
 International Journal of

Geo-Information

Article

Quality Control of “As Built” BIM Datasets Using the
ISO 19157 Framework and a Multiple Hypothesis
Testing Method Based on Proportions

Francisco Javier Ariza-López 1, José Rodríguez-Avi 2,* , Juan Francisco Reinoso-Gordo 3 and
Íñigo Antonio Ariza-López 4

1 Department of Cartographical Engineering, Geodesic and Photogrammetry, University of Jaén,
23071 Jaén, Spain; fjariza@ujaen.es

2 Department of Statistics and Operational Research, University of Jaén, 23071 Jaén, Spain
3 Department of Architectural Graphic Expression and Engineering, University of Granada,

18071 Granada, Spain; jreinoso@ugr.es
4 Department of Architectural Constructions I, University of Seville, 41021 Seville, Spain; inigoariza@us.es
* Correspondence: jravi@ujaen.es; Tel.: +34-953-212-207

Received: 15 October 2019; Accepted: 9 December 2019; Published: 10 December 2019
����������
�������

Abstract: Building information model (BIM) data are digital and geometric-based data that are
enriched thematically, semantically, and relationally, and are conceptually very similar to geographic
information. In this paper, we propose both the use of the international standard ISO 19157 for the
adequate formulation of the quality control for BIM datasets and a statistical approach based on a
binomial/multinomial or hypergeometric (univariate/multivariate) model and a multiple hypothesis
testing method. The use of ISO 19157 means that the definition of data quality units conforms to
data quality elements and well-defined scopes, but also that the evaluation method and conformity
levels use standardized measures. To achieve an accept/reject decision for quality control, a statistical
model is needed. Statistical methods allow one to limit the risks of the parties (producer and user
risks). In this way, several statistical models, based on proportions, are proposed and we illustrate
how to apply several quality controls together (multiple hypothesis testing). All use cases, where
the comparison of a BIM dataset versus reality is needed, are appropriate situations in which to
apply this method in order to supply a general digital model of reality. An example of its application
is developed to control an “as-built” BIM dataset where sampling is needed. This example refers
to a simple residential building with four floors, composed of a basement garage, two commercial
premises, four apartments, and an attic. The example is composed of six quality controls that are
considered simultaneously. The controls are defined in a rigorous manner using ISO 19157, by means
of categories, scopes, data quality elements, quality measures, compliance levels, etc. The example
results in the rejection of the BIM dataset. The presented method is, therefore, adequate for controlling
BIM datasets.

Keywords: BIM datasets; quality control; Hypothesis tests

1. Introduction

From an informational point of view, a Building information model (BIM) refers to digital
model-based geometric information, which is enriched thematically, semantically, and relationally;
managed by the right software tools, a BIM allows for the smarter management of buildings and
facilities. The cornerstone of BIMs is to understand the relationships between materials, objects,
assemblies, and projects [1]. All these elements are managed by a BIM tool as objects, in the same sense
as object-oriented programming [2]. This means that materials, objects, assemblies, and projects have
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properties, methods, events, and relationships. However, objects are not only the way information is
handled by database programs; objects are also a way to understand and organize the world. In a
BIM, objects carry information about identity, appearance, behavior, use, age, location, components,
restrictions, or rules, etc. All this information is managed by the BIM tool as a database. Even though
Weigant [1] stated that BIM tools are “little more than a database management system” almost 10 years
ago, much has happened since then, enabling designers to work smarter today through improved
interoperability, automation, visual programming, simulation, etc. From this point of view, BIM tools
are directly linked to advanced Geographic Information Systems (GIS) and BIM data to spatial data
(geographic information). In this way, Sun et al. [3] showed that close links exist between spatial data
and BIM data, and Song et al. [4] indicated the need for, and potential profits from, the integration of
BIM and GIS.

In some countries, there is a legal requirement for the use of BIMs for certain types of investments
or public works (e.g., the United Kingdom, Netherlands, Denmark, Finland, and Norway), and for
the European Union, it is regulated by Directive 2014/24, EU 2014, which mandates the use of BIM in
construction projects financed by EU public funds. Under these regulations, the interchange of BIM
datasets between agents (contractors, material manufacturers, producers, architects, end users, asset
managers, etc.) will be more relevant and problematic [5]. In this, framework the data quality of BIM
datasets is relevant, and the BIM Community (www.bimcommunity.com/) has developed a publication
series that includes a guide centered on the quality assurance of BIM projects [6]. This document
proposes and develops several quality controls, mainly devoted to checking logical consistency issues
(e.g., topological rules, the domain consistency of attributes, format consistency, etc.), and the use of
software is proposed for examining clashes between building elements.

Puyan et al. [7] highlight the interest and importance of the quality of BIM data for facility
management purposes and present six examples of errors in BIM data that are very similar to those
that occur in spatial data. In any case, the most relevant contribution is the proposal of a detailed
framework for creating and performing BIM information quality assurance tests for asset and space
management purposes. Donato et al. [8] proposed a quality assurance procedure for the architectural
design process based on customized checklists and queries. Park et al. [9] executed rule-based and
visualization-based checking procedures as a method for quality control centered on resolving building
safety issues. Automatic routines for the quality control of BIM have been proposed by Cheng [10]
and many other authors. Additionally, several software tools for this purpose have been developed,
such as iTWO by RIB [11] and Solibri by Solibri (www.solibri.com); BIM Tree Manager by Agacad
(www.aga-cad.com); and Verity by ClearEdge (www.clearedge3d.com). All these controls are based on
aspects of logical consistency that, in most cases, can be automated. Therefore, statistical methods
based on sampling and statistical tests are not required. However, this is a clear limitation because the
aforementioned automated controls are not able to verify the delivery of a BIM database against reality
(i.e., the situation “as is”). This BIM database can result from the BIM design process or from a survey
of attributes and geometries from existing construction.

