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Abstract 

The charge transport in organic thin-film transistors (OTFTs) is assessed in terms of variable range 

hopping (VRH), by numerical simulations, analytical analyses and comparisons to published 

experimental results. A numerical simulator built on the fundamental relations for VRH, without 

approximations, provides a simple key dependence that the sum of hopping energy and energy bending 

under bias is equal to the hopping energy in the bulk material, the latter a bias-independent function of 

the absolute temperature. This relation binds electrostatics and VRH in OTFTs, at various assumptions 

for density of states (exponential, double-exponential and normal distributions). It generates and 

confirms many analytical expressions accumulated over the years for mobility, conductance, potential 

profiles in the depth of the organic semiconducting film and their relation to bias, film-thickness, also 

explaining the performance of OTFTs at elevated temperatures. The relations between charges, 

mobility and bias in OTFTs adhere from the above key dependence. We provide a method to obtain the 

distribution of the hopping time, which establishes explanations to non-stationary effects in OTFTs, 

such as dispersive transport, non-reciprocal transitions between on and off-states of the OTFT (usually 

attributed to gate bias stress and charge build-up), and low-frequency noise in the OTFT channel 

current. 
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Nomenclature of abbreviations and notations  

(Note that the notations in Appendix 4 and Figure 45 in it are not given in the list, and deviate from this 

nomenclature) 

Symbol  

[primary unit] 

(secondary units) 

Meaning and comments see 

1D, 2D, 3D One- dimensional, two- dimensional, three-dimensional. Mostly used for 
vectors and matrices of numbers. 

 

2HypGeom1≡2F1 Gauss hyper-geometric function eq. (103) and Appendix 
4 

A, a [various] Supplementary notation for several quantities that have constant value as 
explained in particular contexts 

 

an [subscript] Supplementary subscript, which explicitly denotes that the quantity is after 
analytical approximation, e.g., NC,an is calculated by eq. (49), whereas NC is 
taken from the numerical simulation. 

text to Figure 24, eq. 
(71) and Figure 28 

avgVB [V] Expected potential bending representative for the sheet conductance σsq. The 
value of avgVB is an average of bending profile VB(D) weighted with the 
profile σ(D) of the specific conductance σ. 

eq. (70) 

b [various] Supplementary notation for several quantities that have constant value as 
explained in particular contexts 

 

B Supplementary notation for values calculated during iterations that have to 
meet a target value. In general, B denotes the bonds per site, or proportional 
quantity, so that B(Γ≥Γc)=B(τ≤τc)=Bc. 

eqs. (14), (20), (114)-
(118) 

Bc [number] Bc~9/π≈2.86 is critical number for three-dimensional percolation network 
(Bc~4 after other assumptions, see eq. (4.14) in [20]), 

eqs. (3), (5) 

BPS [number] Supplementary notation for number of hopping bonds per site eq. (17) 
CDM Correlation disorder model after eq. (127) 
CFDOS [1/cm³] Supplementary notation for the cumulative sum of the product F×DOS×dE of 

Fermi occupation factor, DOS and energy integration step dE at given energy 
E 

eq. (27) 

CI≡COX [F/cm²] Gate dielectric capacitance per unit area  
CSc [1/cm³] Supplementary notation for concentration of critical sites eq. (8) 
dt [cm] Variable step for distance by numerical integration of Poisson equation. dt>0, 

although t<0. 
eq. (32) 

dE, dΔE, dEi, dEj 
[eV] (meV) 

Integration step for energy by calculations of Riemann sums eqs. (8), (14), (17)−(20) 

D [cm] (nm) Depth in the semiconducting film with a reference (D=0) at the gate dielectric 
interface and within the film thickness tf (D=tf=film back) 

before eq. (29) to eq. 
(37) 

D‴ 
[cm], (nm) 

D‴={LA, D95%σsq, DavgVB} is a supplementary notation for the set of the three 
characteristic electrostatic distances, defined below 

sec. 4.4.3 and Figure 27 

D95%σsq ≡ D95%σ 
[cm], (nm) 

Characteristic depth in the semiconducting film, which corresponds to 95% of 
the sheet conductance σsq 

eq. (69) 

DavgVB  
[cm], (nm) 

Characteristic depth in the semiconducting film, at which the potential bending 
is with magnitude avgVB. See also avgVB. 

eq. (70) 

dD [cm] (nm) Non-uniform step in the depth D of the OTFT semiconducting film eq. (32) to after eq. (38) 
DC [u] Static value for a quantity in unit [u]. DC≡XSTAT. eq. (144) 
DOS [cm−3eV−1] Density of states in semiconductor. DOS(E) is arbitrary, but predetermined 

function of energy E, and DOS is spatially uniform. 
eqs. (3), (8) 

DOSDE [cm−3eV−1] Double-side exponential DOS eq. (45) 
DOSND [cm−3eV−1] Normally distributed DOS eq. (58) 
DOSSE [cm−3eV−1] Single-side exponential DOS eq. (22) 
E, Ei, Ej [eV] Energy, energy of states i and j. See also ΔE. eq. (6) 
EAσ [eV] Bias-dependent thermal activation energy of the VRH sheet conductance σsq. eq. (56);  

Figure 19 
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Symbol  

[primary unit] 

(secondary units) 

Meaning and comments see 

EAμo [eV] Bias-independent thermal activation energy for the mobility parameter μo. See 
μo. There is an additional bias dependence of the thermal activation in OTFT, 
which follows from the last (bias-dependent) term in eq. (106) via γ by 
(VG)(2+γ)/(2+γ), which is a dependence that we did not discuss, because the 
treatment is conditional, considering that the mobility is apparent quantity in 
terms of VRH. 

eq. (113) 

EF [eV] Fermi energy level in bulk semiconductor. See also IMREF and FB. eq. (6) 
Eel [V/cm] Electric field induced by VG in the film of the OTFT in the direction 

perpendicular to the plane of the film 
before eq. (29) to eq. 
(36) 

Ebottom [eV] Lower limit for energy integrations, see also Etop eq. (39) 
EH [eV] Hopping energy: the maximum energy difference of successful charge hopping 

(average value for the critical path in the percolation network) 
eq. (2) 

EHFB [eV] Hopping energy in bulk semiconductor (no bias, bending VB=0) eqs. (30), (59) 
Eo [eV] Energy position parameter of DOS (For the single-mode DOS considered in 

this work, Eo=HOMO for p-type OTFT and Eo=LUMO for n-type OTFT) 
eqs. (22), (45), (58) 

Etop [eV] Upper limit for energy integrations, see also Ebottom eq. (39) 
ET [eV] Supplementary notation by eq. (50). Later is shown that ET≡EHFB. eqs. (50), (59) 
errQG [%] Relative error of unbalance between gate QG and film QF charges due to finite 

step dE in the numerical integrations. 
errQG=|QF/QG−1|×100%∝exp(dE/kT)−1≈dE/kT when dE<kT 

Figure 34 

f(…) Supplementary notation for function  
f [Hz] Frequency From eq. (144) 
F, Fn, Fp  
[number <1] 

Fermi occupation factor, for electrons and holes Before eq. (25) 

FB [eV] Energy level, which satisfies the median condition for equal concentrations of 
occupied states below and above FB. Note that FB varies with bias when using 
quasi-Fermi IMREF=EF+qVB, instead of Fermi level EF, to include the bending 
VB due to gate bias. FB is flat-band energy only if VB=0, thus in bulk 
semiconductor. 

eq. (26) 

FBAVG [eV] Another definition for FB as weighted average. Not used in the simulator. eq. (28) 
FLOP Floating-point operation of multiplication. For other operations: summation = 

¼FLOP; division=2FLOPs; exponentiation=17FLOPs 
 

HOMO [eV] Highest occupied molecular orbital in organic material (centroid level)  
GDM Gaussian disorder model after eq. (127) 
gm [S≡A/V] Transconductance of OTFT (differential). gm=∂ID/∂VG∝μ  
IMREF [eV] Quasi-Fermi energy level by potential bending VB, see FB. IMREF=(EF+qVB). 

Note that other definitions for IMREF exist in the literature, e.g., quasi-Fermi 
levels for electrons and holes, while we do not use those definitions. 

eq. (23) 

IFB [numerical 
index] 

Index in the energy mesh E, which corresponds to median condition of charge 
occupation, that is, FB=EIFB. See FB. 

eq. (27) 

ID [A] Channel or drain DC current in OTFT  
k [eV/K] Boltzmann constant (k≈8.62×10−5 eV/K) eq. (2) 
kT, kT/q [eV,V] Thermal energy in electron-Volts, same as thermal voltage in Volts eqs. (2), (4) 
L [cm] Channel length of the OTFT  
LUMO [eV] Lowest unoccupied molecular orbital in organic material (centroid level)  
LA [cm] (nm) Electrostatic length of bias induced charge. LA is the depth in the 

semiconductor film from gate dielectric interface, which corresponds to 

D=0
∫
LANC(D)dD=½QG of the gate charge, QG≈COXVG. 

eqs. (47), (81) 

LFN Low-frequency noise  
LSB [number] Least significant bit  
m [various] Supplementary notation for multiplicative factor for several numerical 

quantities, as always explained in particular contexts 
 

MC Monte Carlo method for numerical calculations after eq. (127) 
MTR Multiple trapping and release after eq. (127) 
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Symbol  

[primary unit] 

(secondary units) 

Meaning and comments see 

n [number] Supplementary notation for several numerical quantities, as always explained 
in particular contexts 

 

nEH [eV] A guess for new value of EH in the next cycle of iteration procedure with 
gradual variation of EH 

eq. (21) 

NC [1/cm³] Concentration of occupied charge states in DOS and carrier concentration for 
VRH mobility. Use quasi-Fermi IMREF=EF+qVB, instead of EF, to include the 
bending VB due to gate bias. 

eq. (25) 

NCDO≡NC(D=0) 
[1/cm³] 

Same as NC, but for the semiconductor at the gate dielectric interface, thus, 
NCDO is NC at depth D=0. 

eq. (154) 

NCFB [1/cm³] Same as NC, but for bulk semiconductor (no gate bias, thus, the electric field is 
zero, Eel=0, and the potential bending is zero, VB=0) 
For an exponential DOS, NCFB=NSexp(−|Eo−EF|/kTo). 

eq. (29), (155) 

NS [1/cm³] 
Concentration of charge states for all energies, NS=

−∞
∫
+∞

DOS(E) dE eqs. (22), (45), (58) 

NSEF [1/cm³] Effective value for NS, which varies with temperature, as deduced in [11] after 
deconvolution of the integral ∫dx/(1+xª) with exponential DOS 

between eqs. (79) and 
(80) 

NVG [1/cm³] Gate bias induced charge concentration at VG≠VFB (NVG is difference between 
the non-equilibrium NC at VB≠0 and equilibrium NCFB at VB=0 for bulk 
semiconductor) 

eq. (34) 

NTOT [numeric] Total number of charge carriers in the OTFT channel. See SNORM. eqs. (144), (145) 
P, PAVB, Pσ, PLA≡1 Bias independent proportions of characteristic depths. P denotes any of 

PAVB=DavgVB/LA, Pσ=D95%σsq/LA or PLA=LA/LA≡1. 
between eqs. (76)-(77); 
Figure 27 

PEAKINGDOS “Peaking” of DOS. Characteristic constant for the DOS type see after eq. (74) 
PSD [u²/Hz] Power-spectrum density. For noise, S(f) denotes PSD. [u] is the unit of the 

quantity, for which PSD is given, e.g., [u]≡[A] for current – see SID. 
 

q [C] q=1.602×10−19 C is the magnitude of the electron charge eq. (3) 
QF [C/cm²] Charge per unit area in the semiconducting film (QF≈QG) eq. (93) 
QG [C/cm²] Charge per unit area of the gate dielectric QG=[VG−(VFB+VBS)]COX, with 

VBS=VB(D=0) 
eq. (31) 

Q’G [C/cm²] Supplementary variable for QG during integration in the depth D≥0 of the 
semiconducting film Q’G=[VG−(VFB+VB)]COX, with VB for D≥0 

eq. (31) 

R, Rij [cm] (nm) Hopping distance, distance between hopping sites i and j eqs. (6), (7) 
RH [cm] (nm) Maximum distance of successful charge hopping (average value for the critical 

path in the percolation network) 
eq. (2) 

RHFB [cm] (nm) Hopping distance RH for bulk semiconductor (no bias, VB=0) eq. (60) 
Ro ≡ Λo Decay distance for the hopping rate, see Λo  
RECDOS “Rectangularity” of DOS. Characteristic constant for the DOS type eq. (74) 
sc [number] Hopping critical factor (attenuation factor of VRH conductivity in the critical 

path of the hopping percolation network) 
eq. (1) 

scFB [number] Hopping critical factor sc for bulk semiconductor (no bias, VB=0) eq. (60) 
scT∞ [number] scT∞≈10±4 is extrapolated value for scFB at infinite temperature T=∞ eq. (61) 
sEH [eV] Step prefactor for EH by calculation of the guess nEH for the next cycle of 

iteration procedure with gradual variation of EH. See nEH. 
eq. (21) 

Sμ [number] Parameter in the exponent of the power-law trend for mobility deduced in [82]. 
Sμ is material dependent. 

eq. (82) 

SM Scher and Montroll (dispersive transport formalism in [95]) eq. (126) 
S(f) [u²/Hz] PSD of noise for quantity with unit [u]. See PSD, SID and SNORM. eq. (144) 
SID [A²/Hz] PSD of the noise in the OTFT channel/drain current ID eq. (150) 
SNORM [1/Hz] Normalized power-spectrum density (PSD). SNORM=S(f)/DC² eq. (144) 
Sn1 [1/Hz] Normalized PSD of the noise of single carrier. Sn1≈αH/fβ. See αH. eq. (146) 
T [K] Absolute temperature (in unit of Kelvin) eq. (2) 
TA [K] Characteristic “temperature” proportional to the electrostatic effective depth 

LA of the conduction channel at gate bias voltage VG≠0. TA≈To for an 
exponential DOS. See also φA≡kTA/q. 

eq. (47) 
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Symbol  

[primary unit] 

(secondary units) 

Meaning and comments see 

TB [K] Characteristic “temperature” for the logarithmic decay of the potential bending 
VB in the depth of the film at gate bias voltage VG≠0. TB≈To for an exponential 
DOS. See also φB≡kTB/q. 

eq. (48) 

TC [K] Characteristic “temperature” proportional to the carrier concentration NC at 
gate bias voltage VG≠0. TC≈To for an exponential DOS. See also φC≡kTC/q.  

eq. (49) 

Tcold [K] Effective characteristic “temperature” at absolute zero temperature. See 
φcold≡kTcold/q. 

 

TG [K] Characteristic temperature TG≈3830K in eq. (80), which we observe to fit the 
data from numerical simulations of Fig. 6 in [11]  

eq. (80) 

To [K] Characteristic “temperature”, which describes the energy width (kTo) of the 
distribution of DOS 

eqs. (22), (45), (58) 

TOEF [K] Effective characteristic “temperature”, originating from convolution between 
Fermi and DOS distributions.  For exponential DOSSE, TOEF≈To at low 
temperature T<To and TOEF≈T at high T>To. In many instances, TOEF can 
replace To. See also φOEF≡kTOFF/q. 

eqs. (79), (80) 

Tσx [K] Characteristic temperature parameter for VRH sheet conductance, which is 
proportional to the thermal activation energy EAσ of σsq. 

eqs. (55), (56);  
Figure 19 

T’ [K] See Λ’ eq. (3) 
ToF Time-of-Flight, a method for transient current measurement after injection of 

charge. The injection is usually by short illumination. 
before eq. (126) 

TSF [numeric] Temperature shaping function in the TFT compact mobility model, introduced 
in [6] 

eqs. (108), (110) 

t [cm] Supplementary variable for distance with direction opposite to the film depth 
D, by numerical integration of Poisson equation with step dt>0 

eq. (32) 

t [s] time of observation after eq. (126) 
tf ≡ tFILM  
[cm] (nm) 

Semiconducting film thickness in OTFT  

VB [V] Potential bending induced by the gate bias VG causing non-equilibrium charge 
in the semiconducting film of the OTFT. See also IMREF. The energy band 
bending in semiconductors is (−qVB), since the semiconductor band diagrams 
are given for electron potential energy (by convention). 

before eq. (22) to after 
eq. (23) 

VBS [V] VBS=VB(D=0) is the potential bending in the semiconductor induced by the 
gate bias VG at the semiconductor-insulator interface (D=0) 

eqs. (31) and (48) 

VD [V] Drain bias voltage. The source terminal of the OTFT is assumed at zero 
potential, that is, VD≡VDS. 

 

VFB [V] Flat-band voltage potential in the bulk semiconductor (no gate bias); VFB≡FB 
[eV] by eq. (26) when VB=0, since IMREF=EF 

eq. (29) 

VG [V] Gate bias voltage. The source terminal of the OTFT is assumed at zero 
potential, that is, VG≡VGS. 

 

VGx [V] Characteristic value that corresponds to extrapolated value of high gate bias, at 
which the temperature dependence in the VRH sheet conductivity is cancelled 

eq. (54);  
Figure 19 

Von [V] Von is the gate voltage VG, at which the gate bias induces conductivity larger 
than the bulk conductivity, and Von~VFB corresponds roughly to the flat-band 
potential VFB 

eq. (53), (54);  
Figure 18 

VRH Variable Range Hopping  
VS [V] Source bias voltage. The source terminal of the OTFT is assumed at zero 

potential, that is, VS=0. 
 

VT [V] Threshold voltage for the gate bias voltage VG of the OTFT. The value is 
extrapolated from above threshold regime – see γ. 

eq. (43) 

W [cm] Channel width of the OTFT. Occasionally, W(x) also denotes the Lambert 
function. 

 

X, x [various] Supplementary variable for denoting different quantities in several equations, 
as explained in particular contexts 

 

XAVG [various] Averaged quantity, XAVG=∫XYdz/∫Ydz, Y is weighting function eq. (130) 
XNEW (t) Equilibrium (thermalized) fraction of X during transient process eq. (133) 
XOLD(t) Non-equilibrium fraction of X during transient process eq. (134) 
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Symbol  

[primary unit] 

(secondary units) 

Meaning and comments see 

Xsq [various] Sheet quantity (X per square-shaped area of the OTFT channel) eq. (130) 
XSTAT [various] Static (DC) value of X eq. (132) 
X0, X∞ States of X before and after a transient process (at time t=0− and t=∞, 

respectively) 
eqs. (133), (134) 

Y, y [various] Supplementary variable for different quantities. See XAVG. eq. (131), (147) 
α=1/Λo [1/cm] Orbital overlap parameter, see Λo eq. (3) 
α [numeric] Dispersive parameter by Scher-Montroll (SM) formalism in [95] eqs. (126), (127) 
αH Hooge parameter for magnitude of the flicker noise of one carrier eqs. (144)-(146)  
β≈1 Frequency exponent of flicker (1/f) noise. PSD=S(f)=constant/fβ eqs. (144)-(146)  
γ [number] Mobility enhancement factor, μ∝(VG−VT)γ at VG>VT. (If OTFT is a p-type 

FET, then invert polarity of VG and VT.) 
eqs. (43), (105) 

Γ, Γij [Hz] (1/s) Hopping rate, rate of charge hopping between sites i and j eqs. (2), (6) 
Γc [Hz] (1/s) Hopping critical rate (average rate of continuous hopping in the critical path of 

the percolation network) 
eq. (2) 

ΓcFB [Hz] (1/s) Hopping critical rate for bulk semiconductor (no bias, VB=0)  
Γo [Hz] (1/s) Hopping attempt rate eq. (2) 
δμtf [%] Relative variation of the effective mobility μ in OTFT with finite film 

thickness, compared with the mobility μtf=∞ of infinitely-thick film OTFT, 
δμtf=(μ/μtf=∞−1)×100% 

eqs. (96), (97), (98) 

δφ [%] Relative difference of φOEF from φT, δφ=(φOEF−φT)/φT×100% eqs. (112), (113) 
ΔE, ΔEij [eV] Maximum of the magnitudes of the energy jumps by hopping between states i 

and j and the Fermi level 
eqs. (6), (7) 

ΔE, ΔT Supplementary notations for energy and temperature differences in TSF, 
obtained in [6] by assumption of Boltzmann statistics 

between eqs. (110) and 
(111); Figure 36 

ΔEH [eV] Parametric variable for hopping energy by evaluation of distribution of 
hopping time. ΔEH=0…EH… 

eqs. (115), (116) 

ΔN-Δμ-Δσ-Δτ Notations for different hypotheses (assumptions) for noise origin  Figure 41, Figure 42 eq. 
(147) 

εo [F/cm]  Permittivity of vacuum, εo=8.85×10-14 F/cm=85.5fF/cm  
εf≡εF [F/cm] 
(fF/cm) 

Permittivity of the organic semiconducting film. In this work, we use average 
value of εf=3εo≈2.66×10−13 F/cm=266fF/cm. 

 

εz [F/cm]  Parameter in the power-law trend for mobility deduced in [82], εz≈5×10−16 
F/cm (±30%) 

eq. (82) 

η [S(φT/φOEF)/C] Parameter in the relation between charge qNC and VRH specific conductivity 
σ. In an ideal semiconductor φOEF=φT, and η=μ becomes the bias- and 
temperature-independent mobility. For an exponential DOS, η is also bias- and 
spatially independent, but it is temperature dependent. 

eq. (83) 

Λo [cm] (nm) Decay distance for the hopping rate Γ, Γ(R+Λo)= Γ(R)/exp(1) eq. (2) 
Λ’≈Λo [cm] (nm) Supplementary notation for uncertain value of Λo. Λ’∝(T’/T)ⁿ, with n~unity, 

kT’≈4Bc/[Λo³×DOS(EF)]. 
eq. (3) 

μ [cm²/Vs] Effective carrier mobility in OTFT. μ=σsq/QG≈σsq/QF is ratio of sheet 
conductance to sheet charge, thus, μ is sheet-type quantity. 

eq. (42) 

μD(D) [cm²/Vs] Carrier mobility at given spot in the depth D of the semiconductor (spot 
mobility). μD(D)=σ(D)/qNC(D) is ratio of VRH specific conductivity σ(D) to 
the charge concentration [qNC(D)] at the spot with spatial coordinate D, thus, 
μD is volumetric quantity. Distinguish from the effective mobility μ in OTFT, 
which is a sheet-type quantity. 

eq. (89) 

μDO=μ(D=0) 
[cm²/Vs] 

Spot mobility in the semiconductor at the gate dielectric interface (depth D=0). 
See μD(D) above. 

eqs. (91), (92) 

μFB [cm²/Vs] Mobility in bulk semiconductor (no bias, VB=0). μFB(T)=σFB(T)/qNCFB(T) is 
temperature dependent, but spatially and bias independent. 

eq. (89) 

μo [V−γcm²/Vs] Mobility in OTFT at gate voltage overdrive |VG−VT|=1V eqs. (106), (107), (108) 
μoo [cm²/Vs] Mobility prefactor in the TFT compact mobility model [6] eq. (108) 
μtf=∞ [cm²/Vs] Effective carrier mobility in OTFT with infinitely-thick film, tf=∞ eq. (96) 
μz [cm²/Vs] Parameter in power-law trend for mobility deduced in [82], μz≈105cm²/Vs 

(±50%) 
eq. (82) 
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Symbol  

[primary unit] 

(secondary units) 

Meaning and comments see 

σ [S/cm] (S/m) Specific conductivity (S/m=A/Vm=100 S/cm) eq. (1), (63) 
σo [S/cm] (S/m) Prefactor for specific conductivity (S/m=A/Vm=100 S/cm) eq. (1) 
σDO≡σ(D=0) 
[S/cm] (S/m) 

Specific conductivity in the semiconductor at the gate dielectric interface 
(depth D=0) 

eqs. (87), (88) 

σFB [S/cm] (S/m) Specific conductivity σ for bulk semiconductor (no bias, no potential bending 
VB=0) 

eqs. (30), (64) 

σsq [S] (S/�) Sheet conductance of the semiconducting film under gate bias VG eq. (41) 
σsqB [S] (S/�) Sheet conductance of the semiconducting film at equilibrium (no bias, VB=0) eq. (40) 
σsqx [S] (S/�) Characteristic value for sheet conductance obtained by extrapolation of VG to 

VGx, at which the temperature dependence of σsq is cancelled. See VGx. 
eq. (54);  
Figure 19 

τ [s] Hopping time, τ=1/Γ eqs. (114), (116) 
τc [s] Hopping critical time (average time for continuous hopping in the critical path 

of the percolation network), τc=1/Γc 
eq. (114) 

τmin, τmax  [s] Range of the “plateau” in the distribution of hopping times  Figure 37,  
eq. (128) 

τo [s] Hopping attempt time, τo=1/Γo after eq. (117) 
φA≡kTA/q  [V] Characteristic “thermal-like voltage” proportional to the effective depth LA of 

the conduction channel. See also TA. 
eq. (47) 

φABC  [V] Supplementary notation for φA, φB, φC and φOEF eq. (79) 
φB≡kTB/q  [V] Characteristic “thermal-like voltage” for the logarithmic decay of the potential 

bending VB in the depth of the film. See also TB. 
eq. (48) 

φC≡kTC/q  [V] Characteristic “thermal-like voltage” proportional to the carrier concentration 
NC. See also TC. 

eq. (49) 

φcold≡kTcold/q  [V] Characteristic “thermal-like voltage” corresponding to the value of φOEF 
extrapolated to absolute zero temperature T=0. For an exponential DOSSE, 
φcold=φo. See also φOEF≡kTOFF/q. 

eq. (79) 

φDOS [V] qφDOS=[∂ln(DOS)/∂E]−1 is the reciprocal of the logarithmic slope of DOS at 
condition for average bending VB=avgVB, and φDOS is  compared with φB,an of 
exponential DOS approximation 

eq. (71) 

φo≡kTo/q  [V] Characteristic “thermal-like voltage” proportional to the reciprocal of the 
logarithmic slope of the single-side exponential DOSSE, φo=φDOSSE

. Distinguish 
from φTo. 

eq. (72) 

φOEF≡kTOEF/q  [V] Effective characteristic “thermal-like voltage”, originating from convolution 
between Fermi and DOS distributions.  For the single-side exponential DOSSE, 
φOEF≈φcold≈φo at low temperature T<To and φOEF≈φT at high T>To. In many 
instances, φOEF can replace φo. See also TOEF. 

eqs. (79), (80) 

φT [V] (mV) Thermal voltage given by definition as φT≡kT/q. See also kT. eq. (60) 
φTo [V] (mV) φTo≈(0.8V±0.1)V is voltage parameter, determining the slope in the scFB∝1/T 

temperature dependence. Distinguish from φo≡kTo/q. 
eq. (61) 

φTFT [V] Bias-independent TFT specific voltage in the TFT compact mobility model [6] eqs. (108), (111) 
ψ(t) Distribution density in SM formalism for dispersive transport [95] eq. (126) 
∫dE, ∫∫dEdE Methods or approaches for calculation of VRH specific conductivity by single 

∫dE and multiple ∫∫dEdE integrations 
eqs. (13),(14); 
(17),(18),(19),(20) 

∂(B/Bc)/∂τ [1/s] Distribution density of hopping times. Eq. (117) 
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1. Introduction 

Organic thin-film transistors (OTFTs) are essential building blocks for the organic electronics, which are 

actively pursued for low-cost, large-area applications. Intended applications are wearable and disposable 

electronic devices and flexible displays. The OTFT is normally an isolated-gate field-effect transistor 

(FET), with characteristics similar to a MOSFET. However, compared with the crystalline-semiconductor 

devices, the charge transport in OTFT is poor. To explain this poor charge transport, and in order to 

replicate the assumptions in semiconductors, the classical semiconductor theory was significantly modified 

in the so-called mobility edge models, separating the induced charge in two categories of trapped and 

mobile charges. The trapped charge, being the larger and with zero mobility, is localized at certain energy 

levels [1] or distributed in energy tails of states [2] inside an energy band-gap, whereas the mobile charge is 

considered with a constant characteristic value for the mobility like in a band-like charge transport model. 

With these assumptions in the mobility edge models, analytical models are developed and confirmed by 

numerical simulations [1, 2, 3, 4]. Within the mobility edge framework, commercial numerical simulators 

are also available, e.g., Atlas from Silvaco [5] and Sentaurus from Synopsys [4]. On the other hand, the 

charge localization in organic materials implies that these materials should be understood in terms of semi-

insulators, rather than considered as poor semiconductors, since the charge is well localized in the organic 

materials and spatially continuous transport bands are unlikely [6]. 

There are several approaches to explain the charge transport in materials with localized charges, assuming, 

e.g., localization barrier lowering, metallic transitions (Mott-Hubbard), polaron excitation-relaxation, or 

field emission. A common assumption in these approaches is that the charge is spatially and energetically 

localized in states, wells, or grains of the amorphous material, and the charge hops between the states with 

some probability and rate, according to the particular approach. Thus, one generally assumes the hopping 

charge transport in insulators, but not the freely moving at the thermal velocity charge carriers in the 

transport band of a semiconductor. One class of charge hopping theories considers that the charge 

propagates through the material, overcoming various distances and energy barrier heights, with various 
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probabilities for successful hops, which is generally the situation in amorphous materials to which the 

OTFT normally belongs. Owing to the assumption for non-constant distance-energy ranges of hopping, this 

class of theories is known as variable range hopping (VRH). In this work, we address the numerical 

simulation of VRH for OTFT to verify many analytical relations for these devices, from different 

perspectives to complement the numerical simulations of mobility edge models. Surprisingly, reports of 

fully numerical simulations of VRH for OTFT are lacking in the literature, perhaps due to the large 

computational volume of these numerical simulations, although similar simulations of VRH have been 

carried out for other cases, e.g., organic diodes and dispersive transport in amorphous layers. All these 

numerical simulations, including the most recent (per March 2014), e.g., in [7], consider quasi-equilibrium 

of spatially-uniform charge concentrations, while it is known that the charge concentration profiles in OTFT 

are not uniform under gate biasing. Attempts to consider non spatially-uniform charge carrier density in the 

channel of OTFTs can be seen in later dc compact-model proposals [8, 9]. The gradients in the OTFT 

accumulation layers possibly affect the charge transport in OTFT [10]. Note that VRH does not assume a 

transport band or distinguish between different types of charges, a concept more reasonable for semi-

insulators to which the organic materials belong, although it is possible to derive expressions and calculate a 

“transport energy level” for VRH that is equivalent to an edge of the charge transport band [11, 12]. 

However, the discussions in [12] indicate several problems in determining the value of the transport energy, 

e.g., it exists only for Gaussian density of states by consideration of low carrier concentration, and it 

changes with a carrier-dependent Fermi level, the latter quite difficult to justify for a given material by the 

established semiconductor and electrochemical theories. The overall impression from the literature is that 

the band edge is not needed for hopping charge transport, in principle, and the band edge is introduced in 

the simulation programs for convenience [4] to relate to experimental data for the effective mobility in 

OTFT. 

 Recent studies on novel topologies of OTFTs or OTFTs working in different environments [13] use 

closed-form analytical expressions for the drain current based on analytical VRH expressions with assumed 
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VRH parameters [13, 14, 15]. One of the advantages of numerical VRH simulation is that it can be extended 

to transistors based on 2D systems in which VRH transport is also present [16]. To the best of our 

knowledge, 2D analytical VRH models are not available or they may not have closed form solutions. Also, 

at present, numerical VRH simulation  is still limited to bulk materials [17]. In addition, prior to analyzing 

OTFTs or OTFTS working in different environments, , it is important to understand their charge transport 

characteristics. Therefore, one the main objectives of this work is to build a numerical simulator from the 

basics of the VRH transport. 

After several preceding works of Hung and Gliessman, Conwell, Mott, Anderson, Abrahams and other 

researchers in the period between 1950 and 1970 (please see references in [18]) it was established around 

1970, e.g. in [19, 20], that the VRH conduction is a hopping of localized charges in a random percolation 

network, and it is widely accepted over the years [21, 22, 23] that the VRH conductivity is given in principle 

by 

( )o cexp sσ = σ −  ,      (1) 

where σ is the specific conductivity in S/m or S/cm, and σo is the conductivity prefactor in the same unit. 

The prefactor σo is a differential limit for the charge displacement in infinitely small distance dR→1/∞. The 

dimensionless factor sc>0 reflects the reduction of charge hoping in the critical path of the percolation 

network of the amorphous material. The factor sc is a logarithmic measure of the difficulty, which the 

localized charge meets when propagating through the percolation network, owing to finite distances, energy 

and other barriers, or lack of empty site to move into, etc.  

Conceptually, the critical path allows the localized charges to traverse a material in which there is not 

a transport band for this charge. The critical path spans the material from end to end (micrometer scale or 

larger), connecting nanometer-small conductive spots or clusters that may have s<sc, but these conductive 

clusters stay separated from each other owing to the surrounding insulating media with s>sc. Thus, the 

critical paths with s=sc determine the overall hopping conduction, because these paths provide connections 

(called “bonds”) between the conductive spots with s<sc (called “sites”) in an otherwise insulating media 
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with s>sc.  The debate was and continues to be, what the factors and the expressions behind σo and sc are, 

what the particular formats of eq. (1) for different materials and structures are, and how to include 

temperature, bias (and eventually light illumination or emission) in these equations. To find these, several 

approaches were taken over the years, a variety of assumptions were made, and a vast amount of integrals 

were solved in order to obtain analytical expressions for specific or more general cases. However, the origin 

of the debate is that the VRH is a mathematical theory for a percolation network, in which the rules can be 

introduced by different ways, and the physics is determined by the type of the rules and parameters 

embedded in the otherwise purely mathematical template. Consequently, the equations for VRH and some 

parameters in them are different for “similar” cases, owing to different physically sound assumptions, 

sequences and techniques of substitutions (e.g., of semi-equalities or proportionalities), limits of integrations 

and neglecting terms by various considerations. Unfortunately, examining at the literature, one finds the 

final expressions, but not the detailed derivations, perhaps, because the derivations are bulky, and some 

steps in these derivations may be questionable. The problem with evaluating VRH models and derivations is 

evident at present, and it was addressed by critical discussions, such as in [7, 10].  

In the next Sec. 2, we present the VRH expressions and methods for calculations, which we have used 

in our numerical simulator. We are also aware that there is not a unique treatment of charge hopping and 

many details in past works are missing. Since omissions of details may cause misinterpretations, we took 

exceptional care to spell in which way we use these VRH expressions. Then, in Sec. 3, we will address the 

issues for parameter assignment and will present the results from the numerical simulations compared with 

experimental data. In Sec. 4, a detailed discussion will demonstrate the consistency of the results from the 

numerical simulations, also outlining essential relations for VRH in OTFT. Building on these, in Sec. 5, we 

will attempt to give an outlook for feasibility of numerical VRH simulations and a scenario for bridging 

between analytical and numerical models for OTFT. While we are mainly focused on the stationary (DC) 

behavior of the OTFT, we shall also provide in Sec. 6 links to non-stationary behaviors of OTFT, such as 
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dispersion of hopping time, long-living tails by switching the OTFT and noise. Finally, we will summarize 

in Sec. 7 our findings in the conclusions. Also, many details in the derivations are provided in appendices. 

 

2. Theoretical background of the simulator and implementation 

The general eq. (1) for VRH can be treated by several physical approaches, as can be deduced from the 

references in [18]. Nevertheless, it seems that the most productive approach for VRH became feasible after 

relating the critical factor sc with the hopping rate Γ, by 

o H H
c

c o

R E
s ln 2

kT

 Γ= = = Γ Λ 
 ,      (2) 

where Γo is the hopping attempt rate, Λo is a characteristic length which the charges overcome with 

probability exp(−1), and the thermal energy kT is the product of Boltzmann constant (k≈8.62×10−5 eV/K) 

and absolute temperature T. It is seen in eq. (2) that only kT is providing the energy in VRH, which means 

that all other sources of energy are neglected, the system is in a thermal equilibrium. The diffusion is 

omitted, since no concentration gradient is present in eq. (2). Also, Λo is a decay distance for the hopping 

rate Γ, which is in a format similar to attenuation distance by tunneling, but one interprets Λo as a 

localization distance or an effective molecular orbital overlap in organic materials, rather than as the 

electron wave attenuation by tunneling. Corresponding to the percolation critical path, Γc is the average rate 

of continuous hopping in the critical path, RH is the maximum distance of successful charge hopping 

between the spatially distributed charge-localizing sites (from here, we usually use “states” instead of 

“sites”, since “charge localization states” and “density of states, DOS” are widely used terms in 

semiconductor theories), and EH is the maximum energy difference that the carriers can overcome when 

hopping between states with different energy. Note that RH and EH are effective values for maximum 

distance and energy of hopping, thus, they are statistical expectations in distributions, and are not 

boundaries of the distributions. To obtain expectations, one uses averaging; and we specifically use RH and 

EH in the context of arithmetic averages. (In contrast, for example, the random walk in networks uses 

quadratic averaging and variances.) Eq. (2) was introduced by eqs. (4.9) and (4.10) in [20] with α=1/Λo, and 
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thoroughly analyzed there. Also by eq. (6.1) in [20], when relating the critical factor sc with the hopping rate 

Γ, it was given that the conductivity prefactor σo in eq. (1) is  

2
o o

o '
o

q q
kT kT

q

Γ Γσ = =
Λ Λ

 
 

 ,      (3) 

where q is the magnitude of the electron charge, (kT/q) is the thermal energy in unit eV, or thermal voltage 

in V, as used in the simulator, and Λ’≈Λo. Note that there is a theoretical uncertainty in eq. (3), since it is 

mentioned in relation to eq. (4.5) in [20] that Λ’ might be not a constant, but a function of the temperature, 

e.g. Λ’∝(T’/T)ⁿ, with n~unity, kT’≈4Bc/[Λo³×DOS(EF)], where Bc~9/π≈2.86 is the critical number for three-

dimensional percolation network (Bc~4 after other assumptions, see eq. (4.14) in [20]), and DOS(EF) is the 

density of states (in unit, e.g., cm−3eV−1) “slowly varying” at the Fermi energy level EF. For example, 

σo=⅓qΓo/[Λo(kTo/q)] was deduced in [21] after an assumption for random-walk hopping in exponential 

DOS∝exp[(E−Eo)/(kTo)], with energy E being between EF and a boundary energy Eo of the exponential 

DOS, EF≤E<Eo, thus, n=1 and the temperature dependence in σo effectively cancelled. One can find also 

other expressions for VRH conductivity, e.g. in [24] for bulk material based on earlier works of Mott and 

Davis and simple derivations in [23] that lead essentially to similar analytical results. 

Approximate relations and uncertain values for several quantities are regularly observed in the 

literature on VRH. Numerical simulators, on the other hand, require exact equalities and values of 

parameters. Therefore, we state the following equation, which we think is the principal equation for the 

VRH specific conductivity 

( ) ( )o o
c c eVo o k

KJ
k

K

q q
exp s exp s

kTkT
q

 =   =  

 
   Γ Γ σ = − ≡ −   Λ Λ    
    

 .   (4) 

The right-hand expression of eq. (4) is built in the numerical simulator, using k≈8.62×10−5 eV/K for the 

Boltzmann constant, since the energies are in eV in the simulator. For the other quantities in eq. (4): σ is in 
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S/cm≡A/(Vcm)≡(S/m)/100; sc is as defined in eq. (1) and obeys the relations in eq. (2), having the meaning 

of dimensionless natural-logarithm measure for reduction of the hopping rate Γc=Γoexp(−sc) in the critical 

path of the percolation network, as compared to the hopping attempt rate Γo; Γc and Γo are in Hz≡1/s; Λo is 

in cm, being a characteristic length, which the charges overcome with probability exp(−1); q≈1.602×10−19 C 

is the magnitude of the electron charge; and T is the absolute temperature in K (Kelvin).  

With values depending on theoretical treatment of VRH and assumptions for the DOS, Γo and Λo are 

implemented as constants in the simulator (their values will be defined later for specific cases), leaving for 

the prefactor σo=qΓo/(kTΛo)|k=[eV/K] a multiplicative uncertainty in the order of 

[A×(T/T’)ⁿ]~0.05±2.2decades for temperatures T=100−300K, with A~0.3±1decade, n~0−2 and 

T’~200−1000K. The hopping models use the concentration of charge states NS as the concentration of 

hoping sites [10]. Owing to a relation (bΛo)³=1/NS, b~2−10, both ways of using Λo or 1/NS
⅓ are identically 

applicable in expressions related to hopping. The parameter b is normally embedded in another parameter, 

e.g. regarding eq. (4), as a divider of Γo, or ln(b) is added to sc, as in [10].  

Eq. (4) is computationally efficient, no iteration loops or large matrices, requiring 3 multiplications 

(~FLOP each), one division (~2 FLOPs) and one exponentiation (~17 FLOPs), altogether about 20FLOPs 

(floating point operations) and less than 100 bytes of memory. However, the calculation of the value of sc 

that is used in eq. (4) is computationally extensive, as we discuss below. Therefore, we also keep track in 

Table VI of the computational volumes related to VRH calculations. 

The determination of sc is not trivial, because eq. (2) does not provide a method for its calculation and 

includes three unknowns, namely sc, EH and RH. Thus, some assumptions are required, as detailed in [20], 

and summarized below. 

i) Geometrical assumption. This first assumption provides that the hopping site has sufficient number 

of bonds to other sites in the critical path of the percolation network. This critical number of bonds per site 

for hopping in three-dimensional percolation is denoted with Bc, and satisfies the following relations [20, 21, 

22], 
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( )
( ) ( )
c

3

B Critical number of bonds per site

Concentration of critical sites Mean hopping distance between critical sites

Concentration of critical bonds
Concentration of critical sites

=

= ×

=

 , (5) 

where the first line of this equation is as per the appendix of [21], the second line is given by eq. (4.12) in 

[20], and the third line is given by eq. (5) in [22]. Any of the approaches in eq. (5) to calculate the critical 

number of bonds per site results in similar integrals. Also, as mentioned above, Bc~9/π≈2.86 is estimated for 

uniform DOS from eq. (4.13) in [20], but immediately in eq. (4.14) in [20], the value was revised to Bc~4 

after additional assumptions. In addition, different geometrically-only approach was undertaken in [7], using 

different formulation of the critical path (overlapping spheres with radii larger than L*=½ΛoTo/T and 

distance between the spheres’ centers less than L*), resulting in another number, 0.219, for concentration of 

these spheres in a volume (L*)³. Comparison of different hopping models in [10] also implies that Bc is not a 

unique number and varies between different hopping models derived by different assumptions and 

techniques. Nevertheless, following the classical formulation for critical path as the ratio of bonds to sites, 

we have adopted Bc~9/π≈2.86 from [21, 22], and therefore, we use this value in the numerical simulator. 

However, it should be noted that the uncertainty for the value of Bc is about 30%. 

ii) Sum of difficulties assumption. The second assumption for the calculation of sc is that the hopping 

rate Γ depends on the “sum of difficulties”, that is, the hopping between sites i and j is with lower rate Γij for 

larger distances Rij and larger energy differences |Ei−Ej| between the sites. From a detailed balance of charge 

around the Fermi level EF, and at quasi-equilibrium, it is derived in [20] that the measure sij of the difficulty 

for hopping between sites i and j is 

( )

o
ij

ij

i j i F j Fij

o

i j i F j Fij ij ij

o o

s ln

E E E E E ER
2

2kT

max E E , E E , E ER R E
2 2

kT kT

 Γ
=  

 Γ 

− + − + −
= +

Λ

− − − ∆
= + = +

Λ Λ

     (6) 
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where ΔEij is the maximum of the magnitudes of the energy jumps by hopping between states i and j and the 

Fermi level. When considering the critical path with sc, then one obtains 

o
c

c o

R E
s ln 2 0

kT

 Γ ∆= = + > Γ Λ 
,  with RH≥R≥0 for 0≤ΔE≤EH,    (7) 

where the hopping distance R and energy difference ΔE can vary between different hopping states, but their 

sum weighted by 2/Λo and 1/kT in eq. (7) is equal to sc; and the sum is (on average) independent of the 

particular pair of values for R and ΔE. 

iii) DOS assumption. The above “geometrical” and “sum of difficulties” assumptions for VRH provide 

two relations for the three unknowns, namely sc, EH and RH. The third relation is from their link to the DOS. 

Various approaches to combine these three relations can be found in [7, 10]. We have implemented two 

approaches of single ∫dE and multiple ∫∫dEdE integrations in the numerical simulator. In these approaches, 

one gradually increases the hopping energy EH in iterative calculations with predetermined and, thus, known 

DOS, until both the “geometrical” and “sum of difficulties” assumptions are satisfied. The details for single 

∫dE and multiple ∫∫dEdE integrations are given in Secs. 2.1 and 2.2. 

 

2.1. Determination of energy EH, hopping critical factor sc, and distance RH by single ∫dE 

The simplest approach to determine sc is indirectly proposed in [20] by taking a nearly constant DOS. 

