
International Journal of Computational Intelligence Systems
Vol. 12(2), 2019, pp. 1162–1172

DOI: https://doi.org/10.2991/ijcis.d.190912.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Fuzzy Systems-as-a-Service in Cloud Computing

Manuel Parra-Royon*, José M. Benítez

Department of Computer Science and Artificial Intelligence, DiCITS, DaSCI, IMUDS, University of Granada, ETS de Ingenerίas Informática y de Telecomunicación,
Granada, 18014, Spain

ART I C L E I N FO
Article History

Received 24 May 2019
Accepted 17 June 2019

Keywords

Fuzzy system software
Cloud computing
Cloud platforms
Services deployment
Fuzzy model building

ABSTRACT
Fuzzy systems have become widely accepted and applied in a host of domains such as control, electronics or mechanics. The
software for construction of these systems has traditionally been exploited from tools, platforms and languages run on-premise
computing infrastructure. On the other hand, rise and ubiquity of the cloud computing model has brought a revolutionary way
for computing services deployment. The boost of cloud services is leading towards increasingly specific service offering just
as data mining and machine learning service. Unfortunately, so far, no definition for fuzzy system as service is available. This
paper identifies this opportunity and focus on developing a proposal for fuzzy system-as-a-service definition. To achieve this, the
proposal pursues three objectives: the complete description of cloud services for fuzzy systems using semantic technology, the
composition of services and the exploitation of themodel in cloud platforms for integration with other services. As an illustrative
case, a real-world problem is addressed with the proposed specification.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

For over 30 years, fuzzy system software have been developed as the
most direct and practical application of the theory of fuzzy sets [1].
These software-related systems have made possible scientists and
engineers to deal with the representation of knowledge and reason-
ing subject to imprecision and uncertainty for the solution of very
different kinds of problems. Fuzzy systems are extremely effective
in modeling complex systems and have the capacity to incorpo-
rate human expert knowledge even affected by uncertainty. In this
respect, fuzzy systems have been implemented and applied in dif-
ferent domains of application such as industry [2], electronics [3],
control systems [4], computing or mechanics [5,6], among many
others.

Along the years, several software tools have been developed with
the aim of facilitating the modeling and rapid adoption of fuzzy
systems within a broad set of domains and problems. Such applica-
tions allow researchers and scientists with basic knowledge of fuzzy
logic to model a complete fuzzy systems with minimal effort and in
a fully flexible fashion. Software for general purpose fuzzy systems,
for specific applications and languages, is available as tools (XFuzzy
[7],FuzzyStudio [8],...), platforms (KNIME [9], WEKA [10],...) and
libraries (FRBS [11], pyFuzzy [12],...).

Over the last 10 years and with an increasing intensity, cloud com-
puting is pushing the traditional on-premise model toward an on-
demand service deliverymodel over the Internet [13]. In fact, cloud
computing is rapidly becoming a generalized alternative to costly

*Corresponding author. E-mail: manuparra@gmail.com

on-premise infrastructures with key aspects such as scalability, on-
demand availability or pay-per-use. Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service (IaaS)
are the three main abstract layers of services in cloud computing,
where the computing resources from providers are deployed as ser-
vices (storage, computation and communications) ready to be con-
sumed by users as depicted in Figure 1.

The traditional solutions for the construction of fuzzy systems
lack support for cloud computing. Thus, aspects such as flexibility,

Infrastructure
Provider

End-user
Consumer

ServicesService
Provider

SaaS PaaS

Services

IaaS

Services

Figure 1 Overall architecture and components for the cloud
computing model.

Pdf_Folio:1162

https://doi.org/10.2991/ijcis.d.190912.001
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/

M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172 1163

portability, scaling-up of resources on demand or the discovery of
services are not considered.

This way, a natural extension of the software for fuzzy systems
would be the implementation, construction and deployment of
fuzzy logic models as a service in cloud computing platforms,
namely Fuzzy Systems-as-a-Service (FSaaS), with the benefits [14]
of scalability, development speed, portability or interoperability, as
well as several other features.

The aim of this work is to make an effective proposal for the
construction of fuzzy models on cloud computing platforms as
services, considering key aspects such as design, description (con-
struction), deployment, composition and, finally, exploitation. To
this end, semantic technology has been used to enable the creation
and deployment of fuzzy systems as cloud computing services.

This work also considers aspects such as the composition and
integration of fuzzy logic services with other services in cloud
computing. The proposal is general enough to accommodate new
models of service deployment such as serverless services or
Function-as-a-Service (FaaS). This proposal seeks to address the
problem of integrating tools and platforms for modeling fuzzy
systems within native cloud computing environments, so that it
endows all the characteristics inherent to the cloud model such as
scalability, flexibility and integration, being a step forward in terms
of transforming traditional tools to cloud computing services.

The paper is structured as follows: Section 2 compiles the state-
of-the art of software fuzzy systems from different perspectives.
Then, in Section 3 a definition for fuzzy systems-as-a-service based
on semantic technology is detailed. Afterwards, one example of
use case is defined in Section 4. In Section 5 all the advantages of
deploying this software in cloud computing compared with tradi-
tional software tools are depicted. Conclusions and final remarks
are described in the last section.

2. RELATED WORK

The great success of the use of fuzzy systems in a wide variety of
fields such as decision making, control systems, image recognition,
has motivated the advent of many software development tools for
the construction of this type of systems. The develop of fuzzy sys-
tems has been done using languages, platforms, libraries or devel-
opment environments, both in commercial or open source versions.
The implementation for the subsequent use of the systems is always
specific hardware devices or on-premise computers. Cloud Com-
puting, however, allows for a new way of service deployment for
computing tasks that will also result very beneficial for fuzzy sys-
tems. In the following paragraphs a study of the software systems
for fuzzy systems is carried out.

The development of fuzzy models has been approached from dif-
ferent points of view. In [15] a taxonomy of fuzzy system software is
made distinguishing between general purpose, and specific purpose
and detailing the languages proposed for fuzzy systems modeling.

An important problem when building fuzzy systems is that there
is no standard for modeling this type of systems. Aspects such
as terminology, methodology or compatibility would be resolved
if a homogenization in the modeling was available. To try to
mitigate this, different language proposals have been developed

over the last years. Most of the language proposals are focused on
providing environments to model fuzzy systems for both general
purpose domains and specific fields. For example, Fuzzy Control
Language (FCL [16]) offers a common basis for the development
of fuzzy logic, through which to integrate fuzzy logic controllers.
Languages such as Fuzzy Markup Language (FML [17]) offers an
eXtensible Markup Language (XML)-based language for defining
fuzzy systems or XFL [18] specification, a language specification
for fuzzy modeling of general purpose systems used on the Xfuzzy
[7] CAD platform. On the other hand, XFSML [19], based on XML
and serves as a starting point for the definition of a standard mod-
eling language, along with other more robust options such as IEEE
P1855/D2.0, represent a clear commitment to standardization in
fuzzy control modeling.