Neither of the previously mentioned documents or tools develop or propose a method for
statistical quality control, nor is there any mention of quality control standards from the industrial
field (e.g., the ISO 2851 or ISO 3851 series). Within this statistical perspective, Cheok et al. [12–14]
proposed a statistical model adopted by the National Institute of Standards and Technology (NIST)
of the United States, which is based on a binomial model. This proposal was created to manage the
3D captures of more than 1600 buildings and the production of BIM models by the General Services
Administration [12]. This study only considers measures of the dimensions of elements that are
converted to binomial variables by means of the simultaneous application of two criteria. Here, it
is interesting to note that the binomial model, which is characteristic of qualitative variables (e.g.,
non-numerical values as the presence or absence of elements), is applied to quantitative variables
(e.g., the numerical values of measurements). This offers greater simplicity in statistical processes.
When comparing a dataset against the real world, the control process cannot be automated, and a
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representative sample from reality is required. Thus, the NIST control method requires an analysis of
reality to determine dimensional errors. To execute the control, a random sampling of size n is carried
out after the total of the observed items is checked and the total measurements outside tolerance are
determined against a value given by tables. If the total observed measurements outside tolerance
exceed the value indicated in the tables for a given population and sample size, the specifications
are not met. Nevertheless, this method uses a confidence interval perspective and does not use a
hypothesis test approach.

The situation described above indicates the existence of several aspects that require research
attention. For example, all aspects whose quality must be controlled in BIM datasets must be formalized.
Additionally, an appropriate method must be available so that the acceptance/rejection of BIM datasets
can be carried out on a statistical basis when sampling is needed (e.g., as a built perspective). In this
work, proposals are made in these two categories. Thus, our objective is to propose how to adequately
formulate quality control for BIM datasets and how to approach statistical control. In this work, we
focus on the case of “as built” models. In this case, quality control based on hypothesis testing and
statistical sampling is required. This situation is more complex than performing automated controls on
100% of the elements, so a general statistical model is needed. Considering a model of a building, this
work is of interest to both the producers of BIM datasets and the recipients (users of the BIM model),
as it offers a framework for the acceptance/rejection of BIM data products.

This paper is organized as follows, after this introduction, the adopted ISO 19157 [15] model for
dealing with data quality elements is presented, in which a new data quality element is defined. After
this, the fundamentals of quality control (hypothesis testing), based on counting, are presented. Next,
we present several explanations to facilitate the applicability of the statistical methods to actual cases
where quantitative and qualitative elements are jointly presented, but also where the seriousness of
defects and joint controls are a common occurrence. An actual example is then shown, taking into
account the most important issues (e.g., the definition of categories of interest, scopes, etc.), where
six controls are performed jointly, and three different base statistical models are considered. Finally,
the conclusions are presented. Additionally, two appendices are included (A and B). Appendix A
shows the statistical models for working with a single category (binomial and hypergeometric models)
or with multiple categories (multinomial and multivariate hypergeometric models), depending on
whether the population to be controlled can be considered infinite (binomial and multinomial cases) or
finite (hypergeometric cases). Appendix B shows a calculation example that is valid for a multivariate
hypergeometric case. Finally, a list of acronyms has been added.

2. BIM Data Quality Elements

As indicated by Yang et al. [16], data quality is somewhat difficult to define precisely, as it means
different things to different user communities. For this reason, in the field of data quality, there
are several models/frameworks used to address different realities. For example, there are several
international ISO standards offering different perspectives on data quality. The model established by
ISO 8000 standards [17,18] allows the industrial data perspective to be approached, an appropriate
perspective for assembly (e.g., in the military, aerospace, or naval industries). ISO/IEC 25012 [19]
defines a general data quality model for data within computer systems, and ISO/TR 21707 [20] handles
the quality of data being exchanged between the agents of the intelligent transportation system domain.
The International Standard ISO 19157 [15] establishes the principles for describing the quality of
spatial data.

BIM data are similar to spatial data because they must be integrated into a geographical
framework (the actual location of the building), integrated into the environment (the surrounding
geographical-topographic reality), and must collect the presence, dimensions, positions, and exact
attributes of the elements of interest. This resemblance is both conceptual (data models) and factual
(e.g., the capture and processing procedures), and also refers to exploitation (thematic, topological,
temporal consultations, modeling, etc.). This proximity facilitates an advantageous approximation
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since, in the field of geographic information, there is greater emphasis placed on data quality. For
instance, Sun et al. [3] showed the close links between spatial data and BIM data and presented a
review of the standards and methods currently used for ensuring quality in spatial data and BIM in
Sweden (mainly), as well as internationally. For this reason, we adopt this international standard as
the basis for our proposal.

The International Standard ISO 19157 establishes the principles for describing the quality of spatial
data. This is achieved by defining the data quality elements, data quality measures, and a general
procedure for assessing and reporting data quality.

As a way of handling diverse perspectives of data quality, ISO 19157 proposes so-called data
quality elements (DQEs). A DQE relates to the specific aspects of data quality that can be measured
and evaluated through different measures and methods. DQEs are related to intrinsic data quality cues
and can be organized into logically grouped categories (e.g., all DQEs related to logical consistency
conform to a category). In accordance with the stated objective of focusing on the control of “as built”
cases (that is, the BIM database versus reality), the following proposal is made for categories and DQEs
that must be verified against reality:

• Completeness of data: This category (DQ_Completeness) refers to the presence and absence of
objects, their attributes, and relationships. Lack of completeness is important when working with
data that reflect reality. For example, a door or window cannot be missing in BIM data. In this
case, two DQEs can be considered:

# Commission: The presence of excess data within the BIM Data. This means that some
objects appearing in the BIM data do not exist in the real world.

# Omission: The absence of certain data within the BIM data. This means that some objects
not included in the BIM model exist in the real world.

• Metric accuracy: This category name does not appear in ISO 19157, where it appears instead
as positional accuracy (DQ_PositionalAccuracy). Our current proposal is broad, however, and
allows the scheme developed in ISO 19157 to be generalized. In this case, the following DQEs
are proposed:

# Absolute positional accuracy: The precise location in the geographical space of buildings
and civil works is fundamental. We believe that BIMs should be understood as fully
integrated with geographic information and geoservices (e.g., spatial data infrastructures,
virtual balloons, etc.). This means that absolute positional accuracy is a critical aspect,
and a coordinate reference system and projection is required, if necessary. For example,
absolute positional accuracy will be a requirement to properly integrate a BIM model with
its cadastral plot and place it correctly in virtual balloons.

