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Abstract

The application of artificial intelligence (Al) techniques in the decision making processes is more widespread in the industry
than ever before. Yet, one of the most critical show-stoppers is the communication gap between the machine learning (ML)
models and the experts community. On one hand, the output of ML is often not intelligible for experts, in spite of the latest
advances in explainable Al. On the other hand, the expert knowledge, rarely completely present in the available data, but rather
in the heads of the experts, needs to be connected to the data-driven insights created by the ML model. In this paper we
first identify the most critical situations with a manifest intelligibility gap and then propose a framework supported by fuzzy
linguistic modelling techniques to close this gap. In addition, we present its integration into the end-to-end decision making
flow, from data gathering to the execution and evaluation and we show the output of our approach with practical examples.
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1. Introduction

In the recent years, Al has experienced an unprecedented adoption in the industry. After many years heavily
investing in big data and cloudification initiatives, companies are implementing intelligent systems to harness
the value of corporate data. Algorithms can support business decisions in a supposedly most reliable and most
efficient manner than traditional business analysts or subject matter experts. ML techniques enable the creation
of models to infer business knowledge from the historical data gathered for a particular process. These models
typically provide a solid performance in isolated theoretical environments, but harnessing the real value requires
embedding them as integral part of the business operations, which requires the interaction with subject matter
experts.

In fact, the incorporation of ML output into decision making processes, especially when humans are intended
to make sense of its output, has been identified as one of the critical points preventing a more widespread Al
adoption. According to Weld et al [1] the key challenge for designing intelligible Al is communicating a complex
computational process to a human, but the problem has different facets. First, not all outputs of machine learning
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models are equally useful and can be operated in the same way (e.g. propensity models providing high scores
for an almost impossible marketing addressable audience, etc.). Second, there are always certain preconceived
hypothesis or believes in experts’ minds that, if compliant with the output of the machine learning model, can
be substantially more valuable to the business than any other "new" insights, just because the mechanisms to act
on them are clearer or even already existing (e.g. the ability to execute a particular campaign). Likewise, some
expert knowledge items are often contradicted by the model and experts need to be made aware of them. Third,
in spite of the advanced approaches to explain machine learning models [2, 3], the format of the explanations
is usually too specific and too concrete for experts to thoroughly exploit them in decision making processes. In
addition, experts usually can’t express exact quantifications of their believes or knowledge, neither make sense
of too exact quantifications of the importance of a particular combination of attributes. Rather, they typically use
broader, less precise linguistic quantifiers, such as "more", "very likely", "less likely", "substantially more", etc.
(which introduces the challenge of lack of standardization in the usage of these quantifiers [4]).

For example, if we consider a ML model to determine the propensity of a customer to churn, an expert can
probably tell you that according to her/his experience, the customers in a particular contract, in a particular age
range and living in a particular area are more likely to churn than others. A machine learning model, for example
[5], can exactly assign a churn propensity score to any customer and an interpretability model, such as LIME [2],
can provide us with the "rationale" of this particular score based on to which extend values for different attributes
support or contradict the evidence found by the model. But even with the LIME explanations, a customer retention
expert might struggle defining the proper audiences to target in a campaign, as the output lacks intelligibility.

In this paper, we propose a novel fuzzy linguistic modeling based method to increase the intelligibility of the
ML model output to the community of experts and therefore speed up the adoption of Al in corporate environ-
ments. Fuzzy linguistic modeling works as a mechanism to enable the interaction between subject matter experts
and the ML model, typically by making experts knowledge items intelligible to the model and model findings
intelligible to the experts, always trying to minimize the information loss. Fuzzy linguistic modeling has proven
its performance implementing algebraic operations on natural language experts opinions [6] and that’s why we
propose this technology to bridge the ML model-2-human communication gap.

The main contributions of this paper are listed below:

e We have identified 4 situations taking place in the process of operationalizing the output of the ML model,
that present a substantial intelligibility gap between model/model explainers and the community of experts.

e We have proposed a mechanism to validate expert knowledge against a ML model using linguistic fuzzi-
fication and defuzzification as well as a fuzzy linguistic modeling based method to consolidate the expert
knowledge related to the ML model of two or more experts.

e We have enhanced the standard ML explainers (LIME, SHAP and features importance) with a mechanism
to extract experts-intelligible knowledge items.

