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Abstract

The charge transport in organic thin-film transistors (OTFTs) is assessed in terms of variable range
hopping (VRH), by numerical simulations, analytical analyses and comparisons to published
experimental results. A numerical simulator built on the fundamental relations for VRH, without
approximations, provides a simple key dependence that the sum of hopping energy and energy bending
under bias is equal to the hopping energy in the bulk material, the latter a bias-independent function of
the absolute temperature. This relation binds electrostatics and VRH in OTFTs, at various assumptions
for density of states (exponential, double-exponential and normal distributions). It generates and
confirms many analytical expressions accumulated over the years for mobility, conductance, potential
profiles in the depth of the organic semiconducting film and their relation to bias, film-thickness, also
explaining the performance of OTFTs at elevated temperatures. The relations between charges,
mobility and bias in OTFTs adhere from the above key dependence. We provide a method to obtain the
distribution of the hopping time, which establishes explanations to non-stationary effects in OTFTs,
such as dispersive transport, non-reciprocal transitions between on and off-states of the OTFT (usually
attributed to gate bias stress and charge build-up), and low-frequency noise in the OTFT channel

current.
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Nomenclature of abbreviations and notations

(Note that the notations in Appendix 4 and Figure 45 in it are not given in the list, and deviate from this

nomenclature)

Symbol
[primary unit]
(secondary units)

Meaning and comments

see

1D, 2D, 3D

One- dimensional, two- dimensional, three-dimensional. Mostly used for
vectors and matrices of numbers.

2HypGeom,=F,;

Gauss hyper-geometric function

eq. (103) and Appendix
4

A, a [various]

Supplementary notation for several quantities that have constant value as
explained in particular contexts

an [subscript]

Supplementary subscript, which explicitly denotes that the quantity is after
analytical approximation, e.g., Ncaq is calculated by eq. (49), whereas Nc is
taken from the numerical simulation.

text to Figure 24, eq.
(71) and Figure 28

avgVp [V]

Expected potential bending representative for the sheet conductance csq. The
value of avgVp is an average of bending profile Vg(D) weighted with the
profile o(D) of the specific conductance o.

eq. (70)

b [various]

Supplementary notation for several quantities that have constant value as
explained in particular contexts

B

Supplementary notation for values calculated during iterations that have to
meet a target value. In general, B denotes the bonds per site, or proportional
quantity, so that B(I'>I'c)=B(t<t.)=B..

eqs. (14), (20), (114)-
(118)

B. [number] B.~9/1=2.86 is critical number for three-dimensional percolation network egs. (3), (5)
(Bc~4 after other assumptions, see eq. (4.14) in [20]),

BPS [number] Supplementary notation for number of hopping bonds per site eq. (17)

CDM Correlation disorder model after eq. (127)

CFDOS [1/cm?] Supplementary notation for the cumulative sum of the product FXDOSxdE of eq. (27)
Fermi occupation factor, DOS and energy integration step dE at given energy
E

Ci=Cox [F/cm?] Gate dielectric capacitance per unit area

CS. [1/cm3] Supplementary notation for concentration of critical sites eq. (8)

dt [cm] Variable step for distance by numerical integration of Poisson equation. dt>0, eq. (32)

although t<0.

dE, dAE, dE,, dE;

Integration step for energy by calculations of Riemann sums

egs. (8), (14), (17)—(20)

[eV] (meV)
D [cm] (nm) Depth in the semiconducting film with a reference (D=0) at the gate dielectric before eq. (29) to eq.
interface and within the film thickness tr (D=ti=film back) 37
D" D"={La, Dos%ssq> Daveve} is a supplementary notation for the set of the three sec. 4.4.3 and Figure 27
[cm], (nm) characteristic electrostatic distances, defined below
Dosceosq = Dosoes Characteristic depth in the semiconducting film, which corresponds to 95% of | eq. (69)
[cm], (nm) the sheet conductance o,
Daveve Characteristic depth in the semiconducting film, at which the potential bending | eq. (70)
[cm], (nm) is with magnitude avgVsg. See also avgVp.
dD [cm] (nm) Non-uniform step in the depth D of the OTFT semiconducting film eq. (32) to after eq. (38)
DC [u] Static value for a quantity in unit [u]. DC=Xsrar. eq. (144)
DOS [em™eV™!] Density of states in semiconductor. DOS(E) is arbitrary, but predetermined egs. (3), (8)
function of energy E, and DOS is spatially uniform.
DOSpE [em~3eV~!] | Double-side exponential DOS eq. (45)
DOSNp [cm~®eV~!] | Normally distributed DOS eq. (58)
DOSsg [cm~eV~!] | Single-side exponential DOS eq. (22)
E, E;, E; [eV] Energy, energy of states i and j. See also AE. eq. (6)
Eac [eV] Bias-dependent thermal activation energy of the VRH sheet conductance cq. eq. (56);
Figure 19




Symbol Meaning and comments see
[primary unit]
(secondary units)
Eawo [eV] Bias-independent thermal activation energy for the mobility parameter p,. See | eq. (113)
Ho. There is an additional bias dependence of the thermal activation in OTFT,
which follows from the last (bias-dependent) term in eq. (106) via y by
(Vo)®*P/(2+7), which is a dependence that we did not discuss, because the
treatment is conditional, considering that the mobility is apparent quantity in
terms of VRH.
Er [eV] Fermi energy level in bulk semiconductor. See also IMREF and FB. eq. (6)
Eel [V/cm] Electric field induced by Vg in the film of the OTFT in the direction before eq. (29) to eq.
perpendicular to the plane of the film (36)
Ebottom [€V] Lower limit for energy integrations, see also Eip eq. (39)
En [eV] Hopping energy: the maximum energy difference of successful charge hopping | eq. (2)
(average value for the critical path in the percolation network)
Eurg [eV] Hopping energy in bulk semiconductor (no bias, bending V=0) egs. (30), (59)
E, [eV] Energy position parameter of DOS (For the single-mode DOS considered in egs. (22), (45), (58)
this work, E,=HOMO for p-type OTFT and E,=LUMO for n-type OTFT)
Eiop [eV] Upper limit for energy integrations, see also Epottom eq. (39)
Er [eV] Supplementary notation by eq. (50). Later is shown that Er=Eggs. egs. (50), (59)
errQg [%] Relative error of unbalance between gate Qg and film Qr charges due to finite | Figure 34
step dE in the numerical integrations.
errQg=|Qr/Qcs—1|x100%Oexp(dE/KT)—1~dE/KT when dE<KT
f(...) Supplementary notation for function
f [Hz] Frequency From eq. (144)
F,F., Fp Fermi occupation factor, for electrons and holes Before eq. (25)
[number <1]
FB [eV] Energy level, which satisfies the median condition for equal concentrations of | eq. (26)
occupied states below and above FB. Note that FB varies with bias when using
quasi-Fermi IMREF=Er+qV3, instead of Fermi level Er, to include the bending
Vg due to gate bias. FB is flat-band energy only if Vg=0, thus in bulk
semiconductor.
FBavg [eV] Another definition for FB as weighted average. Not used in the simulator. eq. (28)
FLOP Floating-point operation of multiplication. For other operations: summation =
YFLOP; division=2FLOPs; exponentiation=17FLOPs
HOMO [eV] Highest occupied molecular orbital in organic material (centroid level)
GDM Gaussian disorder model after eq. (127)
gm [S=EA/V] Transconductance of OTFT (differential). gn=0In/0Vsu
IMREEF [eV] Quasi-Fermi energy level by potential bending Vg, see FB. IMREF=(Er+qV3). | eq. (23)
Note that other definitions for IMREF exist in the literature, e.g., quasi-Fermi
levels for electrons and holes, while we do not use those definitions.
IFB [numerical Index in the energy mesh E, which corresponds to median condition of charge | eq. (27)
index] occupation, that is, FB=Ers. See FB.
Ip [A] Channel or drain DC current in OTFT
k [eV/K] Boltzmann constant (k=8.62x107 eV/K) eq. (2)
kT, kT/q [eV,V] Thermal energy in electron-Volts, same as thermal voltage in Volts egs. (2), (4)

L [cm]

Channel length of the OTFT

LUMO [eV]

Lowest unoccupied molecular orbital in organic material (centroid level)

La [cm] (nm)

Electrostatic length of bias induced charge. La is the depth in the
semiconductor film from gate dielectric interface, which corresponds to

D=OIL”‘NC(D)dD=1/2QG of the gate charge, Qg=Cox V.

egs. (47), (81)

LEN

Low-frequency noise

LSB [number]

Least significant bit

m [various]

Supplementary notation for multiplicative factor for several numerical
quantities, as always explained in particular contexts

MC

Monte Carlo method for numerical calculations

after eq. (127)

MTR

Multiple trapping and release

after eq. (127)




Symbol Meaning and comments see

[primary unit]

(secondary units)

n [number] Supplementary notation for several numerical quantities, as always explained
in particular contexts

nEq [eV] A guess for new value of Ey in the next cycle of iteration procedure with eq. (21)
gradual variation of Ey

Nc [1/cm3] Concentration of occupied charge states in DOS and carrier concentration for eq. (25)
VRH mobility. Use quasi-Fermi IMREF=Eg+qVs3, instead of Er, to include the
bending Vg due to gate bias.

Ncpo=Nc(D=0) Same as Nc, but for the semiconductor at the gate dielectric interface, thus, eq. (154)

[1/cm3]

Ncpo is Nc at depth D=0.

Ncrp [1/cm?]

Same as N, but for bulk semiconductor (no gate bias, thus, the electric field is
zero, E¢=0, and the potential bending is zero, Vg=0)
For an exponential DOS, Ncrs=Nsexp(—|E.—Eg|/kT.).

eq. (29), (155)

Ns [1/cm3]

0

T
Concentration of charge states for all energies, Ns= [ DOS(E) dE

egs. (22), (45), (58)

Nser [1/cm?]

Effective value for Ns, which varies with temperature, as deduced in [11] after
deconvolution of the integral Jdx/(1+x*) with exponential DOS

between eqs. (79) and
(80)

Nvc [ 1/cm3]

Gate bias induced charge concentration at Vg#Ves (Nvg is difference between
the non-equilibrium Nc at Vg0 and equilibrium Ncrs at Ve=0 for bulk
semiconductor)

eq. (34)

Nror [numeric]

Total number of charge carriers in the OTFT channel. See Snxorm.

eqs. (144), (145)

P, Pavs, P, PLa=1

Bias independent proportions of characteristic depths. P denotes any of
PavB=Davev/La, Ps=Dosiosq/La or PLa=La/LA=1.

between eqs. (76)-(77);
Figure 27

PEAKINGpos

“Peaking” of DOS. Characteristic constant for the DOS type

see after eq. (74)

PSD [u?/Hz]

Power-spectrum density. For noise, S(f) denotes PSD. [u] is the unit of the
quantity, for which PSD is given, e.g., [u]=[A] for current — see Sip.

q[C] g=1.602x10""" C is the magnitude of the electron charge eq. (3)

Qr [C/cm?] Charge per unit area in the semiconducting film (Qr~Qg) eq. (93)

Qg [C/cm?] Charge per unit area of the gate dielectric Qo=[Vs—(Vrs+Vss)]Cox, with eq. (31)
Ves=Vs(D=0)

Qg [Clem?] Supplementary variable for Qg during integration in the depth D>0 of the eq. (31)
semiconducting film Q=[Vs—(Vrs+Vs)]Cox, with Vg for D>0

R, Rjj [em] (nm) Hopping distance, distance between hopping sites i and j egs. (6), (7)

Ry [cm] (nm) Maximum distance of successful charge hopping (average value for the critical | eq. (2)
path in the percolation network)

Ryps [cm] (nm) Hopping distance Ry for bulk semiconductor (no bias, Vg=0) eq. (60)

Ro= A, Decay distance for the hopping rate, see A,

RECpos “Rectangularity” of DOS. Characteristic constant for the DOS type eq. (74)

Sc [number] Hopping critical factor (attenuation factor of VRH conductivity in the critical eq. (1)
path of the hopping percolation network)

Scrs [number] Hopping critical factor s. for bulk semiconductor (no bias, Vg=0) eq. (60)

ScTw [Number] ScTo~10+4 is extrapolated value for scrp at infinite temperature T=c0 eq. (61)

sEx [eV] Step prefactor for Ey by calculation of the guess nEy for the next cycle of eq. (21)
iteration procedure with gradual variation of Ey. See nEg.

Sy [number] Parameter in the exponent of the power-law trend for mobility deduced in [82]. | eq. (82)
Su is material dependent.

SM Scher and Montroll (dispersive transport formalism in [95]) eq. (126)

S(f) [u¥/Hz] PSD of noise for quantity with unit [u]. See PSD, Sip and Snorwm. eq. (144)

Sip [A%/Hz] PSD of the noise in the OTFT channel/drain current Ip eq. (150)

S~orm [1/Hz] Normalized power-spectrum density (PSD). Snorm=S(f)/DC2? eq. (144)

Sui [1/Hz] Normalized PSD of the noise of single carrier. Syi=ou/f*. See an. eq. (146)

T [K] Absolute temperature (in unit of Kelvin) eq. (2)

Ta [K] Characteristic “temperature” proportional to the electrostatic effective depth eq. (47)

La of the conduction channel at gate bias voltage Vg#0. Ta=<T, for an
exponential DOS. See also pa=kTa/q.




Symbol Meaning and comments see
[primary unit]
(secondary units)
Ts [K] Characteristic “temperature” for the logarithmic decay of the potential bending | eq. (48)
V3 in the depth of the film at gate bias voltage Vs#0. Ts=T, for an exponential
DOS. See also pp=kTr/q.
Tc [K] Characteristic “temperature” proportional to the carrier concentration Nc at eq. (49)
gate bias voltage Vg#0. Tc=T, for an exponential DOS. See also ¢c=kTc/q.
Teola [K] Effective characteristic “temperature” at absolute zero temperature. See
(PcoldEchold/ q.
Te [K] Characteristic temperature Tg=3830K in eq. (80), which we observe to fit the eq. (80)
data from numerical simulations of Fig. 6 in [11]
T, [K] Characteristic “temperature”, which describes the energy width (kT,) of the egs. (22), (45), (58)
distribution of DOS
Toer [K] Effective characteristic “temperature”, originating from convolution between egs. (79), (80)
Fermi and DOS distributions. For exponential DOSsg, Toer=T, at low
temperature T<T, and Togr=T at high T>T,. In many instances, Togr can
replace T,. See also @oer=kTorr/q.
Tox [K] Characteristic temperature parameter for VRH sheet conductance, which is egs. (55), (56);
proportional to the thermal activation energy Eas of 0. Figure 19
T [K] See A’ eq. (3)
ToF Time-of-Flight, a method for transient current measurement after injection of before eq. (126)

charge. The injection is usually by short illumination.

TSF [numeric]

Temperature shaping function in the TFT compact mobility model, introduced
in [6]

egs. (108), (110)

t [cm] Supplementary variable for distance with direction opposite to the film depth eq. (32)
D, by numerical integration of Poisson equation with step dt>0

t [s] time of observation after eq. (126)

tr = trm Semiconducting film thickness in OTFT

[cm] (nm)

Vs [V] Potential bending induced by the gate bias Vg causing non-equilibrium charge | before eq. (22) to after
in the semiconducting film of the OTFT. See also IMREF. The energy band eq. (23)
bending in semiconductors is (—q V), since the semiconductor band diagrams
are given for electron potential energy (by convention).

Vs [V] Ves=Vg(D=0) is the potential bending in the semiconductor induced by the egs. (31) and (48)
gate bias Vg at the semiconductor-insulator interface (D=0)

Vb [V] Drain bias voltage. The source terminal of the OTFT is assumed at zero
potential, that is, Vp=Vps.

Ves [V] Flat-band voltage potential in the bulk semiconductor (no gate bias); Vrs=FB eq. (29)

[eV] by eq. (26) when V=0, since IMREF=Er

Vi [V] Gate bias voltage. The source terminal of the OTFT is assumed at zero
potential, that is, Vc=Vgs.

Vox [V] Characteristic value that corresponds to extrapolated value of high gate bias, at | eq. (54);
which the temperature dependence in the VRH sheet conductivity is cancelled | Figure 19

Von [V] Von is the gate voltage Vg, at which the gate bias induces conductivity larger eq. (53), (54);
than the bulk conductivity, and Vo,~VEp corresponds roughly to the flat-band Figure 18
potential Vg

VRH Variable Range Hopping

Vs [V] Source bias voltage. The source terminal of the OTFT is assumed at zero
potential, that is, Vs=0.

Vr [V] Threshold voltage for the gate bias voltage Vg of the OTFT. The value is eq. (43)
extrapolated from above threshold regime — see 7.

W [cm] Channel width of the OTFT. Occasionally, W(x) also denotes the Lambert
function.

X, x [various] Supplementary variable for denoting different quantities in several equations,
as explained in particular contexts

Xavg [various] Averaged quantity, Xave=/XYdz/]Ydz, Y is weighting function eq. (130)

Xnew (1) Equilibrium (thermalized) fraction of X during transient process eq. (133)

Xorp(t) Non-equilibrium fraction of X during transient process eq. (134)




Symbol Meaning and comments see
[primary unit]

(secondary units)

Xsq [various] Sheet quantity (X per square-shaped area of the OTFT channel) eq. (130)
Xsrar [various] Static (DC) value of X eq. (132)

X(), ch,\

States of X before and after a transient process (at time t=0- and t=c0,
respectively)

eqs. (133), (134)

Y, y [various]

Supplementary variable for different quantities. See Xavc.

eq. (131), (147)

0=1/Ao [1/cm]

Orbital overlap parameter, see A,

eq. (3)

o [numeric]

Dispersive parameter by Scher-Montroll (SM) formalism in [95]

egs. (126), (127)

OH

Hooge parameter for magnitude of the flicker noise of one carrier

eqs. (144)-(146)

p=1

Frequency exponent of flicker (1/f) noise. PSD=S(f)=constant/f’

eqs. (144)-(146)

v [number]

Mobility enhancement factor, pLJ(Vg—V1)" at V> Vr. (If OTFT is a p-type
FET, then invert polarity of Vg and Vr.)

egs. (43), (105)

I, I [Hz] (1/s) Hopping rate, rate of charge hopping between sites i and j egs. (2), (6)
I'. [Hz] (1/s) Hopping critical rate (average rate of continuous hopping in the critical path of | eq. (2)
the percolation network)
I'ees [Hz] (1/s) Hopping critical rate for bulk semiconductor (no bias, Vg=0)
I'c [Hz] (1/s) Hopping attempt rate eq. (2)

St [%] Relative variation of the effective mobility p in OTFT with finite film egs. (96), (97), (98)
thickness, compared with the mobility =« of infinitely-thick film OTFT,
Su= (W pur=—1)x100%
S¢ [%] Relative difference of @oer from @, 3¢=(@orr—@1)/@1x100% egs. (112), (113)
AE, AEj; [eV] Maximum of the magnitudes of the energy jumps by hopping between statesi | eqgs. (6), (7)
and j and the Fermi level
AE, AT Supplementary notations for energy and temperature differences in TSF, between eqs. (110) and
obtained in [6] by assumption of Boltzmann statistics (111); Figure 36
AEg [eV] Parametric variable for hopping energy by evaluation of distribution of egs. (115), (116)
hopping time. AEy=0...Ey...
AN-Ap-Ac-At Notations for different hypotheses (assumptions) for noise origin Figure 41, Figure 42 eq.
(147)
€, [F/cm] Permittivity of vacuum, £,=8.85x10'* F/cm=85.5fF/cm
e=¢er [F/cm] Permittivity of the organic semiconducting film. In this work, we use average
(fF/cm) value of &=3£,~2.66x107"3 F/cm=266fF/cm.
g, [F/cm] Parameter in the power-law trend for mobility deduced in [82], £,=5%107' eq. (82)
F/cm (£30%)
1N [S1/?0er)/C] Parameter in the relation between charge qNc and VRH specific conductivity eq. (83)
c. In an ideal semiconductor @oer=¢r, and n=p becomes the bias- and
temperature-independent mobility. For an exponential DOS, 1) is also bias- and
spatially independent, but it is temperature dependent.
Ao [cm] (nm) Decay distance for the hopping rate I', '(R+A,)=T'(R)/exp(1) eq. (2)
N’=A, [cm] (nm) Supplementary notation for uncertain value of A,. A’0(T’/T)», with n~unity, eq. 3)
KT’ =4B/[ A*xDOS(EF)].
p [em?%/Vs] Effective carrier mobility in OTFT. p=0.y/Qc~0s/Qr is ratio of sheet eq. (42)
conductance to sheet charge, thus, L is sheet-type quantity.
up(D) [cm?/Vs] Carrier mobility at given spot in the depth D of the semiconductor (spot eq. (89)

mobility). up(D)=0(D)/qNc(D) is ratio of VRH specific conductivity o(D) to
the charge concentration [qNc(D)] at the spot with spatial coordinate D, thus,
Up is volumetric quantity. Distinguish from the effective mobility pin OTFT,
which is a sheet-type quantity.

Hpo=p(D=0)
[cm?/Vs]

Spot mobility in the semiconductor at the gate dielectric interface (depth D=0).
See up(D) above.

egs. (91), (92)

pes [cm?/Vs]

Mobility in bulk semiconductor (no bias, Vg=0). prs(T)=0rs(T)/qNcrs(T) is
temperature dependent, but spatially and bias independent.

eq. (89)

Uo [V Yem?/Vs]

Mobility in OTFT at gate voltage overdrive [Vg—Vr|=1V

egs. (106), (107), (108)

Hoo [cm?/ V5] Mobility prefactor in the TFT compact mobility model [6] eq. (108)
Uit=o [cm?/Vs] Effective carrier mobility in OTFT with infinitely-thick film, ti=00 eq. (96)
Wz [cm?/Vs] Parameter in power-law trend for mobility deduced in [82], p,=103cm?/ Vs eq. (82)

(+50%)




Symbol Meaning and comments see
[primary unit]

(secondary units)

o [S/cm] (S/m) Specific conductivity (S/m=A/Vm=100 S/cm) eq. (1), (63)
0o [S/cm] (S/m) Prefactor for specific conductivity (S/m=A/Vm=100 S/cm) eq. (1)

opo=0c(D=0)
[S/cm] (S/m)

Specific conductivity in the semiconductor at the gate dielectric interface
(depth D=0)

egs. (87), (88)

orp [S/cm] (S/m)

Specific conductivity o for bulk semiconductor (no bias, no potential bending
V=0)

eqs. (30), (64)

osq [S]1 (S/0)) Sheet conductance of the semiconducting film under gate bias Vg eq. (41)
o [S] (S/00) Sheet conductance of the semiconducting film at equilibrium (no bias, Vg=0) eq. (40)
osqx [S] (S/0)) Characteristic value for sheet conductance obtained by extrapolation of Vg to eq. (54);
Vax, at which the temperature dependence of 6, is cancelled. See V. Figure 19
T[s] Hopping time, 1=1/T egs. (114), (116)
Te [s] Hopping critical time (average time for continuous hopping in the critical path | eq. (114)
of the percolation network), t.=1/T";
Tmin, Tmax [S] Range of the “plateau” in the distribution of hopping times Figure 37,
eq. (128)
To [5] Hopping attempt time, 1,=1/T", after eq. (117)
oa=kTa/q [V] Characteristic “thermal-like voltage” proportional to the effective depth La of | eq. (47)
the conduction channel. See also Ta.
¢asc [V] Supplementary notation for @a, @B, ¢c and Qogr eq. (79)
o=kTgr/q [V] Characteristic “thermal-like voltage” for the logarithmic decay of the potential | eq. (48)
bending V3 in the depth of the film. See also Ts.
oc=kTc/q [V] Characteristic “thermal-like voltage” proportional to the carrier concentration eq. (49)
Nc. See also Tc.
Qcola=kTeoa/q [V] Characteristic “thermal-like voltage” corresponding to the value of Qogr eq. (79)
extrapolated to absolute zero temperature T=0. For an exponential DOSsg,
Peold=Po. See also Poer=kTorr/q.
¢pos [V] qopos=[0In(DOS)/OE] ! is the reciprocal of the logarithmic slope of DOS at eq. (71)
condition for average bending Vg=avgVsg, and ¢pos is compared with Qg an of
exponential DOS approximation
0o=kTo/q [V] Characteristic “thermal-like voltage” proportional to the reciprocal of the eq. (72)

logarithmic slope of the single-side exponential DOSse, o=¢pos,. Distinguish
from @reo.

ooer=kToer/q [V]

Effective characteristic “thermal-like voltage”, originating from convolution
between Fermi and DOS distributions. For the single-side exponential DOSsg,
POEF~Pcold~(o at low temperature T<T, and @oer=@r at high T>T,. In many
instances, Qogr can replace @,. See also Togr.

egs. (79), (80)

@r [V] (mV)

Thermal voltage given by definition as ¢r=kT/q. See also kT.

eq. (60)

910 [V] (mV)

¢1o~(0.8V%0.1)V is voltage parameter, determining the slope in the scrgJ1/T
temperature dependence. Distinguish from @,=kT./q.

eq. (61)

orrr [V] Bias-independent TFT specific voltage in the TFT compact mobility model [6] | eqgs. (108), (111)
Wy(t) Distribution density in SM formalism for dispersive transport [95] eq. (126)
IdE, JJdEdE Methods or approaches for calculation of VRH specific conductivity by single | eqgs. (13),(14);

JdE and multiple J|dEdE integrations (17),(18),(19),(20)
O(B/B.)/ot [1/s] Distribution density of hopping times. Eq. (117)




1. Introduction

Organic thin-film transistors (OTFTs) are essential building blocks for the organic electronics, which are
actively pursued for low-cost, large-area applications. Intended applications are wearable and disposable
electronic devices and flexible displays. The OTFT is normally an isolated-gate field-effect transistor
(FET), with characteristics similar to a MOSFET. However, compared with the crystalline-semiconductor
devices, the charge transport in OTFT is poor. To explain this poor charge transport, and in order to
replicate the assumptions in semiconductors, the classical semiconductor theory was significantly modified
in the so-called mobility edge models, separating the induced charge in two categories of trapped and
mobile charges. The trapped charge, being the larger and with zero mobility, is localized at certain energy
levels [1] or distributed in energy tails of states [2] inside an energy band-gap, whereas the mobile charge is
considered with a constant characteristic value for the mobility like in a band-like charge transport model.
With these assumptions in the mobility edge models, analytical models are developed and confirmed by
numerical simulations [1, 2, 3, 4]. Within the mobility edge framework, commercial numerical simulators
are also available, e.g., Atlas from Silvaco [5] and Sentaurus from Synopsys [4]. On the other hand, the
charge localization in organic materials implies that these materials should be understood in terms of semi-
insulators, rather than considered as poor semiconductors, since the charge is well localized in the organic
materials and spatially continuous transport bands are unlikely [6].

There are several approaches to explain the charge transport in materials with localized charges, assuming,
e.g., localization barrier lowering, metallic transitions (Mott-Hubbard), polaron excitation-relaxation, or
field emission. A common assumption in these approaches is that the charge is spatially and energetically
localized in states, wells, or grains of the amorphous material, and the charge hops between the states with
some probability and rate, according to the particular approach. Thus, one generally assumes the hopping
charge transport in insulators, but not the freely moving at the thermal velocity charge carriers in the
transport band of a semiconductor. One class of charge hopping theories considers that the charge

propagates through the material, overcoming various distances and energy barrier heights, with various



probabilities for successful hops, which is generally the situation in amorphous materials to which the
OTFT normally belongs. Owing to the assumption for non-constant distance-energy ranges of hopping, this
class of theories is known as variable range hopping (VRH). In this work, we address the numerical
simulation of VRH for OTFT to verify many analytical relations for these devices, from different
perspectives to complement the numerical simulations of mobility edge models. Surprisingly, reports of
fully numerical simulations of VRH for OTFT are lacking in the literature, perhaps due to the large
computational volume of these numerical simulations, although similar simulations of VRH have been
carried out for other cases, e.g., organic diodes and dispersive transport in amorphous layers. All these
numerical simulations, including the most recent (per March 2014), e.g., in [7], consider quasi-equilibrium
of spatially-uniform charge concentrations, while it is known that the charge concentration profiles in OTFT
are not uniform under gate biasing. Attempts to consider non spatially-uniform charge carrier density in the
channel of OTFTs can be seen in later dc compact-model proposals [8, 9]. The gradients in the OTFT
accumulation layers possibly affect the charge transport in OTFT [10]. Note that VRH does not assume a
transport band or distinguish between different types of charges, a concept more reasonable for semi-
insulators to which the organic materials belong, although it is possible to derive expressions and calculate a
“transport energy level” for VRH that is equivalent to an edge of the charge transport band [11, 12].
However, the discussions in [12] indicate several problems in determining the value of the transport energy,
e.g., it exists only for Gaussian density of states by consideration of low carrier concentration, and it
changes with a carrier-dependent Fermi level, the latter quite difficult to justify for a given material by the
established semiconductor and electrochemical theories. The overall impression from the literature is that
the band edge is not needed for hopping charge transport, in principle, and the band edge is introduced in
the simulation programs for convenience [4] to relate to experimental data for the effective mobility in
OTFT.

Recent studies on novel topologies of OTFTs or OTFTs working in different environments [13] use

closed-form analytical expressions for the drain current based on analytical VRH expressions with assumed
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VRH parameters [13, 14, 15]. One of the advantages of numerical VRH simulation is that it can be extended
to transistors based on 2D systems in which VRH transport is also present [16]. To the best of our
knowledge, 2D analytical VRH models are not available or they may not have closed form solutions. Also,
at present, numerical VRH simulation is still limited to bulk materials [17]. In addition, prior to analyzing
OTFTs or OTFTS working in different environments, , it is important to understand their charge transport
characteristics. Therefore, one the main objectives of this work is to build a numerical simulator from the
basics of the VRH transport.

After several preceding works of Hung and Gliessman, Conwell, Mott, Anderson, Abrahams and other
researchers in the period between 1950 and 1970 (please see references in [18]) it was established around
1970, e.g. in [19, 20], that the VRH conduction is a hopping of localized charges in a random percolation
network, and it is widely accepted over the years [21, 22, 23] that the VRH conductivity is given in principle
by

0=Ooexp(—sc) , (D)
where o is the specific conductivity in S/m or S/cm, and o, is the conductivity prefactor in the same unit.
The prefactor o, is a differential limit for the charge displacement in infinitely small distance dR— 1/o0. The
dimensionless factor s.>0 reflects the reduction of charge hoping in the critical path of the percolation
network of the amorphous material. The factor sc is a logarithmic measure of the difficulty, which the
localized charge meets when propagating through the percolation network, owing to finite distances, energy
and other barriers, or lack of empty site to move into, etc.

Conceptually, the critical path allows the localized charges to traverse a material in which there is not
a transport band for this charge. The critical path spans the material from end to end (micrometer scale or
larger), connecting nanometer-small conductive spots or clusters that may have s<sc, but these conductive
clusters stay separated from each other owing to the surrounding insulating media with s>sc. Thus, the
critical paths with s=s. determine the overall hopping conduction, because these paths provide connections

(called “bonds”) between the conductive spots with s<sc (called “sites”) in an otherwise insulating media
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with s>s.. The debate was and continues to be, what the factors and the expressions behind 6, and s. are,
what the particular formats of eq. (1) for different materials and structures are, and how to include
temperature, bias (and eventually light illumination or emission) in these equations. To find these, several
approaches were taken over the years, a variety of assumptions were made, and a vast amount of integrals
were solved in order to obtain analytical expressions for specific or more general cases. However, the origin
of the debate is that the VRH is a mathematical theory for a percolation network, in which the rules can be
introduced by different ways, and the physics is determined by the type of the rules and parameters
embedded in the otherwise purely mathematical template. Consequently, the equations for VRH and some
parameters in them are different for “similar” cases, owing to different physically sound assumptions,
sequences and techniques of substitutions (e.g., of semi-equalities or proportionalities), limits of integrations
and neglecting terms by various considerations. Unfortunately, examining at the literature, one finds the
final expressions, but not the detailed derivations, perhaps, because the derivations are bulky, and some
steps in these derivations may be questionable. The problem with evaluating VRH models and derivations is
evident at present, and it was addressed by critical discussions, such as in [7, 10].

In the next Sec. 2, we present the VRH expressions and methods for calculations, which we have used
in our numerical simulator. We are also aware that there is not a unique treatment of charge hopping and
many details in past works are missing. Since omissions of details may cause misinterpretations, we took
exceptional care to spell in which way we use these VRH expressions. Then, in Sec. 3, we will address the
issues for parameter assignment and will present the results from the numerical simulations compared with
experimental data. In Sec. 4, a detailed discussion will demonstrate the consistency of the results from the
numerical simulations, also outlining essential relations for VRH in OTFT. Building on these, in Sec. 5, we
will attempt to give an outlook for feasibility of numerical VRH simulations and a scenario for bridging
between analytical and numerical models for OTFT. While we are mainly focused on the stationary (DC)

behavior of the OTFT, we shall also provide in Sec. 6 links to non-stationary behaviors of OTFT, such as
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dispersion of hopping time, long-living tails by switching the OTFT and noise. Finally, we will summarize

in Sec. 7 our findings in the conclusions. Also, many details in the derivations are provided in appendices.

