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The charged current Cabibbo-suppressed associated KΞ production off the nucleon induced by
antineutrinos is studied at low and intermediate energies. The nonresonant terms are obtained using a
microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are fπ , the
pion decay constant, Cabibbo’s angle, the proton and neutron magnetic moments, and the axial vector
coupling constants for the baryons octet, D and F, that are obtained from the analysis of the semileptonic
decays of neutron and hyperons. In addition, we also consider Σ�ð1385Þ resonance, which can decay in KΞ
final state when this channel is open. The studied mechanism is the prime source of Ξ production at
antineutrino energies around 2 GeV and the calculated cross sections at these energies can be measured at
the current and future neutrino experiments.
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I. INTRODUCTION

With the recent advancements in the experimental
facilities, it is now possible to test several reactions which
were recently considered not to be observable. One of such
interactions is the strange particle production. In last decade
there were several attempts to explore the strangeness
physics in weak sector [1,2]. The quasielastic production
of hyperons [3–6] and their subsequent decay into pions
[7,8] have been recently analyzed around ∼1 GeV anti-
neutrino energies. Experimental efforts are also made to
observe such processes [9]. Moreover, recent experiments
like MINERνA [10], MicroBooNE [11], NOνA [12], and
ArgoNeut [13] are capable of detecting such processes with
high statistics. These channels are (or proposed to) being
updated in the modern event generators like GENIE [14],
NEUT [15], NuWro [16], and GiBUU [17]. However,
particles with higher strangeness content are still unex-
plored both theoretically as well as experimentally.
In this work we examine for the first time the (higher)

strange particle production processes induced by charged
current weak interactions. We focus on channels where Ξ

baryons are in the final state. Since strange quantum
number (S) of Ξ is −2, the quasielastic channels are ruled
out.1 The next primary source of Ξ production is the
inelastic channel where Ξ is accompanied by a K meson.
The process may be identified as jΔSj ¼ 1 and therefore
suppressed by sin2 θc, with θcð∼13°Þ being the Cabibbo
angle. The other competing process would be ΞKK
production, which would be kinematically suppressed at
the energies probed in this work due to its higher produc-
tion threshold. Here we would like to emphasize that the
jΔSj ¼ 1 associatedKΞ production can only be initiated by
antineutrinos and not by neutrinos. The neutrino channels
are forbidden due to phenomenological rule that examines
the allowed quark transitions and is known as the ΔS ¼
ΔQ rule. Further, for an experiment which would be
capable of doing semi-exclusive measurements for KΞ
production, one should notice that the exclusion of neutrino
induced processes leaves only ΔS ¼ 0 associated YK
(where Y is any hyperon with S ¼ −1) processes for kaons
in the final state. While single ðK̄ÞK are produced via
jΔSj ¼ 1 (anti)neutrino induced processes [18,19] and
hence will not contaminate the antineutrino induced K
production. This implies that the mechanism described here
is well suited to study the (semi)exclusive Ξ production
induced by antineutrinos.
In this work, we extend our model of jΔSj ¼ 1 single

kaon/antikaonproduction [18,19] toKΞ associated jΔSj ¼ 1
production. The nonresonant background (NRB) terms are
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obtained from the expansion of chiral Lagrangian.We have
improved our previous model by including the phenom-
enological transition form factors based on flavor
SU(3) symmetry. Possible effects due to symmetry break-
ing are also explored. Finally, due to the high invariant
mass of the KΞ system, we have also considered the
possible effects of resonances. However, since the pro-
duction mechanism is driven by a jΔSj ¼ 1 weak charged
current, only strange resonances (with S ¼ −1) can con-
tribute. Very little or no information is available about
these resonances and their transition form factors, both
from experimental as well as theoretical sides. In view
of this we have considered the lowest lying strange
resonance, Σ�ð1385Þ, and estimate the effects of this in
the present model.
The paper is organized as follows: In Sec. II we discuss

briefly our model for nonresonant (NRB) and resonant
mechanisms. We present our numerical results in Sec. III,
where we also discuss the possible effects due to the SU(3)
symmetry breaking and highlight the possible outcome of it
by using an explicit model for SU(3) breaking [20], which
is sketched and summarized in Appendix. Finally, we
conclude our findings in Sec. IV.

