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ABSTRACT
Aim. To determine the absolute and relative reliability of functional trunk tests, using a
functional electromechanical dynamometer to evaluate the isokinetic strength of trunk
flexors and to determine the most reliable assessment condition, in order to compare
the absolute and relative reliability of mean force and peak force of trunk flexors and
to determine which isokinetic condition of evaluation is best related to the maximum
isometric.
Methods. Test-retest of thirty-seven physically active male student volunteers who
performed the different protocols, isometric contraction and the combination of three
velocities (V1 = 015 m s−1 , V2 = 0.30 m s−1, V3 = 0.45 m s−1) and two range of
movement (R1 = 25% cm ; R2 = 50% cm) protocols.
Results. All protocols to evaluate trunk flexors showed an absolute reliability provided a
stable repeatability for isometric and dynamic protocols with a coefficient of variation
(CV) being below 10% and a high or very high relative reliability (0.69 < intraclass
correlation coefficient [ICC] > 0.86). The more reliable strength manifestation (CV=
6.82%) to evaluate the concentric contraction of trunk flexors was mean force, with
0.15 m s−1 and short range of movement (V1R1) condition. The most reliable strength
manifestation to evaluate the eccentric contraction of trunk flexors was peak force, with
0.15 m s−1 and a large range of movement (V1R2; CV= 5.07%), and the most reliable
way to evaluate isometric trunk flexors was by peak force (CV = 7.72%). The mean
force of eccentric trunk flexor strength with 0.45 m s−1 and short range of movement
(V3R1) condition (r = 0.73) was best related to the maximum isometric contraction.
Conclusion. Functional electromechanical dynamometry is a reliable evaluation system
for assessment of trunk flexor strength.
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INTRODUCTION
Trunk flexion is present in daily activities, such as walking or sit-to-stand (Roldán-
Jiménez, Bennett & Cuesta-Vargas, 2015; Silva et al., 2015; Moon & Kim, 2017) , and in
different sports performance actions, such as overhead throwing (Van den Tillaar &
Ettema, 2009; Liu, Leigh & Yu, 2010; Wagner et al., 2012; Wagner et al., 2014; Palmer et al.,
2015) or hitting a ball (Lindsay, Horton & Paley, 2002; Chang et al., 2016). Studies have
demonstrated the importance of trunk strength for preventing injuries in the spine (Hutten
& Hermens, 1997; Mueller et al., 2012; Rossi et al., 2017) and knee (Araujo, Cohen & Hayes,
2015; Cronström et al., 2016), such as the low back pain and anterior cruciate ligament
injuries that frequently occur in sports and the workplace (Leboeuf-Yde et al., 2009; Sanders
et al., 2016; Kozak, Freitag & Nienhaus, 2017).

Due to the importance of trunk strength, clinicians and coaches must know whether
changes in strength over time reflect a real gain or loss, or are the result of the measurement
error (Atkinson & Nevill, 1998). Therefore, the validity and reliability of data are important
when assessing strength. The validity of data concern to which an individual’s test
performance reflects true performance and the reliability measures in tests and retests
concern the repeatability of the data observed in a sample (Hopkins, 2000; Hopkins,
Schabort & Hawley, 2001). In sports science, it is a requirement to have relative (intraclass
correlation coefficient (ICC)) and absolute reliability (standard error of measurement
(SEM) or coefficient of variation (CV)) of data. Relative reliability indicates how similar
the rank orders of the participants in the test are to the retest (Weir, 2005). The main
problem with relative reliability is that it depends on the variability of the sample. However,
absolute reliability is related to the consistency of individual scores (Hopkins, 2000;Hopkins
et al., 2009).

Until now, the evaluation of trunk strength has been carried out by way of medicine-
ball throws (Glenn et al., 2015), handheld dynamometers (Cowley et al., 2009; Paalanne
et al., 2009; Newman, Pollock & Hunt, 2012) or isokinetic devices (Dervisevic, Hadzic &
Burger, 2007; Mcintire et al., 2007; Roth et al., 2017). In these isokinetic devices, there is no
evaluation protocol to know at what velocity and at what range of movement the evaluation
should be performed (Dvir & Müller, 2019), even though there have been attempts (Dvir
& Keating, 2001). Still, there are indications that low-velocity movements are more reliable
for measuring trunk strength (Guilhem et al., 2014; Roth et al., 2017). Different studies that
have analyzed the reliability of test using peak force (Roth et al., 2017;De Blaiser et al., 2018;
Juan-Recio et al., 2018) but it has not been shown which strength manifestation (peak force
or mean force) is more reliable for assessing trunk strength.