Another frequent approach is to use general purpose programming
languages, complemented with specific libraries contributing fuzzy
system functionality. Quite diverse libraries and packages have been
developed for languages such asMatlab [20], C/C++ [21], Java [22],
or R [11], among others. By using these libraries it is possible to
build models of fuzzy systems within the general program that
would otherwise be constructed. This choice easily enable the inte-
gration with functionalities supported by additional libraries, for
example, visualization, data analytics, monitoring, etc.

On the other hand, software modeling for fuzzy systems has been
widely integrated into visual applications for experimental model-
ing and data processing, such as KNIME [9] or WEKA [10]. These
tools besides providing an engine for the work with Data Mining,
also integratemodules for themodeling of fuzzy systems in a totally
visual way, allowing the user to build the system through the inter-
connection of blocks, stages or operations.

Most of this traditional software for the modeling of fuzzy systems
is designed to work on-premise. There is a minuscule portion of
software for fuzzy systems deployed in web. With proposals like
CAVUS [23], or FuzzyStudio [8] is possible to model a complete
fuzzy systems using a web browser. However, these proposals are
not cloud-native, so they cannot take advantage of the features that
cloud-based solutions would offer. For this type of fuzzy systems to
be deployed in the cloud, it is necessary to have the right tools to
be able to define and describe services for cloud computing in an
efficient and effective way, in order to capture its full potential.

Different proposals for the definition of services have been devel-
oped in both the syntactic and semantic fields. At syntactic level,
part of the proposals are based on Services-Oriented-Architecture
(SoA) and XML, in addition to other derived languages such as
WSDL [24], WADL [25] or SoAML [26] dealing at syntactic level
the technical aspects of services in general.

Proposals with semantic technology have an increasing added
value, since they offer a much greater flexibility than syntactic lan-
guages, allowing to capture functional and non-functional features
of the service. OWL-S [27] or WSMO [28] are some of the basic
proposals for the development of semantic definitions in general.
Others, like USDL [29], include many more aspects related to the
service in cloud computing, such as entities, prices, composition or
legal aspects. On the other hand Linked-USDL [30] offers a vocabu-
lary and a complete scheme for the definition of generic services in
cloud computing and includes modeling elements such as catalog,
interaction or Service Level Agreement (SLA) among many others.

Pdf_Folio:1163

1164 M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172

Following this line, our proposal tries to fill the existing gap in
the description of services for fuzzy systems in cloud computing,
through which it is possible to design, deploy and exploit fuzzy sys-
tem software on cloud platforms, with all the advantages that this
entails.

3. FUZZY SYSTEM MODELING IN CLOUD
COMPUTING

3.1. Fuzzy Systems

Introduced by L. Zadeh in 1965, the theory of fuzzy sets emerged
as an extension of the classical set theory, for the modeling of sets
where their elements may belong to them with a degree between
0 and 1, and non-necessarily equal to the extreme values. This
degree of membership indicates how close it is to being a member
(1) or not being a member (0), while the intermediate values indi-
cate a partial membership. The degree of membership is indicated
by a function called membership function.

In addition many fuzzy concepts derive from the human language,
which is eminently vague. The logic derived from fuzzy sets, fuzzy
logic, becomes a very powerful tool to represent linguistic concepts,
variables, and rules, necessary to represent human expert knowl-
edge. A key concept is the linguistic variable that takes as values
linguistic terms from a set whose is expressed as fuzzy sets.

The traditional concept of rule-based system is naturally extended
to fuzzy rule-based system (FRBS), when some or all of its com-
ponents are of a fuzzy nature. The most frequent case is when the
rules are linguistic. In relation to the structure of the rule, there are
twowidely usedmodelsMamdani and Takagi-Sugeno-Kang (TSK).
Figure 2 represents the architecture of theMamdanimodel, consist-
ing of four key components: a) fuzzification: transforms the crisp
inputs into fuzzy values, b) knowledge base: stores a database and a
rules database, c) inference engine: performs reasoning operations
on fuzzy rules and input data, d) defuzzification: produces crisp val-
ues from the linguistic values in order to produce an output result.
In Mamdani model, rules both the antecedent and the consequent
are composed of linguistic variables following this model:

IF X1 is A1 and ...Xn is AnTHEN Y is B (1)

TSK rules differ from Mamdani’s ones in that their consequent is
a function of input variables and thus no defuzzifier is needed. In
this way the construction of an FRBS requires the definition of each

O
ut

pu
t

Fu
zz

ifi
er

 (F
Z)

D
ef

uz
zi

fie
r (

D
FZ

)

Knowledge (KB)

Database
(DB)

Rulebase
(RB)

Inference Engine (IE)

In
pu

t

Figure 2 Components of the Mamdani model.

of the elements that composes it: variables, rules, inference engine,
fuzzifier and defuzzifier modules. Themost sensitive component of
an FRBS is the knowledge base. There are two general approaches to
produce it: a) derived from expert knowledge through some knowl-
edge extraction processes, b) computed through learning meth-
ods. Furthermore, a number of hybrid proposals integrating the
best properties of fuzzy systems with other computational intelli-
gence techniques have been developed along the years. Clear exam-
ples of this hybridization are neuro-fuzzy systems an genetic-fuzzy
systems. Both kinds of FRBS (i.e., Mamdani and TSK) as well as
most commonly used hybrid systems should be considered when
addressing the definition of a platform for FRBS development and
exploitation.

3.2. Semantic Technology

The design of services in cloud computing must focus on two
aspects, the description of the service and the definition of the com-
ponents. Most of the problem of service design is that there is no
globally accepted standardization for this purpose. Moreover, since
it is a service in the cloud, it must also consider the aspects related
to the management of a service in this kind of platforms, as well as
all the requirements for modeling fuzzy systems. The managing of
services in cloud computing is both a need and an advantage with
respect to on-premise alternative tools, as indicated in Section 2.

To deal with the definition of services in cloud computing, many
proposals have been made since the early days of cloud comput-
ing. The proposals for the definition of services based on seman-
tic technology are the most accepted for the modeling of services
in cloud computing. Semantic technology provides an abstraction
layer that connects data, content and processes. A key element are
ontologies, which allow to define the formal specifications of terms,
the relationships between them and the properties within a domain.
Thanks to the use of semantic languages such as OWL [27], RDF
[31] or Turtle [32], it is possible to capture the form, the format,
the serialization or the schema of any existing data or system. With
semantic languages it is possible to design new vocabularies by
means of which concepts, terms and relations of an area of knowl-
edge are represented by using semantic triples, which comprise a
subject, a predicate and an object as depicted in Figure 3.