2. Theoretical background of the simulator and implementation
The general eq. (1) for VRH can be treated by several physical approaches, as can be deduced from the
references in [18]. Nevertheless, it seems that the most productive approach for VRH became feasible after

relating the critical factor s with the hopping rate I', by

-
S :1n(r—0J:z‘j\—H:i—¥ , 2)
C o

where I, is the hopping attempt rate, A, is a characteristic length which the charges overcome with
probability exp(—1), and the thermal energy kT is the product of Boltzmann constant (k=8.62x107 eV/K)
and absolute temperature T. It is seen in eq. (2) that only kT is providing the energy in VRH, which means
that all other sources of energy are neglected, the system is in a thermal equilibrium. The diffusion is
omitted, since no concentration gradient is present in eq. (2). Also, Ao, is a decay distance for the hopping
rate I', which is in a format similar to attenuation distance by tunneling, but one interprets Ao as a
localization distance or an effective molecular orbital overlap in organic materials, rather than as the
electron wave attenuation by tunneling. Corresponding to the percolation critical path, I is the average rate
of continuous hopping in the critical path, Ry is the maximum distance of successful charge hopping
between the spatially distributed charge-localizing sites (from here, we usually use “states” instead of
“sites”, since ‘“‘charge localization states” and “density of states, DOS” are widely used terms in
semiconductor theories), and En is the maximum energy difference that the carriers can overcome when
hopping between states with different energy. Note that Ry and En are effective values for maximum
distance and energy of hopping, thus, they are statistical expectations in distributions, and are not
boundaries of the distributions. To obtain expectations, one uses averaging; and we specifically use Ry and
En in the context of arithmetic averages. (In contrast, for example, the random walk in networks uses
quadratic averaging and variances.) Eq. (2) was introduced by eqgs. (4.9) and (4.10) in [20] with a=1/A,, and
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thoroughly analyzed there. Also by eq. (6.1) in [20], when relating the critical factor sc with the hopping rate

I', it was given that the conductivity prefactor o, in eq. (1) is

2
- q I_O — q rO (3)
(6] ' ’
kT A (ij/\0
q

where q is the magnitude of the electron charge, (kT/q) is the thermal energy in unit eV, or thermal voltage
in V, as used in the simulator, and A’~A,. Note that there is a theoretical uncertainty in eq. (3), since it is
mentioned in relation to eq. (4.5) in [20] that A’ might be not a constant, but a function of the temperature,
e.g. A’U(T’/T)», with n~unity, KT’=4B/[A*xDOS(EF)], where B.~9/n=2.86 is the critical number for three-
dimensional percolation network (B.~4 after other assumptions, see eq. (4.14) in [20]), and DOS(EF) is the
density of states (in unit, e.g., cm—eV~!) “slowly varying” at the Fermi energy level Er. For example,
00="3qo/[Ao(kTo/q)] was deduced in [21] after an assumption for random-walk hopping in exponential
DOSUexp[(E-E,)/(kT,)], with energy E being between Er and a boundary energy E, of the exponential
DOS, Er<E<E,, thus, n=1 and the temperature dependence in 6, effectively cancelled. One can find also
other expressions for VRH conductivity, e.g. in [24] for bulk material based on earlier works of Mott and
Davis and simple derivations in [23] that lead essentially to similar analytical results.

Approximate relations and uncertain values for several quantities are regularly observed in the
literature on VRH. Numerical simulators, on the other hand, require exact equalities and values of
parameters. Therefore, we state the following equation, which we think is the principal equation for the

VRH specific conductivity

_ q I, _Jarl,
0=<—-—<—exp|—s ={——=exp(-s . 4
B e °)}kz[ev} @
OT g K

K
The right-hand expression of eq. (4) is built in the numerical simulator, using k=8.62x107 eV/K for the

Boltzmann constant, since the energies are in eV in the simulator. For the other quantities in eq. (4): ¢ is in
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S/em=A/(Vem)=(S/m)/100; s. is as defined in eq. (1) and obeys the relations in eq. (2), having the meaning
of dimensionless natural-logarithm measure for reduction of the hopping rate I'.=I'oexp(-sc) in the critical
path of the percolation network, as compared to the hopping attempt rate I'o; I'c and I’y are in Hz=1/s; A, is
in cm, being a characteristic length, which the charges overcome with probability exp(=1); g=1.602x107!° C
is the magnitude of the electron charge; and T is the absolute temperature in K (Kelvin).

With values depending on theoretical treatment of VRH and assumptions for the DOS, T', and A, are
implemented as constants in the simulator (their values will be defined later for specific cases), leaving for
the  prefactor  6o=ql'o/(KTAo)lk=evk; a  multiplicative  uncertainty in the order of
[AX(T/T*)"]~0.05+£2.2decades for temperatures T=100-300K, with A~0.3*ldecade, n~0-2 and
T’~200-1000K. The hopping models use the concentration of charge states Ns as the concentration of
hoping sites [10]. Owing to a relation (bA,)3*=1/Ns, b~2-10, both ways of using A, or 1/Ns” are identically
applicable in expressions related to hopping. The parameter b is normally embedded in another parameter,
e.g. regarding eq. (4), as a divider of I, or In(b) is added to s, as in [10].

Eq. (4) is computationally efficient, no iteration loops or large matrices, requiring 3 multiplications
(~FLOP each), one division (~2 FLOPs) and one exponentiation (~17 FLOPs), altogether about 20FLOPs
(floating point operations) and less than 100 bytes of memory. However, the calculation of the value of s.
that is used in eq. (4) is computationally extensive, as we discuss below. Therefore, we also keep track in
Table VI of the computational volumes related to VRH calculations.

The determination of s. is not trivial, because eq. (2) does not provide a method for its calculation and
includes three unknowns, namely sc, En and Ru. Thus, some assumptions are required, as detailed in [20],
and summarized below.

i) Geometrical assumption. This first assumption provides that the hopping site has sufficient number
of bonds to other sites in the critical path of the percolation network. This critical number of bonds per site
for hopping in three-dimensional percolation is denoted with Be, and satisfies the following relations [20, 21,

22],
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B, = (Critical number of bonds per site)

= (Concentration of critical sites) X (Mean hopping distance between critical sites)3 , (5)

_ Concentration of critical bonds

Concentration of critical sites

where the first line of this equation is as per the appendix of [21], the second line is given by eq. (4.12) in
[20], and the third line is given by eq. (5) in [22]. Any of the approaches in eq. (5) to calculate the critical
number of bonds per site results in similar integrals. Also, as mentioned above, B.~9/1=2.86 is estimated for
uniform DOS from eq. (4.13) in [20], but immediately in eq. (4.14) in [20], the value was revised to B¢.~4
after additional assumptions. In addition, different geometrically-only approach was undertaken in [7], using
different formulation of the critical path (overlapping spheres with radii larger than L'=%2A,To/T and
distance between the spheres’ centers less than L"), resulting in another number, 0.219, for concentration of
these spheres in a volume (L")3. Comparison of different hopping models in [10] also implies that Bc is not a
unique number and varies between different hopping models derived by different assumptions and
techniques. Nevertheless, following the classical formulation for critical path as the ratio of bonds to sites,
we have adopted B.~9/n=2.86 from [21, 22], and therefore, we use this value in the numerical simulator.
However, it should be noted that the uncertainty for the value of B is about 30%.

ii) Sum of difficulties assumption. The second assumption for the calculation of s. is that the hopping
rate [" depends on the “sum of difficulties”, that is, the hopping between sites i and j is with lower rate I'j; for
larger distances Rjj and larger energy differences |Ei—E;| between the sites. From a detailed balance of charge
around the Fermi level Er, and at quasi-equilibrium, it is derived in [20] that the measure s;j of the difficulty

for hopping between sites 1 and j is

r
Sij =In (I_—OJ
ij

:2&4_ EI_EJ‘+|E1_EF|+‘EJ_EF‘ (6)
. 2KT
:2E+max(Ei—EJ~‘,|Ei—EF,Ej—EFD Ry, OB
KT A, KT

o (6]
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where AE;; is the maximum of the magnitudes of the energy jumps by hopping between states i and j and the

Fermi level. When considering the critical path with s, then one obtains

-
se=In| =2 |= 2 R L LBE S0, with Ru>R>0 for 0<AE<E, (7)
r. A, kT

where the hopping distance R and energy difference AE can vary between different hopping states, but their
sum weighted by 2/A, and 1/KT in eq. (7) is equal to sc; and the sum is (on average) independent of the
particular pair of values for R and AE.

iii) DOS assumption. The above “geometrical” and “sum of difficulties” assumptions for VRH provide
two relations for the three unknowns, namely s¢, En and Ru. The third relation is from their link to the DOS.
Various approaches to combine these three relations can be found in [7, 10]. We have implemented two
approaches of single [dE and multiple [|[dEJE integrations in the numerical simulator. In these approaches,
one gradually increases the hopping energy Eq in iterative calculations with predetermined and, thus, known
DOS, until both the “geometrical” and “sum of difficulties” assumptions are satisfied. The details for single

[dE and multiple [J[dEJE integrations are given in Secs. 2.1 and 2.2.

2.1. Determination of energy En, hopping critical factor s, and distance Ry by single |dE
The simplest approach to determine sc is indirectly proposed in [20] by taking a nearly constant DOS.
Consider the second line in eq. (5). Guess a value for the maximum hopping energy En and, corresponding
to that guess, obtain from eq. (2) the maximum hopping distance Ru=(Ao/2)(En/kT). The concentration of
critical sites is
+Ey
CS. (Ey)= [ DOS(E +AE)dAE )
-Ey
Consider that the spatial distribution of the states is uniform. Then, the mean hopping distance can be

obtained as the average of the normalized spherical volume, because Ry is a constant, and
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(R)’ =R} <i>3 ©)

Ry
The normalized radius r of the sphere is the ratio R/Ry, thus r is between 0 and 1, and the volume of the
sphere is 4nr3/3. From eq. (7), R is a linear function of AE, and R=0 when AE=En. Conversely, R=Ry when
AE=0. Therefore, in normalized form

r(AE):£:1—M20 for |AE|<En, (10)
Ry Ey

and the average volume of hopping around a state becomes

(11)

+Ey 3
R} | in(1_|AE|j {DOS(EFME)}IAE
3 Ey CSc (EH)

where the averaging is weighted with the term [DOS/CS.] in the square brackets. The term [DOS/CS.] is the
probability density to have the state with energy (Er+AE) within the population CSc(En) of critical sites
with energy |AE|<En; and CS. is given by eq. (8). Note that CS. is a constant in eq. (11), and can be moved
outside the integral together with 4n/3. Therefore, substituting egs. (8) and (11) in the second line of eq. (5),
CS. is cancelled, and using Ru=(Ao/2)(En/kT) from eq. (2), one gets

37]+Eq 3
BczfnﬂﬁE—H” | (1—M] DOS(Ef +AE)dAE (12)
302 k1) | ¢ Ey

H

One sees in this equation that the left-hand side is a constant and the right-hand expression is a function
only of one unknown, the hopping energy En. Thus, this equation can be solved to find En. In the numerical

simulator, the equation is arranged as

6B, (kT 2 ° o
targetZTCL/\—j = [ (Eq+E)’ DOS(Er+E)dE+ [ (Ey-E)’DOS(Egp+E)dE,  (13)
o/  _Ey 0
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with AE simplified as E in the notations. Since En is determined by one integration, then we denote this
approach as “single [dE”. The simulator gradually increases the value of Ex in an iterative procedure until
the integration reaches the target value of (6B./m)(kT/Ao)3, as indicated by the question mark above the

second equality sign. The integration is implemented by simple Riemann sums. In particular,

3 +E;; /dE (Ey —E;)*, ifi>0
_6B. (kT | ? _ i e
target = ;T--JNEqum Y. DOS(Eg+E;)x<1,ifi=0 (14)
0 l:_EH/dE

(Ey +E)’, ifi<0

where B(En) is the value calculated by the right-hand expression. The computational volume of eq. (14) is
moderate and the required memory is also not large — see Table VI. After the iterations, the value of the
hopping energy En is known, and the critical factor sc=En/kT is calculated from eq. (2). From the right-hand
equality of the same equation, although s. is already known, the hopping distance Ru=(Ao/2)(En/kT) is also

calculated at the assumed values for A, and kT.

2.2. Determination of energy En, hopping critical factor s., and distance Ry by multiple [[dEdE
The second approach implemented in the simulator for combining the “geometrical” and ‘“sum of
difficulties” assumptions for VRH is based on eq. (6) with detailed energy differences between hopping
states and Fermi level. The calculation follows the procedure proposed in the appendix of [21] for cases
when the DOS is not slowly varying. In contrast to the approach of single JdE, one needs to scan the entire
2D mesh (E;,E;) of energies to find the differences AE;j and eliminate those with magnitude larger than Ep,
and then, to calculate hopping distances Rjj and to perform 2D averaging. Thus, the calculation is 2D; it is in
several steps and with multiple integrations. Therefore, we denote this approach as “multiple [[dEdE”,
detailing below the calculation steps in this approach. Note that E; and E; are independent variables that also
independently span the entire range of energies Ewp>E(max(DOS))>Er>Epowom With a step dE (invert the

inequalities for p-type devices, as are the OTFTs normally).
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2.2.1. Determination of the range of hopping distances in multiple [[dEdE
The hopping distances Rj; is a 2D matrix for each pair (E;, E;j), and Rj; also depend on the guess for
maximum hopping energy Eq. When considering the critical path with s, then sijj=sc=En/kT from eq. (2),

and eq. (6) is rewritten as

e )
C

E,-E:|,|[E;, —Eg|,|JE;:-E (1>
:2ﬁ+max( i jp i FM j FD
o kT
Solving for Rjj, one gets the hopping distances at given Eq as function of E; and E; from
_ /\O
Rj; (Ei,Ej,EH) = 2kT max{O,EH —max(Ei —Ej‘,|Ei —Eg|.[E; —EFD} (16)

The two functions max(...) choose the maximum of the energy jump and eliminate bonds that require a
jump larger than En. Eq. (16) is simple for coding, but it is computationally extensive because it is 2D and

requires large memory, as seen in Table VI and explained in Appendix 1.

2.2.2. Determination of average hopping bonds for each E in multiple [[dEdE
This is the first integration along energies E;. It calculates volumetrically the average number of hopping
bonds per site (BPS) with energy E;, from
+Eg 4 3
BPS; (E;.Ey)= | gr:[Rij (EIEJEH)} DOS(Eg +E; ) dE;. (17)
“Ey
having the averaging weighted by DOS; for the states with energy E; receiving the charge from states with
energy Ei. BPS; is a vector of size n=(Ewp—Ebotom)/dE~2000. The integration is implemented in the
simulator by a simple Riemann sum, as
+Ep /dE 3

BPSi(Ei,EH):%TrdE > [Ry(EiEjEx)| DOS(ER+E)). (18)
i=Epotiom /dE
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While simple for coding, one should be very careful with this equation, because it is computationally the
most extensive — please see Appendix 1 and Table VI for eq. (18). One must convert the exponentiation
(Rij))? into multiplication (R;RjjRj) in order to have acceptable computational throughput. Sparse
multiplication, omitting R;j=0, would greatly reduce the computational volume. However, we did not use
sparse matrices, in order to minimize the probability for human errors by coding, since the sparse matrix
operations require code overhead for checking of omitted elements, changing the manner of the
computation. The consequence was that we needed to run parallel computing, which we could afford in the
particular investigation, but it is not desirable for commercial simulators in general, since the conductivity

or mobility calculation is just one of the many tasks to be performed for simulation of the current in OTFTs.

2.2.3. Determination of the overall average of hopping bonds per site in multiple [[dEdE
This step determines the value that has to be compared with the “geometrical” assumption for VRH, the
critical number B. of bonds per site, according to the first line of eq. (5) and comprises weighted averaging

of BPS; along Ei. The weighting is with the density of bonds, and mathematically corresponds to

7 *En (E. .
target =B, = j BPS; (E;,Ey) +EHBPSI(E1’EH)DOS(EF+EI) dE;, (19)
“En | BPS; (E;,Ey) DOS (Ef, +E; ) dE;
L "En

where the weighting function is the product of hopping bonds and hopping sites for each energy Ej, in the
numerator in the square brackets, divided on the integral of this product for all energies in the denominator.
As in egs. (13) and (14), the question mark above the second equality sign indicates that En is gradually
increased in this and preceding steps of calculation by multiple [[dEdE, until the target value of B is
reached. Converting the integrals into Riemann sums, one also rationalizes the expressions, since the
integral in the square brackets is a constant for the outer integral, and by cancelling the same uniform
integration step dE; in the numerator and denominator, achieving
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+E,, /dE
> BPS;(E;,Ey)BPS; (E;,Ey )DOS(Eg +E;)
i:Ebottom/ dE
+E,, /dE ’
> BPS;(E;,Ey)DOS(Eg +E;)
i:Ebottom/dE

9

target = B, £B(EH) =

(20)

where B(En) is the value calculated by the right-hand expression. The computational volume of the right-
hand expression is moderate, since BPS; and DOS are vectors; see Table VI and Appendix 1.

Thus, the multiple [[dEdE is an iteration loop of three steps of calculations with egs. (16), (18) and
(20), in which the value of En is gradually increased, until B(En)=B. is reached and the iteration is
terminated. After the iteration, the value of Eg is known, and the critical factor sc=Eu/kT is calculated from
eq. (2). As in the single [dE, the hopping distance Ru=(Ao/2)(En/kT) is also calculated at the assumed

constant values for A, and kT.

2.3. Summarizing comparison between the single /dE and multiple [[dEdE
To summarize, both methods of calculation use a given range (Ewp—Ebotom) Of energies E, arbitrary but
predetermined DOS(E), Fermi level Er and a guess for the hopping energy En. The guess for En is ramped
gradually in the iteration loop until the calculations reach a target value that corresponds to the
“geometrical” assumption for the critical number of bonds per hopping site. The last used value of Eq is
then the hopping energy, from which the critical factor sc=Ew/kT and the hopping distance
Ru=(Ao/2)(En/kT) are calculated using eq. (2).

The calculation approaches of single JdE and multiple [[dEJE integration are fully numerical. They are
based on the principles for calculation of the VRH conductivity in a 3D percolation network, but not on
analytical expressions that are valid only for particular type of DOS, e.g., exponential, or other various
assumptions for DOS in analytical derivations.

The approach of single [dE integration is a one-step calculation, which uses eq. (14) to calculate the
value B(En) with a target value of (6B./n)(kT/Ao)3, and the computational volume with this approach is

small to moderate, scaling nearly linearly with the size n=Ew/dE of the energy mesh. For
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n=En/dE~1eV/1meV~1000, the computational volume and occupied memory are given in Appendix 1 and
in line “sum 1~ of Table VL.

The approach of multiple [[dEdE integrations is three-step calculation, which uses egs. (16), (18) and
(20) with a target value of B¢ for the result B(En) from the latter equation. The multiple [[dEdE is
computationally extensive, because it requires spanning the 2D mesh of size n? for the entire range of
energies. Consequently, the computation scales as n? in the approach of multiple [[dEdE integrations. For
n=(Ewp—Ebottom)/dE=2eV/1meV~2000, the computational volume and occupied memory are given in
Appendix 1 and in the line “sum 2” of Table VI.

Both approaches follow a similar iteration procedure for determining En by a gradual variation of the
values of En, until the calculations match the abovementioned target values, as explained below. One can
also utilize other approaches for VRH calculations. However, we shall restrict the numerical simulations to
the above two approaches of single |dE and multiple [|dEE integrations, because these two approaches are
the most basic methods for the determination of the VRH conduction for any type of DOS or combination
of types. We have noted in the literature [7, 10, 12, 20, 21, 25] a vulnerability of the analytical expressions
with respect to assumptions and derivations of VRH models, overlaying VRH with assumptions for DOS

type [10, 12, 21, 25] or changing the rules of the percolation network calculation [7, 20, 21].

2.4. VRH calculation module
Figure 1 depicts the iteration procedure of the VRH calculation, which first determines the hopping energy
En and then the other VRH quantities mentioned in the previous Sec. 2.3. The input variables for the VRH
calculation module are the Fermi level Er~+1eV(max), the uniform energy 1D mesh E, and the 1D vector of
DOS values for the same energy mesh. The energy mesh is with range (Ewp—Ebottom)~2eV and step
dE~1meV. The energy mesh E and DOS(E) are generated in the electrostatic part of the simulator, which

will be presented later. A selector chooses the branch either of single |dE or multiple [|[dEdE integration.
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The selected branch calculates the value B(En) corresponding to the guess for Epn, the latter initially

En=sEn~kT. After the calculation, a new guess nEn of gradual variation of the hopping energy is made, by

_ B(Ey) | . -
nEy =Ep +sEg xIn oot | with nEy >min(Ey) ~ kT /100, 21)
arge

where nEn is used instead of En in the next iteration. The variation of En is gradual, owing to the
logarithmic function, and one must also take care setting nEx to a minimum positive value ~kT/100, if the
new guess nEn is wrong, e.g., nEx<0. The variation of Ex should be chosen gradual between iterations,
since the integrals are steep functions of En. Then, one repeats the iteration procedure until the difference of
En obtained after two consecutive iterations is small e.g. nEn—En< £1071=4LSB (least significant bits) by
double precision. With the value for Ex from the last iteration, one calculates the critical factor sc=En/kT by
eq. (2) and from it, the final result for VRH specific conductivity c=c.exp(—sc) by eq. (1) with
co=ql o/[Ao(kTo/q)] from eq. (3). It is sufficient to return ¢ and Ex from the calculation, and if necessary,
one can also obtain the value for the hopping distance Ru=(A/2)(En/kT) from eq. (2).

The convergence of the iteration procedure is illustrated in Figure 2 for the surface and the back of the
pentacene TFT using the parameters given in Table IV later. One observes that the rate of convergence is
about one decimal digit for Eg per 3-5 iterations. Thus, for 15 digits, one has 50-80 iterations, but rarely
more than 100 iterations (at low temperature). Therefore, “100 max” is stated in column “iterations” in
Table VI, and the computational volumes in rows “suml” and “sum 2” correspond the computational
volumes of the VRH calculation module operated in the branches of single JdE and of multiple [J[dEJE
integrations, respectively. The computational volume of the gradual stepping of Ex by eq. (21) is small, as
seen Table VI and explained in Appendix 1, compared to the computational volumes in the branches.

So far, we have presented the VRH numerical simulator for equilibrium, that is, for bulk material,
without non-equilibrium charge and potential bending Vg induced by the gate bias Vg in the
semiconducting film of the OTFT. Reviewing eqs. (11)-(14) and (17)-(20), one observes that the potential
bending has to be included in the argument for the expressions for DOS, replacing the Fermi level with a
quasi-Fermi level, known also as IMREF. The gate bias Vg induces the bending voltage Vs so that the DOS
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becomes “closer” to the Fermi level Er at higher bias, as illustrated in Figure 3. The bending voltage
represents the bending of the semiconductor energy bands through (—qVs). The polarity inversion is due to
the convention that the semiconductor energy diagrams are given for the potential energy of electrons. The
Fermi level crosses the DOS tail, although Er might be not able to cross the HOMO centroid level even at a
high bias, since this is equivalent to ionizing almost every single molecule in the organic material, which
corresponds to very high carrier concentrations above 10! cm™. To clarify the following definition of

IMREEF, consider an exponential DOS for holes, given by

N E -E
DOS(E=E., Vg =0)=DOScp = —2 exp| —2
( o° VB ) SE kTO P( kTO ]

=f[E, ~Ep~(E~Eg)]=f[(E, ~Ef)+AE | =DOS(Eg + AE)

(22)

where Ns is the total concentration of states in 1/cm3, T, is a characteristic “temperature” that describes the
width and steepness of the exponential DOS, and E, is the HOMO level for bulk material with no bending
Vg=0. As shown in the second line of eq. (22), the DOS can be rewritten as function of the difference
(Eo—EF) and a span of energies (+AE), and thus, as a function DOS(E)=DOS(Er+AE), as used in the VRH
calculations by egs. (11)-(14) and (17)-(20) above.

When the gate bias voltage Vg is applied, then the HOMO levels near the gate oxide bend with
(—qVB), as illustrated in Figure 3, and HOMO=E,—qVs. Consequently, since HOMO is shifted at Vg0,

then the DOS shifts with the HOMO level, and the DOS becomes

N E, -qVg —E
DOS(E2E, ~qVg) =- exp( o I?TB j
(6] (0]

=f[E, ~Ep —qVg ~(E-Eg) | =f{[E, - (Er +qVp) ] £ AE} (23)
=f[(E, ~IMREF) £ AE | =DOS(IMREF £ AE), with IMREF =Ef +qVp
Note that defining the quasi-Fermi level as IMREF=(Er+qVg), then one embeds in IMREF the potential
bending Vg in the semiconducting film, and IMREF plays the same role in eq. (23) at Vs#0, as the Fermi
level Er plays in eq. (22) at Vg=0. Note also that there are also other definitions for IMREF in

semiconductors, e.g., quasi-Fermi levels for electrons and holes, while we do not use those definitions.
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The interplay between Er and IMREF is perhaps the reason why in many publications [4, 7, 10, 25]
IMREF is termed as Fermi level, and varied with charge concentrations in order to relate charge
concentrations and mobility in cases between no bias and with bias applied to the OTFT, or between OTFT
and organic diodes. Observe in eqs. (22) and (23) that the DOS is not a function of Er or IMREF. However,
compare the first and last lines in eq. (23). In the first line, the DOS is bent “down” with (—qVB) to pick a
value at E=(Er+AE), with Er=constant. Conversely, IMREF in the last line of eq. (23) is bent “up” in the
opposite direction by the same amount qVg so that a un-bended DOS picks the same value (IMREF£AE), as
the bended DOS picks from (Eg+AE) in the first line. Therefore, to account for the potential bending Vs due
to a gate bias, in the numerical simulator, one simply passes IMREF to the VRH calculation, instead of Ef;
please see again Figure 1 and the call-list in it. The potential bending voltage Vg and IMREF=(Er+qVB) are

determined from the electrostatic calculations described below.

2.5. Electrostatic calculation module
The electrostatic computation consists of charge-energy calculations inside an iterative loop of charge-

distance calculations, the latter solving the 1D Poisson equation.

2.5.1. Charge-energy calculation module
The module for charge-energy calculations first generates the vector of the 1D mesh of energies E with a
size (nx1) from Epottom to Erwp in steps dE. Thus, Ebottom, Ewp and dE are single value input parameters for the
charge-energy calculation module. The size of the vector E is n=(Ewp—Ebottom)/dE~2eV/1meV=2000. Then,
the module generates several other vectors of size (nx1) with values for each element in this energy mesh E.

One vector is DOS, given by
DOS(E) =f (E,DOSparam), in unit, e.g., cmeV~1, (24)

where f(...) is the function of the particularly selected DOS with specific parameters DOSparam, and f(...)

and DOS are functions of the energy E. For example, DOSparam contains Ns, To and E, for exponential
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DOS, with f(...) given either by eq. (22) above for single-side exponential DOSsg, or f(...) given by eq. (45)
later for double-side exponential DOSpe. The function f(...) can be changed in the charge-energy
calculation module, e.g., uniformly or normally distributed DOS, or combination of them, providing also the
values of the DOSparam corresponding to the particular f(...).

The vectors E and DOS(E) are return results from the charge-energy calculation module, because E
and DOS(E) are used in the VRH calculation module. The computational volume for generation of the 1D
energy mesh E and the DOS vector are shown in row “eq. (24)” of Table VI and explained in Appendix 1.
The remaining vectors generated by the charge-energy calculation module are temporary and used only
within the electrostatic calculation module and for visualization of the computation in this module, c.f.
Figure 11.

Another (nx1) vector generated at the energy mesh by the charge-energy calculation module is the
Fermi occupation factor F(E-Er)=F.(E—Er)=1/{1+exp[(E-Er)/kT]} for electrons, or its complementary
F(E-Er)=F,(E-Er)=1/{1+exp[—(ErF—E)/kT]} for holes, the latter applicable for an OTFT, which is normally
a p-type field-effect transistor. The Fermi level Er is single-value input parameter for the charge-energy
calculation module. The computation volume for the calculation of the Fermi occupation factor F is
included in row “eq. (27)” of Table VI and explained in Appendix 1, since F(E) appears only in product
with DOS(E).

Having the F(E-Er) and DOS(E) vectors, the concentration of occupied states N¢ (in unit, e.g., cm™),

being also assumed as carrier concentration in VRH, can be calculated from

+o00 Etop
N¢ = j F(E-Ep) DOS(E)dE = j F(E-Ep) DOS(E)dE
—o Epottom (25)
n
=dE) EDOS;

i=1
where Fi=F(E;—Er) and DOS;=DOS(E;) are the elements of the vectors F and DOS for the elements E; in the
energy mesh E, and n=(Ewp—Ebotom)/dE, as mentioned above before eq. (24). The integration is implemented

in the charge-energy calculation module as a simple Riemann sum, given by the last expression in eq. (25).
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The concentration of occupied states Nc is a single-number return result from the charge-energy calculation
module, because Nc is used in the other electrostatic module for charge-distance calculations. Since Nc is
assumed as a carrier concentration, then it can be also used for a calculation of the effective spot mobility
(dividing the VRH conductance by qNc, as shown in eq. (89) later), although Nc is unnecessary for the
calculation of the VRH conductance; and Nc is not used in the VRH calculation module.

The last quantity calculated and returned from the charge-energy calculation module is the flat-band
(FB) level, which is the energy E satisfying the median condition for equal concentrations of occupied states

below and above FB. Rearranging eq. (25),

FB +00
j F(E-Ep) DOS(E)dE = j F(E-Ep) DOS(E)dE
—00 . FB (26)
c_1
7_5{0 (E-Eg) DOS(E)dE

The implementation of the search for FB is made by first calculating a vector of the cumulative sum of the
product FixDOS;, mathematically given by
i=1,2,....,n
CFDOS; =dE ) FDOS; (27)
i=1

that is effectively calculated by a loop, in which CFDOSi=FixDOS;+CFDOS;-1, with CFDOS=F;xDOS;
and 1=2,3,...,n. Then, the last element CFDOS;=; of the cumulative sum is Nc, (thus, eq. (25) is redundant
and commented in the code of the simulator, replacing with Nc=CFDOS,), and one finds the index IFB for
which |CFDOSB—Nc/2|=min. Consequently, FB=Ejrg, taking the energy Emrp with index IFB from the
energy mesh E. The computational volume for Nc and FB (combined with the computation volume for F, as

mentioned above) is shown in row “eq. (27)” of Table VI and explained in Appendix 1.

One could determine FB also as a weighted average, e.g.,

28



+00
[ EXF(E~Eg)DOS(E)dE
FBAVG = _O:-oo s (28)
[ F(E-Eg)DOS(E)dE

—00

but we did not implement this in the charge-energy calculation module, because the median FB of eq. (26)
is more consistent with the concept for equal probability of charge occupation above and below FB. Other
reasons to use eq. (27) are that the coding of the search for a median is simple, finding the value FB=Ers at
a point of the energy mesh (avoiding any unforeseen problem, e.g., due to numeric rounding and truncation,
when having FBavg with value not at the mesh points), and also, the calculation volume of eq. (27) is one
half of the volume of eq. (28), which is an important consideration, since the charge-energy calculation
module is in the body of the loop with many cycles in the charge-distance calculation module, which is
presented next. Note that the Fermi level Er is used only in the calculation of Fermi occupation factor
F(E-EF), and one can use quasi-Fermi IMREF=(Er+qV3), instead of EFf, to include the bending Vg due to
gate bias in the charge-energy calculation module, following to the same reasons discussed with eqgs. (22)
and (23) for the VRH calculation (taking Eo=0).

Overall, the computational volume of the charge-energy calculation module is moderate and scales
with the size n=(Eiop—Ebottom)/dE~2eV/1meV=2000 of the energy mesh E, as shown in row “sum 3 of Table

VI and explained in Appendix 1.

2.5.2. Charge-distance calculation module
The main purpose of this electrostatic module is to solve the 1D Poisson equation in the depth D of the
OTFT semiconducting film, from D=0 at gate dielectric interface to D=t in the back of the semiconducting
film of thickness tr (see Figure 2b earlier). This is to find the profile for the bending voltage Vg in the film at
given gate bias Vg, which is needed for the VRH calculations, since IMREF=(Er+qV3) in eq. (23) is a
linear function of Vg. Other profiles for the electrostatic quantities, such as volume charge concentrations

Nvc and electric field Eer induced by Vg in the film, are also obtained from the charge-distance calculation
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module. Along with the calculations, the module also generates the depth mesh D for the profiles of the
electrostatic and VRH quantities.

A simplified flow of the algorithm of the charge-distance calculation module is shown in Figure 4. It
is comprised of three parts.

(i) The first part is for bulk material in equilibrium, calculating the flat-band voltage potential Ve and
carrier concentration Ncrg in the semiconducting film that is generated thermally when no gate bias is
applied to the OTFT. These are obtained by calling the charge-energy calculation module with zero

bending. From eqs. (25) and (26), it follows that

Ve =FB/q|pp in 1] = FB

[eV]1| when V=0, thus IMREF=Eg, (29)
Ncrs =Nc

according to the definition of IMREF=(Er+qVg) by eq. (23) and the discussions after this eq. (23) and eq.
(28). It is important to note that Ncrs corresponds to zero electric field, Ee=0, in the entire semiconducting
film. Therefore, Vp=—|Ee(D)dD=0. Thus, Ncrs is not a net charge, but compensated with the opposite
charge, since Ncrg is not bias induced, but thermally (and could also be optically) generated in the material
in equilibrium. We consider in the simulator that Ncrg is bias independent, neglecting effects such as barrier
lowering or impact ionization at high electric fields. Since V=0 for the semiconductor bulk, then a VRH
calculation is also embedded in the first part of the charge-distance calculation module to yield the

conductivity org and hopping energy Eurs for bulk semiconductor, as

(6] =0
FB } . when V=0, thus IMREF=EF. (30)
Eyrs =En

(i1) The second part in the charge-distance calculation module solves numerically Poisson’s equation
in the depth D of the OTFT semiconducting film, when the gate bias Vg is not equal to the flat-band voltage
VEs. If V6=Vrs, then there is no potential bending in the film. Thus, the film is in equilibrium and there is
no need to have profiles, since the values in these profiles are identical to the values for the bulk

semiconductor. When Vg#VEg, then the calculation generates simultaneously the depth mesh D and the
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profiles for electrostatic quantities in this mesh. The calculation scheme is close to the schemes used in
analytical derivations for OTFTs [1, 26], not overlooking the concerns [7, 10, 27] for zero field and zero
charge in the derivations and interpretations of the results obtained by these schemes. The basic assumptions
are that the potential is Vg in the “far depth D—o0” of the film, where the electric field is zero, and moving
backward to the gate dielectric, the bending Vg increases toward Vg. Thus, a charge is induced in the film
due to Ve#Vrs and the electric field increases in magnitude, so that at the film-dielectric interface (D=0),

Gauss’ law is satisfied, that is

epEel (D =0)=Qg = integrate until Q}g <1, (31)
Eptel

which is the criterion to exit from the loop of numerical integrations, and where Qc=[Vs—(VEs+VBss)]Cox is
the charge per unit area of the gate dielectric, Ves=Vp(D=0) is the potential bending in the semiconductor at
the gate dielectric interface (D=0), and Qs=[Vs—(Vrs+VB)]Cox is a supplementary variable for gate charge
during the integration in the depth of the semiconducting film (D>0). Once the criterion for exit from the
loop of numerical integration is reached, then Qc=Qg and Ve=Vgs.