# Relative positional accuracy: This DQE means that the BIM data must accurately collect the
relative positions between objects or parts of real-world objects (e.g., the distance between
a door D and a window W, or the distance between the wall M1 and another wall M2).

# Accuracy of shapes (fidelity in shape): This DQE does not appear in ISO 19157, but its
inclusion is proposed to consider all the geometric aspects related to the object itself, as
opposed to the positional relationships between an object and its environment (e.g., absolute
or relative positional accuracy). Fidelity in shape includes, among others, manufacturing
tolerance. Therefore, depending on the aspect (e.g., roughness, roundness, etc.), different
measures can be defined.

• Thematic accuracy: This category of DQEs is proposed to incorporate all aspects of accuracy that
have a thematic component, whether quantitative or qualitative. The following elements are
proposed in ISO 19157:
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# Classification correction: This refers to the correct assignment of classes to objects in the
BIM data.

# Correction of non-quantitative attributes: This refers to the correction of the values
registered as attributes of the objects. Thus, there is an error if the material of a plinth,
which is registered as granite, is actually marble and there is no attribute error if you
register a RAL (Reichs–Ausschuß für Lieferbedingungen und Gütesicherung) color for a
window, and the color matches the one that actually has the window in reality.

# Accuracy of quantitative attributes: Objects can have quantitative attributes (e.g., thermal
or light transmissivity values). This element means that the values that are registered must
be as accurate as possible.

ISO 19157 includes DQEs related to logical consistency (conceptual consistency, domain consistency,
format consistency, and topological consistency), but these DQEs can be controlled automatically via
software routines.

Before executing quality control, the population of the elements of interest must be defined, which
is carried out by means of a scope. This scope is a filter based on time, location, classification, attributes,
or, in general, any other criteria that establish an element selection rule. The scope is usually defined
by a category of elements of interest (e.g., windows, walls, pipes, etc.), but it can also be defined by
a set of categories of elements of interest that share some aspect of common interest (e.g., windows,
doors and walls, when the interest is correcting the finish’s color). We call each set of categories of
elements of interest a “category of interest” (CoI). The combination of one or more CoIs and a DQE
is known as a data quality unit (DQU) in the parlance of ISO 19157. Therefore, the same CoI can be
linked to different DQEs in order to control several perspectives of data quality (e.g., those for all the
DQEs). Additionally, the same DQU can be assessed by different data quality measures (DQM) and by
different evaluation methods. ISO 19157 defines more than 70 standardized data quality measures (see
Annex D of ISO 19157), but only a general evaluation method. The last is not problematic because
ISO 19157 allows the use of whatever evaluation method is considered adequate for the assessment
purpose (e.g., ISO 28590 [21], ISO 3951 [22], etc.). Finally, the quality control of a product is a statistical
decision on the acceptance or rejection of a product with respect to its specifications; for this purpose, a
quality level (QL), or conformity level, must be established. This QL must be expressed using the same
methods and units as the DQM used for the DQE under consideration. In this way, quality control is
well defined if a DQU (=DQE + scope) and its corresponding QL (=DQM) and evaluation method are
properly stablished. These are the elements that must be managed to unequivocally establish quality
control when using the ISO 19157 framework.

This part of the proposal is generic and can be applied at any point in the BIM process. In addition,
the DQEs are generic and can be combined by means of the usability data quality element defined
by ISO 19157, and new DQEs can be defined as needed; for this reason, they are applicable for any
possible use case of BIM data. In general, we consider the pertinent DQUs to represent aspects of
fitness for use in the data set being analyzed.

3. Count-Based Quality Control

A statistical method for the quality control of BIM data is proposed below. This method is
general and is appropriate for cases where sampling is required. These cases include those in which
automated control processes are not possible, in which the population sizes are large, or in which
complete inspection is not economically possible or viable. Among the many use cases of BIM (see
Reference [23]), the comparison of BIM data versus reality is an appropriate situation under which
to apply this method. This can be done at the final delivery of the BIM dataset, but it can also be
applied under different phases of construction execution (e.g., structures, facilities, etc.). In the field of
construction and civil engineering, statistical quality controls are applied to materials such as steel,
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concrete, etc. This framework is equivalent (only the purpose changes) and is used here to ensure the
quality of the data.

Products are defined by their specifications, so nonconformity represents the non-fulfilment of a
specified requirement. A defect is considered to be the non-fulfilment of an intended usage requirement.
A nonconforming item (or defective item) is an item that carries one or more nonconformities (or
defects). Quality control can be focused on defective items or nonconformities. For example, a
specification can be the following: 95% of the instances of BIM data must carry the correct attributes
with respect to their value in reality. The presence of nonconforming/defective items is then quantified,
and a decision is made about the compatibility of this amount with respect to the conformity level.
This decision must be made in a statistical context, under which the risks of the parties are controlled.
The appropriate statistical tool for this process is a hypothesis testing framework. A hypothesis test is
a statistical tool that allows us to make a decision about the validity of a previously raised hypothesis,
called a null hypothesis (for more information, see Reference [24]). Thus, adopting a hypothesis (the
distribution and value) on the behavior of nonconforming items by taking a sample (of a given sample
size n), this statistical technique allows a decision to be made, where the producer’s risk (Type I error)
and the user’s risk (Type II error) are controlled. In the industrial field (e.g., the industries of equipment
goods, electronics, automobiles, etc.), Type I errors should be in the order of 5% (α) and Type II errors
should be in the order of 10% (β).

In the quality control of goods, services, and data, it is commonplace to distinguish between
controls by means of variables or attributes. The “by variables” control consists of controlling the
values for continuous variables that are assumed to follow normal distributions (e.g., discrepancies
in measurements). Control by “attributes” entails controlling the presence or absence of properties
by means of counts or proportions (e.g., the number of times that one is outside a given tolerance),
for which hypergeometric and binomial distributions are assumed, according to each case. All these
elements are applied in the ISO 3951 and ISO 2859 series of international standards, the first of which is
dedicated to cases of quantitative variables and the second to cases of attributes or qualitative variables.
These standards are widely applied in the control of spatial data [15].