II. MODEL

At low neutrino energies, the first channel that could
produce Ξ particles in final state proceeds through charged
current jΔSj ¼ 1 mechanism and the reactions are

ν̄μ þ p → μþ þ Kþ þ Ξ−

ν̄μ þ p → μþ þ K0 þ Ξ0

ν̄μ þ n → μþ þ K0 þ Ξ−: ð1Þ

The double differential cross section in the Lab frame for
(1) may be written as

dσ
dWdQ2

¼ 1

32ð2πÞ5
Z

dEK
πW

E2
νM2jq⃗j

× Θð1 − cos2θ0Þ
Z

dϕK

XX
jMj2; ð2Þ

where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2

p
is the invariant mass of the final

KΞ hadronic state, Q2 ¼ jq⃗j2 − ðq0Þ2 is the positive four-
momentum transfer, and jq⃗j and q0 are the three-
momentum and energy transfer to the initial nucleon of
mass M, respectively.
Finally,

cos θ0 ¼
M2

Ξ þ jq⃗j2 þ jp⃗Kj2 − ðM þ q0 − EKÞ2
2jq⃗jjp⃗Kj

ð3Þ

is the cosine of the polar angle between the kaon three-
momentum p⃗K and the momentum transfer q⃗ that ensures

energy conservation through the step function Θ, and the
integration over final kaon kinematics is performed over
the energy of the final kaon EK and over the azimuthal
angle ϕK between the reaction plane (that formed by the
momenta of the kaon and the cascade hyperon) and the
lepton scattering plane.
It is worth noticing that, in Eq. (2), once the antineutrino

energy Eν is given, fixingW andQ2 means to fix the energy
transfer q0 and the three-momentum transfer jq⃗j as well.
Therefore, the cosine of the angle between p⃗K and q⃗,
Eq. (3), is only fixed in the integral by the value of the kaon
energy, but it is otherwise independent on ϕK .
The average and sum over initial and final particles’

spins of the square of the transition matrix element (M) is
given by

XX
jMj2 ¼ G2

F

2
LμνHμν; ð4Þ

where GF is the Fermi coupling constant. The leptonic
tensor Lμν is,

Lμν ¼ 8½kμk0ν þ kνk0μ − gμνk · k0 − iεμναβkαk0β�; ð5Þ

where our convention for the Levi-Civita tensor in four
dimensions is ε0123 ¼ −ε0123 ¼ 1, and Hμν is the hadronic
tensor expressed in terms of hadronic current Jμ,

Hμν ¼ 1

2
tr½Jμð=pþMÞJ̃νð=p0

Ξ þMΞÞ�
J̃ν ¼ γ0Jν

†
γ0: ð6Þ

The hadronic current in Eq. (6) corresponds to the
amputated amplitude (without Dirac spinors) obtained from
Eqs. (7) and (12) of Secs. II A and II B discussed below,
i.e., jμccji ¼ ūΞðp0

ΞÞJμi uNðpÞ, and the total hadron current is
Jμ ¼ P

i J
μ
i , where the index i runs over all the possible

contributions (Feynman diagrams) that yield the same final
hadron state specified in Eqs. (1).
In Fig. 1 we show the Feynman diagrams that contribute

to the hadronic current. The production mechanism
includes nonresonant background (NRB) and resonance
terms. On the NRB sector the only possible choices are
Y ¼ Λ;Σ baryons. In the resonance sector we have con-
sidered in this work the lowest lying resonance with strange
quantum number S ¼ −1, namely the Y� ¼ Σ�ð1385Þ. This
resonance state has been also previously considered for
jΔSj ¼ 1 antikaon production off nucleons [19]. In the
following section, we first describe our model for NRB
followed by the implementation of Σ�ð1385Þ resonance.

A. Nonresonant background

The NRB terms have direct and cross diagrams and the
corresponding currents are
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jμccjsY ¼ iAsVus

fπ
ūΞðp0

ΞÞ=pkγ
5
=pþ =qþMY

ðpþ qÞ2 −M2
Y
Γμ
NYuNðpÞ

jμccjuY ¼ iAuVus

fπ
ūΞðp0

ΞÞΓμ
YΞ

=p − =pk þMY

ðp − pkÞ2 −M2
Y
=pkγ

5uNðpÞ

Γμ
BiBj

ðqÞ ¼ f
BiBj

1 ðq2Þγμ þ if
BiBj

2 ðq2Þ σμν

MBi
þMBj

qν

− g
BiBj

1 ðq2Þγμγ5 − g
BiBj

3 ðq2Þqμγ5 ð7Þ
where fπ is the pion decay constant, and Vusð¼ sin θcÞ is
the corresponding Cabibbo-Kobayashi-Maskawa (CKM)
matrix element for weak strangeness-changing processes.
The weak vertex function Γμ

BiBj
ðqÞ denotes the weak

transition from baryon Bi to Bj and it is written in terms

of transition vector ðfBiBj

1;2 ðq2ÞÞ and axial-vector ðgBiBj

1;3 ðq2ÞÞ
form factors. Experimentally, very little information is
available regarding these form factors for the weak
strangeness-changing transitions between states of the octet
baryon. Hence, we rely on exact SU(3) flavor symmetry to
relate them to the well-known proton and neutron vector
form factors [fp;n1;2 ðq2Þ] and to the nucleon axial-vector one
[gAðq2Þ ¼ gnp1 ðq2Þ] by using Cabibbo’s theory [21]. The
above prescription has also been used by several other
authors to obtain N − Y and Y − Y 0 transitions, see for
example Refs. [3,4,22]. In the present work we follow the
formalism already presented in Refs. [3,4] and we discuss it
here in brief.2

