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Martín6, Juanita Romero-Díaz6, Pedro Carmona-Sáez1* & Marta E. Alarcón-Riquelme  1,7*

Systemic lupus erythematosus (SLE) is a heterogeneous disease with unpredictable patterns of activity. 
Patients with similar activity levels may have different prognosis and molecular abnormalities. In this 
study, we aimed to measure the main differences in drug-induced gene expression signatures across 
SLE patients and to evaluate the potential for clinical data to build a machine learning classifier able to 
predict the SLE subset for individual patients. SLE transcriptomic data from two cohorts were compared 
with drug-induced gene signatures from the CLUE database to compute a connectivity score that 
reflects the capability of a drug to revert the patient signatures. Patient stratification based on drug 
connectivity scores revealed robust clusters of SLE patients identical to the clusters previously obtained 
through longitudinal gene expression data, implying that differential treatment depends on the 
cluster to which patients belongs. The best drug candidates found, mTOR inhibitors or those reducing 
oxidative stress, showed stronger cluster specificity. We report that drug patterns for reverting disease 
gene expression follow the cell-specificity of the disease clusters. We used 2 cohorts to train and test a 
logistic regression model that we employed to classify patients from 3 independent cohorts into the SLE 
subsets and provide a clinically useful model to predict subset assignment and drug efficacy.

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by unpredictable pat-
terns of flares and remission. During periods of active disease a wide range of clinical symptoms may appear, 
ranging from cutaneous involvement to severe organ damage1. Disease activity can be measured using a global 
score such as the SLE Disease Activity Index (SLEDAI)2, and variations therein, such as the SLEDAI-2K or 
SELENA-SLEDAI. Patients characterized with similar disease activity scores may have different prognoses and 
clinical manifestations3.

Previously, we reported a longitudinal stratification of SLE patients based on clustering analysis of a expression 
data and SLEDAI correlation matrix4. Analyzing two independent longitudinal cohorts, we found a robust strat-
ification of SLE patients into three main groups characterized by differences in the correlated genes that reflected 
how immune cell populations evolved with disease activity. The three subtypes showed specific associations with 
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particular clinical parameters. The increase in disease activity in two of the groups was linked to an increase in the 
percentage of neutrophils, while in the third group disease activity increases were related to lymphocyte percent-
age increases. In addition, the neutrophil-related groups had a higher risk of developing proliferative nephritis, 
they were associated to lower C3 and C4 protein levels and lymphopenia, and molecular functions related to IFN 
I, apoptosis-related pathways, and cytokine signaling pathways were over-represented. The lymphocyte-related 
group had a higher incidence of Sjögren’s syndrome, an elevated incidence of abnormal liver function, and the 
main altered pathways were related to lymphocyte T and B signaling and activation.

The heterogeneity of SLE is also reflected in the variability in drug responsiveness between different patients, 
which results in a large proportion of patients showing no or partial response to therapies and where this 
trial-and-error approach clearly requires improvement5.

Previous studies conducted in other contexts, such as cancer, have shown that the cellular percentage, meas-
ured as the neutrophil to lymphocyte ratio (NLR)6 could play a fundamental role in drug responsiveness7,8. 
However, the relationship between cell types and drug efficacy or even drug selection has not been studied in 
autoimmune diseases. Therefore, we propose that the longitudinal classification associated with the fluctuation of 
neutrophils and lymphocytes could be used to study the plausibility of a better drug selection specifically within 
each group potentially to improve the treatment efficacy and eventually reduce costs.

In-silico drug-repurposing analysis based on gene expression data allow the identification of new therapeutic 
indications for a condition based on drugs used in other contexts by measuring the theoretical capability of a 
drug to revert a pathological gene expression signature. The gene expression signature of a disease is compared 
against a large collection of profiles derived from different compounds, obtaining a similarity or connectivity 
score. A negative similarity score suggests that the effect of the drug on gene expression is opposite to the effect of 
the disease, and it is reasonable to hypothesize that the drug might be able to revert the disease gene expression 
program and potentially the phenotype itself. A positive similarity score suggests that the compound produces a 
similar gene expression pattern to that of the disease9,10. CLUE (https://clue.io) is a cloud-based platform for the 
analysis of a large panel of perturbation-driven gene expression data from more than 8,000 compunds11, some of 
them commonly used in autoimmune diseases. Drug-repurposing analysis have been previously performed in 
SLE12,13, But these studies did not seek differential responses of treatments based on SLE heterogeneity, a strategy 
that has been used in cancer14. Finally, if indeed clustering signifies a difference that may guide therapy selection, 
a classification model would be required for the physician to be able to assign a patient to the appropriate cluster 
or group of patients. Most importantly, such classifiers should be easy to use with routine laboratory and clinical 
information.