Consider the second line in eq. (5). Guess a value for the maximum hopping energy EH and, corresponding 

to that guess, obtain from eq. (2) the maximum hopping distance RH=(Λo/2)(EH/kT). The concentration of 

critical sites is 

( ) ( )
H

H

E

c H F
E

CS E DOS E E d E
+

−
= + ∆ ∆      (8) 

Consider that the spatial distribution of the states is uniform. Then, the mean hopping distance can be 

obtained as the average of the normalized spherical volume, because RH is a constant, and 
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3
3 3

H
H

R
R R

R
=       (9) 

The normalized radius r of the sphere is the ratio R/RH, thus r is between 0 and 1, and the volume of the 

sphere is 4πr³/3. From eq. (7), R is a linear function of ΔE, and R=0 when ΔE=EH. Conversely, R=RH when 

ΔE=0. Therefore, in normalized form 

( )
H H

ER
r E 1 0

R E

∆
∆ = = − ≥  for |ΔE|≤EH,    (10) 

and the average volume of hopping around a state becomes 

( )
( )

H

H

3
3 3

H
H

3E
F3

H
H c HE

R
R R

R

E DOS E E4
R 1 d E

3 E CS E

+

−

=

  ∆  + ∆
= π − ∆  

   


    (11) 

where the averaging is weighted with the term [DOS/CSc] in the square brackets. The term [DOS/CSc] is the 

probability density to have the state with energy (EF+ΔE) within the population CSc(EH) of critical sites 

with energy |ΔE|≤EH; and CSc is given by eq. (8). Note that CSc is a constant in eq. (11), and can be moved 

outside the integral together with 4π/3. Therefore, substituting eqs. (8) and (11) in the second line of eq. (5), 

CSc is cancelled, and using RH=(Λo/2)(EH/kT) from eq. (2), one gets 

( )
H

H

3E3
o H

c F
HE

EE4
B 1 DOS E E d E

3 2 kT E

+

−

   ∆ Λ  = π − + ∆ ∆  
     

     (12) 

One sees in this equation that the left-hand side is a constant and the right-hand expression is a function 

only of one unknown, the hopping energy EH. Thus, this equation can be solved to find EH. In the numerical 

simulator, the equation is arranged as 

( ) ( ) ( ) ( )
H

H

3 E0? 3 3c
H F H F

o E 0

6B kT
target E E DOS E E dE E E DOS E E dE

+

−

 
= = + + + − + π Λ 

  , (13) 
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with ΔE simplified as E in the notations. Since EH is determined by one integration, then we denote this 

approach as “single ∫dE”. The simulator gradually increases the value of EH in an iterative procedure until 

the integration reaches the target value of (6Bc/π)(kT/Λo)³, as indicated by the question mark above the 

second equality sign. The integration is implemented by simple Riemann sums. In particular, 

( ) ( )
( )

( )

H

H

3
3 H iE dE?

c
H F i

o i E dE 3
H

E E ,  if i 0
6B kT

target B E dE DOS E E 1, if i 0

E E ,  if i 0

+

=−

 − >
  = = ≡ + × = π Λ  

+ <

   (14) 

where B(EH) is the value calculated by the right-hand expression. The computational volume of eq. (14) is 

moderate and the required memory is also not large – see Table VI. After the iterations, the value of the 

hopping energy EH is known, and the critical factor sc=EH/kT is calculated from eq. (2). From the right-hand 

equality of the same equation, although sc is already known, the hopping distance RH=(Λo/2)(EH/kT) is also 

calculated at the assumed values for Λo and kT. 

 

2.2. Determination of energy EH, hopping critical factor sc, and distance RH by multiple ∫∫dEdE 

The second approach implemented in the simulator for combining the “geometrical” and “sum of 

difficulties” assumptions for VRH is based on eq. (6) with detailed energy differences between hopping 

states and Fermi level. The calculation follows the procedure proposed in the appendix of [21] for cases 

when the DOS is not slowly varying. In contrast to the approach of single ∫dE, one needs to scan the entire 

2D mesh (Ei,Ej) of energies to find the differences ΔEij and eliminate those with magnitude larger than EH, 

and then, to calculate hopping distances Rij and to perform 2D averaging. Thus, the calculation is 2D; it is in 

several steps and with multiple integrations. Therefore, we denote this approach as “multiple ∫∫dEdE”, 

detailing below the calculation steps in this approach. Note that Ei and Ej are independent variables that also 

independently span the entire range of energies Etop>E(max(DOS))>EF>Ebottom with a step dE (invert the 

inequalities for p-type devices, as are the OTFTs normally). 
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2.2.1. Determination of the range of hopping distances in multiple ∫∫dEdE  

The hopping distances Rij is a 2D matrix for each pair (Ei, Ej), and Rij also depend on the guess for 

maximum hopping energy EH. When considering the critical path with sc, then sij=sc=EH/kT from eq. (2), 

and eq. (6) is rewritten as 

( )

o H
c

c

i j i F j Fij

o

E
s ln

kT

max E E , E E , E ER
2

kT

 Γ= = Γ 

− − −
= +

Λ

     (15) 

Solving for Rij, one gets the hopping distances at given EH as function of Ei and Ej from 

( ) ( ){ }o
ij i j H H i j i F j FR E ,E ,E max 0, E max E E , E E , E E

2kT
Λ= − − − −      (16) 

The two functions max(…) choose the maximum of the energy jump and eliminate bonds that require a 

jump larger than EH. Eq. (16) is simple for coding, but it is computationally extensive because it is 2D and 

requires large memory, as seen in Table VI and explained in Appendix 1. 

 

2.2.2. Determination of average hopping bonds for each E in multiple ∫∫dEdE  

This is the first integration along energies Ej. It calculates volumetrically the average number of hopping 

bonds per site (BPS) with energy Ei, from 

( ) ( ) ( )
H

H

E
3

i i H ij i j H F j j
E

4
BPS E , E R E ,E ,E DOS E E dE

3

+

−

 = π +  ,    (17) 

having the averaging weighted by DOSj for the states with energy Ej receiving the charge from states with 

energy Ei. BPSi is a vector of size n=(Etop−Ebottom)/dE~2000. The integration is implemented in the 

simulator by a simple Riemann sum, as 

( ) ( ) ( )
3top

bottom

E dE

i i H ij i j H F j
j E dE

4
BPS E , E dE R E ,E ,E DOS E E

3

+

=

 = π +  .   (18) 
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While simple for coding, one should be very careful with this equation, because it is computationally the 

most extensive – please see Appendix 1 and Table VI for eq. (18). One must convert the exponentiation 

(Rij)³ into multiplication (RijRijRij) in order to have acceptable computational throughput. Sparse 

multiplication, omitting Rij=0, would greatly reduce the computational volume. However, we did not use 

sparse matrices, in order to minimize the probability for human errors by coding, since the sparse matrix 

operations require code overhead for checking of omitted elements, changing the manner of the 

computation. The consequence was that we needed to run parallel computing, which we could afford in the 

particular investigation, but it is not desirable for commercial simulators in general, since the conductivity 

or mobility calculation is just one of the many tasks to be performed for simulation of the current in OTFTs. 

 

2.2.3. Determination of the overall average of hopping bonds per site in multiple ∫∫dEdE  

This step determines the value that has to be compared with the “geometrical” assumption for VRH, the 

critical number Bc of bonds per site, according to the first line of eq. (5) and comprises weighted averaging 

of BPSi along Ei. The weighting is with the density of bonds, and mathematically corresponds to 

( ) ( ) ( )

( ) ( )

H

H
H

H

E?
i i H F i

c i i H iE
E

i i H F i i
E

BPS E , E DOS E E
target B BPS E , E dE

BPS E , E DOS E E dE

+

+
−

−

 
 
 +
 = =
 
 +
 
 




,  (19) 

 

where the weighting function is the product of hopping bonds and hopping sites for each energy Ei, in the 

numerator in the square brackets, divided on the integral of this product for all energies in the denominator. 

As in eqs. (13) and (14), the question mark above the second equality sign indicates that EH is gradually 

increased in this and preceding steps of calculation by multiple ∫∫dEdE, until the target value of Bc is 

reached. Converting the integrals into Riemann sums, one also rationalizes the expressions, since the 

integral in the square brackets is a constant for the outer integral, and by cancelling the same uniform 

integration step dEi in the numerator and denominator, achieving 
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,   (20) 

where B(EH) is the value calculated by the right-hand expression. The computational volume of the right-

hand expression is moderate, since BPSi and DOS are vectors; see Table VI and Appendix 1. 

Thus, the multiple ∫∫dEdE is an iteration loop of three steps of calculations with eqs. (16), (18) and 

(20), in which the value of EH is gradually increased, until B(EH)=Bc is reached and the iteration is 

terminated. After the iteration, the value of EH is known, and the critical factor sc=EH/kT is calculated from 

eq. (2). As in the single ∫dE, the hopping distance RH=(Λo/2)(EH/kT) is also calculated at the assumed 

constant values for Λo and kT. 

 

2.3. Summarizing comparison between the single ∫dE and multiple ∫∫dEdE 

To summarize, both methods of calculation use a given range (Etop−Ebottom) of energies E, arbitrary but 

predetermined DOS(E), Fermi level EF and a guess for the hopping energy EH. The guess for EH is ramped 

gradually in the iteration loop until the calculations reach a target value that corresponds to the 

“geometrical” assumption for the critical number of bonds per hopping site. The last used value of EH is 

then the hopping energy, from which the critical factor sc=EH/kT and the hopping distance 

RH=(Λo/2)(EH/kT) are calculated using eq. (2). 

The calculation approaches of single ∫dE and multiple ∫∫dEdE integration are fully numerical. They are 

based on the principles for calculation of the VRH conductivity in a 3D percolation network, but not on 

analytical expressions that are valid only for particular type of DOS, e.g., exponential, or other various 

assumptions for DOS in analytical derivations.  

The approach of single ∫dE integration is a one-step calculation, which uses eq. (14) to calculate the 

value B(EH) with a target value of (6Bc/π)(kT/Λo)³, and the computational volume with this approach is 

small to moderate, scaling nearly linearly with the size n=EH/dE of the energy mesh. For 
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n=EH/dE≈1eV/1meV~1000, the computational volume and occupied memory are given in Appendix 1 and 

in line “sum 1” of Table VI. 

The approach of multiple ∫∫dEdE integrations is three-step calculation, which uses eqs. (16), (18) and 

(20) with a target value of Bc for the result B(EH) from the latter equation. The multiple ∫∫dEdE is 

computationally extensive, because it requires spanning the 2D mesh of size n² for the entire range of 

energies. Consequently, the computation scales as n² in the approach of multiple ∫∫dEdE integrations. For 

n=(Etop−Ebottom)/dE≈2eV/1meV~2000, the computational volume and occupied memory are given in 

Appendix 1 and in the line “sum 2” of Table VI. 

Both approaches follow a similar iteration procedure for determining EH by a gradual variation of the 

values of EH, until the calculations match the abovementioned target values, as explained below. One can 

also utilize other approaches for VRH calculations. However, we shall restrict the numerical simulations to 

the above two approaches of single ∫dE and multiple ∫∫dEdE integrations, because these two approaches are 

the most basic methods for the determination of the VRH conduction for any type of DOS or combination 

of types. We have noted in the literature [7, 10, 12, 20, 21, 25] a vulnerability of the analytical expressions 

with respect to assumptions and derivations of VRH models, overlaying VRH with assumptions for DOS 

type [10, 12, 21, 25] or changing the rules of the percolation network calculation [7, 20, 21]. 

 

2.4. VRH calculation module 

Figure 1 depicts the iteration procedure of the VRH calculation, which first determines the hopping energy 

EH and then the other VRH quantities mentioned in the previous Sec. 2.3. The input variables for the VRH 

calculation module are the Fermi level EF~±1eV(max), the uniform energy 1D mesh E, and the 1D vector of 

DOS values for the same energy mesh. The energy mesh is with range (Etop−Ebottom)~2eV and step 

dE~1meV. The energy mesh E and DOS(E) are generated in the electrostatic part of the simulator, which 

will be presented later. A selector chooses the branch either of single ∫dE or multiple ∫∫dEdE integration. 
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The selected branch calculates the value B(EH) corresponding to the guess for EH, the latter initially 

EH=sEH≈kT. After the calculation, a new guess nEH of gradual variation of the hopping energy is made, by 

( ) ( )H
H H H H H

B E
nE E sE ln ,   with  nE min E ~ kT /100

target

 
= + × > 

 
,   (21) 

where nEH is used instead of EH in the next iteration. The variation of EH is gradual, owing to the 

logarithmic function, and one must also take care setting nEH to a minimum positive value ~kT/100, if the 

new guess nEH is wrong, e.g., nEH<0. The variation of EH should be chosen gradual between iterations, 

since the integrals are steep functions of EH. Then, one repeats the iteration procedure until the difference of 

EH obtained after two consecutive iterations is small e.g. nEH−EH≤ ±10−16=4LSB (least significant bits) by 

double precision. With the value for EH from the last iteration, one calculates the critical factor sc=EH/kT by 

eq. (2) and from it, the final result for VRH specific conductivity σ=σoexp(−sc) by eq. (1) with 

σo=qΓo/[Λo(kTo/q)] from eq. (3). It is sufficient to return σ and EH from the calculation, and if necessary, 

one can also obtain the value for the hopping distance RH=(Λo/2)(EH/kT) from eq. (2).  

The convergence of the iteration procedure is illustrated in Figure 2 for the surface and the back of the 

pentacene TFT using the parameters given in Table IV later. One observes that the rate of convergence is 

about one decimal digit for EH per 3-5 iterations. Thus, for 15 digits, one has 50-80 iterations, but rarely 

more than 100 iterations (at low temperature). Therefore, “100 max” is stated in column “iterations” in 

Table VI, and the computational volumes in rows “sum1” and “sum 2” correspond the computational 

volumes of the VRH calculation module operated in the branches of single ∫dE and of multiple ∫∫dEdE 

integrations, respectively. The computational volume of the gradual stepping of EH by eq. (21) is small, as 

seen Table VI and explained in Appendix 1, compared to the computational volumes in the branches. 

So far, we have presented the VRH numerical simulator for equilibrium, that is, for bulk material, 

without non-equilibrium charge and potential bending VB induced by the gate bias VG in the 

semiconducting film of the OTFT. Reviewing eqs. (11)-(14) and (17)-(20), one observes that the potential 

bending has to be included in the argument for the expressions for DOS, replacing the Fermi level with a 

quasi-Fermi level, known also as IMREF. The gate bias VG induces the bending voltage VB so that the DOS 
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becomes “closer” to the Fermi level EF at higher bias, as illustrated in Figure 3. The bending voltage 

represents the bending of the semiconductor energy bands through (−qVB). The polarity inversion is due to 

the convention that the semiconductor energy diagrams are given for the potential energy of electrons. The 

Fermi level crosses the DOS tail, although EF might be not able to cross the HOMO centroid level even at a 

high bias, since this is equivalent to ionizing almost every single molecule in the organic material, which 

corresponds to very high carrier concentrations above 1021 cm−3. To clarify the following definition of 

IMREF, consider an exponential DOS for holes, given by 

( )

( ) ( ) ( )

S o
o B SE

o o

o F F o F F

N E E
DOS E E , V 0 DOS exp

kT kT

f E E E E f E E E DOS E E

 −≥ = = =  
 

 = − − − = − ± ∆ ≡ ± ∆    

    (22) 

where NS is the total concentration of states in 1/cm³, To is a characteristic “temperature” that describes the 

width and steepness of the exponential DOS, and Eo is the HOMO level for bulk material with no bending 

VB=0. As shown in the second line of eq. (22), the DOS can be rewritten as function of the difference 

(Eo−EF) and a span of energies (±ΔE), and thus, as a function DOS(E)≡DOS(EF±ΔE), as used in the VRH 

calculations by eqs. (11)-(14) and (17)-(20) above. 

When the gate bias voltage VG is applied, then the HOMO levels near the gate oxide bend with 

(−qVB), as illustrated in Figure 3, and HOMO=Eo−qVB. Consequently, since HOMO is shifted at VB≠0, 

then the DOS shifts with the HOMO level, and the DOS becomes 

( )

( ) ( ){ }
( ) ( )

S o B
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 − −≥ − =  
 

= − − − − = − + ± ∆      

 = − ± ∆ ≡ ± ∆ = + 

  (23) 

Note that defining the quasi-Fermi level as IMREF=(EF+qVB), then one embeds in IMREF the potential 

bending VB in the semiconducting film, and IMREF plays the same role in eq. (23) at VB≠0, as the Fermi 

level EF plays in eq. (22) at VB=0. Note also that there are also other definitions for IMREF in 

semiconductors, e.g., quasi-Fermi levels for electrons and holes, while we do not use those definitions. 
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The interplay between EF and IMREF is perhaps the reason why in many publications [4, 7, 10, 25] 

IMREF is termed as Fermi level, and varied with charge concentrations in order to relate charge 

concentrations and mobility in cases between no bias and with bias applied to the OTFT, or between OTFT 

and organic diodes. Observe in eqs. (22) and (23) that the DOS is not a function of EF or IMREF. However, 

compare the first and last lines in eq. (23). In the first line, the DOS is bent “down” with (−qVB) to pick a 

value at E=(EF±ΔE), with EF=constant. Conversely, IMREF in the last line of eq. (23) is bent “up” in the 

opposite direction by the same amount qVB so that a un-bended DOS picks the same value (IMREF±ΔE), as 

the bended DOS picks from (EF±ΔE) in the first line. Therefore, to account for the potential bending VB due 

to a gate bias, in the numerical simulator, one simply passes IMREF to the VRH calculation, instead of EF; 

please see again Figure 1 and the call-list in it. The potential bending voltage VB and IMREF=(EF+qVB) are 

determined from the electrostatic calculations described below. 

 

2.5. Electrostatic calculation module 

The electrostatic computation consists of charge-energy calculations inside an iterative loop of charge-

distance calculations, the latter solving the 1D Poisson equation.  

 

2.5.1. Charge-energy calculation module 

The module for charge-energy calculations first generates the vector of the 1D mesh of energies E with a 

size (n×1) from Ebottom to Etop in steps dE. Thus, Ebottom, Etop and dE are single value input parameters for the 

charge-energy calculation module. The size of the vector E is n=(Etop−Ebottom)/dE~2eV/1meV≈2000. Then, 

the module generates several other vectors of size (n×1) with values for each element in this energy mesh E. 

One vector is DOS, given by  

( ) ( )DOS E f E,DOSparam= , in unit, e.g., cm−3eV−1,    (24) 

where f(…) is the function of the particularly selected DOS with specific parameters DOSparam, and f(…) 

and DOS are functions of the energy E. For example, DOSparam contains NS, To and Eo for exponential 
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DOS, with f(…) given either by eq. (22) above for single-side exponential DOSSE, or f(…) given by eq. (45) 

later for double-side exponential DOSDE. The function f(…) can be changed in the charge-energy 

calculation module, e.g., uniformly or normally distributed DOS, or combination of them, providing also the 

values of the DOSparam corresponding to the particular f(…).  

The vectors E and DOS(E) are return results from the charge-energy calculation module, because E 

and DOS(E) are used in the VRH calculation module. The computational volume for generation of the 1D 

energy mesh E and the DOS vector are shown in row “eq. (24)” of Table VI and explained in Appendix 1. 

The remaining vectors generated by the charge-energy calculation module are temporary and used only 

within the electrostatic calculation module and for visualization of the computation in this module, c.f. 

Figure 11.  

Another (n×1) vector generated at the energy mesh by the charge-energy calculation module is the 

Fermi occupation factor F(E−EF)=Fn(E−EF)=1/{1+exp[(E−EF)/kT]} for electrons, or its complementary 

F(E−EF)=Fp(E−EF)=1/{1+exp[−(EF−E)/kT]} for holes, the latter applicable for an OTFT, which is normally 

a p-type field-effect transistor. The Fermi level EF is single-value input parameter for the charge-energy 

calculation module. The computation volume for the calculation of the Fermi occupation factor F is 

included in row “eq. (27)” of Table VI and explained in Appendix 1, since F(E) appears only in product 

with DOS(E). 

Having the F(E-EF) and DOS(E) vectors, the concentration of occupied states NC (in unit, e.g., cm−3), 

being also assumed as carrier concentration in VRH, can be calculated from 
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 



   (25) 

where Fi=F(Ei−EF) and DOSi=DOS(Ei) are the elements of the vectors F and DOS for the elements Ei in the 

energy mesh E, and n=(Etop−Ebottom)/dE, as mentioned above before eq. (24). The integration is implemented 

in the charge-energy calculation module as a simple Riemann sum, given by the last expression in eq. (25). 
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The concentration of occupied states NC is a single-number return result from the charge-energy calculation 

module, because NC is used in the other electrostatic module for charge-distance calculations. Since NC is 

assumed as a carrier concentration, then it can be also used for a calculation of the effective spot mobility 

(dividing the VRH conductance by qNC, as shown in eq. (89) later), although NC is unnecessary for the 

calculation of the VRH conductance; and NC is not used in the VRH calculation module.  

The last quantity calculated and returned from the charge-energy calculation module is the flat-band 

(FB) level, which is the energy E satisfying the median condition for equal concentrations of occupied states 

below and above FB. Rearranging eq. (25),  

( ) ( )
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F F
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F E E  DOS(E)dE F E E  DOS(E)dE

N 1
F E E  DOS(E)dE

2 2
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− = −

= = −

 



    (26) 

The implementation of the search for FB is made by first calculating a vector of the cumulative sum of the 

product Fi×DOSi, mathematically given by 

i 1,2,...,n

i j j
j 1

CFDOS dE F DOS
=

=
=        (27) 

that is effectively calculated by a loop, in which CFDOSi=Fi×DOSi+CFDOSi−1, with CFDOS1=F1×DOS1 

and i=2,3,…,n. Then, the last element CFDOSi=n of the cumulative sum is NC, (thus, eq. (25) is redundant 

and commented in the code of the simulator, replacing with NC=CFDOSn), and one finds the index IFB for 

which |CFDOSIFB−NC/2|=min. Consequently, FB=EIFB, taking the energy EIFB with index IFB from the 

energy mesh E. The computational volume for NC and FB (combined with the computation volume for F, as 

mentioned above) is shown in row “eq. (27)” of Table VI and explained in Appendix 1. 

One could determine FB also as a weighted average, e.g., 
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but we did not implement this in the charge-energy calculation module, because the median FB of eq. (26) 

is more consistent with the concept for equal probability of charge occupation above and below FB. Other 

reasons to use eq. (27) are that the coding of the search for a median is simple, finding the value FB=EIFB at 

a point of the energy mesh (avoiding any unforeseen problem, e.g., due to numeric rounding and truncation, 

when having FBAVG with value not at the mesh points), and also, the calculation volume of eq. (27) is one 

half of the volume of eq. (28), which is an important consideration, since the charge-energy calculation 

module is in the body of the loop with many cycles in the charge-distance calculation module, which is 

presented next. Note that the Fermi level EF is used only in the calculation of Fermi occupation factor 

F(E−EF), and one can use quasi-Fermi IMREF=(EF+qVB), instead of EF, to include the bending VB due to 

gate bias in the charge-energy calculation module, following to the same reasons discussed with eqs. (22) 

and (23) for the VRH calculation (taking Eo=0).  

Overall, the computational volume of the charge-energy calculation module is moderate and scales 

with the size n=(Etop−Ebottom)/dE~2eV/1meV≈2000 of the energy mesh E, as shown in row “sum 3” of Table 

VI and explained in Appendix 1. 

 

2.5.2. Charge-distance calculation module 

The main purpose of this electrostatic module is to solve the 1D Poisson equation in the depth D of the 

OTFT semiconducting film, from D=0 at gate dielectric interface to D=tf in the back of the semiconducting 

film of thickness tf (see Figure 2b earlier). This is to find the profile for the bending voltage VB in the film at 

given gate bias VG, which is needed for the VRH calculations, since IMREF=(EF+qVB) in eq. (23) is a 

linear function of VB. Other profiles for the electrostatic quantities, such as volume charge concentrations 

NVG and electric field Eel induced by VG in the film, are also obtained from the charge-distance calculation 
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module. Along with the calculations, the module also generates the depth mesh D for the profiles of the 

electrostatic and VRH quantities. 

A simplified flow of the algorithm of the charge-distance calculation module is shown in Figure 4. It 

is comprised of three parts.  

(i) The first part is for bulk material in equilibrium, calculating the flat-band voltage potential VFB and 

carrier concentration NCFB in the semiconducting film that is generated thermally when no gate bias is 

applied to the OTFT. These are obtained by calling the charge-energy calculation module with zero 

bending. From eqs. (25) and (26), it follows that 

[ ]FB FB in [J] eV

CFB C

V FB / q FB

N N

= ≡ 

= 

, when VB=0, thus IMREF=EF,   (29) 

according to the definition of IMREF=(EF+qVB) by eq. (23) and the discussions after this eq. (23) and eq. 

(28). It is important to note that NCFB corresponds to zero electric field, Eel=0, in the entire semiconducting 

film. Therefore, VB=−∫Eel(D)dD=0. Thus, NCFB is not a net charge, but compensated with the opposite 

charge, since NCFB is not bias induced, but thermally (and could also be optically) generated in the material 

in equilibrium. We consider in the simulator that NCFB is bias independent, neglecting effects such as barrier 

lowering or impact ionization at high electric fields. Since VB=0 for the semiconductor bulk, then a VRH 

calculation is also embedded in the first part of the charge-distance calculation module to yield the 

conductivity σFB and hopping energy EHFB for bulk semiconductor, as 

FB

HFB HE E

σ = σ 
= 

, when VB=0, thus IMREF=EF.   (30) 

(ii) The second part in the charge-distance calculation module solves numerically Poisson’s equation 

in the depth D of the OTFT semiconducting film, when the gate bias VG is not equal to the flat-band voltage 

VFB. If VG=VFB, then there is no potential bending in the film. Thus, the film is in equilibrium and there is 

no need to have profiles, since the values in these profiles are identical to the values for the bulk 

semiconductor. When VG≠VFB, then the calculation generates simultaneously the depth mesh D and the 
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profiles for electrostatic quantities in this mesh. The calculation scheme is close to the schemes used in 

analytical derivations for OTFTs [1, 26], not overlooking the concerns [7, 10, 27] for zero field and zero 

charge in the derivations and interpretations of the results obtained by these schemes. The basic assumptions 

are that the potential is VFB in the “far depth D→∞” of the film, where the electric field is zero, and moving 

backward to the gate dielectric, the bending VB increases toward VG. Thus, a charge is induced in the film 

due to VG≠VFB and the electric field increases in magnitude, so that at the film-dielectric interface (D=0), 

Gauss’ law is satisfied, that is 

( )
'
G

F el G
F el

Q
E D 0 Q  integrate until 1

E
ε = =  ≤

ε
,    (31) 

which is the criterion to exit from the loop of numerical integrations, and where QG=[VG−(VFB+VBS)]COX is 

the charge per unit area of the gate dielectric, VBS=VB(D=0) is the potential bending in the semiconductor at 

the gate dielectric interface (D=0), and Q’G=[VG−(VFB+VB)]COX is a supplementary variable for gate charge 

during the integration in the depth of the semiconducting film (D≥0). Once the criterion for exit from the 

loop of numerical integration is reached, then Q’G≈QG and VB≈VBS. 

In many analytical derivations, it is assumed that the “far depth” is still inside the thin film of the 

OTFT. Therefore, the charge induced in the film is assumed equal to QG, allowing for the replacement of 

the distance integration with an integration over VB in the interval from zero to the surface potential at the 

gate dielectric interface. In contrast, we strictly follow the basic assumptions when building the Poisson 

solver, not restricting the bending VB and electric field Eel to reach zero within the thin film of the OTFT. In 

our case, the electric field may, or may not, decay completely within the thin film of the OTFT; thus, there 

might be a fringing electric field at the back of the film. To cope with these different situations, we use the 

supplementary integration variable t for distance which decrements when moving the integration from the 

depth of the film toward gate oxide interface in a direction opposite to the film depth D. Since the “far 

depth” is unknown, then we arbitrary set t=0 by initializing the numerical integration loop, decrementing t 

with variable step dt>0, according to 
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( )t t  previous dt= − , t=0 and dt=dD initially at “far depth”,   (32) 

where dD~0.5nm is parameter for nominal step in the distance mesh D. Thus, in the “far depth” t=0, t≠tf, 

and we initialize the Poisson solver with zero electric field Eel=0 and guide the solver to do the first step for 

bending VB with a small magnitude equal to the energy step dE in eV in the direction sign(VG−VFB) of the 

gate bias overdrive (VG−VFB), where the function sign(x)=1, if x>0 and sign(x)=−1, when x<0. 

Consequently, the charge-energy calculation module is called with the quasi-Fermi IMREF=(EF+qVB) to 

include the bending VB, as noted after eq. (28). Bearing this in mind, the concentration of occupied states 

NC at VB≠0 can be obtained from (25):  

[ ]
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, when VB≠0, thus IMREF=(EF+qVB),  (33) 

Subtracting the equilibrium charge concentration NCFB, one obtains the bias induced charge concentration 

NVG as 

( )VG C CFBN N IMREF N= − , for t<0, IMREF=(EF+qVB), VB≠0.  (34) 

NVG is the non-equilibrium portion of NC at gate bias voltage VG. Since NVG is not generated thermally, but 

by the bending VB, then NVG is not compensated by opposite charge in the semiconductor, and NVG causes 

increments of the electric field Eel, so that 

( ) VG
el el

F

N
E E  previous t q dt= +

ε
, for t<0, IMREF=(EF+qVB), VB≠0,  (35) 

which comprises the first integration of the Poisson equation. The second integration yields the value of the 

bending voltage 

( )B B elV V  previous t dt E= − × , for t<0, IMREF=(EF+qVB), VB≠0.   (36) 

Then, the value of gate charge Q’G=[VG−(VFB+VB)]COX is updated to account for low biases around or 

below threshold voltage VT of the OTFT, although Q’G does not change significantly, when the OTFT 

operates well above VT. Repeating iteratively eqs. (32)-(36), the supplementary integration variable t 

accumulates the distance mesh, for which the values of NVG, Eel and VB are stored and, thus, one obtains 
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profiles for these quantities. Also, the magnitudes of NVG, Eel and VB increase at every next step of the loop, 

while Q’G gradually decreases. Therefore, the ratio Q’G/(εFEel) decreases from a large value toward zero, and 

after a sufficient number of iterations, reaches the condition Q’G≤(εFEel) in eq. (31), which indicates that the 

integration has finished at the gate oxide interface, for which the last negative value of t reaches a minimum. 

At this point, the profiles of charge, electric field and potential versus distance t have been calculated. 

 

(iii) Finally, the third part in charge-distance calculation module reverts the integration variable for 

distance t into the depth variable  D in the semiconducting film as  

( )D t min t= − , interface=0≤D≤tf=film back,    (37) 

where the interface is at D=0, the film thickness is at tf, and the mesh points with D>tf are deleted. 

Accordingly, the data in the profiles for NC, the electric field and the potential, corresponding to the deleted 

mesh points, are also removed, since they are not in the semiconducting film of the OTFT. Thus, the charge-

distance calculation module exits with return results for the bulk semiconductor and distance mesh and 

profiles at a given gate bias, as indicated in the bottom-right corner of Figure 4. 

As described above, the algorithm of the charge-distance calculation module is straightforward and it 

strictly follows the basic assumptions for electrostatic calculation in a semiconducting thin film, not adding 

uncertain boundary conditions. However, looking closer at the rate of convergence, the number of mesh 

points and other computational issues, we note that the algorithm must be optimized for throughput and 

suitability for VRH numerical simulations. Omitting the error handling, several details of such optimization 

are outlined in Figure 4.  

One problem is that the algorithm requires non-zero increments that are larger than the numerical 

truncations. For example, VB is low in the first iteration, and after calling the charge-energy calculation 

module with IMREF=(EF+qVB) in the loop, the value for NC might be numerically identical to NCFB. Thus, 

there will be no increment for the electric field, and VB will not change in the next iteration, causing the 

algorithm to fall in an infinite loop. Therefore, one “pushes gently” NC with a small step of, e.g., 
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NC=(10−9/cm)×Q’G/q+NCFB to have a distinguishable non-zero value for NVG=(NC−NCFB) in eq. (34) and 

non-zero increment of the electric field Eel and potential bending VB in eqs. (35) and (36), respectively. The 

value 10−9/cm is empirically determined to be small enough so that the “push is gentle”, and does not affect 

the number of iterations in the charge-distance module. The determination is after monitoring of the number 

of iterations in parallel computing of about one million trials and using error handling for a maximum 

number of iterations of 20000 (not shown in Figure 4).  

Another problem is the distance step dt. A uniform distance mesh with a constant step is not suitable, 

since one has to have fine steps when the integration is close to the oxide interface, e.g. dt~0.01nm, but this 

small step may cause many millions of iterations in the integration at the “far depth”, which can be 1mm or 

occasionally even thicker. Therefore, we have implemented a control of the size of the step dt, as depicted 

in the bottom-left corner in Figure 4. If the bias-induced charge concentration NVG is much less than the 

equilibrium charge concentration NCFB, e.g., (NVG/NCFB)<0.5%, or the gate charge Q’G is much larger than 

the field flux εFEel, then the mesh point is far from the oxide interface (most probably beyond the film 

thickness tf) and the integration is accelerated exponentially, doubling the integration step, to move quicker 

from the “far depth” toward the oxide interface. On the other hand, when the integration is within 1-2 nm 

from the gate oxide interface, the nominal step dt=dD~0.5nm is coarse, because the electric field is large 

and VB changes rapidly, owing to the term dt×Eel in eq. (36). Therefore, the mesh is refined, decreasing the 

step dt. In the particular implementation of the charge-distance calculation module, the criterion for 

refinement of the distance mesh is for the change of VB to be not greater than the step dE (in eV) of the 

energy mesh, which is the same as dE>|Eel|dt. The decrease is done first by setting dt=dD to the nominal 

step dD~0.5nm, and if necessary, further exponential decrease of dt by division on 4. In either case of 

enlargement or refinement of dt, one recalculates VB for the next iteration from 

( ) ( ) VG
B B

F

N
V  next t V  current t dt q dt= − ×

ε
, for the next iteration.  (38) 

By the above management of the step dt, the second part of the charge-distance calculation module is 

usually completed in about two thousands iterations (not more than ten thousands iterations after about one 
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million trials), matching the gate charge QG with inaccuracy less than 5%, and providing distance mesh with 

about 20 points logarithmically spaced at D<2nm, about 200 points uniformly spaced at dD=0.5nm for 

2nm<D<100nm, and about 2000 points again nearly logarithmically spaced with larger mesh step for depths 

D>100nm. Thus, the number of iterations is approximately equal to the number n~2000 of energy points in 

the charge-energy calculation module, and the computational volume for electrostatics of the charge-

distance calculation module is mostly determined by the calls of the charge-energy calculation module at 

every iteration. The details for the computation volume are explained in Appendix 1 and shown in Table VI 

in row “eSt” without and in rows “eSt+vrh1” and “eSt+vrh2” with the VRH calculations in the first part for 

bulk material in equilibrium. 

It is possible, in principle, to include the VRH calculation in the loop of the electrostatic calculation, 

but the VRH calculation should be postponed to be performed on sub-sampled depth mesh D, as indicated 

in Figure 4, because, if it is included in the loop of the charge-distance calculation module, then the 

computational volume would be unnecessary large, as explained in Appendix 1, while the majority of the 

calculated data will be also deleted, since they correspond to film depths larger than the thickness of the 

semiconducting film of OTFT. Therefore, in the third part in charge-distance calculation module, the 

distance mesh D is logarithmically sub-sampled to about 50 points (to have many points near the oxide 

interface and also enough points in the depth of the semiconducting film) and the profiles are reduced only 

to the points of the sub-sampled mesh. The VRH calculation module is then called in pass 2 of the VRH 

simulator (presented in the next Sec. 2.6) only for the reduced distance mesh D. The reduction of the 

distance mesh for VRH calculation results in acceptable computational volume of the VRH simulator. 

 

2.6. VRH numerical simulator 

The overall flow of the VRH simulations is outlined in Figure 5. Running the simulator, it first completes 

the lists of parameters and settings with default values. Next, the parameters and settings are modified 

according to desired values for materials and layout properties of the OTFT and requirements for 
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simulation, monitoring of the simulation, saving of results and selection of experimental results for 

comparisons. Then, the simulations are executed for different temperatures T and gate bias voltages VG in 

independent calculations for each pair of bias and temperature conditions (VG−T point). The simulator 

monitors the execution and once results for a VG−T point are available, then the results are plotted. In 

Figure 5, for example, it is indicated when the mobility vs. reciprocal of the temperature is plotted. When 

the simulations for all temperatures and bias voltages are completed, then the simulator gathers the logged 

results and organizes the results in a merged file, which is stored. This arrangement allows the simulations 

for different VG−T points to be executed sequentially by nesting loops for T and VG, or in parallel, when a 

grid of computers is available. The parallel computing is highly desired when choosing the method of 

multiple ∫∫dEdE for VRH, since the computation is extensive and it may take half a day to calculate 20-30 

VG-T points, if the computation is sequential. 

The core in the simulator is the VRH simulation for one VG−T point. It is executed in three passes. 

Pass 1 is for electrostatic calculations, which are performed by the charge-distance calculation module 

presented Sec. 2.5.2 above. Therefore, the computation volume of pass 1 is the computation volume of the 

charge-distance calculation module (explained in Appendix 1) and it is shown in rows “eSt+vrh1” and 

“eSt+vrh2” of Table VI for the single ∫dE and multiple ∫∫dEdE integrations, respectively. The output from 

this pass are electrostatic and VRH quantities for the bulk semiconductor (VFB, NCFB, σFB and EHFB) and for 

the given VG, electrostatic profiles (NVG, Eel and VB) in the semiconductor film-depth mesh D reduced to 

about 50 points. The reduction is due to the large computational volume of the VRH calculations in pass 2. 

Pass 1 allocates the most of the memory. 

Pass 2 performs the VRH calculations for the points in the reduced mesh D of about m=50 points and 

creates the profiles for VRH specific conductivity σ and hopping energy EH in this mesh. The calculation in 

pass 2 uses the values for the potential bending VB stored in the corresponding profile and performs the 

VRH calculation with quasi-Fermi level IMREF=(EF+qVB), instead of the Fermi level EF in bulk 

semiconductor, to account for the potential bending VB due to gate bias voltage VG of OTFT, and by the 



37 

reasons explained after eq. (23) earlier. Thus, for each VB in the profile, two calculation steps are 

performed. The first step in pass 2 is to regenerate the energy mesh E and DOS(E) in this mesh by 

adjustment of Etop and Ebottom so that IMREF and the modes of DOS are well inside the mesh E, e.g., 

( ){ }
( ){ }

top F

bottom F

E max E , IMREF,E max DOS  reserveE

E min E ,IMREF,E max DOS  reserveE

= +  

= −  
   (39) 

where E[max(DOS)] is the mode of DOS, for example Eo in an exponential DOS, c.f. eq. (22) earlier for 

single-side or eq. (45) later for double-side DOS, and the default value for the reserveE is 0.5eV in the VRH 

simulator. The reserveE can be increased, but we have observed that a larger reserveE does not change 

significantly the values of the results from simulations, while a larger reserveE increases the computation 

volume, since n≈(Etop−Ebottom)/dE. As shown in row “pass 2” of Table VI and explained in Appendix 1, the 

computational volume scales up with n, either ∝n or ∝n². Upon completing of pass 2, all the essential data 

are available, and the VRH simulator proceeds to the next pass 3 for saving the results from the VRH 

simulation for one VG-T point. 

Pass 3 is logging the results from VRH simulation for one VG-T point. One should be careful with this 

pass, since the numerical simulators generate large volume of numbers and the proper organization of these 

numbers is essential for accessing the simulation results. While it is difficult to determine a universal format 

for the output from numerical simulators, there are several recommendations that must be followed. One 

recommendation is to have delimiters for beginning and end of the data. A second recommendation is for 

the data to be in a table format with separators between different tables and identifiers for different 

quantities, having also 2-3 columns in all tables with common key information for search and filtering. A 

third recommendation is for the data to be self-consistent and “normalized”, that is, the data are minimized 

to only essential quantities, from which all other quantities can be recalculated later on, if necessary, 

without having to re-run the simulation. Some additional quantities can be also included, if it is expected 

that these quantities are often required and essential for the particular type of devices. For example, the 

sheet conductance σsq is handy to be readily available for OTFTs, although it can be calculated later from 
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the profile of the specific conductance σ within the film thicknesses. Therefore, as indicated in Figure 5, 

pass 3 is logging first the parameters and conditions for simulation for the particular VG-T point, and the 

information for temperature T and bias VG is repeated in the beginning of each line, serving as filter keys. 

Then, the results for bulk semiconductor (at equilibrium, no gate bias) are logged, adding also the sheet 

conductance of the film in equilibrium, which is same as the conductance of film in square-shaped area, 

calculated according to 

sqB FB ftσ = σ × .      (40) 

Next, the results for square-shaped OTFT under gate bias are logged, including the gate charge QG obtained 

from the electrostatic simulation and adding the sheet conductance σsq of the film at VG, calculated 

according to 

( )

( ) ( ) ( )

ft

sq
0
m 1 m 1

i i i i 1 i
i 1 i 1

D dD

      D dD D D D
− −

+
= =

σ = σ

= σ × = σ × −



 

     (41) 

where the Riemann sum corresponds to integration of the profile for specific conductivity σ along the depth 

mesh D and dDi is the difference vector of D. Shown in row “eq. (41)” of Table VI, the computational 

volume of pass 3 is negligible, just for calculation of supplementary quantities, such as σsq. Therefore, the 

row “total for a VG−T point” replicates the row “pass 2” in Table VI, as explained at the end of Appendix 1. 

Finally, the reduced profiles of size m and the corresponding depth mesh D are logged as columns in a table 

for profiles. This completes pass 3 and the VRH simulation for one VG-T point. 

One sees that the mobility μ is not calculated or stored by the VRH simulator, because VRH provides 

values for conductance, but not for mobility, as mentioned before. On the other hand, μ is an essential 

parameter for OTFT, and most of the publications for OTFT report mobility, rarely conductance. In the 

literature, the comparisons between simulations and experiments are normally in terms of mobility, as 

indicated by dashed arrows in Figure 5 for the plot of mobility μ vs. the reciprocal of the absolute 
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temperature 1/T. Considering the gate sheet charge QG in field-effect transistors with isolated gates, the 

class of electronic devices to which the OTFTs belong, the mobility, in principle, is given by 

( )
ft

sq 0

G G

D dD

Q Q

σ
σ

µ = =


      (42) 

Thus, the mobility is easily obtained by a general relation from the results logged by the VRH simulator. 

To summarize, we have built fully numerical one-dimensional simulator based on the main relations in 

VRH theory and electrostatics, but not on analytical expressions for specific cases. Therefore, the simulator 

can be used as independent tool for verification of the analytical models, the later derived by diverse 

techniques and with additional a priori assumptions. However, we have also observed pronounced 

theoretical uncertainties in the main relations, e.g., four decades for the conductivity prefactor σo by eq. (3), 

and variation in the approaches for use of the main relations. Therefore, we have built in the simulator two 

methods for VRH calculation, denoted as “single ∫dE” and “multiple ∫∫dEdE” integrations, the latter being 

computationally extensive, in order to estimate to which extent the variations in derivations can affect the 

final prediction of analytical models. Consequently, we have used simple numerical techniques of forward 

integration by Riemann sum, instead of sophisticated integration techniques, to achieve reasonable 

calculation time, although we still need to run parallel computation for the multiple ∫∫dEdE. Another reason 

for using the simple numerical techniques is the reduced probability of human errors by coding the 

simulator. Overall, we expect the simulator to reliably capture the behavior of VRH in OTFT, although it is 

noted that we will meet with challenging problems related to the amount of numerical information 

generated by the simulator, uncertainty of parameter values and perhaps numerical errors. These are 

addressed in the following sections, in which we present the results from simulations, comparisons to 

experimental data and predictions of analytical models, along with discussions for unexplored correlations 

between quantities and impact of parameters, intervals and coarseness of numerical integration, variations in 

assumptions for DOS, predictability of profiles and other issues.  
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We would like to emphasize here that the simulator is flexible for research, since virtually every single 

relation can be modified (even for curiosity), but the simulator is computationally demanding, and it does 

not have figure-of-merit for accuracy or protection against improper use or wrong parameter and value 

assignments. Thus, the simulator should not be considered as a circuit simulator. It does not have user 

interface or tools for visualization and analysis of the simulation results, nor organization of data from 

multiple runs of the simulator.  

Nevertheless, we will provide some insights on what should be improved and how one should 

properly guide the numerical simulator so that the numerical results are adequate, but not only columns of 

numbers. Finally, perhaps one has also observed that the charge carrier concentration NC (from Sec. 2.5 

“Electrostatic calculation module”) does not participate in the calculations of the VRH conductivity (Secs. 

2.1 - 2.4), which indicates that the relation between charge and VRH is indirect. Considering the literature, 

the observation is counterintuitive, but it is correct, actually. A common quantity for electrostatic and VRH 

calculations is IMREF=(EF+qVB), and in particular, beginning from Secs. 3.6 and 3.7, we will show and 

discuss in details that the relation between electrostatics and VRH conductance is the potential bending VB, 

but not through a correlation between the charge concentration and the mobility. The latter correlation is 

affected by many factors and assumptions, and it can be a very complex correlation, as one can see in the 

literature that considers normally distributed DOS. However, we do not rule out the relation between charge 

and mobility in OTFT, especially the power-law dependence between them, which is well established 

experimentally, and also, very useful for compact modeling of OTFTs. Instead, we will show and 

extensively use in the next sections that this power-law correlation follows from the relation between 

electrostatics and VRH through VB. 

 

3. Parameter assignment and results 

Numerical simulators have the advantage that layout design and material parameters can be used for 

simulation. Such parameters are the gate dielectric capacitance and thicknesses of layers, whereas the 
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compact models usually do not consider the thickness of the OTFT semiconducting films. However, and in 

contrast to compact models, the numerical simulators do not provide for underlying functions of some 

quantities and for extraction techniques of related parameters. For example, the type of the distribution of 

the density of states (DOS) must be chosen and the values of the associated parameters must be determined 

prior to the numerical simulation. Then, the parameter values can be varied by external rules so that the fit 

between simulated and experimental data becomes acceptable. Thus, the parameter assignment, the 

numerical simulation and the results from simulations are in an iterative loop that has to be guided carefully 

for consistency in each instance, e.g., by a sequence that is presented in this section. 