As said before, in our approach, we adopt the criterion of controlling by means of qualitative
variables, which also allow the control of quantitative variables if tolerances are established (see
Reference [25]). Thus, the statistical proposal involves the realization of a hypothesis contrast based
on binomial distribution (see Appendix A). In this way, the null hypotheses H0 and alternative H1
are raised:

Hypothesis 0 (H0). The population of elements belonging to the DQU meets the quality level (QL).

Hypothesis 1 (H1). The population of elements belonging to the DQU does not meet the quality level (QL).

In order to determine the tests needed to make a decision about the quality of the DQU, two
situations can be implemented, depending on the hypothesis to be contrasted.

3.1. Single Proportion

This is the usual case for performing a pass/fail test, which can be considered a quality control
test. In this case, the QL must be expressed in terms of the maximum acceptable probability π0 of
nonconforming items in the DQU. In this way, the null and alternative hypotheses can be reformulated
in terms of π0, as expressed in Equation (1):

H0 : π ≤ π0 H1 : π > π0. (1)

In this way, the null hypothesis will be rejected when it can be stated, with a fixed Type I error,
α, that in a sample of observed items, the proportion of non-conforming items is greater than π0—in
other words, the product does not achieve the QL for that DQU. To make this decision, a random
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sampling of size n is obtained, and the sampling statistics are obtained by counting the number of
non-conforming elements in the sample, T.

This decision is made using a number called a p-value, which is the probability of obtaining
the results at least as extreme as those actually observed during the test. To obtain the p-value, two
scenarios have to be considered while taking into account the population size. If the population size
N is very high with respect to the sampling size, n, the binomial model is adequate. However, if the
population is finite, and N is small with respect to n, such that the extraction of the sample of size n
generates a change in the proportion (probability), a hypergeometric distribution should be used. The
choice criterion is given by the sampling fraction

F =
n
N

. (2)

In both cases, the p-value is obtained through adequate distribution by calculating the probability
that, under the null hypothesis, the value of the random variable will be greater than or equal to T.
More details appear in Appendix A.

3.2. Multiple Proportions

The hypothetical test written in Equation (1) implies that we can define a pass/fail model based
on an element classified in a binary form. Nevertheless, in many cases, we can determine several
tolerances based on scale (very good, good, bad, and unacceptable), such that we can determine the
probability of belonging to each class. Therefore, if we fix k categories, we must set k probabilities such
that our exigence (null hypothesis) is

H0 : π1 ≥ π01; π2 ≤ π02; . . . ;πk ≤ π0k . H1 : At least one of these inequalities is not true. (3)

Consequently, unlike Equation (1), the null hypothesis is a vector, π0 = (π01, π02, . . . , π0k). For
instance, if we compare the designed length of an interior wall with its actual length, we can establish
the following classification:

• Good, if its actual length differs by less than ±2% from the design length.
• Acceptable, if its actual length differs by less than±5% but more than±2% from the designed length.
• Unacceptable, if its actual length differs by more than ±5% from the designed length.

Following this example, for a previously specified building’s characteristics, we can apply
π0 = (0.80, 0.15, 0.05), which means that we expect at least 80% of the elements to be well classified
(good), with at most 15% acceptable elements and 5% unacceptable elements. In this case, the sampling
size n is obtained, and the test’s statistics are a vector T = (t1, . . . , tk), where the component i, ti
indicates the number of sampling items that belong to category i. To obtain the p-value, new models
must be proposed, both of them based on multivariate extensions of binomial or hypergeometric
distributions. This discrimination, as stated before, depends on the sampling fraction given in
Equation (2)

• If the population size is infinite (or very high with respect to sample size n), the distribution under
the null hypothesis given in Equation (3) is a multinomial (M) distribution, with parameters
(n, π01 , . . . ,π0k)

• If the population size N is finite, and we assume that each category has a finite size Ni, N1 +

. . .+ Nk = N, the distribution under the null hypothesis given in Equation (3) is a multivariate
hypergeometric (MH) distribution, with parameters (N01 , . . . , N0k). We can relate N0i with π0i,
considering that, under the null hypothesis, N0i = N ×π0i, so each N0i must be an integer.

• In both cases, the sampling statistics are T = (t1, . . . , tk), and to obtain the p-value, we
use the probability of T and all possible points that are worse than T (in the sense of the
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alternative hypothesis). For the multinomial case, see References [25,26], and for the multivariate
hypergeometric distribution, see Reference [27]. More information is available in Appendix B.

4. Extension of the Method

As indicated above, what has been presented so far is valid only for a single qualitative variable at
a time, in order to control the Type I error level. However, not all the characteristics of interest for the
nonconforming items of a BIM data-set are qualitative, and not all them are of the same type or have
the same importance. Thus, consideration of nonconformity typologies according to their seriousness
should be considered. This is a situation that will depend on each specific use case. In addition, there
are types of nonconformities that must be controlled independently and should not be mixed when
reporting and controlling. For all the above, a method that only allows controlling a single aspect must
be modified to conform to a more complex reality, such as the BIM models. Thus, based on the field of
quality control for both industry and spatial data, via statistics on multiple tests, this section shows
how to address these three issues.

4.1. Control of Quantitative Elements

In BIM data, there are numerous aspects of interest that are collected in the form of measures or
dimensions of the elements (e.g., width, length, height, area, etc.)—that is, as quantitative variables.
Nevertheless, the application of binomial or hypergeometric models requires that the measurements
become qualitative variables. To this end, rules will be applied—that is, criteria must be established
that allow each of the measurement records to be converted into a qualitative variable. This idea was
applied through the NIST method, as explained above. Further, the studies in References [24,25] show
how to develop accuracy controls based on binomial or multinomial statistical models. In this way,
counting methods become an effective mechanism to control the quality of BIM data based on reality,
both for quantitative and qualitative variables.