The principal aim of this work was to investigate if the subtypes of SLE previously described also showed dif-
ferences in their association to drug-induced gene expression signatures analyzing the similarity scores among 
drug and subtype-based signatures. The second aim was to build a supervised classifier able to predict SLE sub-
type for individual patients using routine clinical laboratory information. The model provides a data-driven 
approach that migh help clinicians for subgroup SLE patients.

Results
Data cohort. For transcriptomic profile-based analysis we selected the visit with the higher SLEDAI for 
each patient shared with the longitudinal stratification study4. Cohort1 retained 16440 genes from 27 SLE adult 
patients with SLEDAI >5 and 20 healthy controls. Cohort2 was composed of a total of 15682 genes from 67 SLE 
pediatric patients and 72 healthy controls. For clinical based analysis, we used all patients with at least 3 visits with 
full clinical information, leading to a sample size of 38, 74, 192, 121, and 30 patients for cohorts 1, 2, 3, 4 and 5, 
respectively (Supplementary Dataset, Sheet 1).

Clustering analysis of SLE patients based on drug signatures. Consensus clustering analysis of 
the drug by sample connectivity score matrix yielded two clear groups in both datasets (Fig. Supplementary 1). 
Figure 1A shows the membership of each patient in the clusters based on the drug connectivity scores, to the lon-
gitudinal clusters previously described4, and the percentages of lymphocytes and neutrophils for each patient. We 
observed in both cohorts that patients belonging to longitudinal clusters 1 and 2 (or neutrophil-related clusters) 
were grouped together in a single group based on the drug scores, while patients from cluster 3 (related to lym-
phocytes), were grouped separately. This suggests that there might be differences in the efficacy of disease signa-
ture reversion by drugs depending on whether the patient belongs to the longitudinal clusters 1 and 2, or whether 
the patient belongs to cluster 3. Figure 1B shows how both the longitudinal correlation between the NLR and 
the SLEDAI, as the NLR measured in a time point of active SLE, is significantly higher in the neutrophil-driven 
groups, which suggests the possible use of the cell ratio when taking therapeutic decisions.

Drug connectivities in the SLE subgroups. A meticulous bibliographic search of drugs used in SLE 
yielded a list of 23 drugs also contained in CLUE. Figure 2A shows the connectivity score for MOAs from the 
drugs commonly used in SLE. We observed strong differences between the neutrophil and the lymphocyte-driven 
subgroups and also in respect to an “all SLE-patient”-derived signature. This allowed us to hypothesize that 
these drugs could differ in their efficacy depending on the cluster to which the patient belonged. The strong-
est differences were observed for mTOR inhibitors, which appeared to be able to revert the signature of the 
lymphocyte-driven subgroup best, and the TNF inhibitors in the case of the neutrophil-driven subgroups. The 
rest of the drugs did not reach very negative connectivity scores. Figure 2B shows the relative expression in blood 
cell types of the targets for each drug. Interestingly, targets for Sirolimus, an inhibitor of the mTOR signaling 
pathway, and for Thalidomine, that can act as a TNF inhibitor, were mostly expressed on lymphocytes and neu-
trophils, respectively.

https://doi.org/10.1038/s41598-019-51616-9
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The drug repurposing analysis yielded 104 drugs and 33 MOAs with significant scores (>|90|) in at least 
one of the clusters. Figure 3 shows the similarity scores between each cluster and the significant drugs (top), 
as well as the MOAs (right). As we previously observed, neutrophil-driven clusters shared strong similarities 
(Cluster 1 and 2) in comparison with the lymphocyte-driven cluster (Cluster 3). We observed different patterns 
of drug responses according to the connectivity score between clusters: drugs that induced similar gene profiles 
to drugs with signature reversion capability for the 3 clusters. Green color intensity represents the relationship 
based on the GSEA score between drugs and MOAs. Our results suggest that drugs related with inhibition of 
the mTOR and PI3K signaling pathways, and linked to anti-apoptotic and cell proliferation processes15, are the 

Figure 1. Clustering based on drug connectivity scores. (A) The assignment of each patient to the clusters 
based on the drug connectivity scores (violet and golden clusters), the assignment of each patient to each of the 
3 longitudinal clusters, and the percentage of neutrophils and lymphocytes for each patient. (B) Summary of 
the comparison done with ANOVA of NLR and of the correlation between NLR and SLEDAI score values of 
patients from the different SLE subgroups. NLR: Neutrophil to Lymphocyte ratio. dNLR: correlation between 
NLR and SLEDAI across diferent time points.