In many analytical derivations, it is assumed that the “far depth” is still inside the thin film of the
OTFT. Therefore, the charge induced in the film is assumed equal to Qg, allowing for the replacement of
the distance integration with an integration over Vg in the interval from zero to the surface potential at the
gate dielectric interface. In contrast, we strictly follow the basic assumptions when building the Poisson
solver, not restricting the bending Vg and electric field Ee to reach zero within the thin film of the OTFT. In
our case, the electric field may, or may not, decay completely within the thin film of the OTFT; thus, there
might be a fringing electric field at the back of the film. To cope with these different situations, we use the
supplementary integration variable t for distance which decrements when moving the integration from the
depth of the film toward gate oxide interface in a direction opposite to the film depth D. Since the “far
depth” is unknown, then we arbitrary set t=0 by initializing the numerical integration loop, decrementing t

with variable step dt>0, according to
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t= t( previous) —dt, t=0 and dt=dD initially at “far depth”, (32)

where dD~0.5nm is parameter for nominal step in the distance mesh D. Thus, in the “far depth” t=0, tt,
and we initialize the Poisson solver with zero electric field Eei=0 and guide the solver to do the first step for
bending Vg with a small magnitude equal to the energy step dE in eV in the direction sign(Vc—VEg) of the
gate bias overdrive (Vg—VEs), where the function sign(x)=1, if x>0 and sign(x)=—1, when x<0.
Consequently, the charge-energy calculation module is called with the quasi-Fermi IMREF=(Er+qVs) to
include the bending Vg, as noted after eq. (28). Bearing this in mind, the concentration of occupied states

Nc at Vp#0 can be obtained from (25):

=V, +FB

FB in [J]

V.. =V, +FB/
BB q [VIL | when Vg0, thus IMREF=(Er+qVs), (33)
N, =N, (IMREF)

Subtracting the equilibrium charge concentration Ncrs, one obtains the bias induced charge concentration

Nvg as
Nvyg = N¢ (IMREF) = Ncgg , for t<0, IMREF=(Er+qVs), V0. (34)

Nvg is the non-equilibrium portion of Nc at gate bias voltage Vg. Since Nvg is not generated thermally, but
by the bending VB, then Nvg is not compensated by opposite charge in the semiconductor, and Nvg causes

increments of the electric field Eej, so that

E. = Eel( previous t) + qmdt, for t<0, IMREF=(Er+qV3s), V8#0, (35)
€F

which comprises the first integration of the Poisson equation. The second integration yields the value of the
bending voltage

Vg = Vg ( previous t) —=dtxE, for t<0, IMREF=(Er+qVs), Va#£0. (36)
Then, the value of gate charge Qg=[Vs—(Vrs+VB)]Cox is updated to account for low biases around or
below threshold voltage Vrt of the OTFT, although Qg does not change significantly, when the OTFT

operates well above Vr. Repeating iteratively eqs. (32)-(36), the supplementary integration variable t

accumulates the distance mesh, for which the values of Nvg, Eel and Vg are stored and, thus, one obtains
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profiles for these quantities. Also, the magnitudes of Nvg, Eel and Vp increase at every next step of the loop,
while Qg gradually decreases. Therefore, the ratio Qc/(erEe1) decreases from a large value toward zero, and
after a sufficient number of iterations, reaches the condition Qc<(erEel) in eq. (31), which indicates that the
integration has finished at the gate oxide interface, for which the last negative value of t reaches a minimum.

At this point, the profiles of charge, electric field and potential versus distance t have been calculated.

(iii) Finally, the third part in charge-distance calculation module reverts the integration variable for

distance t into the depth variable D in the semiconducting film as
D =t—min (t) , interface=0<D<t=film back, 37

where the interface is at D=0, the film thickness is at tf, and the mesh points with D>t; are deleted.
Accordingly, the data in the profiles for Nc, the electric field and the potential, corresponding to the deleted
mesh points, are also removed, since they are not in the semiconducting film of the OTFT. Thus, the charge-
distance calculation module exits with return results for the bulk semiconductor and distance mesh and
profiles at a given gate bias, as indicated in the bottom-right corner of Figure 4.

As described above, the algorithm of the charge-distance calculation module is straightforward and it
strictly follows the basic assumptions for electrostatic calculation in a semiconducting thin film, not adding
uncertain boundary conditions. However, looking closer at the rate of convergence, the number of mesh
points and other computational issues, we note that the algorithm must be optimized for throughput and
suitability for VRH numerical simulations. Omitting the error handling, several details of such optimization
are outlined in Figure 4.

One problem is that the algorithm requires non-zero increments that are larger than the numerical
truncations. For example, Vg is low in the first iteration, and after calling the charge-energy calculation
module with IMREF=(Er+qVs) in the loop, the value for Nc might be numerically identical to Ncrg. Thus,
there will be no increment for the electric field, and Vg will not change in the next iteration, causing the

algorithm to fall in an infinite loop. Therefore, one ‘“pushes gently” Nc with a small step of, e.g,
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Nc=(10"%/cm)xQ&/q+Ncrs to have a distinguishable non-zero value for Nve=(Nc—Ncrs) in eq. (34) and
non-zero increment of the electric field Eel and potential bending Vg in egs. (35) and (36), respectively. The
value 10~%/cm is empirically determined to be small enough so that the “push is gentle”, and does not affect
the number of iterations in the charge-distance module. The determination is after monitoring of the number
of iterations in parallel computing of about one million trials and using error handling for a maximum
number of iterations of 20000 (not shown in Figure 4).

Another problem is the distance step dt. A uniform distance mesh with a constant step is not suitable,
since one has to have fine steps when the integration is close to the oxide interface, e.g. dt~0.01nm, but this
small step may cause many millions of iterations in the integration at the “far depth”, which can be 1mm or
occasionally even thicker. Therefore, we have implemented a control of the size of the step dt, as depicted
in the bottom-left corner in Figure 4. If the bias-induced charge concentration Ny is much less than the
equilibrium charge concentration Ncgs, €.g2., (Nv6/Ncrs)<0.5%, or the gate charge Qg is much larger than
the field flux erEes, then the mesh point is far from the oxide interface (most probably beyond the film
thickness tr) and the integration is accelerated exponentially, doubling the integration step, to move quicker
from the “far depth” toward the oxide interface. On the other hand, when the integration is within 1-2 nm
from the gate oxide interface, the nominal step dt=dD~0.5nm is coarse, because the electric field is large
and Vg changes rapidly, owing to the term dtxEe in eq. (36). Therefore, the mesh is refined, decreasing the
step dt. In the particular implementation of the charge-distance calculation module, the criterion for
refinement of the distance mesh is for the change of Vg to be not greater than the step dE (in eV) of the
energy mesh, which is the same as dE>|E.||dt. The decrease is done first by setting dt=dD to the nominal
step dD~0.5nm, and if necessary, further exponential decrease of dt by division on 4. In either case of

enlargement or refinement of dt, one recalculates Vg for the next iteration from

Vg ( next t) =Vg ( current t) —dtx qmdt , for the next iteration. (38)

33
By the above management of the step dt, the second part of the charge-distance calculation module is

usually completed in about two thousands iterations (not more than ten thousands iterations after about one
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million trials), matching the gate charge Qg with inaccuracy less than 5%, and providing distance mesh with
about 20 points logarithmically spaced at D<2nm, about 200 points uniformly spaced at dD=0.5nm for
2nm<D<100nm, and about 2000 points again nearly logarithmically spaced with larger mesh step for depths
D>100nm. Thus, the number of iterations is approximately equal to the number n~2000 of energy points in
the charge-energy calculation module, and the computational volume for electrostatics of the charge-
distance calculation module is mostly determined by the calls of the charge-energy calculation module at
every iteration. The details for the computation volume are explained in Appendix 1 and shown in Table VI
in row “eSt” without and in rows “eSt+vrh1” and “eSt+vrh2” with the VRH calculations in the first part for
bulk material in equilibrium.

It is possible, in principle, to include the VRH calculation in the loop of the electrostatic calculation,
but the VRH calculation should be postponed to be performed on sub-sampled depth mesh D, as indicated
in Figure 4, because, if it is included in the loop of the charge-distance calculation module, then the
computational volume would be unnecessary large, as explained in Appendix 1, while the majority of the
calculated data will be also deleted, since they correspond to film depths larger than the thickness of the
semiconducting film of OTFT. Therefore, in the third part in charge-distance calculation module, the
distance mesh D is logarithmically sub-sampled to about 50 points (to have many points near the oxide
interface and also enough points in the depth of the semiconducting film) and the profiles are reduced only
to the points of the sub-sampled mesh. The VRH calculation module is then called in pass 2 of the VRH
simulator (presented in the next Sec. 2.6) only for the reduced distance mesh D. The reduction of the

distance mesh for VRH calculation results in acceptable computational volume of the VRH simulator.

2.6. VRH numerical simulator
The overall flow of the VRH simulations is outlined in Figure 5. Running the simulator, it first completes
the lists of parameters and settings with default values. Next, the parameters and settings are modified

according to desired values for materials and layout properties of the OTFT and requirements for

35



simulation, monitoring of the simulation, saving of results and selection of experimental results for
comparisons. Then, the simulations are executed for different temperatures T and gate bias voltages Vg in
independent calculations for each pair of bias and temperature conditions (Vg—T point). The simulator
monitors the execution and once results for a Vg—T point are available, then the results are plotted. In
Figure 5, for example, it is indicated when the mobility vs. reciprocal of the temperature is plotted. When
the simulations for all temperatures and bias voltages are completed, then the simulator gathers the logged
results and organizes the results in a merged file, which is stored. This arrangement allows the simulations
for different Vo—T points to be executed sequentially by nesting loops for T and Vg, or in parallel, when a
grid of computers is available. The parallel computing is highly desired when choosing the method of
multiple [[dEJE for VRH, since the computation is extensive and it may take half a day to calculate 20-30
Ve-T points, if the computation is sequential.

The core in the simulator is the VRH simulation for one Vg—T point. It is executed in three passes.
Pass 1 is for electrostatic calculations, which are performed by the charge-distance calculation module
presented Sec. 2.5.2 above. Therefore, the computation volume of pass 1 is the computation volume of the
charge-distance calculation module (explained in Appendix 1) and it is shown in rows “eSt+vrh1” and
“eSt+vrh2” of Table VI for the single [dE and multiple [JdEJE integrations, respectively. The output from
this pass are electrostatic and VRH quantities for the bulk semiconductor (Vrg, Ncrs, ors and Eurg) and for
the given Vg, electrostatic profiles (Nvg, Ee1 and V) in the semiconductor film-depth mesh D reduced to
about 50 points. The reduction is due to the large computational volume of the VRH calculations in pass 2.
Pass 1 allocates the most of the memory.

Pass 2 performs the VRH calculations for the points in the reduced mesh D of about m=50 points and
creates the profiles for VRH specific conductivity ¢ and hopping energy En in this mesh. The calculation in
pass 2 uses the values for the potential bending Vg stored in the corresponding profile and performs the
VRH calculation with quasi-Fermi level IMREF=(Er+qVs), instead of the Fermi level Er in bulk

semiconductor, to account for the potential bending Vg due to gate bias voltage Vg of OTFT, and by the
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reasons explained after eq. (23) earlier. Thus, for each Vg in the profile, two calculation steps are
performed. The first step in pass 2 is to regenerate the energy mesh E and DOS(E) in this mesh by

adjustment of Eip and Epottom so that IMREF and the modes of DOS are well inside the mesh E, e.g.,

E,,, = max{E,, IMREF.E[ max (DOS) |} + reserveE
(39)
E

bottom

= min{E, IMREF,E[ max (DOS) ]} - reserveE

where E[max(DOS)] is the mode of DOS, for example E, in an exponential DOS, c.f. eq. (22) earlier for
single-side or eq. (45) later for double-side DOS, and the default value for the reserveE is 0.5eV in the VRH
simulator. The reserveE can be increased, but we have observed that a larger reserveE does not change
significantly the values of the results from simulations, while a larger reserveE increases the computation
volume, since n=(Ewp—Ebottom)/dE. As shown in row “pass 2 of Table VI and explained in Appendix 1, the
computational volume scales up with n, either [In or [Jn2. Upon completing of pass 2, all the essential data
are available, and the VRH simulator proceeds to the next pass 3 for saving the results from the VRH
simulation for one Vg-T point.

Pass 3 is logging the results from VRH simulation for one Vg-T point. One should be careful with this
pass, since the numerical simulators generate large volume of numbers and the proper organization of these
numbers is essential for accessing the simulation results. While it is difficult to determine a universal format
for the output from numerical simulators, there are several recommendations that must be followed. One
recommendation is to have delimiters for beginning and end of the data. A second recommendation is for
the data to be in a table format with separators between different tables and identifiers for different
quantities, having also 2-3 columns in all tables with common key information for search and filtering. A
third recommendation is for the data to be self-consistent and ‘“normalized”, that is, the data are minimized
to only essential quantities, from which all other quantities can be recalculated later on, if necessary,
without having to re-run the simulation. Some additional quantities can be also included, if it is expected
that these quantities are often required and essential for the particular type of devices. For example, the

sheet conductance osq is handy to be readily available for OTFTs, although it can be calculated later from
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the profile of the specific conductance ¢ within the film thicknesses. Therefore, as indicated in Figure 5,
pass 3 is logging first the parameters and conditions for simulation for the particular Vg-T point, and the
information for temperature T and bias Vg is repeated in the beginning of each line, serving as filter keys.
Then, the results for bulk semiconductor (at equilibrium, no gate bias) are logged, adding also the sheet
conductance of the film in equilibrium, which is same as the conductance of film in square-shaped area,

calculated according to
OgqB = OFB Xt - (40)
Next, the results for square-shaped OTFT under gate bias are logged, including the gate charge Qg obtained

from the electrostatic simulation and adding the sheet conductance osq of the film at Vg, calculated

according to

-

f
Ogyq = ja(D)dD
0 (41)

-1 m-1
o(D;)xdD; = > o(D;)%(Dj+ —D;)

i=1 i=1
where the Riemann sum corresponds to integration of the profile for specific conductivity ¢ along the depth
mesh D and dD; is the difference vector of D. Shown in row “eq. (41)” of Table VI, the computational
volume of pass 3 is negligible, just for calculation of supplementary quantities, such as csq. Therefore, the
row “total for a Vg—T point” replicates the row “pass 2” in Table VI, as explained at the end of Appendix 1.
Finally, the reduced profiles of size m and the corresponding depth mesh D are logged as columns in a table

for profiles. This completes pass 3 and the VRH simulation for one Vg-T point.

One sees that the mobility p is not calculated or stored by the VRH simulator, because VRH provides
values for conductance, but not for mobility, as mentioned before. On the other hand, p is an essential
parameter for OTFT, and most of the publications for OTFT report mobility, rarely conductance. In the

literature, the comparisons between simulations and experiments are normally in terms of mobility, as

indicated by dashed arrows in Figure 5 for the plot of mobility p vs. the reciprocal of the absolute
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temperature 1/T. Considering the gate sheet charge Qg in field-effect transistors with isolated gates, the

class of electronic devices to which the OTFTs belong, the mobility, in principle, is given by

(42)

Thus, the mobility is easily obtained by a general relation from the results logged by the VRH simulator.

To summarize, we have built fully numerical one-dimensional simulator based on the main relations in
VRH theory and electrostatics, but not on analytical expressions for specific cases. Therefore, the simulator
can be used as independent tool for verification of the analytical models, the later derived by diverse
techniques and with additional a priori assumptions. However, we have also observed pronounced
theoretical uncertainties in the main relations, e.g., four decades for the conductivity prefactor 6, by eq. (3),
and variation in the approaches for use of the main relations. Therefore, we have built in the simulator two
methods for VRH calculation, denoted as “single JdE” and “multiple [[dEdE” integrations, the latter being
computationally extensive, in order to estimate to which extent the variations in derivations can affect the
final prediction of analytical models. Consequently, we have used simple numerical techniques of forward
integration by Riemann sum, instead of sophisticated integration techniques, to achieve reasonable
calculation time, although we still need to run parallel computation for the multiple J[dEJE. Another reason
for using the simple numerical techniques is the reduced probability of human errors by coding the
simulator. Overall, we expect the simulator to reliably capture the behavior of VRH in OTFT, although it is
noted that we will meet with challenging problems related to the amount of numerical information
generated by the simulator, uncertainty of parameter values and perhaps numerical errors. These are
addressed in the following sections, in which we present the results from simulations, comparisons to
experimental data and predictions of analytical models, along with discussions for unexplored correlations
between quantities and impact of parameters, intervals and coarseness of numerical integration, variations in

assumptions for DOS, predictability of profiles and other issues.
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We would like to emphasize here that the simulator is flexible for research, since virtually every single
relation can be modified (even for curiosity), but the simulator is computationally demanding, and it does
not have figure-of-merit for accuracy or protection against improper use or wrong parameter and value
assignments. Thus, the simulator should not be considered as a circuit simulator. It does not have user
interface or tools for visualization and analysis of the simulation results, nor organization of data from
multiple runs of the simulator.

Nevertheless, we will provide some insights on what should be improved and how one should
properly guide the numerical simulator so that the numerical results are adequate, but not only columns of
numbers. Finally, perhaps one has also observed that the charge carrier concentration Nc¢ (from Sec. 2.5
“Electrostatic calculation module”) does not participate in the calculations of the VRH conductivity (Secs.
2.1 - 2.4), which indicates that the relation between charge and VRH is indirect. Considering the literature,
the observation is counterintuitive, but it is correct, actually. A common quantity for electrostatic and VRH
calculations is IMREF=(Er+qVs), and in particular, beginning from Secs. 3.6 and 3.7, we will show and
discuss in details that the relation between electrostatics and VRH conductance is the potential bending Vs,
but not through a correlation between the charge concentration and the mobility. The latter correlation is
affected by many factors and assumptions, and it can be a very complex correlation, as one can see in the
literature that considers normally distributed DOS. However, we do not rule out the relation between charge
and mobility in OTFT, especially the power-law dependence between them, which is well established
experimentally, and also, very useful for compact modeling of OTFTs. Instead, we will show and
extensively use in the next sections that this power-law correlation follows from the relation between

electrostatics and VRH through Vs.

3. Parameter assignment and results
Numerical simulators have the advantage that layout design and material parameters can be used for

simulation. Such parameters are the gate dielectric capacitance and thicknesses of layers, whereas the
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compact models usually do not consider the thickness of the OTFT semiconducting films. However, and in
contrast to compact models, the numerical simulators do not provide for underlying functions of some
quantities and for extraction techniques of related parameters. For example, the type of the distribution of
the density of states (DOS) must be chosen and the values of the associated parameters must be determined
prior to the numerical simulation. Then, the parameter values can be varied by external rules so that the fit
between simulated and experimental data becomes acceptable. Thus, the parameter assignment, the
numerical simulation and the results from simulations are in an iterative loop that has to be guided carefully

for consistency in each instance, e.g., by a sequence that is presented in this section.

3.1. Characteristic “temperature” T, of DOS
The initial values for some of the parameters can be determined from experimental characteristics. The set
of parameters and their values depend on the assumed type of DOS. If the DOS is of exponential type, then
one provides for the characteristic width of the DOS by the parameter characteristic temperature T,. Values

around T,=400K are typical for OTFT. The value of T, can be determined experimentally from [6]
T
T, =5(2+y) , (43)

where T is the absolute temperature (T~300K at room ambient) and y is the mobility enhancement factor
deduced from the I-V curves of the OTFT. For example, one can determine the value of y by a linear
regression in the plot of the function HVG=.[IDsathG/IDsat=(VG—VT)/(3+’Y) obtained from the transfer
characteristic Ipsa—V in the saturation regime of operation of the OTFT [6, 28, 29], or simply to plot this
transfer characteristic, Ipsat vs. (Vg—VT), in a log-log plot and the slope of this plot is (2+7). In a case when
the dependence of the mobility (i) on the gate bias (Vg—Vr) is known, then the slope of the log-log plot of
the characteristic p vs. (Vg—Vr) is the value of y. A precise value for y (as well as for Vt, and consequently
for p and the contact resistance Rc) can be also obtained from the transfer characteristics Ipin—Vg in the
linear regime of operation of the OTFT [30] at Vp<<(Vc—Vt) by means of linear regression in the plot of

the function HYvo=/YvadVa/Yve=(Vo—-V1)/(2+7/2). Both HYvG and Yve=Ipin/(gmxVp)*S are functions of
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Vi, and gm=0Ipin/OVG is the transconductance also function of Vg. A recent evolutionary parameter
extraction method can also provide precise values for vy, Vr, p and the contact resistance Rc, by an
optimization procedure directly from the output characteristics of OTFTs [31].

In cases when vy varies with the bias of OTFT, one has to consider that the DOS is not exponential. For

normally distributed DOS (Gaussian DOS), there are bias-dependent crossovers [4, 12, 25].

3.2. Concentration of states (Ns) and orbital overlap (A,)

While the values for some parameters can be deduced from experimental characteristics, the initial values
for many other parameters, however, might be unknown. One does not know a priori the total concentration
of charge states (Ns). Therefore, one needs to guess a value in the range 10>'-10?2 cm™, which corresponds
to the molecular density of the organic material, e.g., for pentacene [6, 32, 33] (1.25-1.93)x10?' cm™3,
multiplied by a factor 1-10, since there are multiple locations of m-bonds in the organic molecule (or
monomers in polymers) that contribute to HOMO and LUMO levels [32, 34], as illustrated in Figure 6 for
the HOMO in a pentacene molecule.

Another a priori unknown parameter is the orbital overlap (Ao=R, in hopping models) and an
appropriate guess can be made by assuming an exponential DOS, for which

AR, ~ N [ 2 jexp(- 4/3)

exp(1){ 2+y 2+y
_ 14 exp _133) 05
2+y 2+y

The value 0.3 corresponds to a mobility enhancement factor y=1, as explained in [6], and used in numerical

(44)

simulations by other authors [7]. In the literature [4, 10, 12, 25], values in the range Aox(Ns)”*=0.05-0.2 are
usually assumed. The uncertainty for the value is evident and it accumulates significant uncertainties for Ns
and A,, as seen in Table IV later, and discussed in Sec. 4.1 with the help of Figure 22. The consequences of

these inaccuracies are detailed in Sec. 5.
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3.3. Energy levels in materials and interfaces

A third group of unknown a priori parameters are the relevant energies of the materials. The choice of
values for the gate electrode work function, HOMO, LUMO and Fermi levels is not straightforward,
because the reported values in the literature vary, as one can see in Table I for conductive materials [35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], Table II for gate insulators [38, 47, 48, 51, 52, 53, 54, 55]
and Table III for organic semiconductors [3, 32, 34, 35, 39, 40, 42, 44, 45, 46, 48, 50, 56], owing to methods
of material characterization or calculation, surface properties, chemically created dipoles at material
interfaces and reference points. In addition, there is large discrepancy between molecular calculations and
experiments, e.g. for the band gap of pentacene, the molecular crystal cell calculation has estimated ~1eV in
[32], whereas the experimental values suggest a gap of 2.2 eV. Therefore, we have summarized the most
reasonable values to use in the VRH numerical simulator in columns “Recommended value” in Table I,
Table II and Table III. These recommended values are also visualized in Figure 7 and in Figure 8. From the
comparison of the metal work functions on the left-hand side of the figures (Pt, p*Si, Au, PEDT/PSS) with
the organic semiconductors on the right-hand side of Figure 8 (P3HT, pentacene, PPV), these are usually
used for OTFT fabrication, one can guess that the Fermi level (=~4eV, shifted down by about 0.5-1eV due
to interface dipoles) in the organic semiconductor is about 0.3 eV above the level corresponding to the work
function of the gate electrode (=—5eV), and that the HOMO is about 0.9eV below the Fermi level.
Therefore, we use these values in the following simulations, choosing also the gate electrode level as the
zero reference level. Certainly, the choice for energy alignment is very approximate, and has to be
researched further. Nevertheless, we believe that the choice is reasonable, and in agreement with the
approaches for band alignment reported in [40, 46, 48].

The electrostatic simulation with the above choice resulted in energy diagrams as shown in Figure 9
for one case at low gate bias (Vc=—5V) and high temperature (T=400K=T,) that corresponds to the energy
width kT, of the DOS. Even at the large scale of 18 eV in the figure, one can make several observations

which require the following clarifications. One observation is the discontinuity of the vacuum level at the
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insulator-semiconductor interface, owing the abovementioned dipole shift. In “silicon” simulators, this shift
is attributed to interface fixed charge, thus, it is not so unobvious, although it is interpreted in a different
manner for organic TFTs. The second and the third observations in Figure 9 are that the potentials in the
back of the semiconducting film do not reach the levels corresponding to bulk material, and there is a
misalignment between Fermi level and flat-band (FB) level. We discuss these with the help of Figure 10,
where the energy axis is zoomed in for a better view.

The closer look from left to right in Figure 10 for the energy diagrams at the insulator-semiconductor
interface indicates that the variation of gate bias voltage Vg does not cause unexpected changes in the
diagram at any temperature, from low temperature of T=100K, through room temperature T=300K, elevated
temperature T=400K=T, equal to the characteristic temperature of a double-sided exponential DOS, and
even at high temperature T=500K, at which the pentacene film might easily degrade. However, the levels in
the film-back do not reach the LUMO, FB and HOMO levels of the bulk material, which is contrary to the
assumption for zero potential in the derivation of many models for OTFTs [1, 22, 26, 57]. Thus, the film
back is not a bulk material in an OTFT, and there is considerable potential bending in the entire depth of the
TFT film [27], especially at low temperatures. The elevated temperatures reduce the difference between the
film-back and the bulk material, but do not completely remove this “discrepancy”.

The misalignment between Fermi level and flat-band (FB) level is small at low and room
temperatures, but the “discrepancy” is considerable when the temperature is elevated close to or above the
characteristic temperature T, of the exponential DOS. The reason for the misalignment is that the Fermi
level (Ef) is given for the Fermi occupation factor, Fn(E)=1/{1+exp[(E-Er)/kT]} for electrons, and its
complementary Fy(E)=1/{1+exp[(Er-E)/kT]} for holes, whereas the FB depends also on the shape of the
DOS, satisfying the (median) condition for equal concentrations of occupied states below and above FB, in

particular given by eq. (26).
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3.4. Flat band (FB) shift at temperature T>T,
For non-degenerated crystalline semiconductors, the flat band energy coincides well with the Fermi energy
level, FB=EF, since the valence and conduction bands are well defined, having “sharp” edges, and one has
dominant concentration of one type of dopant, either donors or acceptors of electrons. In amorphous
semiconductors, however, there are tails of states asymmetrically placed around Er instead of bands with
“sharp” edges. Consequently, FB becomes a strong function of the temperature, even if Ef is the same. In
the special case of an exponential DOS, it was discussed in detail in [2, 6] that the mode of the product
F(E)DOS(E) moves from close to the Fermi level at low temperatures (T<T,) toward the level E, of the
DOS centroid at high temperatures (T>T,). Therefore, one can infer that the quasi-Fermi level moves with
the ratio To/T, but to avoid misinterpretations, we have the correct statement that the FB varies with
temperature, where FB is according to eq. (26). The evolution of the DOS occupancy and the FB shift with

the temperature are illustrated in Figure 11 for a double-sided exponential DOS, defined by

DOS(E) =DOSp, (E) =

2kT, j 43)

-1
E, -E
:NsaiE|:1+exp£ ET polarityﬂ ,
(0]

with the square of the hyperbolic cosine

2
ch?(x) =i (ex +e_X) ,

) +1 for electrons, E, = LUMO
polarity =
-1 for holes, E, = HOMO
+o0
and Ng = [ DOS(E)dE,
—00

where Ns~10%' cm™ is the (total) concentration of charge states in the organic semiconducting material. By
this definition, the normalized double-exponential DOS/Ns is similar to the Fermi distribution, with
characteristic width kT, instead of thermal energy kT, E, instead of Er and opposite polarity of variation

with respect to the energy (E).
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It is assumed in Figure 11 that the DOS does not change with temperature (solid gray line), and the
peak value Ns/(4kT,) of the double-exponential DOS (a circle) corresponds to the HOMO level Eo. The
figure is for the bulk material pentacene. Therefore, the difference between the HOMO and the Fermi level
(Er) 1s 0.9 eV, as discussed above, and these energy levels are depicted by gray-color vertical dashed lines.
Since the pentacene is a p-type organic semiconductor, then the Fermi occupation factor for the majority
carriers (F) is close to unity at levels above the Fermi level (Er) at the right-hand side of the figure. Tracing
the plot to the left, one observes that F(Er)=Y2 at the Fermi level, shown by the other circle, and then F
decreases exponentially at lower energy levels (E<EF) with a slope reciprocal to the absolute temperature,
OIn(F)/0E=1/kT. Therefore, the steepness of the slope decreases, increasing the temperature T from T<T, to
T>T,, as seen from the thick, thin and dotted lines intersecting in the circle labeled by “/2”.

The filling of the charge states is the DOS occupation with a density given by the product (FxDOS).
The normalized DOS occupation is then (FXDOS/Ns), and it is shown by the polygon-like curves in Figure
11 for the three temperatures, for which the Fermi occupation factor (F) was given — thick, thin and dotted
lines for low temperature (T=300K<T,), T=To=400K and high temperature (T=500K>T,), respectively.
Since both F and the double-sided exponential DOS have variable slopes with respect to E, then the slopes
in the DOS occupancy also vary, and there are three regions in the curve for the DOS occupancy, because

for pentacene or other organic semiconductor with hole conduction,

L+L, when E<Ej <Eg
kT KT,
0ln(FxDOS) dmn(F) om(DOS) |1 1
= + ={—-——, whenE, <E<Ep (46)
0E OE 0E kT KT,
—L, when E, <Egp <E
kT,

Thus, having To=constant (DOS does not change with temperature), then the mode of the DOS
occupancy varies with the temperature being at the energy level where the slope dln(FxDOS)/0E=0 and
changes its sign. Consequently, the median flat-band (FB) energy follows the mode of the DOS occupancy.

From eq. (46) for a p-type organic semiconductor, the slope is positive in the first region (E<E,<Er) and
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negative in the third region (E,<Er<E). However, the sign of slope in the middle region depends on the
difference (To—T). At low temperature (T<T,), the slope is positive in the middle region and the mode of the
DOS occupancy is near the Fermi level (Er), as seen by the thick polygon-like line for (FXDOS/Ns) in
Figure 11 for T=300K<T,. Consequently, the median FB is also near Er for T=300K<T,. Increasing the
temperature to T=T,=400K, then the DOS occupancy in the middle region is nearly constant, as shown with
thin line in Figure 11, it is zero at Y2(Eo+Er)=<FB, since the DOS occupancy becomes almost symmetric
around this energy level (neglecting the asymmetry in regions on the left and right when E,<<EF for the
bulk material, but not accurate for the OTFT operating well above the threshold, when large bending exists
and E, is much closer to EF, especially at the gate insulator interface, see again Figure 10). Further increase
of the temperature, T>T,, results in a negative slope for the DOS occupancy in the middle region, as
depicted with the dotted line in Figure 11, and the mode becomes close to the energy E, of the DOS
centroid. Consequently, the median FB also shifts toward E, at high temperatures (T=500K>T,). Thus, one
should see considerable temperature dependence of the threshold voltage when the temperature T<T, is near
the characteristic temperature (To) of the exponential DOS, because the change of FB in eV is replicated as
a change of the threshold voltage Vr in volts.

Overall, the increase of the temperature shifts FB from Er to E,, and the occupancy around E, changes
several decades, depending exponentially on the ratio [Ec—Er—qVB|(1/kT—1/kT,), where Vg is the potential
bending due the gate bias of OTFT. The consequences for the mobility prefactor in compact models are
discussed in [6] in terms of modification of a temperature shaping function (TSF). However, the impact of
the temperature on the charge concentration Y3[FxDOSAE associated with FB from eq. (26) is less, as seen
by the squares in Figure 11, and this impact is further reduced when the gate bias voltage Vg is increased,
since the DOS occupancy increases, the polygon-like curves in Figure 11 move up, and the width |Ep-Eo| of
middle region decreases, owing to the shift of E, toward Er due to potential bending at high Vg. An
illustration for the bias dependence of FXDOS for normally distributed DOS in an n-type OTFT and fixed

temperature can be found in Fig. 2 in [10] through changing the quasi-Fermi level (Er+qVs)/kT,. In that
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figure, Eo=0, EF=—5kT,, the mode of FxDOS is at Er at qVB<0, and the mode shifts to E,=0, increasing qVs
to +5kT,. Further increase of qVp does not cause a shift of the mode, and the temperature does not
significantly increase the median FB. Thus, FB=EF at low bias, and FB shifts to FB=E, at high bias. (Please,
inspect the definitions and notation in [10], since there, the reference level is E, of DOS, the quantities are

normalized, T is fixed in that figure, and the quasi-Fermi level is denoted with Er and varied.)

3.5. Potential bending and charge in the OTFT film
Several profiles of the potential bending Vg in the depth D of the OTFT semiconducting film at different
temperatures and gate bias voltages Vg are shown in Figure 12. It was suggested in [26] that the profile
depends on the quantity (D+La), where the electrostatic depth La is regarded as an effective depth of the
conduction channel, and La is given by

_ 2kTpEr _ 2Qp¢f
qCOXVG COXVG

, with pa=kTa/q and Ta=T,, 47)

considering the details in the reassessed derivation in [27] and the assumption in [22] that the bending
affects the DOS occupancy as exp[Vs/(kTo)] in the case of exponential DOS. The permittivity & of organic
materials is in the range (2—4)e,, and one usually uses £=3£,~2.66x10~'> F/cm. Then, following [27], one

gets an analytical expression for the bending profile, given by

Vg (D) = Vpg - 2%111(1 +%) =Vps —2¢g In [1 +%j , with @g=kTg/q and Tp=T,, (48)

where Vps=Vg(0) is the bending at the semiconductor-insulator interface (D=0). Note that no temperature
dependence is disclosed explicitly in eqs. (47) and (48), owing to the assumptions that Ta~Tg=T,.

The dashed lines with solid circles in Figure 12 represent eq. (48) for two cases. The top one 1s for a
high Vg=-20V and a low temperature T=100K<T,=400K, showing a good agreement (in shape and
horizontal position) between eq. (48) and the profiles of Vg at low temperature. However, the bottom
dashed line, which is for eq. (48) at a low Vg=-5V and a high temperature T=500K>T,, has a slope

different from the slope of the triplet of curves (without symbols) from simulation at D>La, indicating that

48



eq. (48) is a poor estimation for the bending at high temperatures T>T,. Thus, analytical models that
consider exp[Vg/(kTo)] in the derivations will be not accurate at T>%2T,. Unfortunately, T, is in the range
350-450K for organic materials [6], and Y2T, is normally below room temperature. Approaches to remedy
this problem are given in [6, 11] and further discussions will be given in the next section with egs. (79) and
(80) in relation to Figure 28.