Functional electromechanical dynamometry (FEMD) is a new technology that allows
us to evaluate and train strength in human beings. Its provides a quantified measurement
of strength and its ease of use and low cost. Unlike other isokinetic devices, this device
(DynaSystem, Model Research, Granada, Spain) generates linear isokinetic speeds between
other dynamicmodes (tonic, kinetic, elastic, inertial, conical) to static (isometric, vibratory)
allowing to evaluate and train through resistance/velocity constant and variable (Campos
Jara et al., 2014). Furthermore, it has been described as a valid and reliable measurement
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Table 1 Characteristic of participants.

Age
(years)

Body
mass (Kg)

Height (m) BMI
(Kg/m2)

OLBPD (%) ROM
100% (cm)

ROM
25% (cm)

ROM
50% (cm)

Mean 21.4 (2.1) 69.2 (6.9) 1.7 (0.1) 23.0 (1.6) 3.1 (3.9) 51.4 (3.3) 13.0 (0.9) 25.8 (1.6)
Minimum 19.0 59.1 1.6 19.4 0.0 45.2 11.0 23.0
Maximum 27.0 81.9 1.9 25.0 16.0 59.4 15.0 30.0

Notes.
The data are presented mean (SD).
ROM, range of movement; BMI, body mass index; OLBPD, oswestry low back pain disability.

method for evaluating upper and lower extremity muscle strength (Cerda Vega et al., 2018;
Chamorro et al., 2018). This technology has been used to study the isometric strength of the
shoulder rotators and hip abductor and has obtained high reliability values (ICC > 0.94;
CV < 10%) (Cerda Vega et al., 2018; Chamorro et al., 2018). However, trunk strength has
yet to be studied with this device.

Therefore, the main purposes of this study were (I) to determine the absolute and
relative reliability of trunk tests with a FEMD (Dynasystem, Symotech) in the evaluation
of the isokinetic and isometric strength of trunk flexors, and to determine the most reliable
assessment condition, (II) to compare the absolute and relative reliability of mean force
and peak force of trunk flexors, and (III) to determine which isokinetic condition of
evaluation is best related to the maximum isometric contraction. We hypothesized that (I)
low velocities and short range of movement would be more reliable than high velocities
and large range of movement. Additionally, we hypothesized that (II) mean force would
be a more reliable variable than peak force in trunk flexor evaluation and that (III) slow
velocities are best related to isometric evaluation. The results are expected to provide new
information regarding trunk strength evaluation protocols using FEMD.

METHODS
Participants
Thirty-seven physically active male student volunteers (age 21.4 ± 2.1 years, body mass
69.2 ± 6.9 kg, height 1.7 ± 0.1 m and body mass index (BMI) 23.0 ± 1.6 kg/m2; data
are presented as mean ± standard deviation (SD)) without any experience in isokinetic
or dynamometers devices were recruited from the university community (Table 1).
Participants were eligible for the study if they were: (I) free of low back pain, with a
maximum of 20% in the Oswestry Low Back Pain Disability questionnaire; (II) free of
musculoskeletal injury; (III) not practicing specific trunk strength training; and IV) had
a maximum BMI of 25 kg/m2. All participants were informed regarding nature, aims and
risks associated with the experimental procedure before they gave their written consent
to participate. The study protocol was approved by the Institutional Review Board of the
University of Granada (n◦ 350/CEIH/2017), and was conducted in accordance with the
Helsinki Declaration.
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Figure 1 DynaSystem research functional dynamometer.
Full-size DOI: 10.7717/peerj.7883/fig-1

Study design
A repeated-measurement design was used to evaluate trunk flexor strength with different
protocols. All test sessions were developed in the ‘controlled natural movement’ laboratory
of the University of the Most Holy Conception (Chile). After two familiarisation sessions,
participants attended to the laboratory on two separate days (at least 48 h apart) during
two weeks. On each testing day, participants completed different condition of velocity (V)
and range of movement (R) protocols. Participants were asked to maintain their physical
activity level during the two weeks of the study. All evaluations were conducted by the
same evaluator with an experience with the device for more than three years, at the same
time of the day (± 1 h) for each participant and under similar environmental conditions
(∼21 ◦C and ∼60% humidity). The order of the velocities and range of movements was
randomly established. This order was carried out in the two testing sessions.