Figure 2. Analysis of drugs commonly used in SLE. (A) The connectivity scores of the MOAs on which the 
drugs commonly used in SLE act, shown for each subgroup and for a gene signature derived from all the 
patients together. On the left, the drugs are shown for each MOA. (B) The expression of the targets of each drug 
in the different cell types. The values are obtained by multiplying a binary matrix that contains the information 
of the targets for each drug and a matrix that contains the expression of each target in the different cell types.
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best candidates for Cluster 3, or lymphocyte-driven SLE. CDK inhibitors consistently may reverse the signature 
of the 3 clusters, and drugs aimed at regulating other apoptotic pathways, such as cyclooxygenase, JAK or NFkB 
inhibitors, could work best in neutrophil-driven SLE16,17. At the bottom, the figure shows the target expression of 
each drug in the different blood cell types.

The gene signatures clearly reflected the altered biological mechanisms. A functional analysis of these 
(Supplementary Fig. 2 and Dataset, sheets 2–4) revealed processes related to neutrophil-mediated activation and 
defense as the most significantly altered pathways in the neutrophil-driven subgroups, as well as autophagy and 
processes derived from cell stress, while cell proliferation and cell cycle were especially over-expressed in Cluster 
3. The significant drugs obtained were directed to these pathways, as the inhibitors of mTOR for Cluster 3 or the 
inhibitors of rho kinase for the neutrophil-driven clusters, which regulate autophagy18.

Classification model based on clinical data. The values of correlation between neutrophils and SLEDAI 
across different time points resulted in the best parameter to classify patients, reaching the highest accuracy 
(Supplementary Fig. 3). Therefore, the classification model f(x) obtained from K-fold cross validation is as follows:

= . + . ∗f x x( ) 0 3438 1 9848






> .
≤ .

f x
Neutrophil driven SLE if f x
Lymphocyte driven SLE if f x

( )
( ) 0 18
( ) 0 18

Where x is the correlation between neutrophil percentage and SLEDAI for a patient taking into account at least 
3 time points.

Figure 4A shows a ROC curve obtained from the test set (Cohort2) in which the area under the curve 
(AUC) of 0.87 was obtained with a classification success of 80% of the patients assigned into the neutrophil 
or the lymphocyte-driven subgroups. Figure 4B shows the results of the meta-analysis of severe nephritis in 
patients from the 5 cohorts classified according to our model, in which we obtained a combined probability 
of 1.5 times higher risk with a tendency towards significance (p value = 0.09) of manifesting nephritis in the 
neutrophil-driven subgroup with respect to the lymphocyte-driven subgroup. In this type of meta-analysis, the 
p value is influenced both by the sample size and by the variance of the data. The incidence of nephritis is not 
exclusive to a group, although it is greater in one group than in another, for which the p value does not become 
significant for the threshold of 0.05. Only cohort 5 showed an OR in a different direction from the other cohorts, 
which could be due to its small sample size. The p value obtained by leaving out this cohort is 0.06.

Figure 3. Drug-repurposing on SLE subgroups. Top) Significant drugs (score > = |90|) for at least one cluster. 
Right) Significant MOAs obtained using matrix multiplication. The green color represents the similarity level 
between MOAs and drugs obtained by GSEA. Bottom) Red color intensity represents the expression of targets 
for each drug in the different blood cell types.
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Discussion
In this exploratory analysis, we reported that previously established SLE subgroups4, notably, the neutrophil and 
lymphocyte-driven subgroups, showed differences in drug-induced gene expression connectivity scores. This 
could result in new therapeutic decision criteria based on the cluster or NLR ratio group to which each patient 
belongs. However, longitudinal pharmacodynamic analyses are required to verify the possible differential effects 
and the actual efficacy of the drugs in vivo or in vitro for each of the subgroups.