For the definition of fuzzy systems, we have developed fsschema,
a vocabulary based on semantic technology. It includes all the ele-
ments and procedures required for a complete definition of fuzzy
systems. In a complementary way, a vocabulary named ccsschema
has been designed allowing the management aspects of a service
in a cloud computing platform, such as authentication, interaction,
SLA or pricing of services, among others.

Subject Predicate Object

Fuzzy
System hasInput

“Temperature”

“Humidity”

Figure 3 Triples structure of semantic knowledge.
Pdf_Folio:1164

M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172 1165

In the following sub-sections we describe the modeling of FRBS as
a service in cloud computing using semantic technology.

3.3. Definition and Description of a Fuzzy
Systems Service in Cloud Computing

3.3.1. Semantics of fuzzy systems modeling

Themainpart of the design of a service for fuzzy logic focuses on the
construction of the fuzzy systems and its components. After careful
examination of widely accepted monographs and consulting some
of the proposals referred to in Section 2, a semantic fuzzy system
has been defined. The components and structure of the proposal are
depicted in Figure 4. The more relevant components are detailed in
the following:

• Inputs and outputs. They corresponds to the input and output
variables of the fuzzy systems. Both types of variables need to
be defined stating their name and specific characteristics
thought their Type. For the semantic definition of both types of
variables it is necessary to use fsschema:hasInput and
fsschema:hasOuput both point respectively to Input and
Output as definition classes for the types of variables. Both
require an element fsschema:type and
fsschema:Membership (not shown in the Figure 4).

• Definition of linguistic variable types. The type of a variable of
the fuzzy systems is defined by the name of the type and
universe of discourse, in conjunction with membership
functions. The universe of discourse is identified with the
values maximum, minimum and cardinality. Membership
functions are contained within a more general class that
agglutinates all the functions that the service is able to deploy
for the construction of the fuzzy systems and the are used to
describe language labels. To define each of the fuzzy model
variable types it is necessary to instantiate fsschema:hasType
and fsschema:Type. To fully specify the ”Type” we use the
properties min, max, cardinality and name, and also
include all the required membership functions with
fsschema:hasMembershipF. In the Figure 4 the set of
functions that includes the fsschema within the class

fsschema:Function is shown. For example, to instantiate a
triangularmembership function, use fsschema:MembershipF
and the following properties: to define the name of the
linguistic label label and fsschema:hasProperties of the
Function class for fsschema:Membership of the
triangular class with properties a, b, c, corresponding to
the values of the triangular function, as illustrated in Figure 5.
In this way with fsschema it is possible to collect all the usual
concepts that are handled in the area of the fuzzy systems.
Six types of functions are defined with fsschema (see Table 1):
binary functions that can be used as T-norms, S-norms and
implication functions; unary functions that are related with
linguistic hedges; crisp functions that implement crisp blocks;
membership functions that are used to define the semantic of
linguistic labels; families of membership functions and
defuzzification methods.

• Crisp Blocks. Crisp functions are used to describe
mathematical operations between variables. These functions
can be assigned to other crisp modules and included in the
fuzzy systems composition. Table 1 shows some of the crisp
functions included by fsschema.

• Sets of operators. A set of operators contains the mathematical
functions that are assigned to each fuzzy operator. fsschema:
hasOperatorSet and fsschema:OperatorsSet are
necessary to describe the operators that will be used in the
whole fuzzy systems.

• Rule and rule base. Rules are built with an antecedent and a
consequent. The antecedent describes the relations between the
input variables of the fuzzy systems and the consequent
describes the assignment of a linguistic variable to an output
variable, for instance in the Mamdani model. In TSK model,

Table 1 Function groups and functions included in fsschema (not
all of them are shown).

Unary not,sqrt,square, cubic, sugeno, pow
Binary max,min,prod,sum,zadeh,godel,...
Crisp add,diff,prod,div,sample
Membership triangle,trapezoid,slope,...
Defuzzification mean,Gamma,TakagiSugeno,..

FuzzySystem
Service

CrispBlocks
hasCBlocks

Types

hasTypes

OperatorSets

hasOperatorSet

FuzzyModel

Input Output

hasInput hasOutput

RuleBase
hasRuleBase

Learning
System

hasComponentModel

hasPhase

Figure 4 Overall structure of the fuzzy systems modeling scheme with fsschema.
Pdf_Folio:1165

1166 M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172

the consequent is represented by a function of input variables.
For each rule, a specific weight or confidence value can be
established. The instantiation is done with fsschema:
hasRuleBase of the class fsschema:RuleBase and data as
name of the rules base, input, output variables, the
construction of the rules with fsschema:Rule and properties
fsschema:hasAntecent fsschema:hasConclusion (see
Figure 6).

• Fuzzifier and defuzzifier. The fuzzifier module is in charge of
converting a crisp input to a linguistic variable using the
membership functions. The fuzzifier can also be defined as a
mapping module from an observed input to a fuzzy set of labels
in a universe of inputs specific to the discourse universe. On
the other hand, defuzzifier convert the fuzzy output of the
inference engine to crisp using membership functions similar
to used by the fuzzifier. A natural and simple fuzzification
example, is to convert a crisp input value into a fuzzy singleton,
within the specified universe of discourse. For this purpose, the
type fsschema:Type of the entry is specified as a membership
function fsschema:MembershipF, the set of linguistic labels
label and its membership fsschema:Membership, in this
case singleton, is assigned with the definition value a.

• Learning system. Learning methods involve two parts: a) the
identification of the structure, where a rule base is generated
and b) the optimization of the estimation of the parameters of
the membership functions. The structure that has been
designed to describe the modeling of the fuzzy learning system
part can be seen in Figure 7. For the instantiation of a learning
phase fsschema:hasPhase LearningM is used. After that,
for the description of LearningM it is necessary to indicate
some entities, like the learning algorithm that will be used,
fsschema:hasAlg. It is also necessary to define the training
data set with fsschema:hasTData and the type of input and
output (fsschema:hasInput fsschema:hasOutput) that
will be used by the learning methods to build a rule-based

a b cMin Max

1

0

membership:triangle

Figure 5 Fuzzy modeling for a membership
function with fsschema.

RuleBase Rulecontains

ConclusionAntecedent

hasAntecedent hasConclusionhasRuleBase

FuzzySystem
Service

Figure 6 Rule base definition schema.

structure. Learning system supports stand-alone procedures as
well as various hybrid models such as Neuro-fuzzy systems.

3.3.2. Semantic of cloud computing management
services for fuzzy systems

The definition of a service in cloud is not complete without tak-
ing into consideration the management elements that the cloud
provider needs for the exchange of information with the cloud con-
sumer user of services or other external entities. These elements
are, for example, service pricing, authentication, SLA or interaction
interfaces, among others.