1. Transition form factors for nonresonant background

Assuming the octet representation of SU(3) in flavor
space, one can relate the vector [f1;2;3ð0Þ] and axial-vector

couplings [g1;2;3ð0Þ] with the reduced matrix elements
corresponding to the antisymmetric ðFV;AÞ (also called
f-type) and symmetric ðDV;AÞ (also called d-type) cou-
plings as:

fBB
0

i ðq2Þ ¼ CBB0
a FV

i ðq2Þ þ CBB0
s DV

i ðq2Þ; ði ¼ 1; 2Þ ð8Þ

gBB
0

i ðq2Þ ¼ CBB0
a FA

i ðq2Þ þ CBB0
s DA

i ðq2Þ; ði ¼ 1; 3Þ ð9Þ

where CBB0
a;s are related to SU(3) Clebsh-Gordan coeffi-

cients. The appearance of two different reduced transition
matrix elements (F and D) between octet baryon states is
because of the Cabibbo model [21], which assumes that the
vector and axial-vector currents belong to an octet of flavor
currents and in the irreducible representation (IR) of
f8g ⊗ f8g, the octet f8g IR appears twice. This means
that there are two independent reduced matrix elements
when applying the Wigner-Eckart theorem for SU(3) octet
transitions through an octet of flavor current operators. One
of these reduced matrix elements is related to F while the
other one to D. As the flavor structure for both vector (V)
and axial (A) currents remains same, the coefficients CBB0

a;s

given in Table I are identical for both currents. It is worth
noticing that Eqs. (8) and (9) are generally expressed for the
SU(3) couplings. However, it has been shown by previous
authors [3,4] that such relationships work well for finite
q2 too.
The transitions p → p and n → n can be driven by the

electromagnetic current, which is a linear combination of
the hypercharge and third component of the isovector
currents of the octet of current operators in Cabibbo model
[21]. Hence the corresponding Dirac ðfp;n1 Þ and Pauli ðfp;n2 Þ
form factors appearing when taking matrix elements of the
electromagnetic current between proton and neutron states
can also be written as in Eq. (8) with the coefficients given
in Table I:

FIG. 1. Feynman diagrams for the Ξ production. The inter-
mediate states Y are the (S ¼ −1) Λ, Σ hyperons, and Y� is
Σ�ð1385Þ resonance.

TABLE I. SU(3) factors CBB0
a;s of Eqs. (8) and (9).

Transitions CBB0
a CBB0

s

p → p 1 1
3

n → n 0 − 2
3

p → n 1 1
p → Λ −

ffiffi
3
2

q
− 1ffiffi

6
p

p → Σ0 − 1ffiffi
2

p 1ffiffi
2

p

n → Σ− −1 1
Λ → Ξ− ffiffi

3
2

q −1ffiffi
6

p

Σ0 → Ξ− 1ffiffi
2

p 1ffiffi
2

p

Σþ → Ξ0 1 1

2For a more complete description please see Refs. [3,4,21]. In
particular, note that in Eq. (7) we have discarded the scalar f3ðq2Þ
and the “weak electricity” g2ðq2Þ form factors, both belonging to
the so-called “second-class currents” [23]. For a very recent and
much more detailed discussion on this issue and the impact of
effects from second-class currents in some observables calculated
for quasielastic neutrino (antineutrino) production of nucleons
and hyperons, please see Sec. II of Ref. [24].
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fni ðq2Þ ¼ −
2

3
DV

i ðq2Þ; i ¼ 1; 2

fpi ðq2Þ ¼ FV
i ðq2Þ þ

1

3
DV

i ðq2Þ; i ¼ 1; 2: ð10Þ

The system of equations given in (10) is then inverted to
give DV

i and FV
i in terms of the well-known fp;ni electro-

magnetic form factors. In this way, all the octet transition
vector form factors fBB

0
i ðq2Þ can be written uniquely in

terms of the proton and neutron form factors. The q2-
dependence is assumed to be driven by fp;n1;2 ðq2Þ and no
additional q2-dependence has been taken. We use Galster’s
parametrization [25] for fp;n1;2 ðq2Þ. The variation of the
different transition form factors with Q2 are shown in
Fig. 2. The shaded region shows the effect due to SU(3)
symmetry breaking, see Appendix for details.We follow the
prescription of Ref. [20] for SU(3) corrections. We found
that among all transition form factors p → Λ transition
suffers maximum deviation followed by n → Σ− for both f2
and g1 form factor while f1 form factor (for all transitions) is
protected by the Ademollo-Gatto theorem [26].
On the other hand, in the axial sector, while FAð0Þ and