 

3.1. Characteristic “temperature” To of DOS 

The initial values for some of the parameters can be determined from experimental characteristics. The set 

of parameters and their values depend on the assumed type of DOS. If the DOS is of exponential type, then 

one provides for the characteristic width of the DOS by the parameter characteristic temperature To. Values 

around To≈400K are typical for OTFT. The value of To can be determined experimentally from [6] 

( )o
T

T 2
2

= + γ  ,      (43) 

where T is the absolute temperature (T~300K at room ambient) and γ is the mobility enhancement factor 

deduced from the I-V curves of the OTFT. For example, one can determine the value of γ by a linear 

regression in the plot of the function HVG=∫IDsatdVG/IDsat=(VG−VT)/(3+γ) obtained from the transfer 

characteristic IDsat−VG in the saturation regime of operation of the OTFT [6, 28, 29], or simply to plot this 

transfer characteristic, IDsat vs. (VG−VT), in a log-log plot and the slope of this plot is (2+γ). In a case when 

the dependence of the mobility (μ) on the gate bias (VG−VT) is known, then the slope of the log-log plot of 

the characteristic μ vs. (VG−VT) is the value of γ. A precise value for γ (as well as for VT, and consequently 

for μ and the contact resistance RC) can be also obtained from the transfer characteristics IDlin−VG in the 

linear regime of operation of the OTFT [30] at VD<<(VG−VT) by means of linear regression in the plot of 

the function HYVG=∫YVGdVG/YVG=(VG−VT)/(2+γ/2). Both HYVG and YVG=IDlin/(gm×VD)0.5 are functions of 
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VG, and gm=∂IDlin/∂VG is the transconductance also function of VG. A recent evolutionary parameter 

extraction method can also provide precise values for  γ, VT, μ and the contact resistance RC, by an 

optimization procedure directly from the output characteristics of OTFTs [31].  

In cases when γ varies with the bias of OTFT, one has to consider that the DOS is not exponential. For 

normally distributed DOS (Gaussian DOS), there are bias-dependent crossovers [4, 12, 25]. 

 

3.2. Concentration of states (NS) and orbital overlap (Λo)  

While the values for some parameters can be deduced from experimental characteristics, the initial values 

for many other parameters, however, might be unknown. One does not know a priori the total concentration 

of charge states (NS). Therefore, one needs to guess a value in the range 1021−1022 cm−3, which corresponds 

to the molecular density of the organic material, e.g., for pentacene [6, 32, 33]  (1.25−1.93)×1021 cm−3, 

multiplied by a factor 1-10, since there are multiple locations of π-bonds in the organic molecule (or 

monomers in polymers) that contribute to HOMO and LUMO levels [32, 34], as illustrated in Figure 6 for 

the HOMO in a pentacene molecule.  

Another a priori unknown parameter is the orbital overlap (Λo≈Ro in hopping models) and an 

appropriate guess can be made by assuming an exponential DOS, for which 

( )o S

3
3 7 2 4 3

N exp
exp 1 2 2

1.4 1.33
              exp 0.3

2 2

   Λ × ≈ −   + γ + γ   

 ≈ − ≈ + γ + γ 

       (44) 

The value 0.3 corresponds to a mobility enhancement factor γ=1, as explained in [6], and used in numerical 

simulations by other authors [7]. In the literature [4, 10, 12, 25], values in the range Λo×(NS)⅓≈0.05−0.2 are 

usually assumed. The uncertainty for the value is evident and it accumulates significant uncertainties for NS 

and Λo, as seen in Table IV later, and discussed in Sec. 4.1 with the help of Figure 22. The consequences of 

these inaccuracies are detailed in Sec. 5. 
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3.3. Energy levels in materials and interfaces  

A third group of unknown a priori parameters are the relevant energies of the materials. The choice of 

values for the gate electrode work function, HOMO, LUMO and Fermi levels is not straightforward, 

because the reported values in the literature vary, as one can see in Table I for conductive materials [35, 36, 

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], Table II for gate insulators [38, 47, 48, 51, 52, 53, 54, 55] 

and Table III for organic semiconductors [3, 32, 34, 35, 39, 40, 42, 44, 45, 46, 48, 50, 56], owing to methods 

of material characterization or calculation, surface properties, chemically created dipoles at material 

interfaces and reference points. In addition, there is large discrepancy between molecular calculations and 

experiments, e.g. for the band gap of pentacene, the molecular crystal cell calculation has estimated ~1eV in 

[32], whereas the experimental values suggest a gap of 2.2 eV. Therefore, we have summarized the most 

reasonable values to use in the VRH numerical simulator in columns “Recommended value” in Table I, 

Table II and Table III. These recommended values are also visualized in Figure 7 and in Figure 8. From the 

comparison of the metal work functions on the left-hand side of the figures (Pt, p+Si, Au, PEDT/PSS) with 

the organic semiconductors on the right-hand side of Figure 8 (P3HT, pentacene, PPV), these are usually 

used for OTFT fabrication, one can guess that the Fermi level (≈−4eV, shifted down by about 0.5-1eV due 

to interface dipoles) in the organic semiconductor is about 0.3 eV above the level corresponding to the work 

function of the gate electrode (≈−5eV), and that the HOMO is about 0.9eV below the Fermi level. 

Therefore, we use these values in the following simulations, choosing also the gate electrode level as the 

zero reference level. Certainly, the choice for energy alignment is very approximate, and has to be 

researched further. Nevertheless, we believe that the choice is reasonable, and in agreement with the 

approaches for band alignment reported in [40, 46, 48]. 

The electrostatic simulation with the above choice resulted in energy diagrams as shown in Figure 9 

for one case at low gate bias (VG=−5V) and high temperature (T=400K=To) that corresponds to the energy 

width kTo of the DOS. Even at the large scale of 18 eV in the figure, one can make several observations 

which require the following clarifications. One observation is the discontinuity of the vacuum level at the 
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insulator-semiconductor interface, owing the abovementioned dipole shift. In “silicon” simulators, this shift 

is attributed to interface fixed charge, thus, it is not so unobvious, although it is interpreted in a different 

manner for organic TFTs. The second and the third observations in Figure 9 are that the potentials in the 

back of the semiconducting film do not reach the levels corresponding to bulk material, and there is a 

misalignment between Fermi level and flat-band (FB) level. We discuss these with the help of Figure 10, 

where the energy axis is zoomed in for a better view. 

The closer look from left to right in Figure 10 for the energy diagrams at the insulator-semiconductor 

interface indicates that the variation of gate bias voltage VG does not cause unexpected changes in the 

diagram at any temperature, from low temperature of T=100K, through room temperature T=300K, elevated 

temperature T=400K=To equal to the characteristic temperature of a double-sided exponential DOS, and 

even at high temperature T=500K, at which the pentacene film might easily degrade. However, the levels in 

the film-back do not reach the LUMO, FB and HOMO levels of the bulk material, which is contrary to the 

assumption for zero potential in the derivation of many models for OTFTs [1, 22, 26, 57]. Thus, the film 

back is not a bulk material in an OTFT, and there is considerable potential bending in the entire depth of the 

TFT film [27], especially at low temperatures. The elevated temperatures reduce the difference between the 

film-back and the bulk material, but do not completely remove this “discrepancy”. 

The misalignment between Fermi level and flat-band (FB) level is small at low and room 

temperatures, but the “discrepancy” is considerable when the temperature is elevated close to or above the 

characteristic temperature To of the exponential DOS. The reason for the misalignment is that the Fermi 

level (EF) is given for the Fermi occupation factor, Fn(E)=1/{1+exp[(E−EF)/kT]} for electrons, and its 

complementary Fp(E)=1/{1+exp[(EF−E)/kT]} for holes, whereas the FB depends also on the shape of the 

DOS, satisfying the (median) condition for equal concentrations of occupied states below and above FB, in 

particular given by eq. (26). 
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3.4. Flat band (FB) shift at temperature T≥To 

For non-degenerated crystalline semiconductors, the flat band energy coincides well with the Fermi energy 

level, FB≈EF, since the valence and conduction bands are well defined, having “sharp” edges, and one has 

dominant concentration of one type of dopant, either donors or acceptors of electrons. In amorphous 

semiconductors, however, there are tails of states asymmetrically placed around EF instead of bands with 

“sharp” edges. Consequently, FB becomes a strong function of the temperature, even if EF is the same. In 

the special case of an exponential DOS, it was discussed in detail in [2, 6] that the mode of the product 

F(E)DOS(E) moves from close to the Fermi level at low temperatures (T<To) toward the level Eo of the 

DOS centroid at high temperatures (T>To). Therefore, one can infer that the quasi-Fermi level moves with 

the ratio To/T, but to avoid misinterpretations, we have the correct statement that the FB varies with 

temperature, where FB is according to eq. (26). The evolution of the DOS occupancy and the FB shift with 

the temperature are illustrated in Figure 11 for a double-sided exponential DOS, defined by 
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with the square of the hyperbolic cosine 
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where NS~1021 cm−3 is the (total) concentration of charge states in the organic semiconducting material. By 

this definition, the normalized double-exponential DOS/NS is similar to the Fermi distribution, with 

characteristic width kTo instead of thermal energy kT, Eo instead of EF and opposite polarity of variation 

with respect to the energy (E). 
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It is assumed in Figure 11 that the DOS does not change with temperature (solid gray line), and the 

peak value NS/(4kTo) of the double-exponential DOS (a circle) corresponds to the HOMO level Eo. The 

figure is for the bulk material pentacene. Therefore, the difference between the HOMO and the Fermi level 

(EF) is 0.9 eV, as discussed above, and these energy levels are depicted by gray-color vertical dashed lines. 

Since the pentacene is a p-type organic semiconductor, then the Fermi occupation factor for the majority 

carriers (F) is close to unity at levels above the Fermi level (EF) at the right-hand side of the figure. Tracing 

the plot to the left, one observes that F(EF)=½ at the Fermi level, shown by the other circle, and then F 

decreases exponentially at lower energy levels (E<EF) with a slope reciprocal to the absolute temperature, 

∂ln(F)/∂E=1/kT. Therefore, the steepness of the slope decreases, increasing the temperature T from T<To to 

T>To, as seen from the thick, thin and dotted lines intersecting in the circle labeled by “½”. 

The filling of the charge states is the DOS occupation with a density given by the product (F×DOS). 

The normalized DOS occupation is then (F×DOS/NS), and it is shown by the polygon-like curves in Figure 

11 for the three temperatures, for which the Fermi occupation factor (F) was given – thick, thin and dotted 

lines for low temperature (T=300K<To), T=To=400K and high temperature (T=500K>To), respectively. 

Since both F and the double-sided exponential DOS have variable slopes with respect to E, then the slopes 

in the DOS occupancy also vary, and there are three regions in the curve for the DOS occupancy, because 

for pentacene or other organic semiconductor with hole conduction, 
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    (46) 

Thus, having To=constant (DOS does not change with temperature), then the mode of the DOS 

occupancy varies with the temperature being at the energy level where the slope ∂ln(F×DOS)/∂E=0 and 

changes its sign. Consequently, the median flat-band (FB) energy follows the mode of the DOS occupancy. 

From eq. (46) for a p-type organic semiconductor, the slope is positive in the first region (E<Eo<EF) and 
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negative in the third region (Eo<EF<E). However, the sign of slope in the middle region depends on the 

difference (To−T). At low temperature (T<To), the slope is positive in the middle region and the mode of the 

DOS occupancy is near the Fermi level (EF), as seen by the thick polygon-like line for (F×DOS/NS) in 

Figure 11 for T=300K<To. Consequently, the median FB is also near EF for T=300K<To. Increasing the 

temperature to T=To=400K, then the DOS occupancy in the middle region is nearly constant, as shown with 

thin line in Figure 11, it is zero at ½(Eo+EF)≈FB, since the DOS occupancy becomes almost symmetric 

around this energy level (neglecting the asymmetry in regions on the left and right when Eo<<EF for the 

bulk material, but not accurate for the OTFT operating well above the threshold, when large bending exists 

and Eo is much closer to EF, especially at the gate insulator interface, see again Figure 10). Further increase 

of the temperature, T>To, results in a negative slope for the DOS occupancy in the middle region, as 

depicted with the dotted line in Figure 11, and the mode becomes close to the energy Eo of the DOS 

centroid. Consequently, the median FB also shifts toward Eo at high temperatures (T=500K>To). Thus, one 

should see considerable temperature dependence of the threshold voltage when the temperature T≈To is near 

the characteristic temperature (To) of the exponential DOS, because the change of FB in eV is replicated as 

a change of the threshold voltage VT in volts.  

Overall, the increase of the temperature shifts FB from EF to Eo, and the occupancy around Eo changes 

several decades, depending exponentially on the ratio |Eo−EF−qVB|(1/kT−1/kTo), where VB is the potential 

bending due the gate bias of OTFT. The consequences for the mobility prefactor in compact models are 

discussed in [6] in terms of modification of a temperature shaping function (TSF). However, the impact of 

the temperature on the charge concentration ½∫F×DOSdE associated with FB from eq. (26) is less, as seen 

by the squares in Figure 11, and this impact is further reduced when the gate bias voltage VG is increased, 

since the DOS occupancy increases, the polygon-like curves in Figure 11 move up, and the width |EF−Eo| of 

middle region decreases, owing to the shift of Eo toward EF due to potential bending at high VG. An 

illustration for the bias dependence of F×DOS for normally distributed DOS in an n-type OTFT and fixed 

temperature can be found in Fig. 2 in [10] through changing the quasi-Fermi level (EF+qVB)/kTo. In that 
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figure, Eo=0, EF=−5kTo, the mode of F×DOS is at EF at qVB<0, and the mode shifts to Eo=0, increasing qVB 

to +5kTo. Further increase of qVB does not cause a shift of the mode, and the temperature does not 

significantly increase the median FB. Thus, FB≈EF at low bias, and FB shifts to FB≈Eo at high bias. (Please, 

inspect the definitions and notation in [10], since there, the reference level is Eo of DOS, the quantities are 

normalized, T is fixed in that figure, and the quasi-Fermi level is denoted with EF and varied.) 

 

3.5. Potential bending and charge in the OTFT film 

Several profiles of the potential bending VB in the depth D of the OTFT semiconducting film at different 

temperatures and gate bias voltages VG are shown in Figure 12. It was suggested in [26] that the profile 

depends on the quantity (D+LA), where the electrostatic depth LA is regarded as an effective depth of the 

conduction channel, and LA is given by 

A f A f
A

ox G ox G

2kT 2
L

qC V C V
ε φ ε= =  , with φA≡kTA/q and TA≈To,    (47) 

considering the details in the reassessed derivation in [27] and the assumption in [22] that the bending 

affects the DOS occupancy as exp[VB/(kTo)] in the case of exponential DOS. The permittivity εf of organic 

materials is in the range (2−4)εo, and one usually uses εf=3εo≈2.66×10−13 F/cm. Then, following [27], one 

gets an analytical expression for the bending profile, given by 
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 , with φB≡kTB/q and TB≈To,  (48) 

where VBS=VB(0) is the bending at the semiconductor-insulator interface (D=0). Note that no temperature 

dependence is disclosed explicitly in eqs. (47) and (48), owing to the assumptions that TA≈TB≈To. 

The dashed lines with solid circles in Figure 12 represent eq. (48) for two cases. The top one is for a 

high VG=−20V and a low temperature T=100K<To=400K, showing a good agreement (in shape and 

horizontal position) between eq. (48) and the profiles of VB at low temperature. However, the bottom 

dashed line, which is for eq. (48) at a low VG=−5V and a high temperature T=500K>To, has a slope 

different from the slope of the triplet of curves (without symbols) from simulation at D>LA, indicating that 
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eq. (48) is a poor estimation for the bending at high temperatures T>To. Thus, analytical models that 

consider exp[VB/(kTo)] in the derivations will be not accurate at T>½To. Unfortunately, To is in the range 

350-450K for organic materials [6], and ½To is normally below room temperature. Approaches to remedy 

this problem are given in [6, 11] and further discussions will be given in the next section with eqs. (79) and 

(80) in relation to Figure 28.  

Profiles of the carrier concentration NC in the pentacene film are shown in Figure 13 with solid lines. 

These profiles correspond to the potential bending profiles shown in Figure 12, and similarly, the triplets of 

profiles at every given temperature for different VG’s coincide in the depth of the film, e.g., at D>30nm. 

Again, taking the suggestion in [26], the reassessed derivation in [27] and the assumption in [22], one gets an 

analytical expression for NC, which (for an exponential DOS) is given by 
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N D

q D L q D L

ε ε φ= =
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, with φC≡kTC/q and TC≈To.  (49) 

The circles in Figure 13 represent the calculations with eq. (49), showing very good overlap with the 

profiles at low temperature T<To=400K, especially for higher gate bias voltages. However, note again that 

there is no temperature dependence in eq. (49), owing to the assumption that TC≈To, whereas the profiles at 

shallow depths D<LA decrease about 50%-100% at a high temperature T=500K>To. Nevertheless, although 

not exact at high temperatures T>To, the quadratic decay of NC predicted by eq. (49) at depths D>LA is 

evident in the figure. 

 

3.6. Correlations between quantities in the OTFT film 

With the numerical simulator, we can investigate the evolution of the quantities in the depth of the organic 

film. The profiles of several quantities are shown in Figure 14. Similar to the previous two figures, the 

triplets of curves at each temperature in the plots of Figure 14 correspond to the three values of VG, and the 

curves in each triplet coincide in the depth of the film, e.g., for D>30nm. The common point in all profiles 

is that the quantities are functions of (D+LA). For example, the profile of the electric field is 

Eel(D)∝(D+LA)−1, which is easy to deduce from eq. (49), since Eel(D)∝∫NC(D)dD, and one observes in 
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Figure 14a the reciprocal relation between Eel and D at film depths D>10nm>3LA. Consequently, from 

Figure 14b, the critical energy for hopping is a logarithmic function ln(D+LA). From Figure 14c, the 

conductance σ of the film is a very strong power-law function σ∝(D+LA)−n. Also, and from Figure 14d, the 

carrier mobility μ in the film is also a strong power-law function μ∝(D+LA)−(n−2), but with an exponent 

reduced by a factor of two, owing to the quadratic dependence in eq. (49) for the carrier concentration NC, 

since μ=σ/qNC. This reduction in the exponent is explained and discussed in more details later with eq. (91). 

We will now clarify the functions behind profiles in Figure 12, Figure 13 and Figure 14 with the help of 

some additional plots. 

The correlations between several quantities in the semiconducting film of an OTFT are summarized in 

Figure 15, organized as a matrix of plots. We denote the cells in this figure with (r, c), where r is the row 

and c is the column in the figure. Then, the correlation shown in cell (c, r) is the inverse of the correlation in 

cell (r, c). The effect of increasing temperature is indicated by arrows. Note that, an up-shift in a cell below 

the diagonal with labels for quantities, c.f., cell (4,3), corresponds to right-shift in the above-diagonal cell 

(3,4), and a clockwise rotation in cell (5,4) corresponds to counter-clockwise rotation in cell (4,5). The 

figure is deliberately arranged with a large number of cells, with the purpose to build the impression for the 

existence of correlations and dependences between the different quantities in the OTFT film. Observe the 

virtually straight lines in each cell, then intuitively, the relations perhaps are simple, thus, manageable 

analytically in practice. There are redundant relations (at least half, in the transposed cells) and we will not 

analyze each cell in great detail, but will comment on several interesting features. 

The first observation in Figure 15 is that the correlations are independent of the gate bias voltage, 

since the lines for different VG={-5V, -10V, -20V} overlap, just spanning different intervals in the 

correlations. This indicates that there is an inherent relation between electrostatics and charge hopping, 

which is not explicitly explored in the literature. Bias-independent correlations are expected, once the 

material properties are independent of the electric field, which is one of the assumptions for the VRH 

simulator – please see the paragraph before eq. (30) earlier 
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In contrast to the bias independence of the correlations in Figure 15, temperature affects the majority 

of the correlations, but not all of them. For example, the electrostatics is temperature independent (assuming 

a temperature independent permittivity) and there is no temperature dependence between carrier 

concentration and electric field in cells (2,1) and (1,2). However, observe that there is no temperature 

dependence between hopping distance and specific conductivity in cells (6,5) and (5,6), and this is not 

obvious at first glance. Observe also that there is a pronounced temperature dependence between specific 

conductance and mobility in cells (7,6) and (6,7). Therefore, the first-glance assumption for proportionality 

between mobility and conductance is probably an oversimplification, if overlooking that the carrier 

concentration might be temperature dependent [11]. However, inspecting the relation between carrier 

concentration and specific conductance cell (6,1) or (1,6) in conjunction with the relation between carrier 

concentration and mobility cell (7,1) or (1,7), one observes temperature dependences of different rates. 

Thus, the carrier concentration is temperature dependent, although the relation between electric field and 

carrier concentration is temperature independent, as mentioned above. Therefore, the mobility and 

conductivity are not really related by a temperature independent coefficient of proportionality. 

Consequently, one should expect different activation energies for mobility and conductance or current, and 

such comparisons [58, 59] are occasionally reported in the literature for OTFTs. Instead, semi-empirical 

observations for constant or bias-dependent thermal activation of mobility, conductance and current in 

OTFT are routinely reported [1, 11, 22, 24, 26, 34, 41, 44, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], also 

“successfully” fitting to the Meyer-Neldel rule [73, 74] and Gaussian disorder models for possible 

explanation of the thermal activation. Simple relations have been also deduced, such as (band bending + 

activation energy + Fermi level)=(transport band edge) in Ref. [71], 

ln(charge)=ln(conductance / mobility) ∝ (mobility activation – conductance activation)/kT in ref. [59], 

proceeding to the next observation in Figure 15 that confirms the existence of simple relations. Alternative 

explanations for the activation energy in OTFT are also available, e.g., in terms of electrochemical 

description of the pentacene-oxide interface in Ref. [75].  
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The second observation is that the correlations resulted in straight lines in Figure 15 (with a small 

exception of a minute curvature for the correlation of the mobility at high bias and temperature, which 

cannot be seen in the figure). Since the axes in the figure are combinations of linear and logarithmic scales, 

then one can deduce four simple correlations between quantities in OTFTs.  

• Linear correlation, when both axes are linear, e.g., cells (4,3) and (5,3) for the relations between 

hopping critical energy and distance to potential bending, respectively. 

• Power-law correlation, when both axes are logarithmic, e.g., cell (7,1) for the relation between 

mobility and carrier concentration.  

• Exponential correlation, when x-axis is linear and y-axis is logarithmic, e.g., cell (1,3) showing 

exponential dependence of the carrier concentration on potential bending, NC∝exp(VB), for 

example. 

• Logarithmic correlation, when x-axis is logarithmic and y-axis is linear, e.g., cell (3,1) for the 

inverse relation VB∝ln(NC). 

Some of these correlations have been used in the derivation of physical and compact models. For example, 

eq. (10) in [22] uses NC∝exp(VB) from cell (1,3) in the normalized form NC/NS∝exp(qVB/kTo) for the 

derivation of the widely-accepted VRH mobility model for OTFT. Another example is the correlation 

μ∝(NC)γ is cell (7,1) between mobility μ and charge qNC, which was experimentally established a while ago 

[33], and used in [28] to derive a TFT generic charge drift model. 

The third observation in Figure 15, however, is that there are several simple correlations, which appear 

to be hidden behind the multiple assumptions and integrations required in the analytical derivations based 

on VRH in OTFTs with an exponential DOS. One often mentioned [22] but rarely discussed correlation is in 

cells (6,5) and (5,6) for the exponential dependence σ∝exp(−RH) of the conductivity σ on the hopping 

critical distance RH. Actually, this correlation is the basic assumption in VRH for the critical path that 

determines the percolation conductivity σ∝exp(−sc), eq. (1), and the equivalence of distance and energy for 

the factor sc of the hoping critical rate Γc,  sc=ln(Γo/Γc)=2RH/Λo=EH/kT, eq. (2), which was introduced in 
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[20]. In fact, one must observe overlap of the curves in cells (6,5) and (5,6) at any temperature and bias, and 

the overlap is an indication of the accuracy of the numerical integrations in the simulator. A lack of overlap 

means a problem in the simulator, either the integration step (dE) for energy is coarse, or the limits of the 

integrations are narrow (or the numerical method failed because of another reason, e.g., error in code or lack 

of convergence). The other indicator for proper operation of the numerical simulator is in cells (2,1) and 

(1,2), where the electrostatic (Gauss) law for the electric field Eel∝∫NCdD must hold the same power-law 

function NC∝(Eel)² at any temperature and bias.  

 

3.7. Correlation between potential bending (VB) and hopping energy (EH) 

An interesting “hidden” correlation is in cells (4,3) and (3,4) of Figure 15 for the linear dependence between 

potential bending VB and hopping critical energy EH. The coefficient of proportionality is (−1), implying 

that the correlation is given by 

( )H B TE qV E T+ = ,      (50) 

where ET is a function only of the temperature. We did not to find this correlation in the literature. It is 

either fortunate or well hidden after the large equations with multiple integrals. However, this is a simple 

and handy relation between electrostatics and variable-range hopping, since the electrostatic calculation is 

quick (of order n²×105FLOPs~0.4GFLOPs, see row “eSt” in Table VI and Appendix 1), while the hopping 

calculation is computationally extensive (of order m×n²×(750FLOPs)~150GFLOPs even for reduced depth 

mesh with m~50 points, see row “pass 2” for multiple ∫∫dEdE integrations in Table VI and Appendix 1). 

Therefore, we plot in Figure 16 the results for ET from simulation of several OTFTs, including the deviation 

from proportionality (−1), and step by step, we will show that the relation is not fortunate, but is a consistent 

and basic bridge between hopping and electrostatics.  

The results from the analyses of the VB−EH correlation in eq. (50) are summarized in Figure 16. The 

results are obtained after fitting of the mobility at different temperatures (T) and gate bias voltages (VG) in 

three OTFTs. These are from 108 simulations at different temperatures, using both single ∫dE integration 
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according to eq. (14) (gray color in Figure 16) and multiple ∫∫dEdE integrations according to eqs. (16), (18) 

and (20) (black color in Figure 16) for the calculation of the hopping conduction. The double-sided 

exponential DOSDE in eq. (45) was considered in the simulations. The fitting of the mobility will be shown 

shortly in Figure 17.  

In Figure 16a, the values for ET are denoted with circle symbols () for a pentacene OTFT from [73] 

for VG={−5V, −10V, −20V}, with square symbols (�) for another pentacene OTFT from [22] for the same 

gate bias voltages, and with diamond symbols (�) for an annealed PQT-12 film OTFT from [60] at two 

times larger gate overdrive voltages (VG−VT)={−10V, −20V, −40V}. For each device, simulation method 

and temperature, the three symbols overlap for different gate bias voltages, confirming the bias-independent 

ET in eq. (50). The magnitudes of the proportionality coefficient between EH and qVB are obtained from the 

slope |∂EH/∂VB| of the regression between these quantities. The values of the slopes are shown with dash 

symbols (−) in Figure 16a, which are close to the ideal value of unity (dashed line in the figure), especially 

at high temperatures, but they deviate from unity at low temperatures.  

Since the deviations from unity of the slope |∂EH/∂VB| are small, we have performed a statistical 

analysis of the values (108 points), as summarized in Figure 16b.  While values for |∂EH/∂VB| are shown in 

the horizontal axis, note that the horizontal axis is reversed logarithmic axis of (1−|∂EH/∂VB|), which is the 

deviation of the slope from the ideal value of unity. Therefore, the nearly uniform histogram (dotted bars) 

indicates an exponential distribution of the slope |∂EH/∂VB| values and provides that |∂EH/∂VB|=1±1% with 

90% confidence. The curves denoted as “mean” represent the average values for the slope |∂EH/∂VB| vs. the 

energy step dE=2meV, used in the numerical integrations, normalized to the thermal energy kT. Therefore, 

the fixed-value energy step is coarse at low temperature (dE/kT is large for low T), and the energy step 

becomes fine at high temperature (dE/kT reduces at high T). These curves in Figure 16b clearly show that 

the deviation from unity of the slope |∂EH/∂VB| is an artifact of the numerical integration due to a coarse 

integration step at low temperatures (dE/kT>10% at T≤200K), because a larger step dE/kT causes larger 

deviation from unity of |∂EH/∂VB|. Also, less integration by the method of single ∫dE integration (gray color) 
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causes larger deviations, compared to the method of multiple ∫∫dEdE integrations (black lines). These 

observations are repeated proportionally for the standard and greatest deviations from unity of |∂EH/∂VB|, 

shown with horizontal error bars and denoted with “mean−σ” and “min” in Figure 16b.  Thus, the numerical 

simulations of variable-range hoping have justified the correlation in eq. (50) between potential bending VB 

and hopping critical energy EH, although we cannot find in the literature an analytical derivation for this 

correlation. The consequences from eq. (50) will be given later in Sec. 4 “Discussion”. The immediate 

deduction is that ET should be equal to the hopping critical energy in the bulk material, since the potential 

bending in bulk material is zero (VB=0). 

 

3.8. OTFT mobility (μ) and sheet conductance (σsq) from VRH conductivity (σ) 

The most critical OTFT performance parameter is the magnitude of the effective mobility (μ), since μ in 

OTFT is low and it depends on many factors – type and uniformity of organic semiconductors (e.g. grains), 

materials and layers at interfaces and contacts, layout, fabrication, encapsulation, temperature, bias, light, 

time, characterization techniques, etc., as reported in many publications and discussed in length in several 

review articles [27, 33, 76]. Therefore, the benchmark assessment for models and simulators is the prediction 

of μ in OTFT. On the other hand, the VRH theories provide for the specific conductivity (σ, in unit, e.g. 

A/Vcm≡S/cm) of the materials [20, 21], but not directly for the mobility of charge carriers in OTFT. 

Therefore, one has used in [22] the following supplementary relations to obtain analytical expression for the 

mobility from conductivity in OTFT operating in the linear (Ohmic) regime. 
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where CI is the gate insulator capacitance per unit area, ID is the drain current at bias voltages at the drain 

VD and gate VG with threshold voltage VT omitted. W and L are the width and length of the OTFT channel, 

respectively, and σsq is the sheet conductivity of the semiconducting film in unit Siemens per square area of 

the channel. This derivation sequence of using proportionalities, integrations and differentiations is 

vulnerable to cancelling of constant multipliers and omission of constants in the final expression for the 

mobility. Indeed, integration limits and details for approximations and neglecting term in several steps and 

substitutions by the derivations were omitted in [22]. Therefore, we use directly the results from the 

numerical simulator for the profiles of σ (cf. Figure 14c) for the finite thickness tf of the OTFT film and 

obtain the effective mobility from the general relation in eq. (42). 

The results of our calculations for the mobility μ are depicted in Figure 17 with lines, and compared 

with the experimental data shown as symbols. Plots (a), (b) and (c) in this figure correspond to the symbols 

in Figure 16a, in particular, to the circle symbols () for a pentacene OTFT from [73], square symbols (�) 

for the other pentacene OTFT from [22] and diamond symbols (�) for the annealed-PQT-12-film OTFT 

from [60], respectively. Also in correspondence with Figure 16, the thick gray lines are from simulation of 

the hopping conduction by the method of single ∫dE integration according to eq. (14), and the thin black 

lines are after multiple ∫∫dEdE integrations according to eqs. (16), (18) and (20). The parameters used in the 

simulations are given in Table IV and are also compared with the values reported in the literature for these 

samples. In Figure 17b, we observe a good overlap between numerical simulation and experimental data, 

the latter used in [22] for verification of the analytical VRH model for OTFTs, and recently, for the generic 

and compact models [6] for the mobility in OTFT. The deviations observed in the figure and the scatter of 

the values of the parameters in Table IV will be addressed later in Sec. 4 “Discussion”. 

As mentioned above, the VRH theories and derivations, and the numerical simulators, consequently, 

provide for the specific conductivity σ. Using eq. (41), one obtains the sheet conductivity σsq=∫σdD in the 

channel of the OTFT by integration of the profile for σ from the gate insulator interface (D=0) into the 

depth D of the organic semiconductor (0≤D≤tf), up to the thickness tf of the semiconducting film. Typical 
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results for σsq are shown in Figure 18 at several temperatures and as function of the gate overdrive 

(VG−Von), where the turn-on voltage Von is the gate voltage VG, at which the gate bias induces a 

conductivity larger than the bulk conductivity, and Von~VFB corresponds roughly to the flat-band potential 

VFB referred to the gate conductor work function in our simulator. Note that Von is “below” the threshold 

voltage VT, and the range Von<VG<VT is usually regarded as the sub-threshold regime of operation of the 

OTFT. OTFTs are typically p-type field-effect transistors, for which one uses inverted values for the 

voltages, e.g., (−Von)<(−VG)<(−VT), as in Figure 18. 

The simulation results for σsq are shown with lines in Figure 18 with colors corresponding to the 

colors in Figure 16a and Figure 17c. The thick gray lines are from simulation of the hopping conduction by 

the method of single ∫dE integration according to eq. (14), and the thin black lines are after multiple ∫∫dEdE 

integrations according to eqs. (16), (18) and (20). The parameter values are the same as for Figure 17c and 

are given in Table IV. We present in Figure 18 the same results in three plots: linear, semi-logarithmic and 

logarithmic, since the values are over several decades, and the different plot formats provide different 

insights. The linear plot in Figure 18a illustrates that the two methods of single ∫dE and multiple ∫∫dEdE 

integrations predict different magnitudes for σsq, with differences up to about 20% at a given bias and 

temperature, which is an estimate for how accurate the numerical simulations of VRH can be in practice. 

The semi-logarithmic plot in Figure 18b illustrates, however, that both methods predict in very similar 

manner the behaviors of σsq as a function of bias and temperature. The higher temperatures increase the 

OTFT’s conductivity at given gate bias (especially at low bias), but the higher bias reduces the temperature 

effect. Conversely, higher temperatures reduce (in relative units) the dependence of the conductance on the 

bias, since the steepness of the curves in Figure 18b is reduced at higher temperatures. The semi-logarithmic 

plot in Figure 18b shows the dependences qualitatively, and the actual form of these dependences becomes 

clear from the logarithmic plot in Figure 18c. Here, the lines are almost straight, illustrating the power-law 

dependence of the conductance on the bias, σsq∝|VG−Von|ⁿ, with the exponent factor (n) increasing, when 

the temperature decreases, n∝1/T, and lines intersecting at some high overdrive |VG−Von|~240V, at which 



58 

the temperature dependence is virtually cancelled. These details from simulation will be further discussed 

shortly, after justifying the consistency of the numerical simulation with experiments. 

The open and filled symbols in Figure 18 are recalculated data for two PQT-12 OTFTs. Drain current 

ID−VG transfer curves at a low drain voltage VD=−1V are reported in Fig. 2a at lower |VG| and in Fig. 8a at 

higher |VG| in [60]. Therefore, we assume that the data correspond to the linear regime of operation of 

OTFT, and from eq. (51), one can estimate the sheet conductance by 

   D
sq

D

I L
V W

σ ≈ , for linear regime |VD|<|VG−VT|~|VG−Von|,   (53) 

as far as (−VG) is several volts above the threshold voltage (−VT), the later reported around 10V for the 

annealed-PQT-12-film OTFTs and Von=±1V at room temperature. The information for the samples and their 

parameters is aggregated in ranges in [60], but unfortunately, not sample by sample at different 

temperatures. Nevertheless, I−V transfer curves at different temperatures are provided in [60], which is a 

much better situation than not reporting any temperature-dependent I−V characteristic in [22, 73], but only 

the mobility for the pentacene samples, c.f. Figure 17a and b. We tried to recover the missing information 

for the PQT-12 OTFTs, using the procedure described in the next paragraph.  

It is provided in [60] that the samples had W=0.5−1mm and L=40−100μm, and the threshold voltage 

in Fig. 2b in this publication increased from (−VT)=5V at room temperature to 13−14V when the 

temperature was decreased to T=200−150K. Thus, considering also the aforementioned room-temperature 

VT and Von, we let W/L to vary between 5 and 25 ±20% and (−Von) to vary between (−2V) and (+15V) until 

a good match between simulated and recalculated by eq. (53) values occurs at higher gate overdrive 

|VG−Von| at all temperatures, as shown in Figure 18 for matching of the recalculated σsq from ID−VG transfer 

curves to simulation of VRH with multiple ∫∫dEdE integrations. Similar good match was obtained also to the 

other method with single ∫dE integration, but with different values for W/L and Von, and the symbols for this 

latter match are omitted only for clarity in the figure. The values for W/L and Von are given in Table V for 

both fittings. Both W/L and Von vary with the temperature even for the same sample, which signifies that 

that there is a large uncertainty in the recalculation. Therefore, the comparison between simulations and 
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experiments in Figure 18 should be taken qualitatively, not quantitatively. However, particular sample 

information in [60] is missing, as we have mentioned, and we cannot discriminate which values are correct 

and which are wrong, since all values for W/L and Von in Table V are within the intervals stated in [60]. 

Also, lowering the bias below |VG−Von|<5V, one observes discrepancies between simulation and 

recalculated experimental data; e.g., in Figure 18c, the experimental data level off (� and  for T=200K 

and T=150K), while the simulations bend down (clearly seen by the lines for T=300K). These discrepancies 

are because the OTFT moves in the saturation and subthreshold regimes when |VG−Von|<5V, and the 

recalculation by eq. (53) is incorrect, since the condition for linear regime and validity of this equation are 

violated. Nevertheless, the qualitative comparison at sufficiently high gate bias, e.g. |VG−Von|>10V, 

indicates that the aforementioned power-law and 1/T behaviors deduced by numerical simulations of VRH 

are reproduced in the experiments. Also, note that the numerical evaluation of eqs. (41) and (42) is 

independent of the value of (W/L). Next, we closely inspect these relations.  

 

3.9. Bias dependence and thermal activation of the OTFT sheet conductance (σsq) by VRH 

A close look at the predictions from numerical simulation of the sheet conductance σsq in OTFT is given in 

Figure 19 for an expanded biasing range up to (VG−Von)=−700V for clarity, although the 100nm SiO2 gate 

dielectric (see Table IV again) in the real PQT-12 devices in [60] may break down at a lower bias. The 

square symbols in this figure are the results for σsq from simulation, and correspond to the lines in Figure 

18c, from which we have deduced above that the sheet conductance σsq(VG, T) should be a temperature-

dependent power-law function of the bias, given by 

   
( ) ( ) ( )n T n T

sq G G on G

sqx Gx on Gx

V ,T V V V
V V V

σ    −= ≈   σ −   
, since VGx>VG>Von~±1V,  (54) 

where σsqx and VGx are some characteristic parameters, and the temperature dependence of σsq is due to 

variation of  the exponential factor (n) in the power-law function as reciprocal of the temperature, e.g., 
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   ( ) ( )
( )

sqx

G on

lnT
n T

T ln V V
σ ∂ σ

= =
∂ −

,       (55) 

where Tσx is also a characteristic temperature parameter for σsq. Thus, we fit the power-law trend lines in 

Figure 19 to the simulation data points that align in straight lines in the logarithmic plot. These data points 

are mostly in the bias range −(VG−Von)=10−100V, and are denoted with filled squares. The trend lines 

intersect at points (VGx, σsqx) denoted with circles in the upper-right corner of the figure, indicating almost 

constant values for VGx≈−240V and σsqx≈0.35μS/square after both methods of VRH simulation by single 

∫dE integration according to eq. (14), and multiple ∫∫dEdE integrations according to eqs. (16), (18) and (20). 

Therefore, we conclude that eq. (54) holds for moderate biases. Furthermore, the slopes of the power-law 

trend lines in the logarithmic plot are the exponential factor (n) in the power-law function, as indicated by 

the last term in eq. (55). The values for n are shown in the inset of Figure 19 with circles as function of the 

reciprocal of the temperature 1/T. These values also align with the straight lines in the linear plot of the 

inset, validating eq. (55), with Tσx≈400K. Therefore, we conclude that the conductance in the OTFT at 

moderate bias has a thermal activation energy in the form of 

   Gx
A x

G

V
E kT ln

Vσ σ
 

≈  
 

, at moderate bias |VGx−Von|/2>|VG−Von|>10V,  (56) 

since from eqs. (54) and (55), it follows that 

   
( ) ( ) xT

n T
Tsq G G G x Gx

sqx Gx Gx G

V ,T V V T V
exp ln

V V T V

σ

σσ        ≈ = = −      σ        
.  (57) 

Note the conditions in eq. (56), which were used as selection criteria of the points for fitting of the power-

law trend lines. At lower or higher gate bias, the deviations from the power-law dependence are evident, as 

seen by the data points denoted with open squares in Figure 19. At low bias, the deviation is due to the 

uncertain value of Von. At high bias, the potential bending in the organic semiconductor crosses and is 

above the DOS centroid level Eo, and the power-law is violated, since the charge hopping is no longer in the 

exponential tail of the DOS, and the DOS occupation tends to saturate. In this case, we have observed that 
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the inaccuracy of numerical simulator is also larger, owing to the larger differences in the results from the 

two methods of single ∫dE integration and multiple ∫∫dEdE integrations, although both methods predict 

saturation in the VRH conductivity. 

 

4. Discussion 

The previous section addressed the essential properties and behaviors that the VRH predicts for OTFTs. In 

this section, we address several other cases that occur in the application of VRH, such as the type of DOS in 

the next sub-section. 

 

4.1. Effects due to the assumption for the type of DOS 

The simulation results shown in the previous section are with the assumption that the DOS is a double-sided 

exponential DOSDE, according to eq. (45). On the other hand, VRH was analyzed in the literature as either a 

single-sided exponential DOSSE, eq. (22), or a normally distributed DOSND, that can be given in the form 

( ) ( )
2

S o
ND

o o

N E E
DOS E DOS E exp

kT 2 kT 2

  − = ≡ −   π   

,    (58) 

where Eo is the energy position of DOSND, e.g. HOMO for p-type OTFT, and (kTo) defines the width of the 

distribution, similarly as for the exponential types of DOS. Comparing eqs. (22), (45) and (58), one sees that 

the assumptions for DOS might be quite different. Therefore, it is reasonable to investigate the impact of the 

DOS type on VRH.  

The effect of the assumption for DOS on the mobility in OTFT is illustrated in Figure 20 for both 

methods of VRH numerical calculation with single ∫dE and multiple ∫∫dEdE integrations. One observes in 

the figure that the experimental data (open circles ) for the OTFT mobility can be fitted well by any of the 

assumptions for DOS type in an interval of ±(50−100)K around room temperature (T~300K), when 

choosing appropriate values for the parameters. Thus, one might be unable to determine the DOS type from 

the Arrhenius plots, log(μ) vs. 1/T, of the experimental data for mobility. The trend in the figure is that the 
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DOS type affects the behavior at very low and very high temperatures, and the effects are in correspondence 

with the “rectangularity” of DOS. A possible definition of DOS “rectangularity” is given later in eq. (74). 

The trend and the “rectangularity” are illustrated in the cartoon of Figure 21. The single-sided exponential 

DOSSE is a “peaking” function of the energy with low “rectangularity”. For DOSSE, the behavior of the 

mobility is μ∝exp(−To/T) at low temperatures, leveling off at high temperatures. The increased 

“rectangularity” of the double-sided exponential DOSDE and the normally distributed DOSND bends up the 

log(μ)−1/T dependence at low and high temperatures, without major changes at moderate temperatures 

around room temperature.  

The type of DOS has a moderate effect on the behavior of the VRH mobility. However, the different 

assumptions for the type of DOS and the different methods of VRH calculations have significant impacts on 

the values of the parameters. As mentioned earlier, when discussing the deviations between simulation and 

experimental data in Figure 17, the values of the parameters are collected in Table IV. These parameters 

have been used in the simulations shown in the preceding figures, e.g., Figure 20 above for mobility. 

Column “comment” in Table IV discloses which data set where was used. The scatter of values is addressed 

here. The values of the parameters from Table IV are visualized in Figure 22.  

The top-left plot in Figure 22 is for the “characteristic temperature” To, which describes the energy 

width (kTo) of the distribution of the DOS. One observes that To for exponential types of DOS is about 2-3 

times smaller than To for normally distributed DOSND [6]. Also, the values for To are very similar for both 

the single-sided exponential DOSSE and the double-sided exponential DOSDE. Further, there is a good match 

to values for To from analytical VRH calculations with exponential DOS reported in the literature for these 

samples. Unfortunately, this coherent situation for To is not the case for the other parameters related to VRH 

in OTFTs. 

The middle-left plot in Figure 22 is for the total concentration of states NS for all energies, 

NS=∫DOS(E)dE with (−∞≤E≤+∞). Two trends are observed in this plot. One trend is that the method of 

single ∫dE integration for VRH requires 2-3 times higher value for NS, as compared with the method of 
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multiple ∫∫dEdE integrations, in order to calculate similar VRH mobility for any given type of DOS in an 

OTFT. This trend indicates that at present, the VRH theories do not provide a mature and unique method for 

calculation. The second trend is that NS is higher for OTFTs with lower mobility, comparing from left to 

right for the two pentacene OTFTs, and NS is even higher for the PQT-12 OTFT. We note that the values 

for NS are larger than the molecular density of pentacene and PQT-12. The unit cell sizes of pentacene 

molecular crystals are reported as 1.603nm×0.793nm×0.614nm in [32] and 1.6nm×0.79nm×0.606nm in 

[33], resulting in molecular density ~1.3nm−3=1.3×1021cm−3 with 11 π bonds per molecule, that is, the π-

orbital density is in order of 2×1022cm−3. The crystallographic studies of PQT-12 films in [77, 78] reveal that 

the unit cell of this polymer is of size 1.64nm×1.55nm×0.38nm, having four rings with two π bonds per 

ring, resulting in molecular density ~1.04nm−3=1.04×1021cm−3 and π-orbital density of 1.7×1022cm−3. 

