (2020)

034019-8



In our case,Dt ¼ 1 since we are dealing with system energy
as a measure. The procedure to obtain the Haussdorf
dimension is similar to that followed in Ref. [16]. The
average energy of the partons at the scale λ, already
introduced as the energy scale per degree of freedom, is

hεi ¼
Z

∞

0

εPðεÞdε ¼ λ

2q − 1
: ð57Þ

The ratio between the average energy of the components and
the parent system energy

R ¼ hεi
E

ð58Þ

is related to the level of the fractal structure relative to the
scale λ by

Rn ¼ λ

E
¼ r: ð59Þ

The number of boxes with length λ necessary to completely
cover the possible range of energies in which the fractal
components can be found isN ¼ Ñn. Then, it follows from
Eq. (59) that

n ¼ log r
logR

: ð60Þ

Equation (59) also shows that, in terms of the scales, the
energy of the system varies as E ∼ r−1. Let us now write the
dependence of the parton energies at scale λ as ε ∼ r−D;
then

N r−D ∝ r−1; ð61Þ
therefore,

D − 1 ¼ n
log Ñ
log r

: ð62Þ

From Eq. (60), it follows that

D − 1 ¼ log Ñ
logR

: ð63Þ

From Eqs. (57) and (58), and using E ¼ λr=ðq − 1Þ,
we get

R ¼ q − 1

2q − 1
: ð64Þ

Using the value q − 1 ¼ 1.14, it follows that D ¼ 0.69.
This result is in good agreement with the fractal dimension
observed in intermittency analyses of high energy exper-
imental data [40,41]. These analyses allow to access fractal
dimensions by studying the behavior of cummulants of the
measured distributions [42–49], and the systematic analysis
show that for pp collisions there is a good agreement

between the value obtained from the theory with those
resulting from experimental data analyses.
The fractal dimension gives the behavior of the parton

energy with the energy scale, r, i.e., while the total energy
goes as E ∝ r−1, the partons observed at scale λ have
energies that depend on the scale as ε ∝ r−D. A more direct
way to access the fractal dimension is the particle multi-
plicity. In fact, being M the particle multiplicity, we have

Mhεi ¼ E: ð65Þ
From the dimensional behavior obtained above, we get

M ¼ E1−D: ð66Þ
For the case of hadrons, as we have seen, q ¼ 1.14 and
D ¼ 0.69, so we obtain M ∝ E0.31, which is in excellent
agreement with the result obtained for pp collision at high
energy [50], which gives, for a power-law fit, an exponent
corresponding to 1 −D ¼ 0.302.

VII. CONCLUSIONS

In the present work, the scaling properties of Yang-Mills
fields are analyzed under the light of the concept of fractals.
It is shown that those scaling properties lead to the
formation of a fractal structure, and using a thermodynam-
ical hypothesis similar to that used in LQCD we obtain
Tsallis distributions that have been associated to the long-
tail distributions observed in high energy data. The entropic
index, q, which in Tsallis statistics is in most cases a
parameter to be determined experimentally, in the present
case can be determined completely in terms of the
fundamental parameters of the field theory.
The result is used to obtain, by a recurrence formula that

reflects the self-similar features of the fractal, the effective
coupling which is expressed in terms of a scale dependent
formula. Applying this expression for the case of QCD in
the one-loop approximation, the entropic index is calcu-
lated, for the first time, from the numbers of colors and
flavors. The result is shown to be in good agreement with
the value obtained for q by fitting Tsallis distributions to
data. From the analysis of the fractal structure, we obtain
the fractal dimension associated to Yang-Mills fields,
which is determined completely in terms of the field theory
parameters. The fractal dimension is calculated for QCD
and the result is in good agreement with the value obtained
from intermittency analysis of high energy distributions.
Finally, it is shown that the fractal dimension allows us to

determine the behavior of the particle multiplicity against
the collision energy, and we obtain a result that is in good
agreement with that observed in high energy collisions.
In summary, we have shown in the present work that

renormalizable field theories lead to fractal structures,
which can be studied, from a thermodynamical point of
view, with Tsallis statistics. A recursive method allows
to perform nonperturbative calculations to describe the
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particles structure governed by the gauge theory. In the case
of multiparticle production, the calculations lead to a
thermodynamical description where nonextensive statistics
must be used. The results obtained here give a solid basis
from QCD to the use of nonextensive self-consistent
thermodynamics to describe properties of strong interacting
systems and to the use of thermofractal structure to
describe hadrons.
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APPENDIX: CALCULATION OF
DENSITY OF STATES