DAð0Þ still form reduced matrix elements for antisymmetric
and symmetric axial couplings with CBB0

s;a being the same
coefficients of Table I, there is no competing either
electromagnetic or weak channel which could be used to

fix them separately at finite q2, as it was the case for their
vector counterparts in Eqs. (10). However, at q2 ¼ 0 some
information is available from semileptonic hyperon decays
[21]. Therefore, the extraction of the axial couplings FAð0Þ
and DAð0Þ has been performed assuming SU(3) symmetry.
For the present work we use the numerical values FAð0Þ ¼
0.463 and DAð0Þ ¼ 0.804 [21].
For the q2-dependence of the octet transition axial form

factors, we first express the nucleon axial coupling corre-
sponding to transition p → n in terms of FAð0Þ and DAð0Þ
and relate all of them in terms of FAðq2Þ and DAðq2Þ:

gnp1 ðq2Þ ¼ gA
ð1 − q2=M2

AÞ2

¼ FAð0Þ
ð1 − q2=M2

AÞ2
þ DAð0Þ
ð1 − q2=M2

AÞ2
¼ FAðq2Þ þDAðq2Þ: ð11Þ

In the last step we exploit the linear dependence of gA on
FAð0Þ and DAð0Þ to write the explicit dependence on q2.
Therefore, FAðq2Þ and DAðq2Þ also have the dipole
structure (this assumption was also considered in
Ref. [3]). Using Eq. (9), we obtain the other transition
form factors in terms of FAðq2Þ and DAðq2Þ. The dipole
parameter MA can then be identified as the nucleon axial
dipole mass and for present work we take MA ¼ 1.0 GeV.

FIG. 2. Q2ð¼ −q2Þ dependence of the different transition form factors. Shaded regions show the uncertainties due to SU(3) breaking.

TABLE II. Constant factors (As, Au) in Eqs. (7) and (12).

Process

Direct term ðAsÞ Cross term ðAuÞ
Y ¼ Λ Y ¼ Σ Y ¼ Σ� Y ¼ Λ Y ¼ Σ Y ¼ Σ�

ν̄l þ p → lþ þ Kþ þ Ξ− − D−3F
2
ffiffi
3

p DþF
2

1ffiffi
6

p − Dþ3F
2
ffiffi
3

p D−F
2

1ffiffi
6

p

ν̄l þ p → lþ þ K0 þ Ξ0 − D−3F
2
ffiffi
3

p − DþF
2 − 1ffiffi

6
p 0 D−Fffiffi

2
p ffiffi

2
3

q
ν̄l þ n → lþ þ K0 þ Ξ− 0 DþFffiffi

2
p ffiffi

2
3

q
− Dþ3F

2
ffiffi
3

p − D−F
2

− 1ffiffi
6

p

M. RAFI ALAM and I. RUIZ SIMO PHYS. REV. D 100, 033001 (2019)

033001-4



Finally, the couplings As and Au in Eqs. (7) are obtained
from the SU(3) rotations at strong vertices of the diagrams
given in Fig. 1 and are given in Table II. It is also worth
noticing for the reader that we have used pseudovector
strong couplings at the BB0K vertices, as it is obvious from
the =pkγ

5 structures appearing in Eqs. (7). We have also
checked these couplings with the expansion of chiral
Lagrangians at lowest order used in Refs. [18,19,27] and
found them to be consistent.

B. Resonant mechanism

The KΞ production channel may get contribution from
the resonant mechanism as well. However, in the absence
of experimental data their couplings are not known. To
overcome this difficulty we rely again on SU(3) symmetry.
Among all the decuplet members only Σ�ð1385Þ has the
right quantum numbers to decay strongly into KΞ channel.
In this section we present the model for resonant mecha-
nism, which is essentially the same as in Ref. [19].
We start by writing the general expression for the current

corresponding to Σ�ð1385Þ resonance,

jμccjsΣ� ¼ iAΣ�
s

C
fπ

Vuspλ
kūΞðp0

ΞÞGλρðΓρμ
V þΓρμ

A ÞuNðpÞ

jμccjuΣ� ¼ iAΣ�
u

C
fπ

Vuspλ
kūΞðp0

ΞÞðΓ̃μρ
V þ Γ̃μρ

A ÞGρλuNðpÞ

Γ̃μν
i ≡ Γ̃μν

i ðp0
Ξ;qÞ¼γ0½Γνμ

i ðp0
Ξ;−qÞ�†γ0; i¼V;A: ð12Þ

The parameter C is the decuplet-baryon-meson strong
coupling constant appearing below in Eq. (17). It is a free
parameter that can be fitted to reproduce theΔð1232Þ decay
width. Following Ref. [19], its numerical value has been
taken as C ∼ 1.3

In Eqs. (12), GμνðPÞ is the Rarita-Schwinger spin-3=2
particle propagator given by:

GμνðPÞ ¼ Pμν
RSðPÞ

P2 −M2
Σ� þ iMΣ�ΓΣ�

; ð13Þ

where P is the momentum carried by the resonance: P ¼
pþ q for direct terms (s-channel), while P ¼ p − pk ¼
p0
Ξ − q for cross terms (u-channel). The operator Pμν