4.2. Seriousness of Defects

Defects will generally be classified by their level of seriousness in their categories [28]. For
example, it is not the same as in the BIM data if a window is omitted here, or if some attribute of that
window is registered inconsistently with respect to reality (e.g., the RAL color of the finishing). Similar
to quality control in industry, for data, the following categories of nonconformity can be considered:

• Critical: The defect affects critical functionality or critical data.
• Major: The defect affects major functionality or major data.
• Minor: The defect affects minor functionality or non-critical data.
• Trivial: The defect does not affect functionality or data.

Each of these categories can and should demand a different QL and be independently controlled,
which is commonplace when applying standards such as ISO 2859 or ISO 3951. This is achieved by
using more exigent QL for those categories with greater seriousness. Another possible option is to work
with all categories together, for the reason that each typology should be understood to count/weigh in
a different way. For example, each critical case weight is five, the major case weights are three, and the
minor case weight is one. This assignment is completely arbitrary and can be modified to express the
weight that one wishes to give each category for each specific use case. However, this weight must
be known by the parties (those responsible for the data delivery and the ones who receive them). In
this way, the control method proposed by GPO [29] is based on a system of demerits in which the
categories have different weights according to their typologies and according to whether the product is
of greater or lesser quality.
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4.3. Joint Control of Several DQU

The aforementioned method is only valid for the non-conforming items of a single DQU (e.g.,
doors, windows, etc.). Therefore, if we want to apply this method to a joint control to maintain a
single level of Type I error for all items analyzed while considering several DQUs, the method must be
adapted to the statistical reality. In this case, the binomial distribution is not reproducible for the p
parameter [30], so the statistical options valid for this situation must be applied. Thus, if one works
with K different DQUs, and all them are independent, each one of the DQUs can be considered as
binomial Bi(ni, pi), such that i ∈ [1, k], where the values of n and π in Equation (A1) (Appendix A)
are, respectively, replaced by ni and πi (one for each DQU), and each of them can be different from
the rest. Under this scenario, we can apply k independent controls, such as those already presented
in Section 3.1—each of them on a binomial variable. To accomplish this and guarantee the global
significance level, a multiple hypothesis testing method (MHTM) is needed (e.g., Bonferroni or any
other; see Reference [31]). One usually checks the entire model, which includes k independent DQUs,
where k > 1, each with a different specification, π j

0, j = 1 . . . , k, such that the global model meets
the joint specification. In this case, the null and alternative hypotheses given in Equation (1) can be
analyzed; they appear in Equation (4) as follows:

H0 : π j
≤ π

j
0, j = 1 . . . , k H1 : π j > π

j
0 f or some j. (4)

4.4. Realization of the Global Contrast

For the realization of the global statistical contrast, a p-value, p j, must be obtained for each
independent DQU, using Equation (1) or (4) as appropriate. Since multiple tests are carried out,
to ensure that the global Type I error does not exceed the set α value, the final decision of the
acceptance/rejection of all specifications will be taken together using an MHTM (for instance, by
applying Bonferroni, H0 is rejected if any p j is less than α/k; otherwise, H1 is accepted.

Thus, in summary, the procedure is:

• Take an independent sample for each DQU.
• Count the number of nonconforming items found in the sample of each DQU.
• Calculate the corresponding p-values for each DQU.
• Check whether the global H0 hypothesis is accepted or rejected according to MHTM correction.

5. Example of Application

As an example of the application of the proposed method, the case of a BIM data control
corresponding to the delivery of a complete project (“as built”) will be considered. This is a building
with four floors (basement, F0, F1, and F2) and an attic, with garages in the basement, two commercial
premises in F0, and four apartments distributed between F1 and F2—that is, two per floor. Figure 1
presents an overview of the building and Figure 2 illustrates the distribution of F1 and F2, which is the
same. This section addresses three contents in relation to the application example—on the one hand,
the realization of the theoretical aspects indicated above, on the other, the characterization of the case,
and finally, the execution and results of the control.
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5.1. Concretions of the Control

First, the aim of the control must be clear. Our interest is to verify whether the content of the BIM
data file corresponds to reality, and if that reality is faithfully reflected in the data set. This is what we
understand as an “as built” perspective. Thus, the completeness assessment is relevant and means
that there are no excess or missing items in the BIM data. This situation means that the sampling for
completeness assessment must be carried out in a way that allows both perspectives to be controlled.
Thus, if this perspective were controlled exclusively from the BIM data to reality, only commission
errors could be controlled, and if it were controlled from reality to the BIM data, only omission errors
could be controlled. For a two-way control to be carried out, sampling should be organized in an
appropriate manner, which will be proposed later.

If the populations are large, a sampling-based approach for the execution of the control is required.
A sample must be representative, and therefore, extracted by simple random sampling (SRS). The SRS
should be stratified to better consider the differences within a DQU. The sample will have a size that is
adequate to reduce the risks (Type I and Type II errors) (see Section 3.1).

Since the completeness assessment requires both analyses—from the dataset to the reality and
from the reality to the dataset—it is proposed that the sampling be executed as follows. A set of
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randomly distributed positions will be generated in the building; in these positions, we will locate the
nearest instances bellowing to the DQU (both in reality and in the BIM data). If, for that position, the
instance is the same in reality and in the BIM data, there is neither omission nor commission. If the
instance of interest exists only in the BIM data or in reality, it is a commission or omission, respectively.

Once the data completeness assessment has been developed for the items that are correct (neither
omissions nor commissions), the rest of the DQEs linked to the same scope can be controlled (e.g., DQEs
for the metric accuracy and thematic accuracy categories). Additionally, it should be remembered
that we have adopted a nonconforming items perspective (e.g., the door is right or wrong) and not a
nonconformities perspective (e.g., the presence of various defects in a door).

5.2. The Case

As indicated, Figure 1 presents an overview of the building. While the reality is not known, there
are BIM data that have been formed throughout the execution of the construction project—that is, the
BIM data come from the design, but have received several changes and updates during the execution
of the project (the construction process). Thus, as an initial hypothesis, we can consider the BIM data
to be a good approximation of reality. In this way, the number of elements involved (population size
estimation) in each CoI can be directly approximated (Table 1). In this control, a significance level
α = 5% is adopted as a Type I error for acceptance.