This paper is organized as follows: after introducing the problem and explaining the novelty of our approach,
we review the supporting research background. Then, we introduce the 4 identified scenarios we aim at increasing
the intelligibility of the ML model, define the fuzzy linguistic components required to implement our system and
describe how our method tackles the intelligibility issues with real examples. After discussing the results, we then
finalize the paper providing the concluding remarks and pointing to further research lines.

2. Background

2.1. On Machine Learning Intelligibility

Given the huge performance improvement of the Deep Neural Networks and other black-box ML models
and the need for understanding the rationale of the ML predictions, the field of explainable Al is experiencing
an unprecedented research activity. Molnar in [7] provides a complete overview of the state of the art in this
field, including implementation details of the most popular explainers (LIME [2], SHAP [3], etc). While the
first explainers were model specific, Ribeiro et al. [2], explained the advantage of embracing model agnostic
approaches to give ML developers the choice of the modeling method but also to enable the comparability of
models without having to change the model explainer.
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According to Dietterich et al. [8], in order to trust deployed Al systems, we must not only improve their ro-
bustness, but also develop ways to make their reasoning intelligible. Intelligibility will reportedly help us spot Al
that makes mistakes due to distributional drift or incomplete representations of goals and features. Intelligibility
will also facilitate control by humans in increasingly common collaborative human/Al teams, and Intelligibility
will help humans learn from Al In addition, these authors pointed out legal reasons implement intelligible Al, in-
cluding the European GDPR and a growing need to assign liability when Al errors. Lundberg and his co-authors
[3] establish the need to 1) ensure that the underlying reasoning or learned models are inherently interpretable
and 2) if it is necessary to use an inscrutable model to prevent decreasing the predictive quality, such as complex
neural networks or deep-lookahead search, then mapping this complex system to a simpler, explanatory model for
understanding and control. Gilpin [9] on the other hand defends the need to design models that are inherently in-
terpretable, outlining several key reasons why explainable black boxes should be avoided in high-stakes decisions
and identifying challenges to interpretable ML.

The use of fuzzy logic in machine learning systems is experimenting a great adoption and being intensively
reseached[10]. Couse et al. in [11] discuss the development the internal shift from largely knowledge-based
to strongly data-driven fuzzy modeling and systems design due to the increasing integration of fuzzy logic and
machine learning. Bonanno et al. in [12] demonstrated the use of fuzzy inference to turn deep neural networks
into rule-based explained systems.

While the advances in ML interpretability are paving the way towards increased intelligibility, there is still a
gap not being addressed as explained in the previous section, which we are covering in the present research paper.

2.2. On Fuzzy linguistic modelling

The fuzzy linguistic approach is a tool based on the concept of linguistic variable proposed by Zadeh [13].
This theory has given very good results to model qualitative information and it has been proven to be useful in
many problems.

The 2-Tuple Fuzzy Linguistic Approach

The 2-Tuple Fuzzy Linguistic Approach [6] is a continuous model of information representation that allows
reduction in the loss of information that typically arises when using other fuzzy linguistic approaches, both clas-
sical and ordinal [14]. To define it both the 2-tuple representation model and the 2-tuple computational model to
represent and aggregate the linguistic information have to be established.

Let . = {50,....5¢} be a linguistic term set with odd cardinality. We assume that the semantics of labels is
given by means of triangular membership functions and consider all terms distributed on a scale on which a total
order is defined. In this fuzzy linguistic context, if a symbolic method aggregating linguistic information obtains
avalue 8 € [0,g], and B ¢ {0,...,g}, we can represent 8 as a 2-tuple (s;, &;), where s; represents the linguistic
label, and ¢; is a numerical value expressing the value of the translation between numerical values and 2-tuple:
A(B) = (s1,01) y A~ (s;,0) = B € [0,] [6].

In order to establish the computational model negation, comparison and aggregation operators are defined.
Using functions A and A~!, any of the existing aggregation operators can be easily extended for dealing with
linguistic 2-tuples without loss of information [6].