Profiles of the carrier concentration Nc in the pentacene film are shown in Figure 13 with solid lines.
These profiles correspond to the potential bending profiles shown in Figure 12, and similarly, the triplets of
profiles at every given temperature for different Vg’s coincide in the depth of the film, e.g., at D>30nm.
Again, taking the suggestion in [26], the reassessed derivation in [27] and the assumption in [22], one gets an
analytical expression for N¢, which (for an exponential DOS) is given by

2€fkTC - 2£f(pc
¢*(D+Ly)* q(D+Ly)

N¢ (D)= with ec=kTc/q and Tc=Te. (49)

2 b

The circles in Figure 13 represent the calculations with eq. (49), showing very good overlap with the
profiles at low temperature T<T,=400K, especially for higher gate bias voltages. However, note again that
there is no temperature dependence in eq. (49), owing to the assumption that Tc=T,, whereas the profiles at
shallow depths D<La decrease about 50%-100% at a high temperature T=500K>T,. Nevertheless, although
not exact at high temperatures T>T,, the quadratic decay of Nc predicted by eq. (49) at depths D>La4 is

evident in the figure.

3.6. Correlations between quantities in the OTFT film
With the numerical simulator, we can investigate the evolution of the quantities in the depth of the organic
film. The profiles of several quantities are shown in Figure 14. Similar to the previous two figures, the
triplets of curves at each temperature in the plots of Figure 14 correspond to the three values of Vg, and the
curves in each triplet coincide in the depth of the film, e.g., for D>30nm. The common point in all profiles
is that the quantities are functions of (D+La). For example, the profile of the electric field is
Ee(D)O(D+La)™!, which is easy to deduce from eq. (49), since Eel(D)DINc(D)dD, and one observes in
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Figure 14a the reciprocal relation between Eel and D at film depths D>10nm>3La. Consequently, from
Figure 14b, the critical energy for hopping is a logarithmic function In(D+La). From Figure 1l4c, the
conductance ¢ of the film is a very strong power-law function clJ(D+La)™. Also, and from Figure 14d, the
carrier mobility p in the film is also a strong power-law function u(0(D+La)""2, but with an exponent
reduced by a factor of two, owing to the quadratic dependence in eq. (49) for the carrier concentration Nc,
since p=c/qNc. This reduction in the exponent is explained and discussed in more details later with eq. (91).
We will now clarify the functions behind profiles in Figure 12, Figure 13 and Figure 14 with the help of
some additional plots.

The correlations between several quantities in the semiconducting film of an OTFT are summarized in
Figure 15, organized as a matrix of plots. We denote the cells in this figure with (r, ¢), where r is the row
and c is the column in the figure. Then, the correlation shown in cell (c, r) is the inverse of the correlation in
cell (r, c). The effect of increasing temperature is indicated by arrows. Note that, an up-shift in a cell below
the diagonal with labels for quantities, c.f., cell (4,3), corresponds to right-shift in the above-diagonal cell
(3,4), and a clockwise rotation in cell (5,4) corresponds to counter-clockwise rotation in cell (4,5). The
figure is deliberately arranged with a large number of cells, with the purpose to build the impression for the
existence of correlations and dependences between the different quantities in the OTFT film. Observe the
virtually straight lines in each cell, then intuitively, the relations perhaps are simple, thus, manageable
analytically in practice. There are redundant relations (at least half, in the transposed cells) and we will not
analyze each cell in great detail, but will comment on several interesting features.

The first observation in Figure 15 is that the correlations are independent of the gate bias voltage,
since the lines for different Vg={-5V, -10V, -20V} overlap, just spanning different intervals in the
correlations. This indicates that there is an inherent relation between electrostatics and charge hopping,
which is not explicitly explored in the literature. Bias-independent correlations are expected, once the
material properties are independent of the electric field, which is one of the assumptions for the VRH

simulator — please see the paragraph before eq. (30) earlier
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In contrast to the bias independence of the correlations in Figure 15, temperature affects the majority
of the correlations, but not all of them. For example, the electrostatics is temperature independent (assuming
a temperature independent permittivity) and there is no temperature dependence between -carrier
concentration and electric field in cells (2,1) and (1,2). However, observe that there is no temperature
dependence between hopping distance and specific conductivity in cells (6,5) and (5,6), and this is not
obvious at first glance. Observe also that there is a pronounced temperature dependence between specific
conductance and mobility in cells (7,6) and (6,7). Therefore, the first-glance assumption for proportionality
between mobility and conductance is probably an oversimplification, if overlooking that the carrier
concentration might be temperature dependent [11]. However, inspecting the relation between carrier
concentration and specific conductance cell (6,1) or (1,6) in conjunction with the relation between carrier
concentration and mobility cell (7,1) or (1,7), one observes temperature dependences of different rates.
Thus, the carrier concentration is temperature dependent, although the relation between electric field and
carrier concentration is temperature independent, as mentioned above. Therefore, the mobility and
conductivity are not really related by a temperature independent coefficient of proportionality.
Consequently, one should expect different activation energies for mobility and conductance or current, and
such comparisons [58, 59] are occasionally reported in the literature for OTFTs. Instead, semi-empirical
observations for constant or bias-dependent thermal activation of mobility, conductance and current in
OTFT are routinely reported [1, 11, 22, 24, 26, 34, 41, 44, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], also
“successfully” fitting to the Meyer-Neldel rule [73, 74] and Gaussian disorder models for possible
explanation of the thermal activation. Simple relations have been also deduced, such as (band bending +
activation energy + Fermi level)=(transport band edge) in Ref. [71],
In(charge)=In(conductance / mobility) [ (mobility activation — conductance activation)/kT in ref. [59],
proceeding to the next observation in Figure 15 that confirms the existence of simple relations. Alternative
explanations for the activation energy in OTFT are also available, e.g., in terms of electrochemical

description of the pentacene-oxide interface in Ref. [75].
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The second observation is that the correlations resulted in straight lines in Figure 15 (with a small
exception of a minute curvature for the correlation of the mobility at high bias and temperature, which
cannot be seen in the figure). Since the axes in the figure are combinations of linear and logarithmic scales,
then one can deduce four simple correlations between quantities in OTFTs.

* Linear correlation, when both axes are linear, e.g., cells (4,3) and (5,3) for the relations between

hopping critical energy and distance to potential bending, respectively.

* Power-law correlation, when both axes are logarithmic, e.g., cell (7,1) for the relation between
mobility and carrier concentration.

» Exponential correlation, when x-axis is linear and y-axis is logarithmic, e.g., cell (1,3) showing
exponential dependence of the carrier concentration on potential bending, Nclexp(Vs), for
example.

* Logarithmic correlation, when x-axis is logarithmic and y-axis is linear, e.g., cell (3,1) for the
inverse relation VeUOIn(Nc).

Some of these correlations have been used in the derivation of physical and compact models. For example,
eq. (10) in [22] uses Nclexp(Vg) from cell (1,3) in the normalized form N¢/NsUexp(qVe/kT,) for the
derivation of the widely-accepted VRH mobility model for OTFT. Another example is the correlation
pu(Nc)Y is cell (7,1) between mobility p and charge qNc, which was experimentally established a while ago
[33], and used in [28] to derive a TFT generic charge drift model.

The third observation in Figure 15, however, is that there are several simple correlations, which appear
to be hidden behind the multiple assumptions and integrations required in the analytical derivations based
on VRH in OTFTs with an exponential DOS. One often mentioned [22] but rarely discussed correlation is in
cells (6,5) and (5,6) for the exponential dependence cllexp(—Ru) of the conductivity ¢ on the hopping
critical distance Ru. Actually, this correlation is the basic assumption in VRH for the critical path that
determines the percolation conductivity cllexp(—sc), eq. (1), and the equivalence of distance and energy for

the factor sc of the hoping critical rate I'c, sc=In(I'o/I'c)=2Ru/Ao=En/KT, eq. (2), which was introduced in
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[20]. In fact, one must observe overlap of the curves in cells (6,5) and (5,6) at any temperature and bias, and
the overlap is an indication of the accuracy of the numerical integrations in the simulator. A lack of overlap
means a problem in the simulator, either the integration step (dE) for energy is coarse, or the limits of the
integrations are narrow (or the numerical method failed because of another reason, e.g., error in code or lack
of convergence). The other indicator for proper operation of the numerical simulator is in cells (2,1) and

(1,2), where the electrostatic (Gauss) law for the electric field EqOf/NcdD must hold the same power-law

function Ncl(Ee1)? at any temperature and bias.

3.7. Correlation between potential bending (Vs) and hopping energy (En)
An interesting “hidden” correlation is in cells (4,3) and (3,4) of Figure 15 for the linear dependence between
potential bending Vg and hopping critical energy En. The coefficient of proportionality is (—1), implying
that the correlation is given by
Ey +qVg =Ep (T). (50)
where Er is a function only of the temperature. We did not to find this correlation in the literature. It is
either fortunate or well hidden after the large equations with multiple integrals. However, this is a simple
and handy relation between electrostatics and variable-range hopping, since the electrostatic calculation is
quick (of order n2x10°FLOPs~0.4GFLOPs, see row “eSt” in Table VI and Appendix 1), while the hopping
calculation is computationally extensive (of order mxn?x(750FLOPs)~150GFLOPs even for reduced depth
mesh with m~50 points, see row “pass 2” for multiple [|[dEdE integrations in Table VI and Appendix 1).
Therefore, we plot in Figure 16 the results for Et from simulation of several OTFTs, including the deviation
from proportionality (—1), and step by step, we will show that the relation is not fortunate, but is a consistent
and basic bridge between hopping and electrostatics.
The results from the analyses of the Vg—En correlation in eq. (50) are summarized in Figure 16. The
results are obtained after fitting of the mobility at different temperatures (T) and gate bias voltages (V) in

three OTFTs. These are from 108 simulations at different temperatures, using both single [dE integration
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according to eq. (14) (gray color in Figure 16) and multiple [[dEdE integrations according to egs. (16), (18)
and (20) (black color in Figure 16) for the calculation of the hopping conduction. The double-sided
exponential DOSpE in eq. (45) was considered in the simulations. The fitting of the mobility will be shown
shortly in Figure 17.

In Figure 16a, the values for Er are denoted with circle symbols (O) for a pentacene OTFT from [73]
for Vg={-5V, =10V, =20V}, with square symbols (LJ) for another pentacene OTFT from [22] for the same
gate bias voltages, and with diamond symbols (<) for an annealed PQT-12 film OTFT from [60] at two
times larger gate overdrive voltages (Vo—V1)={—-10V, -20V, —40V}. For each device, simulation method
and temperature, the three symbols overlap for different gate bias voltages, confirming the bias-independent
Er in eq. (50). The magnitudes of the proportionality coefficient between Ex and qV are obtained from the
slope |0En/OVp| of the regression between these quantities. The values of the slopes are shown with dash
symbols (=) in Figure 16a, which are close to the ideal value of unity (dashed line in the figure), especially
at high temperatures, but they deviate from unity at low temperatures.

Since the deviations from unity of the slope |OEn/OVs| are small, we have performed a statistical
analysis of the values (108 points), as summarized in Figure 16b. While values for |OEn/0Vs| are shown in
the horizontal axis, note that the horizontal axis is reversed logarithmic axis of (1—|0En/0Vs|), which is the
deviation of the slope from the ideal value of unity. Therefore, the nearly uniform histogram (dotted bars)
indicates an exponential distribution of the slope |0Ex/0Vs| values and provides that |OEn/0V|=1+1% with
90% confidence. The curves denoted as “mean” represent the average values for the slope |0Ex/0Vg| vs. the
energy step dE=2meV, used in the numerical integrations, normalized to the thermal energy kT. Therefore,
the fixed-value energy step is coarse at low temperature (dE/KT is large for low T), and the energy step
becomes fine at high temperature (dE/KT reduces at high T). These curves in Figure 16b clearly show that
the deviation from unity of the slope |OEn/0Vs| is an artifact of the numerical integration due to a coarse
integration step at low temperatures (dE/kT>10% at T<200K), because a larger step dE/KT causes larger

deviation from unity of |0En/0Vg|. Also, less integration by the method of single [dE integration (gray color)
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causes larger deviations, compared to the method of multiple [[dEJE integrations (black lines). These
observations are repeated proportionally for the standard and greatest deviations from unity of |OEn/0Vs|,
shown with horizontal error bars and denoted with “mean—c” and “min” in Figure 16b. Thus, the numerical
simulations of variable-range hoping have justified the correlation in eq. (50) between potential bending Vg
and hopping critical energy En, although we cannot find in the literature an analytical derivation for this
correlation. The consequences from eq. (50) will be given later in Sec. 4 “Discussion”. The immediate
deduction is that Er should be equal to the hopping critical energy in the bulk material, since the potential

bending in bulk material is zero (Vg=0).

3.8. OTFT mobility (n) and sheet conductance (osq) from VRH conductivity (o)
The most critical OTFT performance parameter is the magnitude of the effective mobility (p), since p in
OTFT is low and it depends on many factors — type and uniformity of organic semiconductors (e.g. grains),
materials and layers at interfaces and contacts, layout, fabrication, encapsulation, temperature, bias, light,
time, characterization techniques, etc., as reported in many publications and discussed in length in several
review articles [27, 33, 76]. Therefore, the benchmark assessment for models and simulators is the prediction
of pn in OTFT. On the other hand, the VRH theories provide for the specific conductivity (o, in unit, e.g.
A/Vem=S/cm) of the materials [20, 21], but not directly for the mobility of charge carriers in OTFT.
Therefore, one has used in [22] the following supplementary relations to obtain analytical expression for the

mobility from conductivity in OTFT operating in the linear (Ohmic) regime.

tf — 00
W _ W
Ip=—Vp [ o(p)dD =~ VbOy (51)
0
and
-1 ile)
H:[EVD} 1 dp :iﬂ’ (52)
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where C is the gate insulator capacitance per unit area, Ip is the drain current at bias voltages at the drain
Vp and gate Vg with threshold voltage Vr omitted. W and L are the width and length of the OTFT channel,
respectively, and oyq is the sheet conductivity of the semiconducting film in unit Siemens per square area of
the channel. This derivation sequence of using proportionalities, integrations and differentiations is
vulnerable to cancelling of constant multipliers and omission of constants in the final expression for the
mobility. Indeed, integration limits and details for approximations and neglecting term in several steps and
substitutions by the derivations were omitted in [22]. Therefore, we use directly the results from the
numerical simulator for the profiles of o (cf. Figure 14c) for the finite thickness tf of the OTFT film and
obtain the effective mobility from the general relation in eq. (42).

The results of our calculations for the mobility p are depicted in Figure 17 with lines, and compared
with the experimental data shown as symbols. Plots (a), (b) and (c) in this figure correspond to the symbols
in Figure 16a, in particular, to the circle symbols (O) for a pentacene OTFT from [73], square symbols (L)
for the other pentacene OTFT from [22] and diamond symbols (<) for the annealed-PQT-12-film OTFT
from [60], respectively. Also in correspondence with Figure 16, the thick gray lines are from simulation of
the hopping conduction by the method of single [dE integration according to eq. (14), and the thin black
lines are after multiple [[dEdE integrations according to eqs. (16), (18) and (20). The parameters used in the
simulations are given in Table IV and are also compared with the values reported in the literature for these
samples. In Figure 17b, we observe a good overlap between numerical simulation and experimental data,
the latter used in [22] for verification of the analytical VRH model for OTFTs, and recently, for the generic
and compact models [6] for the mobility in OTFT. The deviations observed in the figure and the scatter of
the values of the parameters in Table IV will be addressed later in Sec. 4 “Discussion”.

As mentioned above, the VRH theories and derivations, and the numerical simulators, consequently,
provide for the specific conductivity . Using eq. (41), one obtains the sheet conductivity cs=/cdD in the
channel of the OTFT by integration of the profile for ¢ from the gate insulator interface (D=0) into the

depth D of the organic semiconductor (0<D<ts), up to the thickness tr of the semiconducting film. Typical
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results for osq are shown in Figure 18 at several temperatures and as function of the gate overdrive
(Vc—Von), where the turn-on voltage Von is the gate voltage Vg, at which the gate bias induces a
conductivity larger than the bulk conductivity, and Von~VEs corresponds roughly to the flat-band potential
Vrs referred to the gate conductor work function in our simulator. Note that Vo, is “below” the threshold
voltage VT, and the range Von<Vg<Vr is usually regarded as the sub-threshold regime of operation of the
OTFT. OTFTs are typically p-type field-effect transistors, for which one uses inverted values for the
voltages, e.g., (—Von)<(—=Vg)<(-V1), as in Figure 18.

The simulation results for osq are shown with lines in Figure 18 with colors corresponding to the
colors in Figure 16a and Figure 17c. The thick gray lines are from simulation of the hopping conduction by
the method of single [dE integration according to eq. (14), and the thin black lines are after multiple [[dEdE
integrations according to eqs. (16), (18) and (20). The parameter values are the same as for Figure 17c and
are given in Table IV. We present in Figure 18 the same results in three plots: linear, semi-logarithmic and
logarithmic, since the values are over several decades, and the different plot formats provide different
insights. The linear plot in Figure 18a illustrates that the two methods of single [dE and multiple [J[dEJE
integrations predict different magnitudes for osq, with differences up to about 20% at a given bias and
temperature, which is an estimate for how accurate the numerical simulations of VRH can be in practice.
The semi-logarithmic plot in Figure 18b illustrates, however, that both methods predict in very similar
manner the behaviors of 6sq as a function of bias and temperature. The higher temperatures increase the
OTFT’s conductivity at given gate bias (especially at low bias), but the higher bias reduces the temperature
effect. Conversely, higher temperatures reduce (in relative units) the dependence of the conductance on the
bias, since the steepness of the curves in Figure 18b is reduced at higher temperatures. The semi-logarithmic
plot in Figure 18b shows the dependences qualitatively, and the actual form of these dependences becomes
clear from the logarithmic plot in Figure 18c. Here, the lines are almost straight, illustrating the power-law

dependence of the conductance on the bias, 6sq0|Ve—Von|, with the exponent factor (n) increasing, when

the temperature decreases, n[J1/T, and lines intersecting at some high overdrive |[Vg—Von|~240V, at which
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the temperature dependence is virtually cancelled. These details from simulation will be further discussed
shortly, after justifying the consistency of the numerical simulation with experiments.

The open and filled symbols in Figure 18 are recalculated data for two PQT-12 OTFTs. Drain current
Ip—Vg transfer curves at a low drain voltage Vp=—1V are reported in Fig. 2a at lower |Vg| and in Fig. 8a at
higher |Vg| in [60]. Therefore, we assume that the data correspond to the linear regime of operation of

OTFT, and from eq. (51), one can estimate the sheet conductance by

~
=

osq

Ip
D

% , for linear regime [Vp|<|V6—V1|~[V6—Vau|, (53)

as far as (—Vg) is several volts above the threshold voltage (—Vr), the later reported around 10V for the
annealed-PQT-12-film OTFTs and Von=#1V at room temperature. The information for the samples and their
parameters is aggregated in ranges in [60], but unfortunately, not sample by sample at different
temperatures. Nevertheless, I-V transfer curves at different temperatures are provided in [60], which is a
much better situation than not reporting any temperature-dependent I-V characteristic in [22, 73], but only
the mobility for the pentacene samples, c.f. Figure 17a and b. We tried to recover the missing information
for the PQT-12 OTFTs, using the procedure described in the next paragraph.

It is provided in [60] that the samples had W=0.5—1mm and L=40-100um, and the threshold voltage
in Fig. 2b in this publication increased from (—Vr1)=5V at room temperature to 13—14V when the
temperature was decreased to T=200—-150K. Thus, considering also the aforementioned room-temperature
Vr and Von, we let W/L to vary between 5 and 25 +20% and (—Von) to vary between (—2V) and (+15V) until
a good match between simulated and recalculated by eq. (53) values occurs at higher gate overdrive
|[VG—Von| at all temperatures, as shown in Figure 18 for matching of the recalculated osq from Ip—Vg transfer
curves to simulation of VRH with multiple [[dEdE integrations. Similar good match was obtained also to the
other method with single [dE integration, but with different values for W/L and Vs, and the symbols for this
latter match are omitted only for clarity in the figure. The values for W/L and Vo, are given in Table V for
both fittings. Both W/L and Von vary with the temperature even for the same sample, which signifies that
that there is a large uncertainty in the recalculation. Therefore, the comparison between simulations and
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experiments in Figure 18 should be taken qualitatively, not quantitatively. However, particular sample
information in [60] is missing, as we have mentioned, and we cannot discriminate which values are correct
and which are wrong, since all values for W/L and Vo, in Table V are within the intervals stated in [60].
Also, lowering the bias below |[Vg—Von|<5V, one observes discrepancies between simulation and
recalculated experimental data; e.g., in Figure 18c, the experimental data level off ([ and O for T=200K
and T=150K), while the simulations bend down (clearly seen by the lines for T=300K). These discrepancies
are because the OTFT moves in the saturation and subthreshold regimes when |[Vg—Von|<5V, and the
recalculation by eq. (53) is incorrect, since the condition for linear regime and validity of this equation are
violated. Nevertheless, the qualitative comparison at sufficiently high gate bias, e.g. [Vg—Von[>10V,
indicates that the aforementioned power-law and 1/T behaviors deduced by numerical simulations of VRH
are reproduced in the experiments. Also, note that the numerical evaluation of eqs. (41) and (42) is

independent of the value of (W/L). Next, we closely inspect these relations.

3.9. Bias dependence and thermal activation of the OTFT sheet conductance (6sq) by VRH
A close look at the predictions from numerical simulation of the sheet conductance 6sq in OTFT is given in
Figure 19 for an expanded biasing range up to (V6—Von)=—700V for clarity, although the 100nm SiO» gate
dielectric (see Table IV again) in the real PQT-12 devices in [60] may break down at a lower bias. The
square symbols in this figure are the results for osq from simulation, and correspond to the lines in Figure
18c, from which we have deduced above that the sheet conductance c5q(Vg, T) should be a temperature-

dependent power-law function of the bias, given by

0y (Vg T) _( Vg - Vo, JH(T)

v n(T)
= = (—GJ , since Vo> V6> Von~x1V, (54)
VGx - Von

qux VGx
where 65qx and Vgx are some characteristic parameters, and the temperature dependence of oy is due to

variation of the exponential factor (n) in the power-law function as reciprocal of the temperature, e.g.,
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n(T):TGX _ 0ln(0'sq)
T  0In(|Vg ~ Von|)

; (55)

where Tox is also a characteristic temperature parameter for osq. Thus, we fit the power-law trend lines in
Figure 19 to the simulation data points that align in straight lines in the logarithmic plot. These data points
are mostly in the bias range —(V6—Von)=10—-100V, and are denoted with filled squares. The trend lines
intersect at points (Vax, Osqx) denoted with circles in the upper-right corner of the figure, indicating almost
constant values for Vgx=—240V and c54x=0.35uS/square after both methods of VRH simulation by single
[dE integration according to eq. (14), and multiple [[dEdE integrations according to eqs. (16), (18) and (20).
Therefore, we conclude that eq. (54) holds for moderate biases. Furthermore, the slopes of the power-law
trend lines in the logarithmic plot are the exponential factor (n) in the power-law function, as indicated by
the last term in eq. (55). The values for n are shown in the inset of Figure 19 with circles as function of the
reciprocal of the temperature 1/T. These values also align with the straight lines in the linear plot of the
inset, validating eq. (55), with Tox=400K. Therefore, we conclude that the conductance in the OTFT at

moderate bias has a thermal activation energy in the form of

V,
E g = kT, ln( VGX j at moderate bias [Vox—Von|/2>[Vc—Von|> 10V, (56)
G

since from eqs. (54) and (55), it follows that

TUX
Oyq (Vg T () T
Sq( G ) z( Ve J :(V_GJ =exp —Tﬂln(&j ' (57)
qux Vox Vox T \Z¢

Note the conditions in eq. (56), which were used as selection criteria of the points for fitting of the power-

law trend lines. At lower or higher gate bias, the deviations from the power-law dependence are evident, as
seen by the data points denoted with open squares in Figure 19. At low bias, the deviation is due to the
uncertain value of Von. At high bias, the potential bending in the organic semiconductor crosses and is
above the DOS centroid level Eo, and the power-law is violated, since the charge hopping is no longer in the

exponential tail of the DOS, and the DOS occupation tends to saturate. In this case, we have observed that
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the inaccuracy of numerical simulator is also larger, owing to the larger differences in the results from the
two methods of single [dE integration and multiple [[dEJE integrations, although both methods predict

saturation in the VRH conductivity.

4. Discussion
The previous section addressed the essential properties and behaviors that the VRH predicts for OTFTs. In
this section, we address several other cases that occur in the application of VRH, such as the type of DOS in

the next sub-section.

4.1. Effects due to the assumption for the type of DOS
The simulation results shown in the previous section are with the assumption that the DOS is a double-sided
exponential DOSpE, according to eq. (45). On the other hand, VRH was analyzed in the literature as either a

single-sided exponential DOSsg, eq. (22), or a normally distributed DOSnp, that can be given in the form

2
DOS(E) = DOSyp (E) E-E, J : (58)

Ns
KT 2 ¢ (kTO\/E

where E, is the energy position of DOSnp, e.g. HOMO for p-type OTFT, and (kT,) defines the width of the
distribution, similarly as for the exponential types of DOS. Comparing eqs. (22), (45) and (58), one sees that
the assumptions for DOS might be quite different. Therefore, it is reasonable to investigate the impact of the
DOS type on VRH.

The effect of the assumption for DOS on the mobility in OTFT is illustrated in Figure 20 for both
methods of VRH numerical calculation with single JdE and multiple [[dEdE integrations. One observes in
the figure that the experimental data (open circles O) for the OTFT mobility can be fitted well by any of the
assumptions for DOS type in an interval of £(50-100)K around room temperature (T~300K), when
choosing appropriate values for the parameters. Thus, one might be unable to determine the DOS type from

the Arrhenius plots, log(p) vs. 1/T, of the experimental data for mobility. The trend in the figure is that the
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DOS type affects the behavior at very low and very high temperatures, and the effects are in correspondence
with the “rectangularity” of DOS. A possible definition of DOS “rectangularity” is given later in eq. (74).
The trend and the “rectangularity” are illustrated in the cartoon of Figure 21. The single-sided exponential
DOSsk is a “peaking” function of the energy with low “rectangularity”. For DOSsg, the behavior of the
mobility is plexp(-To/T) at low temperatures, leveling off at high temperatures. The increased
“rectangularity” of the double-sided exponential DOSpg and the normally distributed DOS~p bends up the
log(w)—1/T dependence at low and high temperatures, without major changes at moderate temperatures
around room temperature.

The type of DOS has a moderate effect on the behavior of the VRH mobility. However, the different
assumptions for the type of DOS and the different methods of VRH calculations have significant impacts on
the values of the parameters. As mentioned earlier, when discussing the deviations between simulation and
experimental data in Figure 17, the values of the parameters are collected in Table IV. These parameters
have been used in the simulations shown in the preceding figures, e.g., Figure 20 above for mobility.
Column “comment” in Table IV discloses which data set where was used. The scatter of values is addressed
here. The values of the parameters from Table IV are visualized in Figure 22.

The top-left plot in Figure 22 is for the “characteristic temperature” T,, which describes the energy
width (kT,) of the distribution of the DOS. One observes that T, for exponential types of DOS is about 2-3
times smaller than T, for normally distributed DOSn~p [6]. Also, the values for T, are very similar for both
the single-sided exponential DOSsg and the double-sided exponential DOSpg. Further, there is a good match
to values for T, from analytical VRH calculations with exponential DOS reported in the literature for these
samples. Unfortunately, this coherent situation for T, is not the case for the other parameters related to VRH
in OTFTs.

The middle-left plot in Figure 22 is for the total concentration of states Ng for all energies,
Ns=fDOS(E)dE with (—co<E<+). Two trends are observed in this plot. One trend is that the method of

single [dE integration for VRH requires 2-3 times higher value for Ns, as compared with the method of
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multiple [[dEdE integrations, in order to calculate similar VRH mobility for any given type of DOS in an
OTFT. This trend indicates that at present, the VRH theories do not provide a mature and unique method for
calculation. The second trend is that Ns is higher for OTFTs with lower mobility, comparing from left to
right for the two pentacene OTFTs, and Ns is even higher for the PQT-12 OTFT. We note that the values
for Ns are larger than the molecular density of pentacene and PQT-12. The unit cell sizes of pentacene
molecular crystals are reported as 1.603nmx0.793nmx0.614nm in [32] and 1.6nmx0.79nmx0.606nm in
[33], resulting in molecular density ~1.3nm™3=1.3x10%>'cm= with 11 © bonds per molecule, that is, the -
orbital density is in order of 2x10%2cm™. The crystallographic studies of PQT-12 films in [77, 78] reveal that
the unit cell of this polymer is of size 1.64nmx1.55nmx0.38nm, having four rings with two © bonds per
ring, resulting in molecular density ~1.04nm=3=1.04x10?'cm= and =-orbital density of 1.7x10*2cm=.
Comparing with Ns=(2.5-70)x10?'cm=3, on average 1.7x10?>cm™ in the middle-left plot in Figure 22, it
seems that Ns corresponds to the m-orbital density, rather than to molecular density, which was deduced in
earlier investigations on conductivity in polymers [79]. Certainly, values for Ngs>2x10%’cm™ are
questionable, indicating again the non-mature methods for VRH calculations that are vulnerable to arbitrary
procedures and subjective assessments by fitting of experimental data. Unfortunately, this is the state-of-
the-art at present.

The bottom-left plot in Figure 22 is for the decay distance A, of the hopping rate. Usually, A, is
attributed to overlap of the m orbitals in organic materials. Again, two trends are observed in this plot. One
trend is that A, is lower when Ns is higher, compared with the plot above. Interestingly, while A, varies
about 5 times and Ns varies about 30 times, the product A.x(Ns)’s varies less than 4 times between 12%
and 42% among all samples, despite assumptions for different DOS and methods of VRH calculation, being
on average ~25%. Since the product is related to the enhancement factor y (see eq. (44) earlier), then y~2 is
expected for the OTFTs, as explained in [6]. However, the second trend in the bottom-left plot in Figure 22
is that the values for A, from numerical simulations (symbols in the plot) are about two times smaller than

the values reported in the literature (horizontal dashed lines in the plot) and deduced by using of the
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analytical model [22]. This discrepancy again questions the absolute precision by the derivation of analytical
models, although the analytical models have been proven [6, 11] to have consistent behaviors with
temperature and bias of the OTFT.

Consider now the top-right and middle-right plots in Figure 22. The top-right plot is for the
conductance prefactor o, usually taken as a constant parameter in the analytical VRH model for OTFTs
[22], whereas the middle-right plot is for the hopping attempt rate I', in the principal VRH physical model
of eq. (2). The relation between o, and I, is given by eq. (3), showing proportionality to the first order of
approximation, and the proportionality between the two plots is evident. However, there are again problems
with the values. The numerical simulations suggest 2-3 orders of magnitude lower values for c,, compared
to those reported in the literature by fitting of an analytical model (dashed lines in the top-right plot). Even
so, some of the corresponding values for I, are unrealistically large, being in the range of PHz
(PHz=10'"Hz), especially with the assumption of normally distributed DOS, and well above the limit of
IPHz derived in [21] by assuming random walk in the percolation network. In fact, frequencies above
300PHz are improbable for m orbitals in organic materials with radius ~0.15nm or larger, since
¢/(2nx0.15nm)=318PHz, where c=3x10'%m/s is the speed of the light. Thus, any value for I'v>10PHz, and
consequently from eq. (3) 6o>1.6x1071°x10PHz/(26mVx0.5nm)~107S/cm=10°S/m, are just extrapolated
model parameters without physical validity. Note that many points from the numerical simulations in the
top-right and middle-right plots in Figure 22 are above the limits for physical significance, and we are afraid
that the values for o, reported in the literature correspond to an even higher I'o>100PHz, thus is physically
improbable. We do not delete the apparently wrong values and strongly emphasize that one meets with
disappointing results fairly easily after lengthy derivations and simulations based on VRH. Therefore, the
VRH theory seems again vulnerable to mistakes, owing to overlooked issues when using proportionalities
and sequences of integrations and differentiations, and not paying attention to absolute values and

magnitudes of quantities.
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Nevertheless, in the bottom-right plot of Figure 22, we show the hopping energy Enrp in the bulk
organic semiconductor, although Enrp is a quantity, and not a parameter. The data scatter about 0.3eV
around leV, but considering that Exrg accumulates much larger variations for To, Ao and I’y by different
assumptions for DOS and methods of calculation, we think that the variations in Eurs are reasonable.
Therefore, as we have mentioned in the previous section, the consequences from eq. (50) for the linear

relation between potential bending Vg and hopping critical energy En are discussed next.

4.2. The linear correlation between potential bending (Vs) and hopping energy (En) revisited
The immediate deduction from eq. (50) is that the hopping energy Eu(D,Vs,T) and the potential bending
energy qVs(D,Vg,T) at any depth D, 0<D<t, in the organic semiconducting film of thickness tr and any gate

bias voltage Vg (but at given temperature T) is equal to the hopping energy in the bulk semiconductor
E, (D, Vg, T)+qVy (D, Vg, T)=E;(T)=E, (D=0 orV, =0,T) =E,;; (T), (59)
where Enrs(T) is the hopping energy in the bulk semiconductor at the flat-band condition of zero bending
(Ve=0), see eq. (30), therefore Enrg is not function of depth or bias, and Exrs(T)=En(D=0 or Vp=0, T) is
function only of the temperature T. Considering the relation between hopping energy En and distance Ry in
eq. (2) for the hopping critical factor s, then one divides eq. (59) by kT, and obtains the corresponding

relations for the hoping distances and hopping attenuation factors

Rurs (T) _ Enrs (T)

sar (T) =20 KT
)
_ Ey (D, Vg.T) L9VB (D,Vg.T)
kT kT
(60)
=2RH(D,VG,T) , VB(D. V6. T)
AW kT/q

=5, (D,VG,T)+—VB (D.Vg.T)

¢r
where Rurs(T) and scrs(T) are the bias-independent hopping distance and attenuation factor in bulk

semiconductor, respectively, and @1=kT/q is the thermal voltage.
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Interestingly, despite the variations in experimental data, assumptions for DOS, parameter values,
methods of VRH calculation and levels of gate bias (via V), the ratio 2Rurs/Ao=scrB is apparently a well
defined linear function of the reciprocal temperature, as shown in Figure 23. The linear trend implies that
VRH in OTFT produces simple and relatively stable relation with electrostatics, despite the large
uncertainties for parameters, various assumptions for DOS and bulky integrations. The trend is summarized

in the following two equations. The hopping attenuation critical factor in bulk semiconductor is

_ Pro
seFB (T) = SeTeo +—(Pr (1) (61)

where sct«~10+4 is an extrapolated value for scrg at infinite temperature T=00 and @1,~(0.8V+0.1)V is a
voltage that determines the slope in the scr[11/T temperature dependence, thus, qoro, is the activation
energy for the hopping attenuation critical factor scgg in bulk semiconductor. Note that scte and @1, are
constant parameters, which vary a little by different assumptions for DOS and methods for VRH
calculation, and the temperature dependence in scgs is due to the thermal voltage ¢r=kT/q.

