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Abstract: This paper describes the use of the non-homogeneous stochastic Weibull diffusion
process, based on the two-parameter Weibull density function (the trend of which is proportional
to the two-parameter Weibull probability density function). The trend function (conditioned and
non-conditioned) is analyzed to obtain fits and forecasts for a real data set, taking into account the
mean value of the process, the maximum likelihood estimators of the parameters of the model and
the computational problems that may arise. To carry out the task, we employ the simulated annealing
method for finding the estimators values and achieve the study. Finally, to evaluate the capacity of
the model , the study is applied to real modeling data where we discuss the accuracy according to
error measures.

Keywords: weibull distribution; stochastic diffusion process; likelihood estimation; statistical
computation; simulation; age dependency ratio

1. Introduction

A diffusion process Xt is a solution of the stochastic differential equation (SDE) of the form

dXt = a(t, Xt, θ)dt + σ(t, Xt, θ)dwt,

with wt a standard unidimensional or multidimensional Wiener process and a and σ known functions
(with a vector-valued and σ matrix-valued if Xt is a multivariate process). θ indicates the unknown
parameter and the inference issue discussed in that of estimating θ under continuous observation or
discrete observations of Xt. In order to give an example of stochastic processes, we cite the Brownian
motion which plays a central role in the development of stochastic analysis. It is a process which is
Gaussian, Markov, self-similar, a martingale and has stationary, independent increments. Brownian
motion is also known as a Wiener process in honor of Norbert Wiener who’s work appeared in a series
of papers in the early 1920s, a decade before Kolmogorov’s monograph that set probability theory on a
rigorous mathematical foundation.

Stochastic modeling deals with real-world situations in which uncertainty is present and employ
probability skills to model those circumstances. Therefore, the purpose of stochastic modeling is
to study a forecast and to estimate the probability of its outcomes, to explain what conditions or
decisions might happen under different situations for good results. Stochastic diffusion processes
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are well adapted to illustrate the advancement of diverse phenomena and to forecast their future
trends, by using statistical inference methods. For instance, stochastic diffusion processes have been
employed with respect to demography [1], electricity consumption [2], life expectancy at birth [3],
effect of therapy on tumors [4] and population extinction [5].

These models are defined by stochastic diffusion processes, considered using stochastic calculus
methods and on the corresponding statistical inference. In general, the solution to an Itô-type SDE is a
diffusion process, whose trend function E[X(t)] = f (t) has a form similar to a curve associated with
known distribution. In some cases, the maximum likelihood (ML) method is the feasible procedure
since the transition density function of the diffusion process is known explicitly.

The difficulty of estimating parameters of the drift coefficient has collected important interest in
latest years. In most cases, the statistical inference is based on approximating the ML methodology, see
for example, Prakasa Rao [6].

In the same context described above, we propose in this paper a study of the Weibull-type
stochastic diffusion model. The trend function (TF) of this model corresponds to the graph of the
probability density function of the Weibull distribution. From the explicit expression of the transition
density function of the process, the ML method is applied to find out the estimators of the parameters
of the process. In the measure to estimate the parameters, we must overcome the difficulty appeared
when we were solving the ML principle. To carry out the problem, we suggest using the simulated
annealing (SA) method. This methodology is implemented on an example with real data also illustrated
with simulated data by employing the resulted values of the parameters. The estimation of parameters
produces a computational problem. This paper is structured as next: in Section 2, we introduce the
non-homogeneous Weibull diffusion process and its probabilistic aspects. The parameters are then
estimated in Section 3, using the ML method with discrete sampling in time and considering the
computational problems involved by means of SA presented in Section 4. We then determine the
approximate confidence bounds of the process. Finally, in Section 5, this method is applied to real data.

2. Stochastic Weibull Diffusion Process (SWDP)

2.1. The PDF and Moments of the Process

The SWDP, which is the proposed model in this study, is established as the non-homogeneous
diffusion process depending on time {x(t), t ∈ [t1, T], t1 > 0} and taking values in (0,+∞) by the next
Itô’s SDE

dx(t) =
(α

t
− βtα

)
x(t)dt + σx(t)dw(t); x(t1) = x1 a.s, (1)

where w(t) is a univariate standard Wiener process and x1 is a constant. Thus, we give the infinitesimal
moments by the equations:

a(t, x) =
(α

t
− βtα

)
x,

b(t, x) =σ2x2,
(2)

where σ > 0, and α and β are real constants.
This model is an extension of the SWDP defined in Reference [7]. In fact, by considering a constant

β instead of the terme α + 1 in the drift coefficient in Reference [7]; that is, a(x, t) =
(

α
t − (α + 1)tα

)
x.