Multi-Granular Linguistic Information Approach

To accommodate the interaction with different experts, it’s important to support different “granularity levels”.
For instance, an expert might use a term set of 3 categories only ("low", "mid", "high") to provide domain related
expertise statements: (e.g. "customers who used the hotline more than 3 times have higher likelihood to churn"),
while a different one might be used to more levels (e.g. "customers interacting more frequently with the call center
after receiving a bill have a substantially higher likelihood to churn). Thus, supporting different granularities
and providing tools to manage the multi-granular linguistic information is key to our approach. Formally, when
different experts have different uncertainty degrees on the phenomenon or when a single expert has to evaluate
different concepts, then several linguistic term sets with a different granularity of uncertainty are necessary [15].
In such situations we need tools to manage the multi-granular linguistic information. In [16] a multi-granular
2-tuple fuzzy linguistic modelling based on the concept of linguistic hierarchy is proposed.

A Linguistic Hierarchy, LH, is a set of levels [(¢,n(t)), where each level ¢ is a linguistic term set with different
granularity n(¢). The levels are ordered according to their granularity, so that we can distinguish a level from the
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previous one, i.e., a level # + 1 provides a linguistic refinement of the previous level . We can define a level from its
predecessor level as: I(t,n(t)) — [(t+1,2-n(¢t) —1). In [16] a family of transformation functions between labels
from different levels was introduced. To establish the computational model we select a level that we use to make
the information uniform and thereby we can use the defined operator in the 2-tuple model. This result guarantees
that the transformations between levels of a linguistic hierarchy are carried out without loss of information. Using
this LH, the linguistic terms in each level are the following (see also Fig. 4 and Fig. 3):

o §3={by=None=N, by = Medium =M, by = Total =T}

o 5= {co =None=N, ¢ =Low=L, ¢ =Normal =N, ¢c3 =High=H, c4 =Total =T}

o = {dy=None=N, dy =Very_Low=VL, dp =Low=L, dy = More_Less_Low =MLL, dy = Medium =M, ds =
More_Less_High=MLH, dg = High=H, d7 =Very_High=VH, d3 =Total =T}

3. Fuzzy linguistic modelling system to increase machine learning intelligibility

Before we present our approach, we’d like to introduce some definitions that we will be using all along to
explain our system:

e Definition 1 An Expert knowledge item is a believe related to a knowledge domain, usually expressed as
a set of quantified predictors and their impact on the class variable. Sometimes, a constraint statement
might be added to limit the scope of the data. This constraint is usually built as a composition of quantified
predictors.

e Definition 2 A Class variable represents the problem we are trying to tackle or we are trying to provide
expertise about in the context of an Expert Knowledge Item.

o Definition 3 A Predictor is an attribute or feature in the data whose value impacts the likelihood of the class
variable to take a value or another one.

We focus on the intelligibility problem once both ML Model and Explainers have been created. In Fig. 1, we
can see the general ML process, from the Problem definition to the Take-to-Action. As we can appreciate, a new
module between the Model, the Prediction and the Explainers has been added and connects with the Action part
itself. This new module consists of 4 different situations where the lack of intelligibility manifests: a) existing ex-
pert knowledge compatibility with the machine learning model (Expert-2-Model), b) consolidation of knowledge
from multiple experts in accordance with the model (Expert-2-Expert), ¢) output of model explainers to humans
(Model-2-Expert), and d) feature importance to humans (Feature-2-Expert).

For each situation, we have specified a pipeline to transform the input into an intelligible output to support
the experts-model interaction therefore the operationalization of artificially created intelligence. Fig. 2 depicts
the different processes and components, with the proper Input and Output definition, required to address these
4 situations. The different components required to implement the information pipelines to address the identified
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situations are described below:
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Quantifiers extractor: identifies the linguistic quantifiers at attribute level. It can be applied to both pre-
dictors and predicted class. It is implemented as explained in 2.2 as a linguistic variable LH per qualifier
supported by a linguistic hierarchy LH

e Linguistic Defuzzifier specifies a point in the attribute space zx that best represents the linguistic term c;.
[17]. There are a number of choices in determining the crisp output z*, all of them trying to fulfil following
criteria: Plausibility (zx should represent ¢; from an intuitive point of view (e.g.: it may lie approximately
in the middle of the support of ¢; or has a high degree of membership in c;.), computational simplicity and
continuity (small changes in ¢; should not result in a large change in z* and dis-ambiguity (defuzzification
should always produce an unique value for zx).

e Model-based evidence checker: applies explainability algorithms to quantify to which extend a particular
statement is supported by the machine learning model. Returns a supporting value between -1 and 1 (-1
meaning a strong support for the opposite statement and 1 fully support in all cases).