Given a system with N free particles with Hamiltonian,

H ¼
XN
i¼1

p0
i ; ðA1Þ

where pμ
i ¼ ðp0

i ; p⃗iÞ is the fourth momentum of particle i,
the goal is to compute the density of states ρðpÞ, with the
normalization condition

1 ¼
Z

d4NpρðpÞ: ðA2Þ

In the following, we will not assume a fixed value for
the mass mi of particle i, where m2

i ¼ pμpμ, so that p0
i

and p⃗i are variables that may change independently each
other. Let us compute the phase space volume of region
H ≤ E, i.e.,

ΩNðEÞ ¼
Z

d4NpΘ
�
E −

XN
i¼1

p0
i

�
; ðA3Þ

whereΘðxÞ is the step function. We can express the integral
in the form

ΩNðEÞ ¼
Z

dNp0Θ
�
E−

XN
i¼1

p0
i

�YN
i¼1

Z
d3piΘðp0

i − jp⃗ijÞ:

ðA4Þ
Note that for particle i one has p⃗i

2 ¼ ðp0
i Þ2 −m2

i .
Because mi is not fixed to a particular value, the limit of
the integration in the d3pi integral is 0 ≤ jp⃗ij ≤ p0

i , and this
has been expressed with the corresponding step function
in Eq. (A4). This integral can be easily computed to giveR
d3piΘðp0

i − jp⃗ijÞ ¼ 4
3
πðp0

i Þ3, so that Eq. (A4) turns out
to be

ΩNðEÞ ¼
�
4π

3

�
N
Z

dNp0

�YN
i¼1

ðp0
i Þ3

�
Θ
�
E −

XN
i¼1

p0
i

�
:

ðA5Þ
From dimensional analysis, one can see that the result of

this integral should be of the form

ΩNðEÞ ¼ cNπNE4N; ðA6Þ
where cN are some coefficients to be determined, and
the factor πN has been explicitly extracted for conven-
ience. It is possible to obtain the coefficients cN by
mathematical induction. In the case N ¼ 1, one can
easily check that

Ω1ðEÞ ¼
1

3
πE4; ðA7Þ

so that c1 ¼ 1=3. Assuming that the expression of ΩNðEÞ
is known, let us compute ΩNþ1ðEÞ. It writes

ΩNþ1ðEÞ ¼
Z

d4pNþ1

Z
d4NpΘ

�
E −

XNþ1

i¼1

p0
i

�

¼
Z

d4pNþ1

Z
d4NpΘ

�
E − p0

Nþ1 −
XN
i¼1

p0
i

�

¼
Z

d4pNþ1ΩNðE − p0
Nþ1Þ; ðA8Þ

where in the last equality we have performed the integral
only in the momentum of particles i ¼ 1;…; N. The
integral in d4pNþ1 can be easily performed following
similar steps as above, i.e.,

ΩNþ1ðEÞ ¼
Z

d4pNþ1ΩNðE − p0
Nþ1Þ

¼
Z

E

0

dp0
Nþ1ΩNðE − p0

Nþ1Þ

×
Z

d3pNþ1Θðp0
Nþ1 − jp⃗Nþ1jÞ

¼ 4π

3

Z
E

0

dp0
Nþ1ðp0

Nþ1Þ3ΩNðE − p0
Nþ1Þ: ðA9Þ
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Using now Eq. (A6), this integral can be easily per-
formed, and the result is