Then, we obtain our stochastic Weibull diffusion process with a new drift coefficient defined in
Equation (2).

Since, the functions a(t, x) and b(t, x), 0 < x < +∞, are Borel measurable and satisfy the uniform
Lipschitz and the growth conditions (see Kloeden and Platen [8]). We conclude that there exists a
constant C > 0 such as the infinitesimal moments specified in Equation (2) verify the Lipschitz and
growth conditions ∀x, y ∈ R+ and t ∈ [t1, T].
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In fact, let us consider x, y ∈ R+ and t ∈ [t1, T], then from one side we have

| a(t, x)− a(t, y) | + |
√

b(t, x)−
√

b(t, y) |= | a(t, x− y) | + |
√

b(t, x− y) |,

= | (α

t
− βtα)(x− y) | + | σ(x− y) |,

=
(
| (α

t
− βtα) | + | σ |

)
| x− y |,

≤
(

sup
t0≤t≤T

{
| α

t
− βtα |

}
+ σ

)
| x− y | .

(3)

From another side, for the particular case where y = 0, we have

| a(t, x) |2 + |
√

b(t, x) |2≤
(
| a(t, x) | + |

√
b(t, x) |

)2
,

≤
[(

sup
t0≤t≤T

{
| α

t
− βtα |

}
+ σ

)
| x |

]2

,

≤
(

sup
t0≤t≤T

{
| α

t
− βtα |

}
+ σ

)2

(1+ | x |2),

we note C =

(
sup

t0≤t≤T

{
| α

t
− βtα |

}
+ σ

)
.

Thus, there exist an (a.s.) continuous process {x(t), t ∈ [t1, T]; t1 > 0}, separable and measurable,
which is the unique (a.s.) solution of the SDE (1). This solution is obtained by using Itô’s formula.
Let us define a new variable by y(t) = log(x(t)), so that

dy(t) =
(

α

t
− βtα − σ2

2

)
dt + σdw(t); y(t1) = log(x1).

This equation can be directly integrated, thus obtaining

y(t)− y(t1) =
∫ t

t1

(
α

s
− βsα − σ2

2

)
ds + σ(w(t)− w(t1)),

and hence

y(t) = y(t1) + α log(t/t1)−
β

α + 1
(tα+1 − tα+1

1 )− σ2

2
(t− t1) + σ(w(t)− w(t1)). (4)

The analytical expression of the solution of Equation (1) is easily deduced from Equation (4):

x(t) = x1

(
t
t1

)α

exp
(
− β

α + 1
(tα+1 − tα+1

1 )− σ2

2
(t− t1)

)
eσ(w(t)−w(t1)). (5)

Since y(t) conditionally on {y(s) = ys} has a one-dimensional normal distribution
N1[µ(s, t, xs), σ2(t− s)]. Consequently, x(t) conditionally on {x(s) = xs} is lognormally distributed
denoted by Λ1[µ(s, t, xs), σ2(t− s)] and we have µ(s, t, xs) given by

µ(s, t, xs) = log(xs) + α log(t/s)− β

α + 1
(tα+1 − sα+1)− σ2

2
(t− s). (6)
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From the above, the probability density function (PDF) of the process considered has the next form

f (y, t | xs, s) =
1
y

[
2πσ2(t− s)

]−1/2
exp

(
− [log(y)− µ(s, t, xs)]

2

2σ2(t− s)

)
. (7)

2.2. Moments of the Process

To determine the moments of the process, we take into account the useful property of the
lognormal distribution, that the r-th conditional moment of the process is defined by

E [xr(t)|x(s) = xs] = exp
(

rµ(s, t, xs) +
r2σ2

2
(t− s)

)
,

= xr
s

(
t
s

)rα

e−
rβ

α+1 (t
α+1−sα+1)e

r
2 (r−1)σ2(t−s).

As matter of fact, when we consider the situation where r = 1, the conditional trend function
(CTF) of the process is:

E [x(t) | x(s) = xs] = xs

(
t
s

)α

e−
β

α+1 (t
α+1−sα+1). (8)

Thereby under the initial condition P[x(t1) = x1] = 1, the TF of the process is expressed by:

E [x(t)] = x1
e

β
α+1 tα+1

1

tα
1

tαe−
β

α+1 tα+1
. (9)

Remark 1.
-As mentioned above, this process is a generalisation of the one defined in Reference [7]. In fact, assuming
β = α + 1, the SWDP obtained becomes the SWDP based on the two-parameters Weibull distribution.

-Moreover, the trend function of the process, given in Equation (9), is corresponding to the PDF of the Weibull
distribution.