Semantic definition of cloud computing services have the advan-
tages of negotiation, composition and invocation, with a high
degree of automation. This automation is fundamental because it
allows services to be explored and discovered for exploitation by
other entities. In this line, for example, other entities, such as cloud
computing users or cloud brokers [33], could check the costs asso-
ciated with the use of the fuzzy systems in cloud or to know which
methods are necessary to authenticate in the service of the fuzzy sys-
tems if they are defined. Figure 8 shows the modeling diagram for
the full service definition of fuzzy systems, including all the addi-
tional elements of service management in cloud computing such as
authentication, catalog, entities, interaction, pricing and SLA.

The definition scheme for the management of a service that has
been used is ccsschema.1 It is a light version of the semantic
scheme developed in dmcc-schema [34] and contains all the basic
elements for its integration with a generic service in cloud comput-
ing. It allows to define in a simple way the management elements of
the service:

• Authentication. Services require authentication for use and
exploitation. For authentication the waa [35] definition scheme
has been used, which supports the vast majority of new web
authentication models such as Oauth or ApiKey among others.
For example, once the fuzzy systems has been modeled it will
be integrated with other applications and services in cloud
computing, and it will be essential to provide the service with
an authentication for the exploitation of the fuzzy systems by
other entities.

TrainingData

Learning System

ANFIS

FRBS CHI

FRBS W

GFS THRIFT

HYFIS

SBC

WM

Input

hasTData

hasAlg
hasInput

Output

hasOutput Algorithm

Figure 7 Decomposition of the fuzzy learning system class.

1 CloudComputing schema: https://dicits.ugr.es/linkeddata/dmservices/
Pdf_Folio:1166

M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172 1167

FuzzySystem

ServiceProvider
Service
Pricing

Interaction

Service
Authentication SLA

FuzzySystem
Service

hasFuzzyService

ServiceCatalog
hasCatalog

hasInteraction

hasSLAhasFuzzySystemhasAuthentication

includes

Figure 8 Overall cloud computing semantic model including fuzzy systems and
cloud management entities.

• Catalogue. Cloud providers have a catalogue of services
through which both users and other entities (cloud brokers, for
example) can query the services that the provider makes
available. From the catalogue, it is possible to view
descriptions, prices, parameters, Application Programming
interface (API), SLA, etc., so that it is the key starting point for
the discovery of services on cloud platforms.

• Interaction. To interact with a service it is necessary to expose
an API that allows consumers to communicate with the service
in some way. This communication can be done in different
ways such as an API RESTful, WSDL, or any other option
available for web services.

• Prices. The services offered by cloud providers are subject to
costs based on use of the service, specifications or time, among
others. We use ccprice2 scheme to cover the most common
types of pricing; on the one hand, it allows us to expose the costs
of use based on the cost of computing instances and resources
for the modeling of fuzzy systems. On the other hand, it allows
us to price a service according to the use and exploitation, not
based on computing time, but on calls to the fuzzy systems built.

This section can be summarized stating that a complete proposal
has beenmade for the definition of fuzzy system-as-a-service: a ser-
vice in cloud computing for a fuzzy systems that unifies all the key
aspects that this type of service should have.

4. SAMPLE CASE OF USE

To confirm the validity of fsschema and ccsschema as tools for
the definition of fuzzy systems services in cloud computing, a real
case study will be developed, in which a complete fuzzy systems ser-
vice is described, including all the aspects of the fuzzymodel, as well
as all the elements related to the management of the fuzzy service
in cloud computing.

For reasons of space we will not detail all the data or attributes in
depth and will only consider what is most important for the basic
specification of the service and his comprehension. All detailed

2 Cloud Computing pricing schema: https://dicits.ugr.es/linkeddata/
dmservices/#ccpricing

Temperature

Humidity
FuzzySystem

Service

Temperature variation

Cloud Computing environment

Figure 9 Example of a greenhouse element and its
connection to a fuzzy systems in a cloud computing
environment.

information on each component, examples and other fuzzy systems
are available on the complementary information website3.

For this case of use we want tomodel a fuzzy systems for the control
of temperature and humidity in a network of greenhouses, where
cherry tomatoes are cultivated (see Figure 9). In this way, the overall
exploitation of the systemhas to bemanaged as a cloud service, con-
sidering some management aspects such as pricing, authentication
in the service or interaction, as well as the complete modeling of the
control system.

The deployment of a fuzzy system on the cloud as a solution for
this problem is motivated by the advantages of cloud computing.
On the one hand, the size and configuration of the set of green-
housesmay change easily: through the addition of new greenhouses
or removal of others no longer in use or according to the harvest
schedules. The data is gathered through a network of sensors, most
of which adapts to the Internet of Things device philosophy. Then
the adaption of fuzzy logic controllers for each independent green-
house should be tuned to its particular features. Thus the resource
assignment, for communication, storage and computing should be
scalable and provided on-demand [36]. For the modeling, semantic
schemes fsschema and ccsschema will be used, to cover both the
description of the cloud computing service management and the
description of the fuzzy systems

The definition of the elements and components of the fuzzy systems
with fsschema is composed of several levels of abstraction, allow-
ing to specify from the most general entities to the final details. The

3 Semantics of fuzzy system modeling: https://dicits.ugr.es/linkeddata/
fuzzyservices/

Pdf_Folio:1167

1168 M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172

particular definition of the main of these elements is made, along
with their attributes and relationships. Code Listing 1 shows each
of the elements that will be included in the modeling, such as the
inputs (fsschema:hasInput) _:temperature, _:humidity,
the output (fsschema:hasOutput) _:tempvariation, the def-
inition of the types of variables (fsschema:hasType), the
operators (fsschema:hasOperatorSet) and the rule base
(fsschema:hasRuleBase) _:rulesbase.

Listing 1 : Main components of the fuzzy system description.

1 <http://dicits.ugr.es.com/ld/FSGRH>
2 a fsschema:FuzzySystem;
3 rdfs:label
4 "Greenhouse FuzzySystem"@en;
5 fsschema:hasInput
6 _:temperature,_:humidity;
7 fsschema:hasOutput
8 _:tempvariation;
9 fsschema:hasTypes
10 _:types;
11 fsschema:hasOperatorSet
12 _:opset;
13 fsschema:hasRuleBase
14 _:rulebase;
15 .

The first part to be described are the inputs and output of the fuzzy
systems. Table 2 describes each of the input variables (Temperature
and Humidity), the labels and the values that define the member-
ship function. Table 3 the output of the fuzzy system is described.

To model, for example, the input corresponding to
_:temperature, it is necessary to indicate the variable and
the parameters of the universe of discourse such as Max
fsschema:max "50", Min fsschema:min "-5" or cardinality
fsschema:cardinality (not indicated), together with their
corresponding membership functions and labels _:TVeryLow,
_:TLow, _:TNormal, _:THigh, _:TVeryHigh as shown in code

Table 2 Labels, membership function and values for the input
variables (Temperature and Humidity).