Comparing with NS=(2.5−70)×1021cm−3, on average 1.7×1022cm−3  in the middle-left plot in Figure 22, it 

seems that NS corresponds to the π-orbital density, rather than to molecular density, which was deduced in 

earlier investigations on conductivity in polymers [79]. Certainly, values for NS>2×1022cm−3 are 

questionable, indicating again the non-mature methods for VRH calculations that are vulnerable to arbitrary 

procedures and subjective assessments by fitting of experimental data. Unfortunately, this is the state-of-

the-art at present. 

The bottom-left plot in Figure 22 is for the decay distance Λo of the hopping rate. Usually, Λo is 

attributed to overlap of the π orbitals in organic materials. Again, two trends are observed in this plot. One 

trend is that Λo is lower when NS is higher, compared with the plot above. Interestingly, while Λo varies 

about 5 times and NS varies about 30 times, the product Λo×(NS)⅓ varies less than 4 times between 12% 

and 42% among all samples, despite assumptions for different DOS and methods of VRH calculation, being 

on average ~25%. Since the product is related to the enhancement factor γ (see eq. (44) earlier), then γ~2 is 

expected for the OTFTs, as explained in [6]. However, the second trend in the bottom-left plot in Figure 22 

is that the values for Λo from numerical simulations (symbols in the plot) are about two times smaller than 

the values reported in the literature (horizontal dashed lines in the plot) and deduced by using of the 
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analytical model [22]. This discrepancy again questions the absolute precision by the derivation of analytical 

models, although the analytical models have been proven [6, 11] to have consistent behaviors with 

temperature and bias of the OTFT. 

Consider now the top-right and middle-right plots in Figure 22. The top-right plot is for the 

conductance prefactor σo usually taken as a constant parameter in the analytical VRH model for OTFTs 

[22], whereas the middle-right plot is for the hopping attempt rate Γo in the principal VRH physical model 

of eq. (2). The relation between σo and Γo is given by eq. (3), showing proportionality to the first order of 

approximation, and the proportionality between the two plots is evident. However, there are again problems 

with the values. The numerical simulations suggest 2-3 orders of magnitude lower values for σo, compared 

to those reported in the literature by fitting of an analytical model (dashed lines in the top-right plot). Even 

so, some of the corresponding values for Γo are unrealistically large, being in the range of PHz 

(PHz=1015Hz), especially with the assumption of normally distributed DOS, and well above the limit of 

1PHz derived in [21] by assuming random walk in the percolation network. In fact, frequencies above 

300PHz are improbable for π orbitals in organic materials with radius ~0.15nm or larger, since 

c/(2π×0.15nm)=318PHz, where c≈3×1010cm/s is the speed of the light. Thus, any value for Γo>10PHz, and 

consequently from eq. (3) σo>1.6×10−19×10PHz/(26mV×0.5nm)~107S/cm=109S/m, are just extrapolated 

model parameters without physical validity. Note that many points from the numerical simulations in the 

top-right and middle-right plots in Figure 22 are above the limits for physical significance, and we are afraid 

that the values for σo reported in the literature correspond to an even higher Γo>100PHz, thus is physically 

improbable. We do not delete the apparently wrong values and strongly emphasize that one meets with 

disappointing results fairly easily after lengthy derivations and simulations based on VRH. Therefore, the 

VRH theory seems again vulnerable to mistakes, owing to overlooked issues when using proportionalities 

and sequences of integrations and differentiations, and not paying attention to absolute values and 

magnitudes of quantities. 
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Nevertheless, in the bottom-right plot of Figure 22, we show the hopping energy EHFB in the bulk 

organic semiconductor, although EHFB is a quantity, and not a parameter. The data scatter about 0.3eV 

around 1eV, but considering that EHFB accumulates much larger variations for To, Λo and Γo by different 

assumptions for DOS and methods of calculation, we think that the variations in EHFB are reasonable. 

Therefore, as we have mentioned in the previous section, the consequences from eq. (50) for the linear 

relation between potential bending VB and hopping critical energy EH are discussed next. 

 

4.2. The linear correlation between potential bending (VB) and hopping energy (EH) revisited 

The immediate deduction from eq. (50) is that the hopping energy EH(D,VG,T) and the potential bending 

energy qVB(D,VG,T) at any depth D, 0≤D≤tf, in the organic semiconducting film of thickness tf and any gate 

bias voltage VG (but at given temperature T) is equal to the hopping energy in the bulk semiconductor 

( ) ( ) ( ) ( ) ( )H G B G T H B HFBE D, V ,T qV D,V ,T E T E D   or V 0,T E T+ = = = ∞ = ≡ ,  (59) 

where EHFB(T) is the hopping energy in the bulk semiconductor at the flat-band condition of zero bending 

(VB=0), see eq. (30), therefore EHFB is not function of depth or bias, and EHFB(T)=EH(D=∞ or VB=0, T) is 

function only of the temperature T. Considering the relation between hopping energy EH and distance RH in 

eq. (2) for the hopping critical factor sc, then one divides eq. (59) by kT, and obtains the corresponding 

relations for the hoping distances and hopping attenuation factors 
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Λ
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   (60) 

where RHFB(T) and scFB(T) are the bias-independent hopping distance and attenuation factor in bulk 

semiconductor, respectively, and φT≡kT/q is the thermal voltage.  
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Interestingly, despite the variations in experimental data, assumptions for DOS, parameter values, 

methods of VRH calculation and levels of gate bias (via VB), the ratio 2RHFB/Λo=scFB is apparently a well 

defined linear function of the reciprocal temperature, as shown in Figure 23. The linear trend implies that 

VRH in OTFT produces simple and relatively stable relation with electrostatics, despite the large 

uncertainties for parameters, various assumptions for DOS and bulky integrations. The trend is summarized 

in the following two equations. The hopping attenuation critical factor in bulk semiconductor is 

( ) ( )
To

cFB cT
T

s T s
T∞

φ= +
φ

,     (61) 

where scT∞≈10±4 is an extrapolated value for scFB at infinite temperature T=∞ and φTo≈(0.8V±0.1)V is a 

voltage that determines the slope in the scFB∝1/T temperature dependence, thus, qφTo is the activation 

energy for the hopping attenuation critical factor scFB in bulk semiconductor. Note that scT∞ and φTo are 

constant parameters, which vary a little by different assumptions for DOS and methods for VRH 

calculation, and the temperature dependence in scFB is due to the thermal voltage φT≡kT/q.  

The second equation related to the trend in Figure 23 is 

( ) ( ) ( )
( )

( )
( )

B G
c G cFB

T

To B G
cT

T

V D, V ,T
s D,V ,T s T

T

V D, V ,T
                    s ,

T∞

= −
φ

φ −
= +

φ

    (62) 

indicating that the gate bias dependence in the hopping critical factor sc is due to the potential bending 

voltage VB caused by the gate bias voltage VG at a given depth D in the film. Higher bias causes higher VB, 

which “withdraws” from thermal activation φTo. Conversely, higher temperature increases φT and decreases 

the sensitivity of the critical factor sc (and conductivity) to bias, since VB/φT decreases. These effects have 

been discussed in the previous section in Figure 18b. Thus, the electrostatics enters VRH in OTFT by means 

of a simple linear algebraic relation between sc and VB. Therefore, precise knowledge for VB(D) in the depth 

D of the film of the OTFT at given temperature and bias would guarantee reliable calculation of the profile 
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σ(D)=σ[VB(D)] of the VRH conduction, considering the principal equation (4) for the VRH specific 

conductivity σ, which becomes  

( ) ( ) ( )

( ) ( )

B G Too
G cT

T o T

B G
FB G B

T

V D, V ,Tq
D,V ,T exp s exp

V D, V ,T
T exp   under  V   so  that  V 0,

∞
 − φΓσ = −  φ Λ φ 

 
= σ ≠ φ 

   (63) 

where σFB for the bulk semiconductor is 

( ) ( )o To
FB cT

T o T

q
T exp s exp∞

 Γ φσ = − − φ Λ φ 
 without bias, thus VB=0.  (64) 

Note that the last two equations are valid for any DOS and method of VRH calculation. The assumption for 

DOS can affect VB in the electrostatic calculations, but only modifies the constant values for scT∞ and φTo. 

The method of VRH calculation has no effect on VB and slightly changes the values for scT∞ and φTo. 

To obtain the sheet conductivity σsq, consider the integration in eq. (41) along the depth D of the 

semiconductor film of thickness tf, 0≤D≤tf, using the expression for σ(D) from eq. (63), in which σFB is 

constant in respect to D. Performing the substitutions and the integration, we get 

( ) ( )f ft t
B

sq FB
T0 0

V D
D dD exp dD

 
σ = σ = σ  φ 

       (65) 

Then, one can obtain the OTFT mobility by dividing σsq by the gate charge QG, as given by eq. (42). Again, 

precise knowledge for the profile VB(D) is required to calculate σsq from eq. (65), because the profile 

depends on the type of DOS. However, an approximate analytical solution of the integral is also suitable in 

practice. This is because the shape of the bending profile VB(D) does not deviate significantly from the 

functional form given by eq. (48), if small adjustments of the values of the parameters LA and φB are 

allowed. One adjustment is the use of effective temperature, TOEF in Sec. 4.4.4 later. 

To obtain the analytical solutions, substitute eq. (48) in eq. (65), and perform the integration with 

respect to the depth D, assuming LA and φB as constants. The derivations, given in Appendix 2, show that 

the sheet conductivity of the OTFT film becomes  
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,  (66) 

with φA≡kTA/q and TA≈To and at conditions VBS>2φo>φT for the bending voltage VBS at the gate dielectric-

semiconductor interface. From eq. (42), one more division on the gate charge QG=COXVG yields also a 

formula for mobility  
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. (67) 

The above format of the equations is compact, but does not show the actual terms related to thermal 

activation. Since TA≈To, then φA≡kTA/q≈kTo/q, and these equations can be rewritten together as 
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  (68) 

The logarithmic function will be explained later, just before eq. (75). In the last three equations, one clearly 

sees the terms, which outline the available freedoms in VRH for tuning magnitude by (Γo/Λo)exp(−scT∞) and 

thermal activation by exp(−To/T), the latter logarithmically bias dependent through −2kTo×ln(VG). These 

are the main consequence from eq. (50) for the linear relation between potential bending VB and hopping 

critical energy EH. The other terms in the equations for conductance and mobility of the OTFT, including 

the bias dependence of the thermal activation, are either material constants or follow from electrostatics 

through the integral ∫exp[VB(D)/φT]dD of the potential bending profile VB(D), but are not due to VRH. 

 

4.3.  Verification of the correlation between potential bending (VB) and hopping energy (EH) 

To support the above derivation of analytical formulas based on linear dependence between VB and EH, we 

have inspected the profiles from numerical simulations and the analytical approximations. Examples are 

shown in Figure 24 for a pentacene OTFT. The mobility of this OTFT was reported in [73] and fitted by 

VRH calculations with multiple ∫∫dEdE integrations as shown earlier in the bottom-left plot of Figure 20. 
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The three rows of plots in Figure 24 are corresponding to assumptions for single-side exponential DOS (top 

row of plots), double-side exponential DOS (middle row of plots) and normally distributed DOS (bottom 

row of plots). The open circles in Figure 24 are after the numerical calculation. The lines through the circles 

are after approximations and analytical calculations. The three columns of plots in Figure 24 are 

respectively for the profiles of the carrier concentration NC (left-hand column), potential bending 

VB=(IMREF−EF)/q (middle column) and specific conductivity σ (right-hand column). The middle column 

of plots also includes the DOS, as assumed in the numerical calculations (thick gray lines) and the 

exponential approximations of DOS (thin black lines that coincide with the thick gray lines) as deduced 

from analytical calculations. Note that the values for DOS are in the horizontal axes and given as function 

of the bending in the vertical axes. The examples in Figure 24 are for two temperatures (T=100K and 300K) 

and two gate bias voltages (VG=−5V and −20V). The other temperatures and the intermediate bias 

VG=−10V are omitted only for clarity in the figure. 

The procedure of extraction of the parameter values in the analytical equations is now given. This 

procedure was repeated for every pair of conditions for temperature and bias, and every type of DOS. The 

profiles are obtained from the numerical calculations. The analytical expressions are fitted to the numerical 

data. The data from analytical calculations are denoted below with additional subscript “an” to the notations 

of the quantities from the numerical simulations. The values for the carrier concentration NC,an(0)=NC(D=0) 

and the potential bending VBS,an=VBS in the semiconductor at the gate dielectric interface (D=0) are taken 

from the numerical simulation. The bulk semiconductor specific conductivity σFB,an(T) is calculated with eq. 

(64) by adopting the values for scT∞ and φTo obtained by evaluation of the 1/T dependence for the critical 

factor scFB, as indicated in the left-hand column of the small plots in Figure 23. 

Owing to the expected (D + LA)−2 dependence from eq. (49) for the profile of the carrier concentration 

NC(D), then the quantity D×NC(D) is a peaking function at D = LA, from which an initial value for LA is 

obtained, and then, the numerical data for NC are fitted by adjustment of the value for LA,an, in the analytical 
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expression NC(D) ≈ NC,an(D) = NC,an(0) [ LA,an / (D+LA,an) ]², until good fit is obtained, as illustrated in the 

left-hand plots of Figure 24.  

Next, having the value for LA,an, the value of the characteristic voltage φB,an≡kTB,an/q for the 

logarithmic decay of the potential bending VB in the depth of the film is determined by varying φB,an in the 

analytical expression VB,an(D)=VBS,an−2φB,an×ln(1+D/LA,an) of eq. (48). As illustrated in the middle column 

of plots in Figure 24, a good fit to the numerical data for bending profile VB(D) is obtained. We gather the 

values for VB,an(D) from the analytical calculation for the same depth mesh D, as by the numerical 

calculation. With these values for VB,an(D), the profile for the VRH specific conductivity 

σan(D)=σFB,an(T)×exp[VB,an(D)/φT] is calculated by the last expression of eq. (63), as depicted by the lines in 

the right-hand column of plots in Figure 24. The comparison between circles and lines in these plots 

indicates that the match for σ from numerical and σan from analytical calculations is good, which validates 

the above derivation of the analytical formulas to be suitable for approximate calculation of VRH by any 

type of DOS. Furthermore, since the analytical formulas are based on the linear correlation between 

potential bending (VB) and hopping energy (EH), then the good match in Figure 24 also verifies the 

correlation. 

 

4.4.  More quantitative comparison between numerical and analytical calculations of VRH 

Looking closer at Figure 24, one observes several details, which have been discussed in the literature. One 

observation in the top row of plots in this figure is that the match between analytical and numerical 

calculations is almost perfect for single-sided exponential DOS, which is not surprising considering that the 

equations of the analytical calculations are based on assumption for this type of DOS. However, deviating 

from an exponential DOS, the analytical approximations become less accurate (not distinguished at first 

glance, but comparing the actual numbers, as follows). Consider the low bias VG=−5V in the left-hand 

column of plots in Figure 24. There is virtually no temperature dependence for NC by the single-sided 

exponential DOS, and the analytical approximation overlaps the numerical simulation. However, there is a 
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small difference between numerical simulation and analytical approximation for double-exponential DOS 

and a visible difference by normally distributed DOS, the latter accompanied with some deviation from the 

(D+LA)−2 dependence. The differences between numerical simulation and analytical approximations are 

reinforced in the profiles for conductivity in the right-hand column of plots in Figure 24; note these plots are 

over many decades. Nevertheless, one observes that the magnitudes and slopes of DOS are similar for the 

ranges to where the semiconductor is bent, irrespective of the type of DOS [61, 62]. In an attempt to 

quantify the magnitudes and variations, we compare several parameters and quantities from numerical and 

analytical calculations. 

 

4.4.1. Selection of quantities for comparison 

To choose the quantities for comparison, one should review the situation after numerical VRH calculations. 

The situation is illustrated in Figure 25 for the pentacene OTFT, which mobility was reported in [73] and 

fitted by VRH calculations with multiple ∫∫dEdE integrations as shown earlier in the bottom-left plot of 

Figure 20. For clarity, Figure 25 is only for one set of temperature-bias conditions (T=100K and gate bias 

VG=−20V), and for one assumption for DOS (normally distributed DOS). The bending profile and DOS 

have been also shown in the middle plot at the bottom row of plots in Figure 24. These are repeated in 

Figure 25 for immediate reference, following the same styles for symbols and lines, and accordingly 

enhanced to view the situation after VRH calculation and to thoroughly define the quantities for 

comparison. 

One enhancement in Figure 25 is the gray color error bars for hopping energy EH and distance RH, as 

obtained by the numerical calculations. The height of vertical error bars indicates the value of EH, at any 

depth D. All the vertical error bars end at the dotted horizontal blue line, fulfilling the aforementioned 

relation by eqs. (50) and (59) for the constant energy level (EH+qVB)=EHFB, which the carriers reach by 

VRH (above the Fermi level EF), depending on temperature, but irrespectively of bias. The value 

EHFB=0.889eV≈103×kT for T=100K was indicated by the trend equation  in the upper-left corner in the 
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bottom plot in the left-hand column of small plots in Figure 23 by the evaluation of the 1/T dependence for 

the critical factor scFB. (The substitution in the trend equation gives 

EHFB/kT=0.79/kT+11.86≈0.79eV/8.62meV+11.86≈103). Note in Figure 25 that EHFB reaches deep in the 

DOS, even at low temperature, although IMREF in the organic semiconductor is more than 0.2 eV below 

the DOS centroid level Eo, where |Eo−EF|=0.9eV was taken in the simulations. At the gate dielectric 

interface, the difference |Eo−IMREF(0)|=|Eo−(qVBS+EF)|~0.22eV is the smallest, while the difference 

increases to |Eo−IMREF(D)|~0.4eV in the film depth, being ~0.5eV at the back of the film at D=tf=50nm, 

since the potential bending VB(D) decreases with D. Thus, we will monitor (EF+EHFB) and 

IMREF(D=0)=(qVBS+EF) at the gate dielectric interface (D=0) in respect to the energy position Eo of DOS 

by comparison of quantities.  

Regarding the horizontal error bars in Figure 25, their length indicates the hopping distance RH. All 

the horizontal bars end at the dotted curve (RH+D). One observes in the left-hand plot that the carriers reach 

depths (RH+D), which are significantly larger than the depth D of the profile close to gate dielectric 

interface, while the ratio (RH+D)/D decreases when moving toward the back of the semiconducting film.  

A better perspective for RH is given in the right-hand plot of Figure 25 with linear scale for the 

distance axis at the bottom. In this plot, one observes a linear dependence between RH and VB by the line 

(green color) labeled with RH, and RH is larger at lower bending VB, whereas D is nearly an exponential 

function of VB, since VB is nearly a logarithmic function of D, as discussed just above. The linear 

dependence between bending voltage VB and hopping distance RH is expected, considering 

EH+qVB=EHFB=constant at a given temperature and the proportionality between EH and RH by eq. (2), from 

which follows the linear dependence after a division on kT, as given earlier by eq. (60). The interesting 

observation for RH in Figure 25 is that RH can be an order of magnitude larger than three characteristic 

depths: DavgVB, D95%σsq and LA. These characteristic depths are indicated with the three large symbols 

(��), respectively, on the bending profile (thin red line). The triad of these characteristic depths we 
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denote with D‴≡{LA, D95%σsq, DavgVB}. The significances of these characteristic depths, in reverse order, are 

the following.  

LA denotes an electrostatic condition for the depth in which the majority of the carriers are induced by 

the gate bias VG. Considering the profile of the carrier concentration NC(D) given in eq. (49), the following 

relation between NC(0) evaluated at the interface, and NC(LA) evaluated at LA is NC(LA)=¼NC(0). Also, 

integrating eq. (49) from the gate dielectric interface D=0 to D=LA, the induced charge in the film up to this 

depth LA is q
0
∫LANCdD=½q

0
∫∞NCdD≈½QG, being one half of the gate charge QG≈COXVG. Thus, the majority 

of the carriers induced by the gate bias VG, are within the distance LA, since ∫NCdE~1/D at D>>LA.  

The second characteristic depth D95%σsq denotes the condition for almost full sheet conductivity of the 

film, according to 

( ) ( )
95% sq fD t

sq sq
0 0

D dE 0.95 D dE 95% 
σ

σ = σ = σ ≈ σ  .   (69) 

Considering the analytical approximation in eq. (151) for φT≠2φB, and assuming 1.05≈1/0.95, φT~φB 

at room temperature and tf>>LA, the order of magnitude for D95%σsq is roughly D95%σsq~20LA, but the 

multiplier 20 is different at low temperature, when φT<φB, which is the case in Figure 25.  

The third characteristic depth DavgVB corresponds to the condition for the expected bending avgVB, 

which is mostly representative for the sheet conductance σsq, and avgVB is an average of bending profile 

VB(D) weighted with the profile σ(D) of the specific conductance σ, according to  
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

.    (70) 

Both profiles are known from the numerical calculations. Consequently, DavgVB can be calculated by 

interpolation of the bending profile VB(D) between points neighboring avgVB, or alternatively, by inverting 
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the analytical approximation of eq. (48), e.g., as DavgVB≈LA×{exp[(VBS−avgVB)/2φB]−1}. We have used the 

former approach of interpolation for calculation of DavgVB.  

Once these characteristics depths for average VB, 95% of σsq and LA are defined, we will also monitor 

quantities at these three conditions. The values at these conditions for the following quantities are indicated 

in Figure 25. The large circles () in the left-hand plot denote values at avgVB, in particular, from left to 

right, values for DavgVB, % of σsq and DOS; and in addition in the right-hand plot, RH at avgVB. In a similar 

way, at the condition of 95% of σsq, from left to right in the left-hand plot, the large diamonds (�) denote 

values for depth and bending,  % of σsq and DOS; and RH at 95% of σsq in the right-hand plot. 

Consequently, large squares (�) denote the values for VB, % of σsq and DOS at LA in the left-hand plot; and 

RH at LA in the right-hand plot. The approximation with exponential DOS is shown with dashed lines in 

Figure 25. The magnitude of the DOS approximation is taken equal to the magnitude of the assumed by 

numerical simulations DOS (normally distributed DOS in Figure 25) at the condition for average VB, 

avgVB. Therefore, DOS and its approximation intersect at the large circles in the two plots in the figure. The 

slope of the exponential DOS approximation is ∂ln(DOS)/∂E=1/qφB,an, with value of φB,an as deduced after a 

fit of the potential bending with the analytical expression VB(D)≈VB,an(D)=VBS−2φB,an×ln(1+D/LA,an) of eq. 

(48). Therefore, when comparing to φB,an, which is the reciprocal of the logarithmic slope of the exponential 

DOS approximation, for convenience we will monitor the reciprocal of the logarithmic slope of the DOS, 

which is  

( ) ( )
( )DOS B

B

E q
avgV

at avgVln DOS

∂
ϕ =

∂   
.    (71) 

Note that for single-sided exponential DOSSE of eq. (22), the logarithmic slope of DOSSE is constant in the 

energy range where DOSSE>0, and the reciprocal of DOSSE logarithmic slope is 
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E q kT
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.   (72) 
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For non-exponential types of DOS, the value of φDOS varies with the bending VB, via IMREF=(EF+qVB). 

For the normally distributed DOS, eq. (58) for example, the reciprocal of the logarithmic DOS slope at 

avgVB is 

( )
( ){ }

( )
ND

2
o

DOS
o F BND o o

kTE q

E q E q avgVln DOS E IMREF kT

∂
ϕ = =

− − ∂ − 

.   (73) 

Among many other quantities, φo is also related with the energy width (qφo) and “rectangularity” of DOS, 

the latter defined, for example, as 
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.   (74) 

The values of DOS “rectangularity” are RECDOS={36.8%, 39.3%, 48.4%, 50% and 100%} for DOSSE, 

DOSDE, DOSND, triangular DOS and uniform DOS, respectively. A complementary definition is the DOS 

peaking, e.g., PEAKINGDOS=(1/RECDOS)−1. 

We proceed now to the comparison of the monitored quantities described above. Since the data is 

large, we shall present the comparisons only for one device and one case of VRH numerical calculations.  

To preserve relation to the preceding figures, we choose the pentacene OTFT, the experimental data of 

which were reported in [73], and the simulation case is after fitting the experimental data for mobility by 

assumption for normally distributed DOS and by multiple ∫∫dEdE integrations in the VRH numerical 

calculations, as shown earlier in the bottom-left plot of Figure 20. The actual reason for the particular choice 

is that the results are representative to what we have observed in comparisons for other devices and methods 

of integrations, and the differences between numerical and analytical calculations were the largest for 

normally-distributed DOS, as mentioned in the introduction paragraph of Sec. 4.4 above. 

 



76 

4.4.2. Comparison of energies 

The first comparison of the monitored quantities is illustrated in Figure 26 for the bending qVB, DOS and 

hopping energy at the various conditions for extraction of the values for the potential bending VB. The 

conditions for value extractions of VB and the corresponding notations in Figure 26 (a) and (b) are: solid 

lines (   ) for the semiconductor-gate dielectric interface (depth D=0, VB(0)≡VBS); circles (, filled in red 

color) for the average bending avgVB – see eq. (70); diamonds (�, filled in green color) for the bending at 

depth D95%σsq in the semiconducting film corresponding to sheet conductance 95% of σsq – see eq. (69); and 

the squares (�, filled in yellow color) are for the bending at depth D=LA, where LA=LA,an is obtained after 

fitting the charge profile NC(D) from numerical calculations with NC(D)∝(D+LA,an)−2, see eq. (49) and the 

bottom of the left-hand plots in Figure 24.  

Three observations can be made in Figure 26 (a) for a given gate bias VG=−20V. The first observation 

is that the bending is high at low temperature, and it is about 0.2eV below the DOS centroid Eo [61, 62], but 

the bending decreases at high temperature. The second observation is that always VBS>avgVB>VB(95%σsq), 

having the opposite temperature sensitivity ∂VBS/∂T<∂avgVB/∂T<∂VB(95%σsq)/∂T. The bending VB(LA) at 

the electrostatic depth LA is the lowest at low temperature, but VB(LA)>avgVB at high temperature, since the 

temperature sensitivity ∂VB(LA)/∂T~∂VBS/∂T is low, as expected for electrostatic quantities that are 

independent of hopping in principle. From eq. (49), the electrostatic depth LA corresponds to ½QG of the 

gate charge QG≈COXVG, see before eq. (69). The third observation in Figure 26 (a) is that the scatter in 

values between VB at different conditions for value extraction is minimal at low temperature and the scatter 

increases at high temperature, owing to different ∂VB/∂T. The trend of decreasing bending and increasing 

scatter of values by increasing the temperature is illustrated with small dashes surrounded with dotted 

ellipses in Figure 26 (c), aggregating the data for bending for all cases of biasing and conditions for 

extraction.  

Nevertheless, although varying with temperature, the slopes in Figure 26 (b) indicate that VB at 

different conditions for value extraction have the same logarithmic bias dependence at a given temperature, 
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with a slope ∂VB/∂[log(VG)] increasing at higher temperature. The trend in the evolution of the bending and 

hopping energy as function of temperature is shown in Figure 26 (c), and compared to DOS, the latter 

depicted with solid parabolic curve (blue color), having centroid level Eo (dashed horizontal line). The blank 

bars illustrate the decrease of the bending. The solid straight line (green color) is the hopping energy EHFB 

for the bulk semiconductor, and EHFB increases with temperature. From eq. (59), the difference between 

EHFB and bending is the hopping energy EH=(EHFB−qVB) (shown with shaded gray color bars in the figure), 

which also increases with the temperature. The interesting observation is that the bias-independent quantity 

EHFB=(EH+qVB) reaches levels deep in DOS. Therefore, VRH scans the DOS almost entirely, at least half of 

DOS even at low temperatures, which questions the assumption in the analytical derivations [21, 22] that the 

hopping is in the DOS tail, where the bending is. Comparing qVB and EH, blank and shaded bars in Figure 

26 (c), one sees that the proportion is in favor of bending at low temperatures (thus, electrostatics in DOS 

tail), but the proportion becomes reciprocal at high temperature, with dominating hopping around the 

centroid level Eo of the DOS. At intermediate temperatures, normally around room temperature for OTFTs, 

the bending and hopping have similar contributions to EHFB. The consequence of the variation of the 

proportion between bending and hopping is that the steepness of DOS tail is important at low temperatures, 

whereas the DOS itself is important at high temperature, as noted in [6]. Therefore, analytical expressions 

for VRH derived from the condition for low temperature, require corrections for intermediate and high 

temperature. For example, the analytical expression for mobility derived in [22] contains a term sinc(πT/To), 

where sinc(x)=sin(x)/x, x=πT/To and kTo≡qφo is the energy width of exponential DOS, but this term causes 

problem at T→To, since sinc(2π≥x≥π)≤0 causes an unrealistic drop to zero and negative mobility, and the 

term should be replaced with other function, e.g. with (To/T−1)/{1−exp[(1−To/T)(Eo−EF)/(kTo)]} suggested 

in [6] for the temperature “shaping” function (TSF²), or an effective value TOEF for the parameter To should 

be assumed to be an increasing function of temperature T, as suggested in the appendix of [11] and 

discussed later by eq. (79). Analytical approximations related to the problem at T→To are also given in [2] 

for amorphous silicon TFTs. 
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4.4.3. Comparison of distances 

The second comparison of the monitored quantities is illustrated in Figure 27 for the set of three 

characteristic electrostatic distances D‴={LA, D95%σsq, DavgVB} and hopping distances RH at various 

conditions for extraction of the values for D‴ and RH. (The conditions and biasing are the same as in Figure 

26.) The aggregated data in the top-left plot of Figure 27 indicate large scattering of values for the set of 

electrostatic distances D‴ (�, black color), variations over 1.5 decades with bias and extraction conditions 

at a given temperature, and with a power-law trend of decreasing D at lower temperatures T (higher 1000/T) 

of slope steeper than T1.3. In contrast, the hopping distances RH (, red color) vary little, less than a factor 

of 2 with the bias and extraction conditions at a given temperature, between 1nm and 3nm for all 

temperatures, and with a power-law trend of increasing RH at lower temperatures T (higher 1000/T) of 

gradual slope of (1/T)0.3. Interestingly, the product D‴×RH = {LA×RH, D95%σsq×RH, DavgVB×RH} (−, blue-

color dashes in the top left figure) has a power law trend with slope (T)¹, therefore, the trend is that D‴×RH 

is proportional to the absolute temperature T, being a counter part of (EH+qVB)=constant, although D‴×RH 

is strongly varying with gate bias.  

To get more insights in the details for the temperature dependences of the characteristic depths D‴ and 

RH, consider the bottom-left plot in Figure 27 at given gate bias voltage VG=−20V. The small symbols 

connected with dashed lines are for RH, by triangles (�) for the semiconductor-gate dielectric interface 

(depth D=0), circles () at condition for average bending avgVB – see eq. (70), diamonds (�) at depth 

D95%σsq  corresponding to sheet conductance 95% of σsq – see eq. (69), and squares (�) are for depth LA, 

where LA=LA,an is obtained after fitting the charge profile NC(D) from numerical calculations with 

NC(D)∝(D+LA,an)−2, see eq. (49), and LA corresponds to ½QG of the gate charge QG≈COXVG, see before eq. 

(69). Since VB(D=0)=VBS is the largest, then RH(D=0) is the smallest, and the triangles are always below 

other symbols for RH. Consequently, a larger depth corresponds to a larger RH, and the vertical order of 

small symbols for RH follows the vertical order of the large symbols for characteristic depths at every given 
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temperature, but at different proportion of magnitude, and in narrow range of 1.2−2nm for RH. Looking 

closer at the dashed lines for RH as function of the reciprocal of the temperature, one observes that RH 

increases at low temperature, but the dependence is weak and not exactly a power-law function. In contrast 

(looking at the large symbols connected with solid lines), the temperature dependences for D95%σsq (�) and 

D(avgVB) () are well-pronounced power-law functions of high steepness,  >T² and >T1.5, whereas the 

purely electrostatic depth LA (�) is constant at low temperature, but increases at high temperature. Thus, 

D‴×RH∝T is just a trend, but not a relation. Note again in the upper-left plot that the set D‴ is a collection of 

characteristic distances with large dispersion.  

The bias dependences of the characteristic distances D‴ and RH are given in the middle and right-hand 

columns of plots in Figure 27 at low and high temperatures, T=100K and T=500K on top and bottom plots, 

respectively. In the middle column, one observes linear dependences between D‴ and (1/VG), which 

confirms the reciprocal dependence D‴∝1/VG between electrostatic distances and bias voltages, e.g. for LA 

in eq. (47). Note that LA is the largest in the triad {LA, D95%σsq, DavgVB} at low temperature, but is the 

smallest at high temperature, which implies that LA is not a definite measure for the effective channel depth 

regarding conductance and mobility in OTFT, although LA is representative for the induced charge QG. 

Nevertheless, in the right-hand column of plots, one clearly observes the logarithmic bias dependence 

RH∝(constant)−log(VG), which is expected, considering the following simplified derivations valid for low 

temperature and exponential DOS approximation. 

After taking natural logarithm of eq. (157) in Appendix 2, followed by multiplication by the 

characteristic “thermal-like” voltage φo≡kTo/q of the exponential DOS approximation, one gets the bending 

voltage VBS at the gate dielectric-semiconductor interface, as 
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 = + ϕ

ε ϕ 
 

, with φA≡kTA/q and TA≈To.   (75) 

Substituting in eq. (48), the bending at depth D in the film becomes 
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 , with φB≡kTB/q and TB≈To.  (76) 

From eq. (47), 1/LA=COXVG/(2εfφA), and substituting in the last eq. (76) above one can exclude LA from the 

expression, but looking closer at middle column of the plots in Figure 27, one observes that the 

characteristic depths stay in proportions (each to other), since they are linear functions of 1/VG at any 

temperature. Thus, the proportions are bias independent, although changing with temperature, and the 

proportions in ratio to LA are in narrow interval of values. Let us denote the proportions with 

P=PAVB=DavgVB/LA, P=Pσ=D95%σsq/LA and P=PLA=LA/LA≡1. Then, from the slope coefficients in the linear 

approximations in the plots, PAVB~0.25−1.3 and Pσ~0.8−7, resulting in negligible magnitudes of 

2φBln(1+P)<2×50mV×(0.2−2)=0.02−0.2V in eq. (76), as compared to the first term |Eo−EF|/q=0.9V. Thus, 

2φBln(1+P) is omitted below, since it is also bias independent. So, at given temperature T, and at any depth 

D and bias VG, the sum of hopping energy EH and bending qVB is the hopping energy EHFB in bulk 

semiconductor, as given by eq. (59), which is rewritten for EH(D)=[EHFB−qVB(D)]. Substituting the last eq. 

(76) above in this relation, omitting 2φBln(1+D/LA) and taking φA≈φB≈φo, the hopping energy EH(D) as 

function of bias and depth becomes 
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 .   (77) 

Note that the bias dependence is due to the last term under the logarithm. Subsequent substitution in the 

principal eq. (2) between hopping energy and distance yields  
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    (78) 

Therefore, RH is expected to be a linear function of the logarithm of 1/VG, with the slope coefficient 

Λoφo/φT∝1/T lower at high temperature, and the slope coefficient independent of the depth to the first order 
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of approximation, when D/LA<10, which covers almost all realistic cases for characteristic depths with 

plausible significance for OTFT. These features are clearly observed in the right-hand plots of Figure 27. 

One detail in these plots is that the slope coefficients are in ratio 3:1 for temperatures in ratio 1:5. Thus, φo 

appears to be temperature dependent, as discussed in the next subsection. 

 

4.4.4. Increase of To at high T? 

The third comparison of the monitored quantities is illustrated in Figure 28 for characteristic “thermal-like” 

voltages, which participate in analytical expressions or define the energy width and slope of the assumed 

DOS: φA in (47), φB in (48), φC in (49) and φDOSND in (73). The device and the temperature and biasing 

conditions are identical with the preceding two figures, including the assumption for normally distributed 

DOSND, to which the left-hand plots in Figure 28 correspond. Since the values scatter in these plots, and also 

to inspect closer the trends, we have added in the right-hand plots of Figure 28 the same type of information 

and for the same device, but after inspecting the data from numerical calculations with the different 

assumption for single-sided exponential DOSSE. The values denoted with symbols in Figure 28 are extracted 

from the profiles and quantities obtained after the numerical simulation, by fitting the different analytical 

expressions to the different profiles with a freedom of independent variation of the values of the different 

characteristic voltages. Therefore, the values of the characteristic voltages correspond to analytical 

approximations and have the additional subscript “an” in the notations, as mentioned earlier. The procedure 

of evaluation of these characteristic voltages is now explicitly given.  

Eq. (47) is rewritten for φA,an=LA,anQG/2εf, where the value of gate dielectric charge QG is taken from 

the numerical calculations according to eq. (31), but not from the approximate QG≈COXVG, the value of 

LA,an is determined by fitting of the charge profile NC(D) in the film, from the peak of D×NC(D), as 

explained earlier in relation to the left-hand plots of Figure 24, and the value for permittivity of the organic 

material is taken εf=3εo≈2.66×10−13 F/cm, as set by the numerical simulations.  The values for φA,an are 

shown with squares (�) in Figure 28. Also as explained earlier in relation to the plots in the middle column 
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of Figure 24, the bending profiles VB(D) from numerical simulation have been fitted by independently 

varying the value of φB,an in the analytical expression VB,an(D)=VBS,an−2φB,an×ln(1+D/LA,an) of eq. (48), and 

the values for φB,an are shown with diamonds (�) in Figure 28. Next, eq. (49)  is rewritten as 

φC,an=(qLA,an)²NC(D=0)/2εf  for the carrier concentration NC(D=0) at the gate dielectric-semiconductor 

interface (D=0), and using the values for NC(D=0) directly as obtained by the numerical simulator, the 

corresponding values for φC,an are calculated and shown with triangles (�) in Figure 28.  

The values shown with circles () in Figure 28 are for φDOS, the reciprocal logarithmic slope of DOS. 

For the normally distributed DOSND in the left-hand plots, the values for φDOS are calculated by eq. (73) at 

the condition for average bending (IMREF=EF+q×avgVB), where avgVB is determined by eq. (70) from 

averaging of the bending profile with the conductance profile. Since the bending decreases at higher 

temperatures and increases at higher bias (see Figure 26 (a) and (b)), then φDOS for the normally distributed 

DOSND decreases with temperature and increases with bias in the left-hand plots of Figure 28. In contrast, 

since φDOS=kTo/q=φo,EXP is a constant for exponential DOSSE, see eq. (72), then the circles for φDOS overlap 

the lines for φo,EXP in the right-hand plots of Figure 28. 

The other observations, which can be made in Figure 28 for the characteristic “thermal-like” voltages, 

are the following. Although being in the same order of magnitude, the values of the characteristic voltages 

scatter by assumption for normally distributed DOSND, while the values coincide either with φo or φT by 

assumption for exponential DOS. Therefore, the analytical expressions are only approximations by non-

exponential types of DOS, and the observed similarity in [61, 62] for equal slopes at different types of DOS 

is not precise, although the slopes look similar when plotting in graphs (c.f. Figure 24 earlier). The values in 

the group φABC={φA,an, φB,an, φC,an} of characteristic voltages for profiles vary with temperature, but the 

values are nearly independent of bias. The trend in the variation of φABC=φA,an, φB,an or φC,an with the 

temperature is that at low temperature, φABC tends to a constant value φcold=φABC(T=0), whereas at high 

temperature φABC≈φT tends to follow the increasingly larger thermal voltage φT≡kT/q. This behavior leads 
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to expressions for “dominance of the larger”. For example, one suitable for φABC form for “dominance of 

the larger” is 

( ) ( ) ( ) ( ) ( )
( )

n
n n nn cold T cold

ABC cold T OEF n
T T cold

 for   

 for  

 ϕ ϕ < ϕϕ = ϕ + ϕ ≈ ϕ ≈ 
ϕ ϕ > ϕ

,   (79) 

in which the numerical parameter (n) in the exponents controls the “sharpness” of the transition between 

φcold and φT around the point φcold=φT, at which φABC=φcold×(ⁿ√2). The resulting effective voltage is denoted 

with φOEF. The larger is n, the sharper is the transition and with smaller deviation from φcold at the transition 

point, since (ⁿ√2)→1 when n>>1. The limiting case of n=∞ was written for temperatures as TOEF=max(To, 

T), and used as a rule by derivations of conductance and current of amorphous-silicon TFTs [80, 81]. For 

OTFT, however, neither experimental data nor theoretical elaboration is available at present for variations 

of the characteristic temperature To with the ambient temperature T, while such variations are deduced in 

[11] by numerical simulations of trapped charge in TFTs with exponential DOS. The results from [11] will 

be addressed immediately after observing rule for the “dominance of the larger” in the results from our 

simulations in Figure 28. 

The dashed lines shown in Figure 28 are calculated from eq. (79) with n=5 and φcold≈¼φo,ND for the 

normally distributed DOSND in the left-hand plots, and with n=10 and φcold=φo,EXP for the exponential 

DOSSE in the right-hand plots, which indicates sharper temperature transitions by assumption for 

exponential DOSSE and sustainable definition of φcold for this DOSSE. The values for φcold are slightly lower 

for the normally-distributed DOSND, since, compared to exponential DOSSE,  φo,ND is about 2.5-3 times 

larger for DOSND, see again the plot for To=φoq/k in Figure 22.  

The solid black lines Figure 29 show data from [11] for several characteristic temperatures To of the 

DOS width and various ambient temperatures T. In the main plot TOEF/To vs. To/T, the data have been 

obtained after deconvolution of the integral ∫dx/(1+xª), followed by fitting with exponential DOS of 

temperature-varying effective concentration of states NSEF and effective characteristic temperature TOEF. We 

show in the figure the sub-set of data for values of To={250K, 350K, 425K and 500K}, which cover 
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practically all cases for OTFT. The inset in this figure shows the same data, recalculated as “thermal-like” 

voltages φOEF≡kTOEF/q and φo≡kTo/q, and vs. the thermal voltage φT≡kT/q. In both plots, the symbols 

denote values, which are calculated by eq. (79) with φcold=φo and n=10, as deduced for exponential DOSSE 

just above. Noticeably, in both plots of Figure 29, the symbols are fitting the lines well for the order of 

magnitude and in the behavior, confirming the correctness of the “dominance of the larger” rule in eq. (79). 

However, the lines with data from the numerical calculations in [11] for different To are different in the 

main plot, whereas the symbols with data from the analytical expression above are aligned on the same 

curve for all values of To, which indicates that the rule is not precise in the simple form of eq. (79), and also, 

the value n=10 we have obtained empirically. Therefore, we have refined the analytical expression, in order 

to be valid also for higher values of To, for which the discrepancy between eq. (79) and the numerical 

simulations is more evident. After researching several possible variants, we arrived to the following 

modified expression, which is rewritten for characteristic temperatures as 
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     (80) 

The modification is basically in the term [1+(To/TG)ⁿ/²]² and also provides a rule for calculation of (n) from 

a characteristic temperature TG, which we observe to be corresponding to a fraction of the energy band gap 

of the organic semiconductor. The modified expression for the “dominance of the larger” rule fits very well 

the data from numerical simulations, as illustrated in Figure 30, with standard deviation error 5.7K or 

0.71%, and maximum error 17K or 2.08% over the whole set of values for To={250K, 350K, 425K, 500K, 

600K, 800K and 1000K} and temperatures up to T≤1173K=900°C. These errors are comparable with the 

errors of digitizing the plot of Fig. 6 in [11], from where the data of the numerical calculation are adopted. 
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Since the modified expression is valid well beyond the realistic operation conditions for OTFT, it might be 

helpful as a guideline for the expected format of analytical solutions of the integral ∫dx/(1+xª), which are 

unknown at present. Another format for approximate solution of this integral is given in [2]. 

 

4.4.5. Charge concentrations and different DOS types from electrostatics and for VRH 

The fourth comparison of the monitored quantities is illustrated in Figure 31, in which with characteristic 

values for the DOS and carrier concentration NC (precisely, concentration of occupied charge states and 

carriers in VRH) are evaluated at the characteristic distances D=0, LA, D95%σsq and DavgVB from the gate 

dielectric into the semiconducting film. This fourth comparison is an attempt to verify deductions made in 

[61, 62] that the magnitudes of DOS and charge are similar at different assumptions for the type of DOS, 

considering these also for VRH.  

The device, the temperature and the biasing conditions in Figure 31 are identical with those in the 

figures of the preceding three comparisons. The solid lines in Figure 31 are at assumption for normally 

distributed DOSND. The dashed lines in Figure 31 are for single-sided exponential DOSSE. The styles of 

notation symbols are as in Figure 28. For the purely electrostatic quantities: DOS(D=0) and NC(D=0), 

corresponding to the semiconductor-gate dielectric interface (depth D=0), are denoted with triangles (�); 

and the squares (�) are for DOS(LA) and NC(LA) at depth equal to the electrostatic length LA, where LA 

corresponds to ½QG of the gate charge QG≈COXVG - see before eq. (69). As expected form eq. (49), 

NC(LA)/NC(0)≈DOS(LA)/DOS(0)≈¼ in all plots of Figure 31, irrespectively of temperature and biasing 

conditions. Furthermore, looking at the upper-right plot of Figure 31, NC(D=0) and NC(LA) are weakly 

affected by the temperature at the given gate bias voltage VG=−20V, which is expected, since the 

substitution of the expression for LA from eq. (47) into eq. (49) for NC , with φOEF instead of φo, φA or φC, 

yields 

( )
( )

2 2
C G ox
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,    (81) 
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where the term in the square brackets is bias and temperature independent. The bias dependence is due to 

the gate voltage VG, and a temperature dependence can arise from the temperature variations of φOEF 

discussed just above. At temperatures T>To/2~200K for this OTFT, φOEF begins increasing, according to eq. 