Instruments
Isometric and isokinetic strength were evaluated with a DynaSystem Research Functional
Dynamometer (SYMOTECH, Granada, Spain) with a precision of three mm for
displacement, 100 g for a sensed load, a sampling frequency of 1,000 Hz and a range
of velocities between 0.05 m s−1 to 2.80 m s−1, coupled with a standard bench, a pulley
system and a subjection system (Fig. 1).
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Figure 2 Participant performing a maximum effort of trunk flexion in the functional electromechani-
cal dynamometer with different ROM (A, initial position; B, 25% cm ; C, 50% cm).

Full-size DOI: 10.7717/peerj.7883/fig-2

Range of movement
The distance between the greater trochanter and the acromion was measured manually to
establish the range of movement. Measurements were made by applying anthropometric
measurement protocol based on the internationally validated recommendation (Stewart,
Marfell-Jones & International Society for Advancement of Kinanthropometry, 2011), using
a SECA R© brand measuring tape. That distance accounted for 100% of the range of
movement. The 25% (R1) and 50% (R2) of that distance were calculated to establish the
range of movement during the execution of the test (Fig. 2). These ROMs are set in the
exercise configuration screen on the device prior to the execution of the test and this
corresponds to the course of the rope measured in centimeters.

Position
The participants were positioned on a flat bench with their feet resting on the floor.
Participants were then stabilized at the test position (sitting) using straps. Sliding forward
on the bench was avoided with the use of appropriate belts that pushed the pelvis and the
legs down and back, but were not uncomfortable for the participants. Because the aim of
the study focuses on trunk flexor strength, the seated posture helps to isolate these muscles
better, reducing the action of the iliopsoas muscle in a closed kinetic chain. In addition,
the sitting posture provides greater stability when fixing the pelvis. The seated knee flexion
position reduces hamstring tension, favoring the lumbo-pelvic kinematics (anterior tilting
during trunk flexion) and reducing biomechanical stress together with the consequent risk
of lumbar pain (Jandre Reis & Ribero Macedo, 2015; Sadler et al., 2017). The initial position
was seated with the trunk at a 90-degree angle to the thigh (Fig. 2).
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Figure 3 Exemplary experimental traces.
Full-size DOI: 10.7717/peerj.7883/fig-3

Familiarisation protocol
Participants first attended two familiarisation sessions of 90 min on the FEMD and the
procedures. The familiarisation consisted of a general warm up for both test sessions,
consisting of five minutes of jogging (beats per minute <130; measured with a Polar
M400), five minutes of joint mobility and three sets of 15s of frontal plank and glute
bridge. The general warm-up was followed by four sets of five repetitions (two submaximal
repetitions and three maximum repetitions) at a velocity of 0.15 m s−1 and 0.45 m s−1with
a short range of movement (R1 = 25%) and a large range of movement (R2 = 50%). There
was a three-minute pause between sets.

Test protocol
Participants arrived in a well-rested condition at the start of each testing session.

The instructions to the participants were always the same and no feedback was ever given
to them. After the samewarm-up as during the familiarisation protocols, participants rested
for five minutes before the initiation. The test consisted of six series of four maximum
consecutive repetitions, of trunk flexors at V1R1 (0.15 m s−1,25% cm), V2R1 (0.30 m
s−1, 25% cm), V3R1 (0.45 m s−1, 25% cm), V1R2 (0.15 m s−1, 50% cm), V2R2 (0.30 m
s−1, 50% cm), V3R2 (0.45 m s−1, 50% cm) and V0R90 (0 m s−1, 90 degrees). There was
a three-minute pause between sets. After that, a maximum isometric contraction of five
seconds, in a seated position with the trunk at a 90-degree angle to the thigh, was performed
(Fig. 3).