Label and Membership
Function

Temperature
Values (C)

Humidity
Values (%)

Very low (trapezoidal) -5,-2.10,15 0,0,10,20
Low (triangular) 10,15,20 10,25,50

Normal (triangular) 18,20,22 30,40,50
High (triangular) 20,25,30 40,55,70

Very high (trapezoidal) 25,30,40,50 60,70,100,100

Table 3 Labels, membership function (all
Triangular) and values for the output variable.

Label and Membership
Function

Control Variation of
Temperature

Large descent (LD) -15, 10.5, -7.5
Normal descent (ND) -10.5, 5.5, -2.5
Small descent (SD) -7.5, -2.5, 0

No action - Maintain (M) -1.5, 0, 1.5
Small rise (SR) 0, 2.5, 7.5

Normal rise (NR) 2.5, 5.5, 10
High rise (HR) 7.5, 10.5, 15

Listing 2. Then, code Listing 3 defines in detail each of the types of
membership functions for the input _:temperature.

Listing 2 : Definition of the input temperature.
1_:temperature a fsschema:Input;
2 fsschema:inputName "Temperature";
3 fsschema:min "–5"^^xsd:decimal;
4 fsschema:max "50"^^xsd:decimal;
5 fsschema:name "Temp Type";
6 fsschema:hasMembershipF [
7 a fsschema:MembershipF;
8 fsschema:hasProperties
9 _:TVeryLow,_:TLow,
10 _:TNormal,_:THigh,
11 _:TVeryHigh;]
12 .

To specify the types of labels, it is necessary to indicate the type
of the function and the associated parameters. For example, code
Listing 3, for a _:TVeryLow label you define the trapezoid type
with fsschema:trapezoid and the values that define the trape-
zoid param_a, param_b, param_c, param_d.

Listing 3 : Membership function and values of definition for TVeryLow
label.
1_:TVeryLow a fsschema:Membership,
2 fsschema:trapezoid;
3 fscchema:label "Very Low";
4 fsschema:param_a "–5";
5 fsschema:param_b "–2";
6 fsschema:param_c "10";
7 fsschema:param_d "15";
8 .

The process of describing this output ”Temperature variation” is
done in the same way as for temperature and humidity inputs,
but specifying that it is an output variable fsschema:Output.

Once the inputs and outputs of the problem are defined, the rule
base is created (see Table 4). The definition of the rule base consists
of the specification of the rule set.

Listing 4 : Definition of rules base.
1 _:rulebase a fsschema:RuleBase;
2 rdfs:label "GreenHouse FRBS"@en ;
3 fsschema:name "FRBS"@en ;
4 fsschema:contains
5 _:R1,_:R2,_:R3;
6 .

The code Listing 4 shows the instantiation of the rule base
(_:rulebase), with the name and the list of rules that it contains

Table 4 Rules base for temperature and
humidity.

T./H. VL L N H VH
VL SR SR HR HR HR
L M M SR SR NR
N M M M M SD
H M M SD SD ND
VH SD ND ND LD LD

Pdf_Folio:1168

M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172 1169

for its later definition. The definition of each rule is formed
by three elements, the premise (:hasPremise), the conclusion
(:hasConclusion) and the confidence (:confidence) or
weight of the rule, as can be seen in code Listing 5.

Listing 5 : Definition of the rule R1.

1_:R1 a fsschema:Rule;
2 fsschema:hasPremise _:P1
3 fsschema:hasConclusion _:C1;
4 fsschema:confidence "1.0";
5.

In this first part, the fuzzy systems for the control of tempera-
ture and humidity has been defined, but the definition of the fuzzy
logic modeling service in cloud computing is not complete with-
out the description of the cloud computing management elements
associated with the service itself. Regarding the aspects related to
the management of the cloud service, only the SLA and a pricing
model will be detailed. For example, for the SLA (schema ccsla4),
there will be a credit bonus credits when the following cases hap-
pen: a) if the Monthly Uptime Percentage (MUP) of the service is
between 99.9 and 99.0 (see Listing 6), it will be compensated with
10 credits, and b) if the percentage is between 99.0 and 95.0, it
will be compensated with 30 credits. In order to reflect this exam-
ple, code Listing 6 defines how one of the terms of the agreement
(_:SLADefinition_A) is defined aswell as its range s:maxValue
and s:minValue, which has a value corresponding to the compen-
sation.

Listing 6 : SLA term definition for fuzzy systems service.

1 _:SLADefinition_A a ccsla:Definition;
2 ccsla:hasDefinitionValue [
3 a s:structuredValue;
4 s:value [
5 a s:QuantitativeValue;
6 s:maxValue 99.99;
7 s:minValue 99.00;
8 s:unitText "Percentaje";
9];
10];
11 .

For the pricing of the service there are multiple possible options,
for this example we have decided that the service has two types of
costs, one related to the development of the fuzzy systems and the
second based on the exploitation of the system. In this case for the
development, costs are a function of the time and the features of
instance used for the modeling of the fuzzy systems. On the other
hand, for exploitation, where once the model of the fuzzy systems
has been made, it is directly usable by another service, by an user
or an application in cloud, so that for this mode of price charging a
cost per volume of calls to the service of the fuzzy system has been
established as follows: a) first 1000 calls without cost (see Listing 7),
and b) from 1000 each block of 5000 calls is charged with $0.50.
Listing 7, the first pricing model is described (schema ccp5).

4 https://lov.linkeddata.es/dataset/lov/vocabs/ccsla
5 Cloud Computing pricing schema: https://lov.linkeddata.es/dataset/
lov/vocabs/ccp

Listing 7 : Free plan for fuzzy systems explotation until 1000 calls.

1 _:MaxUsageFree a
2 gr:PriceSpecification,
3 gr:Offering;
4 gr:max 0.00;
5 gr:priceCurrency "USD";
6 gr:includesObject [
7 a gr:TypeAndQualityNode;
8 gr:amountOfThisGood "<1000";
9 gr:hasUnitOfMeasurement "units";
10];
11 .

Finally, we join all the pieces that have been defined separately to
integrate them in the definition part of the full service. It contains
part of the aspects represented in the example for cloud computing
management, as well as the elements of the definition of the con-
struction of the fuzzy systems. Listing 8 defines the general aspects
of the service, such as the details of the provider (gr:name), con-
tact s:serviceLocation and s:contactPoint), and the ser-
vices offered ccsschema:hasFuzzyService _:FuzzySystem;.

Listing 8 : Fuzzy system in cloud computing.