(79), and therefore, NC(D=0) and NC(LA) begin decreasing, e.g., at T=500K down to about 80% of the low-

temperature values, since To/T=400K/500K=80%. The other expected consequence from eq. (81) is the 

quadratic dependence of NC on the gate bias voltage VG. The quadratic dependence is clearly observed by 

the almost identical slopes in the bottom-right plot of Figure 31 for NC at all characteristic conditions, D=0, 

LA, avgVB and 95% of σsq, and at any given temperature. The trend in the data in this plot is with slope 

∂ln(NC)/∂ln(VG)=2.04(±0.102 standard deviation), which is 2% average deviation and 5% standard 

deviation from the quadratic dependence. For comparison, the charge unbalance between the gate dielectric 

capacitor charge and the charge in the semiconducting film is in the range of 5% by the numerical 

simulation, as mentioned after eq. (38), and it will be addressed again in Sec. 5.1 with the help of Figure 34 

in relation to computational volume. The other observations in Figure 31 are the following.  

The values of DOS are different at different characteristic conditions. In the upper-left corner of the 

upper left plot of Figure 31, the values of DOS are in the range 1020−1021 cm−3eV−1, being similar for 

different conditions and assumptions for DOS type. However, significant differences emerge increasing the 

temperature, as seen in the right-hand side of this plot, where the values spread over many decades from 

1016−1020 cm−3eV−1. The overall trend in this plot is that the values of DOS decrease with temperature for 

each of the characteristic conditions, and the steepness of the decrease of DOS(D=0) and DOS(LA) for the 

purely electrostatic conditions (D=0) and LA are similar and smaller than the steepness of DOS(avgVB) and 

DOS(95%σsq), the latter being with the steepest temperature dependence. Therefore, the values for DOS 

from electrostatic calculations are approximately representative for values of DOS for VRH only at low 

temperature, but these values are different and should be not mixed each with other at high temperature. 

Emphasizing, only qualitatively, the type of DOS does not affect dramatically the magnitude of DOS at 

given characteristic condition, because the solid and dashed lines for given symbol (�, , �, or �) 
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indicate similar behaviors and ranges, both by changing the temperature T in the upper-left plot of Figure 31 

and gate bias voltage VG in the bottom-left plot of Figure 31. Thus, the approximations with exponential 

DOS deduced in [61, 62] are reasonable for low temperature. However, the approximations are inaccurate 

for high temperature, because the temperature dependences of the values of DOS at given characteristic 

condition by normally distributed DOSND are weaker, whereas the bias dependences are stronger, when 

comparing to exponential DOSSE, as seen by the pairs of solid and dashed lines for each symbol (�, , �, 

or �) in the upper-left and bottom-left plots of Figure 31, respectively.  

The different temperature behaviors of characteristic values at electrostatic and VRH conditions are 

clearly evident for the characteristic values of the carrier concentration NC in the upper-right plot of Figure 

31. As for other electrostatic quantities addressed above, the electrostatic NC(D=0) and NC(LA) are weakly 

affected by the temperature, resulting in (�) and (�) aligned around almost horizontal lines in the upper 

half of this plot. In contrast, the characteristic values NC(avgVB) and NC(95%σsq) for VRH replicate the 

exp[−|avgVB−VBS|/φOEF] and exp[−|VB(D95%σsq)−VBS|/φOEF] dependences, where VBS=VB(D=0) is the 

bending at the gate dielectric-semiconductor interface, with always |VBS|>|avgVB|>|VB(D95%σsq)|, and 

increasing in magnitude differences 0<|avgVB−VBS|<|VB(D95%σsq)−VBS| at higher temperature. The bending 

voltage VB was shown in Figure 26a. Therefore, at given bias, e.g. VG=−20V, the representative for VRH 

carrier concentrations NC(avgVB) and NC(95%σsq) decrease with temperature significantly stronger, 

∝[φOEF×exp(ΔVB/φOEF)]−1, than the representative for electrostatics NC(D=0) and NC(LA), only ∝[φOEF]−1, 

as one can see in the upper-right plot of Figure 31. In the bottom-right plot of this figure, all characteristic 

values for NC are proportional to the square of the gate bias VG, as discussed just above by eq. (81). Again, 

and similarly to DOS characteristic values, the electrostatic NC(D=0) and NC(LA) can be taken as 

representative also for VRH at low temperature, since the VRH representative values NC(avgVB) and 

NC(95%σsq) are between the electrostatic NC(D=0) and NC(LA) at T=100K. However, this assumption 

becomes gradually incorrect by increasing the temperature, because first NC(95%σsq) and then NC(avgVB) 

leave the interval NC(D=0)−NC(LA), as seen in the upper-right plot of Figure 31. At high temperature 
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T=500K,  both NC(avgVB) and NC(95%σsq) are smaller than NC(LA), with NC(95%σsq) being more than a 

decade below NC(LA) at any bias, as seen in the bottom-right plot of Figure 31.  

To summarize briefly the observations in Figure 31, the values for DOS and carrier concentrations NC 

evaluated at characteristic electrostatic distances is possible to be assumed valid also for VRH at low 

temperatures, but this assumption will be incorrect at high temperatures and for temperature dependences. 

The quadratic bias dependence NC≈m×(VG)² is valid for both electrostatic and VRH conditions by 

determination of the values for NC. This relation NC≈m×(VG)² is independent of DOS type and temperature 

up to a multiplicative factor m. The factor m is temperature and DOS dependent, but m is nearly bias-

independent. Thus, the relation between electrostatics and VRH is not through linear scaling 

(multiplication) of charge concentrations, but by a power-law function, as shown later by eq. (83). The 

linear relation between electrostatics and VRH is through the linear correlation between VRH energy EH 

and potential bending VB, as discussed in preceding sections, e.g., in Sec. 4.2.  

 

4.5. Film thickness and mobility in OTFT 

An interesting outcome from the numerical VRH simulations is that the mobility μ in OTFTs increases with 

very thin semiconducting films. The film thickness dependence of the mobility was observed 

experimentally many times, and was discussed in [82], where a power-law trend was deduced as 

S
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f ox

~
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µ εµ µ  
 

       (82) 

Here, μz≈105cm²/Vs (±50%), εz≈5×10−16 F/cm (±30%), and the slope Sμ is a material-dependent parameter 

with values of 1.6±0.2 for pentacene and 2.6±0.4 for solution-processed polymers, such as PQT-12 and 

P3HT. The trend implies that the OTFT with thinner film exhibits higher effective mobility, which is 

counterintuitive and in contrast to the analytical formula of eq. (151) in Appendix 2. Therefore, one usually 

attributes the film thickness dependence of the effective mobility to contact effects, since it is shown, e.g., 

by the injection-drift limited model in [27], that the injection limit can strongly interfere with the transfer 
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characteristics ID−VG of the OTFT, effectively reducing the current ID and equivalently observing values of 

mobility, which are a decade below the mobility in the organic film itself. Recent investigations attribute the 

thicker film with higher values of the contact resistance, which causes a degenerating current feedback at 

the source terminal of the OTFT, reducing the transconductance gm=∂ID/∂VG. Consequently, a lower value 

for gm implies a lower value of the mobility, since gm∝μ is a widely used relation in the experimental 

characterization of mobility, e.g., eq. (52) for the linear regime of operation of the OTFT. We shall not 

address here the contact effects in OTFT, because this topic is broad and under intensive research at present, 

since contact effects are very prominent in OTFT. Instead, we are interested in whether VRH itself causes a 

thickness dependence of the effective mobility in OTFT. Certainly, the numerical simulator in this work 

does not consider contacts with the drain or the source terminals, but only the stack of the gate-insulator-

semiconductor at the idealized condition of free space at the back of the film. This idealized condition 

provides the opportunity to observe the mobility solely in the film, which is experimentally not feasible. 

Again, the numerical VRH simulations show that the mobility μ increases in OTFT of very thin 

semiconducting film, as illustrated in Figure 32. 

The data in Figure 32 are after numerical VRH simulations of virtual devices of different film 

thicknesses tf over a wide range from tf=2nm to tf=500nm. To preserve a link to real devices, we have used 

the double-exponential DOSDE given by eq. (45) and the corresponding parameter values from Table IV, 

which we have proven to represent real OTFTs of single film thickness by the good fit in Figure 17 (b) and 

(c) between numerical simulation and the experimental data for mobility reported in [22] and [60]. 

Depending on the method of integration, we switch between the values of the parameters corresponding to 

VRH calculation with single ∫dE and multiple ∫∫dEdE integrations, but not changing the type of DOSDE. The 

only device parameter, which we vary in the virtual OTFTs, is the film thickness tf. To ensure further 

consistency with Figure 17, we have used the same biasing and temperature conditions and the same 

settings of the numerical simulator, e.g. energy integration step dE=2meV, the latter only changed to 1meV 

and 5meV, in order to observe variations that are caused by numerical integration. Furthermore, we have 
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inspected the profiles for unforeseen discrepancies, which have not been observed. For example, at given 

temperature T and bias voltage VG, the charge profiles NC(D) have overlapped for the virtual OTFTs with 

different tf, and from the peak of the products D×NC(D), as explained earlier in relation to the left-hand plots 

of Figure 24, we have determined identical values for the electrostatic length LA, irrespective of the values 

of tf. The values of LA are shown in the horizontal axis by the symbols connected with dashed lines in 

Figure 32(a) vs. μ (in the vertical axis) of the virtual pentacene device with tf=50nm, and the many symbols 

overlap at a given temperature T and bias voltage VG. The black and gray color solid lines in this plot show 

the values of the mobility, obtained from μ=σsq/QG, as explained by eq. (42), after using the two methods of 

VRH calculation with single ∫dE and multiple ∫∫dEdE integrations for the determination of the sheet 

conductance σsq. Evidently, both calculation methods also give almost overlapping values for mobility. 

Noticeably, the mobility increases for very thin films, tf<10nm at T=100K and tf<20nm at T=300K, but this 

increase cannot be related to the electrostatic length LA, which has significantly lower values between 

0.56nm and 2.4nm, and almost no temperature variation in this temperature interval, see again the squares 

for 1000/T>3 [1000/K] in the bottom-left plot of Figure 27.  

Suspecting that the observed film-thickness dependence of the mobility can be an accidental artifact of 

parameter values, we have repeated the simulations for the PQT-12 OTFT, which has very different values 

for NS, To, Λo, Γo and COX (compare the parameter values in Table IV) and also different biasing conditions. 

The simulation results for the mobility in the virtual PQT-12 OTFTs of different film thicknesses are shown 

in Figure 32(b), where we observe very similar behavior as for the pentacene virtual OTFTs in Figure 32(a). 

The overlap of the results is good by the two methods of VRH calculations. Just the increase of μ is 

relatively more pronounced in the PQT-12 OTFT, when decreasing tf in the same intervals. This is 

consistent with the higher value of the slope Sμ for solution-processed polymer semiconductors in eq. (82).  

Another doubt for accidental outcome from numerical simulation could be the size of the integration 

step. Therefore, we have rerun the simulations for the PQT-12 virtual devices at finer and coarser energy 

integrations steps dE=1meV and 5meV, respectively, and have kept the device parameters and simulator 
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settings identical to those in Figure 32(b). The effect of the variation of the energy integration step size is 

illustrated in Figure 32(c). The thin black lines in Figure 32(c) are the same as the black lines in Figure 

32(b), corresponding to multiple ∫∫dEdE integrations with dE=2meV. The gray-color solid lines in Figure 

32(c) show that the coarse integration step of dE=5meV suppresses the increase of the mobility, whereas the 

dashed lines show that the fine integration step of dE=1meV enhances the increase of the mobility. Looking 

closer at the dashed lines for room temperature T=300K, one observes an interesting non-monotonic 

behavior. Decreasing the film thickness of OTFT below 30nm, the mobility increases, as reported in [83, 84, 

85], for example. However, thinning the film below few nm, e.g. below 10-15nm, the mobility begins 

dropping, which was also reported in [84, 85, 86, 87] and attributed to a degradation of the film uniformity in 

few mono-layer films (or weak contact of the thin film to the metal of the source terminal in a bottom-

contact configuration of OTFT). However, this drop can be also explained by the analytical formula of eq. 

(151) in Appendix 2, adjusting the values of some parameters in it. In any case, owing to fabrication 

convenience, most of the actual OTFTs have 30-50nm thick films, range in which the mobility results are 

independent on the integration step. 

While the variations of the magnitudes with the integration step indicate issues with the accuracy of 

the numerical calculations, these calculations clearly indicate that VRH also predicts mobility enhancement 

in OTFTs of very thin films. Note that we have not made additional adjustments in the simulator, such as 

two-dimensional VRH or quantum effects, space quantization with inter-layer and atomic distances, etc. 

Therefore, we conclude that the numerical VRH simulator captures the thickness dependence of the 

mobility, which is a useful feature of the simulator from the practical perspective. We believe that the 

prediction of the numerical calculation for the increase of the mobility in very thin film OTFTs is 

qualitatively correct, since the calculations are based on principles, and not on formulas. In addition, the 

data from simulations coincide well with the trend of eq. (82) for the film-thickness dependence of mobility, 

as seen in Figure 33 with an example for the virtual PQT-12 OTFTs of different film thicknesses (filled 

circles �, blue color) at room temperature T=300K, when compared with the experimental data collected in 
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[88] for PQT-12 OTFTs of film thicknesses tf=35-40nm, the open triangle (�) and diamond (�), reported 

in [60, 77], respectively. In the next section, we will address the film-thickness dependence of the mobility 

by eq. (98) and Figure 35, showing that the results from the numerical simulations are expected. 

 

5. Outlook for feasibility of numerical VRH simulations 

In the previous two sections, we have presented a numerical simulator based on the VRH principles. The 

results from this simulator are consistent with both theoretical and experimental findings for OTFTs. It is, 

therefore, reasonable to outline the feasibility of the numerical VRH simulations, since many other models, 

mostly analytical, are proposed in the literature, and the analytical models are found to be suitable for 

device characterizations and circuit simulations. Thus, correspondence to existing and missing analytical 

models will be addressed. We will mostly deal with possible approaches for acceleration of the VRH 

numerical simulations, along with several other issues, e.g., dispersion of time constants, charge build-up, 

and noise. So, we begin with one of the problems of the numerical VRH calculations: the computational 

volume and the associated large amount of computational resources and simulation time, which place 

barriers in using the VRH numerical calculations in circuit simulators. 

 

5.1. Computational volume and uncertainty management in VRH numerical simulations 

The main advantage of the numerical VRH simulations presented here is that they are based on principles 

and material properties, but not on approximate analytical formulas, the latter valid with additional 

assumptions. However, as discussed in the previous sections, there are problems for the VRH numerical 

calculations. One of these problems is the computational volume demanded by the VRH numerical 

simulations, which is large, as summarized in Table VI and explained in Appendix 1. Reviewing these, the 

computational volume of the VRH numerical simulations for one temperature-bias point (T-VG) scale as 

m×n×(800FLOPs)~50×2000×(800FLOPs)~0.1GFLOPs for the method of single ∫dE integration and  

m×n²×(750FLOPs)~50×(2000)²×(750FLOPs)~150GFLOPs for multiple ∫∫dEdE integrations, where m~50 is 
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the number of points in the depth of the organic film and n~2000 is the number of steps in the energy mesh. 

To minimize the computation volume, a dedicated procedure for reduction of the number of points in the 

spatial mesh was undertaken (Sec. 2.5.2) to keep m~50 during the VRH calculations, since m is large 

(m~2000) during the electrostatic calculations. In order to support various types of DOS, no reduction of the 

energy mesh is undertaken, and the energy mesh size is n=(Etop−Ebottom)/dE~2eV/1meV≈2000 for the 

method of single ∫dE integration, while the energy mesh size is n×n in the 2D calculations for the multiple 

∫∫dEdE integrations. Consequently, a refinement of the step dE<0.5meV in the VRH calculations with the 

method of multiple ∫∫dEdE integrations results in a very large computational volume in the range of 

TFLOPs. 

Figure 34 summarizes the computational requirements above for the one-dimensional VRH numerical 

calculation at one bias-temperature point (VG−T). In the upper half of the figure, the circles (�) are for 

VRH calculation with multiple ∫∫dEdE integrations and the diamonds () are for VRH calculation with 

single ∫dE integration, and they are fitted with quadratic and linear trend lines, respectively, showing the 

computational time when using parallel computing of 18 or more (VG−T) points, and from left to right, for 

three values of the energy integration step dE=5meV, 2meV and 1meV. The width of energy mesh was 

always |Etop−Ebottom|=1.9eV, having n=|Etop−Ebottom|/dE=380, 950 and 1900 points, respectively at the 

different dE. From the trend lines, one observes that there was about 100 seconds overhead in the 

computations. The VRH calculation with single ∫dE integration scales linearly with the energy mesh size, 

requiring only about 3.5s for n=1000 energy mesh points. However, the VRH calculation with multiple 

∫∫dEdE integrations is much more demanding. It takes about 5 minutes for n=1000 energy mesh points, and 

it scales with the square of n, as 5min×(n/1000)², which is in the range of 20-30 minutes, when the fine 

energy integration step of dE=1mV was chosen. Further refinement of dE=0.5meV would require 2 hours or 

more to calculate one bias-temperature point (VG−T) by multiple ∫∫dEdE integrations, which is impractical. 

Aligning the expression for computational volume of the VRH calculation with multiple ∫∫dEdE 

integrations, denoted with dashed line without symbols, to the trend line of this calculation, we have 
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estimated that the throughput of one computer in the grid of computers is approximately (0.1-0.2)GFLOP 

per second for our numerical simulator. This throughput is about 1/10 of LINPACK benchmark test [89], 

indicating that there is a room for optimization of the code for throughput. For comparison, scaling the 

throughput, the other two dashed lines in the figure show the much lower requirements to the computation 

of VRH with single ∫dE integration (�) and for electrostatic calculations (�), the latter always executed 

prior any VRH calculation and with moderate computational volume of approximately 

m×n×105FLOPs~(2000)²×(105FLOPs)~0.41MFLOPs, with m≈n~2000, as estimated in Appendix 1 and 

summarized in row “eSt” of Table VI. Thus, from perspective of the user time, one would try to reduce the 

computational time to be not too much higher than the overhead of 100 seconds.  

One way for reduction of the computational time is to enlarge the integration step dE. However, the 

error of the numerical calculation will also increase. For example, the unbalance errQG=|QF/QG−1| of the 

gate and film charge is shown in Figure 34 by the circles with dotted trend line errQG=5%/n0.99, 

errQG≈(5±1.6)%/(n/1000), including also the standard deviation error (~⅓errQG) to the average error 

(errQG). Note that (n) is in thousands of points in the trend line expressions in Figure 34. The unbalance is 

due to the finite energy step dE in the numerical integrations and errQG∝[exp(dE/kT)−1]. Since dE/kT<1, 

then [exp(dE/kT)−1]~dE/kT∝dE∝1/n, as seen in the figure. A second suggestion for reduction of the 

computation time can be to use VRH calculation with single ∫dE integration in preliminary simulation, 

followed by multiple ∫∫dEdE integrations for obtaining the final result, since we have shown in the previous 

sections that both calculations can fit experimental data almost equally well. However, this is also not a 

straightforward approach, because the parameter values are different for the two methods of integration. 

Compare again the values of the parameters in Table IV and the black with gray-color symbols in Figure 22. 

The remaining approach is to substitute the VRH calculation with an equivalent, but simple calculation that 

scales the electrostatic calculation, the latter unavoidable, but relatively fast and available in many 

electrostatic simulators. Fortunately, this is a reasonable approach, considering the consequences from eq. 

(59)  for the linear relation (EH+qVB)=EHFB between the hopping energy EH and the bending voltage VB at a 
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given bias and spatial coordinate in the OTFT film. The hopping energy in bulk material EHFB is only 

temperature dependent. Therefore, in the outlook below, we will focus mainly on the feasibility to substitute 

the integrations of the VRH calculations with scaled electrostatic quantities. 

 

5.2. Substitution of integrations in VRH numerical simulations with analytical relations 

In principle, eq. (63) gives the relation between electrostatics and VRH, but the numerical simulators rarely 

gather the bending voltage VB, and therefore, it is desired to have relations with the charge concentration 

NC, eq. (25), which is always present in the output from electrostatic solvers. We have shown in the 

previous sections that several relations hold, and they are numerically precise by assuming an exponential 

DOS, when considering in the expressions the effective characteristic “thermal-like voltage” φOEF, eqs. (79) 

and (80), which varies with the temperature and originates from a convolution between the Fermi and DOS 

distributions. Therefore, we use φOEF, which varies with temperature, instead of the DOS-width 

characteristic voltage φo=kTo/q=φDOSSE, eq. (72) that provides a proportionality of φo to the reciprocal of the 

logarithmic slope of the exponential DOSSE, thus, φo has a constant value and φo does not apply for elevated 

temperatures T>To. We shall analyze the relations of VRH quantities to the charge NC in three aspects: (i) at 

a given spatial point in the OTFT film (Section 5.2.1), (ii) at a given cross-section for sheet quantities at 

position 0≤x≤L along the channel length L of the OTFT (Section 5.2.2), and (iii) for the current of the entire 

OTFT of unit channel width W and length L, that is, W=L for a square-shaped OTFT (Section 5.2.3). The 

starting point is that the bias voltages VG, VS=0 and VD of the gate, source and drain terminals, respectively, 

the temperature T and the thermal voltage φT=kT/q, and the bias-independent parameters COX, tf, εf, φOEF, 

σFB and NCFB are all known. 

 

5.2.1. Spatial point (spot) charge concentration, conductance and mobility, and profiles 

For a spatial point of depth D in the OTFT film, the relation between VRH specific conductivity σ and the 

charge concentration qNC is obtained in Appendix 3, as 
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 is valid.      (83) 

This is a basic relation between charge and VRH conductance, in which the parameter η(T) can have 

temperature dependence, e.g. a power-law function with exponent T/To at low temperature T<To, but η is 

spatially and bias independent, thus η is a constant for a given temperature, as long as the semiconductor is 

uniform and the exponential DOS approximation is valid. For an ideal semiconductor, since the transport 

energy band is sharp (To≈0  φT>>φo→0), then φOEF=φT, as follows from eqs. (79) and (80), and η=μ 

becomes the bias-independent mobility in the ideal semiconductor. For amorphous semiconductors, 

however, the distribution of the DOS is wide; in fact wider than the Fermi distribution at room temperature, 

thus φo>φT, and φOEF≈φo. The relation in eq. (83) is also handy for numerical simulations, since it scales the 

electrostatic charge (qNC) into the VRH specific conductance σ, resulting in 
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,     (84) 

showing that the scaling is for the bulk conductance σFB by a power-law function xⁿ with x=NC/NCFB being 

ratio of induced to bulk charge and exponent n=φOEF/φT≥1.  

Using the above scaling rule, one can obtain an expression for the profile of the VRH specific 

conductivity σ(D), as follows. From eq. (154) in Appendix 2, the charge concentration qNCDO=qNC(D=0) in 

the semiconductor at the gate dielectric interface (depth D=0) is 

( )
2

f OEF G
CDO C 2

f OEFA

2 Q
qN qN D 0

2L

ε ϕ≡ = = =
ε ϕ

, with φOEF in place of φA and φC,  (85) 

recalling again from eq. (160) that QG/(2εfφOEF)=1/LA. Then, one can rewrite eq. (159) for qNC(D), using 

the expressions for qNCDO and 1/LA, as 
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.    (86) 
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Thus, the charge profile qNC(D) is determined once the bias and temperature are known, because 

QG=COXVG, and since φOEF is obtained from eqs. (79) or (80) , e.g. as φOEF=[(φo)ⁿ+(φT)ⁿ](¹/ⁿ) from eq. (79) 

with n~10. The substitution of (qNC) in eq. (84) yields the expression for the profile of the VRH specific 

conductivity σ(D), as 

( )
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2 2
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,   (87) 

where the specific conductivity σDO=σ(D=0) in the semiconductor at the gate-dielectric interface (depth 

D=0) is 
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     (88) 

Denoting again n=φOEF/φT≥1, the comparison of eqs. (86) and (87) clearly shows that the profiles for 

σ∝(1+D/LA)−2n are n-times steeper in logarithmic plots, compared with the charge profiles, NC∝(1+D/LA)−2, 

see again Figure 13 and Figure 14(c).  

As noted in the last paragraph of Sec. 4.4.5, the scaling between VRH conductance and charge is not 

multiplicative, that is, there is not a direct proportionality between charge and VRH conductance. Any 

search for a coefficient of proportionality between σ and NC will be wrong in terms of VRH, whereas it is 

an obvious approach for mobility edge models, in which the induced charge is separated in two categories 

of trapped and mobile charges. The trapped charges are with zero mobility. The mobile charges are “free-

like” carriers with a constant characteristic value for the mobility in a band-like charge transport model, 

which replicates the assumptions in semiconductors. Also, as mentioned several times earlier, beginning 

from Sec. 1, VRH does not require the assumption of transport band and there is no distinction between 

different types of charges, a concept more reasonable for semi-insulators to which the organic materials 
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belong, since the charge is localized in the organic materials and spatially continuous transport bands are 

very unlikely [6]. Also mentioned earlier, the VRH mobility is a resulting quantity from division of 

conductance by charge concentration; and this division, using eq. (84) yields for the spot mobility μD(D) 

that 
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  (89) 

Similar to the expression for the specific conductivity σ(D) in eq. (87), the spot mobility μD(D) in eq. (89) is 

again a version of the mobility μFB=σFB/(qNCFB) in bulk material scaled by a power-law function xn−1, with 

x=NC/NCFB being ratio of induced to bulk charge, and just the exponent (n−1)=(φOEF/φT−1)≥0 has a value 

reduced by one, compared with the exponent for σ(D). This reduction was elaborated several times for the 

mobility edge models, e.g. in [26]. However, note that the prefactor ηφOEF/φT is the same in the last 

expressions of eqs. (84) and (89), indicating a hard relation σFB=μFBqNCFB in bulk semiconductor. However, 

the relation becomes different under biasing when NC≠NCFB, which is a direct consequence of the scaling 

with ratio of charges, but not with the charge magnitude itself, and follows from the power-law 

dependences. Therefore, in principle, since there is no proportionality between conductance and charge in 

VRH, then there is no principal proportional relation between VRH mobility and charge either. So, the 

search for a direct relation between charge and mobility usually results in complicated derivations and 

discussions, in which some authors speculate that the DOS in organic materials might not be of an 

exponential type at all [25]. Then, the same authors derive an analytical model for VRH based on 

exponential DOS in [7] along with the most recently reported in the literature (up to March 2014) Monte-

Carlo VRH numerical simulator that, however, considers a uniform profile of the charge concentration, 

which is not the case in OTFT under gate biasing. After extensive comparison of hopping models, an 

interesting approximation for a relation between mobility and charge is suggested in Ref. [10] in the form of  
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where the use of the parameters a1, a2, b1 and b2 is explained in [10]. This approximation is derived for 

normally distributed DOSND (eq. (58)) and sometimes is called Coehoorn-Pasveer mobility model in 

following publications [4, 50]. 

Nevertheless, substituting in eq. (89) the expressions for the non-uniform charge profile in the OTFT 

depth from eq. (86), one finds that the profile of the spot mobility is 
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where the spot mobility μDO=μ(D=0) in the semiconductor at the gate dielectric interface (depth D=0) is 
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 (92) 

Denoting again n=φOEF/φT≥1, one sees from eqs. (87) and (91) that the profiles for μD∝(1+D/LA)(2n−2) in 

Figure 14(d) are less steep than the profiles for σ∝(1+D/LA)2n in Figure 14(c). Furthermore, if n<2, then the 

profile μD∝(1+D/LA)(2n−2)  in Figure 14(d) can become less steep than the profile for the charge. Also, 

observe in Figure 13 that at high temperature T>To, the depth variation μD∝(1+D/LA)(2n−2) in eq. (91) tends 
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to vanish, because φOEF≈φT, according to  eqs. (79) and (80). In summary, the charge and mobility need 

separate models, as seen in the equations provided in this section, and an explicit relation between charge 

and mobility might be not possible to establish in general. 

 

5.2.2. Areal (sheet) charge concentration, conductance and mobility, and film thickness 

We now turn to the second aspect for scaling between sheet quantities in VRH and electrostatics. This 

aspect is particularly significant for acceleration of numerical calculations and for analytical modeling of 

OTFTs, because the reduction of the depth coordinate D provides for the film sheet conductivity σsq(x) at 

position 0≤x≤L along the channel length L of the OTFT. The reduction of the depth coordinate is by 

integration of a volumetric variable X along D from the gate dielectric interface (D=0) to the back of the 

semiconducting film of thickness tf. Thus, XSQ=∫X(D)dD, in limits 0≤D≤tf, where XSQ is the sheet 

representation of the quantity X. One example for this integration is eq. (41) for the sheet conductance σsq. 

So, the integration of the charge profile qNC(D), eq. (86), yields that the sheet charge QF of the 

semiconducting film is 
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The quantity qNCDOLA=QG is equal to the gate charge QG, since recalling eqs. (160) and (85) 

f OEF f OEF
CDO A A G2

AA

2 2
qN L L Q

LL

ε ϕ ε ϕ= = =  .     (94) 

Consequently, the integration of the profile for VRH specific conductivity σ(D), eq. (87), yields the sheet 

conductance σsq of the film, as 
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Therefore, as a ratio of conductance to charge, the effective mobility μ of the semiconducting film is 
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  (96) 

Here, μtf=∞ is the effective mobility of an OTFT with an infinitely-thick semiconducting film, and δμtf 

corresponds to the film thickness variations, originating from the terms in the large curly brackets {}.  

Two observations can be made in eq. (96) for the effective mobility of the OTFT. One is that the 

effective mobility is (2φOEF/φT−1) times smaller than the mobility μDO in the semiconductor at the gate 

dielectric interface. The reduction of the effective mobility μ in comparison to the interface mobility μDO 

was addressed in [90] from a combination of analytical and numerical analyses. At room temperature, the 

reported reduction was 9% for a P3HT OTFT with a DOS characteristic temperature To=425K and 15% for 

a PTV OTFT with To=382K. The reduction is evident, but the magnitudes do not fit with eq. (96). The 

reason is that the charge profiles used in [90] have (1+D/LA)−1 dependence, instead of the (1+D/LA)−2 

dependence given by eq. (86). Therefore [91], we cannot extend a quantitative comparison with [90].  

The second observation in eq. (96) is that there is a film-thickness variation in the effective mobility, 

which we will inspect with the help of the supplementary quantity δμtf for the relative increase of the 

mobility from the value μtf=∞ for an infinitely-thick film. When tf/LA is large, then μ≈μtf=∞, because the 
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expression in the large curly brackets {} of eq. (96) becomes equal to one, since φOEF/φT>1 follows from 

eqs. (79) and (80). When tf decreases, then both the numerator and the denominator in these {} brackets 

decrease, resulting in a slightly complicated dependence. To get insight for the effect of the film thickness 

on the effective mobility, consider tf>2LA, since LA~1nm at normal biases of the OTFT. Then, the 

subtracting terms in the curly brackets are smaller than one, and a logarithm of the expression in these {} 

brackets can be taken, in order to use ln(1±x)≈±x when 0≤x<<1. In this way 
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and the relative variation of the mobility as function of the film thickness becomes 
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The two multiplying terms have opposite effect on varying tf. On decreasing tf, the first term 

(1+tf /LA)−1 increases, causing δμtf to rise toward the value of the term in the square brackets [ ], which is 

normally of unity value at tf>>LA, but this term in the square brackets decreases toward zero, when 

decreasing tf toward LA, owing to the subtraction. Note that the variation rates depend on φOEF/φT and bias, 

since QG/(2εfφOEF)=1/LA from eq. (160) in Appendix 3. When explicitly showing the gate bias QG=COXVG, 

then the relative variation of the mobility as function of the film thickness tf, gate bias VG and temperature 

via φOEF/φT is approximately 
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which is valid when f OX Gf

A f OEF

t C Vt
2

L 2
= >

ε ϕ
. The behavior of this equation is illustrated in Figure 35. 
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In Figure 35(a), the relative variation δμtf of the mobility is shown as function of the film thickness tf. 

It is clear from the plot that the mobility in OTFTs with thinner semiconducting films increases up to a 

thickness tf~LA, after which, the mobility decreases. This non-monotonic behavior confirms the results from 

the numerical simulations shown earlier in Figure 32, although it is difficult to match the magnitudes of the 

variations in these two figures. Other observations in Figure 35(a) are that at a given film thickness, the 

mobility variations are larger at low temperature and low bias. These are detailed for tf=20nm in Figure 

35(b) and (c). The temperature dependences in Figure 35(b) indicate that δμtf is large at low temperature and 

low gate bias voltage VG, and gradually vanishes at higher temperature T>To and high bias. The bias 

dependence in Figure 35(c) implies nearly a reciprocal dependence between δμtf and VG at low temperature, 

but the dependence smears at high temperatures to nearly a power-law dependence with exponent of 

approximately −0.7. Looking at the three plots in Figure 35, one observes a trend that the effective mobility 

relatively increases (as compared to the mobility μtf=∞ of infinite-thick film OTFT), when the film thickness 

(tf), the temperature (T) or the bias (VG) decrease, which is the opposite to the temperature and bias 

dependence of the absolute values for VRH conductance and mobility, e.g., μ and μtf=∞ increase with the 

temperature and the gate bias of the OTFT. 

 

5.2.3. VRH and the OTFT current 

For the most practical purpose for relating to analytical models for the DC current of the OTFT [28], we 

address now the third aspect for the current of the entire OTFT of unit channel area with width W and 

length L, that is, W=L for a square shaped OTFT. Considering the sheet conductance σsq(X) of eq. (95) 

varying with the position X along the channel length L of the OTFT, 0≤X≤L the magnitude of the drift 

current is 
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where VX is the potential in the channel, changing from the source potential VS=0 to the magnitude of the 

drain potential VD>0. Varying VX with X, then the magnitude of the gate charge also varies with X as 

QG(X)=(VG−VX−VT)COX≈(VG−VX)COX, since QG is a product of the gate dielectric capacitance COX (per 

unit area) and the magnitude of the gate overdrive voltage (VG−VX), assuming that the OTFT has a small in 

magnitude threshold voltage VT. The gate charge QG(X) enters the equation through LA and σDO, given by 

eqs. (85) and (88), respectively, which are substituted in eq. (99) to yield 
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Let us denote several constants (bias-independent quantities), as 
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      (101) 

and rewrite eq. (100) as 

( )( )
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I b V V 1 d b V V

W b 1 b V V
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=

      = − − −        + −   
   (102) 

Changing to variable x=b(VG−VX), one gets 

( )( )

( )G S G

G D

b V V bV
n

D n
x b V V

L a 1
I x 1 dx

W b 1 x

− ≈

= −
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  +    

       (103) 

This integral consists of two parts. The first part is trivial, ∫xⁿdx=x(n+1)/(n+1), but the second part 

∫xⁿdx/(1+x)ⁿ=2HypGeom1×x(n+1)/(n+1) leads to the Gauss hyper-geometric function 2HypGeom1 [92]. 
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Details are given in the Appendix 4, where it is also shown that the contribution of the hyper-geometric 

function is small compared to unity. Therefore, one can approximately use only the trivial part for the 

OTFT. Thus, from the derivations in the Appendix 4, the current of the OTFT is given by 

( ){ }
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[ ] ( ) [ ]OEF T OEF T OEF T

n
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++

ϕ ϕ − ϕ ϕ ϕ ϕ

≈ − −
+

     − −ηϕ ϕ    = η   ϕ ϕ − ε ϕ       

 (104) 

Note that for an ideal semiconductor φOEF/φT=1, the expressions in the square brackets are equal to one, and 

the expression in the curly brackets is the generic equation for an ideal MOSFET [28], with bias-

independent mobility μ=η, as explained after eq. (83). Note also that there is no thickness dependence in eq. 

(104), because the thickness dependence is in the hyper-geometric part, which is neglected as it is small. 

Equation (104) provides the links to several analytical models published in the literature. These 

models have been reviewed in [6, 28, 29]. From eq. (43), the terms containing the ratio φOEF/φT can be 

rewritten in terms of the mobility enhancement factor γ as 
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    (105) 

where φOEF and TOEF are given by eqs. (79) and (80). Substituting in eq. (104), the current of the OTFT 

becomes 
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− −
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  (106) 
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which is the TFT generic charge drift model, eq. (8) in [28] with VS=VT=0 and  

( )
( ) ( )

1 2
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f OEF CFB f OEF
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1 12 2qN

γ γ+γ    η  µ µ = =      + γ + γε ϕ ε ϕ   
,   (107) 

with μFB and qNCFB being the mobility and charge concentration in bulk semiconductor (no bending, VB=0) 

since, having φOEF/φT=(2+γ)/2 by eq. (105), it follows from eqs. (83) and (89) that 
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Note that μo is bias independent, but the temperature dependence in eq. (107) is complicated, because μFB, γ, 

NCFB and φOEF are all functions of temperature.  

One can expand eq. (107) in terms of other parameters by the following sequence. Firstly, obtain φOEF 

from parameters φT=kT/q and φo=kTo/q, To~400K, e.g., using eq. (79) with φcold≡φo and by choosing 

n~5−10 in this equation. Secondly, obtain NCFB=NS×exp(−|Eo−EF|/qφOEF) from parameters Eo, EF and 

NS~1021−1022 cm−3, as detailed by eq. (166). Thirdly, obtain σFB from eq. (64) with parameters Γo~1000THz 

[21], Λo~0.1nm, scT∞~10 and φTo~0.8eV, and find μFB=σFB/(qNCFB). Fourthly, obtain μo by substituting in 

eq. (107) with additional parameters COX and εf, considering also that (1+γ)=(2φOEF/φT−1) and 

γ=2(φOEF/φT−1) from eq. (105). Lastly, rationalize the expression for μo, since it is large, to have it in a 

form, such as 
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,  (108) 

obtaining the expression for μo in the format of the TFT compact mobility model [6], in which μoo is the 

mobility prefactor, TSF² is the temperature shaping function and φTFT is a bias-independent TFT specific 

voltage, with the definitions for μoo, TSF² and  φTFT, as depicted by the corresponding square brackets in 

each line of eq. (108).  

Consider from eqs. (79) and (80) that φOEF≈φo at low temperature T<0.5To, while φOEF≈φT at high 

temperature T>2To, in the following eqs. (109)−(113). Increasing the temperature from T<0.5To toward 

T>2To, a small and gradual increase from 0.5 to 1 is encountered for the ratio 
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o OEF o
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 ϕ − ϕ

,  (109) 

which can be neglected and accumulated in the value of μoo, since much larger uncertainties for Γo, Λo, 

exp(scT∞) and NS exist in the practice. However, the temperature shaping function TSF² varies at high 

temperature, because 
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= = <  ϕ ϕ  ≡ × ≈  ϕ   ϕ ϕ   × − >   ϕ ϕ   

 (110) 

Note that the power-law TSF²/A=(To/TOEF)(TOEF/To) in eq. (110) obeys the requirement stated in [6] for a 

monotonic increase with the reciprocal of the absolute temperature 1/T. However, the power-law TSF² in 
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eq. (110) is different from the discussed in [6], the  “sinc”-function “sin(πT/To)”=e−3sin(πT/To)/(πT/To),  and 

the “difference” function “ΔT/[exp(ΔT)−1]”=e−3(To/T−1)/{1−exp[(1−To/T)ΔE/(kTo)]}, the latter with 

ΔE~|Eo−EF|−|kT+kTo| by assuming Boltzmann statistics and single-side exponential DOSSE. These three 

temperature shaping functions, normalized to their constant multiplier e±3, are compared in Figure 36, 

showing that TSF² is not a unique function, but depends on and accumulates the assumptions and techniques 

of derivation of models. Consequently, the TSF² in eq. (108) causes temperature variations in the prediction 

of the thermal activation of the mobility μo in OTFT, to which the last term in eq. (108), also contributes, 

since  
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    ϕ − < ϕ   = ϕ − ϕ ≈    ϕϕ      ≈ >

 (111) 

The temperature-dependent φOEF in eq. (108) seems to be the origin of variable thermal activation via the 

term with φTFT, because, as seen in Figure 36, the power-law TSF²=(To/TOEF)(TOEF/To) causes a negligible 

modification of less than 2kTo~60−80meV in the much larger activation energy for μo in the range of 

hundreds meV for an OTFT,  which can be inspected also by rearranging eq. (108), so that one gets 
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  (112) 

where, by using a conservative value for n=5 in eq. (79), we estimate that 

n

nOEF T o
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o OEF Tn 5
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1 1

1 1 1
1%, at  high  T 2T  , since  ,
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ϕ

 ϕ − ϕ ϕδ = = + − ϕ ϕ 

 ϕ≈ ≤ ≤ < > ϕ ≈ ϕ ϕ × 

  

and we have taken from the numerical simulations that |Eo−EF|=0.9eV and φTo=0.8V±0.1V from eq. (61) 

and Figure 23, and adopted from [6] characteristic values for To~400K, φo=34.5mV and φTFT=45V±2 

decades. The numerator of eq. (112) provides the following expression for the activation energy of μo in eq. 

(106) for the OTFT current, as 
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 (113) 

While eqs. (108), (112) and (113) are consistent in behavior and related firmly with the linear dependence 

between hopping energy and electrostatic bending, we should note that that the bottle neck is in the values 

of the parameters, which we have marked with question symbols (?) in eqs. (112) and (113). The problem is 

that the values of many parameters have to be determined. In particular, behind the equations, seven 

parameters are unknown, namely NS, Eo, EF, Γo, Λo, scT∞ and φTo, even when φo for DOS and n in eq. (79) or 

TG in eq. (80) are determined from experimental data for the mobility enhancement factor γ by the help of 

the relations in eq. (105). On the other hand, the independent relations are less, eq. (113) for activation 

energy EAμo, from which (|Eo−EF|−qφTo) can be found, and eq. (108) for μo, from which (Γoexp(scT∞)/Λo) 

can be found, provided that these equations are coupled in an iterative procedure with proper variation of NS 

for determining μoo and φTFT. Thus, the relations are only three, requiring to assume values for |Eo−EF| and 

also for two of the three parameters Γo, Λo and scT∞. It is highly desired to have relations between scT∞, φTo 

and Λo, but we do not know these relations; and this is at the origin of our doubt for the immature relation 

between VRH for OTFT and material properties. We are not aware of a characterization procedure that 

leads to determination of unique values of the parameters, which, unfortunately, is the state-of-the-art VRH 

for OTFTs at present. What we certainly confirm and routinely observed in the numerical simulations is that 

the linear dependence between hopping energy and electrostatic bending leads to many of the models 

available in the literature for OTFT, as discussed above in this section. Thus, we expect that this dependence 
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might be actually a principal relation for VRH, since it remains valid by changing various assumptions, e.g. 

type of DOS, values of VRH parameters, temperature and materials.  

 

6. VRH beyond the static (DC) characteristics of OTFT 

Up to this point, we have dealt with integrations and averages of the VRH that correspond to the static (DC) 

characteristics of OTFT and possible approaches for acceleration of the VRH numerical simulations. 

However, considering the wide range of the hopping energy up to EH~1eV, one expects prominent 

dispersion in the hopping time, and we would like also to address several issues related to this dispersion, 

e.g., transient current, charge build-up and noise. The concepts in this section have been presented 

previously in [93, 94]. Here, we expand the details and discussions. 

 

6.1. Hopping time distribution 

To access the distribution of the hopping time τ from the numerical VRH simulations, consider the fraction 

of bonds per site B(≥Γ) that have hopping rates larger than a given hopping rate Γ, and define the hopping 

time as τ=1/Γ. Then, this fraction of bonds B(≥Γ)≡B(≤τ) with hopping rates faster than Γ becomes 

proportional to the cumulative distribution of the hopping time shorter than τ. Since the cumulative 

distribution for the fraction of bonds B(≤τ) approaches the bonds Bc in the critical path of the percolation 

network, then the cumulative distribution of hopping times τ is 

( )
( )

( )
( )c c c c c

B B

B B 1

> Γ < τ
=

= Γ = τ = Γ
,     (114) 

where, for the critical percolation path, Bc~9/π≈2.86 is the constant that represents the “geometrical” 

assumption for sufficient bonds per site by continuous percolation, see eqs. (3) and (5), Γc is the hopping 

rate in the critical path, and τc=1/Γc=exp(EH/kT)/Γo is the corresponding hopping time in the critical path, as 

follows from the principal eq. (2) for VRH. Accordingly, the derivative with respect to τ is both the 

distribution density of hopping bonds B and distribution density of hopping time, and it is  
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,     (115) 

where ΔEH corresponds to the particular value of τ, for which the derivative is given, and the Greek symbol 

Δ is added to the notation ΔEH to distinguish from the hopping energy EH for the critical path, since EH 

corresponds to Bc, Γc and τc. As follows from the principal eq. (2) for VRH, the relation between ΔEH and τ 

is 
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 ,     (116) 

Therefore, with respect to the hopping time τ, the distribution density of the hopping bonds and the 

distribution density of the hopping time can be found from 
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  (117) 

as a parametric function of hopping energy ΔEH, where τo=1/Γo is the hopping attempt time. Since the 

hopping time is in unit of seconds, then the distribution density ∂(B/Bc)/∂τ is in the reciprocal unit (1/s=Hz). 

The distribution of the hopping bonds and time is normalized to the critical path, so that  
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oc ,   (118) 

corresponding to the continuous (DC) hopping in the critical path, but note that the distribution is not 

limited by τc, Bc or EH; and τ>τc or ΔEH>EH correspond to non-propagating fluctuations, which may 

spatially occur, but do not contribute to the stationary (DC) VRH conductance. 