RS may
be identified as the Rarita-Schwinger [28] projection
operator,

Pμν
RSðPÞ ¼

X
spins

ψμψ̄ν

¼ −ð=PþMΣ� Þ
�
gμν −

1

3
γμγν −

2

3

PμPν

M2
Σ�

þ 1

3

Pμγν − Pνγμ

MΣ�

�
: ð14Þ

Finally, the weak vector and axial transition operators
Γαμ
V ðp; qÞ and Γαμ

A ðp; qÞ in Eqs. (12) are given by [29]

Γαμ
V ðp; qÞ ¼

�
CV
3

M
ðgαμ=q − qαγμÞ þ CV

4

M2
ðgαμq · P − qαPμÞ

þ CV
5

M2
ðgαμq · p − qαpμÞ þ CV

6 g
μα

�
γ5

Γαμ
A ðp; qÞ ¼

�
CA
3

M
ðgαμ=q − qαγμÞ þ CA

4

M2
ðgαμq · P − qαPμÞ

þ CA
5 g

αμ þ CA
6

M2
qμqα

�
; ð15Þ

where CV;A
i ði ¼ 3–6Þ are q2-dependent form factors. Their

expressions are taken directly from Ref. [29] for the n →
Δþ weak transition with only one exception: we relate CA

6

with CA
5 by using partial conservation of the axial current

(PCAC) assuming the coupling of the W− boson to the Σ�
resonance through a kaon pole in Fig. 1,

CA
6 ðq2Þ ¼ CA

5 ðq2Þ
M2

m2
K − q2

: ð16Þ

In principle, our knowledge of the weak N → Σ� and
Σ� → Ξ transition form factors is almost none, as these
transitions cannot be driven directly by electromagnetic
probes, a research field where the vast majority of asso-
ciated production studies [30–36] has been carried out.
However, we know that the Σ�ð1385Þ and Δð1232Þ are
members of same decuplet and we can exploit it to relate
the Σ�ð1385Þ transition form factors with other relatively
known ones as those of the N → Δð1232Þ transition by
using again SU(3) symmetry arguments.
We begin writing a Lagrangian describing the interaction

between decuplet and octet baryons with meson octet:

Ldec ¼ CðϵabcT̄μ
adeu

d
μ;bB

e
c þ H:c:Þ; ð17Þ

where Tμ is the SU(3) representation of the decuplet fields
and a − e are the flavor indices.4 The interaction of baryon
octet (B), decuplet, and pseudoscalar meson octet ðϕðxÞÞ
with external weak/electromagnetic currents is achieved by

3If it were fitted to reproduce the Σ�ð1385Þ partial widths, its
value would be C ∼ 0.81–0.86, thus reflecting the amount of
experimental SU(3) breaking in nature of about 15%–20%.

4For the explicit flavor realization of the physical states of the
decuplet fields in the Lagrangian of Eq. (17), see for instance the
footnote 1 on Ref. [19].
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coupling left ðlμÞ and right-handed ðrμÞ external currents in
the so-called vielbein uμ:

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�;

u2ðxÞ ¼ UðxÞ ¼ exp

�
i
ϕðxÞ
fπ

�
: ð18Þ

For further details, the reader is either referred to the review
[37] or to Refs. [18,19], where the same formalism has been
applied.
In the WN → Δ transitions it is well known that, out of

the 8 form factors appearing in Eq. (15), the most dominant
contribution comes from CA

5 (see for example Refs. [29,
38–40]). The Lagrangian of Eq. (17) only gives information
about CA

5 ð0Þ for all the octet-decuplet baryons’ transitions.
Thus, using SU(3) symmetry one can easily relate the weak
ðCA

5 ð0ÞÞB→D transition couplings between baryon octet and
baryon decuplet with only one of them taken as reference.
In our case we chose ðCA

5 ð0ÞÞn→Δþ
as a reference which has

been extensively studied in past, see for example Ref. [29].
However, given the form of Eqs. (12) and (15), the SU(3)
factors relating the different weak B → D transition ver-
tices [given as Γρμ

i in Eqs. (12)] are totally hidden in our
numbers for AΣ�

s;u of Table II for the different reactions. Of
course, all the other form factors of Eq. (15) besides CA

5 are
assumed to rotate equally under SU(3) transformations.
The same procedure and assumptions were made previ-
ously in Ref. [19] for the N → Σ� weak transition.
Finally, the energy-dependent width (ΓΣ�) appearing in

Eq. (13) may be written as:

ΓΣ� ¼ ΓNK̄ þ ΓΛπ þ ΓΣπ þ ΓΞK ð19Þ

where ΓBϕ is the partial decay width for a decuplet (D)
member to meson ðϕÞ and baryon octet (B), calculated from
the decay amplitude derived from the Lagrangian (17),

ΓD→Bϕ ¼ CY

192π

�
C
fπ

�
2 ðW þMBÞ2 −m2

ϕ

W5

λ3=2ðW2;M2
B;m

2
ϕÞΘðW −MB −mϕÞ; ð20Þ

where λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz is the Källén lambda
function, Θ is the step function, MB and mϕ are the final
baryon and meson masses, respectively, and W is the
invariant mass carried by the resonance in the propagator
given inEq. (13), i.e.,W2 ¼ P2. Finally, the factorCY is 1 for
Λπ and 2

3
for NK̄, Σπ and ΞK partial decay widths,

respectively.