1 _:FuzzyProvider a
2 ccsschema:ServiceProvider;
3 rdfs:label "FS Provider"@en ;
4 dc:description
5 "DICITS FuzzySystem SP"@en ;
6 gr:name "DITICS FS Provider";
7 gr:legalName "U. of Granada";
8 gr:hasNAICS "541519";
9 s:url <http://www.dicits.ugr.es>;
10 s:serviceLocation
11 [a s:PostalAddress;
12 s:addressCountry "ES";
13 s:addressLocality "Granada";
14] ;
15 s:contactPoint
16 [
17 a s:ContactPoint;
18 s:contactType "Costumer Service";
19 s:availableLanguage [
20 a s:Language;
21 s:name "English";];
22 s:email "fuzzy@dicits.ugr.es";
23];
24 ccsschema:hasFuzzyService
25 _:FuzzySystem;
26 .

Then, code Listing 9 specifies the entire structure of the service
in cloud, with all the entities, interaction point (ccsschema:
hasInteraction), SLA ccsschema:hasSLA, authentication
ccsschema:hasAuthenticacion and pricing ccsschema:
hasPricing. Afterwards, each of the elements must be described
in detail.

Listing 9 : Components of a fuzzy systems service in cloud computing.

1 _:FuzzySystem a
2 ccsschema:FuzzySystemService;

Pdf_Folio:1169

1170 M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172

3 rdfs:label
4 "Fuzzy Service dicits.ugr.es"@en ;
5 dc:description
6 "DICITS Fuzzy Service"@en ;
7 ccsschema:hasInteraction
8 _:FSServiceInteraction;
9 ccsschema:hasSLA
10 _:FSSLA;
11 ccsschema:hasFuzzySystem
12 _:FuzzySystemService;
13 ccsschema:hasAuthentication
14 _:FSServiceAuth;
15 ccsschema:hasPricingPlan
16 _:FSServicePricing;
17 .

The use case exposed in this section illustrates how fsschemacan
be used to describe a complete service of fuzzy system, which can
be deployed, discovered, composed and exploited as a cloud com-
puting service.

5. ADVANTAGES OF THE FSaaS PROPOSAL

Abreakdown of the key advantages to the adoption of fuzzy systems
within cloud is presented hereafter.

• Standarization of fuzzy modeling in cloud computing
environments. One of the outstanding features of the use of
semantic technology for the definition of services in cloud
computing is that it allows to capture in fine detail all the
components of a service (both from the point of view of the
cloud model, and from the description of the modeling).
The idea with cloud services is that the service definition can
be uniform between different cloud providers, achieving a high
degree of portability in the construction and modeling of fuzzy
systems between cloud computing entities. This means that
from a single service description, the deployment of a complete
system of fuzzy logic in cloud does not depend on the
underlying architecture, the language implemented or other
variables that do concern on-premise systems.

• Synthesis and exploitation of the service. The on-premise tools
have modules for the synthesis and exploitation of the built
model to languages such as C/C++, Python, Java or VHDL (for
FPGA [37]), which allow it to be integrated into other
applications and systems. Nevertheless, when we deal with
fuzzy systems in cloud computing, this mode of exploitation
does not make sense due to cloud nature. Cloud computing
takes advantage of new service exploitation models by offering
the capacity for interoperability between services. With this, for
example, the output of a fuzzy systems service in Cloud can be
used to offer computational intelligence to another service that
demands it. This entails that the model built as a service can be
fully integrated with other services in cloud computing .

• Composition of services. This advantage is fully exploitable
when modeling a fuzzy systems in cloud computing. For
example, when building a fuzzy model, certain functions or
systems such as the management of the fuzzy rules base can be

implemented in other services, so that the modeling itself can
make use of them by performing a composition of services at
the end. This means great flexibility for the use of resources as
services offered by cloud computing providers.

• Serverless model. Serverless computing is a cloud computing
execution model in which the cloud provider dynamically
manages the allocation of computing resources [38].The
serverless model is the ideal companion for deploying fuzzy
systems. When the fuzzy systems is designed, it can be
integrated into a serverless service, which means that much of
the problem of scaling or distribution of computing resources
lies in the provider. This service functionality can be integrated
into other tools that are implemented in cloud, facilitating the
deployment and use of models from any other service.

• BigData fuzzy model scaling. When we deal with problems of
modeling fuzzy systems in cloud, they need a computing
infrastructure to support all parts of it such as construction,
validation and exploitation of the designed system. For each of
these stages, the cloud model can provide computing resources
[39]. In the same way, thanks to this feature, for example, when
there is a rule base of a fuzzy systems model, with a massive
number of rules, it is necessary to use the innate capacities of
distributed computing in both processing and storage that
cloud computing offers in a transparent way.

• Portability and reproducibility of fuzzy models. Another of the
great advantages of using cloud computing for the modeling of
fuzzy systems is that thanks to the use of semantic technology
for the definition of services, the models that are built are
completely portable and agnostic with respect to cloud
computing providers. In this way it is possible to work with the
same definition of modeling from different providers, so the
reproducibility [40] of the experimentation with fuzzy systems
in cloud computing is assured. It would also improve the
competitiveness between providers that accept this type of
services in their catalog to take advantage of their infrastructure.

• Digital transformation. The cloud is the key enabler of digital
transformation projects and provides the scale and speed
necessary for enterprises to focus on transformation. In this
context, the development of fuzzy systems in cloud computing
would allow progress in terms of the digital transformation of
processes and systems that until now were only focused on
traditional fuzzy logic modeling tools. Having this model of
construction of fuzzy systems services in cloud, it offers the
possibility of moving the existing fuzzy systems models to
models cloud-based like FSaaS.

6. CONCLUSIONS AND FINAL REMARKS

Cloud computing is displacing the traditional on-premise model
of consuming Information and Communication Technology (ICT)
services by users, toward a model based on Internet services, where
not only are there generic storage services, or computing resources
but also more specific services such as Data Mining in cloud com-
puting. Taking advantage of this increasing trend, the idea of cov-
ering the existing gap to build a scheme for the definition and
modeling of fuzzy systems in cloud computing, has led us to

Pdf_Folio:1170

M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172 1171

propose in this article a scheme and complete vocabulary based on
semantic technology called fsschema.

This scheme allows in a compact and direct way to describe mod-
els of fuzzy systems as services in cloud computing. On the one
hand it allows to define all the components of an FRBS (inputs,
outputs, rule base, membership functions, operators, learning ele-
ments, . . .), and, on the other hand, it also contemplates all the
aspects of cloud computing management, which a cloud provider
has to take into account for the deployment of the service and its
subsequent exploitation by consumer users.

In this way, fss-cc collects in a single definition all the elements
that allow to describe a complete service in cloud computing, which
is denied by other proposals for the modeling of these systems.

The scheme is based on the semantic web and the use of ontologies
and vocabularies, which at a practical level on the one hand ensures
that themodeling of fuzzy systems can be easily extended and com-
pleted, and on the other hand confirms the capabilities related to
the portability of fuzzy systems services between different cloud
providers.