After obtaining EH for the critical path by the VRH simulator, the values of the derivative 

∂(B/Bc)∂ΔEH and hopping time τ in eq. (117) are evaluated numerically for every triplet {VG, T, D} of gate 
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bias VG, temperature T and depth D in the profile of the OTFT semiconducting film, by stepping 

ΔEHi=10meV, 20meV,…, ΔEHi,…, EH,…, 1.5eV, i=1…150, and calculating the corresponding fraction 

Bi(≤ΔEH) by either single ∫dE, eq. (14) or multiple ∫∫dEdE integrations, eqs. (16)-(19). This calculation for 

the single ∫dE integration, by rewriting eq. (12), is according to 
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The corresponding hopping times τi(ΔEHi) are calculated by eq. (117), as 
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.         (120) 

Both Bi and τi are numerical vectors of size of the vector ΔEHi. The values of the derivative ∂(B/Bc)∂ΔEH 

are then calculated as ratio of finite differences, as 
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The substitution of the values in eq. (117) yields the matrix of values for the distribution density of the 

hopping bonds and hopping time, which is of size (n×m), with n equal to the length of the τi vector and m 

equal to the size of the reduced depth mesh D at given VG and T. Obviously, the computation volume is 

increased and the data became large. Therefore, the calculation of the hopping distributions is normally 

suppressed in the VRH simulator. 

The distributions ∂(B/Bc)/∂τ of the hopping bonds and hopping time obtained by the above numerical 

procedure are illustrated in Figure 37 for several characteristic depths in the film of a pentacene OTFT at 

one bias-temperature point. These distributions are shown with solid polygon-like curves in the figure. 

There are characteristic features in these distributions.  

One feature is that the distributions are different at different depths in the semiconducting film of the 

OTFT. The top solid curve is for the semiconductor-gate insulator interface (depth D=0), and the bottom 
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solid curve is for bulk material (depth D=∞). Moving from D=0 into the depth of the film toward the back 

of the film, the distributions become wider and wider.  

A second feature is that the distributions are bounded by the hopping attempt time τo on left, which is 

obvious, but they are not bonded by the hopping time τc in the critical path. The values for τc are denoted 

with the circles () aligned to the dotted trend line 0.4/τc. Instead, as indicated by dashed trend lines τ−0.9 

and τ−1, the distributions are bounded on the right-hand side by nearly 1/τ distribution at hopping time 1-2 

decades larger than τc.  

A third feature is that the distributions have ranges from τmin≈τoexp(6)≈0.4ps to τmax≈τcexp(−6), in 

which the slope in the double-logarithmic plot is almost constant, and corresponds to the slope of τⁿ 

distribution, where n=−¼ in the particular example, as indicated by the dashed trend line τ−¼ in the bottom 

of the plot. The values for τmin and τmax are denoted with small diamonds () for each distribution, and 

respectively, are aligned to the dashed trend lines τmin=0.4ps and 0.02/τmax, which together with the trend 

line τ−¼ surround the region, in which the hopping time has τⁿ distribution.  

A fourth feature is that distributions in OTFT are broad functions of a power-law type of the hopping 

time τ, causing the so-called dispersive transport [95], which is continuously being elaborated for time-of-

flight measurements in sandwiched diode-like structures for more than 30 years, but fairly unexplored for 

thin-film structures. 

We can summarize the observations in Figure 37. At given temperature T, gate bias VG and spot in the 

depth D of the amorphous semiconducting film of the OTFT, the VRH predicts three regions for the 

distribution ∂(B/Bc)/∂τ of the hopping bonds B and hopping time τ, given by 

cB B
0

∂ ≈
∂τ

 , for ( ) 12
o exp 3 ~ 10 s−τ < τ , (faster than the transport in OTFT),   (122) 

n nc
n 1
c

B B n 1
+

∂ +≈ τ ∝ τ
∂τ τ

 , for ( ) ( )o c o cexp 3 exp sτ < τ < τ = τ , (dispersive transport in OTFT), (123) 

where sc=EH/kT=2RH/Λo, according to the principal VRH eq. (2), and 
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cB B n 1 1∂ +≈ ∝
∂τ τ τ

 , for cτ < τ , (no transport, just fluctuations and charge trapping).  (124) 

Note that the formulas are given at conditions τo<τmin<<τc=τoexp(sc) and n>(−1), so that eq. (118) is 

satisfied for the second region 

c c c

min min min

n nc
n 1 n 1
c c

n 1n 1 n 1
c min min

n 1
cc

B B n 1 n 1
d d d

n 1
1 O 1

n 1

τ τ τ

+ +
τ τ τ

++ +

+

∂ + +τ = τ τ = τ τ
∂τ τ τ

    τ − τ τ+  = = − ≈    + τ τ     

  
     (125) 

Also, the value ∂(B/Bc)/∂τ=(n+1)/τc is aligned at the boundary τ=τc between the second and third regions. 

The first region, described with eq. (122), implies that the organic material is unable to transfer 

carriers between charge states at rates close to Γo. In the second region, eq. (123) describes the dynamics of 

the charge transport in OTFT, and the power-law distribution τⁿ suggests a link to dispersive transport, 

which we will address below. In the third region, eq. (124) implies a 1/τ distribution of the hopping bonds, 

providing for phenomena that do not contribute to the charge transport directly, but are superimposed and 

accompany the transport. Such phenomena are low-frequency noise and charge build-up, for example. One 

essential remark to eqs. (123) and (124) is that for an OTFT under bias, these equations are for a spot along 

the channel and in a slice of the semiconducting film at depth D; and proper weighting of contributions from 

different slices and spots is necessary in order to obtain the overall (effective) distribution in the entire 

OTFT. 

 

6.2. Hopping as dispersive charge transport and approach to transient behavior  

There are several theoretical approaches to the dispersive charge transport in solid amorphous materials. 

These theories address the propagation of charge packets by time-of-flight (ToF) measurements. 

Chronologically, the first approach was for random walk of hopping charges; it was authored by Scher and 

Montroll (SM) in [95] in 1975, introducing the co-called dispersive parameter α>0. Later, it was found that 
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α depends on temperature, as α=T/To [96, 97, 98, 99]. Below, we inspect the presence of the dispersive 

transport in our numerical simulations of VRH, and discuss the details.  

The significance of the dispersive parameter α is that the charge transport is dispersive when α<1, 

since the hopping times do not obey the exponential distribution for a system with single transition rate, but 

the hopping events are time-variant and are widely distributed as a power-law function ψ(t) of the time of 

observation, given by 

SM distribution density: ( ) ( )1
constant

t
t +α

ψ = , 0<α<1, 0<t<∞ is time of observation.  (126) 

The smaller is α, the wider is ψ, and the transport becomes more dispersive, compared to the transport with 

normal diffusion by exponential distribution. Note that t is time of observation, but not the hopping time τ, 

and the distribution of hopping time and bonds ∂(B/Bc)/∂τ is time invariant, as calculated by the procedure 

above for VRH in OTFT at the thermal equilibrium, thus ∂(B/Bc)/∂τ is a limit corresponding to an 

observation time t→∞. The relation between ψ(t) and ∂(B/Bc)/∂τ is via the slopes of the distributions, and 

by the arguments discussed below, the relation is  

o

T
n 1

T
α = = + , for an exponential DOS of energy width kTo.  (127) 

The relation T/To=(n+1) ↔ n=(T/To−1)=(300K/400K−1)=−¼ is observed in Figure 37 for the ranges 

(τmin−τmax), in which ∂(B/Bc)/∂τ∝τ−¼, and corresponds to eq. (123). The observation was repeated for other 

temperatures, as shown in the following Figure 38. The other relation α=T/To was given for exponential 

DOS by several works [96, 97, 98, 99] in the period 1977-1982, which have also established that the multiple 

trapping and release (MTR) can explain the dispersive transport. The equivalence of SM random walk and 

MTR was elaborated theoretically in [100]. The investigation approaches in these works are two, either 

experiments furnished with analytical formulas [97, 98], or utilization of Monte Carlo (MC) simulations [96, 

99]. Later development of MTR includes Gaussian DOS in the so-called Gaussian disorder model (GDM) 

[101] and spatial correlation in the so-called correlation disorder model (CDM) [102, 103, 104], as reviewed 

in [105, 106]. Another approach to MTR is by addressing the charge propagation by means of diffusion of 
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charges, instead of random-walk hopping, and by introduction of modifications in the regular differential 

equations for the charge transport, in particular, in the terms related to charge trapping, emission and 

diffusion. The anomalous diffusion paradigm in MTR was undertaken first by Rudenko and Arkhipov [107, 

108, 109], and it is mathematically complex and diverse, as seen in [107, 108, 109, 110, 111, 112, 113, 114]. 

Interestingly, these works describe the details of time-of-flight (ToF) measurements, but the emphasis is 

moved to the complicated mathematical treatments, e.g. fractional differential equations in later works, and 

the results are difficult to transfer to other cases, such as dispersive transport in OTFT, owing the many 

assumptions that accompany the derivations. For example, a constant electric field and relatively low (on 

average) concentration of the induced excessive (non-equilibrium) charge are assumed during the ToF 

experiments.  

Nevertheless, the works on MTR, especially the earlier ones [97, 98, 99, 108, 110], have introduced the 

concept for the transient demarcation between charges in thermal quasi-equilibrium and charges in non-

equilibrium, the latter gradually vanishing with time. The demarcation evolves with time, describing the 

gradual process of the so-called “thermalization” of the charge from non-equilibrium state into thermal 

quasi-equilibrium state, the latter described by the Fermi statistics. The idea behind the thermalization is 

that the thermodynamic relaxation process needs time t≈τ to perform a change ΔE of the energy of a charge, 

and the time (either for climbing the DOS up by phonon absorption or relaxing down by phonon emission) 

is longer, if the two energy states are far apart each other or from the Fermi level EF. For VRH, 

mathematically this is equivalent to vary the Fermi energy with ΔE in eq. (6), from which, in the form of eq. 

(120), one gets that 

( )
min

E tt
exp

kT

∆ ≈ τ =  τ  
 , where ( ) cT

min o
o

s1
~ exp 6 ~ exp ~ ps

2
∞ τ τ  Γ  

,  (128) 

as one can see in Figure 37, recalling also from eq. (61) that scT∞~10 is solely for tunneling by VRH at very 

high temperature T→∞. The charge with τ<t is in thermal quasi-equilibrium, because there was enough time 

for this charge to relax into the new state, whereas the charge with τ>t is in non-equilibrium, still “being” in 

the preceding state before t=0. The demarcation energy ΔE describes the boundaries around the Fermi or 
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quasi-Fermi levels, within which the charge is in thermal quasi-equilibrium at time 0<t<∞ during a transient 

process. Thus, the demarcation energy ΔE=kT×ln(t/τmin) moves the quasi-Fermi level IMREF from the 

value at time t=0 toward the value for t=∞ by a rate of magnitude 

( )E tIMREF kT kT
t t t

∂∆∂ = = ≈
∂ ∂ τ

 .      (129) 

The actual time variation of IMREF in OTFT is more complicated, considering the definition 

IMREF=(EF+qVB) by eq. (23) with the potential bending VB included, because, in contrast to ToF in a 

sandwiched film, VB in OTFT is not constant by a step change of the OTFT bias at t=0. The complication is 

due to the discontinuity at t=τ between thermalized and non-equilibrium charges, the former tending to the 

state at t=∞, whereas the latter still “memorizing” the state before t=0, while the electrostatic balance of 

charge (by the Gauss law) at the semiconductor-gate dielectric interface is instantaneous. There is no 

suggestion in the literature for a closed-form formula that can describe the variation of VB simultaneously in 

time and in the semiconductor depth. Also, there is no clear guideline on how one can calculate VRH 

conductance by time-varying discontinuity of the quasi-Fermi level and when the charge is not in thermal 

equilibrium. Below, we give a procedure, based on simplified parameterization with respect to hopping time 

τ and demarcation at time t, so that τ<t corresponds to the emerging new state at thermal quasi-equilibrium, 

while t<τ corresponds to the gradually vanishing old state of non-equilibrium. 

The procedure for transient VRH calculations with demarcation considers the following. 

• The states of the charge and VRH are known before (t≤0, past state) and after (t=∞, future 

state) the transient process, as given by stationary (static, or DC) calculations, including 

distributions ∂X/∂τ for the quantities X related to the hopping in these states, i.e., X=X(τ) and 

∂X/∂τ=∂(B/Bc)/∂τ for hopping time τ in Figure 37 and Figure 38 for the state under gate bias of the 

OTFT and bulk semiconductor (no-bias off-state of the OTFT). To distinguish a quantity X in the 

“past” and “future” states, we include in the notations additional subscripts 0 (zero) and ∞ (infinite), 

e.g., X0 and X∞, respectively for (t≤0) and (t=∞).  
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• Depth dependences can be and are reduced by proper superposition or weighted averaging 

along the depth D in the semiconductor, 0≤D≤tf, with D=0 being the semiconductor-gate insulator 

interface and tf being the thickness of the semiconductor film, thus D=tf corresponds to the back of the 

film. For quantities X, which have meaning in sheet representation Xsq=∫X(D)dD, e.g., sheet 

conductance σsq for specific conductance σ(D), the superposition is an integration along the depth D in 

the semiconductor. According to the Leibniz rule for differentiation under the integral, the 

superposition is also valid for derivatives. Therefore, 

( ) ( )fD t
sq

D 0

X X ,D
dD

=

=

∂ τ ∂ τ
=

∂τ ∂τ , distribution of sheet quantity Xsq.  (130) 

For other quantities (that do not have meaning in sheet representation), such as hopping time τ, bonds 

per hopping site B, or mobility, one uses the averaging with a weighting function Y(D). The 

weighting function Y(D) is the profile of a quantity, which is assumed stationary, e.g., Y(D)=NC(D) 

can be the profile of the charge concentration NC at t=∞. Then, the weighted average is given as 

( )
( ) ( )

( )

f

f

D t

AVG D 0
D t

D 0

X , D
Y D dD

X

Y D dD

=

=
=

=

∂ τ
∂τ∂ τ

=
∂τ





 , average distribution of X   (131) 

The thick lines (red-colored) in Figure 38 illustrate calculations with eq. (131) for the average of the 

distribution ∂(B/Bc)/∂τ of the hopping time τ in a pentacene OTFT at different temperatures T and at a gate 

bias voltage VG=−20V. The profiles NC(D) of the charge concentration NC were used as the weighting 

function Y(D)=NC(D) to calculate the weighted averages. The profiles are after static VRH calculations, and 

have been shown earlier in Figure 13. 

• Any quantity X(τ) can be expressed explicitly as a function of hopping time τ, or in a differential 

form as a distribution density function of the hopping time τ, e.g., ∂X/∂τ=∂X/∂(B/Bc)×∂(B/Bc)/∂τ. 

With respect to transient VRH, both ∂X/∂(B/Bc) and ∂(B/Bc)/∂τ can be different in the “past” and 

“future” states, before and after the transient process, respectively, but the dependences in the “past” 
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and “future” states as functions of the hopping time τ are identical with the known stationary 

dependences, which are deduced from the static VRH calculations for both the “past” and the “future” 

states. There is transient demarcation at time t, which switches the values of quantities and 

dependences from “past” state to “future” state, when τ=t in a manner explained in the next bullet. 

Inferred from the concept for critical path by VRH, one constraint for the differential form ∂X/∂τ is 

the correspondence to the static value XSTAT obtained from the static VRH calculations. The static 

VRH calculations neglect the bonds with slow hopping rate Γ<Γc as non-contributing to the 

continuous hopping, thus τ>τc is not considered in the static VRH calculation of XSTAT. Therefore, the 

correspondence between the distribution ∂X/∂τ and the static value XSTAT of the quantity X is by an 

integration up to the finite hopping time τc for the critical path, that is 

( ) ( )c

STAT
0

X , D
X D d

τ

τ=

∂ τ
= τ

∂τ , correspondence to static VRH at every depth D. (132) 

Note that the integration is not to an infinite limit of τ=∞, but to the finite limit τc for the critical path, 

where τc=1/Γc was defined earlier between eqs. (114) and (115) and the expression for τc is also given 

in eq. (118) as a function of the hopping energy EH at every given spot in the semiconductor. Since the 

static VRH does not assume spatial correlations, then XSTAT is spatially independent (valid for every 

spot in the semiconductor independently of any other spot), and we extrapolate this assumption also to 

the transient VRH. The main usage of the finite-limit integral correspondence in eq. (132) is to obtain 

the value (or expression) for the multiplicative coefficient in the distribution ∂X/∂τ of the quantity X, 

so that for the hopping time τc in the critical path, the distribution matches XSTAT from the static VRH 

calculation. In fact, the finite-limit integral correspondence by eq. (132) is a normalization to the value 

XSTAT in the critical path; and with eqs. (118) and (125), we have already performed the normalization 

of the hopping bonds B to the bonds Bc for the critical path, when obtaining the distribution 

∂(B/Bc)/∂τ of the hopping time τ in eqs. (117) and (123). In addition to the correspondence to static 

VRH, an advantage of the normalization to the critical path is that one can define and deal with 
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distributions, which can be unbounded for τ=∞, c.f. the 1/τ distribution in eq. (124). However, one 

should also be aware of some consequences, e.g., the unbounded at τ=∞ distribution implies that the 

static state X∞ for the quantity X may not exist precisely, and furthermore, a distribution density 

normalized to finite limit is not a probability distribution, since (1/XSTAT)×∫
∞
∂X/∂τdτ≠1. 

• The transient process can be and it is sufficiently accurately described by the demarcation with 

time and the fractional superposition of state t=0 and state t=∞, so that a window from 0 to t 

corresponds to a sum of the thermalized “fraction” of the future state t=∞ (with τ<t) and the 

non-equilibrium “fraction” of the past state t=0 (with τ>t), the former continuously expanding 

with t, while the latter gradually vanishing with t. From the static VRH calculations of a variable X 

in the “past” state and in the “future” state, one obtains X0(τ), X∞(τ) and the corresponding 

distribution densities ∂X0/∂τ, ∂X∞/∂τ with respect of the hopping time τ for the “past” and “future” 

states. Then one can find the “fractions” by 

( ) ( ) ( )
t

NEW
0

X
X t d X t∞

∞
∂ τ

= τ = τ =
∂τ  for the expanding thermalized fraction with X∞(τ=0)=0 (133) 

( ) ( ) ( ) ( )0
OLD 0 0

t

X
X t d X X t

∞ ∂ τ
= τ = τ = ∞ − τ =

∂τ  for the vanishing non-equilibrium fraction. (134) 

Consequently, the superposition yields the transient value of the quantity, as 

( ) ( ) ( )NEW OLDX t X t X t= +  at time t.      (135) 

Strictly speaking, the considerations in the above four bullets are not perfect, but are approximations. 

The first consideration can be obscured due to a divergence by integrating power-law functions, since 

∫
∞
xⁿdx=∞, if n≥(−1), thus, a perfect stationary state might not exist. The second consideration can also be 

questioned for precision, because one may use different weighting functions for different quantities, and the 

selection of the type of the weighting function requires further considerations. For example, one can choose 

the electrostatic charge profile NC(D), the VRH specific conductance profile σ(D) or their product as 

weighting functions by calculating the distribution of the hopping time τ, when analyzing the low frequency 
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noise in terms of number, mobility or correlated number-mobility fluctuations. We will show an attempt of 

such an analysis later. The third and fourth considerations assume that there is no correlation between the 

“past” and “future” states and the transition is a step function at the demarcation τ=t, whereas, the transition 

region around the demarcation is not sharp, but for about 2kT (twice the thermal energy kT), which causes a 

transition for a time decade, since Δt/t~exp(2kT/kT)~7.4 follows from eqs. (128) and (129). In addition, the 

third consideration neglects the instantaneous balance of the charge at the gate dielectric interface (by 

Gauss’ law), assuming that the charge in the film at t=0+ immediately after the step of the bias of the OTFT 

is the same as the charge at the quasi-equilibrium state at t=∞. Thus the potential bending is constant in the 

entire interval from t=0 to t=∞, and the new state of bending does not affect either the charge or the bending 

in the old state for t<0, which is not exactly what occurs in an OTFT. Nevertheless, although the above four 

considerations are not perfect, we believe that the considerations and equations are sufficient to capture in 

mathematically simple way the behavior and the order of magnitudes during the transient processes after 

stepping the gate bias of the OTFT, which would be helpful to explain some experimental observations by 

the lack of theory for VRH dispersive transport in OTFT at present. 

 

6.3. Transient hopping transport 

We now proceed to the implementation of the procedure for transient VRH calculations with time 

demarcation, outlined in the above four bullets. The implementation addresses the operation of the OTFT in 

the linear (Ohmic) regime, in which, according to eq. (51), the drain current ID is proportional to the sheet 

conductance σsq, and σsq is nearly a constant for any position along the channel width W and length L. Thus, 

we will analyze the channel conductance as function of time after the step of the gate bias voltage VG, and 

the current ID=(W/L)VDσsq will be assumed always accessible from the results for σsq by scaling σsq with the 

product of the ratio W/L and the drain bias voltage VD. Therefore, we will present the results for the channel 

conductance and omit the scaled version of these results for the channel current in the OTFT. Furthermore, 

we shall analyze two transitions, from off-state to on-state followed by the opposite transition from on-state 
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to off-state of the OTFT. The off-state corresponds to the gate bias VG=VFB≈0 equal to the flat-band VFB, so 

that the off-state at t=∞ is the same as the equilibrium state of the bulk semiconductor. The on-state 

corresponds to VG=−20V for the pentacene OTFT from [73], which is chosen to preserve the 

correspondence to preceding figures, formulas for exponential type of DOS and the values of the parameters 

in Table IV for this device, specifically, for static VRH calculations with multiple ∫∫dEdE integrations by 

assumption for double-exponential DOSDE. 

One obtains the distribution of the VRH specific conductance from 

( ) c
c

,D B BB
B

B B

∂σ τ ∂∂σ ∂ ∂σ= =
∂τ ∂ ∂τ ∂ ∂τ

 ,      (136) 

where Bc~9/π≈2.86 is the constant that represents the “geometrical” assumption for sufficient bonds per site 

by continuous hopping in the percolation network, see eqs. (3) and (5), and the distributions ∂(B/Bc)/∂τ for 

the hopping time τ are obtained as explained above by eqs. (114) to (121). The values for ∂(B/Bc)/∂τ were 

shown for different temperatures in Figure 38, both for bulk semiconductor (off-state) and for different 

depths D in the semiconducting film at gate bias VG=−20V (on-state). One can obtain an expression for the 

derivative ∂σ/∂B, considering that in principle the fraction of conductivity ∂σ=bΓ∂B is proportional to the 

fraction of the bonds ∂B that are associated with a hopping rate Γ and b is a constant that will be determined 

by the normalization to σ for the critical path by means of eq. (132). Since we have defined τ=1/Γ before eq. 

(114), then 

( ) c c c c
c c

, D B B B B bB B B
B b B

B

∂σ τ ∂ ∂ ∂∂σ= = Γ =
∂τ ∂ ∂τ ∂τ τ ∂τ

 ,    (137) 

showing that the distribution of the VRH specific conductivity is proportional to the distribution ∂(B/Bc)/∂τ 

of the hopping time τ, divided by the hopping time τ itself. Therefore, one can rewrite the approximations 

for ∂(B/Bc)/∂τ of eqs. (122), (123) and (124) also for ∂σ/∂τ, as 

0
∂σ ≈
∂τ

 , for oτ < τ , (faster than the transport in OTFT),      (138) 

n 1 n 1
c n 1

c

n 1
bB A− −

+
∂σ +≈ τ = τ
∂τ τ

 , for ( )o c o cexp sτ < τ < τ = τ , (dispersive transport),  (139) 



124 

where sc=EH/kT=2RH/Λo>scT∞, according to the principal VRH eq. (2), and 

n 1
c

c 2 2
An 1

bB
+τ∂σ +≈ =

∂τ τ τ
 , for cτ < τ , (no transport, just fluctuations and charge trapping). (140) 

The value of the normalization coefficient A is then obtained by substituting eq. (139) in eq. (132) for the 

correspondence to σ from static VRH calculation for the critical path. After the substitution, one gets 

( )
( )

( )
c

o

n
o

n 1
c c on 1

c n
c

n ,  if 0 n -1
n 1

D bB d A ln ,  if n 0

n ,  if n 0

τ
−

+
τ

τ − > >
+ σ = τ τ ≈ × τ τ ≈

τ 
τ >

 ,         (141) 

since τc>>τo, and, therefore, the normalization coefficient A is given by 

( )
( )

( )
n
o o

c o c c o cT
n
c o

n ,  if 0 n -1  for T T

A D 1 s ,  if n 0  at T T ,  with s ln s ~ 10

n ,  if n 0  at T T

∞

 − τ > > <
≈ σ × ≈ ≈ = τ τ >


τ > >

.  (142) 

The different cases in eq. (142) imply that the normalization coefficient A in the expressions of the 

analytical approximation for the distribution ∂σ/∂τ of the VRH conductance, eq. (139) and eq. (140), can be 

evaluated from the specific conductance σ itself and the value of the hopping time τ, for which the 

distribution ∂(B/Bc)/∂τ of the hopping time τ has maximum. From Figure 38, the maximum in the 

distribution ∂(B/Bc)/∂τ is near τoexp(3) at low temperature (T<To), near τc/exp(3) at high temperature 

(T>To), and close to the geometric mean (τoτc)½ at T=To. Thus, once the VRH conductance σ and the 

hopping time distribution ∂(B/Bc)/∂τ are known (e.g., from simulation), the normalization coefficient A can 

be calculated from eq. (142), because either τo, τc or (τoτc) can be found from the position of the maximum 

in the distribution ∂(B/Bc)/∂τ, and n is the slope of the tilted “plateau” in the distribution ∂(B/Bc)/∂τ and 

n=(T/To−1), according eq. (127). 

As given by eq. (127), n=(T/To−1) for exponential DOS, τo=1/Γo is a parameter and τc=τoexp(EH/kT) 

is easily obtained from eq. (118), because the values in the profile EH(D) of the hopping energy EH in the 

critical path in the depth D of the semiconductor film are gathered by the numerical VRH simulator. Thus, 

the values of normalization coefficients A are calculated using eq. (142) and substituted in eqs. (139) and 
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(140) to yield approximations for the distributions ∂σ/∂τ of the VRH specific conductance σ, as shown with 

dotted lines in Figure 39. The thin solid lines in this figure are calculated numerically according to eq. (137), 

reusing the data for the distributions ∂(B/Bc)/∂τ for the hopping time τ, dividing the values for ∂(B/Bc)/∂τ on 

τ, and performing the normalization numerically. The numerical normalization determines b in eq. (137) so 

that the numerical integration of the last expression of eq. (137) from zero to τ=τc matches the value of the 

static conductance σ(D) known from the numerical simulation. The thick lines are the distributions ∂σsq/∂τ 

of the sheet conductance σsq, which are obtained after numerical integration by 

( ) ( )fD t
sq

D 0

,D
dD

=

=

∂σ τ ∂σ τ
=

∂τ ∂τ , distribution of the sheet conductance σsq,  (143) 

according to eq. (130) with X=σ. The profiles σ(D) of the VRH specific conductance in the depth D of the 

film have been shown earlier in Figure 14(c), and the sheet conductance is σsq=∫σdD (see eq. (41)). For the 

bulk material, equivalent to the off-state of the OTFT as mentioned above, the integration is replaced with 

multiplication by the thickness tf of the semiconductor film, ∂σsq/∂τ=tf×∂σ/∂τ, as in eq. (40).  

By comparing the dotted with the thin lines in Figure 39, one observes that the approximations with 

eqs. (139) and (140) are consistent with the distributions ∂σ/∂τ of the VRH specific conductance σ obtained 

from the numerical simulations at different depths in the organic semiconductor of the OTFT. However, the 

approximations are not exact, there are deviations of several orders of magnitude at some places, and also, 

one needs to tune the values of τo and τc, as stated in the caption of the figure, in order to obtain a good 

fitting between the numerical and analytical calculations. Therefore, we will use the data from the numerical 

calculation in the next step of calculation of the transient conductance. In particular, we will use the data 

shown by the labeled thick lines in Figure 39 for the distributions ∂σsq/∂τ of the sheet conductance σsq when 

switching between off- and on-states of the OTFT. The off-state corresponds to label “∂σsq/∂τ of bulk”. The 

on-state corresponds to label “∂σsq/∂τ at VG”. 

The transients of the sheet conductance σsq of an OTFT are shown in Figure 40, as calculated 

numerically using eqs. (133), (134) and (135) with demarcation between on- and off-states at time t=τ. The 
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steps of the gate bias voltage VG are depicted on the top of the plots for the sheet conductance σsq. The left-

hand side in the figure corresponds to the transition from off- to on-state, while the right-hand side 

corresponds to a following transition from on- to off-state. The lines in the left-hand plot are XNEW and 

XOLD, calculated, respectively, using the distributions ∂σsq/∂τ of the sheet conductance σsq at VG=−20V for 

∂X∞/∂τ and the distribution for bulk semiconductor for ∂X0/∂τ. Thus, the circles in the left-hand plot 

represent the transition σsq(t)=X(t)=[XNEW(VG)+XOLD(bulk)] of the sheet conductance to the on-state of the 

OTFT. We observe that the transition from off- to on-state is very fast and depends on the thermalization of 

the new state XNEW of the applied on-bias voltage VG=−20V.  

Conversely, in the right-hand plot, the lines are after swapping the distributions used to calculate 

XNEW and XOLD. The calculation for XNEW uses the distribution for bulk semiconductor as ∂X∞/∂τ in eq. 

(133). The calculation of XOLD uses the distribution at VG=−20V as ∂X0/∂τ in eq. (134). Thus, the circles in 

the right-hand plot represent the transition σsq(t)=X(t)=[XNEW(bulk)+XOLD(VG)] of the sheet conductance 

toward the off-state of the OTFT. These transitions toward the off-state are much slower, especially at low 

temperature, owing to the long time needed for the thermal relaxation of the previous conducting state. 

Looking closer at the values, one observes that the thermal relaxation of the OTFT conductance is in the 

range of a large fraction to several seconds at room temperature T=300K, and may take weeks for the lower 

temperature of 200K. Therefore, the transition of the OTFT from conductive to non-conductive state is a 

highly non-equilibrium process, which causes hysteresis and threshold shifts in the OTFT, as reported many 

times in the literature and summarized in [27] for the charge build-up in OTFT. Here, we deduce from 

Figure 40 that the dispersed hopping time causes long-lived tails in the VRH conductance, which are in 

addition with the charge build-up. 
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6.4. Random fluctuations (noise) in the hopping transport 

The last topic in this work is on the ability of VRH to predict the low-frequency noise (LFN) in OTFT. The 

approach to the problem considers two basic relations. The first is the phenomenological Hooge equation 

for the normalized flicker (1/f) noise [115, 116], given by 

( ) ( ) H
NORM 2

TOT

S f
S f

DC N f β
α= =

×
,  β≈1, NTOT=WLQG/q≈WLCOXVG/q   (144) 

where SNORM(f) is the normalized power-spectrum density (PSD) of the flicker noise in unit [1/Hz], being a 

ratio of the power-spectrum density S(f) of the LFN of a quantity, (e.g., current, voltage, mobility, 

conductance, resistance, etc.) to the square of the stationary (DC) value for this quantity. The other notations 

in eq. (144) are: NTOT is the total number (on average) of moving entities, which experience fluctuation in 

their motion, that is, NTOT is the total number of charge carriers in the electronic device (OTFT); αH is the 

Hooge parameter, which is a number that depends on materials, but is nearly independent of bias and 

temperature; f is the frequency in [Hz] and β≈1 is the frequency exponent of the flicker LFN. If DC is in 

unit [u], then the noise power-spectrum density S(f) is in unit [u²/Hz]. Also, if β=1, then αH is purely 

numeric, otherwise, the unit of αH is [(Hz)β−1].  

As follows from Hooge eq. (144), αH is the magnitude of the normalized noise SNORM for one carrier 

NTOT=1 at frequency f=1Hz, and for other frequency and number of carriers 

( ) ( )H
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S f
N S f N

f DCβ
α = × = ,     (145) 

which is the complementary characterization format of the Hooge eq. (144). Behind eq. (144) are the 

statistically uncorrelated and invariant random variables (fluctuations) of population with size NTOT, for 

which the total variance S=∑SK=NTOT×SK is the sum of the variances SK of the different fluctuations, 

K=1,2,…,NTOT, and SK=(∑SK)/NTOT denotes the average variance that is attributed to each individual 

fluctuation in the population. Accordingly, the square of the standard deviation (noise) for all carriers in the 

population is the sum of squares of the standard deviations (noise) from each individual carrier, considering 

the above assumption for statistically uncorrelated random variables.  
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On the other hand, the average DC is also proportional to the number of carriers, DC=NTOT×DCK, 

where DCK=(∑DCK)/NTOT is the average contribution of a carrier to DC. Thus, the ratio S/DC²∝1/NTOT, 

from which follows eq. (144) by assuming that each carrier has a normalized noise equal to αH/fβ. One 

remark is that the OTFT aspect ratio W/L of channel width W to channel length L affects linearly DC and 

quadratically S(f), so, W/L is cancelled in the expression for SNORM. One should not be confused with 

apparent L² dependences in equations derived from eq. (144) for field-effect transistors. After careful 

inspection of the publications [117], one can always obtain SNORM∝1/Area=1/(WL)∝1/NTOT from these 

equations. 

The second basic relation for LFN is due to the time distribution in the fluctuation of carrier motion. 

As follows from the mathematical suggestions in [118, 119], the normalized noise for a single carrier is 

given by the integral in the left-hand expression in the following equation 
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n12

X
a d S f

f1 2 f

τ

β
τ

∂ τ ατ τ = ≈
∂τ + π τ

 , single-carrier normalized noise Sn1(f),  (146) 

where a=4 for the bistable move-wait process with 50% duty cycle, which is a condition at which the 

average is equal to the amplitude of the fluctuation. If the process is asymmetric, then a<4, and we will take 

a~1 for VRH. Since the left-hand expression is for a single carrier, then we equate it to the right hand 

expression αH/fβ for the flicker noise of a single carrier from eq. (145). Note that ∂XAVG/∂τ is given by eq. 

(131) for normalized distribution, e.g., for hopping time τ, that is ∂X/∂τ=∂(B/Bc)/∂τ in eq. (131), as 

explicitly rewritten in eq. (147) below. 

Thus, one can access the flicker noise in OTFT operating in the linear regime from numerical VRH 

simulation at given gate bias VG and temperature T by the following sequence: 

Step 1. Obtain the distribution ∂(B/Bc)/∂τ of hopping time τ for different depths D in the 

semiconducting film, according to the procedure explained earlier by eqs. (117) and (121). 
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Step 2. Perform appropriate averaging of ∂(B/Bc)/∂τ to reduce the film depth D. One can obtain 

several average distributions ∂(B/Bc)AVG/∂τ that address different hypotheses for the noise, depending on the 

weighting function Y(D) used in eq. (131). In particular,  
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   (147) 

Step 3. Choose a logarithmic frequency mesh f in the range fmin – fmax. Obtain normalized noise 

spectra Sn1(f) for single carrier at the different hypotheses by the left-hand expression of eq. (146), taking 

a=1. 

Step 4. Fit power-law functions to the single-carrier normalized noise spectra Sn1(f) for the different 

hypotheses, using the right-hand expression of eq. (146). The values of the frequency exponent β are the 

average slopes 
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and the values of the Hooge parameter αH are the values of the fitted power-law functions at f=1Hz. 

Step 5. Obtain the normalized flicker noise SNORM of the OTFT for different hypotheses. As follows 

from eq. (144), 

( ) ( ) ( )n1 n1
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TOT G

S f S f
S f

N WLQ q
= = ,  QG≈COXVG.   (149) 

Step 6. De-normalize DC and flicker noise at different hypotheses, e.g., in terms of channel current 
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Step 7. Compare with experimental data to validate the most reasonable hypothesis, and if necessary, 

multiply the results for αH, SNORM and SID by numeric factor of 0.25<a<4, since a=1 was used in Step 3. If 

the values for the frequency exponent β of the simulated flicker noise are different from the experimental 

data, then one should reconsider the type of DOS and repeat the entire VRH simulation. 

To preserve correspondence with previous DC and transient analyses, we illustrate now the above steps for 

calculation of LFN with examples for the same pentacene OTFT and VRH calculations, as given in the 

caption of Figure 37. The results from the calculations by Step 1 for the distribution ∂(B/Bc)/∂τ of the 

hopping time τ at different depths D in the semiconducting film are shown with thin solid lines in this 

Figure 37 and in the following Figure 38. The thick lines (red color) in the latter figure also depict the 

reduction of the film depth D in Step 2 by weighted averaging with the charge profile NC(D), which 

corresponds to hypothesis (3) for ΔN noise in eq. (147). The variation of ∂(B/Bc)AVG/∂τ by the change of the 

hypothesis is illustrated in Figure 41. Among the several observations stated in the caption of the figure, the 

significant one for LFN are that irrespectively of the hypothesis, bias and temperature, the average 

distributions ∂(B/Bc)AVG/∂τ coincide with virtually unique 1/τ distribution at high values of the hoping time 

τ>1ms, while temperature and bias-dependent deviations from 1/τ occur at low τ<10μs. The significance of 

the observation becomes clear when performing Steps 3 and 4. 

For Step 3, we choose fmin=1Hz, fmax>100kHz and 8 frequencies in each decade, having the 

logarithmic frequency mesh of f≈{1, 1.3, 1.8, 2.4, 3.2, 4.2, 5.6, 7.5}×10{1, 2, 3, 4, 5}. For each of these 

frequencies, and for each of the average distributions ∂(B/Bc)AVG/∂τ at different hypotheses by eq. (147), we 

have performed numerically the integration in the left-hand expression of eq. (146), obtaining the points in 

the single-carrier normalized noise spectra Sn1(f) at several temperatures T and gate bias voltages VG, as 

shown in the main plots of Figure 42. Several observations can be made in these plots.  

The first observation in the main plots of Figure 42 is that Sn1(f) is nearly 1/f noise.  
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The second observation in Figure 42 is that the change of the weighting function in eq. (147), thus the 

hypothesis for the origin of the noise, does not “dramatically” change the noise level, except for hypothesis 

 for Δτ noise, which fails at low temperature due to neglecting the highly non-uniform profiles of 

conductance and carriers in the depth of the film by using equal weights Y=1 in eq. (147).  

Further details for the numerically calculated single-carrier noise spectra Sn1 are obtained after 

performing Step 4 for fitting Sn1 with the approximation αH/fβ≈Sn1, see eq. (146), in which the Hooge 

parameter αH and the frequency exponent β of the flicker noise are assumed frequency independent. The 

fitting lines are also shown in the main plots of Figure 42, and the fitting lines overlap with the numerically 

calculated spectra, although careful inspection showed 10%−20% difference between the numerically 

calculated spectra Sn1 and the approximation with αH/fβ. The obtained values for αH and β are shown in the 

insets of Figure 42.  

As depicted by arrows in the insets of the figure, the third observation in Figure 42 is that the noise 

levels increase in the order of hypotheses numbering , since the values of the Hooge parameter 

αH increase in the same order  and the values of the frequency exponent β of flicker noise 

decrease simultaneously in this order .  

The fourth observation in the insets of Figure 42 is that there are weak temperature and bias 

dependences in αH and β. As seen in the insets of Figure 42(a), and excepted for hypothesis  for Δμ noise, 

αH and β are linear functions of the reciprocal temperature 1/T, being much weaker than the Arrhenius 

exponential activation exp(EA/kT).  

Note the zigzag in the insets of Figure 42(a), especially in the bottom-left inset for αH vs. 1/T, in 

which at low temperature ≈ and ≈ at the right-hand side of the inset, while at high temperature 

≈ and ≈ at the left-hand side of the inset. This zigzag indicates crossovers between different noise 

generating mechanisms when changing the temperature, but the crossovers are very difficult to discriminate 

experimentally, because the temperature dependences are weak, causing changes within only a factor of 2 

(3dB) for αH and 5%-10% for β in a wide temperature range from 200K to 500K, whereas the noise 



132 

measurements have normally instrumental uncertainties of at least ±3dB for spectrum magnitudes and 

±0.5dB~±12% for spectrum flatness. Weak logarithmic bias dependences are observed in the insets of 

Figure 42(b). There is virtually no bias dependence for αH and β by the hypothesis  for Δτ noise, there are 

minute dependences of about ±3%/decade by the hypothesis  for Δμ noise, and the dependences gradually 

rise to 50%/dec for αH and (−5)%/dec for β by hypotheses  for ΔN, Δσ and correlated Δσ−ΔN noise. 

These weak bias dependences are also difficult to discriminate experimentally by the instrumental 

uncertainties mentioned above.  

From the observations in Figure 42, we can summarize the VRH prediction for the low-frequency 

noise in OTFT. The single-carrier normalized noise Sn1≈αH/fβ is the flicker-type noise, and it is almost bias 

and temperature independent. In addition, the single-carrier normalized noise Sn1 can be calculated by eq. 

(146) with almost the same magnitude αH and frequency slope β with any of the hypotheses  for Δμ, 

ΔN or Δσ origin of the noise and using the corresponding weighting function Y=σ/NC, Y=NC or Y=σ in eq. 

(147). Hypotheses  and  are redundant, because hypothesis  for Δτ noise is for uniform conductance 

in the OTFT’s film depth, and fails at low temperature. There is a minimal contribution from the correlation 

between the conductance σ and carrier concentration NC in hypothesis  for a correlated Δσ−ΔN noise, 

compared to the hypothesis  for Δσ noise only from conductance fluctuation or to hypothesis  for ΔN 

noise only from carrier number NC fluctuation. So, since VRH is developed mainly for specific conductance 

σ, then we shall consider only hypothesis  for Δσ noise in the following illustrations. 

For Step 5, we use the additional information in [73] that the channel of the pentacene OTFT had 

width W=2cm and length L=10μm. Thus, as obtained from the values for the unit-area gate charge QG by 

the numerical simulator, the total number of carriers NTOT=WLQG/q in eq. (149) is NTOT=4.1×109±1.7% for 

VG=−20V at temperatures T={200K, 300K, 400K, 500K} and NTOT={0.99, 2.04, 4.15}×109 for VG={−5V, 

−10V, −20V} at room temperature T=300K. Scaled version of the reciprocal (1/NTOT) of these values for 

NTOT are shown by diamonds (�) in the insets of Figure 43, where (1/NTOT) was multiplied by 3×1010 to be 

plotted about a decade above the values for αH. Using COX=17nF/cm² from Table IV, the approximation 



133 

NTOT≈WLCOXVG/q in eq. (149) gives slightly higher values, e.g., 4.24×109 for VG=−20V, since the 

approximation considers zero flat-band at any temperature and bias, but the difference is small and can be 

neglected, since the inaccuracy of the charge calculation is about 5% in the numerical simulator, c.f. Figure 

34 for dE=2meV.  

Next, we take the numerically calculated values for the single-carrier normalized noise Sn1 and its 

approximation with αH/fβ≈Sn1. These have been shown in Figure 42. The substitutions in eq. (149) yielded 

the values for the power spectrum densities of the device normalized noise SNORM, as depicted in the main 

plots of Figure 43 with solid lines for the numerical calculation SNORM=Sn1/NTOT and with dashed lines for 

the approximation SNORM≈(αH/fβ)/NTOT. As in the previous figure, Figure 43(a) is for different temperatures 

T={200K, 300K, 400K, 500K} at a gate bias voltage VG=−20V, and Figure 43(b) is for different VG={−5V, 

−10V, −20V} at room temperature T=300K. For clarity in the figure and the following discussion, we show 

only the results after hypothesis  for Δσ origin of the noise. The observations are qualitatively similar 

after calculations from the other hypotheses , but quantitatively SNORM varies about 1 decade 

between the different hypotheses, replicating the variations for Sn1, αH and β shown in the previous Figure 

42. 

One can make the following observations in Figure 43 for the device normalized noise SNORM, as 

deduced from VRH calculations and by eq. (149). First, the overlap is good between the solid lines for the 

numerically calculated spectra SNORM=Sn1/NTOT and the dashed lines for the approximation 

SNORM≈(αH/fβ)/NTOT, indicating the applicability of both the numerical VRH calculation and the analytical 

approximation with Hooge eq. (144) for characterization of noise in OTFT. A second observation, however, 

is that the VRH numerical calculations suggest temperature, bias and frequency variable magnitudes and 

slopes for the flicker noise, that is, αH and β vary with these factors and are not constant device parameters. 

To get insights for the variations, we choose one frequency f=75Hz and focus on the evolution of the values 

for SNORM(75Hz), denoted with open circles (�) in all plots. In particular, the absolute values of 

SNORM(75Hz) are depicted on the noise spectra in the main plots, and scaled version of these values of 
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SNORM(75Hz) are also given in the insets. The scaling in the insets is by multiplying SNORM(75Hz) with a 

constant number of 1012, so that the circles for SNORM(75Hz) are about ½ decade above the squares (�), 

which depict the values of the Hooge parameter αH.  

The purpose of the insets of Figure 43 is to split and examine the contributions from different factors 

in the variations of the device normalized noise SNORM. Consider the approximation SNORM≈(αH/fβ)/NTOT. 

The increase of the device normalized noise SNORM is proportional to the increase of the reciprocal (1/NTOT) 

of the total number of carriers NTOT.  The increase of SNORM is also proportional to the increase of the Hooge 

parameter αH. On the other hand, the decrease of the frequency exponent β of the flicker noise causes the 

noise level to be larger when the frequency f>>1, so that f/fβ is larger when β is smaller. Therefore, f/fβ can 

be regarded as the third factor, to which the increase of SNORM is proportional. By this formulation of 

(1/NTOT), αH and f/fβ as split factors, the factors are with multiplicative contribution to SNORM, and therefore, 

can be plotted in logarithmic scales when examining the contributions by variations of temperature, bias and 

frequency. Thus, we plot in the insets of Figure 43 the scaled version of (1/NTOT) with diamonds (�), the 

Hooge parameter αH with squares (�) and f/fβ at f=75Hz with triangles (�), together with the scaled 

version of SNORM(75Hz), open circles (�); and we attribute the variation of SNORM to the factor, which has 

similar variation in the plot of the particular inset.  