With few exceptions, the connectivity scores obtained for the drugs commonly used in SLE did not reach 
significant values. This could be a reflection of the low efficacy in practice that these drugs have on patients, 
since they target very general inflammatory processes19, regardless of the mechanisms specifically altered in each 
patient. Our approach allowed us to obtain not only drugs directed to the biological pathways altered during the 
disease, but, taking into account the heterogeneity of the gene signatures that the patients have, also allowed us 
to make the groups more molecularly and functionally homogeneous and to assign to a given group better drug 
candidates. Based on the heterogeneity of the SLE directed by neutrophils or lymphocytes, we should ideally 
consider two concepts when choosing a certain drug for a patient. Depending on the subgroup of SLE to which 
a patient belongs, we could look for drugs that reverse the altered gene patterns in that specific subgroup, but 
also, we could ascertain drugs whose targets are more specific or expressed in the characteristic cell type of the 
subgroup, unless their expression is ubiquitous or non-specific. Following these criteria, it could be of interest to 
test drugs such as kenpaullone or reversine, if available and if non-toxic, whose targets are expressed in neutro-
phils and lymphocytes alike and which appear to reverse the genetic patterns of all subgroups of SLE. Similarly, 
knowing the subgroup to which the patient belongs, for the lymphocyte-driven subgroup, inhibitors of mTOR 
and PI3K, whose targets in turn are expressed to a greater degree in lymphocytes, such as AZD-8055, WYE-354 
or KU-0063794, could be used. Recent studies have shown the relationship between the over-expression of the 
mTOR pathway with not only a greater proliferation and survival of lymphocytes, but also with their hyperactivity 
in SLE20. The best candidates for the neutrophil-driven groups act on different pathways of inflammation. For 
example, the RHO-kinase inhibitor III, which in addition to its targets being more highly expressed in neutro-
phils, acts on macroautophagy, with important implications on its use as therapy and for which there is mounting 
evidence showing their efficacy18,21,22.

The drugs used on patients are homogeneously distributed among neutrophil and lymphocyte-related groups, 
that is, no enrichment was observed4. Similarly, we cannot determine using clinical data if any of these drugs is 
more effective in one group than in another because we do not have an objective parameter of patient improve-
ment, as well as many sources of variation, such as the condition of patient in which the drug is applied (SLEDAI) 
or the different doses used. In addition, we find very few time points where a single drug is used, but they are 
found in combination with others. This is why more specific experimental studies are required to measure 
whether a certain drug is actually more effective within a subgroup or another.

Therefore, we propose obtaining the best candidate drugs based on their ability to reverse a patient’s gene sig-
nature depending on their assignment to the groups. This requires incorporation of the information into which 
subset each patient belongs as part of the criteria for a therapeutic decision. Although this work is an exploratory 
analysis and specific tests and clinical trials would be necessary to determine the utility of the classification from 
the clinical perspective, particularly in matters of non-response, primarily to test if the classification improves the 
actual therapies patients undergo.

Figure 4. Classification model specificity and sensitivity. (A) ROC curve obtained when testing the 
classification model on the test set. (B) Odds-ratios (OR) and confidence intervals at 95% of suffering from 
nephritis when assigned to the neutrophil or to the lymphocyte-driven subgroup in each study, and in the meta-
analysis.
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Methods
SLE datasets. The analysis based on SLE transcriptomic profiles was carried out with the two independent 
SLE sets described previously4. The first, named Cohort1 is an adult set of patients from the SPARE23 study proto-
col approved by Johns Hopkins University School of Medicine Institutional Review Board. Patients were enrolled 
from the Hopkins Lupus Cohort after informed consent was obtained. The second dataset, or Cohort2, was col-
lected from NCBI GEO GSE6539124 and has longitudinal gene expression data from pediatric human samples. 
The selection of gene expression profiles was done as described (1).

To study treatment differences in active lupus, we kept only the visit with the highest SLEDAI score (or highest 
SELENA-SLEDAI for Cohort1) for each patient, as long as this score was greater than 5, taking this value to indi-
cate (relatively) high disease activity25. Finally, we only conserved the patients used in the stratification study4, in 
order to establish a direct relationship between drug repurposing and the clusters.

For the classification model based exclusively on clinical information, we included three new longitudinal 
cohorts. The GLADEL multinational Latin American prospective inception cohort26 (called Cohort3), that 
collected clinical data from a total of 1480 patients, 150 patients from Instituto Nacional de Ciencias Médicas 
y Nutrición of Mexico (Cohort4), and 30 patients from the Division of Medicine, University College London 
(Cohort5). The 5 cohorts including the pediatric and the Johns Hopkins, totaled over 2120 patients with dif-
ferential biometry information for both, lymphocytes and granulocytes, presence or absence of nephritis, 
and the SLEDAI disease activity index measured at different time points (a minimum of 3) for each patient. 
Supplementary Dataset, Sheet 1, contains a table that summarizes the information of the cohorts.

All research was performed in accordance with standard clinical practice. Patient recruitment has ethical 
approval for each of the cohorts. All patients included in the study have given their informed consent.