e Linguistic Fuzzifier converts a crisp input to a term defined for a linguistic variable, as explained in the
subsection 2.2. Therefore, the fuzzifier can be defined as a mapping from an observed input space to fuzzy
set labels in a universe of specified input universe of discourse.

o Knowledge-items matcher: provides a score from O to 1 determining whether 2 knowledge items refer to the
same entities, for both predictors and class variable (e.g. having "Customers with a higher online activity
are more likely to churn " from Expert 1 and "Customers with an increased online activity churn at least
twice as much as the ones with not coming to the website" from Expert 2, our module identifies the class
variable "churn / not churn" and the predictor "online activity").

o Top features selector: computes the most relevant features to explain a particular prediction, vs. the entire
feature set provided by the Model Agnostic Explainers (LIME, SHAP, etc).

o Feature Importance space practitioner computes quantiles (as many as the cardinality of the output linguis-
tic variable) based on the weight of each feature in the feature importance model and assigns each feature
to a quantile.

e Attribute space partitioner: establish partitions of the attribute space to assign the values to a partition based
on the quantile logic (as many quantiles as terms in the target linguistic variable)

o Knowledge Statement Creator: elaborates human intelligible statements compounding assertions on one or

many linguistic variables referred to predictors and class variables.

Let’s have a closer look at the different Intelligibility increasing scenarios:

Expert 2 Model

Expert Knowledge Quantifiers Linguistic Model-based Linguistic
Item extractor Defuzzifier Evidence checker Fuzzifier

New Expert
Knowledge Item

Expert 2 Expert

Expert Knowledge Knowledge Items Quantifiers Model based Linguistic
Items Matcher extractor Evidence checker Fuzzifier

revised Expert
Knowledge |tems

Model 2 Expert

"Explained” Model Top Features Attribute Space Quantifiers Knowledge "Explained” Model
(SHAP, LIME) Selector Partitioner selector Statement Creator SHAP, LIM

Feature 2 Expert

"Explained” Model Feature Importance Space Quantifiers Knowledge Statement Expert Knowledge
Feature Importance Partitioner selector Creator Item

Fig. 2. Modular view of the Intelligibility increasing scenarios identified in this paper

3.1.1. Expert-2-Model

A ML model can prove experts’ knowledge items wrong, can give them more or less weight or can reinforce
existing believes to a point where take-2-action activities are triggered. On the other hand, experts’ knowledge
items can pinpoint some limitations in the ML model, can add knowledge not present in the underlying data and
can challenge the correctness of the modelling choices. Taking a Knowledge Item KI; as input, all quantifiers are
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extracted (step 1) and deffuzified (step 2) to be then validated against the model, retrieving -1 if not supported at
all to 1 if 100% supported (step 3). The Linguistic Fuzzifier quantifies to which extend the Knowledge Item is
supported by the ML model selecting the proper term in a linguistic variable (step 4). In Fig. 3 we can see the KI;
"Older customers with less income are less likely to churn’ and steps 1 and 2 represented. The evidence checker
will retrieve for example 0.87 and the Linguistic Fuzzifier will map it to highly supported.

5 ‘ Lowest | | Low ‘ | Normal ‘ ‘ High | |Highest |

& [ [ow e | o [ % [ ] 7]

Model support
F#2[Income]: less income

Exp
F#1[Age]: older Statement L

Ouput[Churn]: very likely to

Fig. 3. Example of expert knowledge item representation in a multi-granular linguistic hierarchy

3.1.2. Expert-2-Experts

Having more than one expert available might be very useful to remove bias or generate more knowledge, but
also introduces challenges, such as contradicting knowledge items, lack of comparability in supposedly overlap-
ping statements, etc. Our approach checks the support for both statements as explained in the previous section,
helping in precision gain but also support the construction of consolidated knowledge items by amending the
quantifiers, as shown in Fig. 4, where we can also see how the model provides a higher support to the knowledge
item from Expert 1.