Statistical analysis
Outcome variables
The three highest repetitions of the mean force and the peak force for the concentric and
the eccentric contractions were taken to calculate the dynamic force. In the calculation of
the isometric force, the peak value and mean value of the repetition were taken.
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Sample size
For test-retest evaluations without a control group, statistical theory predicts confidence
intervals (d) = ±t0.975, n-1 · s ·

√
2/
√
n for changes in the mean, where n is the sample

size, s the SEM and t the statistician, equaling the expression n= 2(ts/d)2 = 8s2/d2. The
sample size is proportional to the square of the SEM. Previous studies (Dervisevic, Hadzic
& Burger, 2007; Guilhem et al., 2014; Roth et al., 2017) have shown SEM values close to 8%
with isokinetic parameters of trunkmuscle strength. Assuming that the minimum clinically
relevant change (d) be of 5%, then the sample size would be a minimum of 21 subjects.

Reliability
The descriptive data are presented as mean ±SD. The distribution of the data was verified
by the Shapiro–Wilk normality test. Reliability was assessed by t-tests of paired samples
with the effect size (ES), the CV and the ICC, with 95% confidence intervals. The scale
used for interpreting the magnitude of the ES was specific to training research: negligible
(<0.2), small (0.2–0.5), moderate (0.5–0.8), and large (≥0.8) (Cohen, 1988). The reliability
observed in each evaluation condition was reported using the FEMD. For the relation
between isometric tests and dynamic tests, a Pearson correlation coefficient was calculated
with a 95% confidence interval. FollowingHopkins et al. (2009), we classified themagnitude
of the values of the intraclass correlation coefficient through a qualitative scale: values close
to 0.1 are considered low reliability; 0.3, moderate; 0.5, high; 0.7, very high; and those close
to 0.9, extremely high. Reliability analyses were performed using a customized spreadsheet
(Hopkins, 2015), while JASP software package (version 0.9.1.0, http://www.jasp-stats.org)
was used for all other analyses.

RESULTS
The evaluation of the mean force of the concentric contraction of trunk flexors did not
differ between the test and the retest (p> 0.05, ES < 0.20). However, the evaluation of the
mean force of the eccentric contraction of trunk flexor strength was sensitive to the test
and retest (p< 0.05, ES 0.13–0.32). Similarly, there was no significant difference between
the test and retest of the peak force of concentric and eccentric contraction of trunk
flexors (p> 0.05, ES < 0.20). The absolute reliability provided a stable repeatability for
the isometric and dynamic protocols, with CV being below 10% in nearly all instances.
The relative reliability of different strength protocols to evaluate the mean force of trunk
flexors was very high (ICC = 0.71–0.85) for concentric contraction and very high (ICC
= 0.74–0.86) and high (ICC = 0.69) for eccentric contraction (Table 2). Moreover, the
absolute reliability provided better results in eccentric contraction (CV = 5.70–7.76) than
concentric contraction (CV = 7.04–14.00). The relative reliability of different strength
protocols to evaluate the peak force of trunk flexors was very high (ICC = 0.72–0.81) and
high (ICC = 0.54–0.60) for concentric contraction and very high (ICC = 0.71–0.91) for
eccentric contractions (Table 3). The most reliable conditions in which to evaluate flexor
strength are presented in Fig. 4.
The most reliable strength manifestation (CV = 6.82%) to evaluate the concentric

contraction of trunk flexors was mean force with V1R1 condition; the most reliable
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Table 2 Test–retest reliability of mean force measurements (Kg) provided by the functional electromechanical dynamometer at different veloc-
ities and ranges of movements.

Conditions Test Retest p-value ES CV (95% CI) SEM (95%CI) ICC (95% CI)

ISO V0R90◦ 30.8 (5.4) 30.3 (5.4) 0.337 −0.11 8.21 (6.77–10.66) 2.51 (2.04–3.26) 0.79 (0.63–0.89)
V1R1 26.9 (4.8) 27.4 (4.5) 0.251 0.11 6.82 (5.54–8.85) 1.85 (1.50–2.40) 0.85 (0.73–0.92)
V2R1 26.0 (5.2) 26.6 (5.3) 0.328 0.10 9.06 (7.37–11.77) 2.38 (1.94–3.10) 0.80 (0.65–0.89)
V3R1 24.8 (5.3) 25.1 (4.5) 0.537 0.08 10.83 (8.81–14.06) 2.70 (2.20–3.51) 0.71 (0.51–0.84)
V1R2 23.7 (4.4) 24.3 (4.5) 0.200 0.13 8.00 (6.51–10.39) 1.92 (1.56–2.49) 0.82 (0.68–0.91)
V2R2 23.6 (5.4) 24.1 (4.9) 0.337 0.11 10.18 (8.27–13.22) 2.43 (1.97–3.15) 0.79 (0.63–0.88)