III. RESULTS

The total cross sections corresponding to the channels
given in (1) are obtained after integrating overW and Q2 in

Eq. (2). We present the results for muon antineutrino
induced total cross section in Fig. 3. The full model results
are shown by solid curves, while dashed lines show the
results by applying a cut in theKΞ invariant mass ofWcut ¼
2 GeV for the corresponding processes (identified by the
same color). We will discuss the choice of Wcut and the
effects of it later in this section.
On the other hand, considering the fullmodel, we find that

among the three channels n → K0Ξ− is the most dominant
one followed by p → K0Ξ0 and p → KþΞ−. One should
note that if we compare our result(s) for inclusive kaon
production with ΔS ¼ 0 mechanisms we find that the cross
section for K0 and Kþ are about 3 and 6 percent of the
corresponding ΔS ¼ 0 processes, respectively. This is con-
sonance with the Cabibbo suppression for jΔSj ¼ 1 proc-
esses with respect to their ΔS ¼ 0 counterparts. For the
ΔS ¼ 0 kaon production we took the model discussed in
Ref. [41]. In their model, they use only nonresonant terms
which come from lowest order expansion of chiral
Lagrangian. However, in absence of resonant mechanisms,
the model is not reliable for high invariant mass and hence
the comparison may be treated as a guesstimate.
In Fig. 4 we present the contribution due to different

intermediate state on the total cross section.5 Solid lines
show again the results of the full model. One can notice that
in ν̄μn → μþK0Ξ− and ν̄μp → μþK0Ξ0 the contributing
diagrams add up, while in ν̄μp → μþKþΞ− they seem to
have strong cancellations due to the interferences, which
results in a smaller cross section than the Λ and Σ
term alone.
In fact, all three channels show different behavior

regarding their contributing diagrams. Starting from

FIG. 3. Total cross section σ vs Eν for the different channels of
(1). Dashed lines show the results with Wcut ¼ 2.0 GeV for each
process (same color).

5For each term we include direct and cross diagrams. For
example, Λ intermediate state corresponds to the coherent sum of
direct and cross diagrams, i.e., jμjsΛ þ jμjuΛ
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ν̄μn → μþK0Ξ−, the most dominating contribution comes
from Σ term followed by Λ and Σ� resonance. The smaller
contribution due to Λ term can be understood because of
absence of s-channel diagram and the larger coupling
(As ¼ DþFffiffi

2
p ≃ 0.896) of the s-channel Σ current with respect

to the coupling of the Λ term (Au ¼ − Dþ3F
2
ffiffi
3

p ≃ −0.63). On
the other hand, in this channel Σ� resonance has the lowest
contribution with respect to the others.
The other channel producing K0 in the final state is

ν̄μp → μþK0Ξ0. Unlike the K0Ξ− final state, Σ� resonance
turns out to be the most dominating one followed by Σ
and Λ terms. The dominance of Σ� comes mainly through
its u-channel contribution, which moreover has a larger

coupling (
ffiffi
2
3

q
vs − 1ffiffi

6
p ) than in the K0Ξ− case. The small-

ness of the Λ contribution can be very easily understood
because of the tiny value of its coupling in the s-channel
(As ¼ − D−3F

2
ffiffi
3

p ≃ 0.169), the only occurring one. It also

seems from inspection of left and middle panels of
Fig. 4, and from the numerical values of the couplings
given in Table II for the Σ currents that the interference
between s and u-channel diagrams is important and
destructive for this contribution when both couplings have
more similar values.
Finally, in the ν̄μp → μþKþΞ− reaction, it seems that, due

to destructive interference between the contributing dia-
grams, the cross section getsmuch reduced.However, in this
channel the highest contribution comes fromΛ term and the
Σ� resonance has the lowest individual contribution.
Nonetheless, it is worth mentioning that in these

Cabibbo-suppressed associated production of two strange
particles processes, the contribution of Σ�ð1385Þ resonance
is truly important (of the same order than the NRB terms),
in contrast to the case of single antikaon production studied
in Ref. [19], where this same resonance was found to play a
minor role.
We have also explored the effects due to SU(3) break-

ing. For this we have considered the model of Ref. [20].