The second equation related to the trend in Figure 23 is

Vg (D, Vg, T
5o (DV. T) = g (1) 2.2 Ve T)
or (T)
(62)
. , 910 = VB (D. V5. T)
¢ ¢r (T)

indicating that the gate bias dependence in the hopping critical factor sc is due to the potential bending
voltage Vs caused by the gate bias voltage Vg at a given depth D in the film. Higher bias causes higher Vs,
which “withdraws” from thermal activation @to. Conversely, higher temperature increases ¢t and decreases
the sensitivity of the critical factor sc (and conductivity) to bias, since Vs/@r decreases. These effects have
been discussed in the previous section in Figure 18b. Thus, the electrostatics enters VRH in OTFT by means
of a simple linear algebraic relation between sc and Vg. Therefore, precise knowledge for Vg(D) in the depth

D of the film of the OTFT at given temperature and bias would guarantee reliable calculation of the profile
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o(D)=c[VB(D)] of the VRH conduction, considering the principal equation (4) for the VRH specific

conductivity 6, which becomes

0(D’VG’T) :%%exp(_ScTw)exp[VB (D’ VG’T) _(Pro}

0 Or 63)
Vg (D, Vg.T)
=Ofp (T)exp ———— | under Vg so that Vg #0,
Or
where opp for the bulk semiconductor is
_qly Pro . .
Opp (T) =——>exp(-s exp| — without bias, thus Vs=0. 64
FB() or A, P( cToo) P( (PTJ B (64)

Note that the last two equations are valid for any DOS and method of VRH calculation. The assumption for
DOS can affect Vg in the electrostatic calculations, but only modifies the constant values for sct and @Teo.
The method of VRH calculation has no effect on Vg and slightly changes the values for sctw and @ro.

To obtain the sheet conductivity osq, consider the integration in eq. (41) along the depth D of the
semiconductor film of thickness tr, 0<D<t, using the expression for (D) from eq. (63), in which org is
constant in respect to D. Performing the substitutions and the integration, we get

t t

Ogq = jf o(D)dD =0Opg jf exp {VB—(D)}dD (65)

0 0 or
Then, one can obtain the OTFT mobility by dividing csq by the gate charge Qg, as given by eq. (42). Again,
precise knowledge for the profile Vg(D) is required to calculate csq from eq. (65), because the profile
depends on the type of DOS. However, an approximate analytical solution of the integral is also suitable in
practice. This is because the shape of the bending profile Vg(D) does not deviate significantly from the
functional form given by eq. (48), if small adjustments of the values of the parameters La and ¢g are
allowed. One adjustment is the use of effective temperature, Togrr in Sec. 4.4.4 later.

To obtain the analytical solutions, substitute eq. (48) in eq. (65), and perform the integration with
respect to the depth D, assuming La and @B as constants. The derivations, given in Appendix 2, show that

the sheet conductivity of the OTFT film becomes
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with pa=kTa/q and Ta=T, and at conditions Ves>2@,>@r for the bending voltage Vgs at the gate dielectric-
semiconductor interface. From eq. (42), one more division on the gate charge Qs=CoxV¢ yields also a

formula for mobility

qu ro ( ) ( (pfoj exp(|E0 _EF|/kT0) TO/T (C \V/ )2(T /T—l) (67)
H=—~q& —eXp|—S.Tw )EXP| — ox © .
Qg o No PATeTe JEIP @r 2qg; @A Ng ©

The above format of the equations is compact, but does not show the actual terms related to thermal

activation. Since Ta=T,, then pa=kTa/q=kTo/q, and these equations can be rewritten together as

0,Q; = HQZ = g, ;\o exp(—sch)exp{—%}, with Q, =C_, V, and

(68)

activation energy E, =kT, {1 +1n [%LZNS X ﬂ}} -|E, - EF|

Qg q
The logarithmic function will be explained later, just before eq. (75). In the last three equations, one clearly
sees the terms, which outline the available freedoms in VRH for tuning magnitude by (I'os/Ao)exp(—Scr«) and
thermal activation by exp(=To/T), the latter logarithmically bias dependent through —2kToxIn(Vs). These
are the main consequence from eq. (50) for the linear relation between potential bending Vg and hopping
critical energy En. The other terms in the equations for conductance and mobility of the OTFT, including
the bias dependence of the thermal activation, are either material constants or follow from electrostatics

through the integral Jexp[Vs(D)/@1]dD of the potential bending profile Vg(D), but are not due to VRH.

4.3. Verification of the correlation between potential bending (V) and hopping energy (En)
To support the above derivation of analytical formulas based on linear dependence between Vg and En, we
have inspected the profiles from numerical simulations and the analytical approximations. Examples are
shown in Figure 24 for a pentacene OTFT. The mobility of this OTFT was reported in [73] and fitted by

VRH calculations with multiple [JdEJE integrations as shown earlier in the bottom-left plot of Figure 20.
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The three rows of plots in Figure 24 are corresponding to assumptions for single-side exponential DOS (top
row of plots), double-side exponential DOS (middle row of plots) and normally distributed DOS (bottom
row of plots). The open circles in Figure 24 are after the numerical calculation. The lines through the circles
are after approximations and analytical calculations. The three columns of plots in Figure 24 are
respectively for the profiles of the carrier concentration Nc (left-hand column), potential bending
Ve=(IMREF-EF)/q (middle column) and specific conductivity o (right-hand column). The middle column
of plots also includes the DOS, as assumed in the numerical calculations (thick gray lines) and the
exponential approximations of DOS (thin black lines that coincide with the thick gray lines) as deduced
from analytical calculations. Note that the values for DOS are in the horizontal axes and given as function
of the bending in the vertical axes. The examples in Figure 24 are for two temperatures (T=100K and 300K)
and two gate bias voltages (Ve=—5V and -20V). The other temperatures and the intermediate bias
V=—10V are omitted only for clarity in the figure.

The procedure of extraction of the parameter values in the analytical equations is now given. This
procedure was repeated for every pair of conditions for temperature and bias, and every type of DOS. The
profiles are obtained from the numerical calculations. The analytical expressions are fitted to the numerical
data. The data from analytical calculations are denoted below with additional subscript “an” to the notations
of the quantities from the numerical simulations. The values for the carrier concentration Nc an(0)=Nc(D=0)
and the potential bending Vgsan=Vss in the semiconductor at the gate dielectric interface (D=0) are taken
from the numerical simulation. The bulk semiconductor specific conductivity orsan(T) is calculated with eq.
(64) by adopting the values for sct and @t, obtained by evaluation of the 1/T dependence for the critical
factor scrB, as indicated in the left-hand column of the small plots in Figure 23.

Owing to the expected (D + La)? dependence from eq. (49) for the profile of the carrier concentration
Nc(D), then the quantity DxNc(D) i1s a peaking function at D = La, from which an initial value for La is

obtained, and then, the numerical data for Nc are fitted by adjustment of the value for La an, in the analytical
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expression Nc(D) = Ncan(D) = Nc,an(0) [ Laan / (D+LAan) 12, until good fit is obtained, as illustrated in the
left-hand plots of Figure 24.

Next, having the value for Laan, the value of the characteristic voltage ¢Ban=kTpan/q for the
logarithmic decay of the potential bending Vg in the depth of the film is determined by varying @g.an in the
analytical expression VB an(D)=VBsan—20B.anXIn(1+D/Laan) of eq. (48). As illustrated in the middle column
of plots in Figure 24, a good fit to the numerical data for bending profile Vg(D) is obtained. We gather the
values for Vpa(D) from the analytical calculation for the same depth mesh D, as by the numerical
calculation. With these values for Vsa(D), the profile for the VRH specific conductivity
Gan(D)=0FB.an(T)xexp[ VB,an(D)/ 1] is calculated by the last expression of eq. (63), as depicted by the lines in
the right-hand column of plots in Figure 24. The comparison between circles and lines in these plots
indicates that the match for ¢ from numerical and ca, from analytical calculations is good, which validates
the above derivation of the analytical formulas to be suitable for approximate calculation of VRH by any
type of DOS. Furthermore, since the analytical formulas are based on the linear correlation between
potential bending (V) and hopping energy (En), then the good match in Figure 24 also verifies the

correlation.

4.4. More quantitative comparison between numerical and analytical calculations of VRH
Looking closer at Figure 24, one observes several details, which have been discussed in the literature. One
observation in the top row of plots in this figure is that the match between analytical and numerical
calculations is almost perfect for single-sided exponential DOS, which is not surprising considering that the
equations of the analytical calculations are based on assumption for this type of DOS. However, deviating
from an exponential DOS, the analytical approximations become less accurate (not distinguished at first
glance, but comparing the actual numbers, as follows). Consider the low bias Vg=-5V in the left-hand
column of plots in Figure 24. There is virtually no temperature dependence for Nc by the single-sided

exponential DOS, and the analytical approximation overlaps the numerical simulation. However, there is a
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small difference between numerical simulation and analytical approximation for double-exponential DOS
and a visible difference by normally distributed DOS, the latter accompanied with some deviation from the
(D+La)"2 dependence. The differences between numerical simulation and analytical approximations are
reinforced in the profiles for conductivity in the right-hand column of plots in Figure 24; note these plots are
over many decades. Nevertheless, one observes that the magnitudes and slopes of DOS are similar for the
ranges to where the semiconductor is bent, irrespective of the type of DOS [61, 62]. In an attempt to
quantify the magnitudes and variations, we compare several parameters and quantities from numerical and

analytical calculations.

4.4.1. Selection of quantities for comparison

To choose the quantities for comparison, one should review the situation after numerical VRH calculations.
The situation is illustrated in Figure 25 for the pentacene OTFT, which mobility was reported in [73] and
fitted by VRH calculations with multiple [[dEdE integrations as shown earlier in the bottom-left plot of
Figure 20. For clarity, Figure 25 is only for one set of temperature-bias conditions (T=100K and gate bias
Ve=-20V), and for one assumption for DOS (normally distributed DOS). The bending profile and DOS
have been also shown in the middle plot at the bottom row of plots in Figure 24. These are repeated in
Figure 25 for immediate reference, following the same styles for symbols and lines, and accordingly
enhanced to view the situation after VRH calculation and to thoroughly define the quantities for
comparison.

One enhancement in Figure 25 is the gray color error bars for hopping energy En and distance Ry, as
obtained by the numerical calculations. The height of vertical error bars indicates the value of En, at any
depth D. All the vertical error bars end at the dotted horizontal blue line, fulfilling the aforementioned
relation by eqgs. (50) and (59) for the constant energy level (En+qVs)=Enrs, which the carriers reach by
VRH (above the Fermi level Ef), depending on temperature, but irrespectively of bias. The value

Enr=0.889eV=103xkT for T=100K was indicated by the trend equation in the upper-left corner in the
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bottom plot in the left-hand column of small plots in Figure 23 by the evaluation of the 1/T dependence for
the critical factor SCFB. (The substitution in the trend equation gives
Enrs/kT=0.79/kT+11.86=0.79¢V/8.62meV+11.86=103). Note in Figure 25 that Enrs reaches deep in the
DOS, even at low temperature, although IMREF in the organic semiconductor is more than 0.2 eV below
the DOS centroid level Eo,, where |[E—Er=0.9¢V was taken in the simulations. At the gate dielectric
interface, the difference |E.—IMREF(0)|=|Eo—(qVBs+EF)|~0.22¢V is the smallest, while the difference
increases to |[E,.—~IMREF(D)|~0.4eV in the film depth, being ~0.5eV at the back of the film at D=t=50nm,
since the potential bending Vg(D) decreases with D. Thus, we will monitor (Er+Enrs) and
IMREF(D=0)=(qVgs+EF) at the gate dielectric interface (D=0) in respect to the energy position E, of DOS
by comparison of quantities.

Regarding the horizontal error bars in Figure 25, their length indicates the hopping distance Ru. All
the horizontal bars end at the dotted curve (Rg+D). One observes in the left-hand plot that the carriers reach
depths (Ru+D), which are significantly larger than the depth D of the profile close to gate dielectric
interface, while the ratio (Ru+D)/D decreases when moving toward the back of the semiconducting film.

A better perspective for Ry is given in the right-hand plot of Figure 25 with linear scale for the
distance axis at the bottom. In this plot, one observes a linear dependence between Ry and Vg by the line
(green color) labeled with Ry, and Ry is larger at lower bending Vg, whereas D is nearly an exponential
function of Vg, since Vg is nearly a logarithmic function of D, as discussed just above. The linear
dependence between bending voltage Vg and hopping distance Rp is expected, considering
En+qVe=Enrs=constant at a given temperature and the proportionality between Ex and Ry by eq. (2), from
which follows the linear dependence after a division on kT, as given earlier by eq. (60). The interesting
observation for Ry in Figure 25 is that Ry can be an order of magnitude larger than three characteristic
depths: Davgv, Dosuosq and La. These characteristic depths are indicated with the three large symbols

(OO, respectively, on the bending profile (thin red line). The triad of these characteristic depths we
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denote with D"={L.a, Dos%csq, Davevs}. The significances of these characteristic depths, in reverse order, are
the following.

La denotes an electrostatic condition for the depth in which the majority of the carriers are induced by
the gate bias V. Considering the profile of the carrier concentration Nc(D) given in eq. (49), the following
relation between Nc(0) evaluated at the interface, and Nc(LLa) evaluated at La is Nc(La)=%4Nc(0). Also,
integrating eq. (49) from the gate dielectric interface D=0 to D=L, the induced charge in the film up to this
depth La is qﬂfLAchDzl/qu “NcdD=%2Qg, being one half of the gate charge Qe=CoxVa. Thus, the majority
of the carriers induced by the gate bias Vg, are within the distance La, since INCdE~1/D at D>>La.

The second characteristic depth Dosessq denotes the condition for almost full sheet conductivity of the

film, according to

Dosaasq tp
o(D)dE =0.95 [ 6(D)dE =95% 0, =0y
0 0

. (69)

Considering the analytical approximation in eq. (151) for t#2¢s, and assuming 1.05=1/0.95, or~¢B
at room temperature and t>>La, the order of magnitude for Dosgesq 1s roughly Dosgesq~20La, but the
multiplier 20 is different at low temperature, when @r<¢s, which is the case in Figure 25.

The third characteristic depth Davgvs corresponds to the condition for the expected bending avgVs,
which is mostly representative for the sheet conductance csq, and avgVs is an average of bending profile
Vs(D) weighted with the profile o(D) of the specific conductance o, according to

Fa @l [ ()o(o)en

avgVpg = 0 ; = (70)

Both profiles are known from the numerical calculations. Consequently, Daveve can be calculated by

interpolation of the bending profile Vg(D) between points neighboring avgVs, or alternatively, by inverting
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the analytical approximation of eq. (48), e.g., as Davgve=LaX{exp[(VBs—avgVs)/2¢s]-1}. We have used the
former approach of interpolation for calculation of Daygvs.

Once these characteristics depths for average Vs, 95% of o5q and L are defined, we will also monitor
quantities at these three conditions. The values at these conditions for the following quantities are indicated
in Figure 25. The large circles (O) in the left-hand plot denote values at avgVg, in particular, from left to
right, values for Davgve, % of 65q and DOS; and in addition in the right-hand plot, Ry at avgVs. In a similar
way, at the condition of 95% of o, from left to right in the left-hand plot, the large diamonds (<>) denote
values for depth and bending, % of osq and DOS; and Ru at 95% of oy in the right-hand plot.
Consequently, large squares (L) denote the values for Vg, % of 65q and DOS at L4 in the left-hand plot; and
Ry at La in the right-hand plot. The approximation with exponential DOS is shown with dashed lines in
Figure 25. The magnitude of the DOS approximation is taken equal to the magnitude of the assumed by
numerical simulations DOS (normally distributed DOS in Figure 25) at the condition for average Vs,
avgVs. Therefore, DOS and its approximation intersect at the large circles in the two plots in the figure. The
slope of the exponential DOS approximation is oln(DOS)/0E=1/q@B.an, With value of @p.an as deduced after a
fit of the potential bending with the analytical expression VB(D)=VB.an(D)=VBs—2¢B anXIn(1+D/La an) of eq.
(48). Therefore, when comparing to @B.an, Which is the reciprocal of the logarithmic slope of the exponential
DOS approximation, for convenience we will monitor the reciprocal of the logarithmic slope of the DOS,

which is

O(E/q)

S e Y . 71
0[In(DOS)]|at avgVg 1)

dpos (aveVg) =

Note that for single-sided exponential DOSsk of eq. (22), the logarithmic slope of DOSsk is constant in the

energy range where DOSsg>0, and the reciprocal of DOSsg logarithmic slope is

d(E/q) KT,
o{in[exp(|E, ~E|/kT,) ]} a

(72)

b =9posg, =
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For non-exponential types of DOS, the value of ¢pos varies with the bending Vs, via IMREF=(Er+qVs).
For the normally distributed DOS, eq. (58) for example, the reciprocal of the logarithmic DOS slope at
avgVg is

9(E/q) o ()’
o{in[ DOSNp (|, ~IMRER /KT, )} Eo/a-Ep/a-aveVy’

Ppos g = (73)

Among many other quantities, @, is also related with the energy width (q@,) and “rectangularity” of DOS,

the latter defined, for example, as

DOS(E, + +DOS(E, - i
RECpos = qf, (Eo +210¢0) (Bo=ado) o Ns = [ DOS(E)E. (74)
[ DOS(E)E o0

The values of DOS “rectangularity” are RECpos={36.8%, 39.3%, 48.4%, 50% and 100%} for DOSsk,
DOSpg, DOSnp, triangular DOS and uniform DOS, respectively. A complementary definition is the DOS
peaking, e.g., PEAKINGpos=(1/RECpos)—1.

We proceed now to the comparison of the monitored quantities described above. Since the data is
large, we shall present the comparisons only for one device and one case of VRH numerical calculations.
To preserve relation to the preceding figures, we choose the pentacene OTFT, the experimental data of
which were reported in [73], and the simulation case is after fitting the experimental data for mobility by
assumption for normally distributed DOS and by multiple [|[dEJE integrations in the VRH numerical
calculations, as shown earlier in the bottom-left plot of Figure 20. The actual reason for the particular choice
is that the results are representative to what we have observed in comparisons for other devices and methods
of integrations, and the differences between numerical and analytical calculations were the largest for

normally-distributed DOS, as mentioned in the introduction paragraph of Sec. 4.4 above.
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4.4.2. Comparison of energies

The first comparison of the monitored quantities is illustrated in Figure 26 for the bending qVg, DOS and
hopping energy at the various conditions for extraction of the values for the potential bending Vg. The
conditions for value extractions of Vg and the corresponding notations in Figure 26 (a) and (b) are: solid
lines (—) for the semiconductor-gate dielectric interface (depth D=0, Vg(0)=Vgs); circles (O, filled in red
color) for the average bending avgVs — see eq. (70); diamonds (<>, filled in green color) for the bending at
depth Doscsq in the semiconducting film corresponding to sheet conductance 95% of c5q — see eq. (69); and
the squares (L], filled in yellow color) are for the bending at depth D=La, where La=La an is obtained after
fitting the charge profile Nc(D) from numerical calculations with No(D)O(D+La an) ™2, see eq. (49) and the
bottom of the left-hand plots in Figure 24.

Three observations can be made in Figure 26 (a) for a given gate bias Ve=—20V. The first observation
is that the bending is high at low temperature, and it is about 0.2eV below the DOS centroid E, [61, 62], but
the bending decreases at high temperature. The second observation is that always Ves>avgVe>Vs(95%csq),
having the opposite temperature sensitivity 0Vps/0T<0avgVe/0T<OVB(95%0sq)/OT. The bending Vg(La) at
the electrostatic depth La is the lowest at low temperature, but Vs(La)>avgVp at high temperature, since the
temperature sensitivity 0Ve(La)/0T~0Ves/OT is low, as expected for electrostatic quantities that are
independent of hopping in principle. From eq. (49), the electrostatic depth La corresponds to ¥2Qg of the
gate charge Qg=CoxVg, see before eq. (69). The third observation in Figure 26 (a) is that the scatter in
values between Vg at different conditions for value extraction is minimal at low temperature and the scatter
increases at high temperature, owing to different 0Vs/0T. The trend of decreasing bending and increasing
scatter of values by increasing the temperature is illustrated with small dashes surrounded with dotted
ellipses in Figure 26 (c), aggregating the data for bending for all cases of biasing and conditions for
extraction.

Nevertheless, although varying with temperature, the slopes in Figure 26 (b) indicate that Vg at

different conditions for value extraction have the same logarithmic bias dependence at a given temperature,
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with a slope 0VB/0[log(Vs)] increasing at higher temperature. The trend in the evolution of the bending and
hopping energy as function of temperature is shown in Figure 26 (c), and compared to DOS, the latter
depicted with solid parabolic curve (blue color), having centroid level E, (dashed horizontal line). The blank
bars illustrate the decrease of the bending. The solid straight line (green color) is the hopping energy Eurs
for the bulk semiconductor, and Eurs increases with temperature. From eq. (59), the difference between
Enrs and bending is the hopping energy En=(Enrs—qVs) (shown with shaded gray color bars in the figure),
which also increases with the temperature. The interesting observation is that the bias-independent quantity
Eurs=(En+qVB) reaches levels deep in DOS. Therefore, VRH scans the DOS almost entirely, at least half of
DOS even at low temperatures, which questions the assumption in the analytical derivations [21, 22] that the
hopping is in the DOS tail, where the bending is. Comparing qVs and En, blank and shaded bars in Figure
26 (c), one sees that the proportion is in favor of bending at low temperatures (thus, electrostatics in DOS
tail), but the proportion becomes reciprocal at high temperature, with dominating hopping around the
centroid level E, of the DOS. At intermediate temperatures, normally around room temperature for OTFTs,
the bending and hopping have similar contributions to Eurs. The consequence of the variation of the
proportion between bending and hopping is that the steepness of DOS tail is important at low temperatures,
whereas the DOS itself is important at high temperature, as noted in [6]. Therefore, analytical expressions
for VRH derived from the condition for low temperature, require corrections for intermediate and high
temperature. For example, the analytical expression for mobility derived in [22] contains a term sinc(nT/To),
where sinc(x)=sin(x)/x, x=nT/T, and kTo=qe, is the energy width of exponential DOS, but this term causes
problem at T—T,, since sinc(2n>x>m)<0 causes an unrealistic drop to zero and negative mobility, and the
term should be replaced with other function, e.g. with (To/T—1)/{1—exp[(1-To/T)(Eo—Er)/(kTo)]} suggested
in [6] for the temperature “shaping” function (TSF?), or an effective value Togr for the parameter T, should
be assumed to be an increasing function of temperature T, as suggested in the appendix of [11] and
discussed later by eq. (79). Analytical approximations related to the problem at T—T, are also given in [2]

for amorphous silicon TFTs.
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4.4.3. Comparison of distances

The second comparison of the monitored quantities is illustrated in Figure 27 for the set of three
characteristic electrostatic distances D"={La, Dos%ssq, Davgvs} and hopping distances Ru at various
conditions for extraction of the values for D" and Ru. (The conditions and biasing are the same as in Figure
26.) The aggregated data in the top-left plot of Figure 27 indicate large scattering of values for the set of
electrostatic distances D” (L, black color), variations over 1.5 decades with bias and extraction conditions
at a given temperature, and with a power-law trend of decreasing D at lower temperatures T (higher 1000/T)
of slope steeper than T'3. In contrast, the hopping distances Ru (O, red color) vary little, less than a factor
of 2 with the bias and extraction conditions at a given temperature, between lnm and 3nm for all
temperatures, and with a power-law trend of increasing Ry at lower temperatures T (higher 1000/T) of
gradual slope of (1/T)°3. Interestingly, the product D”"xRu = {LaXRu, DoswosqXRu, DavevexRu} (-, blue-
color dashes in the top left figure) has a power law trend with slope (T)!, therefore, the trend is that D"xRu
is proportional to the absolute temperature T, being a counter part of (Ex+qVg)=constant, although D"xRu
is strongly varying with gate bias.

To get more insights in the details for the temperature dependences of the characteristic depths D" and
Ru, consider the bottom-left plot in Figure 27 at given gate bias voltage Vg=—20V. The small symbols
connected with dashed lines are for Ry, by triangles (A) for the semiconductor-gate dielectric interface
(depth D=0), circles (O) at condition for average bending avgVp — see eq. (70), diamonds (<) at depth
Dosaosq corresponding to sheet conductance 95% of osq — see eq. (69), and squares ([J) are for depth La,
where La=Laan is obtained after fitting the charge profile Nc(D) from numerical calculations with
Nc(D)O(D+La.an) 2, see eq. (49), and La corresponds to ¥2Qg of the gate charge Qa=CoxVg, see before eq.
(69). Since Vy(D=0)=Vgs is the largest, then Ru(D=0) is the smallest, and the triangles are always below
other symbols for Ry. Consequently, a larger depth corresponds to a larger Ry, and the vertical order of

small symbols for Ry follows the vertical order of the large symbols for characteristic depths at every given
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temperature, but at different proportion of magnitude, and in narrow range of 1.2—2nm for Ru. Looking
closer at the dashed lines for Ry as function of the reciprocal of the temperature, one observes that Ru
increases at low temperature, but the dependence is weak and not exactly a power-law function. In contrast
(looking at the large symbols connected with solid lines), the temperature dependences for Dosassq (<) and
D(avgVg) (O) are well-pronounced power-law functions of high steepness, >T2 and >T!?, whereas the
purely electrostatic depth La (LJ) is constant at low temperature, but increases at high temperature. Thus,
D"xRuUT is just a trend, but not a relation. Note again in the upper-left plot that the set D" is a collection of
characteristic distances with large dispersion.

The bias dependences of the characteristic distances D" and Ry are given in the middle and right-hand
columns of plots in Figure 27 at low and high temperatures, T=100K and T=500K on top and bottom plots,
respectively. In the middle column, one observes linear dependences between D” and (1/Vg), which
confirms the reciprocal dependence D”[J1/V between electrostatic distances and bias voltages, e.g. for La
in eq. (47). Note that La is the largest in the triad {La, Dosdosq, Davgv} at low temperature, but is the
smallest at high temperature, which implies that La is not a definite measure for the effective channel depth
regarding conductance and mobility in OTFT, although La is representative for the induced charge Qg.
Nevertheless, in the right-hand column of plots, one clearly observes the logarithmic bias dependence
RuU(constant)-log(Vg), which is expected, considering the following simplified derivations valid for low
temperature and exponential DOS approximation.

After taking natural logarithm of eq. (157) in Appendix 2, followed by multiplication by the
characteristic “thermal-like” voltage @.=kTo/q of the exponential DOS approximation, one gets the bending

voltage Vs at the gate dielectric-semiconductor interface, as

|E0 _EF| (COXVG )2

VBs =
2qe¢ ¢ A Ng

+¢,In , with pa=kTa/q and Ta=T,. (75)

Substituting in eq. (48), the bending at depth D in the film becomes
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From eq. (47), 1/La=CoxV/(2¢rpa), and substituting in the last eq. (76) above one can exclude La from the
expression, but looking closer at middle column of the plots in Figure 27, one observes that the
characteristic depths stay in proportions (each to other), since they are linear functions of 1/Vg at any
temperature. Thus, the proportions are bias independent, although changing with temperature, and the
proportions in ratio to La are in narrow interval of values. Let us denote the proportions with
P=PavB=Davgve/La, P=Ps=Dos%ssq¢/La and P=PLa=La/La=1. Then, from the slope coefficients in the linear
approximations in the plots, Payg~0.25-1.3 and Ps~0.8-7, resulting in negligible magnitudes of
20In(14+P)<2x50mVx(0.2-2)=0.02—-0.2V in eq. (76), as compared to the first term |E,—Er[/q=0.9V. Thus,
2¢gIn(1+P) is omitted below, since it is also bias independent. So, at given temperature T, and at any depth
D and bias Vg, the sum of hopping energy En and bending qVs is the hopping energy Enrs in bulk
semiconductor, as given by eq. (59), which is rewritten for En(D)=[Enrs—qVs(D)]. Substituting the last eq.
(76) above in this relation, omitting 2¢gln(1+D/La) and taking @a=~@=@., the hopping energy Eun(D) as

function of bias and depth becomes

2q€; O, N 1
Ey (D) =Egrg —[Eo ~Ep|*+qd, In (%]+2q¢0 In [%j : (77)
(00,4

Note that the bias dependence is due to the last term under the logarithm. Subsequent substitution in the

principal eq. (2) between hopping energy and distance yields

2Ry _Ey _En/q

No kT ¢T
E -1E, —E +2¢,1In(29er$p N /C
:( ure ~|Eo ~EF[)/d+ 20, In (2qg¢$,Ns/ OX)+2¢—OIH(LJ (78)
br ot (Vg
= Ry (VG)=A0¢—°1n(LJ+ constant, when T = constant.
ot (Vg

Therefore, Ry is expected to be a linear function of the logarithm of 1/Vg, with the slope coefficient

Ao@o/TI1/T lower at high temperature, and the slope coefficient independent of the depth to the first order
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of approximation, when D/La<10, which covers almost all realistic cases for characteristic depths with
plausible significance for OTFT. These features are clearly observed in the right-hand plots of Figure 27.
One detail in these plots is that the slope coefficients are in ratio 3:1 for temperatures in ratio 1:5. Thus, @,

appears to be temperature dependent, as discussed in the next subsection.

4.4.4. Increase of T, at high T?

The third comparison of the monitored quantities is illustrated in Figure 28 for characteristic “thermal-like”
voltages, which participate in analytical expressions or define the energy width and slope of the assumed
DOS: ¢a in (47), ¢B in (48), ¢c in (49) and @posyp, in (73). The device and the temperature and biasing
conditions are identical with the preceding two figures, including the assumption for normally distributed
DOSnp, to which the left-hand plots in Figure 28 correspond. Since the values scatter in these plots, and also
to inspect closer the trends, we have added in the right-hand plots of Figure 28 the same type of information
and for the same device, but after inspecting the data from numerical calculations with the different
assumption for single-sided exponential DOSsg. The values denoted with symbols in Figure 28 are extracted
from the profiles and quantities obtained after the numerical simulation, by fitting the different analytical
expressions to the different profiles with a freedom of independent variation of the values of the different
characteristic voltages. Therefore, the values of the characteristic voltages correspond to analytical
approximations and have the additional subscript “an” in the notations, as mentioned earlier. The procedure
of evaluation of these characteristic voltages is now explicitly given.

Eq. (47) is rewritten for @a.un=La..nQc/2¢t, where the value of gate dielectric charge Qg is taken from
the numerical calculations according to eq. (31), but not from the approximate Qc=CoxVg, the value of
La.an 1s determined by fitting of the charge profile Nc(D) in the film, from the peak of DxNc(D), as
explained earlier in relation to the left-hand plots of Figure 24, and the value for permittivity of the organic
material is taken £=3£,~2.66x10~'*> F/cm, as set by the numerical simulations. The values for @aan are

shown with squares (L) in Figure 28. Also as explained earlier in relation to the plots in the middle column

81



of Figure 24, the bending profiles V(D) from numerical simulation have been fitted by independently
varying the value of @g.n in the analytical expression Vgan(D)=VBs.an—2¢B anXIn(1+D/La an) of eq. (48), and
the values for @pa.n are shown with diamonds (<) in Figure 28. Next, eq. (49) is rewritten as
¢@c,an=(qLAan)>Nc(D=0)/2¢r for the carrier concentration Nc(D=0) at the gate dielectric-semiconductor
interface (D=0), and using the values for Nc(D=0) directly as obtained by the numerical simulator, the
corresponding values for @can are calculated and shown with triangles (A) in Figure 28.

The values shown with circles (O) in Figure 28 are for Qpos, the reciprocal logarithmic slope of DOS.
For the normally distributed DOSnp in the left-hand plots, the values for @pos are calculated by eq. (73) at
the condition for average bending (IMREF=Er+qxavgVg), where avgVg is determined by eq. (70) from
averaging of the bending profile with the conductance profile. Since the bending decreases at higher
temperatures and increases at higher bias (see Figure 26 (a) and (b)), then @pos for the normally distributed
DOSnp decreases with temperature and increases with bias in the left-hand plots of Figure 28. In contrast,
since Ppos=kTo/q=0oExp is a constant for exponential DOSsg, see eq. (72), then the circles for Ppos overlap
the lines for @oexp in the right-hand plots of Figure 28.

The other observations, which can be made in Figure 28 for the characteristic “thermal-like” voltages,
are the following. Although being in the same order of magnitude, the values of the characteristic voltages
scatter by assumption for normally distributed DOS~p, while the values coincide either with @, or T by
assumption for exponential DOS. Therefore, the analytical expressions are only approximations by non-
exponential types of DOS, and the observed similarity in [61, 62] for equal slopes at different types of DOS
is not precise, although the slopes look similar when plotting in graphs (c.f. Figure 24 earlier). The values in
the group @aBc={®A.an, @Ban, Pcan} Of characteristic voltages for profiles vary with temperature, but the
values are nearly independent of bias. The trend in the variation of @ABC=QA.an, PBan O @can With the
temperature is that at low temperature, @apc tends to a constant value @cola=@aBc(T=0), whereas at high

temperature @apc~@t tends to follow the increasingly larger thermal voltage ¢1=kT/q. This behavior leads
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to expressions for “dominance of the larger”. For example, one suitable for ¢pasc form for “dominance of

the larger” is

n n n n CO. ! f CO
(0apc)” =(deola)” +(01)" =(dogr)" = (becia)” for or < - (79)

(01)" for o >deoud

in which the numerical parameter (n) in the exponents controls the “sharpness” of the transition between
@cold and @t around the point @eol=0r, at which @apc=@cox(*\2). The resulting effective voltage is denoted
with @orr. The larger is n, the sharper is the transition and with smaller deviation from @colq at the transition
point, since (*V2)—1 when n>>1. The limiting case of n=c0 was written for temperatures as Togr=max(To,
T), and used as a rule by derivations of conductance and current of amorphous-silicon TFTs [80, 81]. For
OTFT, however, neither experimental data nor theoretical elaboration is available at present for variations
of the characteristic temperature T, with the ambient temperature T, while such variations are deduced in
[11] by numerical simulations of trapped charge in TFTs with exponential DOS. The results from [11] will
be addressed immediately after observing rule for the “dominance of the larger” in the results from our
simulations in Figure 28.