Possibilities such as the virtually infinite scaling of the infrastruc-
ture, the integration of fuzzy systems services within the ecosys-
tem of a cloud provider, the capabilities to deliver and exploit the
fuzzy service from APIs or as serverless functions independent of
resources, as well as the imminent exploitation of IoT in which
fuzzy systems for devices will be more than relevant, highlight the
importance of the adoption of fuzzy systems modeling in cloud
computing.

Finally, the applicability of fsschema to real-world problems have
been illustrated through the development of a case study.

ACKNOWLEDGMENTS

Manuel Parra-Royon holds a ”Excelencia” scholarship from the Regional
Government of Andalucía, Spain. This work was supported by the Research
Projects P12-TIC-2958 and TIN2016-81113-R (Ministry of Economy,
Industry and Competitiveness - Government of Spain).

REFERENCES

[1] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338–353.
[2] R.-E. Precup, H. Hellendoorn, A survey on industrial applications

of fuzzy control, Comput. Ind. 62 (2011), 213–226.
[3] D. Kannan, A.B. Jabbour, C.J. Chiappetta Jabbour, Ana Beatriz

de and Charbel José Jabbour. Selecting green suppliers based on
GSCM practices: using fuzzy TOPSIS applied to a Brazilian elec-
tronics company, Eur. J. Oper. Res. 233 (2014), 432–447.

[4] A. Özlem, E. Erdem, The control of greenhouses based on fuzzy
logic using wireless sensor networks, Int. J. Comput. Int. Syst. 12
(2018), 190–203.

[5] N. Pandeeswari, G. Kumar, Anomaly detection system in cloud
environment using fuzzy clustering based ANN, Mobile Netw.
Appl. 21 (2016), 494–505.

[6] V. Venkatesa Kumar, K. Dinesh, Job scheduling using fuzzy neu-
ral network algorithm in cloud environment, Bonfring Int. J. Man
Mach. Interface 2 (2012), 01–06.

[7] F.J. Moreno Velo, M.I. Baturone Castillo, S. Sánchez Solano,
Á. Barriga Barros, Sánchez and Ángel Barriga Xfuzzy 3.0: a
development environment for fuzzy systems, in Proceeding of
the International Conference in Fuzzy Logic and Technology,
Leicester, 2001.

[8] M. de Souza, F. dos Santos, A.R. de Soto, A. Vahldick, Fuzzystudio:
A web tool for modeling and simulation of fuzzy systems, in 2014
Brazilian Conference on Intelligent Systems, Sao Paulo, 2014, pp.
306–311.

[9] M.R. Berthold, N. Cebron, D. Fabian, T.R. Gabriel, T. Kötter,
T. Meinl, P. Ohl, K. Thiel, B. Wiswedel, KNIME-the Konstanz
information miner: version 2.0 and beyond, SIGKDD Explor. 11
(2009), 26–31.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
I.H. Witten, The WEKA data mining software: an update,
SIGKDD Explor. 11 (2009), 10–18.

[11] L. Riza, C. Bergmeir, F. Herrera, J.M. Benítez, frbs: fuzzy rule-
based systems for classification and regression in R, J. Stat. Softw.
65 (2015), 1–30.

[12] J. McCulloch, Fuzzycreator: A python-based toolkit for automat-
ically generating and analysing data-driven fuzzy sets, in 2017
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Naples, 2017, pp. 1–6.

[13] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-
art and research challenges, J. Internet Serv. Appl. 1 (2010), 7–18.

[14] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, A. Ghalsasi,
Cloud computingThe business perspective, Decis. Support Syst.
51 (2011), 176–189.

[15] J. Alcal-Fdez, J. Alonso, A survey of fuzzy systems software: tax-
onomy, current research trends, and prospects, IEEE Trans. Fuzzy
Syst. 24 (2016), 40–56.

[16] M. Tiegelkamp, K.-H. John, IEC 61131-3: programming Indus-
trial Automation Systems, Springer, Berlin, 1995.

[17] G. Acampora, V. Loia, C.-S. Lee, M.-H. Wang, On the Power of
Fuzzy Markup Language, 2013.

[18] D. López, F.J. Moreno, A. Barriga, S. Sánchez-Solano, A and S
XFL: a language for the definition of fuzzy systems, in Proceedings
of 6th International Fuzzy Systems Conference, Barcelona, 1997,
vol. 3, pp. 1585–1591.

[19] F. Moreno-Velo, A. Barriga, S. Sánchez-Solano, I. Baturone,
XFSML: an XML-based modeling language for fuzzy systems, in
2012 IEEE International Conference on Fuzzy Systems, Brisbane,
2012, pp. 1–8.

[20] Z.C. Johanyák, D. Tikk, S. Kovács, K.WaiWong, Fuzzy rule inter-
polation Matlab toolbox-FRI toolbox, in 2006 IEEE International
Conference on Fuzzy Systems, 2006, pp. 351–357.

[21] J. Rada-vilela, Fuzzylite a fuzzy logic control library in C++, in
Proceeding of the Open Source Developers Conference, Aca-
demic Press, Auckland, 2013.

[22] C. Wagner, Juzzy-a java based toolkit for type-2 fuzzy logic, in
2013 IEEE Symposium on Advances in Type-2 Fuzzy Logic Sys-
tems (T2FUZZ), Singapore, 2013, pp. 45–52.

[23] N. Cavus, The evaluation of learning management systems using
an artificial intelligence fuzzy logic algorithm, Adv. Eng. Softw. 41
(2010), 248–254.

[24] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web
service definition language (WSDL), Technical Report, World
Wide Web Consortium, Sophia-Antipolis, 2001.

[25] M.J. Hadley, Web application description language (WADL),
Technical Report, Mountain View, 2006.Pdf_Folio:1171