CON

V3R2 22.9 (5.1) 23.9 (4.9) 0.096 0.18 9.89 (8.04–12.84) 2.31 (1.88–3.01) 0.79 (0.64–0.89)
V1R1 46.0 (9.0) 48.7 (7.6) 0.003 0.32 7.67 (6.24–9.96) 3.63 (2.95–4.72) 0.82 (0.68–0.90)
V2R1 48.7 (8.7) 50.9 (8.0) 0.021 0.26 7.78 (6.33–10.11) 3.88 (3.15–5.04) 0.79 (0.63–0.89)
V3R1 52.0 (9.1) 54.4 (7.7) 0.043 0.28 8.98 (7.30–11.66) 4.78 (3.88–6.21) 0.69 (0.47–0.83)
V1R2 45.4 (7.7) 46.3 (7.2) 0.265 0.13 8.03 (6.53–10.43) 3.68 (2.99–4.78) 0.77 (0.59–0.87)
V2R2 46.8 (8.5) 49.2 (7.7) 0.002 0.30 6.55 (5.33–8.51) 3.14 (2.56–4.08) 0.86 (0.74–0.92)

ECC

V3R2 48.3 (9.7) 50.7 (9.1) 0.040 0.26 9.88 (8.04–12.84) 4.89 (3.98–6.35) 0.74 (0.55–0.86)

Notes.
ISO, isometric contraction; CON, concentric contraction; ECC, eccentric contraction; V0, 0 m s−1; V1, 0–15 m s−1; V2, 0–30 m s−1; V3, 0–45 m s−1; R90, 90 degrees; R1, 25%
cm; R2, 50% cm; ES, Cohen’s d effect size; CV, coefficient of variation; SEM, standard error of measurement; ICC, intraclass correlation coefficient; 95% CI, 95% confi-
dence interval.

Table 3 Test–retest reliability of peak force measurements (Kg) provided by the functional electromechanical dynamometer at different veloci-
ties and ranges of movements.

Conditions Test Retest p-value ES CV (95% CI) SEM (95%CI) ICC (95% CI)

ISO V0R90◦ 37.5 (6.7) 36.7 (5.6) 0.212 −0.14 7.72 (6.27–10.02) 2.86 (2.33–3.72) 0.79 (0.64–0.89)
V1R1 42.2 (5.9) 42.6 (5.9) 0.721 −0.05 8.89 (7.23–11.55) 3.80 (3.09–4.94) 0.60 (0.34–0.77)
V2R1 43.2 (6.7) 42.9 (7.0) 0.755 −0.03 7.04 (5.73–9.15) 3.03 (2.47–3.94) 0.81 (0.66–0.90)
V3R1 44.8 (9.4) 46.2 (9.1) 0.344 0.15 14.00 (11.39–18.19) 6.37 (5.18–8.27) 0.54 (0.26–0.73)
V1R2 36.9 (6.4) 37.1 (5.6) 0.780 0.04 8.79 (7.15–11.42) 3.26 (2.65–4.23) 0.72 (0.51–0.84)
V2R2 37.7 (6.8) 38.1 (6.7) 0.573 0.06 8.35 (6.79–10.85) 3.17 (2.58–4.11) 0.79 (0.63–0.89)

CON

V3R2 40.2 (7.2) 40.4 (7.2) 0.898 0.02 11.40 (9.27–14.81) 4.60 (3.74–5.97) 0.60 (0.35–0.77)
V1R1 58.2 (9.1) 58.7 (7.9) 0.586 0.05 6.15 (5.00–7.99) 3.60 (2.92–4.67) 0.83 (0.69–0.91)
V2R1 65.6 (7.5) 64.7 (8.8) 0.354 −0.11 6.41 (5.22–8.33) 4.18 (3.40–5.42) 0.75 (0.57–0.86)
V3R1 73.7 (10.0) 74.5 (9.6) 0.525 0.08 7.31 (5.94–9.49) 5.42 (4.40–7.04) 0.71 (0.50–0.84)
V1R2 57.1 (8.8) 57.3 (8.2) 0.823 0.02 6.93 (5.64–9.00) 3.97 (3.22–5.15) 0.79 (0.63–0.89)
V2R2 60.0 (8.4) 61.2 (8.5) 0.101 0.14 5.07 (4.13–6.59) 3.08 (2.50–4.00) 0.87 (0.77–0.93)