The dashed lines shown in Figure 28 are calculated from eq. (79) with n=5 and @cold=%@onp for the
normally distributed DOSnp in the left-hand plots, and with n=10 and @co=@oexp for the exponential
DOSse in the right-hand plots, which indicates sharper temperature transitions by assumption for
exponential DOSsg and sustainable definition of @cold for this DOSsg. The values for @cowa are slightly lower
for the normally-distributed DOSNp, since, compared to exponential DOSsg, @onp is about 2.5-3 times
larger for DOSNp, see again the plot for To=@oq/k in Figure 22.

The solid black lines Figure 29 show data from [11] for several characteristic temperatures T, of the
DOS width and various ambient temperatures T. In the main plot Torr/To vs. To/T, the data have been
obtained after deconvolution of the integral [dx/(1+x?), followed by fitting with exponential DOS of
temperature-varying effective concentration of states Nsgr and effective characteristic temperature Togr. We

show in the figure the sub-set of data for values of T,={250K, 350K, 425K and 500K}, which cover
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practically all cases for OTFT. The inset in this figure shows the same data, recalculated as “thermal-like”
voltages @orr=kTorr/q and @.=kTo/q, and vs. the thermal voltage ¢r=kT/q. In both plots, the symbols
denote values, which are calculated by eq. (79) with @cola=@o and n=10, as deduced for exponential DOSsg
just above. Noticeably, in both plots of Figure 29, the symbols are fitting the lines well for the order of
magnitude and in the behavior, confirming the correctness of the “dominance of the larger” rule in eq. (79).
However, the lines with data from the numerical calculations in [11] for different T, are different in the
main plot, whereas the symbols with data from the analytical expression above are aligned on the same
curve for all values of T,, which indicates that the rule is not precise in the simple form of eq. (79), and also,
the value n=10 we have obtained empirically. Therefore, we have refined the analytical expression, in order
to be valid also for higher values of To, for which the discrepancy between eq. (79) and the numerical
simulations is more evident. After researching several possible variants, we arrived to the following
modified expression, which is rewritten for characteristic temperatures as
B

T " |m
Topr = Tp +T| 1+ =>
Te

2

n
T, T,
=047 14 [ 2o | | withm=2, n=d6| Lyl (80)
Tg 2\T, T
and T = 23V < 3830k =%—ba“igap.

The modification is basically in the term [1+(To/Tc)*2]2 and also provides a rule for calculation of (n) from
a characteristic temperature T, which we observe to be corresponding to a fraction of the energy band gap
of the organic semiconductor. The modified expression for the “dominance of the larger” rule fits very well
the data from numerical simulations, as illustrated in Figure 30, with standard deviation error 5.7K or
0.71%, and maximum error 17K or 2.08% over the whole set of values for To={250K, 350K, 425K, 500K,
600K, 800K and 1000K} and temperatures up to T<1173K=900°C. These errors are comparable with the

errors of digitizing the plot of Fig. 6 in [11], from where the data of the numerical calculation are adopted.
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Since the modified expression is valid well beyond the realistic operation conditions for OTFT, it might be
helpful as a guideline for the expected format of analytical solutions of the integral [dx/(1+x®), which are

unknown at present. Another format for approximate solution of this integral is given in [2].

4.4.5. Charge concentrations and different DOS types from electrostatics and for VRH
The fourth comparison of the monitored quantities is illustrated in Figure 31, in which with characteristic
values for the DOS and carrier concentration Nc (precisely, concentration of occupied charge states and
carriers in VRH) are evaluated at the characteristic distances D=0, La, Dos%osq and Davgvs from the gate
dielectric into the semiconducting film. This fourth comparison is an attempt to verify deductions made in
[61, 62] that the magnitudes of DOS and charge are similar at different assumptions for the type of DOS,
considering these also for VRH.

The device, the temperature and the biasing conditions in Figure 31 are identical with those in the
figures of the preceding three comparisons. The solid lines in Figure 31 are at assumption for normally
distributed DOSnp. The dashed lines in Figure 31 are for single-sided exponential DOSsg. The styles of
notation symbols are as in Figure 28. For the purely electrostatic quantities: DOS(D=0) and Nc¢(D=0),
corresponding to the semiconductor-gate dielectric interface (depth D=0), are denoted with triangles (A);
and the squares ([]) are for DOS(La) and Nc(La) at depth equal to the electrostatic length La, where La
corresponds to Y2Qg of the gate charge Qc=CoxVs - see before eq. (69). As expected form eq. (49),
Nc(La)/Nc(0)=DOS(La)/DOS(0)=%4 in all plots of Figure 31, irrespectively of temperature and biasing
conditions. Furthermore, looking at the upper-right plot of Figure 31, Nc(D=0) and Nc(La) are weakly
affected by the temperature at the given gate bias voltage Vg=—20V, which is expected, since the
substitution of the expression for La from eq. (47) into eq. (49) for Nc , with @ogrinstead of @o, @A or @c,

yields

— 2 2 —
NC(D—O)}: V5 | Cox ><{1/2, for D=0 D)
Nc(D=Lp)] ¢oee| & (/8. forD=Ly
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where the term in the square brackets is bias and temperature independent. The bias dependence is due to
the gate voltage Vg, and a temperature dependence can arise from the temperature variations of Qorr
discussed just above. At temperatures T>To/2~200K for this OTFT, @orr begins increasing, according to eq.
(79), and therefore, Nc(D=0) and Nc(La) begin decreasing, e.g., at T=500K down to about 80% of the low-
temperature values, since To/T=400K/500K=80%. The other expected consequence from eq. (81) is the
quadratic dependence of Nc on the gate bias voltage Vg. The quadratic dependence is clearly observed by
the almost identical slopes in the bottom-right plot of Figure 31 for Nc at all characteristic conditions, D=0,
La, avgVe and 95% of oy, and at any given temperature. The trend in the data in this plot is with slope
OIn(Nc)/0In(Vg)=2.04(+0.102 standard deviation), which is 2% average deviation and 5% standard
deviation from the quadratic dependence. For comparison, the charge unbalance between the gate dielectric
capacitor charge and the charge in the semiconducting film is in the range of 5% by the numerical
simulation, as mentioned after eq. (38), and it will be addressed again in Sec. 5.1 with the help of Figure 34
in relation to computational volume. The other observations in Figure 31 are the following.

The values of DOS are different at different characteristic conditions. In the upper-left corner of the
upper left plot of Figure 31, the values of DOS are in the range 102°-10?' cm=3eV~!, being similar for
different conditions and assumptions for DOS type. However, significant differences emerge increasing the
temperature, as seen in the right-hand side of this plot, where the values spread over many decades from
10'-10%° cm™3eV-!. The overall trend in this plot is that the values of DOS decrease with temperature for
each of the characteristic conditions, and the steepness of the decrease of DOS(D=0) and DOS(La) for the
purely electrostatic conditions (D=0) and La are similar and smaller than the steepness of DOS(avgVsg) and
DOS(95%0sq), the latter being with the steepest temperature dependence. Therefore, the values for DOS
from electrostatic calculations are approximately representative for values of DOS for VRH only at low
temperature, but these values are different and should be not mixed each with other at high temperature.
Emphasizing, only qualitatively, the type of DOS does not affect dramatically the magnitude of DOS at

given characteristic condition, because the solid and dashed lines for given symbol (A, O, <, or )
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indicate similar behaviors and ranges, both by changing the temperature T in the upper-left plot of Figure 31
and gate bias voltage Vg in the bottom-left plot of Figure 31. Thus, the approximations with exponential
DOS deduced in [61, 62] are reasonable for low temperature. However, the approximations are inaccurate
for high temperature, because the temperature dependences of the values of DOS at given characteristic
condition by normally distributed DOSxp are weaker, whereas the bias dependences are stronger, when
comparing to exponential DOSsg, as seen by the pairs of solid and dashed lines for each symbol (A, O, <,
or [J) in the upper-left and bottom-left plots of Figure 31, respectively.

The different temperature behaviors of characteristic values at electrostatic and VRH conditions are
clearly evident for the characteristic values of the carrier concentration Nc in the upper-right plot of Figure
31. As for other electrostatic quantities addressed above, the electrostatic Nc(D=0) and Nc(La) are weakly
affected by the temperature, resulting in (A) and (LJ) aligned around almost horizontal lines in the upper
half of this plot. In contrast, the characteristic values Nc(avgVg) and Nc(95%0sq) for VRH replicate the
exp[—|avgVe—Vas|/ooer] and exp[—|VB(Dos%ssq)—Vas|/@oer] dependences, where Vps=Vp(D=0) is the
bending at the gate dielectric-semiconductor interface, with always |[Vas|>[avgVe|>|VB(Doswosq)|, and
increasing in magnitude differences 0<|avgVe—Vss|<|VB(Dos%osq)—Vas| at higher temperature. The bending
voltage Vs was shown in Figure 26a. Therefore, at given bias, e.g. Ve=—20V, the representative for VRH
carrier concentrations Nc(avgVp) and Nc(95%cs) decrease with temperature significantly stronger,
Oleoerxexp(AVe/@orr)]~!, than the representative for electrostatics Nco(D=0) and N¢(La), only O[@ogr] ™!,
as one can see in the upper-right plot of Figure 31. In the bottom-right plot of this figure, all characteristic
values for Nc are proportional to the square of the gate bias Vg, as discussed just above by eq. (81). Again,
and similarly to DOS characteristic values, the electrostatic Nc(D=0) and Nc(La) can be taken as
representative also for VRH at low temperature, since the VRH representative values Nc(avgVg) and
Nc(95%0sq) are between the electrostatic Nc(D=0) and Nc(La) at T=100K. However, this assumption
becomes gradually incorrect by increasing the temperature, because first Nc(95%asq) and then Nc(avgVsg)

leave the interval Nc(D=0)-Nc(La), as seen in the upper-right plot of Figure 31. At high temperature
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T=500K, both Nc(avgVe) and Nc(95%0csq) are smaller than Nc(La), with Nc(95%6sq) being more than a
decade below Nc(La) at any bias, as seen in the bottom-right plot of Figure 31.

To summarize briefly the observations in Figure 31, the values for DOS and carrier concentrations Nc
evaluated at characteristic electrostatic distances is possible to be assumed valid also for VRH at low
temperatures, but this assumption will be incorrect at high temperatures and for temperature dependences.
The quadratic bias dependence Nc~mx(Vg)? is valid for both electrostatic and VRH conditions by
determination of the values for Nc. This relation Nc=mx(V)? is independent of DOS type and temperature
up to a multiplicative factor m. The factor m is temperature and DOS dependent, but m is nearly bias-
independent. Thus, the relation between electrostatics and VRH is not through linear scaling
(multiplication) of charge concentrations, but by a power-law function, as shown later by eq. (83). The
linear relation between electrostatics and VRH is through the linear correlation between VRH energy En

and potential bending Vs, as discussed in preceding sections, e.g., in Sec. 4.2.

4.5. Film thickness and mobility in OTFT
An interesting outcome from the numerical VRH simulations is that the mobility p in OTFTSs increases with
very thin semiconducting films. The film thickness dependence of the mobility was observed
experimentally many times, and was discussed in [82], where a power-law trend was deduced as

e[| (82)
‘ trCox

Here, p,~10°cm?/Vs (£50%), €,~5x107'® F/cm (£30%), and the slope S, is a material-dependent parameter
with values of 1.6+0.2 for pentacene and 2.6+0.4 for solution-processed polymers, such as PQT-12 and
P3HT. The trend implies that the OTFT with thinner film exhibits higher effective mobility, which is
counterintuitive and in contrast to the analytical formula of eq. (151) in Appendix 2. Therefore, one usually
attributes the film thickness dependence of the effective mobility to contact effects, since it is shown, e.g.,

by the injection-drift limited model in [27], that the injection limit can strongly interfere with the transfer
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characteristics Ip—Vg of the OTFT, effectively reducing the current Ip and equivalently observing values of
mobility, which are a decade below the mobility in the organic film itself. Recent investigations attribute the
thicker film with higher values of the contact resistance, which causes a degenerating current feedback at
the source terminal of the OTFT, reducing the transconductance gn=0Ip/0Vg. Consequently, a lower value
for gm implies a lower value of the mobility, since gm[Ju is a widely used relation in the experimental
characterization of mobility, e.g., eq. (52) for the linear regime of operation of the OTFT. We shall not
address here the contact effects in OTFT, because this topic is broad and under intensive research at present,
since contact effects are very prominent in OTFT. Instead, we are interested in whether VRH itself causes a
thickness dependence of the effective mobility in OTFT. Certainly, the numerical simulator in this work
does not consider contacts with the drain or the source terminals, but only the stack of the gate-insulator-
semiconductor at the idealized condition of free space at the back of the film. This idealized condition
provides the opportunity to observe the mobility solely in the film, which is experimentally not feasible.
Again, the numerical VRH simulations show that the mobility p increases in OTFT of very thin
semiconducting film, as illustrated in Figure 32.

The data in Figure 32 are after numerical VRH simulations of virtual devices of different film
thicknesses tr over a wide range from t=2nm to t=500nm. To preserve a link to real devices, we have used
the double-exponential DOSpg given by eq. (45) and the corresponding parameter values from Table 1V,
which we have proven to represent real OTFTs of single film thickness by the good fit in Figure 17 (b) and
(c) between numerical simulation and the experimental data for mobility reported in [22] and [60].
Depending on the method of integration, we switch between the values of the parameters corresponding to
VRH calculation with single [dE and multiple J|dEJE integrations, but not changing the type of DOSpg. The
only device parameter, which we vary in the virtual OTFTs, is the film thickness t;. To ensure further
consistency with Figure 17, we have used the same biasing and temperature conditions and the same
settings of the numerical simulator, e.g. energy integration step dE=2meV, the latter only changed to 1meV

and SmeV, in order to observe variations that are caused by numerical integration. Furthermore, we have
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inspected the profiles for unforeseen discrepancies, which have not been observed. For example, at given
temperature T and bias voltage Vg, the charge profiles Nc(D) have overlapped for the virtual OTFTs with
different tr, and from the peak of the products DxNc(D), as explained earlier in relation to the left-hand plots
of Figure 24, we have determined identical values for the electrostatic length La, irrespective of the values
of tr. The values of La are shown in the horizontal axis by the symbols connected with dashed lines in
Figure 32(a) vs. p (in the vertical axis) of the virtual pentacene device with t=50nm, and the many symbols
overlap at a given temperature T and bias voltage V. The black and gray color solid lines in this plot show
the values of the mobility, obtained from p=0s/Qg, as explained by eq. (42), after using the two methods of
VRH calculation with single JdE and multiple [JdEdE integrations for the determination of the sheet
conductance G5q. Evidently, both calculation methods also give almost overlapping values for mobility.
Noticeably, the mobility increases for very thin films, tr<10nm at T=100K and t:<20nm at T=300K, but this
increase cannot be related to the electrostatic length La, which has significantly lower values between
0.56nm and 2.4nm, and almost no temperature variation in this temperature interval, see again the squares
for 1000/T>3 [1000/K] in the bottom-left plot of Figure 27.

Suspecting that the observed film-thickness dependence of the mobility can be an accidental artifact of
parameter values, we have repeated the simulations for the PQT-12 OTFT, which has very different values
for Ns, To, Ao, I'o and Cox (compare the parameter values in Table IV) and also different biasing conditions.
The simulation results for the mobility in the virtual PQT-12 OTFTs of different film thicknesses are shown
in Figure 32(b), where we observe very similar behavior as for the pentacene virtual OTFTs in Figure 32(a).
The overlap of the results is good by the two methods of VRH calculations. Just the increase of p is
relatively more pronounced in the PQT-12 OTFT, when decreasing t; in the same intervals. This is
consistent with the higher value of the slope S, for solution-processed polymer semiconductors in eq. (82).

Another doubt for accidental outcome from numerical simulation could be the size of the integration
step. Therefore, we have rerun the simulations for the PQT-12 virtual devices at finer and coarser energy

integrations steps dE=1meV and 5meV, respectively, and have kept the device parameters and simulator
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settings identical to those in Figure 32(b). The effect of the variation of the energy integration step size is
illustrated in Figure 32(c). The thin black lines in Figure 32(c) are the same as the black lines in Figure
32(b), corresponding to multiple [[dEdE integrations with dE=2meV. The gray-color solid lines in Figure
32(c) show that the coarse integration step of dE=5meV suppresses the increase of the mobility, whereas the
dashed lines show that the fine integration step of dE=1meV enhances the increase of the mobility. Looking
closer at the dashed lines for room temperature T=300K, one observes an interesting non-monotonic
behavior. Decreasing the film thickness of OTFT below 30nm, the mobility increases, as reported in [83, 84,
85], for example. However, thinning the film below few nm, e.g. below 10-15nm, the mobility begins
dropping, which was also reported in [84, 85, 86, 87] and attributed to a degradation of the film uniformity in
few mono-layer films (or weak contact of the thin film to the metal of the source terminal in a bottom-
contact configuration of OTFT). However, this drop can be also explained by the analytical formula of eq.
(151) in Appendix 2, adjusting the values of some parameters in it. In any case, owing to fabrication
convenience, most of the actual OTFTs have 30-50nm thick films, range in which the mobility results are
independent on the integration step.

While the variations of the magnitudes with the integration step indicate issues with the accuracy of
the numerical calculations, these calculations clearly indicate that VRH also predicts mobility enhancement
in OTFTs of very thin films. Note that we have not made additional adjustments in the simulator, such as
two-dimensional VRH or quantum effects, space quantization with inter-layer and atomic distances, etc.
Therefore, we conclude that the numerical VRH simulator captures the thickness dependence of the
mobility, which is a useful feature of the simulator from the practical perspective. We believe that the
prediction of the numerical calculation for the increase of the mobility in very thin film OTFTs is
qualitatively correct, since the calculations are based on principles, and not on formulas. In addition, the
data from simulations coincide well with the trend of eq. (82) for the film-thickness dependence of mobility,
as seen in Figure 33 with an example for the virtual PQT-12 OTFTs of different film thicknesses (filled

circles @, blue color) at room temperature T=300K, when compared with the experimental data collected in
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[88] for PQT-12 OTFTs of film thicknesses t=35-40nm, the open triangle (A) and diamond (<), reported
in [60, 77], respectively. In the next section, we will address the film-thickness dependence of the mobility

by eq. (98) and Figure 35, showing that the results from the numerical simulations are expected.

5. Outlook for feasibility of numerical VRH simulations

In the previous two sections, we have presented a numerical simulator based on the VRH principles. The
results from this simulator are consistent with both theoretical and experimental findings for OTFTs. It is,
therefore, reasonable to outline the feasibility of the numerical VRH simulations, since many other models,
mostly analytical, are proposed in the literature, and the analytical models are found to be suitable for
device characterizations and circuit simulations. Thus, correspondence to existing and missing analytical
models will be addressed. We will mostly deal with possible approaches for acceleration of the VRH
numerical simulations, along with several other issues, e.g., dispersion of time constants, charge build-up,
and noise. So, we begin with one of the problems of the numerical VRH calculations: the computational
volume and the associated large amount of computational resources and simulation time, which place

barriers in using the VRH numerical calculations in circuit simulators.

5.1. Computational volume and uncertainty management in VRH numerical simulations
The main advantage of the numerical VRH simulations presented here is that they are based on principles
and material properties, but not on approximate analytical formulas, the latter valid with additional
assumptions. However, as discussed in the previous sections, there are problems for the VRH numerical
calculations. One of these problems is the computational volume demanded by the VRH numerical
simulations, which is large, as summarized in Table VI and explained in Appendix 1. Reviewing these, the
computational volume of the VRH numerical simulations for one temperature-bias point (T-Vg) scale as
mxnx(800FLOPs)~50x2000x(800FLOPs)~0.1GFLOPs for the method of single [dE integration and

mxn?x(750FLOPs)~50x(2000)2x(750FLOPs)~150GFLOPs for multiple [[dEdE integrations, where m~50 is
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the number of points in the depth of the organic film and n~2000 is the number of steps in the energy mesh.
To minimize the computation volume, a dedicated procedure for reduction of the number of points in the
spatial mesh was undertaken (Sec. 2.5.2) to keep m~50 during the VRH calculations, since m is large
(m~2000) during the electrostatic calculations. In order to support various types of DOS, no reduction of the
energy mesh is undertaken, and the energy mesh size is n=(Ewp—Ebottom)/dE~2eV/1meV=2000 for the
method of single |dE integration, while the energy mesh size is nxn in the 2D calculations for the multiple
[JdEdE integrations. Consequently, a refinement of the step dE<0.5meV in the VRH calculations with the
method of multiple [[dEJE integrations results in a very large computational volume in the range of
TFLOPs.

Figure 34 summarizes the computational requirements above for the one-dimensional VRH numerical
calculation at one bias-temperature point (Vg—T). In the upper half of the figure, the circles (@) are for
VRH calculation with multiple [JdEJE integrations and the diamonds () are for VRH calculation with
single [dE integration, and they are fitted with quadratic and linear trend lines, respectively, showing the
computational time when using parallel computing of 18 or more (Vg—T) points, and from left to right, for
three values of the energy integration step dE=5meV, 2meV and 1meV. The width of energy mesh was
always |Ewp—Ebottom|=1.9¢V, having n=|Ewp—Ebottom|[/dE=380, 950 and 1900 points, respectively at the
different dE. From the trend lines, one observes that there was about 100 seconds overhead in the
computations. The VRH calculation with single |dE integration scales linearly with the energy mesh size,
requiring only about 3.5s for n=1000 energy mesh points. However, the VRH calculation with multiple
[JdEdE integrations is much more demanding. It takes about 5 minutes for n=1000 energy mesh points, and
it scales with the square of n, as Sminx(n/1000)2, which is in the range of 20-30 minutes, when the fine
energy integration step of dE=1mV was chosen. Further refinement of dE=0.5meV would require 2 hours or
more to calculate one bias-temperature point (Vc—T) by multiple [[dEJE integrations, which is impractical.
Aligning the expression for computational volume of the VRH calculation with multiple [JdEJE

integrations, denoted with dashed line without symbols, to the trend line of this calculation, we have
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estimated that the throughput of one computer in the grid of computers is approximately (0.1-0.2)GFLOP
per second for our numerical simulator. This throughput is about 1/10 of LINPACK benchmark test [89],
indicating that there is a room for optimization of the code for throughput. For comparison, scaling the
throughput, the other two dashed lines in the figure show the much lower requirements to the computation
of VRH with single [dE integration ([J) and for electrostatic calculations (A), the latter always executed
prior any VRH calculation and with moderate computational volume of approximately
mxnx105FLOPs~(2000)?x(105FLOPs)~0.41 MFLOPs, with m=n~2000, as estimated in Appendix 1 and
summarized in row “eSt” of Table VI. Thus, from perspective of the user time, one would try to reduce the
computational time to be not too much higher than the overhead of 100 seconds.

One way for reduction of the computational time is to enlarge the integration step dE. However, the
error of the numerical calculation will also increase. For example, the unbalance errQg=|Qr/Qg—1| of the
gate and film charge is shown in Figure 34 by the circles with dotted trend line errQg=5%/n’,
errQc=(5£1.6)%/(n/1000), including also the standard deviation error (~%errQg) to the average error
(errQg). Note that (n) is in thousands of points in the trend line expressions in Figure 34. The unbalance is
due to the finite energy step dE in the numerical integrations and errQglU[exp(dE/kT)—1]. Since dE/kT<I1,
then [exp(dE/kT)-1]~dE/KTUdEL1/n, as seen in the figure. A second suggestion for reduction of the
computation time can be to use VRH calculation with single JdE integration in preliminary simulation,
followed by multiple [[dEJE integrations for obtaining the final result, since we have shown in the previous
sections that both calculations can fit experimental data almost equally well. However, this is also not a
straightforward approach, because the parameter values are different for the two methods of integration.
Compare again the values of the parameters in Table IV and the black with gray-color symbols in Figure 22.
The remaining approach is to substitute the VRH calculation with an equivalent, but simple calculation that
scales the electrostatic calculation, the latter unavoidable, but relatively fast and available in many
electrostatic simulators. Fortunately, this is a reasonable approach, considering the consequences from eq.

(59) for the linear relation (En+qVs)=Enrs between the hopping energy En and the bending voltage Vg at a
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given bias and spatial coordinate in the OTFT film. The hopping energy in bulk material Enrp is only
temperature dependent. Therefore, in the outlook below, we will focus mainly on the feasibility to substitute

the integrations of the VRH calculations with scaled electrostatic quantities.

5.2. Substitution of integrations in VRH numerical simulations with analytical relations
In principle, eq. (63) gives the relation between electrostatics and VRH, but the numerical simulators rarely
gather the bending voltage Vg, and therefore, it is desired to have relations with the charge concentration
Nc, eq. (25), which is always present in the output from electrostatic solvers. We have shown in the
previous sections that several relations hold, and they are numerically precise by assuming an exponential
DOS, when considering in the expressions the effective characteristic “thermal-like voltage” @okr, eqs. (79)
and (80), which varies with the temperature and originates from a convolution between the Fermi and DOS
distributions. Therefore, we use @ogr, which varies with temperature, instead of the DOS-width

characteristic voltage @o=kTo/q=@posg, €q. (72) that provides a proportionality of @, to the reciprocal of the

logarithmic slope of the exponential DOSsg, thus, ¢o has a constant value and ¢, does not apply for elevated
temperatures T>T,. We shall analyze the relations of VRH quantities to the charge Nc in three aspects: (1) at
a given spatial point in the OTFT film (Section 5.2.1), (ii) at a given cross-section for sheet quantities at
position 0<x<L along the channel length L of the OTFT (Section 5.2.2), and (ii1) for the current of the entire
OTFT of unit channel width W and length L, that is, W=L for a square-shaped OTFT (Section 5.2.3). The
starting point is that the bias voltages Vg, Vs=0 and Vp of the gate, source and drain terminals, respectively,
the temperature T and the thermal voltage ¢t=kT/q, and the bias-independent parameters Cox, tr, &, QOEF,

ors and Ncrs are all known.

5.2.1. Spatial point (spot) charge concentration, conductance and mobility, and profiles
For a spatial point of depth D in the OTFT film, the relation between VRH specific conductivity ¢ and the

charge concentration qNc is obtained in Appendix 3, as
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[O(D)] _ [OFB (T)] =1 (T) , exact as long as NC—(D) = exp{VB (D)} isvalid.  (83)
qNc (D) qNcpg(T) Ncrs boEF

This is a basic relation between charge and VRH conductance, in which the parameter n(T) can have
temperature dependence, e.g. a power-law function with exponent T/T, at low temperature T<T,, but 1 is
spatially and bias independent, thus 1 is a constant for a given temperature, as long as the semiconductor is
uniform and the exponential DOS approximation is valid. For an ideal semiconductor, since the transport
energy band is sharp (To=0 = @1r>>@o—0), then @oer=0T, as follows from eqs. (79) and (80), and n=p
becomes the bias-independent mobility in the ideal semiconductor. For amorphous semiconductors,
however, the distribution of the DOS is wide; in fact wider than the Fermi distribution at room temperature,
thus @o> T, and oer=@.. The relation in eq. (83) is also handy for numerical simulations, since it scales the

electrostatic charge (qNc) into the VRH specific conductance o, resulting in

(D) =0pp (T)L\II\ICCF—S()T))TOEFM)T

— [n (T)]¢OEF/¢T X[qNC (D)]¢OEF/¢T

; (84)

showing that the scaling is for the bulk conductance ors by a power-law function x» with x=Nc¢/Ncrs being
ratio of induced to bulk charge and exponent n=Qorr/@T>1.

Using the above scaling rule, one can obtain an expression for the profile of the VRH specific
conductivity o(D), as follows. From eq. (154) in Appendix 2, the charge concentration JNcpo=qNc(D=0) in

the semiconductor at the gate dielectric interface (depth D=0) is

2
2erdopr QG
L% 2e¢0opF

dNepo =qN¢ (D = 0) = , with @okr in place of ¢a and oc, (85)

recalling again from eq. (160) that Qc/(2erpoer)=1/La. Then, one can rewrite eq. (159) for gNc(D), using

the expressions for qNcpo and 1/La, as

2
N
gN (D) =—1-CRO_ = % > (86)
D Qg
I+ 25f¢OEF(1+D]
( LAJ 2&¢0oEF
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Thus, the charge profile qNc(D) is determined once the bias and temperature are known, because
Qc=Cox Vg, and since @ogr is obtained from eqs. (79) or (80) , e.g. as Porr=[((o)*+(pT)"] from eq. (79)
with n~10. The substitution of (qNc) in eq. (84) yields the expression for the profile of the VRH specific

conductivity o(D), as

_ Opo _ Opo
O(D) B D 200rr/O1 0 2008r/01 ®7)
e
La 2e¢d0pF

where the specific conductivity 6po=c(D=0) in the semiconductor at the gate-dielectric interface (depth

D=0) is

N
Opo =0(D=0)=0pg (T){ﬁ

— [n (T)]¢OEF/¢T x[qNCDO]¢OEF/¢T (88)
TOEF/‘PT

:|¢OEF/ b

_ [n (T)]¢OEF/¢T [ Qg
28¢QoEF
Denoting again n=@oer/¢1=>1, the comparison of eqs. (86) and (87) clearly shows that the profiles for
ol(1+D/La)~" are n-times steeper in logarithmic plots, compared with the charge profiles, Nc(1+D/La)2,
see again Figure 13 and Figure 14(c).

As noted in the last paragraph of Sec. 4.4.5, the scaling between VRH conductance and charge is not
multiplicative, that is, there is not a direct proportionality between charge and VRH conductance. Any
search for a coefficient of proportionality between ¢ and Nc will be wrong in terms of VRH, whereas it is
an obvious approach for mobility edge models, in which the induced charge is separated in two categories
of trapped and mobile charges. The trapped charges are with zero mobility. The mobile charges are “free-
like” carriers with a constant characteristic value for the mobility in a band-like charge transport model,
which replicates the assumptions in semiconductors. Also, as mentioned several times earlier, beginning

from Sec. 1, VRH does not require the assumption of transport band and there is no distinction between

different types of charges, a concept more reasonable for semi-insulators to which the organic materials
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belong, since the charge is localized in the organic materials and spatially continuous transport bands are
very unlikely [6]. Also mentioned earlier, the VRH mobility is a resulting quantity from division of

conductance by charge concentration; and this division, using eq. (84) yields for the spot mobility up(D)

that
a(D)
D)=—— 7~
“D( ) ch (D)
_ OFB (T) |: qNC (D) i|¢OEF/¢T_1 —u (T)|: NC (D) j|¢OEF/¢T_1 (89)
qNcpg(T) | gNcps (T) B Negg(T)

_ [n (T)]¢OEF/¢T y [qNC (D)]q)OEF/q)T -1

Similar to the expression for the specific conductivity o(D) in eq. (87), the spot mobility pup(D) in eq. (89) is
again a version of the mobility prs=crs/(qQNcrs) in bulk material scaled by a power-law function x"~!, with
x=Nc/Ncr being ratio of induced to bulk charge, and just the exponent (n—1)=(¢orr/¢1—1)>0 has a value
reduced by one, compared with the exponent for o(D). This reduction was elaborated several times for the

mobility edge models, e.g. in [26]. However, note that the prefactor n®re®r is the same in the last

expressions of eqs. (84) and (89), indicating a hard relation ors=preqNcrs in bulk semiconductor. However,
the relation becomes different under biasing when Nc#Ncrs, which is a direct consequence of the scaling
with ratio of charges, but not with the charge magnitude itself, and follows from the power-law
dependences. Therefore, in principle, since there is no proportionality between conductance and charge in
VRH, then there is no principal proportional relation between VRH mobility and charge either. So, the
search for a direct relation between charge and mobility usually results in complicated derivations and
discussions, in which some authors speculate that the DOS in organic materials might not be of an
exponential type at all [25]. Then, the same authors derive an analytical model for VRH based on
exponential DOS in [7] along with the most recently reported in the literature (up to March 2014) Monte-
Carlo VRH numerical simulator that, however, considers a uniform profile of the charge concentration,
which is not the case in OTFT under gate biasing. After extensive comparison of hopping models, an

interesting approximation for a relation between mobility and charge is suggested in Ref. [10] in the form of
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) ln[ (T,/T)" +n4 |~In(n4)[ ° ] [ (T,/T)~T,/T|~In(n4) [
1 - (TO/T)Z 2= (TO/T)Z

where the use of the parameters ai, a2, bi and b is explained in [10]. This approximation is derived for
normally distributed DOS~p (eq. (58)) and sometimes is called Coehoorn-Pasveer mobility model in
following publications [4, 50].

Nevertheless, substituting in eq. (89) the expressions for the non-uniform charge profile in the OTFT

depth from eq. (86), one finds that the profile of the spot mobility is

_ Hpo Hpo
Hp (D) - D 2008r /91 2" Q 200pF/ 12 ©h
T T
La 2&¢Q0oEF

where the spot mobility ppo=p(D=0) in the semiconductor at the gate dielectric interface (depth D=0) is

opo (T)
VI =M D=0)=—""2 1
bo =Hp | ) dNcpo
borr/ P11 dorr/dr1 -1
_ Orp (T) [ qNcpo }OEF/ ! = lpp (T){ Nepo }OEF/ '
dNcgg(T) | gNcpg (T) Negg(T)

(92)
— [n (T)]¢OEF/¢T x[qNCDO]¢0EF/¢T -1

— [n (T)]¢OEF/¢T [ Q

PoEr/ 1 1
2&¢QOEF }

Denoting again n=@opr/@r>1, one sees from eqs. (87) and (91) that the profiles for pup(1+D/Ls)?"2 in
Figure 14(d) are less steep than the profiles for cJ(1+D/La)?>" in Figure 14(c). Furthermore, if n<2, then the
profile pup(14+4D/LA)?"? in Figure 14(d) can become less steep than the profile for the charge. Also,

observe in Figure 13 that at high temperature T>T,, the depth variation pupJ(1+D/LA)?"2 in eq. (91) tends
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to vanish, because @oer=@T, according to eqs. (79) and (80). In summary, the charge and mobility need
separate models, as seen in the equations provided in this section, and an explicit relation between charge

and mobility might be not possible to establish in general.