S5 [ Lowest | | Low | | Normal | I High ‘ | Highest |

= 8 3 I O3 I N N B

Model support

Expl  F#2[Income]: less income

; i Expl
Exp2  F#2[Income]: very poor : ! Statement Vid
Expl  F#1[Age]: very old ; Exp2 MLH
Exp2  F#1[Age]: rather old ; — Statement

Expl  Ouput[Churn]: likely to
Exp2  Ouput[Churn]: very likely to

Fig. 4. Fuzzy linguistic matching of overlapping statements from 2 different experts

3.1.3. Model-2-Expert

Our approach here consists of taking the output of explainers (LIME, SHAP) and making it intelligible for
our experts. The Top Features Selector computes the most relevant features to explain a particular prediction
(step 1). The Attribute Space Partitioner extracts the quantiles for the attribute values space for each attribute (n
quantiles, n is the cardinality of the linguistic variable) and assigns the values used in the explained model rules
to one quantile to create intelligible rules (e.g. afFeature 1 < 200af — arFeature 1 is high to very highar) (step
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3). The Quantifiers selector maps a particular term ¢; in the linguistic variable to each quantile (step 3) and last
but not list, the Knowledge Statement Creator formulates intelligible statement experts can understand (step 4).
Alternatively, the class variable can also be fuzzified to increase the understanding.

In Fig. 5 we can see how 10 features have been selected out of 30 and how Features 1, 2, 8 and 10 have been
turned into intelligible rules using for all of them following linguistic variable §°> = {co = VeryLow = VL, ¢ =
Low =L, ¢y =Normal =N, ¢3 = High=H, ¢4 = VeryHigh = VH}. While Feature 1 identifies "very high"
already with 200, Feature 10 would assign just "high" to 200 while giving "very high" to over 520. Predicted Risk
of Churn can be also expressed in liguistic terms (e.g. "High risk of churn").

3.1.4. Feature-2-Expert

Feature importance methods compute to which extend a particular feature contributes to increase the quality
of the prediction, typically a value from O to 1. The importance of a feature is the increase in the prediction error
of the model after we permuted the featureafs values, which breaks the relationship between the feature and the
true outcome [7]. Fisher et al. [18] developed a model agnostic version of the initial proposal by Leo Breiman in
his seminal paper introducing the Random Forest[19].

The Feature Importance Space Partitioner computes n quantiles (being n the cardinality of the linguistic
variable) based on the weight of each feature in the feature importance model and assigns each feature to a
quantile (step 1). The Quantifiers selector maps a particular term c; in the linguistic variable to each quantile (step
2). Finally, the Knowledge Statement Creator generates the statements in an intelligible way for expert users (step
3).

Fig. 6 shows the result of applying steps 1 and 2. Step 3 would create statements such as: "Feature 1, Feature 2

and 3 have a very high impact predicting churn" or "Feature 16, 17, 18, etc. have a very low impact on predicting
churn'.
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low to slightly low Feature 2 Feature 2 <-100 _
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Fig. 5. LIME output modelled using a linguistic variable at attribute level
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4. Concluding remarks

In this paper we have presented a novel fuzzy linguistic modelling based approach to address the intelligibility
problem of modern machine learning models. Explainers of all kinds (model specific, model agnostic such as
LIME or SHAP) make the predictions of machine learning models transparent for humans (black-2-white box),
yet there is still a gap to make these models intelligible enough. The lack of sufficient intelligibility compromises
not only the adoption of Al techniques, but also prevents any potential knowledge exchange with existing subject
matter experts communities.

In the definition of our method, we first identified 4 situations around machine learning output where the lack
of intelligibility manifests: a) existing expert knowledge compatibility with the machine learning model (Expert-
2-Model), b) consolidation of knowledge from many experts in accordance with the model (Expert-2-Expert), c)
output of model explainers to humans (Model-2-Expert), and d) feature importance to humans (Feature-2-Expert).

For each situation, we have specified a pipeline to transform the input into an intelligible output to support the
experts-model interaction therefore the operationalization of artificially created intelligence. The pipeline consists
of different fuzzy linguistic components (such as quantifiers extractors, linguistic fuzzifier and defuzzifier, etc.)
orchestrated to bridge the communication gap between machine and human. To illustrate the output of our method,
we have provided concrete examples of all four situations using a real churn prediction model (yet obfuscating the
name of the features to prevent revealing competitive information).

The field of Al intelligibility is increasing the research activity and will continue to play a crucial role to enable
the AI breakthrough. We’d like to continue this paper focusing on embedding knowledge expertise at modelling
time, not just to interpret the model: (intelligibility by design). In addition, we’d like to integrate our approach
within the model agnostic explainers (e.g. creating a fuzzy LIME or a fuzzySHAP, etc).
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