3. Statistical Inference

3.1. Maximum Likelihood Estimation

The drift and diffusion parameters of the process that are α, β and σ2 are estimated by ML method
and discrete sampling. Therefore, we treat a discrete sampling of the process x(t1), x(t2), . . . , x(tn) at
times t1, t2, . . . , tn, and we denote x(ti) = xi, for i = 1, . . . , n in the following. Moreover, we presume
that the time gap among two successive observations is constant (i.e., ti − ti−1 = h, for i = 2, . . . , n).
Hereafter, by taking P[x(t1) = x1] = 1 the initial condition, the linked likelihood function can be
obtained from Equation (7) by:

L(x1, . . . , xn; α, β, σ2) =
n

∏
j=2

f
(
xj, tj | xj−1, tj−1

)
. (10)

Since taking derivatives of a product is tedious, the log-likelihood for Equation (10) is usually
maximised, that is,

log(L(x1, . . . , xn; α, β, σ2)) = −n− 1
2

log(2πh)− n− 1
2

log(σ2)−
n

∑
j=2

log(xj)

− 1
2σ2h

n

∑
j=2

[
log

(
xj

xj−1

)
− α log

(
tj

tj−1

)
+

β

α + 1

[
tα+1

j − tα+1
j−1

]
+

σ2

2
h

]2

.

(11)
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By applying the principle of ML, we obtain α̂, β̂ and σ̂2, which are the estimators of α, β and σ2

respectively. As a matter of fact, we derivate the log-likelihood function with respect to α, β and σ2

then we get the next equations:

−(n− 1)σ̂2h +
n

∑
j=2

B2
j (α̂, β̂)− n− 1

4
σ̂4h2 = 0, (12a)

n

∑
j=2

(
Bj(α, β) +

σ2

2
h
)(

tα+1
j − tα+1

j−1

)
= 0, (12b)

n

∑
j=2

∂Bj(α, β)

∂α

(
Bj(α, β) +

σ2

2
h
)
= 0. (12c)

For j = 2, . . . , n, we denote:

Bj(α, β) = log(xj/xj−1)− α log(tj/tj−1) +
β

α + 1

(
tα+1

j − tα+1
j−1

)
,

From Equation (12a), we obtain (as a positive solution) the expression of the estimator σ̂2 on the
following result:

σ̂2

2
=

1
h

(1 +
1

n− 1

n

∑
j=2

B2
j (α̂, β̂)

)1/2

− 1

 . (13)

And consequently, by substituting
σ2

2
in Equations (12b) and (12c) by the expression of its

estimator (see Equation (13)), the following nonlinear equations are obtained for the estimators α̂ and β̂:

n

∑
j=2

(
Bj(α̂, β̂) +

σ̂2

2
h
)(

tα̂+1
j − tα̂+1

j−1

)
= 0,

n

∑
j=2

∂Bj(α̂, β̂)

∂α

(
Bj(α̂, β̂) +

σ̂2

2
h
)
= 0.

3.2. Confidence Bounds of the Process

The confidence bounds (CB) of the process are obtained using the same procedure as in
Reference [9]. Thus, from Equation (5), we consider the variable

Y = σ(w(t)− w(t1)) = log
(

x(t)
x1

)
− α log

(
t
t1

)
+

β

α + 1

(
tα+1 − tα+1

1

)
+

σ2

2
(t− t1).

Since ∀ t ≥ t1, the random variable w(t)− w(t1) is the so-called independent increments and is
normally distributed N1(0, t− t1) an estimation for the variable Y, is normally distributed

Z =
Y−E(Y)√

Var(Y)
=

log
(

x(t)
x1

)
− α log

(
t
t1

)
+ β

α+1

(
tα+1 − tα+1

1

)
+ σ2

2 (t− t1)− 0

σ
√

t− t1
∼ N (0, 1).

Thus, the 95% CB for the variable x(t) is obtained from the next characteristic:

P

−1.96 ≤
log
(

x(t)
x1

)
− α log

(
t
t1

)
+ β

α+1

(
tα+1 − tα+1

1

)
+ σ2

2 (t− t1)

σ
√

t− t1
≤ 1.96

 ≈ 0.95.
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A CB for x(t) with the following form can thus be obtained:

xlower(t) ≤ x(t) ≤ xupper(t),

where,

xlower(t) =x1 exp
[
−1.96σ

√
t− t1 + α log

(
t
t1

)
− β

α + 1

(
tα+1 − tα+1

1

)
− σ2

2
(t− t1)

]
,

xupper(t) =x1 exp
[

1.96σ
√

t− t1 + α log
(

t
t1

)
− β

α + 1

(
tα+1 − tα+1

1

)
− σ2

2
(t− t1)

]
.