5.2.2. Areal (sheet) charge concentration, conductance and mobility, and film thickness
We now turn to the second aspect for scaling between sheet quantities in VRH and electrostatics. This
aspect is particularly significant for acceleration of numerical calculations and for analytical modeling of
OTFTs, because the reduction of the depth coordinate D provides for the film sheet conductivity csq(x) at
position 0<x<L along the channel length L of the OTFT. The reduction of the depth coordinate is by
integration of a volumetric variable X along D from the gate dielectric interface (D=0) to the back of the
semiconducting film of thickness tr. Thus, XSQ:IX(D)dD, in limits 0<D<t;, where Xsq is the sheet
representation of the quantity X. One example for this integration is eq. (41) for the sheet conductance osq.
So, the integration of the charge profile qNc(D), eq. (86), yields that the sheet charge Qr of the

semiconducting film is

Qp = I qNc (D)dD :J' _9Ncpo_4p

0 o (1+D/Ly)?
t t
=dNcpola ff A0a) _aNevoln 1|1 93
D:0(1+D/LA)2 —2+1 (1+D/LA)‘D:0 ®3)

_gN L 1 - 3 1
) C‘D? A[(“tf/LA) 1}_QG{1 (1+tf/LA)}

::QG’ if tg >>L 5

The quantity qNcpoLa=Qg is equal to the gate charge Qg, since recalling eqgs. (160) and (85)

2ecd 2ecd
qNCDOLA — =cf 2OEF LA — fL OEF _ QG ) (94)
12 A

Consequently, the integration of the profile for VRH specific conductivity o(D), eq. (87), yields the sheet

conductance Gsq of the film, as
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_ Opo
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Osq =

Opola 1
) 1= (95)
200gr/0t -1 (l+tf/LA)2¢OEF/¢T_1
Opola

~———DOZA " if ¢y >>L,, since Oopp >
200pr/07 1

Therefore, as a ratio of conductance to charge, the effective mobility p of the semiconducting film is

Opola 1- g¢ o
U:(%q: 9Ncpola (14t /Ly )0 T :(Uﬁ—m)x{1+5td
Qr  (200pr/01-1) - - g
(1+tf/LA)
HDO - .
= = Uepoo <M , iftp >L (96)
(200gr/dr-1) " PO ' A

dopr/dr 2 dogr/Pr -1
._:I:n(T)] ( QG J , iftf >> L,

(2008r/dT 1) | 2&rd0EF

Here, = is the effective mobility of an OTFT with an infinitely-thick semiconducting film, and O
corresponds to the film thickness variations, originating from the terms in the large curly brackets { }.

Two observations can be made in eq. (96) for the effective mobility of the OTFT. One is that the
effective mobility is (2poer/@r—1) times smaller than the mobility pupo in the semiconductor at the gate
dielectric interface. The reduction of the effective mobility p in comparison to the interface mobility ppo
was addressed in [90] from a combination of analytical and numerical analyses. At room temperature, the
reported reduction was 9% for a P3BHT OTFT with a DOS characteristic temperature To=425K and 15% for
a PTV OTFT with T,=382K. The reduction is evident, but the magnitudes do not fit with eq. (96). The
reason is that the charge profiles used in [90] have (1+D/La)~' dependence, instead of the (1+D/La)™2
dependence given by eq. (86). Therefore [91], we cannot extend a quantitative comparison with [90].

The second observation in eq. (96) is that there is a film-thickness variation in the effective mobility,
which we will inspect with the help of the supplementary quantity d, for the relative increase of the

mobility from the value = for an infinitely-thick film. When t¢/La is large, then u~p-», because the
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expression in the large curly brackets {} of eq. (96) becomes equal to one, since @oer/@r>1 follows from
egs. (79) and (80). When tr decreases, then both the numerator and the denominator in these {} brackets
decrease, resulting in a slightly complicated dependence. To get insight for the effect of the film thickness
on the effective mobility, consider t>2La, since La~Inm at normal biases of the OTFT. Then, the
subtracting terms in the curly brackets are smaller than one, and a logarithm of the expression in these {}

brackets can be taken, in order to use In(1£x)~+x when 0<x<<1. In this way

1 1
Ind1 =In|l1- “hnfl=r—
n{ +6Utf} n (1+tf /LA)2¢0EF/¢T -1 n{ (1+tf/LA)}

1 1
Oy =~
- (1+1; /LA)zq)OEF/q)T = (1+t/La)

and the relative variation of the mobility as function of the film thickness becomes

_u 1 1 |
Oyt = —l= 1- — |, valid for t>2LAa. 97)
ST (1+t;/Ly) (1+tf/LA)2¢OEF/¢T 2

The two multiplying terms have opposite effect on varying ti. On decreasing t;, the first term
(1+tt/La)~! increases, causing s to rise toward the value of the term in the square brackets [ ], which is
normally of unity value at t>>La, but this term in the square brackets decreases toward zero, when
decreasing tf toward La, owing to the subtraction. Note that the variation rates depend on @ogr/@t and bias,
since Qac/(2erporr)=1/La from eq. (160) in Appendix 3. When explicitly showing the gate bias Qs=CoxVa,
then the relative variation of the mobility as function of the film thickness tf, gate bias Vg and temperature

via Qogr/@T is approximately

2(1_¢0EF/¢T)
6wf: H -1= 1 1_( +Mj , (98)
Mif=oo (1 + t:Cox Vo J 289 o
28f¢OEF
L t, _ t,Cox Vg . . L -
which is valid when — =——2—=>2_ The behavior of this equation is illustrated in Figure 35.

LA 2£f¢OEF
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In Figure 35(a), the relative variation &« of the mobility is shown as function of the film thickness tr.
It is clear from the plot that the mobility in OTFTs with thinner semiconducting films increases up to a
thickness ti~La, after which, the mobility decreases. This non-monotonic behavior confirms the results from
the numerical simulations shown earlier in Figure 32, although it is difficult to match the magnitudes of the
variations in these two figures. Other observations in Figure 35(a) are that at a given film thickness, the
mobility variations are larger at low temperature and low bias. These are detailed for t=20nm in Figure
35(b) and (c). The temperature dependences in Figure 35(b) indicate that o, is large at low temperature and
low gate bias voltage Vg, and gradually vanishes at higher temperature T>T, and high bias. The bias
dependence in Figure 35(c) implies nearly a reciprocal dependence between d,uf and Vg at low temperature,
but the dependence smears at high temperatures to nearly a power-law dependence with exponent of
approximately —0.7. Looking at the three plots in Figure 35, one observes a trend that the effective mobility
relatively increases (as compared to the mobility pu—« of infinite-thick film OTFT), when the film thickness
(tr), the temperature (T) or the bias (Vg) decrease, which is the opposite to the temperature and bias
dependence of the absolute values for VRH conductance and mobility, e.g., p and =« increase with the

temperature and the gate bias of the OTFT.

5.2.3. VRH and the OTFT current
For the most practical purpose for relating to analytical models for the DC current of the OTFT [28], we
address now the third aspect for the current of the entire OTFT of unit channel area with width W and
length L, that is, W=L for a square shaped OTFT. Considering the sheet conductance osq(X) of eq. (95)
varying with the position X along the channel length L of the OTFT, 0<X<L the magnitude of the drift
current is
L%
b =

Vs=0

99)

Vp

OpoLls 1
B — [dV,
2¢OEF/¢T { (1+tf/LA )2¢osp/¢T 1 X

103



where Vx is the potential in the channel, changing from the source potential Vs=0 to the magnitude of the
drain potential Vp>0. Varying Vx with X, then the magnitude of the gate charge also varies with X as
Qac(X)=(Vs—Vx—VT1)Cox=(Vs—Vx)Cox, since Qg is a product of the gate dielectric capacitance Cox (per
unit area) and the magnitude of the gate overdrive voltage (Vc—Vx), assuming that the OTFT has a small in
magnitude threshold voltage Vt. The gate charge Qg(X) enters the equation through La and opo, given by

egs. (85) and (88), respectively, which are substituted in eq. (99) to yield

L_ P
by = j 0y (X)dVy
Vs =0
(100)
Vp T dopr/ Ot 200gr/$r -1
- I [n( )] (QG) doer /-1 1= 12¢0EF/¢T‘1 dVx
ve=0(290gr/01 —1)(2&r00EF) (1+ trQg J
2e¢QoEF
Let us denote several constants (bias-independent quantities), as
n= 2(I)OEF _1 >1
T
_ I:n (T):|¢0EF/¢T (2£f(pOEF )¢OEF/¢T _ l:n (T):I(n+l)/2 (2£f¢OEF)(n+l)/2 (101)
(2¢OEF/¢T _1) t?q)OEF/q)T_l I’ltlfl
_ tCox 50nm % 20nF/ cm’ sy
2€.0o  2%2.66x107°F/cmx35mV
and rewrite eq. (100) as
L al)| " 1
I,—=|— b(V—Vy)) | 1- —|d[b(V, -V (102)
"W (bj H (Vo =) (1+b(V, - Vy)) [ (V6 )]

Changing to variable x=b(Vs—Vx), one gets

b(Vg=Vg)=bVg
IDL:(EJ [ x1- ! _ |dx (103)
W b x=b(Vg - Vp) (1 + X)

This integral consists of two parts. The first part is trivial, [x*dx=x®*D/(n+1), but the second part

[xrdx/(1+x)=HypGeom;xx™*/(n+1) leads to the Gauss hyper-geometric function »HypGeom; [92].
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Details are given in the Appendix 4, where it is also shown that the contribution of the hyper-geometric
function is small compared to unity. Therefore, one can approximately use only the trivial part for the

OTFT. Thus, from the derivations in the Appendix 4, the current of the OTFT is given by

L abn{ n+l n+1}
I =—— Vs —(Vg -V,
o= B (v -vp)

Vé[q)OEF/q)T] _(VG -Vp )2[¢0EF/¢T] (104)

N(T)Cox :

_|  ¢1/doEF (H(T)ng

bopr/d1 -1
(2008r/®1 —1)( 2&rd0RF }

Note that for an ideal semiconductor @poer/@1=1, the expressions in the square brackets are equal to one, and
the expression in the curly brackets is the generic equation for an ideal MOSFET [28], with bias-
independent mobility p=m, as explained after eq. (83). Note also that there is no thickness dependence in eq.
(104), because the thickness dependence is in the hyper-geometric part, which is neglected as it is small.
Equation (104) provides the links to several analytical models published in the literature. These
models have been reviewed in [6, 28, 29]. From eq. (43), the terms containing the ratio @orr/¢@t can be

rewritten in terms of the mobility enhancement factor y as

» oEF _ 5 Toer

:2+y

bt
» POEF _1:2TOEF_1:1+V

bt T

(105)

2(¢OEF _IJZZKTOEF _ljzy

bt T
Poer _ Togr _;, Y _ 91 _ 2
bt T 2 Gogr 2ty

where @oer and Togr are given by egs. (79) and (80). Substituting in eq. (104), the current of the OTFT

becomes

L _ [n(T)]Hy/z( Cox Jy C V(2}+y_(VG_VD)2+y

W 1+ 2 2 +
(1+y) J2€:00EE Y (106)
_ Vg -(Vg -Vp)**Y
- HOCOX 2 + y
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which is the TFT generic charge drift model, eq. (8) in [28] with Vs=V1=0 and

1+y/2 Y Y
HO:[H(T)] [ COX } - HEB [ COX } , (107)

(1+v)  (J2&rdokr (1+Y){ \2aNcrperdoEr

with prp and qNcrs being the mobility and charge concentration in bulk semiconductor (no bending, Vg=0)
since, having @oer/@T=(2+7)/2 by eq. (105), it follows from eqs. (83) and (89) that
oT/9OEF 2/(2+y)

n(T)= [ors (T)] _[orp(T)]

qNcgs(T) qNcgs(T)

and

o(2+y) 1 (27Y)/2
n(T)(2+y)/2: [ors(T)] _ors/(aNceB) - g

qNcpp (T) (aNces)"” (\/ 9NcFB )y

Note that , is bias independent, but the temperature dependence in eq. (107) is complicated, because ik, 7,

Ncrs and @ogr are all functions of temperature.

One can expand eq. (107) in terms of other parameters by the following sequence. Firstly, obtain @ogr
from parameters ¢r=kT/q and @.=kTo/q, To~400K, e.g., using eq. (79) with @colc=@o and by choosing
n~5-10 in this equation. Secondly, obtain Ncrp=Nsxexp(—|Eo—Er|//q@oer) from parameters E,, Er and
Ns~10%'-10%2 cm3, as detailed by eq. (166). Thirdly, obtain ors from eq. (64) with parameters I'o~1000THz
[21], Ao~0.1nm, sc1eo~10 and @To~0.8eV, and find prs=crs/(qNcrs). Fourthly, obtain i, by substituting in
eq. (107) with additional parameters Cox and g, considering also that (1+y)=(2¢orr/@1—1) and
v=2(porr/@t—1) from eq. (105). Lastly, rationalize the expression for L, since it is large, to have it in a

form, such as
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$oEF {roexp(‘Sch)}
200pr —@r| NoNsb, 0
OFF [y 1
_ b0 20 -0 Hoo
POEF |y OEF ¥T
p'o =Jx exp[|EO _EF|/q_¢TO J( ¢O j ¢O = x|:TSF2j| ¢0/¢T , (108)
bo boEF
L bogr/d1-1
1
_ borr -1 xl: ) ]
c2, o7 OTFT
x| —_—O0X
_ZqNSEfq)o

obtaining the expression for L, in the format of the TFT compact mobility model [6], in which o is the
mobility prefactor, TSF? is the temperature shaping function and ¢rrr is a bias-independent TFT specific
voltage, with the definitions for po,, TSF? and ortrr, as depicted by the corresponding square brackets in
each line of eq. (108).

Consider from eqs. (79) and (80) that @orr=@, at low temperature T<0.5T,, while @orr=@T at high
temperature T>2T,, in the following eqs. (109)—(113). Increasing the temperature from T<0.5T, toward

T>2T,, a small and gradual increase from 0.5 to 1 is encountered for the ratio

T L ’ =0.5..0.67, at low T<0.5T;, = ¢ogp = ¢,
”’&z(omio,l)z ° T ’ (10
borr — 97 ﬁ =1, at high T>2T, = ¢opr =Pt
T =01

which can be neglected and accumulated in the value of poo, since much larger uncertainties for I'o, Ao,
exp(sct) and Ns exist in the practice. However, the temperature shaping function TSF? varies at high

temperature, because

E,-E -
doEF A =exp[| o F|/q ¢T°j =constant ~ e, at low T <0.5T,
2 _ (po q)o - (I)O
TSF? = A x py- = (110)
OFF Axexpli—i—Tln(q)—T]:l, at high T >2T,
(6} o

Note that the power-law TSF2/A=(To/Torr)T*¥T) in eq. (110) obeys the requirement stated in [6] for a

monotonic increase with the reciprocal of the absolute temperature 1/T. However, the power-law TSF? in
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eq. (110) is different from the discussed in [6], the “sinc”-function “sin(nT/T,) =€ 3sin(nT/To)/(nT/T,), and
the “difference” function “AT/[exp(AT)-1]"=e3(To/T-1)/{1-exp[(1-T«/T)AE/(kT,)]}, the latter with
AE~|E;—Eg|-[kT+kT,| by assuming Boltzmann statistics and single-side exponential DOSsg. These three

temperature shaping functions, normalized to their constant multiplier e*3

, are compared in Figure 36,
showing that TSF? is not a unique function, but depends on and accumulates the assumptions and techniques
of derivation of models. Consequently, the TSF? in eq. (108) causes temperature variations in the prediction

of the thermal activation of the mobility o, in OTFT, to which the last term in eq. (108), also contributes,

since

$oEF 4

l: 1 :|¢T
OTeT

The temperature-dependent @ogr in eq. (108) seems to be the origin of variable thermal activation via the

constant
OFFr eXp(-—j, at low T<0.5T
= 0Fer exp(—%EF ln(¢%FT)]= KT ° (111

ot =1, at high T >2T,

term with @ter, because, as seen in Figure 36, the power-law TSF?=(To/Torr)To5T) causes a negligible
modification of less than 2kTo~60-80meV in the much larger activation energy for L, in the range of

hundreds meV for an OTFT, which can be inspected also by rearranging eq. (108), so that one gets
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ln( Ho j: [Eo ~Egl/d =910 _ doEF ln(q)OEF]_ $oEF — 9t 1n(¢%FT)

Hoo bt Ot O bt
q)_o ln(q)—OJ + 2(1 _¢—TJIH (¢TFT) ,
or| ot bo
_|Eo ~Efl/a =10 _ at low T<0.5T,
O
(1+8 )1 (1+34 ) +28¢ In (¢rrr).
at high T >2T,
¢ 160mV £150mV ?
[ 1+1In(dppr) |~ ,
O O
at low T <0.5T,, since =
_100mV £100mV ? _ o- since Goer = %o
O
+
19+ 2% In(pypp) - 2omY E6AmY
ot
at high T >2T,, since Pogg =t

where, by using a conservative value for n=5 in eq. (79), we estimate that

6¢ - Porr — 91 - n,1+($_oj -1

1(¢,)_ 1 _ 1 . |
= S0 s <1%, at high T >2T -
n[(ij n2" "~ §x2° o0, at g L, since Qo =0,

(112)

and we have taken from the numerical simulations that |[E,—Er=0.9¢V and @r1,=0.8V£0.1V from eq. (61)

and Figure 23, and adopted from [6] characteristic values for To~400K, @,=34.5mV and @rrr=45V+2

decades. The numerator of eq. (112) provides the following expression for the activation energy of L, in eq.

(106) for the OTFT current, as

109



Eapo = (|E0 ~Eg| _q¢To) _q|:¢OEF 1H[¢gEF j +(9okr _¢T)ln(¢%FT)}

T
ado [ 1+In(drer) ],
at low T <0.5T,, since opg = ¢,
:(|E0‘EF|“1¢T0)_ e
adrdy [1+21n (drer) .
at high T >2T, , since $ogp = O

160meV £150meV ?, at low T <0.5T,
~ (100meV +100meV ?) -
59mV £6.4mV - 0, at high T >2T,, with 5¢~1%

While egs. (108), (112) and (113) are consistent in behavior and related firmly with the linear dependence
between hopping energy and electrostatic bending, we should note that that the bottle neck is in the values
of the parameters, which we have marked with question symbols (?) in eqs. (112) and (113). The problem is
that the values of many parameters have to be determined. In particular, behind the equations, seven
parameters are unknown, namely Ns, Eo, Er, I'o, Ao, scTe and @ro, even when @, for DOS and n in eq. (79) or
Tc in eq. (80) are determined from experimental data for the mobility enhancement factor y by the help of
the relations in eq. (105). On the other hand, the independent relations are less, eq. (113) for activation
energy Eauo, from which (JEc—Er-qoTo) can be found, and eq. (108) for p,, from which (Ioexp(Scte)/Ao)
can be found, provided that these equations are coupled in an iterative procedure with proper variation of Ns
for determining poo and @trr. Thus, the relations are only three, requiring to assume values for |[Eo—Eg| and
also for two of the three parameters I'o, Ao and sctw. It is highly desired to have relations between Scte, Q10
and Ao, but we do not know these relations; and this is at the origin of our doubt for the immature relation
between VRH for OTFT and material properties. We are not aware of a characterization procedure that
leads to determination of unique values of the parameters, which, unfortunately, is the state-of-the-art VRH
for OTFTs at present. What we certainly confirm and routinely observed in the numerical simulations is that
the linear dependence between hopping energy and electrostatic bending leads to many of the models
available in the literature for OTFT, as discussed above in this section. Thus, we expect that this dependence
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might be actually a principal relation for VRH, since it remains valid by changing various assumptions, e.g.

type of DOS, values of VRH parameters, temperature and materials.

6. VRH beyond the static (DC) characteristics of OTFT

Up to this point, we have dealt with integrations and averages of the VRH that correspond to the static (DC)
characteristics of OTFT and possible approaches for acceleration of the VRH numerical simulations.
However, considering the wide range of the hopping energy up to Eu~leV, one expects prominent
dispersion in the hopping time, and we would like also to address several issues related to this dispersion,
e.g., transient current, charge build-up and noise. The concepts in this section have been presented

previously in [93, 94]. Here, we expand the details and discussions.

6.1. Hopping time distribution
To access the distribution of the hopping time t from the numerical VRH simulations, consider the fraction
of bonds per site B(=I") that have hopping rates larger than a given hopping rate I', and define the hopping
time as t=1/I'. Then, this fraction of bonds B(=I")=B(<t) with hopping rates faster than I" becomes
proportional to the cumulative distribution of the hopping time shorter than 1. Since the cumulative
distribution for the fraction of bonds B(<t) approaches the bonds B. in the critical path of the percolation

network, then the cumulative distribution of hopping times t is

B(>r) _ -BT(< 114

)
Bo(=Te) Be(=te=1T.)’
where, for the critical percolation path, B.~9/n=2.86 is the constant that represents the “geometrical”
assumption for sufficient bonds per site by continuous percolation, see eqs. (3) and (5), I'c is the hopping
rate in the critical path, and tc=1/T' c=exp(En/kT)/T is the corresponding hopping time in the critical path, as

follows from the principal eq. (2) for VRH. Accordingly, the derivative with respect to t is both the

distribution density of hopping bonds B and distribution density of hopping time, and it is
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0B(<1)/B. _0B/B; dAEy
ot OAEy Ot

: (115)

where AEq corresponds to the particular value of t, for which the derivative is given, and the Greek symbol
A is added to the notation AEn to distinguish from the hopping energy En for the critical path, since En
corresponds to Be, I'c and 1. As follows from the principal eq. (2) for VRH, the relation between AEy and t

is

Mo )_AE

In(tr,)=In| 2 |=—1

n(tT) n(r] kT
AEy =kTIn ()= OREy _KT

ot T ’ (116)

=

AE

= Lexp (—Hj , substitute above
M kT

= OREy =KTI , exp _BEy
ot kT

Therefore, with respect to the hopping time t, the distribution density of the hopping bonds and the

distribution density of the hopping time can be found from

0B/B
% =KkTI exp[—

0B(AEy )/B

AEH] (ABw )/Be , for TZTOexp(%j (117)
kT 0AEg kT

as a parametric function of hopping energy AEn, where 1,=1/T", is the hopping attempt time. Since the

hopping time is in unit of seconds, then the distribution density 0(B/B.)/0t is in the reciprocal unit (1/s=Hz).

The distribution of the hopping bonds and time is normalized to the critical path, so that

T B

- 0B/B y E

j#dr = 9B | with AEs=Es for T, =1, exp| —H- |, (118)
0 ot o Be kT

corresponding to the continuous (DC) hopping in the critical path, but note that the distribution is not
limited by 1., Bc or En; and t>1. or AEx>En correspond to non-propagating fluctuations, which may
spatially occur, but do not contribute to the stationary (DC) VRH conductance.

After obtaining En for the critical path by the VRH simulator, the values of the derivative

O(B/B¢)OAEH and hopping time t in eq. (117) are evaluated numerically for every triplet { Vg, T, D} of gate
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bias Vg, temperature T and depth D in the profile of the OTFT semiconducting film, by stepping
AEni=10meV, 20meV,..., AEHi,..., En,..., 1.5eV, i=1...150, and calculating the corresponding fraction
Bi(<AEn) by either single [dE, eq. (14) or multiple [[dEdE integrations, eqs. (16)-(19). This calculation for
the single JdE integration, by rewriting eq. (12), is according to

3 +AEy; 3
Bi(SAEHi)zgnK%%” | [1—%} DOS(Eg +AE)dAE. (119)
—AEy;

The corresponding hopping times Ti(AEm;) are calculated by eq. (117), as

T = I_iexp (%) (120)
(6]

Both B; and 1i are numerical vectors of size of the vector AEni. The values of the derivative 0(B/B¢)0AEH
are then calculated as ratio of finite differences, as

0B (AEHi )/Bc|
OAE

9B/B.| _9dB/B|

i Bi ~Biy , completed with 3AE |
H

Be AEy; —AEp(i) ONEy, |

=

(121)
-

i=1 i=2

The substitution of the values in eq. (117) yields the matrix of values for the distribution density of the
hopping bonds and hopping time, which is of size (nxm), with n equal to the length of the 1; vector and m
equal to the size of the reduced depth mesh D at given Vg and T. Obviously, the computation volume is
increased and the data became large. Therefore, the calculation of the hopping distributions is normally
suppressed in the VRH simulator.

The distributions 6(B/Bc)/0t of the hopping bonds and hopping time obtained by the above numerical
procedure are illustrated in Figure 37 for several characteristic depths in the film of a pentacene OTFT at
one bias-temperature point. These distributions are shown with solid polygon-like curves in the figure.
There are characteristic features in these distributions.

One feature is that the distributions are different at different depths in the semiconducting film of the

OTFT. The top solid curve is for the semiconductor-gate insulator interface (depth D=0), and the bottom
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solid curve is for bulk material (depth D=00). Moving from D=0 into the depth of the film toward the back
of the film, the distributions become wider and wider.

A second feature is that the distributions are bounded by the hopping attempt time 1, on left, which is
obvious, but they are not bonded by the hopping time t. in the critical path. The values for 1. are denoted
with the circles (O) aligned to the dotted trend line 0.4/1.. Instead, as indicated by dashed trend lines 770
and 17!, the distributions are bounded on the right-hand side by nearly 1/t distribution at hopping time 1-2
decades larger than te.

A third feature is that the distributions have ranges from Tmin=toexp(6)<0.4ps to Tmax~tceXp(—6), in
which the slope in the double-logarithmic plot is almost constant, and corresponds to the slope of 1°

“ in the bottom

distribution, where n=—% in the particular example, as indicated by the dashed trend line 1~
of the plot. The values for Tmin and Tmax are denoted with small diamonds (*) for each distribution, and
respectively, are aligned to the dashed trend lines tmin=0.4ps and 0.02/tmax, which together with the trend
line T surround the region, in which the hopping time has t» distribution.

A fourth feature is that distributions in OTFT are broad functions of a power-law type of the hopping
time T, causing the so-called dispersive transport [95], which is continuously being elaborated for time-of-
flight measurements in sandwiched diode-like structures for more than 30 years, but fairly unexplored for
thin-film structures.

We can summarize the observations in Figure 37. At given temperature T, gate bias Vg and spot in the

depth D of the amorphous semiconducting film of the OTFT, the VRH predicts three regions for the

distribution 6(B/B.)/0t of the hopping bonds B and hopping time 1, given by

B/B _
66# =0 ,for T<T, exp(3) ~10712 , (faster than the transport in OTFT), (122)
T
0B/B, _n+l_, _ _, _ ) . .
T =—T Ut , for T,exp (3) <T<T, =T,exp (sC ) , (dispersive transport in OTFT),  (123)
T T,

where sc=En/kT=2Ru/A,, according to the principal VRH eq. (2), and
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B/B +
66# = n+l U 1 , for T, <7, (no transport, just fluctuations and charge trapping). (124)
T T T

Note that the formulas are given at conditions To<Tmin<<Tc=To€Xp(sc) and n>(—1), so that eq. (118) is

satisfied for the second region

e 0B/B o+ 18
I — Cdr= I DT g =2 dt
ot 1.n+1 1.n+1
Tinin Tinin ¢ ¢ Tinin (125)
n+l __n+l n+]
_n+1i T ~Tyin =1-0 Tmin ~1
1'2"'1 n+1 T;

Also, the value 0(B/B.)/Ot=(n+1)/1. is aligned at the boundary t=t. between the second and third regions.
The first region, described with eq. (122), implies that the organic material is unable to transfer
carriers between charge states at rates close to I'o. In the second region, eq. (123) describes the dynamics of
the charge transport in OTFT, and the power-law distribution 1 suggests a link to dispersive transport,
which we will address below. In the third region, eq. (124) implies a 1/t distribution of the hopping bonds,
providing for phenomena that do not contribute to the charge transport directly, but are superimposed and
accompany the transport. Such phenomena are low-frequency noise and charge build-up, for example. One
essential remark to eqs. (123) and (124) is that for an OTFT under bias, these equations are for a spot along
the channel and in a slice of the semiconducting film at depth D; and proper weighting of contributions from
different slices and spots is necessary in order to obtain the overall (effective) distribution in the entire

OTFT.

6.2. Hopping as dispersive charge transport and approach to transient behavior
There are several theoretical approaches to the dispersive charge transport in solid amorphous materials.
These theories address the propagation of charge packets by time-of-flight (ToF) measurements.
Chronologically, the first approach was for random walk of hopping charges; it was authored by Scher and

Montroll (SM) in [95] in 1975, introducing the co-called dispersive parameter a>0. Later, it was found that
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o depends on temperature, as o=T/T, [96, 97, 98, 99]. Below, we inspect the presence of the dispersive
transport in our numerical simulations of VRH, and discuss the details.

The significance of the dispersive parameter a is that the charge transport is dispersive when a<1,
since the hopping times do not obey the exponential distribution for a system with single transition rate, but
the hopping events are time-variant and are widely distributed as a power-law function y(t) of the time of
observation, given by

_ constant

=Ta)

SM distribution density: Y (t) , 0<a<1, 0<t<oo is time of observation. (126)

The smaller is a, the wider is y, and the transport becomes more dispersive, compared to the transport with
normal diffusion by exponential distribution. Note that t is time of observation, but not the hopping time T,
and the distribution of hopping time and bonds d(B/B.)/0t is time invariant, as calculated by the procedure
above for VRH in OTFT at the thermal equilibrium, thus 0(B/B.)/0t is a limit corresponding to an
observation time t—oo. The relation between y(t) and 6(B/B.)/0t is via the slopes of the distributions, and

by the arguments discussed below, the relation is

a= Tl =n+1, for an exponential DOS of energy width kT.. (127)

0
The relation T/To=(n+1) <> n=(T/To—1)=(300K/400K—-1)=—Y4 is observed in Figure 37 for the ranges
(Tmin—Tmax), in which 6(B/B.)/ot0t™, and corresponds to eq. (123). The observation was repeated for other
temperatures, as shown in the following Figure 38. The other relation a=T/T, was given for exponential
DOS by several works [96, 97, 98, 99] in the period 1977-1982, which have also established that the multiple
trapping and release (MTR) can explain the dispersive transport. The equivalence of SM random walk and
MTR was elaborated theoretically in [100]. The investigation approaches in these works are two, either
experiments furnished with analytical formulas [97, 98], or utilization of Monte Carlo (MC) simulations [96,
99]. Later development of MTR includes Gaussian DOS in the so-called Gaussian disorder model (GDM)
[101] and spatial correlation in the so-called correlation disorder model (CDM) [102, 103, 104], as reviewed

in [105, 106]. Another approach to MTR is by addressing the charge propagation by means of diffusion of
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charges, instead of random-walk hopping, and by introduction of modifications in the regular differential
equations for the charge transport, in particular, in the terms related to charge trapping, emission and
diffusion. The anomalous diffusion paradigm in MTR was undertaken first by Rudenko and Arkhipov [107,
108, 109], and it is mathematically complex and diverse, as seen in [107, 108, 109, 110, 111, 112, 113, 114].
Interestingly, these works describe the details of time-of-flight (ToF) measurements, but the emphasis is
moved to the complicated mathematical treatments, e.g. fractional differential equations in later works, and
the results are difficult to transfer to other cases, such as dispersive transport in OTFT, owing the many
assumptions that accompany the derivations. For example, a constant electric field and relatively low (on
average) concentration of the induced excessive (non-equilibrium) charge are assumed during the ToF
experiments.

Nevertheless, the works on MTR, especially the earlier ones [97, 98, 99, 108, 110], have introduced the
concept for the transient demarcation between charges in thermal quasi-equilibrium and charges in non-
equilibrium, the latter gradually vanishing with time. The demarcation evolves with time, describing the
gradual process of the so-called “thermalization” of the charge from non-equilibrium state into thermal
quasi-equilibrium state, the latter described by the Fermi statistics. The idea behind the thermalization is
that the thermodynamic relaxation process needs time t=t to perform a change AE of the energy of a charge,
and the time (either for climbing the DOS up by phonon absorption or relaxing down by phonon emission)
is longer, if the two energy states are far apart each other or from the Fermi level Er. For VRH,
mathematically this is equivalent to vary the Fermi energy with AE in eq. (6), from which, in the form of eq.
(120), one gets that

1=t exp [AE—(t)} , where T, ~T,exp(6) ~ Lexp (mj ~ps, (128)
Tinin kT Mo 2
as one can see in Figure 37, recalling also from eq. (61) that sct»~10 is solely for tunneling by VRH at very
high temperature T—oo. The charge with t<t is in thermal quasi-equilibrium, because there was enough time
for this charge to relax into the new state, whereas the charge with t>t is in non-equilibrium, still “being” in
the preceding state before t=0. The demarcation energy AE describes the boundaries around the Fermi or

117



quasi-Fermi levels, within which the charge is in thermal quasi-equilibrium at time 0<t<co during a transient
process. Thus, the demarcation energy AE=KTxIn(t/tmin) moves the quasi-Fermi level IMREF from the

value at time t=0 toward the value for t=o0 by a rate of magnitude

AE
OIMREF _9AE(t) KT kT (129)
ot ot t T

The actual time variation of IMREF in OTFT is more complicated, considering the definition
IMREF=(Er+qVs) by eq. (23) with the potential bending Vg included, because, in contrast to ToF in a
sandwiched film, Vg in OTFT is not constant by a step change of the OTFT bias at t=0. The complication is
due to the discontinuity at t=t between thermalized and non-equilibrium charges, the former tending to the
state at t=o00, whereas the latter still “memorizing” the state before t=0, while the electrostatic balance of
charge (by the Gauss law) at the semiconductor-gate dielectric interface is instantaneous. There is no
suggestion in the literature for a closed-form formula that can describe the variation of Vg simultaneously in
time and in the semiconductor depth. Also, there is no clear guideline on how one can calculate VRH
conductance by time-varying discontinuity of the quasi-Fermi level and when the charge is not in thermal
equilibrium. Below, we give a procedure, based on simplified parameterization with respect to hopping time
T and demarcation at time t, so that t<t corresponds to the emerging new state at thermal quasi-equilibrium,
while t<t corresponds to the gradually vanishing old state of non-equilibrium.
The procedure for transient VRH calculations with demarcation considers the following.