Clustering of SLE patients based on drug connectivity scores. The first step was to check whether, 
based on the connectivity scores between drug and patient signatures, the patients stratified in a similar fashion 
to the longitudinal stratification described previously4.

Gene expression fold changes were estimated for each patient from Cohort1 and Cohort2 with respect to the 
mean expression of healthy controls and the top 150 more over- and under-expressed genes were selected as a 
disease signature for each patient. Then, each signature was queried in CLUE to obtain the connectivity or sim-
ilarity scores between patients and each drug-induced profile. The absolute rank sum4 was applied to select the 
drugs that had significantly high similarity score in absolute value across most of the patients and build a drug by 
patient connectivity score matrix from each cohort. Finally, a consensus clustering algorithm was implemented 
on ConsensusClusterPlus R package27 was applied to each matrix to establish groups of patients that shared sim-
ilar drug connectivity scores profiles.

Drug-repurposing analysis in SLE subgroups. From the cluster assignation previously described for 
Cohort 1 and 2 in our previous work4 we defined the set of differentially expressed genes in each SLE subset with 
respect to control samples using linear fixed models28. We then defined the common signature for the same group 
in Cohort 1 and 2 selecting maximum p value combinations from the two cohorts29 and the the top 150 significant 
over and under- expressed genes were used as the input signature in CLUE. Drugs with connectivity scores higher 
than 90 in absolute value (> = |90|) were selected for further analysis.

Analysis of common mecahinsms of actions in SLE subgroups and drug target gene expres-
sion. We used a matrix multiplication approach between the cluster by drugs connectivity matrix and a binary 
drug by mechanism of action (MOAs), binary matrix from information contained in CLUE database. This yielded 
a cluster by MOA matrix that was used to analyze the main MOAs of drugs associated with each SLE goup (select-
ing those with coefficients higher than 90). This framework was also used to analyze gene expression patterns in 
blood cell populations of drug targets. To this end, we multiplied a drug by target binary matrix with information 
from CLUE and a target by cell type gene expression matrix generated mining programmatically the Expression 
Atlas Database30 using a custom python script. A summary of all these processes is shown in Fig. 5.

Finally, we analyzed the similarities between MOAs using the Touchstone tool from CLUE. This tool ranks all 
drugs stored in CLUE based on the similarity score with an individual drug. Each significant drug was queried 
on Touchstone. We substituted the ranked drugs for their MOAs and applied a Gene Set Enrichment Analysis 
(GSEA)31 to obtain what were significantly similar MoAs (p value <  = 0.05) and different from the drug in ques-
tion, that is, MOAs with positive and negative scores from GSEA, respectively.

With these analyses the connectivity scores of the drugs was obtained for each of the subgroups, the significant 
MOAs and the similarities between them, as well as the specificity of each drug in the blood cell types.

Functional analysis. We analyzed the gene signatures obtained from SLE subgroups (top 150 most over and 
under-expressed genes) using Enrichr web tool32 and GENECODIS (http://genecodis.genyo.es/)33 to obtain lists 
of gene ontology biological processes that were over and under-represented for patients from each longitudinal 
cluster. ReviGO34 was used to cluster and visualize the ontological terms based on semantic similarity and to 
reduce term redundancies.

Machine learning classifier based on clinical data. We used clinical variables from Cohort1 to train 
and generate a logistic regression-based model to classify new longitudinal patients (at least with data for 
3 time points) within neutrophil or lymphocyte-driven SLE subgroups. On the training set we applied k-fold 
cross-validation with 1000 iterations using caret R package35, testing models with different variable combinations 
in order to search the model more accurately. Considering that the clusters we found were importantly related 
to neutrophil and lymphocyte counts and/or percentages, we used as variables the neutrophil and lymphocyte 
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correlation with SLEDAI and the correlation between NLR and SLEDAI36,37. We also altered the value of k (i.e. 
percentage of patients that are used to internally test the model) to obtain the stability of the model under changes 
on sample size. Then, we tested the model on Cohort2 to obtain their sensitivity and specificity. Finally, we tested 
the model to classify patients from Cohort 3, 4 and 5 into neutrophil or lymphocyte-driven SLE.

Using the patient classification, the odds-ratios (OR) of patients with and without nephritis was calculated 
comparing subgroups in each cohort applying a random effect meta-analysis38 model to obtain the combined OR 
across cohorts.
Received: 31 July 2019; Accepted: 29 September 2019;
Published: xx xx xxxx
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