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.compind.2010.10.001
https://doi.org/10.1016/j.compind.2010.10.001
https://doi.org/10.1016/j.ejor.2013.07.023
https://doi.org/10.1016/j.ejor.2013.07.023
https://doi.org/10.1016/j.ejor.2013.07.023
https://doi.org/10.1016/j.ejor.2013.07.023
https://doi.org/10.2991/ijcis.2018.125905641
https://doi.org/10.2991/ijcis.2018.125905641
https://doi.org/10.2991/ijcis.2018.125905641
https://doi.org/10.1007/s11036-015-0644-x
https://doi.org/10.1007/s11036-015-0644-x
https://doi.org/10.1007/s11036-015-0644-x
https://doi.org/10.9756/BIJMMI.1064
https://doi.org/10.9756/BIJMMI.1064
https://doi.org/10.9756/BIJMMI.1064
https://doi.org/10.1109/BRACIS.2014.62
https://doi.org/10.1109/BRACIS.2014.62
https://doi.org/10.1109/BRACIS.2014.62
https://doi.org/10.1109/BRACIS.2014.62
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.18637/jss.v065.i06
https://doi.org/10.18637/jss.v065.i06
https://doi.org/10.18637/jss.v065.i06
https://doi.org/10.1109/FUZZ-IEEE.2017.8015445
https://doi.org/10.1109/FUZZ-IEEE.2017.8015445
https://doi.org/10.1109/FUZZ-IEEE.2017.8015445
https://doi.org/10.1109/FUZZ-IEEE.2017.8015445
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1007/978-3-642-35488-5
https://doi.org/10.1007/978-3-642-35488-5
https://doi.org/10.1109/FUZZY.1997.619778
https://doi.org/10.1109/FUZZY.1997.619778
https://doi.org/10.1109/FUZZY.1997.619778
https://doi.org/10.1109/FUZZY.1997.619778
https://doi.org/10.1109/FUZZ-IEEE.2012.6251222
https://doi.org/10.1109/FUZZ-IEEE.2012.6251222
https://doi.org/10.1109/FUZZ-IEEE.2012.6251222
https://doi.org/10.1109/FUZZ-IEEE.2012.6251222
https://doi.org/10.1109/FUZZY.2006.1681736
https://doi.org/10.1109/FUZZY.2006.1681736
https://doi.org/10.1109/FUZZY.2006.1681736
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1016/j.advengsoft.2009.07.009
https://doi.org/10.1016/j.advengsoft.2009.07.009
https://doi.org/10.1016/j.advengsoft.2009.07.009

1172 M. Parra-Royon and J. M. Benítez / International Journal of Computational Intelligence Systems 12(2) 1162–1172

[26] B. Elvesaeter, D. Panfilenko, S. Jacobi, C. Hahn, Aligning busi-
ness and IT models in service-oriented architectures using
BPMN and SoaML, in Proceedings of the First Interna-
tional Workshop on Model-Driven Interoperability, Oslo, 2010,
pp. 61–68.

[27] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, et al.,
OWL-S: Semantic markup for web services, W3C Member Sub-
mission 22 (2004), 2007–04.

[28] J. Domingue, D. Roman, M. Stollberg, Web service modeling
ontology (WSMO) - An ontology for semantic web services, 2005.

[29] S. Kona, A. Bansal, L. Simon, A. Mallya, G. Gupta, T.D. Hite,
USDL: aservice-semantics description language for automatic
service discovery and composition, Int. J. Web Serv. Res. 6
(2009), 20.

[30] C. Pedrinaci, J. Cardoso, T. Leidig, Linked usdl: a vocabulary for
web-scale service trading, in European Semantic Web Confer-
ence, Crete, 2014, pp. 68–82.

[31] G. Klyne, J.J. Carroll, Resource description framework (RDF):
concepts and abstract syntax, Technical Report, W3C, Sophia-
Antipolis, 2004.

[32] D. Beckett, Turtle-terse RDF triple language, 2008. http://www.
ilrt.bris.ac.uk/discovery/2004/01/turtle/

[33] S. Alptekin, G. Alptekin, A fuzzy quality function deployment
approach for differentiating cloud products, Int. J. Comput. Intell.
Syst. 11 (2018), 1041–1055.

[34] M. Parra-Royon, G. Atemezing, J.M. Benítez, Semantics of
data mining services in cloud computing, abs/1806.06826, 2018.
http://arxiv.org/abs/1806.06826

[35] M.Maleshkova, C. Pedrinaci, J. Domingue, G. Alvaro, I.Martinez,
Using semantics for automating the authentication of web APIs,
in The Semantic Web–ISWC, Shanghai, 2010, pp. 534–549.

[36] S. Gong, B. Yin, Z. Zheng, K. yuan Cai, An adaptive control
method for resource provisioning with resource utilization con-
straints in cloud computing, Int. J. Comput. Intell. Syst. 12 (2019),
485–497.

[37] P.T. Vuong, A.M. Madni, J.B. Vuong, VHDL implementation for
a fuzzy logic controller, in 2006 World Automation Congress,
Budapest, 2006, pp. 1–8.

[38] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht, Occupy the
cloud: Distributed computing for the 99%, in Proceedings of the
2017 Symposium on Cloud Computing, 2017, pp. 445–451.

[39] P.M. Mell, T. Grance, The NIST definition of cloud computing,
Technical Report, Gaithersburg, 2011.

[40] R.D. Peng, Reproducible research in computational science, Sci-
ence 334 (2011), 1226–1227.

Pdf_Folio:1172

https://doi.org/10.1145/1866272.1866281
https://doi.org/10.1145/1866272.1866281
https://doi.org/10.1145/1866272.1866281
https://doi.org/10.1145/1866272.1866281
https://doi.org/10.1145/1866272.1866281
https://doi.org/10.1007/978-3-540-30581-1_4
https://doi.org/10.1007/978-3-540-30581-1_4
https://doi.org/10.1007/978-3-540-30581-1_4
https://doi.org/10.1007/978-3-540-30581-1_4
https://doi.org/10.13140/RG.2.2.31071.10409
https://doi.org/10.13140/RG.2.2.31071.10409
https://doi.org/10.4018/jwsr.2009010102
https://doi.org/10.4018/jwsr.2009010102
https://doi.org/10.4018/jwsr.2009010102
https://doi.org/10.4018/jwsr.2009010102
https://doi.org/10.1007/978-3-319-07443-6_6
https://doi.org/10.1007/978-3-319-07443-6_6
https://doi.org/10.1007/978-3-319-07443-6_6
https://doi.org/10.2991/ijcis.11.1.79
https://doi.org/10.2991/ijcis.11.1.79
https://doi.org/10.2991/ijcis.11.1.79
https://doi.org/10.1007/978-3-642-17746-0_34
https://doi.org/10.1007/978-3-642-17746-0_34
https://doi.org/10.1007/978-3-642-17746-0_34
https://doi.org/10.2991/ijcis.d.190322.001
https://doi.org/10.2991/ijcis.d.190322.001
https://doi.org/10.2991/ijcis.d.190322.001
https://doi.org/10.2991/ijcis.d.190322.001
https://doi.org/10.1109/WAC.2006.375968
https://doi.org/10.1109/WAC.2006.375968
https://doi.org/10.1109/WAC.2006.375968
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1126/science.1213847
https://doi.org/10.1126/science.1213847

	Fuzzy Systems-as-a-Service in Cloud Computing
	1 INTRODUCTION
	2 RELATED WORK
	3 FUZZY SYSTEM MODELING IN CLOUD COMPUTING
	3.1 Fuzzy Systems
	3.2 Semantic Technology
	3.3 Definition and Description of a Fuzzy Systems Service in Cloud Computing

	4 SAMPLE CASE OF USE
	5 ADVANTAGES OF THE FSaaS PROPOSAL
	6 CONCLUSIONS AND FINAL REMARKS