ECC

V3R2 66.8 (10.1) 66.3 (9.7) 0.665 −0.05 7.76 (6.31–10.08) 5.16 (4.20–6.71) 0.74 (0.55–0.86)

Notes.
ISO, isometric contraction; CON, concentric contraction; ECC, eccentric contraction; V0, 0 m s−1; V1, 0–15 m s−1; V2, 0–30 m s−1; V3, 0–45m s−1; R90, 90 degrees; R1, 25%
cm; R2, 50% cm; ES, Cohen’s d effect size; CV, coefficient of variation; SEM, standard error of measurement; ICC, intraclass correlation coefficient; 95% CI, 95% confi-
dence interval.

strength manifestation to evaluate the eccentric contraction of trunk flexors was peak force
with V1R2 (CV = 5.07%), and the most reliable strength manifestation to evaluate the
isometric contraction of trunk flexors was peak force (CV = 7.72%) (Tables 2–3).
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Figure 4 (A) Linear correlation of V1R1 condition in the concentric phase between test-retest of mean
force of trunk flexors. (B) Linear correlation of V2R2 condition in the eccentric phase between test-
retest of mean force of trunk flexors. (C) Linear correlation of V2R1 condition in the concentric phase
between test-retest of peak force of trunk flexors. (D) Linear correlation of V2R2 condition in the ec-
centric phase between test-retest of peak force of trunk flexors.

Full-size DOI: 10.7717/peerj.7883/fig-4

The peak force of concentric trunk flexor strength under V1R1 conditions was best
related to the maximum isometric contraction (r = 0.70) and the mean force of eccentric
trunk flexor strength with V3R1 conditions (r = 0.73; see Table 4).

DISCUSSION
In the present study, we assessed the absolute and relative reliability of functional trunk tests
using a FEMD (Dynasystem, Symotech). The reliability of strength test results is crucial to
assess the level of adequate performance and develop a successful rehabilitation or training
program (Demoulin et al., 2012). The main findings of the present study were very high,
and high absolute and relative reliability was found in all assessment conditioning analyzed.

These findings are comparable to the results of Roth et al. (2017), who found a CV of
7.3% when evaluating isometric flexion trunk strength using a isokinetic device (IsoMed-
200). In addition, flexion trunk strength was evaluated with the same device at 60◦ /s and
150◦ /s speed obtaining a CV of 7.8% and 18.4% respectively with a range of movement
from−30◦ to 30◦ (Roth et al., 2017). Jubany et al. (2015) found similar results when using
a custom-made instrument including a hand-held dynamometer for measuring isometric
trunk flexor muscle strength, obtaining a CV of 5.3% and a CV of 6.6% when using the
gold standard Back-Check (Jubany et al., 2015).

In the literature, many different ranges of movement and velocities are considered for
studying the reliability of trunk flexor strength measurement using isokinetics devices
(Dervisevic, Hadzic & Burger, 2007; Guilhem et al., 2014; Roth et al., 2017). However, no
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Table 4 Correlation coefficient (r) from Pearson correlation analysis between isometric peak and
mean force with dinamic peak andmean force (Kg).

Conditions Mean force Peak force

r p-value r p-value

V1R1 0.64 <.001 0.70 <.001
V2R1 0.65 <.001 0.45 0.005
V3R1 0.67 <.001 0.48 0.003
V1R2 0.57 <.001 0.47 0.003
V2R2 0.58 <.001 0.50 0.001

ISO-CON

V3R2 0.43 0.008 0.38 0.019
V1R1 0.58 <.001 0.59 <.001
V2R1 0.61 <.001 0.52 0.001
V3R1 0.73 <.001 0.48 0.003
V1R2 0.48 0.003 0.58 <.001
V2R2 0.56 <.001 0.54 <.001

ISO-ECC

V3R2 0.55 <.001 0.50 0.002

Notes.
ISO, isometric contraction; CON, concentric contraction; ECC, eccentric contraction; V1, 0.15 m s−1; V2, 0.30 m s−1; V3,
0.45 m s−1; R90, 90 degrees; R1, 25% cm; R2, 50% cm.

standardized protocol was established for obtaining higher reliability. Therefore, the
current study compares the range of movement and the velocities to determine which
one is more reliable. By analyzing the data obtained in Tables 2 and 3, it can be verified
that the absolute and relative reliability is similar in all evaluation conditions. However,
the condition that presents greater reliability in the concentric phase, whether we observe
mean force or peak force values, is when it is evaluated at short ranges (CV = 6.82; CV =
7.04). This is not the case in the eccentric phase, where it is higher when evaluated at large
ranges (CV = 6.55; CV = 5.07).