Table 1. Categories of interest in the BIM database.

Group Categories of Interest Cases (N)

Elements C1 = Doors and windows 119
C2 = Bathrooms and Kitchens 14

C3 = Balconies and terraces 29
C4 = Other rooms 18

C5 = Living rooms and bedrooms 16
C6 = Common zones 6

C7 = Enclosures (walls) 179
C8 = Slabs and paving 25

C9 = Pillars 105
C10 = Sales unit 6

C11 = Interior walls 200

Facilities C12 = Electricity installation 7
C13 = Heating and air-conditioned installations 7

Total 731

In relation to the DQU for the control, Table 2 summarizes the configuration, population, and
sample sizes. Considering the future use of this BIM dataset, the determined DQUs represent aspects
of fitness whose control is considered to be relevant for use. For example, based on Table 1, the
presence/absence of elements (commissions/omissions), the shape fidelity, etc., are considered relevant
for the future use of this data set. This relevance is also reflected in the QLs that are established
(see Table 3). From a statistical point of view, all the variables considered are of a qualitative type:
Presence/absence, right/wrong, and faithful/unfaithful. The sample sizes have been set arbitrarily with
the criteria set forth above (≈10%), except for the DQU2 with a larger sample size.
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Table 2. Definition of the data quality units to be considered for the control (cases for the population
and sample size).

Data Quality Units Cases in the Population (N) Sample Size

DQU1 = Completeness of elements
DQE = Commission + omission 511

CoI = C1 + C2 + ··· + C11 50

DQU2 = Completeness of facilities
DQE = Commission + omission 182

CoI = C12 + C13 40

DQU3 = Shape Fidelity
DQE = Fidelity in shape 1605
CoI = C1 + C2 + ··· + C10 160

DQU4 = Attributes of elements
DQE = Correction of non-quantitative attributes 462

CoI = C1 + C2 + ··· + C10 50

DQU5 = Attributes of installations
DQE = Correction of non-quantitative attributes 491

CoI = C12 + C13 50

DQU6 = Shape Fidelity of walls
DQE = Fidelity in shape 200

CoI = C11 20

Total 3451 350

Table 3. Definition of the quality controls by means of the data quality units and the conformity levels.

Quality Control Data Quality Unit Data Quality Measure and ID * Conformity Level (Maximum
Proportion of Defects)

QC1 DQU1 Rate of excess items (ID = 3) +
Rate of missing items (ID = 7) 1%

QC2 DQU2 Rate of excess items (ID = 3) +
Rate of missing items (ID = 7) 3%

QC3 DQU3 Rate of unfaithful items (ID = **) 5%

QC4 DQU4 Rate of incorrect attribute values
(ID = 67) 10%

QC5 DQ5 Rate of incorrect attribute values
(ID = 67) 10%

QC6 DQ6 Rate of unfaithful items (ID = **) 80%, 15%, 5% ***

(*) The ID is the identifier for this measure given in Annex D of ISO 19157. (**) This measure is not included in
Annex D of ISO 19157. (***) These proportions are linked to good, acceptable, and unacceptable cases.

Prior to the control, and by agreement between the parties, QLs must be established. For this
example, the specifications are those presented in Table 3. When indicating completeness, we refer to
both omissions and commissions, considering both types of errors to be equivalent for error counting
purposes. Finally, it should be noted that the QLs are themselves a representation of the importance of
the different aspects considered in the joint control, since greater quality is demanded by the most
critical elements or CoIs. Naturally, these values must be determined based on experience and the
requirements of greater or lesser rigor for the BIM application. In this way, as indicated by Equation (4),
the global control of the BIM data means that QC1 passed AND QC2 is passed AND QC3 is passed
AND QC4 is passed AND QC5 is passed AND QC6 is passed.

5.3. Execution and Results

The execution consists of applying the steps indicated above. These steps are as follows:

• Generating random sampling positions over which the completeness control is performed.
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• Performing the control by visiting the positions of the building that are part of the sampling and
where the reality to BIM data and BIM data to reality perspectives are taken into account. In this
step, the measurements of quantitative attributes, preferably using a laser distance meter and
assessments of qualitative attributes are performed on the correct items (neither omission nor
commission). This phase is very important: The data taken here are considered to be the ground
truth or reference. Therefore, extreme care is required with the working methods to ensure that
the captured data (qualitative and quantitative) are accurate.

• Analyzing the results and making a final acceptance/rejection decision. The defect case counts are
computed (Table 4). Based on these counts, and applying the functions “pbinom” and “phyper”
of R [32] (indicated in the annexes), the p-values that appear in Table 4 are obtained. As can be
seen, the hypergeometric model has been considered for the case QC2, and in the rest of the cases,
the binomial model has been applied. Here, a MHTM is needed, so we apply Bonferroni because
of its simplicity. Since α = 5% was adopted, the global null hypothesis should be rejected for any
p-value less than 0.05/6 = 0.083. Given that the lowest obtained p-value is 0.0004 < 0.083, it is
possible to reject the hypothesis that the BIM data complies with the specifications imposed by
Table 4, since the observed data provide evidence of this.

Table 4. Results of the defective count and p-values by quality control.

Quality Control
Number of

Nonconforming Items Sample Size (n)
p-Value

Binomial Hypergeometric Multivariate
Hypergeometric

QC1 0 50 1.000
QC2 5 40 0.0004
QC3 11 160 0.179
QC4 5 50 0.569
QC5 2 50 0.966
QC6 7.1 (*) 20 0.0236

(*) The number of items per class is: 12 (good), 7 (acceptable), 1 (unacceptable).

5.4. Discussion

An example has been presented based on a relatively simple case that corresponds to a residential
building. This situation limits, to some extent, the number of categories that appear and the size of the
populations. Additionally, a reduced number of controls (six) have been defined. However, despite
these limitations, and given that the main interest of this work is methodological, we consider that
this situation is not problematic. Indeed, to present this method, we have searched for a simple and
understandable case (a residential building) for most professionals and researchers working with BIM.

The presented case is a non-automatic control process because we must go to the field to carry out
checks. Focusing on the statistical elements, the proposed method can be developed by any technician
who has training in quality control. A researcher could use statistical programs (e.g., R) and even
spreadsheets to perform the necessary statistical calculations (p-values).