(14)

4. Computational Aspects

4.1. Estimated TF and Estimated CBs

From Zenha’s theorem [10], by replacing the parameters by their estimators in Equations (8)
and (9), the estimated conditional trend (ECTF) function can be obtained from:

Ê [x(t) | x(s) = xs] = xs

(
t
s

)α̂

e−
β̂

α̂+1 (t
α̂+1−sα̂+1), (15)

and the estimated trend function (ETF) is given by:

Ê [x(t)] =
x1e

β̂
α̂+1 tα̂+1

1

tα̂
1

tα̂e−
β̂

α̂+1 tα̂+1
. (16)

What is more, the ECB are contructed by replacing the parameters by their estimators in
Equation (14).

4.2. Simulated Annealing Method

Simulated Annealing (SA) was first introduced by References [11,12], who showed up significant
initial results, following a prior investigation by Reference [13] who attempted to minimise a function
on a very large, finite set. The actual approach was subsequently applied to optimising a continuous
set by Reference [14].

SA is a technique to approximating the solution to tough combinatorial optimisation questions.
The problem we get into is

max
S∈F

( f (S)) ,

or equivalently
min
S∈F

(− f (S)) .

Under the proposed algorithm, in every repetition, we have an actual solution x which is
represented by an objective function value f (x), for this solution a neighbour x′ is chosen from the
neighbourhood of x indicated K(x), and determined as the set of all its nearest neighbours. For every
move, the objective variance η = f (x′)− f (x) is measured. From maximisation problems, x′ takes the

place of x when η ≥ 0. Moreover, x′ could also be admitted with a probability ω = e
−η
T . The approval

probability is compared to a randomly-generated number r and x′ is accepted whenever ω > r.
We have to fulfill the stopping criteria to find out the point x∗ which is a close solution to the issue.

In our situation, the problem is to maximise log-likelihood function obtained in Equation (11).
Therefore, the objective function to minimise is a function of parameters α, β and σ2:
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G(α, β, σ2) =
n− 1

2
log(σ2) +

1
2σ2h

n

∑
j=2

[
log

(
xj

xj−1

)
− α log

(
tj

tj−1

)

+
β

α + 1

[
tα+1

j − tα+1
j−1

]
+

σ2

2
h
]2

.

(17)

In SA the motivation is to avoid trapping local optima, thereby enabling upward moves to
higher-cost solutions under the orientation of a control parameter termed ‘temperature’.

5. Application and Simulation: The Age Dependency Ratio

5.1. Application

The following time-dependent stochastic variable (stochastic process) is considered: x(t),
that is, the ratio of the dependent population (those aged under 15 or over 65 years) to the
working-age population (aged 15 to 65 years) during year t in Morocco. This ratio is expressed
as the number of “dependents” per 100 “workers”. This indicator is a decisive quantity of concern for
demographic analysis also for pay-as-you-go retirement structure, social security system and health
care insurance [15,16]. Indeed, the age dependency ratio measures the charge that the old population
shows for the workers also it demonstrates how the dependency between young and old populations
is making progress during demographic transitions. Formally, the age dependency ratio r(t),

r(t) =
g([0, 15), t) + g([65, ∞), t)

g([15, 65), t)
× 100,

where g([a1, a2), ) =
∫
[a1,a2)

g(a, t)da represents the number of individuals with age a ∈ [a1, a2) at time
t. We also introduce g(a, t) for the average number of individuals with age a at time t.

The age dependency ratio in Morocco has significantly decreased; according to official Data in
Table 1, the annual age dependency ratio fell from 105.58% (i.e., 105.58 dependents per 100 persons of
working age) in 1968 to 51.89% in 2017. The mean ratio during this period was 74.55% with a minimum
of 51.64% in 2015. The evolution of this ratio is associated with factors such as birth rate, fertility rate,
employment trends, life expectancy and economic growth rates.

Table 1. Age dependency ratio (% of working-age population) in Morocco.