Looking at the inset of Figure 43(a), one observes that the device normalized noise SNORM increases 

with temperature T for T<To=400K, but not much at T>To. The temperature variation of SNORM follows the 

temperature variation of the Hooge parameter αH. There is also a minute contribution to SNORM from a 

decrease of the frequency exponent β, via the gradual increase of f/fβ with temperature, but this contribution 

is small, when compared with the larger contribution from αH. There is no significant temperature 

dependence in SNORM contributed from the total number of carriers NTOT, since NTOT≈WLCOXVG/q is fixed 

electrostatically by the constant gate bias VG=−20V in Figure 43(a). The temperature variation of NTOT is 

about ±1.7% or less in Figure 43(a), with is negligible for the noise.  
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Conversely, by changing the gate bias of the OTFT at a given temperature, one observes in the inset 

of Figure 43(b), that the significances of the contributions from the different factors are interchanged. One 

expects and observes that the device normalized noise SNORM decreases at higher magnitude of the gate bias 

VG, owing to the increase of the total number of carriers NTOT∝VG. However, when comparing the rate of 

decrease of (1/NTOT)∝1/VG with the lower rate for SNORM, one sees in the inset of Figure 43(b) that  the 

bias-dependent decrease of SNORM is less steep than 1/VG. The reduction of the bias dependence of SNORM is 

mainly due to the increase of the Hooge parameter αH and to a lesser extent due to the decrease of the 

frequency exponent β, which causes a minute increase of f/fβ at higher VG. 

 Overall, although the insets of Figure 43 imply that VRH causes bias and temperature dependences in 

the Hooge parameter αH and in the frequency exponent β, the variations of αH and β are not dramatically 

large; these variations are within the experimental inaccuracy of LFN measurements. Therefore, as 

mentioned above, the approximation SNORM≈(αH/fβ)/NTOT in terms of the Hooge eq. (144) is applicable for 

OTFT noise characterizations, and the numerical VRH calculations of SNORM confirm this applicability. 

For Step 6, we use in eq. (150) the data for SNORM shown in Figure 43 by the hypothesis  for Δσ 

origin of the noise and choose several drain bias voltages VD to calculate the channel current ID and the 

power-spectrum density (PSD) of the channel noise current SID, according to eq. (150) for the Ohmic 

regime of operation of the OTFT (|VD|≤|VG|). The results in Figure 44(a) are for different temperatures 

T={200K, 300K, 400K, 500K} at fixed biases {VG=−20V, VD=−2V}, and in Figure 44(b) for VG={−5V, 

−10V, −20V} and two different values of VD={−0.2V, −5V} at room temperature T=300K. The solid lines 

in the main plots of Figure 44 are after numerical VRH calculations. The tilted dashed lines represent the 

approximations with the de-normalized Hooge equation SID=ID²αH/(NTOTfβ) for the flicker noise component, 

and the horizontal dashed lines depict the white noise due to the fundamental thermal or shot noise. The 

PSD of the white noise current is separately calculated either as 4kTσsqW/L from the conductance σsqW/L 

of the OTFT channel for the thermal noise, or as 2qID from the DC current for the shot noise. Then, the 

assumed white noise is added to the flicker current noise of the channel, and the results are shown with the 
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solid lines. The assumption for the type of the white noise is arbitrary, because the white noise in an OTFT 

is not clearly observed experimentally, since the flicker noise dominates in noise measurements of OTFT, 

c.f. in the experimental data shown with gray lines and small gray squares in the main plot of Figure 44(b).  

Eq. (150) suggests a quadratic dependence SID∝ID² of the noise SID on the DC current ID. To inspect 

this dependence, we choose SID(75Hz) at frequency f=75Hz, as in the previous figure. The circles on the 

solid lines in the main plots of Figure 44 and in the insets are SID(75Hz) as obtained from the numerical 

calculation with the white noise added. The squares in the insets depict the values of the DC current. The 

comparison of the evolution of SID(75Hz) and ID with the temperature in the inset of the left-hand Figure 

44(a) suggests that SID is not exactly a quadratic function of ID. Since the gate and drain bias voltages are 

constants in Figure 44(a), then NTOT is also constant, and the “hyper”-quadratic dependence of SID on ID is 

due to the temperature increase of the Hooge parameter αH, which has already been shown in the previous 

figure.  

On the other hand, in the inset of the right-hand Figure 44(b), the temperature is constant and the bias 

is varied. Considering that the increase of the gate bias VG is accompanied with proportional increases of 

NTOT and ID, then one would expect a linear dependence between SID and ID, e.g. the circles should be 

aligned to the slope of the dashed line in the inset, which is a scaled version of ID by drawing to the axis of 

SID. (The slope of the dashed line in the drawing becomes ½ of the slope of ID by drawing on its axis.) 

However, SID increases faster than ID, owing to the increase of the Hooge parameter with the gate bias 

voltage VG, as has been shown in the inset of the previous figure. The dependence of SID becomes between 

a linear and a quadratic function of ID, when varying VG. Nevertheless, the drain bias scales equally SID and 

ID, so that the ratio SID/ID² does not change with VD, as seen by the comparison of the separation between 

circles and squares for the two cases of low VD=−0.2V in the lower portion of the inset and for higher 

VD=−5V in the upper portion of the inset. The reasons for the dependences between LFN, bias and 

geometry of the OTFT are discussed in [120, 121, 122, 123, 124, 125]. These reasons are weakly related to 

the assumption for VRH charge transport; therefore, these reasons are not discussed here. 
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For Step 7, one desires to compare the VRH prediction for LFN against experimental data. 

Unfortunately, no data for LFN were reported for the particular pentacene sample, for which the mobility 

data given in [73] were used to determine the VRH parameters in Table IV. Therefore, we have placed in 

the right-hand Figure 44(b) some data reported in the literature for several other OTFTs, showing that the 

calculation of LFN by means of VRH correctly spans the range of values that one normally observes in LFN 

experiments with OTFTs. The experimental data shown in Figure 44(b) are, as follows. The upper gray 

symbols are three sets of overlapping data. One set is from [120] for a bottom-contact pentacene OTFT 

(W=220μm, L=10μm, VD=−5V, VG≈−10V, ID~1μA), and two sets of data from [121] for a p-channel DH-

α5T OTFT (W=250μm, L=12μm, VD=−15V, VG=−15V, ID~0.3μA) and n-channel F-CuPC OTFT 

(W=250μm, L=12μm, VD=100V, VG=100V, ID~5μA). The gray lines are from our research on noise in 

poly(3-alkylthiophene) OTFTs [122, 123]. In particular, the data are for poly(3-hexadecylthiophene), 

P3HDT, OTFTs of sizes W=1.6cm, L=10μm, at VD=−5V, VG=−27.6V, ID=0.78μA for the upper gray line 

and VD=−12V, VG=−24V, ID=0.112μA for the lower gray line. The gray squares between the gray lines are 

from [124] for an OTFT with a slowly grown 10-nm thick pentacene film (W, L, VD, VG and ID have not 

been reported). The gray squares in the bottom of the figure are from [125] for a PTV OTFT (W=500-

1000μm, L=40μm, VD=−3V, VG≈−16V, ID~50nA). Some values are restored by our best guess, since the 

information for the samples, conditions or data processing are not fully disclosed in the publications. Again, 

the comparison between experiments and prediction of VRH for LFN is only qualitative, since the samples 

are very different. Overall, the comparison confirms that the procedure of the above seven steps of VRH 

numerical calculations correctly predicts both the magnitude and the shape of the low-frequency noise, as 

well as the bias and temperature dependences for LFN in OTFTs.   

 

7. Conclusions 

We have confirmed by fully numerical simulations that the VRH theory and corresponding analytical 

models correctly describe the behavior of the conductivity and mobility in OTFTs. One key reason causing 
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difficulties of using VRH theory for OTFTs are problems with the values of parameters and magnitudes of 

quantities related to VRH. The origin of these problems is that a unique approach for derivations, 

calculations and characterization based on VRH is not currently available. Therefore, we have described our 

numerical simulator in detail, in order to anticipate the fitting and interpretation of experimental data by 

analytical VRH models, which are often subjective (e.g., “up to a constant multiplier” that might be in 

exponents of the analytical expressions). 

While the above problems with values indicate that VRH is not mature for OTFTs at present, there are 

sustainable trends in VRH for OTFT. We have shown that there are simple relations behind the bulky 

integrals for VRH. For example, VRH is strongly tied to the electrostatics in OTFTs by the potential 

bending in the semiconducting film, and the steepness of the logarithmic slopes and the magnitude of DOS 

at the quasi-Fermi level play important roles for the VRH conductance, although the type of DOS has only 

marginal importance for the overall behavior of VRH. Therefore, the approximation with an exponential 

DOS works well in practice, especially at low temperatures, but the exponential DOS approximation does 

affect magnitudes and details in the behaviors at high temperatures.  

Among the simple relations, we can confirm for VRH in OTFT that there is a linear dependence 

between hopping energy and electrostatic bending, which we have routinely observed in the numerical 

simulations by any of the variations of the assumptions, even for different types of DOS. This linear 

dependence binds VRH and electrostatics, leading to the currently available VRH analytical models. Both 

the VRH and electrostatics depend on the effective steepness kTOEF of the convolution between Fermi and 

DOS distributions (with exponential steepness of kT and kTo, respectively), where kTOEF is nearly the larger 

of kT and kTo. The linear dependence between hopping energy and electrostatic bending also holds when 

the effective steepness kTOEF is considered. It is worth noting that there is not a direct relation between 

charge and VRH, and the indirect relations follow from the linear dependence between hopping energy and 

potential bending. The linear dependence between hopping energy and electrostatic bending also suggests a 

convenient parameterization of VRH in terms of the hopping critical factor for bulk semiconductor at 
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infinite temperature (scT∞≈10±4) and the activation energy qφTo≈(0.8±0.1)eV of the critical factor. These 

parameters can replace the presently used and difficult for characterization parameters, such as orbital 

overlap and hopping attempt rate. The present-day VRH parameters require multiple integrations in order to 

be used, by also imposing assumptions for DOS. 

We have also shown a method for calculation of the distribution of the hopping time. The distribution 

allows for establishing relations to non-stationary effects in OTFTs, such as dispersive transport, transitions 

between on and off-states of the OTFT accompanied with the so-called “gate bias stress” or charge build-

up, and low-frequency noise in the channel current of the OTFT. Also, while we have demonstrated that 

VRH is sufficient to describe many effects in OTFT, we should note that VRH is not a necessary condition 

for the explanation of OTFTs characteristics since several of the relations, which we have discussed, have 

been addressed by other approaches in the literature.  
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Appendix 1. Volume of numerical computation of VRH for OTFT 

The volume of computations in the VRH simulator is summarized in Table VI. The VRH principal eq. (4) is 

computationally efficient, no iteration loops or large matrices, requiring 3 multiplications (~FLOP each), one 

division (~2 FLOPs) and one exponentiation (~17 FLOPs), altogether about 20FLOPs (floating point operations) 

and less than 100 bytes of memory. However, the calculation the value of sc that is used in eq. (4) is 

computationally extensive, as discussed below. 
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The computational volume of eq. (14) for single ∫dE integration is moderate and it is approximately 

(8FLOPs×EH/dE), where EH~1eV and dE~1meV, thus, ~8kFLOPs/iteration for normally less than 100 iterations. 

The required memory is also not large, approximately 8Bytes×10vectors×2EH/dE~160kBytes for double 

precision.  

Eq. (16) is simple for coding, but it is computationally extensive because it is 2D and requires large 

memory. Taking (Etop−Ebottom)~2eV and dE~1meV, then n=(Etop−Ebottom)/dE~2000, and Rij is with a size of 

n²×(8Bytes)~32Mbytes for double precision, requiring approximately n²×(9/4)FLOPs~9MFLOPs per iteration 

with EH, since the summation and subtraction are usually ¼ FLOP, compared to one FLOP for multiplication.  

Since many elements in the Rij matrix are zero, then one may use sparse matrices. However, trading memory for 

speed, one should be careful when coding with sparse matrices. Depending on the compiler, the sparse matrices 

might be converted to complete matrices prior to operations; thus, the operation with sparse matrices might be 

slow and require large memory, contrary to the expectations. Sparse matrices are useful for saving data on disc, 

but this is not the case with eq. (16) during VRH simulations. 

Eq. (18) is simple for coding, but one should be very careful with this equation, because it is 

computationally the most extensive. The compilers usually perform the exponentiation y=xª as y=exp(a×ln(x)), 

which requires about 35−40FLOPs, consequently 40n²FLOPS~160MFLOPs per iteration (taking 

n=(Etop−Ebottom)/dE~2000), and one needs to also resolve the case y(x=0)=0. The calculation, as done in the 

simulator, is much faster when coding (4πdE/3)∑[RijRijRijDOSj], which requires approximately (5n+1)FLOPs 

per Ei, or n(5n+1)FLOPs≈5n²FLOPS~20MFLOPs per iteration, without problem when Rij=0. Sparse 

multiplication, omitting Rij=0, would greatly reduce the computational volume, but we did not use sparse 

matrices, in order to minimize the probability for human errors when coding. The consequence was that we 

needed to run parallel computing. However, sparse multiplication is desirable for commercial simulators, since 

the conductivity or mobility calculation is just one of the many tasks to be performed for subsequent simulation 

of the current in OTFTs. The vector BPSi that is generated by eq. (18) is of small size, n=(Etop−Ebottom)/dE~2000, 

occupying approximately n×8 bytes = 16 kB for double precision, which is small increase in the allocated 

memory. 
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In eq. (20), the computational volume of the right-hand expression is moderate, since BPSi and DOS are 

vectors of size n=(Etop−Ebottom)/dE~2000, requiring approximately not more than 2n×4FLOPs~16kFLOPs per 

iteration and (8Bytes)×4vectors×n~64kBytes memory for double precision. 

Summarizing the approach of single ∫dE integration for Sec. 2.3 in line “sum 1” in Table VI, the approach 

of single ∫dE is a one-step calculation, which uses eq. (14), and the computational volume with this approach is 

small to moderate, approximately n×8FLOPs~8kFLOPs/iteration (floating point operations of multiplication) 

and n×160Bytes~160kBytes memory for double precision by 1D energy mesh of size 

n=EH/dE≈1eV/1meV~1000.  

Summarizing the approach of multiple ∫∫dEdE integrations for Sec. 2.3 in line “sum 2” in Table VI, the 

approach of multiple ∫∫dEdE is a three-step calculation, which uses eqs. (16), (18) and (20), the calculation is 

computationally extensive, because it is required to span the 2D mesh of size n² for the entire range of energies, 

and n=(Etop−Ebottom)/dE≈2eV/1meV~2000. Consequently, the multiple ∫∫dEdE requires approximately 

n²×(7.5FLOPs)~30MFLOPs/iteration and n²×(8Bytes)~32MBytes. 

Eq. (21) has a small contribution to the computational volume of the VRH calculation module. It requires 

½ FPLOP for summation, 3 FLOPs for multiplication and division, and 17 FLOPs for logarithm; altogether, 20 

FLOPs per iteration and not more than 100 bytes of memory. These are negligible, fractions of a percent, 

compared to rows “sum1” and “sum2 in Table VI. 

Row “eq. (24)” in Table VI shows the combination of computational volumes for the generation of the 1D 

energy mesh E and the DOS(E) vectors. The computational volume for the generation of the vector E with 

double precision is small, roughly n×1FLOP~2kFLOPs and n×8Bytes~16kBytes for 

n=(Etop−Ebottom)/dE~2eV/1meV≈2000. The computational volume of eq. (24) depends on the selected function 

f(…), it is approximately n×(exponentiation + division + multiplication + subtraction)= 

n×(17+2+1+¼)FLOPs≈n×20FLOPs~40kFLOPs for single-side exponential DOSSE of eq. (22) and two times 

larger for the double-side exponential DOSDE of eq. (45). Thus, the computational volume is not more than 

100kFLOPs for eq. (24) with n=2000. A small memory of n×8Bytes~16kBytes is required for eq. (24) for the 

DOS vector of double precision. The vectors E and DOS are regenerated every time when calling the charge-
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energy calculation module, since the computational volume of the regeneration is small, keeping also code 

compatibility in using both EF and IMREF. 

Row “eq. (27)” in Table VI shows the combination of the computation volumes for the calculation of the 

Fermi occupation factor F(E), the concentration of occupied states NC and the flat-band level FB. For 

n=(Etop−Ebottom)/dE~2eV/1meV≈2000, the expression of the Fermi occupation factor 

F(E−EF)=1/{1+exp[(E−EF)/kT]} results in a computation volume of  n×(exponentiation + division×2 + sum 

+ subtraction) ≈ n×(17+3×2+½)FLOPs~57kFLOPs and memory n×8Bytes~16kBytes for double precision of the 

vector F(E).  The computational volume for NC and FB by eq. (27) is approximately n×(multiplication + 

summation×4)= n×2FLOPs~4kFLOPs and n×8Bytes for the vector CFDOS. The search for the index IFB uses 

roughly two subtractions per element, that is n×½FLOPs~2kFLOPs. 

Row “sum 3” of Table VI shows that the computational volume of the charge-energy calculation module is 

moderate and scales with the size n=(Etop−Ebottom)/dE~2eV/1meV≈2000 of energy mesh: n×1FLOP and 

n×8Bytes for calculation of the energy mesh E; less than n×50FLOPs and n×8Bytes for the DOS vector in eq. 

(24); n×23.5FLOPs and n×8Bytes for the Fermi occupation factor F; n×2FLOPs for NC and FB and n×8Bytes for 

the vector CFDOS in eq. (27). Altogether, this is not more than n×100FLOPs~200kFLOPs and 

n×8bytes×10vectors~160kBytes, taking a conservative estimate for overhead due to for-loops, comparisons and 

branching and temporary variables in charge-energy calculation module. 

In row “eSt” of Table VI, the computational volume of the charge-distance calculation module is shown 

only for the electrostatic calculations. The computational volume for electrostatics of the charge-distance 

calculation module is mostly determined by the calls of the charge-energy calculation module for different 

spatial points, the latter charge-energy calculation module having the computation volume shown in row “sum 

3” of Table VI, as mentioned above. The spatial point is one (for bulk material) in the first part the charge-

distance calculation module, while in the second part, the number of spatial iterations is approximately equal to 

the number n~2000 of energy points in the charge-energy calculation module. The computational volume for 

electrostatics of the charge-distance calculation module is mostly determined by the calls of the charge-energy 

calculation module at every spatial iteration, eq. (33), including also the call for bulk material at far depth in the 

first part of the charge-distance calculation module, eq. (29). Therefore, the computational volume of the charge-
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distance calculation module becomes (n²+n)×100FLOPs~400MFLOPs and 160kBytes for calling charge-energy 

calculation, including the calculation for bulk semiconductor. Other calculations in the charge-distance 

calculation module add negligible n×(50FLOPs)~100kFLOPs for calculation of profiles and management of the 

step dt and iterations for n×(8Bytes×12vectors)~200kBytes for distance mesh t and profiles with double 

precision. Altogether, a moderate computational volume of n²×105FLOPs~410MFLOPs and 0.4Mbytes memory 

for electrostatic calculations is required.  

In row “eSt+vrh1” of Table VI, the computational volume of the charge-distance calculation module is 

shown together with the VRH calculation for bulk conductivity that adds n×(50FLOPs)~1MFLOPs for the single 

∫dE, using memory ~0.2MBytes, which is of little concern. As above, n=(Etop−Ebottom)/dE~2000 is the size of 

energy mesh for VRH calculation. However, in row “eSt+vrh2” of Table VI, if the VRH bulk conductivity 

calculation uses multiple ∫∫dEdE, then the VRH calculation dominates the computational volume of the charge-

distance calculation module, requiring n²×(750FLOPs)~3GFLOPs and ~32MBytes memory. The computational 

volume of the charge-distance calculation module is also the computational volume of pass 1 of the VRH 

numerical simulator (Sec. 2.6 and Figure 5). Pass 1 allocates the most of the memory, which can be as large as 

100MBytes for multiple ∫∫dEdE, including overhead and temporary matrices. After return from the charge-

distance calculation module, the memory is released and reused by the following pass 2 and pass 3. Therefore, 

the memory allocation is not considered for further discussion in this Appendix 1. 

It is possible, in principle, to include the VRH calculation in the loop of the electrostatic calculation, but 

the VRH calculation should be postponed to be performed on a sub-sampled depth mesh D, as indicated in 

Figure 4, because, if it is included in the loop of the charge-distance calculation module, then the computational 

volume would be unnecessary large, e.g., n²×(50FLOPs)~200MFLOPs for the single ∫dE, which is acceptable, 

but n³×(750FLOPs)~6TFLOPs, which is not a task for a regular desktop computer, while the majority of the 

calculated data will be also deleted, since they correspond to film depths larger than the thickness of the 

semiconducting film of the OTFT. Therefore, in the third part in charge-distance calculation module, the 

distance mesh D is logarithmically sub-sampled to about 50 points (to have many points near the oxide interface 

and also enough points in the depth of the semiconducting film) and the profiles are reduced only to the points of 

the sub-sampled mesh. The VRH calculation module is then called in pass 2 of the VRH simulator presented in 
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Sec. 2.6 only for the reduced distance mesh D. The reduction of the distance mesh for VRH calculation results in 

acceptable computational volume of approximately 50n²×(750FLOPs)~150GFLOPs per VRH simulation of one 

bias-temperature point (VG-T point) even when the approach of multiple ∫∫dEdE integrations for calculation of 

the VRH conductivity is used.  

In row “pass 2” of Table VI, the computational volume of the VRH numerical simulator is shown. The 

energy mesh E and DOS(E) have not been stored in pass 1 in order to save memory, and because the 

regeneration of the energy mesh E is easy by calling the charge-energy calculation module, which is 

computationally efficient, only m×n×100FLOPs~10MFLOPs for the reduced depth mesh D of about m=50 

points. After the regeneration, the second step in pass 2 is the call of the VRH calculation module with IMREF 

and DOS(E), which calculates the specific conductivity σ and hopping energy EH for the particular point in the 

reduced mesh D. Thus, the profiles for σ and EH are obtained by m sequential calls of the VRH calculation 

module, which computational volume is the largest in the VRH simulator, approximately 

m×n²×(750FLOPs)~50×(2000)²×(750FLOPs)~150GFLOPs for multiple ∫∫dEdE integrations by calculation of 

the VRH conduction, and much smaller for single ∫dE integration, approximately 

m×n×(800FLOPs)~50×2000×(800FLOPs)<0.1GFLOPs.  

In row “eq. (41)” of Table VI, the computational volume of pass 3 in the VRH numerical simulator is 

given for calculation of supplementary quantities, such as the sheet conductance σsq by eq. (41). The 

computational volume of pass 3 is negligible. For eq. (41), for example, it is m×(multiplication + summation 

+ subtraction)=m×(FLOP+½FLOP)<100FLOPs for m≈50 points in the reduced spatial mesh D, using a memory 

of m×8Bytes≈500Bytes for storing the values of σsq with double precision. Even conservatively multiplying by 

10 these computational volume and memory, as given in row “eq. (41)” of Table VI, the computational volume 

of pass 3 is still negligible, compared to those in row “pass 2” of Table VI. Therefore, the row “pass 2” of Table 

VI is essentially repeated in the row “total for a VG−T point” for the computational volume of the VRH 

numerical simulator for one VG-T (bias-temperature) point.  
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Appendix 2. Derivation of analytical expression for sheet conductivity σsq 

Several steps of the derivation of eq. (66) for the OTFT sheet conductivity σsq are given below. The substitution 

of eq. (48) in eq. (65) yields 
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The solution of the integral depends on whether φT=2φB or not, thus 
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Substituting the limits for D from zero to tf, then 
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Thus, the analytical formula for the sheet conductivity σsq becomes 
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where the terms in the round brackets are usually larger than unity, (…)>1, because normally the film thickness 

tf>>LA and the potential bending VBS in the semiconductor at the gate dielectric interface is in the range 0.5−1eV 

(see Figure 24). Thus, VBS>2φB>φT, since φB≡kTB/q~0.02−0.05V with TB≈To~240−600K with the exponential 

representation of the DOS (see Table I in [6]), and OTFTs are mainly suitable for room-temperature applications 

T<273K+100°C, thus the thermal voltage is φT≡kT/q<0.033V. Therefore, one can omit the case φT=2φB and 

some terms in eq. (151), and expanding LA from eq. (47), the order of magnitude for the sheet conductivity σsq 

can be estimated by 
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Expanding σFB with the expression from eq. (64), then the order of magnitude for the sheet conductivity σsq 

becomes as 
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Note that φT can be cancelled from numerator and denominator. Thus, the term (kT/q) in the expression for the 

conductivity prefactor σo in eq. (3) and in the principal eq. (4) for VRH has little significance for an OTFT, when 

(kT/q) is outside the exponential terms. The potential bending VBS in the semiconductor at the gate dielectric 

interface (D=0) can be estimated as follows. 

Consider eq. (49) for D=0 and substitute LA with the expression from eq. (47). The carrier concentration 

NC(D=0)≡NCDO in the semiconductor at the gate dielectric interface becomes approximately 
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, with φA≈φC≡kTC/q and TC≈To, (154) 

when also considering the single-sided exponential distribution DOSSE of eq. (23) with VB=VBS. Assume kT<kTo 

and step approximation for Fermi occupancy factor F at IMREF=(EF+qVBS) in eq. (25). Then 
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where NCFB=NSexp(−|Eo−EF|/kTo) is the concentration of occupied charge states in the DOS and the carrier 

concentration for VRH in bulk semiconductor (no bending, VB=0). The quantities in the left-hand sides of eqs. 

(154) and (155) are the same, NCDO≡NC(D=0), then 
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Since exp(x/a)=exp[(x/b)×(b/a)]=[exp(x/b)](b/a), then exp(x/b)=[exp(x/a)](a/b), and having a=kTo and b=kT=qφT, 

then 
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Substituting in eq. (153), one obtains the formula in eq. (66) for the sheet conductivity σsq in a format expected 

for VRH in OTFTs. 

 

Appendix 3. Derivation details for the relation between conductance and charge concentration, eq. (83) 

At given spatial point in the depth D of the OTFT semiconducting film, the relation between VRH specific 

conductivity σ and the charge concentration qNC is obtained by the following derivations. Rewrite eq. (49) for 

(1+D/LA)², as 
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Note from eq. (47), that   f OEF
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After substitution, take the natural logarithm of the previous eq. (159) to get 
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Rewrite now eq. (48) for the same quantity, as 
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Since the left-hand sides of the last two equations are the same, then 
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Now, the key eq. (63) for the relation between VRH specific conductivity σ(D) and electrostatics is rewritten for 

the bending voltage VB(D), as 
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where σFB for the bulk semiconductor is due to eq. (64), σFB is bias-space independent, although it strongly 

depends on temperature, and σFB is known, as assumed above. Substitute VB in the preceding eq. (163), arrange 

the terms so that σ and qNC are on the left-hand side, and take antilogarithm to obtain   

( )
( ) ( )
T OEF

T OEFBS A
FB

C OEF G

D V L
exp T

qN D Q

ϕ ϕ
ϕ ϕσ     = σ    ϕ 

.   (165) 

With QG=COXVG and with φOEF in place of kTo/q, one gets an expression for the term exp(VBS/φOEF) from eq. 

(157), as 

12
o FBS G G

S
OEF f OEF OEF A CFB

E EV Q Q
exp N exp

2q q L qN

−
  − 

= − =   ϕ ε ϕ ϕ     
.   (166) 

The last expression is obtained by recalling from eq. (160) that QG/(2εfφOEF)=1/LA, and noticing that the term in 

the square brackets is the concentration NCFB of occupied charge states in the DOS and the carrier concentration 

for VRH in the bulk semiconductor (no bending, VB=0) in eq. (155) in Appendix 2 at the assumption for an 

exponential DOS.  The substitution of the last eq. (166) in the previous eq. (165) is accompanied with cancelling 

of the bias-dependent QG and LA, and yields eq. (83). Indeed, there is a shortcut for deriving eq. (83), by 
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expressing φTln(σ/σFB)=VB=φOEFln(NC/NCFB) from eqs. (63) and (155), respectively, but this shortcut hides the 

reasons behind the scaling rule, and therefore, it is not discussed. 

 

Appendix 4. Contributions from the trivial and non-trivial integrals in eq. (103) 

In this appendix, we estimate the contributions from the non-trivial ∫xⁿdx/(1+x)ⁿ and the trivial ∫xⁿdx=x(n+1)/(n+1) 

integrals in eq. (103), repeated below with the constant multiplier omitted, and considering that the constant b 

defined by eq. (101) is in the range 1V−1 to 10 V−1, while VG>1V and VD does not exceed VG. 

( )( )

( )G S G

G D

D

b V V bV
n

n
x b V V

L a
I I,

W b

1
I x 1 dx

1 x

− ≈

= −

 = × 
 

 
 = −
 + 


     (103)a 

We also follow notations accepted in mathematics, which are different from the notation in the main text.  

The solution of the trivial portion of the integral, ITR, is 

( )

( )

( )
( )

GG S G

G D G D

bVb V V bV n 1 n 1 n 1
n 1n n 1

TR G G D
x b V V x b V V

x b b
I x dx V V V

n 1 n 1 n 1

− ≈ + + + ++

= − = −

= = = − −
+ + +   (167) 

The solution of the non-trivial portion of the integral (INTR) can be found as a difference of definite integrals, by 

( )( )

( )

( )

( )

( )

( )G S G G S G G D

G D

b V V bV b V V bV b V Vn n n

NTR n n n
x b V V 0 0
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1 x 1 x 1 x
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     (168) 

As follows from integral number 3.194.1 on page 313 in [92] with μ=n+1, ν=n and β=1, or by using software for 

symbolic integration, such as Maple, the solution of the definite integrals is 

( )
( )

( ) ( )
u n n 1

2 1n
0

x u
I u dx  F n,n 1;n 2; u ;   Re[n 1] 0, arg 1 u

n 11 x

+
= = + + − + > + < π

++
 ,   (169) 

where the Gauss hyper-geometric function 2F1≡2HypGeom1 is denoted with 2HypGeom1 in the main text in order 

to distinguish it from Fermi occupation factor. The Gauss hyper-geometric function 2F1 with the particular 

parameters is given by 
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where the Pochhammer symbols can be expressed by the Gamma function Γ(z), and denote 
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Substituting in eq. (168), the non-trivial portion of the integral is 
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Combining with the trivial portion ITR, the current of the square-shaped OTFT becomes 

( )
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   (173) 

whereas, omitting the hyper-geometric part, the current is approximately 

( ){ }n
n 1n 1
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L a ab

I I I V V V
W b n 1

++ = = × = − −  + 
    (174) 

We draw ID,FULL, ID,APPR and the magnitude of the difference ΔID=|ID,FULL−ID,APPR| in Figure 45, using in eqs. 

(173) and (174) the interpolation for effective overdrive [28], given by 

VEODR(VG,V)=VSS×ln{1+exp[(VG−V)/VSS]}, instead of VG and (VG−VD), where VSS is related to the 
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subthreshold slope and V denotes either VS=0 or VD≠0. The interpolation resolves the problem with complex 

numbers from (VG−VD)n+1 in the saturation regime of operation of the OTFT when (VG−VD)<0, preserving 

VEODR≈(VG−VD)>0 in the linear regime of operation of the OTFT. One observes in the figure that the difference 

between the currents is small, in the range of 0.01−0.3% at the reasonable gate bias |VG|>10V for this virtual 

OTFT. Thus, the contribution of the hyper-geometric component can be neglected in practice. Reverting the 

notations for a, b and n from eq. (101), then the magnitude of the drain current for a square-shaped OTFT can be 

given only with the trivial part, as 
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which is eq. (104) in the main text. 
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Table I. Energy parameters of materials for gate electrodes 

Material Parameter Recommended 
value 

min (max) 
values 

Average value 
(st. deviation) 

References 

AgHSC2H4C6F17 -work function -5.5 eV   [35] 
Platinum (Pt) -work function -5.5±0.4 eV -5.93 (-5.12) eV -5.525(0.573) eV [36] 
p+ Silicon (Si) Fermi level -5.16 eV   [37, 38] 
Gold (Au) -work function -5.1±0.2 eV -5.47 (-4.8) eV -5.172 (0.222) eV [35, 36, 37, 38, 39, 

40, 41, 42, 43, 44, 
49, 50] 

Silver (Ag) -work function -5±0.2 eV -5.1 (-4.26) eV -4.69 (0.31) eV [35, 36, 37, 38, 41] 
PEDT/PSS  
also PEDOT/PSS  
poly(3,4-
ethylenedioxythiophene)/ 
poly(styrenesulfonate)  

-work function -5±0.2 eV -5.2 (-4.8) eV -5 (0.204) eV [40, 45] 

Copper (Cu) -work function -4.9±0.25 eV -5.1 (-4.53) eV -4.73 (0.22) eV [36, 37, 41, 44] 
Tungsten (W) -work function -4.8±0.5 eV -5.22 (-4.32) eV -4.77 (0.64) eV [36] 
Chromium (Cr) -work function -4.7±0.15 eV -4.8 (-4.25) eV -4.57 (0.166) eV [36, 38, 39, 41, 43, 

44, 46] 
ITO (Indium Tin 
Oxide),  In2O3/SnO2 
typ. 90%/10%) 

-work function -4.65±0.25 eV -4.9 (-4.3) eV -4.65 (0.25) eV [35, 45, 46] 

intrinsic Silicon (Si) Fermi level -4.6±0.15 eV -5.1 (-4.55) eV -4.74 (0.23) eV [36, 38, 47, 48] 
Nickel (Ni) -work function -4.5±0.1 eV -4.55 (-4.45) eV -4.5 (0.05) eV [37, 38] 
Tin (Sn) -work function -4.42 eV   [35, 36] 
Titanium (Ti) -work function -4.33 eV   [35, 36] 
Aluminium (Al) -work function -4.1±0.1 eV -4.33 (-4) eV -4.16 (0.118) eV [35, 36, 37, 38, 41, 

43, 49] 
Indium (In) -work function -4.1±0.03 eV -4.12 (-4.09) eV -4.105 (0.021) eV [35, 36] 
n+ Silicon (Si) Fermi level -4.04 eV   [37, 38] 
Magnesium (Mg) -work function -3.5±0.2 eV -3.7 (-3.25) eV -3.56 (0.204) eV [35, 36, 37, 38, 42] 
Calcium (Ca) -work function -2.9±0.05 eV -2.9 (-2.87) eV -2.885 (0.021) eV [35, 36] 
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Table II.  Energy parameters of materials for gate insulators 

Material Parameter Recommended 
value 

min (max) 
values 

Average value 
(st. deviation) 

References 

Silicon Dioxide 
(SiO2) 

-affinity -0.9±0.2 eV -1.3 (-0.7) eV -0.95 (0.18) eV [38, 47, 48, 51, 52, 
53, 54] -ionization -9.9±0.2 eV -10.2 (-9.52) eV -9.81 (0.24) eV 

(Al2O3) -affinity -1.7±0.75 eV -2.5 (-1.2) eV -1.6 (0.75) eV [47, 54, 55] 
-ionization -9.7±0.3 eV -10 (-9.5) eV -9.75 (0.35) eV 

Nitrided Si oxide 
(SixN2%-5%Oy) 

-affinity -1.15±0.1 eV -1.2 (-1.01) eV -1.095 (0.081) eV [51] 
-ionization -9.25±0.1 eV -9.38 (-8.91) eV -9.17 (0.201) eV 

(HfSiO4) -affinity -2.5 eV   [47] 
-ionization -8.5 eV   

(HfO2) -affinity -2.6±0.2 eV -2.87 (-2.5) eV -2.62 (0.21) eV [47, 52, 54, 55] 
-ionization -8.4±0.15 eV -8.5 (-8.2) eV -8.4 (0.173) eV 

Silicon Nitride 
(Si3N4) 

-affinity -1.6 eV   [47] 
-ionization -6.9 eV   

BCB 
(benzocyclobutene)  

-affinity -1.35 eV   [46] 
-ionization -6.45 eV   

SAM (9-phospho 
anthracene) 

LUMO -2 eV   [48] 
HOMO -6.1 eV   
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Table III.  Energy parameters of organic semiconducting materials 

Material Parameter Recommended 
value 

min (max) 
values 

Average value 
(st. deviation) 

References 

pentacene derivatives LUMO -4.2±0.3 eV -4.63 (-4) eV -4.23 (0.286) eV [34] 
Fermi level -5.7±0.3 eV -5.92 (-5.62) eV -5.73 (0.14) eV 
HOMO -7.2±0.1 eV -7.24 (-7.22) eV -7.23 (0.012) eV 

PTCDA LUMO -4.5±0.3 eV -4.6 (-4.1) eV -4.35 (0.354) eV [35] 
Fermi level -5.55±0.3 eV -5.7 (-5.2) eV -5.45 (0.354) eV 
HOMO -6.6±0.3 eV -6.8 (-6.3) eV -6.55 (0.354) eV 

6P  
(para-sexiphenyl) 

vacuum level 0 eV -0.8 eV on Au 0.35 eV on PD/PSS [40] 
Fermi level -4.9±0.3 eV -5.15 (-4.3) eV -4.725 (0.601) eV 
HOMO -6±0.1 eV -6.1 (-5.9) eV -6 (0.14) eV 

Green-B (green 
electrolum. conjug. 
polyfluorene) 

LUMO -3.2 eV   [45] 
Fermi level -4.55 eV   
HOMO -5.9 eV   

Alq3  
[aluminium tris(8-
hydroxyquinoline)] 

LUMO -3±0.2 eV -3.2 (-2.5) eV -2.85 (0.495) eV [35] 
Fermi level -4.4 eV -4.5 (-4.05) eV -4.275 (0.32) eV 
HOMO -5.8±0.1 eV -5.8 (-5.6) eV -5.7 (0.14) eV 

MEH-PPV [2-methoxy, 5-
(2'-ethyl-hexoxy)-1, 4-
phenylenevinylene] 

LUMO -3.5±0.5 eV -3.8 (-2.8) eV -3.3 (0.71) eV [35] 
Fermi level -4.5±0.3 eV -4.7 (-3.85) eV -4.275 (0.6) eV 
HOMO -5.5±0.2 eV -5.6 (-4.9) eV -5.25 (0.495) eV 

F8T2 [poly(9,9-
dioctylfluorene-co-
bithiophene)] 

LUMO -2.3±0.1 eV -2.35 eV -2.35 eV [39, 46] 
Fermi level -3.9 eV   
HOMO -5.5±0.1 eV -5.5 (-5.45) eV -5.475 (0.035) eV 

PTCDI-C13H27 (N,N'-di 
tridecylperylene-3,4,9,10 -
tetracarboxylic diimide) 

LUMO -3.4 eV n-type conductance [42] 
 Fermi level -4.4 eV   

HOMO -5.4 eV   
TPD [N,N’-diphenyl-N, 
N’-bis(3-methylphenyl)-
[1,1’biphenyl]4,4’diamine] 

LUMO -2±0.1 eV -2.1 (-1.8) eV -1.95 (0.21) eV [35] 
Fermi level -3.7±0.2 eV -3.77 (-3.45) eV -3.61 (0.226) eV 
HOMO -5.4±0.25 eV -5.44 (-5.1) eV -5.27 (0.24) eV 

α-NPD [N,N'-bis-(1-
naphthyl)-N,N'-diphenyl1-
1,1-biphenyl1-4,4'-
diamine] 

vacuum level 0 eV -1.15 eV on Au -0.3 eV on PD/PSS [35, 40] 
LUMO -0.8±0.5 eV -2.3 (-0.75) eV -1.3 (0.87) eV 
Fermi level -3.05±0.5 eV -4.85 (-3.85) eV -4.23 (0.551) eV 
HOMO -5.3±0.1 eV -5.4 (-5.25) eV -5.333 (0.076) eV 

P3HDT [poly(3-
hexadecylthiophene)] 

Fermi level -4.72 eV   [35, 56] 
HOMO -5.2 eV   

P3HT  
[poly(3-hexylthiophene)] 

vacuum level 0 eV -0.5 eV on Au  [35, 44, 45, 50, 56] 
LUMO -3±0.1 eV   
Fermi level -4.1±0.2 eV -4.92 (-4.05) eV -4.49 (0.355) eV 
HOMO -5.2±0.2 eV -5.7 (-5.1) eV -5.243 (0.207) eV 

NPB  
(4,4-bis-1-naphtyl-N-
phenylaminobiphenyl) 

LUMO -2.1 eV   [35] 
Fermi level -3.65 eV   
HOMO -5.2 eV   

PDOT LUMO -3.4 eV -3.42 eV  [35] 
Fermi level -4.2 eV -4.22 eV  
HOMO -5 eV -5.02 eV  

pentacene  
C22H14 

vacuum level 0 eV -1.05 eV on Au -0.1 eV on PD/PSS [3, 32, 35, 40, 42, 
48] LUMO -2.8±0.3 eV -5.27 (-2.5) eV -3.07 (0.991) eV 

Fermi level -3.9±0.3 eV -5.79 (-3.65) eV -4.44 (0.77) eV 
HOMO -5±0.3 eV -6.35 (-4.8) eV -5.128 (0.474) eV 

PPV LUMO -2.5 eV   [35] 
Fermi level -3.75 eV   
HOMO -5 eV   
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Table IV.  Parameters used in the majority of the numerical simulations, assuming a double-exponential 

DOSDE and values reported in the literature for the three OTFTs whose characteristics are shown 

in several figures. The values of NS, To, Λo and Γo are different by the different assumptions for 

single-side exponential DOSSE, eq. (22), and normally-distributed DOSND, eq. (58), as indicated 

in Figure 22. 

Parameter single ∫dE multiple ∫∫dEdE literature comment 
pentacene OTFT from [73]  

NS, nm−3 10 5  Figure 2 
 in Figure 16a 
Figure 17a 
(…) in Figure 20 
middle Figure 24 
Figure 37 and after 

To, K 441 400 Meyer–Neldel E=38meV [73] 
Λo, nm 0.195 0.175  
Γo, THz 150 800  
CI, nF/cm² 17 17 200nm SiO2 [73] 
DOS type double-exponential, eq. (45)  

pentacene OTFT from [22]  
NS, nm−3 20 10 Stated irrelevant in [22] � in Figure 16a 

Figure 17b 
(…) in Figure 20 
Figure 32a 

To, K 385 385 385 [22] 
Λo, nm 0.107 0.139 0.22 [22] 
Γo, THz 250 330 σo=1.6×1010 S/m [22] 
CI, nF/cm² 17 17 200nm SiO2, [24] 
DOS type double-exponential, eq. (45)  

annealed PQT-12 film OTFT from [60]  
NS, nm−3 70 15 0.65-1.5 for mobility edge in [60] � in Figure 16a 

Figure 17c 
Figure 18 
Figure 19 
(…) in Figure 20 
Figure 32b and c 

To, K 270 270 320-325, (kTo=27.6-28meV) [60] 
Λo, nm 0.05 0.05 0.1-0.128 [60] 
Γo, THz 4500 700 000 σo=(0.35-1.9)×1012 S/m [60] 
CI, nF/cm² 30 30 100nm SiO2, with SAM [60] 
DOS type double-exponential, eq. (45)  

All numerical simulations and all devices  
EF, eV 0.3, referred to gate conductor  All devices 
Eo, eV -0.6, referred to gate conductor  
εf = 3εo, fF/cm 265.5  
tf, nm 50 30-50 [22], 20-60 [60] 
Bc 9/π ≈ 2.86 approx., from [20], adopted in [22]  All simulations 
dE, meV 2  
Etop, eV 0.8, referred to gate conductor  
Ebottom, eV -1.1, referred to gate conductor  
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Table V.  Variation of non-reported (in [60]) values for sample parameters of two PQT-12 OTFTs, when 

matching by means of eq. (53), the experimental data for the drain current ID−VG transfer curves 

at low drain voltage VD=−1V, to numerical VRH simulations of the OTFT channel sheet 

conductance σsq. This is illustrated in Figure 18. 

 

 

 

For device with 
ID−VG reported 
in 

matching σsq 
simulation by 
method of 

at absolute 
temperature  
T, Kelvin 

using channel 
width to length 
ratio W/L 

and taking turn-
on voltage Von, 
Volts 

Symbol in 
Figure 18 

Fig. 2a in [60] 

∫dE 150 K 19.00 -4.3 V 
Not shown ∫dE 200 K 20.00 -6.5 V 

∫dE 300 K 30.00 -1.5 V 
∫∫dEdE 150 K 25.00 -5.5 V  
∫∫dEdE 200 K 20.00 -6.5 V � 
∫∫dEdE 300 K 30.00 -1.5 V � 

Fig. 8a in [60] 

∫dE 90 K 5.00 +2.0 V 
Not shown ∫dE 140 K 14.00 -10.0 V 

∫dE 180 K 19.50 -13.0 V 
∫∫dEdE 90 K 4.25 0 V � 
∫∫dEdE 140 K 10.50 -8.5 V � 
∫∫dEdE 180 K 16.00 -12.0 V � 
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This Table VI should be placed in Appendix 1 

 

 

Table VI.  Computational volume of the numerical simulations for VRH in one bias-temperature point 

(Details in Appendix 1) 

 

 row label simulation FLOPs memory EH iterations Energy steps, n Spatial steps, m 
eq. (4) ∫dE and ∫∫dEdE 20 < 100 Bytes 1 any 1 
eq. (14) ∫dE 0.8×106 ~160 kB 100 max 1000 1 
eq. (16) ∫∫dEdE 0.9×109 ~32 MB 100 max 2000 1 
eq. (18) ∫∫dEdE 2×109 ~16 kB 100 max 2000 1 
eq. (20) ∫∫dEdE 1.6×106 ~64 kB 100 max 2000 1 
sum 1  ∝n for ∫dE 0.8×106 ~160 kB 100 max 1000 1 
sum 2  ∝n² for ∫∫dEdE 3×109 ~32 MB 100 max 2000 1 
eq. (21) ∫dE and ∫∫dEdE 2×103 < 100 Bytes 100 max any 1 
eq. (24) charge-energy 0.1×106 ~32 kB any 2000 1 
eq. (27) charge-energy 63×103 ~32 kB any 2000 1 
sum 3  ∝n for charge-energy 0.2×106 ~160 kB any 2000 1 
eSt  ∝m×n for charge-distance 0.41×109 ~400 kB any 2000 2000≈n 
eSt+vrh1 ∫dE for bulk 0.41×109 ~600 kB 100 max 2000 2000≈n 
eSt+vrh2 ∫∫dEdE for bulk 3×109 ~32 MB 100 max 2000 2000≈n 

pass 2  
∝m×n for ∫dE 0.11×109 ~600 kB 

m×100 max 2000 50 
∝m×n² for ∫∫dEdE 150×109 ~32 MB 

eq. (41) ∝m for supplements 1000 ~5 kB any any 50 
total for a  
VG-T point 

∝m×n for ∫dE 0.11×109 ~605 kB 
m×100 max 2000 50 

∝m×n² for ∫∫dEdE 150×109 ~32 MB 
FLOP = floating point operation of multiplication of double precision. 