We have compared the built situation (as-built) to the designed product (BIM model), but the
present method is also adequate to compare a BIM model achieved through surveying and attribute
collection methods to an as-is situation.

Interesting aspects, such as compliance levels, methods for measuring, sample size determination,
specific details of the samples, etc., are beyond the scope of this work, as this is not an application
guide. In any case, the developed example demonstrates that it is possible to work with quantitative
and qualitative variables, combine variables, establish very diverse fields, use different measures, etc.,
and combine all these elements in a global acceptance/rejection dataset.

The present example results in the rejection of the BIM data set. In a situation with real applications,
subsequent decisions will be required. For example, in ISO 2859-2, if a batch of products is rejected,
those products must be repaired by the producer and will be inspected again. In our case, the decisions
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to be taken in the case of rejection must also be established. We could, for example, follow the same
decisions as the international standards of acceptance controls (e.g., the ISO 2859 series).

One characteristic of the present method is that a single acceptance/rejection function occurs at
the end, upon delivery of the building model. In some cases, a lot by lot inspection process may be of
interest, like the sequential acceptance processes presented in the international standard ISO 2859-1,
but solving this limitation will require further investigation.

6. Conclusions

The quality of BIM data is an issue of great importance. However, so far, it has not acquired
appropriate relevance relative to the current increase in its applications. The quality of BIM data is not
fully formalized, but directly applicable knowledge can be transferred from the field of geospatial data.
In this paper, the framework established by ISO 19157 has been applied to BIM data due to its great
similarity with geographical information.

This paper has presented the statistical basis of a method for the global quality control of BIM
data with multiple DQUs, which entails different scopes and diverse DQEs. This method has a valid,
affordable, and known statistical formulation, as it is based on the known distribution functions that
are applied in the field of quality control. The main contributions of this work are two-fold. First, we
present a proposal and example of using the ISO 19157 data quality framework for BIM data; second,
we use a statistical approach formulation, including an example of how to handle the joint control of
several types of errors, each with different quality specifications.

An example of application in a residential building case has been presented. This case uses BIM
data of a medium to small size, but represents a very common type of construction. The control
developed corresponds to the “as built” perspective—that is, to ensure that the content of the BIM data
is a true reflection of reality. An “as built” control is a more complex control than a control based on
performing logical check routines on the BIM data, since an “as built” control requires probabilistic
sampling. The present example has been developed considering six quality controls, which entails the
definition of five DQUs and QLs. The final joint result of the control has been rejected. The definition
of the DQU and QL are issues adaptable to each situation and use case.

We consider the application of the proposed method to be affordable for experts based on its
quality compared to a conventional statistical framework. The present method is simple, both in its
statistical elements (very similar to conventional acceptance testing in industry, for which examples of
the functions to be applied in the R program environment are provided [32] R Core Team, 2019), and in
terms of its execution, for which we have presented an application example and explained the most
relevant issues.

We believe that the method presented here may serve as the basis for the development of BIM
data quality controls with an “as built” perspective, but could also be adapted to other perspectives.
An interesting future advance would entail the proposal of DQUs and QL based on this method by
some professional organizations or regulatory bodies of the building sector. Additionally, statistical
control requirements should be established for BIM data deliveries in legal regulations.

Author Contributions: Conceptualization, Francisco Javier Ariza-López and Íñigo Antonio Ariza-López;
Methodology, José Rodríguez-Avi and Juan Francisco Reinoso-Gordo; Formal Analysis, Francisco Javier
Ariza-López and José Rodriguez-Avi; Investigation, Íñigo Antonio Ariza-López and Francisco Javier Ariza-López;
Writing—Original Draft Preparation, Francisco Javier Ariza-López, José Rodríguez-Avi, and Juan Francisco
Reinoso-Gordo; Writing—Review and Editing, Francisco Javier Ariza-López , José Rodríguez-Avi., and Íñigo
Antonio Ariza-López.

Funding: This work has been supported by grant CMT2015-68276-R from the Spanish Ministry of Economy
and Competitiveness.

Acknowledgments: We thank Manuel Romero Sánchez for the creation of the BIM database corresponding to the
example presented.

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2019, 8, 569 15 of 19

Abbreviations

BIM Building information model
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NIST National Institute of Standards and Technology

Appendix A.

Appendix A.1. Binomial Approach

In a binomial approach, the probability must remain constant, and this occurs in infinite or large populations.
Thus, if the population size, N, of items of the DQU is known, for that condition to be valid, it is necessary that N
be large, and, if the sample is of size n, the sampling fraction, which is defined as n/N, must be small (for example,
less than 0.1). If this does not occur, the statistical model that follows the proportion of nonconforming items is a
hypergeometric distribution.

The count data random variable X follows a binomial distribution with parameters n and π, B(n, π) If the
probability of obtaining exactly x successes in n independent trials is π, then

P[X = x|X→ B(n, π)] =
( n

x

)
πx(1−π)n−x. (A1)

Given a sample observation, x, for the number of nonconforming items in DQU, and if we suppose that,
under the null hypothesis, the probability of a non-conforming item is π0, the p-value is determined by obtaining
the probability that, in a binomial B(n, π0), a value greater than or equal to x is obtained, as indicated in (A2):

p = P[X ≥ x
∣∣∣X→ B(n, π0)] =

n∑
y=x

( n
y

)
π

y
0(1−π0)

n−y (A2)

where:

p: the p-value.
x: the number of defective items found in the sample.
n: the sample size.
π0: the maximum acceptable probability of the defective items.
B(n, π0): the binomial distribution of parameters n and π0.

This calculation can be done with the R package by means of the 1 − pbinom(x − 1, n,π0) function, or
sum(dbinom(c(x : n), n, π0), where x is the number of non-conforming items found in the sample, so that if p < α,
that population is rejected. This is an approach with a final acceptance/rejection decision, where the producer’s
risk (Type I error) is actually bounded by α. However, in this way, for a fixed sample size, the user’s risk is not
controlled (Type II error).