Year 1968 1969 1970 1971 1972 1973
Data 105.5770 105.0150 104.2379 103.4307 102.2719 100.8111

Year 1974 1975 1976 1977 1978 1979
Data 99.0847 97.1586 95.1705 93.0931 91.0080 89.0184

Year 1980 1981 1982 1983 1984 1985
Data 87.1933 85.9912 84.8607 83.8064 82.7859 81.7496

Year 1986 1987 1988 1989 1990 1991
Data 81.1141 80.2438 79.2422 78.2533 77.3297 76.1942

Year 1992 1993 1994 1995 1996 1997
Data 75.2913 74.4163 73.2973 71.8304 70.4705 68.7203

Year 1998 1999 2000 2001 2002 2003
Data 66.7817 64.9550 63.3799 61.7694 60.5311 59.5211

Year 2004 2005 2006 2007 2008 2009
Data 58.5356 57.4950 56.5551 55.5167 54.4817 53.6134

Year 2010 2011 2012 2013 2014 2015
Data 52.9908 52.3518 51.9660 51.7834 51.6961 51.6429

Year 2016 2017
Data 51.8101 51.8878
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The data used for this purpose correspond to the period 1968–2017 (see Table 1) and were provided
in World Bank’s database. The method applied is composed of two phases:

• Step 1: Data for 1968–2014 are used to estimate the process parameters as described above. Using
the Matlab package, the following estimator values are obtained: α̂ = −0.5337, β̂ = 0.8457 and
σ̂2 = 3.8755× 10−5.

• Step 2: Data for 2015–2017 are explored to forecast the expected values of the process. The results
in Table 2 resume the behaviour of the conditional and the non-conditional trend functions given,
respectively, by Equations (15) and (16) also the values of the confidence bounds (given 95%)
established from Equation (14). The performance of the SWDP for the previsions is represented in
Figures 1 and 2.

Table 2. Predictions with trend function (TF) and conditional trend function (CTF) of the process.

Years Real Data Trend Function Conditional Trend Confidence Bounds

2015 51.6429 52.3115 50.9342 (48.0698–56.8238)
2016 51.8101 51.5407 50.8820 (47.3187–56.0351)
2017 51.8878 50.7815 51.0469 (46.5799–55.2570)
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Figure 1. Observed data, estimated trend function (ETF) and the forecasted values.
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Figure 2. Observed data, estimated conditional trend function (ECTF) and the forecasted values.
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5.2. Goodness of Fit

The following scale-dependent quantities are based on the absolute error or squared errors and
measures based on percentage errors:

Mean Absolute Error (MAE) = mean (| et |),
Root Mean Square Error (RMSE) =

√
mean(e2

t ),
Mean Absolute Percentage Error (MAPE) = mean(100 ∗ et/x(t)),

assuming et = x(t)− x̂(t) with x̂(t) is obtained by substituting the parameters in Equation (5) by
their estimators.

The values obtained for the above error measures are acceptably low, especially the MAPE
according to Table 3. The statistical measures obtained are illustrated in the Table 4.

Table 3. Interpretation of typical Mean Absolute Percentage Error (MAPE) values.

MAPE Interpretation

<10 Highly accurate forecasting
20–30 Good forecasting
30–50 Reasonable forecasting
>50 Inaccurate forecasting

Table 4. Goodness of fit of the model.

MAE RMSE MAPE

1.6810 1.9952 2.5312%

5.3. Simulation

The sample paths were simulated by Equation (5), taking values of α, β, σ2 and x1 tight to those
evaluated for these parameters in the real example in the application for which this investigation was
established in Section 5.1. Ten trajectories with 500 values each were generated and the following time
instants considered.

Figure 3 shows the simulated trajectories of the SWDP, where the red curve represents the
theoretical trend function, for the particular case of α = −0.5337, β = 0.8457, σ2 = 3.8755× 10−5,
h = 0.096, t1 = 1968, x1 = 105.5770, which match, respectively to values near to those obtained in the
study of x(t).
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t
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Figure 3. The Stochastic Weibull Diffusion Process (SWDP) simulated with the theoretical trend function.

6. Conclusions

The SWDP was applied to analyse the age dependency ratio in Morocco. This obtained an
improved description of the time series considered (1968–2014) and improved medium-term forecasts
(2015–2017). From the results obtained (see Table 2, Figures 1 and 2), we deduce that when the real
case considered is modelled by the SWDP model according to the estimation procedure designated
in Section 3, the fit and prediction achieved, based on ETF and ECTF, present an important degree of
accuracy Table 4.

From one hand, as the retirement age is stable, when the life expectancy is rising, an important
part of one’s lifetime is spent in pension. On the other hand, while the birth rates is decreasing, the part
of population who will afterwards represent the support to the rest of the population is going down.
In view of the fact that the dependency ratio indicates how many people need to be supported relative
to the number of people who are working, consequently, the increasing number of retirees and the
decreasing workforce drive up the dependency ratio.

An interesting area for future research would be to examine the possibility of defining a
non-homogeneous Weibull model, introducing exogenous factors into the drift, similarly to the
approach adopted for other diffusions [17,18]. This would enable us to study the factors affecting
the evolution of the age dependency ratio for example: fertility, immigration, mortality, health and
work ability.
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