ΩNþ1ðEÞ ¼ 8πNþ1
Γð4N þ 1Þ
Γð4N þ 5Þ cNE

4ðNþ1Þ: ðA10Þ

This result should be identified with ΩNþ1ðEÞ¼cNþ1π
Nþ1×

E4ðNþ1Þ, and from it one obtains a relation between cNþ1

and cN , which can be used iteratively to obtain

cN ¼ 4! · 8N−1

ð4NÞ! c1 ¼
8N

ð4NÞ! : ðA11Þ

In the last equality, we have used that c1 ¼ 1=3. Finally,
the result of Eq. (A3) is

ΩNðEÞ ¼
ð8πÞN
ð4NÞ!E

4N: ðA12Þ

Let us introduce a constant distribution in the micro-
canonical ensemble,

ρðpÞ ¼
�
C; for E ≤ H ≤ Eþ ΔE
0 otherwise;

ðA13Þ

that should be normalized to 1 as indicated in Eq. (A2).
Then, one finds that

1 ¼ C · ½ΩNðEþ ΔEÞ −ΩNðEÞ�; ðA14Þ

so that

C ¼ 1

ΩNðEþ ΔEÞ −ΩNðEÞ
: ðA15Þ

The probability distribution for particle j to have
momentum pμ

j is obtained by integrating the joint distri-
bution ρðp1;…; pNÞ over all the variables except pj. Then,
one has

fðpjÞd4pj¼d4pj

Z
d4ðN−1ÞpρðpÞΘðE≤H≤EþΔEÞ

¼d4pj

Z
d4ðN−1ÞpρðpÞ

×Θ
�
E−p0

j ≤
XN0

i¼1

p0
i ≤EþΔE−p0

j

�
; ðA16Þ

where the prime in
P

N0
i¼1 means that the term i ¼ j should

be excluded in the summation. Using the result above for
ρðpÞ, this can be expressed in the form

fðpjÞd4pj ¼ d4pj

ΩN−1ðEþ ΔE − p0
jÞ − ΩN−1ðE − p0

jÞ
ΩNðEþ ΔEÞ − ΩNðEÞ

:

ðA17Þ

Finally, by using the explicit expression of ΩNðEÞ, given
by Eq. (A12), and taking the limit ΔE → 0, one arrives
at the final result

fðpjÞd4pj ¼ d4pj
1

8π

Γð4NÞ
Γð4ðN − 1ÞÞE

−4
�
1 −

p0
j

E

�4N−5
:

ðA18Þ

One can easily check that this result is correctly
normalized, i.e.,

R
d4pjfðpjÞ ¼ 1. The density of states

with energy p0
j can be computed by integrating in d3pj, and

the result is

fðp0
jÞdp0

j ¼ dp0
j

Z
d3pjfðpjÞΘðp0

j − jp⃗jjÞ

¼ dp0
j
1

6

Γð4NÞ
Γð4ðN−1ÞÞE

−1
�
p0
j

E

�3�
1−

p0
j

E

�4N−5
:

ðA19Þ

If one considers the system in the rest mass frame, then
E ¼ M, i.e., the total energy of the system is equal to its
mass. In addition, p0

j ¼ εj is the energy of particle j. Then,
we can express this result in the equivalent form,

fðεjÞdεj ¼
1

6

Γð4NÞ
Γð4ðN − 1ÞÞ

�
εj
M

�
3
�
1 −

εj
M

�
4N−5

d

�
εj
M

�
:

ðA20Þ

Notice that the density of states with one particle with
energy p0

j can be obtained by integrating on the vector
momentum coordinates, resulting in

fðp0
jÞdp0

j ¼
1

6

Γð4NÞ
Γð4ðN − 1ÞÞE

−1
�
p0
j

E

�3�
1 −

p0
j

E

�4N−5
dp0

j :

ðA21Þ

Observe that if we write E ¼ ð4N − 5Þμ, and take the limits
N → ∞ and μ → 0 keeping constant Nμ ¼ kT, we obtain
the exponential factor usually found in the thermodynam-
ical limit. Here, however, we cannot take such limit
because N < MðnÞ.
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