The data suggest that the concentric phase of the trunk flexors should be evaluated at
a velocity of 0.15 m s−1 if we take mean force values, and at a velocity of 0.30 m s−1 if we
take peak force values. The eccentric phase, whether we take mean force values or peak
force values, should be evaluated at the velocity of 0.30 m s−1. Nevertheless, in the eccentric
phase of the trunk flexors, there was a learning effect between the test and the retest when
values of mean force were taken (p< 0.05). More familiarisation sessions would be needed
to evaluate the eccentric phase in the trunk flexors. These results are consistent with other
studies that have shown there is a learning effect in isokinetic devices (Keller, Hellesnes &
Brox, 2001; Gruther et al., 2009). Perhaps there is a greater learning effect in the eccentric
phase because in the day to day we do not perform this type of force as much as the
concentric phase.

Additionally, we compare the absolute and relative reliability of the mean force and
peak force of the trunk flexors. There are no major differences to help determine whether
it is better to use mean force or peak force to evaluate trunk flexor strength with FEMD.
In the clinical area, and sports performance, there is a tendency to use peak force values
of trunk flexors for the study of reliability (Yasuda, Minami & Daikuya, 2013; Roth et al.,
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2017; Ben Moussa Zouita et al., 2018); however, there are no studies in which the differences
between using peak force or mean force are described. Even so, the use of peak force can
overestimate the force produced by the overshoot in the isokinetic devices (Delitto et al.,
1991; Timm et al., 1992).

One of the innovations of this research was to study what evaluation condition is more
related to isometric strength. The mean force of eccentric trunk flexor strength with V3R1

condition (r = 0.73) was best related to the maximum isometric contraction. There are no
previous studies that analyse this, but it could be interesting to evaluate patients with low
back pain because of the unrestricted range of movement in the sagittal plane (Balagué
et al., 2010; Laird et al., 2014; Laird et al., 2019). These types of patients sometimes cannot
make maximum dynamic efforts but they could make maximum isometric efforts. Thanks
to knowing this relationship, the training loads in dynamic could be established.

The limitations of our study are as follows: first, we have only evaluated male students
without any back pain, so our data can not be extrapolated to the rest of the population.
Second, using a novel device and offering linear values of velocity and range of movement
hasmade our researchmore difficult to compare with other studies and there was a learning
effect with some effect sizes greater than 20% in the eccentric assessment. Future research
could perform the same evaluation in another type of population, such as patients with
low back pain, people of another age range and even female students, to further determine
the best evaluation condition in these types of population.

The application of this test for the clinical or sports field allows us to know the muscular
strength of the trunk flexors. With the data obtained in this study, we can understand what
coefficient of variation the test has, and thereby know the effects of special training or
rehabilitation programs. On the other hand, a reliable evaluation protocol with FEMD has
been created, allowing us to know the best velocity and range of movement for evaluating
this musculature. All of the protocols evaluated have shown reliable values, so that all of
the evaluation conditions could be used. The advantage of using the FEMD is that it is
cheaper than isokinetic devices and allows evaluating muscle strength in a more functional
way without using so many straps.

This allows coaches and medical practitioners to match the sporting gesture to the
evaluation. In the clinical field it is recommended to use the most reliable protocol;
however, in the sports field, it is recommended to use the velocity and range closest to the
sport performed.

CONCLUSIONS
Based on the results of this study, it may be reasonably concluded that the assessment
of the concentric, eccentric and isometric strength in the trunk flexors with FEMD is a
reliable evaluation system. In this type of evaluation, data of mean force or peak force can
be measured to determine the muscle strength without this influencing the reliability of
the evaluation and if we want to relate the isometric strength with dynamic strength the
V3R1 condition should be taken.
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