SU(3) modification in the form factors and the para-
metrization are given in Appendix. The corrections have
been applied to the form factors appearing in Eq. (7), and
their effect in cross section is shown by the shaded region
in Fig. 4. We observe that in the ν̄μp → μþK0Ξ0 channel
the effect of SU(3) breaking is negligible, while in
channels ν̄μn → μþK0Ξ− and ν̄μp → μþKþΞ− is
about 15%.
At the higher neutrino energies discussed here, due to

availability of phase space, higher (S ¼ −1) resonances
may contribute. In particular, it seems that the contribution
of the Λð1520Þ can be also very important in the light of
Ref. [42]. However, its inclusion in the present model is
beyond the scope of this work.
To check the validity of our model for the analyzed

antineutrino energy range of this work, we examine the
dependence on the invariant mass W. We restrict W to
remain slightly above the KΞ threshold and apply a cut in
the invariant mass of Wcut ¼ 2 GeV in order to stay as
close to threshold as possible. The reason for this is to
minimize the effects of higher lying resonances [42] not
included in our exploratory work. The consequences of this
cut on the total cross section are shown in Fig. 3. We
observe that at Eν ¼ 2.2 GeV, the cross section gets
reduced by about 40 percent for ν̄μn → μþK0Ξ− and
ν̄μp → μþK0Ξ0, while 20 percent for ν̄μp → μþKþΞ−

process. Other advantages of using the low invariant mass
kinematic cut comes from the NRB terms, because these
have been obtained from the expansion of chiral
Lagrangians at lowest order [18,19,37] and these kinds
of expansions are really reliable for low energy and
momentum transfers.
Finally, we have also obtained the flux averaged total

cross section corresponding to Minerva antineutrino flux
(ΦðEνÞ) as [10,43],

hσi ¼
R
dEνσðEνÞΦðEνÞR

dEνΦðEνÞ
: ð21Þ

FIG. 4. Total cross section σ vs Eν for the different channels of (1). Shaded regions show effects due to SU(3) breaking.
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The results thus obtained are presented in Table III. We
find that the average cross section (without invariant mass
cut) for K0 production is much higher than for Kþ, in
consonance with the larger cross sections forK0 production
(see Fig. 3). On the other hand, if we observe Ξ hyperon,
then both Ξ0 and Ξ− have an almost similar occurrence.
One should notice that if we applyWcut ¼ 2 GeV, then the
average total cross section gets remarkably reduced.
Further, the kinematic suppression seems to affect more
to ν̄μp → μþK0Ξ0 than ν̄μn → μþK0Ξ−.
Although the total cross sections for the reactions studied

in this work are normally between one and two orders of
magnitude below those studied in Ref. [18] for single kaon
production off nucleons, the convoluted total cross sections
(even with the invariant mass cut) with the antineutrino
Minerva flux (shown in Table III) are of the same order of
magnitude as those shown in Table II of [18] calculated
with different muon neutrino fluxes corresponding to ANL
[44], MiniBooNE [45], and T2K [46] experiments.
The explanation for this apparent contradiction is not

difficult to understand: the cross sections studied inRef. [18]
had a quite lower energy threshold than those for KΞ
production (0.8 GeV vs 1.5 GeV, respectively), and the
fluxes used in [18] had a significant contribution also at
lower neutrino energies (Eν ∼ 0.8 GeV) and shorter high
energy tails, oppositely to theMinerva flux, which is peaked
at Eν ∼ 3.5 GeV and has a much longer tail extending
toward higher energies. The fluxes used in Ref. [18] had
their significant contribution in an energy range where the
KN production reactions also had a sizable cross section,
and they fell off faster than the Minerva flux. Therefore, at
the end the weighted cross section given by Eq. (21) gives
similar results in both cases (Table II of Ref. [18] and
Table III of this work). This is just a consequence of the fact
that the product σðEνÞΦðEνÞ is sizable in an energy range
where theKN and theKΞ cross sections reach similar values
with different fluxes. Another reason to apply the kinematic
cutWcut here is to avoid reaching invariant masses far larger
than 2 GeV when flux-averaging the cross sections with a
high energy flux such as that of Minerva experiment. In this
way we are sure that the effects coming from contributing
higher resonances not included in our model are avoided as
much as possible, and thereforewe are using our model only
in the region of invariantmasseswherewe think it to bemore
reliable.

Given the numbers of the second column of Table III,
and the conclusions for the similar numbers given in
Ref. [18], we think that the reactions (1) could be observed
with current measurement facilities such as Minerva
experiment.

IV. CONCLUSIONS

In this work we have obtained the cross sections for
Cabibbo-suppressed associated KΞ production through
charge current interactions induced by antineutrinos. The
presentwork represents the first attempt to estimate the cross
sections for production of S ¼ −2 baryons in weak proc-
esses. These processes are not feasible in neutrino mode.
The model is a natural continuation of that used by the

same authors in Refs. [18,19,27]. It contains Born (NRB)
terms driven by the propagation of strange (Λ, Σ) octet
baryons, and also the lowest lying strange resonance of the
decuplet, namely the Σ�ð1385Þ, which is found to play a
very significant role in these reactions, contrarily to the case
of K̄N production discussed in Ref. [19].
In a recent work [42], a diagrammatically inspired model

like that used here has shown that the inclusion of higher
lying strange resonances like the Λð1520Þ is very important
to describe the K−p → KΞ production data. Although the
inclusion of the Λð1520Þ is out of the scope of this article,
we do not renounce including it in future refinements of the
present exploratory work in the light of the findings
of Ref. [42].
The simplicity of the present model makes it possible to

be implemented in the present Monte Carlo Generators like
GENIE [14,47]. The cross sections computed here are
about one order of magnitude less than the corresponding
ΔS ¼ 0 associated K production mechanism. However,
they are measurable at the current neutrino facilities like
Minerva and in the proposed mega-detectors like Dune [48]
and Hyper-Kamiokande [49].
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APPENDIX: SU(3) BREAKING