Appendix A.2. Hypergeometric Approach

If the proportion of nonconforming items in a population is modified each time an item is removed from the
set, we apply a hypergeometric distribution. This occurs when taking a sample without replacement, especially if
the sample size n is relatively large with respect to N, the population size. The counting data variable follows a
hypergeometric distribution with parameters (N, n, π) if the probability that the variable takes the value x is the
one that appears in (A3).

P[X = x] =

( Nπ
x

)( N −Nπ
n− x

)
( N

n

) (A3)
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Therefore, in this case, the test can be performed using this distribution. To do this, if the hypotheses are
those raised in (1), the exact test is performed by calculating the p-value, which is given by (A4):

p = P[X ≥ x|X→ H(N, n, π0) =
n∑

t=x

( Nπ0
t

)( N −Nπ0
n− t

)
( N

n

) (A4)

where:

p: the p-value.
x: the number of nonconforming items found in the sample.
n: the sample size.
N: the population size.
π0 : the maximum acceptable probability of nonconforming items.
H (N, n, π0): the hypergeometric distribution of parameters N, n and π0.

In this case, H0 is rejected if p < α. To perform this test in R, the parameters are Nπ0, N −Nπ0, and n.
The formula to calculate the p-value in R is 1 − phyper(x − 1, Nπ0, N −Nπ0, n). However, the definition of a
hypergeometric distribution requires that Nπ0 be a natural number, so the function rounds to the nearest integer.

Appendix A.3. Multinomial Distribution

This model appears when we classify n elements into k classes under an infinite population. This is the same
scheme as that of the binomial distribution. In fact, Binomial distribution is a particular type of multinomial
distribution where the number of classes is 2.

A vector of integers X = (n1, . . . , nk) , with n1 + . . . + nk = n, follows a multinomial distribution of
parameters (n; π1, . . . , πk), where π1 + . . .+ πk = 1 if its mass probability function is given by (A5):

P[X1 = n1, . . . , Xk = nk] =
n!

n1! . . . nk!
πn1

1 . . . πnk
k . (A5)

Appendix A.4. Multivariate Hypergeometric Distribution

As in the binomial case, the multinomial distribution requires that the probability of success remains constant
between the trials, which implies that the population size has to be infinite, or at least very high with respect to the
sampling size, as indicated in (2). However, in many situations, the population size, N, is finite and relatively small,
with respect to sampling size, n, so a multivariate hypergeometric distribution is required. This distribution is a
generalization of hypergeometric distribution, and its mass probability function of a Multivariate Hypergeometric
distribution—with parameters (N1, . . . , Nk), MH(N1, . . . , Nk) is given by (A6):

P[x1 = n1, . . . , xk = nk] =

( N1
n1

)
. . .

( Nk
nk

)
( N

n

) (A6)

where (n1, . . . , nk) is the number of items found in the sample belonging to each category, n = n1 + . . .+ nk
is the sample size, (N1, . . . , Nk) is the number of items in the population belonging to each category, and N =
N1 + . . .+ Nk is the population size.

In order to express the test, N0 j = N ×π0 j, N0 j must be an integer.

Appendix B.

For the example of the length of the interior walls (DQU6 = Shape fidelity), we present here the calculations
of the p-value for the assumed multinomial distribution. We are interested in checking if the actual lengths of
walls verify some conditions relative to the designed length. The proportion of the interior walls that differs
less than ±2% from the designed length is less than 80%, and no more than 5% differs more than ±5% from the
designed length. There are 200 walls, and we select a sample of size 20. The results are shown in Table A1, where
the class names A, B, and C correspond to good, acceptable, and unacceptable items, respectively.
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Table A1. Results of the sampling respective to the wall lengths.

Planned Length
(cm)

Observed Length
(cm)

Absolute Error
(cm) 2% 5% Class

240 237.00 3.00 4.8 12 A
240 247.68 7.68 4.8 12 B
180 176.84 3.16 3.6 9 A
180 169.29 10.71 3.6 9 C
300 303.24 3.24 6.00 15 A
300 288.91 11.09 6.00 15 B
240 240.39 0.39 4.80 12 A
240 241.41 1.41 4.80 12 A
180 173.75 6.25 3.60 9 B
180 179.83 0.17 3.60 9 A
300 306.04 6.04 6.00 15 B
300 303.82 3.82 6.00 15 A
180 181.68 1.68 3.60 9 A
240 241.10 1.10 4.80 12 A
240 240.45 0.45 4.80 12 A
180 173.54 6.46 3.6 9 B
180 182.75 2.75 3.6 9 A
300 308.68 8.68 6 15 B
240 244.44 4.44 4.8 12 A
180 173.18 6.82 3.6 9 B

In this case, the version of the hypothesis shown in Equation (3) is:

H0 : πA ≥ 0.80; πB ≤ 0.15; πC ≤ 0.05 H1 : At least, one of these inequalities is not true. (A7)

The sampling fraction is 10%, and, as a consequence, a multivariate hypergeometric test is made. The test
statistics T = (12, 7, 1) are obtained by counting the error category of each sampling point as it appears in the last
column of Table A2. To apply the MH distribution, the population size of each category under the null hypothesis
(given in Equation (6)) is NA = 160, Nb = 30, NC = 10. Consequently, we determined the worst points with
respect to T to obtain the probability under a MH(m, (160, 30, 10), 20) distribution, where m = (mA, mB, mc)
are the points shown in Table A2.

Table A2. p-value calculation.

mA mB mC Probability

12 7 1 0.004858
12 6 2 0.006376
12 5 3 0.004081
12 4 4 0.001373
12 3 5 0.000244
. . . . . . . . . . . .
0 17 3 0.000000
0 16 4 0.000000
0 15 5 0.000000
0 14 6 0.000000
0 13 7 0.000000
0 12 8 0.000000
0 11 9 0.000000
0 10 10 0.000000

The p-value is obtained by adding all probabilities in column 4 of Table A2. In this case, p = 0.02365. These
probabilities can be calculated using the function dmvhyper (m, N, n, log = FALSE). This function belongs to the
extraDistr package of R, which is adequate for multivariate hypergeometric cases.
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