Comparison, summation and subtraction = ¼ FLOP 
Division = 2 FLOPs 
Exponentiation, square rooting and logarithm = 17 FLOPs 

 
Double precision number allocates 8 bytes in the memory. 
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Figure 1.  Algorithm of the VRH calculation module with iterative numerical calculation of hopping 
energy EH by methods of single ∫dE and multiple ∫∫dEdE integrations, and with a gradual variation of EH. 
The output from the VRH calculation module includes EH and the specific conductivity σ. 
 
 
 

Initial guess EH=sEH with logarithmic step sEH≈kT

method
single ∫dE multiple ∫∫dEdE

1D mesh Ei=-EH, -EH+dE, …, +EH

B(EH)=dE∑i(EH-|Ei|)³DOS(EF+Ei)

target=(6Bc/π)(kT/Λo)³

2D mesh Ei&Ej=Ebottom, Ebottom+dE, …, Etop

Call with parameters Λo [cm], T [K], Bc [9/π] and variables
EF [eV, (1×1)], E [eV, (n×1)] from Ebottom to Etop in steps of dE [eV, (1×1)], DOS(E) [1/(cm³eV), (n×1)]

Rij(Ei,Ej,EH)=(Λo/2kT) max{0, max(|Ei-Ej|,|Ei-EF|,|Ej-EF|) }

BPSi(Ei,EH)=4/3πdE∑j(Rij)³DOS(EF+Ej)

B(EH)=∑i(BPSi)²DOS(EF+Ei) /∑iBPSiDOS(EF+Ei)

target=Bc

|nEH/EH-1|

New guess nEH=EH+sEH×ln(B/target)
(correct if wrong nEH=max[kT/100, nEH])

Less than 10-15. Stop iterating.otherwiseAccept the new guess EH=nEH

and iterate

Conductivity σ=[qΓo/(ΛokT/q)]exp(-EH/kT)

Exit with results for σ and EH.
Note that RH=(Λo/2)(EH/kT) 

eq. (21) 

eq. (14) 

eq. (16) 

eq. (18) 

eq. (20) 

eqs. (1), (2) and (3) 

eq. (2) 
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Figure 2.  Convergence of the iterative numerical calculation of VRH by multiple ∫∫dEdE integrations 
with a gradual variation of EH at surface with gate oxide (left-hand plot) and at the pentacene film back 
(right-hand plot), and at room temperature T=300K. Increasing the iterations (horizontal axes), the lines 
without symbols show the improved matches B(EH)/Bc and EH(iteration)/EH(final) with thick gray and black 
lines, respectively. The lines with symbols show the decreasing mismatches |B(EH)/Bc−1| and 
|EH(iteration)/EH(final)−1| with gray and black colors, respectively. Open symbols with numbers close them 
highlight results after 5, 10, 20 and 50 iterations.  
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Figure 3.  Energy diagram (not to scale) of p-type OTFT under negative gate bias VG above threshold 
voltage VT. HOMO (double line) and LUMO (dotted line) are bent up with (−qVB)>0 (vertical arrows). 
Note that VG and VB are negative voltages for p-type TFT, thus, they increase the electron potential energy. 
The DOS (dashed curves) is for HOMO (with energy level Eo in the figure at no bias, VB=0), following the 
bending voltage VB. Gray-color shaded area in the left-hand DOS depicts the charge induced in the DOS tail 
by the gate bias. The centroid energy level FB of the induced charge can be different from Fermi level EF. 
Consider IMREF=(EF+qVB) as a quasi-Fermi level under bending due to bias and exponential 
DOSkTo ∝exp(HOMO−E), then DOS(Eo−qVB−EF±ΔE)=DOS(Eo−IMREF±ΔE), where ΔE is an energy span 
of interest and the bending −qVB is embedded in IMREF; see after eq. (23) for more explanations. 
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Figure 4.  Flow of the algorithm of the charge-distance calculation module. First, the equilibrium 
charge NCFB and potential VFB in bulk material are calculated, along with VRH conductivity σFB and 
hopping energy EHFB for the bulk material. Then, at given gate bias voltage VG, the potential bending VB 
and corresponding profiles for electrostatic quantities are calculated in an iterative loop with variable step dt 
in reverse of the film depth (t<0, last t=min corresponds to dielectric-semiconductor film interface) until the 
gate charge QG is balanced by the electric field Eel (QG≤εFEel). Finally, the reversed mesh t is reverted to 
mesh D=[t−min(t)] for film depth D from gate dielectric-semiconductor film interface (D=0) up to the film 
thickness (D=tf), and the mesh D and profiles are sub-sampled logarithmically to reduce the subsequent 
VRH calculations.     
 

Control of step size

VRH calculation (∫dE or ∫∫dEdE) with mesh E of step dE and IMREF=EF → σFB=σ and EHFB=EH

Revert to gate oxide interface distance mesh: D=t-min(t) 

Charge-energy calculation with IMREF=EF → VFB=FB , NCFB=NC and mesh E of step dE

Call with all parameters

VG=VFB

next point 

for distance

Exit with results 

for bulk: NCFB, VFB, σFB and EHFB,
for VG: mesh D, profiles for NVG, Eel and VB

yes noInitialize: t=0, dt=dD, Eel=0, VB=dE×sign(VG-VFB)

t=t-dt → new point for distance mesh in reverse direction (from ∞ bulk → oxide interface)

Charge-energy calculation with IMREF=EF+VB → FB, NC

NVG=NC-NCFB → add to profile for bias induced carrier concentration (1/cm³)
Eel=Eel+q×NVG×dt/εF → add to profile for electric field (V/cm)

VB=VB-Eel×dt → add to profile for potential bending (V)
Q’G=(VG-VB-VFB)COX → update gate charge (C/cm²)

Postpone VRH calculation for pass 2 with sub-sampled mesh D

If NC=NCFB, then numerical truncation. “Push gently” with NC=(10-9/cm)×Q’G/q+NCFB

Q’G/(εFEel)≤1
yes

Subsample the distance mesh 

and profiles for D ≤ tf

Exit with results

for profiles ≡ bulk

no

NVG<<NCFB
or                    

Q’G>>εFEel

yes 
Accelerate: dt=2dt

dE>|Eel|dt

no

Recalculate next VB

Decrease dt
Refine meshno yes

eq. (29) 

eq. (30) 

eq. (31) 

eq. (32) 

eq. (34) 

eq. (35) 

eq. (36) 

eq. (37) 

eq. (38) 

eq. (33) 

Part (i) 

Part (ii)

Part (iii)
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Figure 5.  Overall flow of the VRH numerical simulator for the OTFT’s conductivity. The simulation 
core is for one bias-temperature (VG-T) point and comprises three passes for electrostatic and VRH 
calculations and logging of the simulation results. 
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Figure 6.  Wave functions for HOMO of isolated pentacene molecule (adapted from [32], with 
permission 3437410676840 from Elsevier). The dark color represents a positive sign, the light color a 
negative sign. (a) isosurface at ±0.05/Å3/2; (b) coefficients of the wave function: large circles 0.12-0.3, small 
circles 0.01-0.09. 
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Figure 7.  Metal work function (middle plot) of conductive materials (top axis) that might be used as 
gate electrodes in OTFT, and electron affinity (upper plot) and ionization energies (bottom plot) of 
insulating materials (bottom axis) that can be used as gate dielectrics in OTFT. The data correspond to 
columns “Recommended values” in Table I and Table II. All values are inverted in order to correspond to 
the vacuum reference level (the solid line on the top). 
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Figure 9.  Energy diagram of a pentacene TFT with 200nm SiO2 gate dielectric and gate electrode 
corresponding to p+Si, Au or Ag, and at temperature of T=400K and gate bias of VG=−5V. Note the dipole 
shift of −0.6eV, the difference between Fermi and flat-band (FB) levels, and the steps between the levels at 
the back of the film and the levels corresponding to bulk material. 
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Figure 10.  Close look at the energy diagrams of the pentacene OTFT from Figure 9 at three gate bias 
voltages, VG={−5V, −10V and −20V} and from left to right for four temperatures, T={100K, 300K, 
400K=To and 500K}. Note that the levels in the back of film do not reach the LUMO, FB and HOMO levels 
of the bulk material, the difference decreases when the temperature increases, accompanied with a shift of 
the flat-band level FB from the Fermi level at low temperature to the HOMO level at high temperature. 
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Figure 11.  Evolution of the DOS occupancy with temperature, resulting in a shift of the flat-band (FB) 
level from close to the Fermi level at low temperatures (T<To) to close to the DOS centroid level 
(Eo=HOMO for p-type OTFT) at high temperatures (T>To). The normalized double-exponential DOS/NS 
with a characteristic temperature To=400K is shown with a gray line. The total concentration of states is 
NS=∫DOS(E)dE for (−∞<E<+∞). Thick, thin and dotted lines denote a low temperature (T=300K<To), 
through T=To=400K, to a high temperature (T=500K>To), respectively, for the majority carrier (holes in 
this case) Fermi occupation factor (F) and for the normalized DOS occupation (F×DOS/NS). The HOMO, 
Fermi and flat-band levels are shown with vertical dashed lines. Circles illustrate the characteristic values 
for DOS(Eo) and F(EF). Squares pointed with arrows illustrate the normalized values for the half 
concentration of occupied states, ½∫F×DOSdE/NS by (−∞<E<+∞), and correspond to the condition in eq. 
(26) for determination of the flat-band (FB) level. 
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Figure 12.  Simulated profiles of the potential bending VB (solid lines) in the OTFT’s 50nm pentacene 
film for three gate bias voltages VG (triplets of curves that coincide on right at each temperature) and at 
several ambient temperatures T (each triplet of curves is for one temperature). The gate insulator is 200nm 
SiO2. The characteristic temperature of the double-exponential DOS is To=400K and the concentration of 
states is NS=∫DOS(E)dE=5×1021 cm−3 for (−∞<E<+∞). The permittivity of the organic material is assumed 
εf=3εo≈2.66×10−13 F/cm. The dashed lines with circles represent the logarithmic dependence of VB on the 
depth D in the film, calculated with eq. (48) for VG=−20V (top dashed line) and VG=−5V (bottom dashed 
line). The values for VBS are arbitrarily chosen so that the dashed lines are close to, but not overlapping the 
profiles of VB. 
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Figure 13.  Simulated profiles of carrier concentration NC (solid lines) in the OTFT’s 50nm pentacene 
film at different gate bias voltages VG and ambient temperatures T. Parameters are as in Figure 12. The 
circles are calculated with eq. (49). 
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Figure 14.  Profiles of the (a) electric field, (b) hopping critical energy, (c) conductance and (d) mobility 
in the OTFT’s 50nm pentacene film at different gate bias voltages VG and temperatures T. Parameters are as 
in Figure 12. 
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Figure 15.  Correlations between several quantities in the 50nm pentacene film of an OTFT at different 
gate bias voltages VG and ambient temperatures T. Parameters are as in Figure 12. Note that the correlations 
are bias-independent, since the lines at different VG={-5V, -10V, -20V} overlap, just spanning different 
intervals. The correlations are temperature-dependent, as indicated by arrows for the effect of increasing 
temperature T={100K, 150K, 200K, 300K, 400K to 500K}. 
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Figure 16.  Analyses of the correlation (EH+qVB×|∂EH/∂VB|)=ET, with |∂EH/∂VB| obtained from the slope 
of the linear regression of EH vs. VB, between hopping critical energy EH and potential bending VB, see eq. 
(50), at different temperatures (T) and gate bias (VG) in three OTFTs by two simulation methods for the 
hopping conduction, single ∫dE integration (gray color) and multiple ∫∫dEdE integrations (black color). (a) 
The values for ET are denoted with symbols �� for two pentacene OTFTs and a PQT-12 OTFT, from 
[22, 60, 73], respectively, and ET is bias-independent, since the symbols overlap (one exception: look at the 
three circles in the bottom-left). The values for the correlation slope |∂EH/∂VB|≈1 are denoted with dashes. 
(b) Statistics of the slope |∂EH/∂VB| for deviations from unity. The curved lines (mean) represent average 
values for the slope |∂EH/∂VB| vs. the energy step normalized to the thermal energy kT, dE/kT=2meV/kT. 
They are evaluated with numerical integrations with error bars for one standard deviation (mean−σ) and 
greatest reduction (min), showing that the deviation of the slope |∂EH/∂VB| from unity is due to a coarse 
integration step at low temperatures (dE/kT>10% at T≤200K). The histogram (dotted bars for 108 data 
points, blue color) of the slope |∂EH/∂VB| values implies that |∂EH/∂VB|=1±1% with 90% confidence.   
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Figure 17.  Temperature-bias dependence of mobility in three OTFTs. Experimental data (circles) in 
plots (a) from [73], (b) from [22] and (c) from [60] are for two pentacene OTFTs (at gate bias voltages VG) 
and a PQT-12 OTFT (at gate overdrive voltages VGT=VG−VT), respectively. The lines are data obtained by 
two simulation methods for the hopping conduction, single ∫dE integration (gray-color thick lines) and 
multiple ∫∫dEdE integrations (black-color thin lines). The parameters used in the simulations are given in 
Table IV. The colors and plots (a), (b) and (c) correspond to the colors and symbols �� in Figure 16(a). 
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Figure 18.  Linear (a), semi-logarithmic (b) and logarithmic (c) plots of the sheet conductance (σsq) of 
PQT-12 OTFTs vs. gate overdrive (VG−Von), corresponding to the mobility in Figure 17c and diamond 
symbols (�) in Figure 16a.  The lines are data obtained by two simulation methods for the hopping 
conduction, single ∫dE integration (gray-color thick lines) and multiple ∫∫dEdE integrations (black-color thin 
lines). The symbols are recalculated using σsq≈(ID/VD)×(L/W), eq. (53) from the experimental data for the 
drain current ID at low drain voltage VD=−1V reported in [60], respectively, in Fig. 2a (open symbols at 
lower |VG−Von|) and Fig. 8a (filled symbols at higher |VG−Von|). 
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Figure 19.  Close look at the numerical simulation results for the PQT-12 OTFT sheet conductance (σsq) 
vs. gate overdrive (VG−Von) at different temperatures. The data from the simulation of σsq are shown with 
square symbols, corresponding to Figure 18c. Power-law trend lines σsq∝|VG−Von|ⁿ are fitted to the data 
denoted with filled squares, and the trend lines intersect in points denoted with large circles at values of 
|VGx−Von| and σsqx, as indicated. The slopes of the trend lines are the exponential factor (n) in the power law, 
and the values for n are shown in the inset as function of the reciprocal of the temperature 1/T, 
demonstrating the 1/T dependence of n, and thus, of the thermal activation in eq. (56). Note also the 
deviations from the power law at low and high gate biases. Gray color corresponds to VRH simulation with 
single ∫dE integration. Black color corresponds to VRH simulation with multiple ∫∫dEdE integrations. 
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Figure 20.  Temperature-bias dependence of the mobility in OTFTs, assuming different types of DOS 
and using VRH simulations with single ∫dE integration (upper plots) and multiple ∫∫dEdE integrations 
(bottom plots). Dashed lines are for normally distributed DOS, eq. (58). Dotted lines are for double-sided 
exponential DOSDE, eq. (45). Solid lines are for single-sided exponential DOSSE, eq. (22). Experimental 
data are shown with open circles (), and are the same as in Figure 17. 
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Figure 21.  Schematic representation of the effect of DOS “rectangularity” on the behavior of the 
thermal activation of VRH mobility. The “rectangularity” of normally distributed DOSND is the highest, 
compared with the double-sided exponential DOSDE and the “peaking” single-sided exponential DOSSE. For 
p-type OTFTs, flip horizontally the single-sided exponential distribution. 
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Figure 23.  Apparent 1/T dependence for the hopping critical factor 
scFB=sc+VB/φT=10±4+(0.8±0.1)eV/kT, see eq. (60), observed in the top plot, in which all data points are 
collected from the other plots below. The crosses in the latter plots are for scFB=EHFB/kT in bulk 
semiconductor (VB=0), and the crosses match the overlapping circles for (EH+qVB)/kT at different bending 
voltages VB corresponding to different gate bias voltages VG. 
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Figure 24.  Comparison between numerical () and analytical (lines, red color) calculations of profiles 
for single-sided exponential DOS (top plots), double-sided exponential DOS (middle) and normally 
distributed DOS (bottom plots). Thick gray-color lines depict the DOS as function of bending 
(qVB=IMREF−EF). Thin black lines illustrate exponential approximation for the DOS by the analytical 
calculations. 
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Figure 25.  Illustration of several quantities related to VRH in a pentacene OTFT at temperature T=100K 
and gate bias VG=−20V (see the text for correspondence to other figures). Note that all the quantities 
(except for the vertical error bars for hopping energy EH) are given as function of potential bending VB in 
the vertical axes of the plots. The two plots show the same data at logarithmic (left-hand plot) and linear 
(right-hand plot) scales for distance (bottom horizontal axes), except for the data depicted with lines (green 
color) for part of the sheet conductance (% of σsq) in the left-hand plot and hopping distance RH in the right-
hand plot. The small open circles () are the profile for the bending voltage VB(D) after numerical 
calculations and the thin line (red color) through the circles is the analytical approximation VB,an(D) of the 
potential bending profile. The gray-color error bars begin at the small open circles () and their length show 
the results of the following numerical calculations. Vertical error bars: The length of the vertical error bars 
corresponds to the hopping energy EH; the upper ends of these error bars reach a constant level 
(EH+qVB)=EHFB denoted with a dotted blue horizontal line in both figures. Horizontal error bars: The 
length of the horizontal error bars corresponds to the hopping distance RH; the right-hand end of these error 
bars is the depth (RH+D) to which the VRH carriers reach in the organic film;  (RH+D) is denoted with a 
dotted blue curve in each figure. The normally distributed DOS (used in the numerical calculations) is 
shown with a thick solid curve in each figure. The DOS values in 1/(cm³eV) are represented on the 
logarithmic horizontal axes on top of the plots vs. the vertical linear axes for energy in eV. The thin black 
dashed lines indicate the approximation with exponential DOS in analytical calculations. The slope of the 
exponential DOS approximation is ∂ln(DOS)/∂E=1/φB,an, in which the value of φB,an was deduced after 
fitting the potential bending with the analytical expression VB(D)≈VB,an(D)=[VBS−2φB,an×ln(1+D/LA,an)] of 
eq. (48). The magnitude of the exponential DOS approximation is equal to the magnitude of the normally 
distributed DOS at the condition avgVB for average VB. The value of avgVB is calculated with eq. (70), 
weighting VB by the conductivity, as explained in the text when describing eq. (70). The values for DOS 
and other quantities represented in the figures corresponding to this condition of average VB are denoted 
with large circles (, filled in red color). The values of the same quantities evaluated at other conditions are 
depicted by large diamonds (�, filled in green color) for the depth of the channel at which the sheet 
conductance is 95% of σsq, and by large squares (�, filled in yellow color) for a depth equal to LA, 
respectively. 
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Figure 26.  Comparison between bending (qVB, at various conditions for extraction of the values for 
VB), DOS and hopping energy (EH) for a pentacene OTFT, after fitting of experimental data for mobility 
from [73] and by assumption for normally distributed DOS. Note that the polarities of bending and energy 
are inverted, since the pentacene OTFT is a p-type device. (a) The bending decreases at high temperature, as 
shown for given gate bias voltage VG=−20V. (b) The bending increases as the logarithm of gate bias voltage 
VG={−5V, −10V, −20V}, as shown for low (T=100K) and high (T=500K) temperatures. The conditions for 
extraction of the values for VB and notations in (a) and (b) are: solid lines (   ) for the semiconductor-gate 
dielectric interface (depth D=0, VB(0)≡VBS); circles (, filled in red color) for the average bending avgVB – 
see eq. (70); diamonds (�, filled in green color) for the bending VB(95%σsq) at depth D=D95%σsq,  
corresponding to sheet conductance 95% of σsq – see eq. (69); and the squares (�, filled in yellow color) are 
for the bending VB(LA) at depth D=LA, where LA=LA,an is obtained after fitting the charge profile NC(D) 
from numerical calculations with NC(D)∝(D+LA,an)−2, see eq. (49). (c) The values for bending for all cases 
of biasing and conditions for extraction are aggregated and shown with small dashes surrounded with dotted 
ellipses, illustrating also with blank bars the trend of decrease of the bending with temperature. However, 
the hopping energy EH (upper portion of the bars, filled in gray color) increases with temperature, so that the 
sum (EH+qVB)=EHFB (straight line, green color) increases with temperature; and EHBF is well above the DOS 
centroid Eo, where Eo corresponds to HOMO level of pentacene (reminder – to show magnitudes in the 
plots, the polarity of the energy is inverted for the p-type pentacene OTFT, so that Eo of HOMO is “above” 
the Fermi level EF). 
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Figure 27.  Comparison between characteristic electrostatic and hopping distances for a pentacene 
OTFT, after fitting of experimental data for mobility from [73] and assuming a normally distributed DOS. 
The bending and energies are shown in Figure 26. The top-left plot is aggregated data for the set of the three 
characteristic electrostatic distances D‴={LA, D95%σsq, DavgVB} (�, black color), hopping distances RH (, 
red color) and their product D‴×RH (−, blue-color dashes) for all cases of biasing and conditions for value 
extraction, as per the caption of Figure 26(c). The bottom-left plot details the temperature dependences at 
gate bias voltage VG=−20V, as in Figure 26(a), with solid lines denoting data for the set of characteristic 
distances D‴ (large symbols) and dashed lines denoting data for hopping distances RH (small symbols), and 
also indicated with ellipses labeled with D‴ and RH, respectively. The remaining plots, as in Figure 26(b), 
detail the bias dependences at low and high temperatures (T=100K and T=500K, top and bottom plots, 
respectively) for D and RH (middle and right-hand plots, respectively). Following the scheme of symbols in 
Figure 26(a) and (b), and except for the top-left plot with aggregated data, the conditions for value 
extraction are denoted with triangles (�, filled in blue color) for the semiconductor-gate dielectric interface 
(depth D=0), circles (, filled in red color) at condition for average bending avgVB – see eq. (70), diamonds 
(�, filled in green color) at depth D95%σsq  corresponding to sheet conductance 95% of σsq – see eq. (69), 
and squares (�, filled in yellow color) are for depth D=LA, where LA=LA,an is obtained after fitting the 
charge profile NC(D) from numerical calculations with NC(D)∝(D+LA,an)−2, see eq. (49). 
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Figure 28.  Comparison between characteristic “thermal-like” voltages (φ’s) after fitting of experimental 
data for mobility from [73] and assuming a normally distributed DOS (on the left) and single-sided exponential 
DOS (on the right), as function of absolute temperature T (upper plots, for VG=−20V) and gate bias voltage VG 
(bottom plots for low T=100K and high T=500K). The polarity of VG is inverted, since the pentacene OTFT is p-
type transistor. The DOS widths are φo,ND=100mV for the normally distributed DOSND (horizontal solid lines in 
all plots, green color) and φo,EXP=34.9mV for the exponential DOSSE (horizontal solid lines in all plots, blue 
color). The thermal voltage φT=kT/q (solid lines in all plots) is proportional to the absolute temperature T, as 
shown with raising straight lines in the upper plots, and φT is bias independent (horizontal lines in bottom plots). 
The values of the characteristic voltages φA,an (�), φB,an (�) and φC,an (�) are obtained after fitting profiles from 
the numerical calculations with the analytical approximations for LA, VB and NC(D=0) at the gate dielectric-
semiconductor interface (D=0), eqs. (47), (48) and (49), respectively, and the symbols are around the dashed 
lines (---), which depict the empirical relation for “dominance of the larger”, eq. (79) with n=5 for the normally 
distributed DOS, and n=10 for the exponential DOS. The values φDOS () for the reciprocal of DOS slope are at 
the condition for average bending (IMREF=EF+q×avgVB), and dotted lines (…) connect the circles with linear 
trend in the upper-left plot and power-law trend in the bottom-left plot. The high temperature T=500K in the 
bottom plots is depicted with light color (pink), and the black color corresponds to low temperature T=100K. 
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Figure 29.  Overlap between (solid lines) the numerical simulations reported in the appendix of [11] for 
To={250K, 350K, 425K and 500K} and (symbols) the analytical expression of eq. (79), illustrated with data 
for the effective characteristic temperature TOEF (main plot TOEF/To vs. To/T) and the effective characteristic 
voltage φOEF≡kTOEF/q (inset, φOEF≡kTOEF/q vs. φT≡kT/q). The value of the exponential factor n=10 is taken 
as deduced for exponential DOS in Figure 28. TOEF and φOEF replace To and φo≡kTo/q, respectively, in 
analytical approximations based on exponential DOS, when the absolute temperature T is elevated close or 
above the characteristic temperature To of the exponential DOS, e.g., T>To/2. The dashed line in the main 
plot denotes TOEF=To at low temperatures, e.g., T<To/2. The dashed line (blue color) in the inset denotes 
φOEF=φT at high temperatures, e.g., T>2To. 
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Figure 30.  Better fit of (symbols) the analytical expression of eq. (80) for the “dominance of the larger” 
rule to (solid lines) the numerical simulations reported in the appendix of [11] for the temperature variation 
of the effective characteristic temperature TOEF of the exponential DOS. 
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Figure 31.  Comparison between characteristic values for DOS (left-hand plots) and carrier 
concentration NC (right-hand plots) after fitting of experimental data for mobility from [73] for a pentacene 
OTFT and assuming a normally distributed DOS (solid lines) and a single-sided exponential DOS (dashed 
lines), as function of absolute temperature T (upper plots, for VG=−20V, same data shown in linear and 
logarithmic scales) and gate bias voltage VG (bottom plots for low T=100K and high T=500K). The polarity 
of VG is inverted, since the pentacene OTFT is p-type transistor. The bottom-right plot NC vs. VG uses two 
vertical axes shifted one decade from each other for the two temperatures, because data overlap, since 
NC(D=0) and NC(LA) are almost independent of the temperature, as seen in the upper-right plot NC vs. T. As 
in Figure 28, the symbols denote the conditions at which the values are extracted, in particular, triangles (�, 
filled in blue color) for the semiconductor-gate dielectric interface (depth D=0), circles (, filled in red 
color) at condition for average bending avgVB – see eq. (70), diamonds (�, filled in green color) at depth 
D95%σsq  corresponding to sheet conductance 95% of σsq – see eq. (69), and squares (�, filled in yellow 
color) are for depth D=LA, where LA=LA,an is obtained after fitting the charge profile NC(D) from numerical 
calculations with NC(D)∝(D+LA,an)−2, see eq. (49). 
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Figure 32.  Film thickness dependence of the VRH film mobility in OTFTs at low (T=100K) and room 
(T=300K) temperatures, and at gate bias voltages VG, as indicated in the plots, by VRH calculations of 
single (∫dE) and multiple (∫∫dEdE) integrations with energy step dE=(1meV), (2meV) or (5meV), as also 
indicated in the plots with different labels, type and colors of lines. Double-exponential DOSDE, eq. (45), is 
assumed in the simulations with device and simulation parameters as listed in Table IV, except for film 
thickness tf (horizontal axis of the plots) and the integration step dE, which have been varied. (a) pentacene 
OTFT with parameter values obtained after the fitting shown in Figure 17(b) of the experimental data for 
mobility reported in [22] for one film thickness. The two dashed lines denote the electrostatic length LA for 
the two temperatures, connecting symbols corresponding to the three gate bias voltages. (b) PQT-12 
annealed-film OTFT with parameter values obtained after the fitting shown in Figure 17(c) of the 
experimental data reported in [60] for one film thickness, and by the two methods for VRH calculation with 
single ∫dE and multiple ∫∫dEdE integrations. (c) same as (b), but at different energy integration steps dE and 
only by the method of multiple ∫∫dEdE integrations.  
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Figure 33.  Film thickness dependence of mobility from numerical VRH calculation is coinciding with 
the trend for mobility in OTFTs [82]. Filled circles (�, blue color) correspond to the top dashed line in 
Figure 32 (c) for the virtual PQT-12 OTFTs of film thicknesses tf={10nm, 20nm, 50nm and 100nm}at room 
temperature T=300K and after VRH calculation by multiple ∫∫dEdE integrations with integration step 
dE=1meV. Open triangle (�) and diamond (�) are data from experiments with PQT OTFTs of film 
thicknesses tf=35-40nm, reported in [60, 77], respectively. Small open squares (�, gray color) are data 
collected in [88] for OTFTs with other organic semiconductors, coinciding with the trend lines to rubrene 
(1), pentacene (2), solution-processed polymers (3) and other “low-mobility” materials (4). The trend lines 
are according to eq. (82). The dotted polygon denotes the normally observed range for variation around 
material line (3), and the polygon corresponds to the margins for μz, εz and Sμ of solution-processed 
polymeric semiconductors, given also by eq. (82). 
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Figure 34.  Computational demand of one-dimensional VRH numerical calculation for one bias-
temperature point (VG−T). Circles (�, red color) for VRH calculation with multiple ∫∫dEdE integrations and 
diamonds (, blue color) for VRH calculation with single ∫dE integration, with quadratic and linear trend 
lines, respectively, correspond to the left-hand axis for computational time (in seconds) when using parallel 
computing of 18 or more (VG−T) points. Dashed lines correspond to the right-hand axis, as indicated by 
right-pointing arrows, denoting computational volume in GFLOPs for VRH calculation with multiple 
∫∫dEdE integrations (no symbols), VRH calculation with single ∫dE integration (squares �) and electrostatic 
calculation (triangles �). Dotted line (…, brown color) with small circles () depicts the average mismatch 
(errQG) by balancing the film charge with the gate charge (QG=COX|VG−VFB|) during the electrostatic 
calculations, and the vertical error bars are of size (~⅓errQG) for the standard deviation of errQG. All 
quantities are given as function of the horizontal axis for number (n) of points in the energy mesh 
E={Ebottom, (Ebottom+dE), (Ebottom+2dE), …, Etop}, as explained in previous sections, see between eqs. (16) 
and (18), for example. Since |Etop−Ebottom|~2eV, then an energy integration step of size dE=2meV 
corresponds to n≈1000. Note that (n) is in unit “thousands of points” in the expressions of the trend lines. 
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Figure 35.  Relative variations of mobility due to finite thickness tf<∞ of the semiconducting film in the 
OTFT. (a) as function of film thickness tf at a low temperature (T=100K, open symbols, blue color) and 
room temperature (T=300K, filled symbols, red color). (b) as function of temperature, and (c) as function of 
gate bias voltage VG. The data are after calculation with the approximate eq. (98) and the symbols are when 
the condition tf>2LA is satisfied in this equation. The trend in the plots is that the effective mobility 
relatively increases (as compared to the mobility μtf=∞ of infinite-thick film OTFT), when the film thickness 
(tf), the temperature (T) or the bias (VG) decrease. (The trends for the absolute magnitude of the mobility are 
different) The parameters used in the calculation correspond to Figure 32 (b) and (c) for the PQT-12 
annealed-film OTFT, assuming an exponential DOS, except for film thicknesses, and the values of the 
parameters are: COX=30nF/cm², εf=3εo=2.6×10−13 F/cm, To=270K, TOEFⁿ=Toⁿ+Tⁿ, n=10 for all plots and film 
thickness tf=20nm in plots (b) and (c). 
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Figure 36.  Comparison of the temperature shaping functions (TSF²) normalized to their constant 
multipliers, discussed between eqs. (108) and (111). The two plots show the same data for the normalized 
TSF² vs. inverse temperature, (a) on left; and proportional to temperature, (b) on right; in order to magnify 
at low and high temperatures, respectively. The horizontal axis of plot (a) is flipped so that the low 
temperature is on the left-hand side and the high temperature is on the right-hand side in both plots. Circles 
(, red color), diamonds (�, blue color) and squares (�, black color) denote the three TSF² of type 
sinc(πT/To), ΔT/[exp(ΔT)−1], and the power-law TSF²∝(To/TOEF)(TOEF/To), respectively, the latter TSF² 
defined by eq. (110) and the former two TSF² in [6]. The significance of the normalized TSF² is that it 
describes the deviation of the thermal activation of μo from Arrhenius law via temperature variation ΔEA(T) 
of the activation energy EA, since μo∝(TSF²)kTo/kT from eq. (108), then ln(μo)=EA0/kT+ΔEA/kT, where EA0 is 
temperature independent and the activation energy temperature variation becomes a logarithmic function of 
the variation of TSF², as ΔEA=kTo×ln(TSF²)=qφo×ln(TSF²), thus, at rate qφo, which is reflected in the 
complementary vertical axes on left in plot (a) and on right in plot (b). It was chosen To=403.2567 K in the 
calculations, in order to have round number for qφo×ln(10)≈34.75meV×2.3≈0.08eV, which synchronizes 
the linear axis for ΔEA with the logarithmic axis for the normalized TSF². 
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Figure 37.  Distributions of hopping time (solid black lines, being the same as the normalized 
distributions of hopping bonds) at several characteristic depths D in the semiconducting film of an OTFT at 
temperature T=300K and gate bias voltage VG=−20V, after VRH calculations with multiple ∫∫dEdE 
integrations. The parameters correspond to the pentacene OTFT from [73] in Table IV. The characteristic 
depths from top to bottom are D=0 (gate dielectric – semiconductor interface, electric field Eel≈1.2MV/cm), 
LA=0.55nm (electrostatic depth for QF=½QG, Eel≈0.64MV/cm), D95%σ=1.87nm (depth for 95% sheet 
conductance σsq, Eel≈0.3MV/cm), D=5nm (10%×tf, Eel≈0.12MV/cm), D=17.5nm (35%×tf, 
Eel≈0.04MV/cm), D=tf=50nm (semiconducting film back, Eel≈14kV/cm) and D=∞ (bulk material, Eel=0). 
Circles (, red color, aligned to the dotted trend line 0.4/τc) denote the critical hopping time τc=1/Γc for 
each depth D. The distributions are of type τⁿ with two values for the characteristic slope n. For the range of 
the “plateau”, n≈−¼>−1 between τmin≈τoexp(6)≈0.4ps and τmax≈τcexp(−6), where τmin and τmax are denoted 
with small diamonds (, blue color). The values corresponding to τmax are aligned on the trend line 
0.02/τmax. For the range τ>τcexp(6), the distribution densities gradually tend to 1/τ distribution, with 
(−0.9>n>−1), as depicted with the two dashed lines on the right-hand side and denoted with τ−0.9 and τ−1. 
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Figure 38.  Temperature evolution of the hopping time distributions (thin black lines, being the same as the 
normalized distributions of hopping bonds), increasing the temperature from (a) to (d). The device, the gate bias 
VG=−20V and the depths in the film are the same as in Figure 37 (e.g., labels D=∞, D=tf and D=0 from bottom 
to top denote a bulk material, the back of the semiconductor film and the interface with the gate dielectric, 
respectively). Thick solid lines (red color) labeled with “Average” are after weighed averaging with the charge 
profile NC(D), according to eq. (131), and coincide well (but slightly above) with the distributions at the 
electrostatic depths LA. Open circles () denote the critical hopping time τc=1/Γc for each depth D, and are 
always aligned around b/τ function (dashed trend lines, blue color), with b={0.32, 0.39, 0.43 and 0.43} being a 
logarithmic function of the temperature T, when T<To, and constant at T>To. The other straight dashed lines 
(also blue color) illustrate the slope of the τⁿ distributions, with n={−½, −¼, 0 and +¼}=(T/To−1), according to 
eq. (127). Note that the relaxation time, assumed in the range of the critical hopping time τc, decreases with the 
temperature, being τc={350 years, 9 minutes, 0.12 seconds and 0.6 milliseconds} for bulk material at 
temperatures T={200K, 300K, 400K and 500K}. The temperature variations of τc are much smaller under gate 
bias, just 2-3 decades at D=0 and D=LA close to interface with the gate dielectric, and almost vanishing at high 
gate biasing (not shown). 
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Figure 39.  Temperature evolution of the hopping conductance distributions in a pentacene OTFT, increasing 
the temperature from (a) to (d). The device, the gate bias VG=−20V, the depths in the film and temperatures 
T={200K, 300K, 400K and 500K} are the same as in Figure 38. Unlabeled thin black lines are for the 
distributions ∂σ/∂τ of the specific conductance σ(D) at different depths D in the semiconducting film from the 
gate dielectric interface on the top, down to the back of the film and bulk material in the bottom. Dotted lines 
(blue color) denote the approximations for ∂σ/∂τ by eqs. (139) and (140) with normalization coefficients A 
calculated by eq. (142), using in these equations τoexp(3) instead of τo for all temperatures, and τc/3 instead of τc 
for T=500K. The thick solid lines illustrate the distributions ∂σsq/∂τ of the sheet conductance σsq. These thick 
lines are labeled. The upper thick lines (red color) are for ∂σsq/∂τ at VG=−20V, corresponding to the on-state of 
the OTFT, and the lower thick lines are for ∂σsq/∂τ of bulk pentacene of thickness equal to the thickness of the 
semiconductor film of the OTFT, corresponding to the off-state of the OTFT.  
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Figure 40.  Transient VRH conductivity of a pentacene OTFT, as deduced by time demarcation between 
on- and off-states. The device, the temperatures T={200K, 300K, 400K and 500K}, the gate bias VG=−20V 
for the on-state and VG=0 (bulk semiconductor) for the off-state are the same as in Figure 39. The 
demarcation is between on- and off-states of the sheet conductivity σsq, with corresponding distributions 
∂σsq/∂τ, as shown by the thick lines in Figure 39. Arrows point to the lines of the evolution of the off-state. 
Arcs surround the lines of the evolution of the on-state. Open circles (○) illustrate the superposition of these 
evolutions. The steps of the gate bias voltage VG corresponding to transition from off- to on-state (on left) 
and from on- to off-state (on right) are depicted on the top of the plots for the sheet conductance σsq. 
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Figure 41.  Average distributions ∂(B/Bc)AVG/∂τ of the hopping time τ in a pentacene OTFT under bias 
VG≠0, calculated by the different hypotheses in eq. (147) for possible origin of the flicker low-frequency 
noise. The device and method of VRH calculation are the same as given in the caption of Figure 37. The 
reference plot is (b), and plot (a) is for low bias, while plot (c) is for high temperature. Labels  and black-
color solid lines correspond to non-weighted averaging (Y=1) of hypothesis (1), thus, represent the 
distributions of τ itself. Labels  and blue-color solid lines correspond to hypothesis (2) for Δμ noise by 
using weighting function Y=σ/NC∝μ in eq. (147). Labels  and red-color solid lines correspond to 
hypothesis (3) for ΔN noise by using weighting function Y=NC in eq. (147). Labels  and green-color solid 
lines correspond to hypothesis (4) for conductance Δσ noise by using weighting function Y=σ in eq. (147). 
Labels  and gray-color solid lines correspond to hypothesis (5) for correlated conductance-carrier number 
(Δσ−ΔN) noise by using weighting function Y=σ×NC in eq. (147). Observe that the distributions tend to 1/τ 
distribution (dashed lines) at τ>10μs, and the higher is τ, the smaller are the differences between the 
distributions obtained by different hypotheses. In contrast, large differences exist at τ<10ns, especially when 
increasing the bias - compare plots (a) and (b). Also, the slopes of the distributions vary with temperature, 
being τⁿ functions at τ<1ns, c.f. eq. (123), with n=(T/To−1) according to eq. (127) - compare dashed lines 
labeled with τ−¼ and τ+¼ in plots (b) and (c). Other observations are that the magnitudes of ∂(B/Bc)AVG/∂τ 
increase changing the hypothesis from  to , but ≈ and ≈ at high temperature, and  is just a 
little above  at all temperature and bias conditions. 
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Figure 42.  Single-carrier normalized noise Sn1 by the different hypotheses  in eq. (147) for 
the origin of the LFN in an OTFT. (a) For different temperatures T={200K, 300K, 400K, 500K} at gate bias 
voltage VG=−20V. (b) For different VG={−5V, −10V, −20V} at room temperature T=300K. The device and 
method of VRH calculation are the same as given in the caption of Figure 37. The insets show the values of 
the Hooge parameter αH and the frequency exponent β of the single-carrier flicker noise, after fitting the 
numerically calculated spectra Sn1 (main plots) with the approximation αH/fβ≈Sn1, see eq. (146). The insets 
in (a) are drawn vs. the reciprocal 1000/T of the temperature T, but note that the axes are linear. The insets 
in (b) are drawn vs. the magnitude of gate bias voltage; showing that both αH and β are nearly logarithmic 
functions of the bias. 
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Figure 43.  Device normalized noise SNORM by the hypothesis  in eq. (147) for Δσ origin of the LFN. 
(a) For different temperatures T={200K, 300K, 400K, 500K} at gate bias voltage VG=−20V. (b) For 
different VG={−5V, −10V, −20V} at room temperature T=300K. The device and method of VRH 
calculation are the same as given in the caption of Figure 37. The data also correspond to the subset  of 
the data in Figure 42 for the single-carrier normalized noise Sn1 and its approximation with αH/fβ≈Sn1. The 
solid lines in the main plots denote the numerical calculation SNORM=Sn1/NTOT, where NTOT is the total 
number of carriers. The dashed lines are after the approximation SNORM≈(αH/fβ)/NTOT. The insets show the 
split of the different contributions for the increase of SNORM from the increase of the reciprocal (1/NTOT), 
diamonds (�), from the increase of αH, squares (�), and from the decrease of the frequency exponent β of 
the flicker noise, triangles (�), so that f/fβ is larger when β is smaller. By this formulation of the split 
factors, the factors are with multiplicative contribution to SNORM, and therefore, are plotted in logarithmic 
scales when examining the contributions from variations with temperature and bias. The data points shown 
in the insets are scaled versions of (1/NTOT) and SNORM, in order to bring the data together with αH and f/fβ in 
plots with one vertical axis. The scaling multipliers are 3×1010 for (1/NTOT) and 1012 for SNORM. To avoid 
misinterpretations of the use of the multipliers, the numerical data shown in the insets are the original un-
scaled values of the quantities for the right-most points at T=500K and VG=−20V in (a), and at T=300K and 
VG=−20V in (b). The open circles (�) denote SNORM (or its scaled version in the insets) at an arbitrary 
chosen frequency of f=75 Hz. 
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Figure 44.  Power spectrum density of the OTFT channel noise current by the hypothesis  in eq. (147) 
for Δσ origin of the LFN. (a) For different temperatures T={200K, 300K, 400K, 500K} at gate bias voltage 
VG=−20V and drain bias voltage VD=−2V. (b) For different VG={−5V, −10V, −20V} and VD={−0.2V, 
−5V} at room temperature T=300K. Thermal noise (4kTσsqW/L) or shot noise (2qID) is added, as indicated. 
The device and method of VRH calculation are the same as given in the caption of Figure 37. The solid 
lines in the main plots denote the numerical calculation SID=ID²SNORM=ID²Sn1/NTOT. The tilted dashed lines 
represent the approximations with the de-normalized Hooge equation SID≈ID²αH/(NTOTfβ) for the flicker 
noise component, and the horizontal dashed lines depict the white noise due to the fundamental thermal or 
shot noise. The insets are arranged to examine the proportionality SID(75Hz)∝ID² at an arbitrary chosen 
frequency of f=75 Hz for SID. The open circles (�) on the solid lines and in the insets are SID(75Hz), as 
obtained from the numerical calculation with the white noise added. The squares (�) in the insets are the 
corresponding values for the DC current ID. For qualitative only comparisons, the gray symbols and lines in 
(b) are experimental data published in [120, 121, 122, 123, 124, 125] for several OTFTs of different sizes and 
fabrication approaches, since no data for noise are available for the particular pentacene sample, which 
mobility data is given in [73], and we have used the mobility data to determine the VRH parameters in 
Table IV. 
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This Figure 45 is in Appendix 4 
 
 
 
 

 
 
 
Figure 45.  Comparison between the full solution ID,FULL (solid lines), eq. (173) with hyper-geometric 
component, and the approximate solution ID,APPR, (circles ), eq. (174) without hyper-geometric 
component, for the drain current IDL/W in square-shaped OTFT. The dashed lines in (b) and (c) denote the 
difference ΔID=|ID,FULL−ID,APPR|. The trend is that ID,FULL≈ID,APPR, since the circles overlap with the solid 
lines, and the difference ΔID is a small fraction of a percent at normal gate bias |VG|>10V, but ΔID raises to 
about 10%ID in subthreshold regime, when the approximation with dominant gate charge QF≈QG is not 
precise. The parameters used in the calculations are T=300K, To=405K, TOEF=406.33K, COX=17.3 nF/cm², 
ε=3εo=265fF/cm, tf=50nm, η=0.0584 (S/cm)TOEF/T/C, VSS=0.8686V, resulting in values for b=4.64V−1 and 
a=3.6×10−12 (complex unit) calculated by the definitions in eq. (101). 
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