Following [26], we write the effective Lagrangian which
includes additional couplings Hi ði ¼ 1 � � � 4Þ describing
SU(3) breaking as:

TABLE III. Average total cross section convoluted with the
antineutrino Minerva flux [10,43].

Process
Without cut
10−41 cm2

Wcut ¼ 2 GeV
10−41 cm2

ν̄μn → μþK0Ξ− 0.795 0.295
ν̄μp → μþK0Ξ0 0.853 0.251
ν̄μp → μþKþΞ− 0.222 0.076
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L1 ¼ DhB̄Γμfϵμ; Bgi þ FhB̄Γμ½ϵμ; B�i
þ H1ffiffiffi

3
p hB̄ΓμBfϵμ; λ8gi þ

H2ffiffiffi
3

p hB̄Γμfϵμ; λ8gBi

þ H3ffiffiffi
3

p hB̄ΓμϵμBλ8 − B̄Γμλ8Bϵμi

þ H4ffiffiffi
3

p ðhB̄ϵμiΓμhBλ8i þ hB̄λ8iΓμhBϵμiÞ ðA1Þ

where B and ϵμ are the octet of baryon fields and the
external current, respectively. Angular braces, h� � �i, re-
present the trace of matrices in flavor space and λ8 is the 8th
component of the set of Gell-Mann matrices. Finally,
depending upon the nature of the current, Γμ can be read
as γμ or γμγ5 for vector and axial-vector cases, respectively.
The couplings of baryons are then expressed in terms of

the constants D, F, and Hi as [20]:

F np¼DþFþ2

3
ðH2−H3Þ;

FΛp¼−
ffiffiffi
3

2

r �
FþD

3
þ1

9
ðH1−2H2−3H3−6H4Þ

�
;

FΣ−n ¼D−F−
1

3
ðH1þH3Þ;

FΛΞ− ¼−
ffiffiffi
3

2

r �
−FþD

3
þ1

9
ð−2H1þH2þ3H3−6H4Þ

�
;

FΣþΞ0 ¼DþF−
1

3
ðH2−H3Þ;

FΣ0p¼ 1ffiffiffi
2

p FΣ−n;

FΣ0Ξ− ¼ 1ffiffiffi
2

p FΣþΞ0

:

Note that terms proportional to couplings D and F are
SU(3) symmetric, while couplings H1−4 account for pos-
sible symmetry breaking effects. Explicit values of coupling
parameters D, F, and Hi are taken from Ref. [20].

D ¼ 0.7505 F ¼ 0.5075

Hg1
1 ¼ −0.050 Hg1

2 ¼ 0.011

Hg1
3 ¼ −0.006 Hg1

4 ¼ 0.037

Hf2
1 ¼ −0.246X Hf2

2 ¼ 0.096X

Hf2
3 ¼ 0.021X Hf2

4 ¼ 0.030X ;

where X ¼ MþMY
M is a constant appearing because of differ-

ent normalization convention taken for f2 form factor in
Ref. [20] and in present case [see Eq. (7)]. Further assump-
tions taken are:
(1) The vector coupling f1ð0Þ does not receive any

correction due to SU(3) breaking because it is
protected against these effects by the Ademollo-
Gatto theorem [26].

(2) Second class currents (f3, g2), which have opposite
sign under G-parity transformation if compared to
first class currents (f1;2; g1;3), are ignored. We show
only first class currents in Eq. (7).

(3) For q2 dependence of the breaking parameters
(Hg1;f2

i ), we assume a dipole form with dipole
parameter taken as MAðMVÞ for axial(vector) form
factors, respectively.

(4) We assume that the PCAC and Goldberger-Treiman
relation is valid even when g1 receives SU(3) cor-
rections. Further, g3 will get modified from g1. In
particular, PCAC and kaon-pole dominance implies

the substitution g
BiBj

3 ðq2Þ → −gBiBj

1 ðq2Þ =q
q2−M2

K
in

Eq. (7). This replacement has been made for all
the calculations presented in this work.

Finally, care should be taken while using the values forD
and F. In our numerical calculations we used nonbreaking
couplings as D ¼ 0.804 and F ¼ 0.463 [21]. However, in
order to be consistent with Ref. [20] we use their param-
eters for SU(3) breaking calculations.
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