* The states of the charge and VRH are known before (t<0, past state) and after (t=00, future
state) the transient process, as given by stationary (static, or DC) calculations, including
distributions 0X/0t for the quantities X related to the hopping in these states, i.e., X=X(t) and
0X/01=0(B/B¢)/0t for hopping time 1 in Figure 37 and Figure 38 for the state under gate bias of the
OTFT and bulk semiconductor (no-bias off-state of the OTFT). To distinguish a quantity X in the
“past” and “future” states, we include in the notations additional subscripts O (zero) and oo (infinite),

e.g., Xo and X, respectively for (t<0) and (t=00).
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* Depth dependences can be and are reduced by proper superposition or weighted averaging
along the depth D in the semiconductor, 0<D<t;, with D=0 being the semiconductor-gate insulator
interface and tr being the thickness of the semiconductor film, thus D=ts corresponds to the back of the
film. For quantities X, which have meaning in sheet representation Xs=/X(D)dD, e.g., sheet
conductance 6sq for specific conductance 6(D), the superposition is an integration along the depth D in
the semiconductor. According to the Leibniz rule for differentiation under the integral, the
superposition is also valid for derivatives. Therefore,

0Xgq (T) _ D?f 0X(1.D)

dD, distribution of sheet quantity Xq. (130)
ot ot

D=0
For other quantities (that do not have meaning in sheet representation), such as hopping time 1, bonds
per hopping site B, or mobility, one uses the averaging with a weighting function Y(D). The
weighting function Y(D) is the profile of a quantity, which is assumed stationary, e.g., Y(D)=Nc(D)

can be the profile of the charge concentration Nc at t=00. Then, the weighted average is given as

D=t
| f aX((;T’D)Y(D)dD
0XAVG (T) =D=0 _ , average distribution of X (131)
aT D—tf
[ Y(D)dD
D=0

The thick lines (red-colored) in Figure 38 illustrate calculations with eq. (131) for the average of the
distribution 6(B/Bc)/0t of the hopping time 1 in a pentacene OTFT at different temperatures T and at a gate
bias voltage Vg=—20V. The profiles Nc(D) of the charge concentration Nc were used as the weighting
function Y(D)=Nc(D) to calculate the weighted averages. The profiles are after static VRH calculations, and
have been shown earlier in Figure 13.
* Any quantity X(t) can be expressed explicitly as a function of hopping time T, or in a differential
form as a distribution density function of the hopping time 7, e.g., 0X/0t=0X/0(B/B¢)x0(B/B.)/0t.
With respect to transient VRH, both 0X/0(B/B.) and 0(B/B.)/0t can be different in the “past” and
“future” states, before and after the transient process, respectively, but the dependences in the “past”
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and “future” states as functions of the hopping time t are identical with the known stationary
dependences, which are deduced from the static VRH calculations for both the “past” and the “future”
states. There is transient demarcation at time t, which switches the values of quantities and
dependences from “past” state to “future” state, when t=t in a manner explained in the next bullet.
Inferred from the concept for critical path by VRH, one constraint for the differential form 0X/0t is
the correspondence to the static value XstaT obtained from the static VRH calculations. The static
VRH calculations neglect the bonds with slow hopping rate I'<I'c as non-contributing to the
continuous hopping, thus t>1c is not considered in the static VRH calculation of Xstat. Therefore, the
correspondence between the distribution 0X/0t and the static value Xsrar of the quantity X is by an
integration up to the finite hopping time 1. for the critical path, that is

T

Xsrar (D)= I

0X (1,D)

3 dt, correspondence to static VRH at every depth D.  (132)
T

Note that the integration is not to an infinite limit of t=o0, but to the finite limit 1. for the critical path,
where t.=1/I"c was defined earlier between eqs. (114) and (115) and the expression for 1. is also given
in eq. (118) as a function of the hopping energy En at every given spot in the semiconductor. Since the
static VRH does not assume spatial correlations, then Xsrar is spatially independent (valid for every
spot in the semiconductor independently of any other spot), and we extrapolate this assumption also to
the transient VRH. The main usage of the finite-limit integral correspondence in eq. (132) is to obtain
the value (or expression) for the multiplicative coefficient in the distribution 0X/0t of the quantity X,
so that for the hopping time 7. in the critical path, the distribution matches Xstat from the static VRH
calculation. In fact, the finite-limit integral correspondence by eq. (132) is a normalization to the value
Xsrar in the critical path; and with eqgs. (118) and (125), we have already performed the normalization
of the hopping bonds B to the bonds B. for the critical path, when obtaining the distribution
O0(B/Bc)/0t of the hopping time t in eqs. (117) and (123). In addition to the correspondence to static

VRH, an advantage of the normalization to the critical path is that one can define and deal with
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distributions, which can be unbounded for t=00, c.f. the 1/t distribution in eq. (124). However, one
should also be aware of some consequences, e.g., the unbounded at 1=co distribution implies that the

static state X for the quantity X may not exist precisely, and furthermore, a distribution density

normalized to finite limit is not a probability distribution, since (l/XSTAT)xfooﬁX/Ordrqél.

The transient process can be and it is sufficiently accurately described by the demarcation with
time and the fractional superposition of state t=0 and state t=0, so that a window from 0 to t
corresponds to a sum of the thermalized “fraction” of the future state t=co (with t<t) and the
non-equilibrium “fraction” of the past state t=0 (with t>t), the former continuously expanding
with t, while the latter gradually vanishing with t. From the static VRH calculations of a variable X
in the “past” state and in the “future” state, one obtains Xo(1), X«(t) and the corresponding
distribution densities 0Xo/0t, 0X«/0t with respect of the hopping time t for the “past” and “future”

states. Then one can find the “fractions” by

t

XNEW (t) = J.aXéLT(T)dT =X (T = t) for the expanding thermalized fraction with Xo(t=0)=0 (133)
0

XoLD (t) = J.aXaLT(T)dT =X (T = 00) -Xo (T = t) for the vanishing non-equilibrium fraction.  (134)

t

Consequently, the superposition yields the transient value of the quantity, as
X (t) =Xngw (t)+XoLp (t) at time t. (135)

Strictly speaking, the considerations in the above four bullets are not perfect, but are approximations.

The first consideration can be obscured due to a divergence by integrating power-law functions, since

fwx“dx:oo, if n>(-1), thus, a perfect stationary state might not exist. The second consideration can also be

questioned for precision, because one may use different weighting functions for different quantities, and the

selection of the type of the weighting function requires further considerations. For example, one can choose

the electrostatic charge profile Nc(D), the VRH specific conductance profile (D) or their product as

weighting functions by calculating the distribution of the hopping time t, when analyzing the low frequency
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noise in terms of number, mobility or correlated number-mobility fluctuations. We will show an attempt of
such an analysis later. The third and fourth considerations assume that there is no correlation between the
“past” and “future” states and the transition is a step function at the demarcation 1=t, whereas, the transition
region around the demarcation is not sharp, but for about 2kT (twice the thermal energy kT), which causes a
transition for a time decade, since At/t~exp(2kT/kT)~7.4 follows from eqs. (128) and (129). In addition, the
third consideration neglects the instantaneous balance of the charge at the gate dielectric interface (by
Gauss’ law), assuming that the charge in the film at t=0, immediately after the step of the bias of the OTFT
is the same as the charge at the quasi-equilibrium state at t=co. Thus the potential bending is constant in the
entire interval from t=0 to t=o0, and the new state of bending does not affect either the charge or the bending
in the old state for t<0, which is not exactly what occurs in an OTFT. Nevertheless, although the above four
considerations are not perfect, we believe that the considerations and equations are sufficient to capture in
mathematically simple way the behavior and the order of magnitudes during the transient processes after
stepping the gate bias of the OTFT, which would be helpful to explain some experimental observations by

the lack of theory for VRH dispersive transport in OTFT at present.

6.3. Transient hopping transport
We now proceed to the implementation of the procedure for transient VRH calculations with time
demarcation, outlined in the above four bullets. The implementation addresses the operation of the OTFT in
the linear (Ohmic) regime, in which, according to eq. (51), the drain current Ip is proportional to the sheet
conductance Gsq, and osq is nearly a constant for any position along the channel width W and length L. Thus,
we will analyze the channel conductance as function of time after the step of the gate bias voltage Vg, and
the current Ip=(W/L)Vposq will be assumed always accessible from the results for osq by scaling 6sq with the
product of the ratio W/L and the drain bias voltage Vp. Therefore, we will present the results for the channel
conductance and omit the scaled version of these results for the channel current in the OTFT. Furthermore,

we shall analyze two transitions, from off-state to on-state followed by the opposite transition from on-state
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to off-state of the OTFT. The off-state corresponds to the gate bias Ve=Vrs~0 equal to the flat-band Vs, so
that the off-state at t=co is the same as the equilibrium state of the bulk semiconductor. The on-state
corresponds to Vg=-20V for the pentacene OTFT from [73], which is chosen to preserve the
correspondence to preceding figures, formulas for exponential type of DOS and the values of the parameters
in Table IV for this device, specifically, for static VRH calculations with multiple [[dEdE integrations by
assumption for double-exponential DOSpk.

One obtains the distribution of the VRH specific conductance from

00(t,D) _ 9o 0B _ 0o , 0B/B

ot Bor OB ° ot

, (136)

where B:.~9/n1=2.86 is the constant that represents the “geometrical” assumption for sufficient bonds per site
by continuous hopping in the percolation network, see eqs. (3) and (5), and the distributions o(B/B.)/ot for
the hopping time 1 are obtained as explained above by eqs. (114) to (121). The values for 6(B/B.)/0t were
shown for different temperatures in Figure 38, both for bulk semiconductor (off-state) and for different
depths D in the semiconducting film at gate bias Vc=—20V (on-state). One can obtain an expression for the
derivative 0o/0B, considering that in principle the fraction of conductivity do=bI'0B is proportional to the
fraction of the bonds OB that are associated with a hopping rate I" and b is a constant that will be determined
by the normalization to ¢ for the critical path by means of eq. (132). Since we have defined 1=1/I" before eq.

(114), then

00(t,D) _do g 9B/B

_do 0B/B, _bB, 0B/B,
ot 0B ¢ ot

ot T ot

=bIB, , (137)

showing that the distribution of the VRH specific conductivity is proportional to the distribution 6(B/Bc)/0t

of the hopping time t, divided by the hopping time t itself. Therefore, one can rewrite the approximations

for 0(B/Bc)/0t of eqs. (122), (123) and (124) also for do/cr, as

Z—O =0 , for T1<T1,, (faster than the transport in OTFT), (138)
T

+1 - - . .
Z_c: =bB, :n+1 =A™ for T, <T<T,=T,exp (sc) , (dispersive transport), (139)

C
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where sc=En/kT=2Ru/Ao>sc1, according to the principal VRH eq. (2), and

, for T, <7, (no transport, just fluctuations and charge trapping). (140)
The value of the normalization coefficient A is then obtained by substituting eq. (139) in eq. (132) for the
correspondence to ¢ from static VRH calculation for the critical path. After the substitution, one gets

Tg/(—n), if0>n>-1

Tc

o(D)= ijC “nﬂ " ldt= Ax{in(1./1,), ifn=0 , (141)
To ¢ Tlcl/n, ifn>0

since 1c>>To, and, therefore, the normalization coefficient A is given by

(-n)/}, if0>n>-1 for T<T,

[0 )4

A=0(D)x{1/s., ifn=0 at T=T,, with s, =In(T./Ty) >ScTe0 ~ 10. (142)
n/Tg, ifn>0 atT>T,

The different cases in eq. (142) imply that the normalization coefficient A in the expressions of the
analytical approximation for the distribution dc/0t of the VRH conductance, eq. (139) and eq. (140), can be
evaluated from the specific conductance o itself and the value of the hopping time t, for which the
distribution O(B/B¢)/0t of the hopping time t has maximum. From Figure 38, the maximum in the
distribution O(B/Bc)/0t is near toexp(3) at low temperature (T<T,), near tc/exp(3) at high temperature
(T>T,), and close to the geometric mean (totc)”? at T=T,. Thus, once the VRH conductance ¢ and the
hopping time distribution 6(B/B.)/0t are known (e.g., from simulation), the normalization coefficient A can
be calculated from eq. (142), because either to, Tc or (Totc) can be found from the position of the maximum
in the distribution 0(B/B¢)/0t, and n is the slope of the tilted “plateau” in the distribution 6(B/B¢)/0t and

n=(T/To—1), according eq. (127).
As given by eq. (127), n=(T/To—1) for exponential DOS, 1,=1/T is a parameter and t.=toexXp(En/kT)
is easily obtained from eq. (118), because the values in the profile En(D) of the hopping energy Eu in the
critical path in the depth D of the semiconductor film are gathered by the numerical VRH simulator. Thus,

the values of normalization coefficients A are calculated using eq. (142) and substituted in eqs. (139) and
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(140) to yield approximations for the distributions dc/0t of the VRH specific conductance o, as shown with
dotted lines in Figure 39. The thin solid lines in this figure are calculated numerically according to eq. (137),
reusing the data for the distributions d(B/B.)/0t for the hopping time t, dividing the values for 6(B/B¢)/0t on
T, and performing the normalization numerically. The numerical normalization determines b in eq. (137) so
that the numerical integration of the last expression of eq. (137) from zero to 1=1. matches the value of the
static conductance o(D) known from the numerical simulation. The thick lines are the distributions 0csq/0t
of the sheet conductance c5q, which are obtained after numerical integration by

90, (T) _ D.:[tf d5(1,D)

3 3 dD, distribution of the sheet conductance o, (143)
T T

D=0
according to eq. (130) with X=c. The profiles o(D) of the VRH specific conductance in the depth D of the
film have been shown earlier in Figure 14(c), and the sheet conductance is qu:deD (see eq. (41)). For the
bulk material, equivalent to the off-state of the OTFT as mentioned above, the integration is replaced with
multiplication by the thickness t; of the semiconductor film, 0csq/0t=tsx0c/0t, as in eq. (40).

By comparing the dotted with the thin lines in Figure 39, one observes that the approximations with
eqs. (139) and (140) are consistent with the distributions 6c/0t of the VRH specific conductance ¢ obtained
from the numerical simulations at different depths in the organic semiconductor of the OTFT. However, the
approximations are not exact, there are deviations of several orders of magnitude at some places, and also,
one needs to tune the values of 1, and 7., as stated in the caption of the figure, in order to obtain a good
fitting between the numerical and analytical calculations. Therefore, we will use the data from the numerical
calculation in the next step of calculation of the transient conductance. In particular, we will use the data
shown by the labeled thick lines in Figure 39 for the distributions 0cs¢/0t of the sheet conductance 65 when
switching between off- and on-states of the OTFT. The off-state corresponds to label “Ocsq/Ot of bulk”. The
on-state corresponds to label “Ocsq/Ot at V™.

The transients of the sheet conductance osq of an OTFT are shown in Figure 40, as calculated

numerically using eqgs. (133), (134) and (135) with demarcation between on- and off-states at time t=t. The
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steps of the gate bias voltage V¢ are depicted on the top of the plots for the sheet conductance osq. The left-
hand side in the figure corresponds to the transition from off- to on-state, while the right-hand side
corresponds to a following transition from on- to off-state. The lines in the left-hand plot are Xnew and
XoLp, calculated, respectively, using the distributions 0csq/Ot of the sheet conductance osq at Ve=—20V for
0Xx/Ot and the distribution for bulk semiconductor for 0Xo/0t. Thus, the circles in the left-hand plot
represent the transition osq(t)=X(t)=[Xnew(Vc)+XoLp(bulk)] of the sheet conductance to the on-state of the
OTFT. We observe that the transition from off- to on-state is very fast and depends on the thermalization of
the new state Xnew of the applied on-bias voltage Ve=—-20V.

Conversely, in the right-hand plot, the lines are after swapping the distributions used to calculate
Xnew and Xorp. The calculation for Xngw uses the distribution for bulk semiconductor as 0X./0t in eq.
(133). The calculation of Xorp uses the distribution at Ve=—20V as 0Xo/0t in eq. (134). Thus, the circles in
the right-hand plot represent the transition Gsq(t)=X(t)=[Xnew(bulk)+XoLp(Vg)] of the sheet conductance
toward the off-state of the OTFT. These transitions toward the off-state are much slower, especially at low
temperature, owing to the long time needed for the thermal relaxation of the previous conducting state.
Looking closer at the values, one observes that the thermal relaxation of the OTFT conductance is in the
range of a large fraction to several seconds at room temperature T=300K, and may take weeks for the lower
temperature of 200K. Therefore, the transition of the OTFT from conductive to non-conductive state is a
highly non-equilibrium process, which causes hysteresis and threshold shifts in the OTFT, as reported many
times in the literature and summarized in [27] for the charge build-up in OTFT. Here, we deduce from
Figure 40 that the dispersed hopping time causes long-lived tails in the VRH conductance, which are in

addition with the charge build-up.
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6.4. Random fluctuations (noise) in the hopping transport
The last topic in this work is on the ability of VRH to predict the low-frequency noise (LFN) in OTFT. The
approach to the problem considers two basic relations. The first is the phenomenological Hooge equation

for the normalized flicker (1/f) noise [115, 116], given by

S(f a
Snorm (f) = ( 2) = H 5+ Bl Nror=WLQu/q=WLCoxVc/q (144)
DC NTOT xf

where Snxorm(f) is the normalized power-spectrum density (PSD) of the flicker noise in unit [1/Hz], being a
ratio of the power-spectrum density S(f) of the LFN of a quantity, (e.g., current, voltage, mobility,
conductance, resistance, etc.) to the square of the stationary (DC) value for this quantity. The other notations
in eq. (144) are: Nror is the total number (on average) of moving entities, which experience fluctuation in
their motion, that is, Ntor is the total number of charge carriers in the electronic device (OTFT); an is the
Hooge parameter, which is a number that depends on materials, but is nearly independent of bias and
temperature; f is the frequency in [Hz] and B~1 is the frequency exponent of the flicker LFN. If DC is in
unit [u], then the noise power-spectrum density S(f) is in unit [u?/Hz]. Also, if B=1, then an is purely
numeric, otherwise, the unit of oy is [(Hz)P!].

As follows from Hooge eq. (144), an is the magnitude of the normalized noise Snorwm for one carrier

Nror=1 at frequency f=1Hz, and for other frequency and number of carriers

g _ _ S(f)
—=N xS f)=N — 145
B toT *SnorM (f) = Ntor DC2 (145)

which is the complementary characterization format of the Hooge eq. (144). Behind eq. (144) are the
statistically uncorrelated and invariant random variables (fluctuations) of population with size Nror, for
which the total variance S=) Sk=Ntorx(Sk) is the sum of the variances Sk of the different fluctuations,
K=1,2,...,Ntor, and (Sx)=(3 Sk)/Ntor denotes the average variance that is attributed to each individual
fluctuation in the population. Accordingly, the square of the standard deviation (noise) for all carriers in the
population is the sum of squares of the standard deviations (noise) from each individual carrier, considering

the above assumption for statistically uncorrelated random variables.
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On the other hand, the average DC is also proportional to the number of carriers, DC=Nrtorx(DCk),
where (DCk)=(3 DCk)/Nror is the average contribution of a carrier to DC. Thus, the ratio S/DC?J1/Nror,
from which follows eq. (144) by assuming that each carrier has a normalized noise equal to ou/f’. One
remark is that the OTFT aspect ratio W/L of channel width W to channel length L affects linearly DC and
quadratically S(f), so, W/L is cancelled in the expression for Snorm. One should not be confused with
apparent L2 dependences in equations derived from eq. (144) for field-effect transistors. After careful
inspection of the publications [117], one can always obtain SnormU1/Area=1/(WL)[I1/Ntor from these
equations.

The second basic relation for LEN is due to the time distribution in the fluctuation of carrier motion.
As follows from the mathematical suggestions in [118, 119], the normalized noise for a single carrier is

given by the integral in the left-hand expression in the following equation

aTHj-aX dXAVG (T)

3 dt=S, (f ) =91 , single-carrier normalized noise Sni(f), (146)
ot 1+(2nfr)

B

Tinin
where a=4 for the bistable move-wait process with 50% duty cycle, which is a condition at which the
average is equal to the amplitude of the fluctuation. If the process is asymmetric, then a<4, and we will take
a~1 for VRH. Since the left-hand expression is for a single carrier, then we equate it to the right hand
expression an/f? for the flicker noise of a single carrier from eq. (145). Note that 0Xava/0t is given by eq.
(131) for normalized distribution, e.g., for hopping time t, that is 0X/0t=0(B/B¢)/0t in eq. (131), as
explicitly rewritten in eq. (147) below.

Thus, one can access the flicker noise in OTFT operating in the linear regime from numerical VRH
simulation at given gate bias Vg and temperature T by the following sequence:

Step 1. Obtain the distribution O(B/Bc)/0t of hopping time t for different depths D in the

semiconducting film, according to the procedure explained earlier by eqs. (117) and (121).
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Step 2. Perform appropriate averaging of 0(B/B.)/0t to reduce the film depth D. One can obtain
several average distributions 0(B/B¢)avc/Ot that address different hypotheses for the noise, depending on the
weighting function Y(D) used in eq. (131). In particular,

D:tf
J0(B/B
| o(B/B.) Y (D)dD

0(B/Bc)avg _p=o
ot D=t¢

D=0
1, at hypothesis (1) for AT noise from hopping bonds
0(D)/N¢ (D) O u(D), at hypothesis (2) for Ay noise
Y(D) =1 N¢ (D), at hypothesis (3) for AN noise
o(D) U N (D) x (D), at hypothesis (4) for Ao noise ( correlated Ap—AN)
0(D)xN¢ (D), at hypothesis (5) for correlated AG —AN noise

(147)

Step 3. Choose a logarithmic frequency mesh f in the range fmin — fmax. Obtain normalized noise
spectra Sni(f) for single carrier at the different hypotheses by the left-hand expression of eq. (146), taking
a=I.

Step 4. Fit power-law functions to the single-carrier normalized noise spectra Syi(f) for the different
hypotheses, using the right-hand expression of eq. (146). The values of the frequency exponent 3 are the

average slopes

_aln (Snl)

b= dln(f)

, (148)
AVG

and the values of the Hooge parameter oy are the values of the fitted power-law functions at f=1Hz.
Step 5. Obtain the normalized flicker noise Snorm of the OTFT for different hypotheses. As follows

from eq. (144),

_Sui(f) _ Swi(f)
Nror WLQg/q

Snorm (f) , Q&=Cox V. (149)

Step 6. De-normalize DC and flicker noise at different hypotheses, e.g., in terms of channel current
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W

Ip = fasqVD (150)
Sip (f) =Snorwm (F) 15

Step 7. Compare with experimental data to validate the most reasonable hypothesis, and if necessary,

multiply the results for an, Snxorm and Sip by numeric factor of 0.25<a<4, since a=1 was used in Step 3. If
the values for the frequency exponent [ of the simulated flicker noise are different from the experimental
data, then one should reconsider the type of DOS and repeat the entire VRH simulation.
To preserve correspondence with previous DC and transient analyses, we illustrate now the above steps for
calculation of LFN with examples for the same pentacene OTFT and VRH calculations, as given in the
caption of Figure 37. The results from the calculations by Step 1 for the distribution 6(B/B¢)/0t of the
hopping time 1 at different depths D in the semiconducting film are shown with thin solid lines in this
Figure 37 and in the following Figure 38. The thick lines (red color) in the latter figure also depict the
reduction of the film depth D in Step 2 by weighted averaging with the charge profile Nc(D), which
corresponds to hypothesis (3) for AN noise in eq. (147). The variation of 6(B/B¢)avc/Ot by the change of the
hypothesis is illustrated in Figure 41. Among the several observations stated in the caption of the figure, the
significant one for LFN are that irrespectively of the hypothesis, bias and temperature, the average
distributions 6(B/Bc¢)ava/Ot coincide with virtually unique 1/t distribution at high values of the hoping time
> 1ms, while temperature and bias-dependent deviations from 1/t occur at low t<10ps. The significance of
the observation becomes clear when performing Steps 3 and 4.

For Step 3, we choose fmin=1Hz, fmax>100kHz and 8 frequencies in each decade, having the
logarithmic frequency mesh of f={1, 1.3, 1.8, 2.4, 3.2, 4.2, 5.6, 7.5}x10{!. 23 45} For each of these
frequencies, and for each of the average distributions 0(B/B¢)avc/0Ot at different hypotheses by eq. (147), we
have performed numerically the integration in the left-hand expression of eq. (146), obtaining the points in
the single-carrier normalized noise spectra Sni(f) at several temperatures T and gate bias voltages Vg, as
shown in the main plots of Figure 42. Several observations can be made in these plots.

The first observation in the main plots of Figure 42 is that Syi(f) is nearly 1/f noise.
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The second observation in Figure 42 is that the change of the weighting function in eq. (147), thus the
hypothesis for the origin of the noise, does not “dramatically” change the noise level, except for hypothesis
® for At noise, which fails at low temperature due to neglecting the highly non-uniform profiles of
conductance and carriers in the depth of the film by using equal weights Y=1 in eq. (147).

Further details for the numerically calculated single-carrier noise spectra S,i are obtained after
performing Step 4 for fitting Sn1 with the approximation on/f’~S,i, see eq. (146), in which the Hooge
parameter oy and the frequency exponent B of the flicker noise are assumed frequency independent. The
fitting lines are also shown in the main plots of Figure 42, and the fitting lines overlap with the numerically
calculated spectra, although careful inspection showed 10%-20% difference between the numerically
calculated spectra Sy1 and the approximation with au/f’. The obtained values for ay and B are shown in the
insets of Figure 42.

As depicted by arrows in the insets of the figure, the third observation in Figure 42 is that the noise
levels increase in the order of hypotheses numbering ®@ 3@ ®, since the values of the Hooge parameter
ay increase in the same order @@ ®® and the values of the frequency exponent B of flicker noise
decrease simultaneously in this order D@3 ®®.

The fourth observation in the insets of Figure 42 is that there are weak temperature and bias
dependences in ag and . As seen in the insets of Figure 42(a), and excepted for hypothesis @ for Ap noise,
on and P are linear functions of the reciprocal temperature 1/T, being much weaker than the Arrhenius
exponential activation exp(Ea/kT).

Note the zigzag in the insets of Figure 42(a), especially in the bottom-left inset for an vs. 1/T, in
which at low temperature @~® and @~® at the right-hand side of the inset, while at high temperature
@=® and @=0® at the left-hand side of the inset. This zigzag indicates crossovers between different noise
generating mechanisms when changing the temperature, but the crossovers are very difficult to discriminate
experimentally, because the temperature dependences are weak, causing changes within only a factor of 2

(3dB) for an and 5%-10% for B in a wide temperature range from 200K to 500K, whereas the noise
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measurements have normally instrumental uncertainties of at least £3dB for spectrum magnitudes and
+0.5dB~£12% for spectrum flatness. Weak logarithmic bias dependences are observed in the insets of
Figure 42(b). There is virtually no bias dependence for an and B by the hypothesis @ for At noise, there are
minute dependences of about +3%/decade by the hypothesis @ for Ap noise, and the dependences gradually
rise to 50%/dec for an and (-5)%/dec for p by hypotheses @ @® for AN, Ac and correlated Ac—AN noise.
These weak bias dependences are also difficult to discriminate experimentally by the instrumental
uncertainties mentioned above.

From the observations in Figure 42, we can summarize the VRH prediction for the low-frequency
noise in OTFT. The single-carrier normalized noise Sni=on/f? is the flicker-type noise, and it is almost bias
and temperature independent. In addition, the single-carrier normalized noise Sn1 can be calculated by eq.
(146) with almost the same magnitude o and frequency slope B with any of the hypotheses @@ ® for Ay,
AN or Ac origin of the noise and using the corresponding weighting function Y=6/Nc, Y=Nc or Y= in eq.
(147). Hypotheses ® and ® are redundant, because hypothesis @ for At noise is for uniform conductance
in the OTFT’s film depth, and fails at low temperature. There is a minimal contribution from the correlation
between the conductance ¢ and carrier concentration Nc in hypothesis ® for a correlated Ac—AN noise,
compared to the hypothesis @ for Ac noise only from conductance fluctuation or to hypothesis ® for AN
noise only from carrier number Nc fluctuation. So, since VRH is developed mainly for specific conductance
o, then we shall consider only hypothesis @ for Ac noise in the following illustrations.

For Step 5, we use the additional information in [73] that the channel of the pentacene OTFT had
width W=2cm and length L=10um. Thus, as obtained from the values for the unit-area gate charge Qg by
the numerical simulator, the total number of carriers Ntor=WLQg/q in eq. (149) is Ntor=4.1x10°+1.7% for
Vs=-20V at temperatures T={200K, 300K, 400K, 500K} and Ntor={0.99, 2.04, 4.15}x10° for Vg={-5V,
—-10V, -20V} at room temperature T=300K. Scaled version of the reciprocal (1/Ntor) of these values for
Nror are shown by diamonds (#) in the insets of Figure 43, where (1/Ntot) was multiplied by 3x10'° to be

plotted about a decade above the values for an. Using Cox=17nF/cm? from Table IV, the approximation
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Ntor=WLCoxVa/q in eq. (149) gives slightly higher values, e.g., 4.24x10° for Vg=—20V, since the
approximation considers zero flat-band at any temperature and bias, but the difference is small and can be
neglected, since the inaccuracy of the charge calculation is about 5% in the numerical simulator, c.f. Figure
34 for dE=2meV.

Next, we take the numerically calculated values for the single-carrier normalized noise Sn1 and its
approximation with an/f’~S,;. These have been shown in Figure 42. The substitutions in eq. (149) yielded
the values for the power spectrum densities of the device normalized noise Snxorwm, as depicted in the main
plots of Figure 43 with solid lines for the numerical calculation SxormM=Sn1/Ntor and with dashed lines for
the approximation Snorm~(om/f?)/Ntor. As in the previous figure, Figure 43(a) is for different temperatures
T={200K, 300K, 400K, 500K} at a gate bias voltage Vc=—20V, and Figure 43(b) is for different Vg={-5V,
—-10V, =20V} at room temperature T=300K. For clarity in the figure and the following discussion, we show
only the results after hypothesis @ for Ac origin of the noise. The observations are qualitatively similar
after calculations from the other hypotheses ®@®®, but quantitatively Snxorm varies about 1 decade
between the different hypotheses, replicating the variations for Sn1, an and  shown in the previous Figure
42.

One can make the following observations in Figure 43 for the device normalized noise SnorM, as
deduced from VRH calculations and by eq. (149). First, the overlap is good between the solid lines for the
numerically calculated spectra SnormM=Sni/Ntor and the dashed lines for the approximation
Snorv=(an/fP)/Nror, indicating the applicability of both the numerical VRH calculation and the analytical
approximation with Hooge eq. (144) for characterization of noise in OTFT. A second observation, however,
is that the VRH numerical calculations suggest temperature, bias and frequency variable magnitudes and
slopes for the flicker noise, that is, an and B vary with these factors and are not constant device parameters.
To get insights for the variations, we choose one frequency f=75Hz and focus on the evolution of the values
for Snorm(75Hz), denoted with open circles (O) in all plots. In particular, the absolute values of

Snorm(75Hz) are depicted on the noise spectra in the main plots, and scaled version of these values of
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Snorm(75Hz) are also given in the insets. The scaling in the insets is by multiplying Snorm(75Hz) with a
constant number of 10'2, so that the circles for Snxorm(75Hz) are about Y2 decade above the squares (W),
which depict the values of the Hooge parameter an.

The purpose of the insets of Figure 43 is to split and examine the contributions from different factors
in the variations of the device normalized noise Sxorm. Consider the approximation Snorm=~(0om/f?)/Nror.
The increase of the device normalized noise Snorwm is proportional to the increase of the reciprocal (1/Ntot)
of the total number of carriers Ntor. The increase of Snorwm is also proportional to the increase of the Hooge
parameter an. On the other hand, the decrease of the frequency exponent 3 of the flicker noise causes the
noise level to be larger when the frequency f>>1, so that f/f? is larger when B is smaller. Therefore, f/f® can
be regarded as the third factor, to which the increase of Snorm is proportional. By this formulation of
(1/Ntor), on and f/f# as split factors, the factors are with multiplicative contribution to S~xorwm, and therefore,
can be plotted in logarithmic scales when examining the contributions by variations of temperature, bias and
frequency. Thus, we plot in the insets of Figure 43 the scaled version of (1/Ntor) with diamonds (#), the
Hooge parameter on with squares (M) and f/f® at f=75Hz with triangles (4), together with the scaled
version of Sxorm(75Hz), open circles (O); and we attribute the variation of Snorm to the factor, which has
similar variation in the plot of the particular inset.

Looking at the inset of Figure 43(a), one observes that the device normalized noise Sxorm increases
with temperature T for T<T,=400K, but not much at T>T,. The temperature variation of Sxorm follows the
temperature variation of the Hooge parameter au. There is also a minute contribution to Sxorm from a
decrease of the frequency exponent B, via the gradual increase of f/f® with temperature, but this contribution
is small, when compared with the larger contribution from on. There is no significant temperature
dependence in Snorm contributed from the total number of carriers Ntor, since Ntor<WLCoxVa/q is fixed
electrostatically by the constant gate bias Vg=—20V in Figure 43(a). The temperature variation of Ntor is

about +1.7% or less in Figure 43(a), with is negligible for the noise.
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Conversely, by changing the gate bias of the OTFT at a given temperature, one observes in the inset
of Figure 43(b), that the significances of the contributions from the different factors are interchanged. One
expects and observes that the device normalized noise Snorm decreases at higher magnitude of the gate bias
Vg, owing to the increase of the total number of carriers Ntor[JVg. However, when comparing the rate of
decrease of (1/Ntor)J1/Vg with the lower rate for SnorMm, one sees in the inset of Figure 43(b) that the
bias-dependent decrease of Snorwm is less steep than 1/Vg. The reduction of the bias dependence of Snorwm is
mainly due to the increase of the Hooge parameter an and to a lesser extent due to the decrease of the
frequency exponent B, which causes a minute increase of f/f at higher V.

Overall, although the insets of Figure 43 imply that VRH causes bias and temperature dependences in
the Hooge parameter oy and in the frequency exponent f3, the variations of ay and f are not dramatically
large; these variations are within the experimental inaccuracy of LFN measurements. Therefore, as
mentioned above, the approximation Sxorm=(an/f?)/Nrtor in terms of the Hooge eq. (144) is applicable for
OTFT noise characterizations, and the numerical VRH calculations of Snorm confirm this applicability.

For Step 6, we use in eq. (150) the data for Snorm shown in Figure 43 by the hypothesis @ for Ac
origin of the noise and choose several drain bias voltages Vp to calculate the channel current Ip and the
power-spectrum density (PSD) of the channel noise current Sip, according to eq. (150) for the Ohmic
regime of operation of the OTFT (|Vp|<|Vg|). The results in Figure 44(a) are for different temperatures
T={200K, 300K, 400K, 500K} at fixed biases {VG=—20V, Vp=-2V}, and in Figure 44(b) for Vg={-5V,
—-10V, =20V} and two different values of Vp={-0.2V, -5V} at room temperature T=300K. The solid lines
in the main plots of Figure 44 are after numerical VRH calculations. The tilted dashed lines represent the
approximations with the de-normalized Hooge equation Sip=Ip?an/(Ntorf?) for the flicker noise component,
and the horizontal dashed lines depict the white noise due to the fundamental thermal or shot noise. The
PSD of the white noise current is separately calculated either as 4kTosqW/L from the conductance 6,qW/L
of the OTFT channel for the thermal noise, or as 2qlp from the DC current for the shot noise. Then, the

assumed white noise is added to the flicker current noise of the channel, and the results are shown with the
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solid lines. The assumption for the type of the white noise is arbitrary, because the white noise in an OTFT
is not clearly observed experimentally, since the flicker noise dominates in noise measurements of OTFT,
c.f. in the experimental data shown with gray lines and small gray squares in the main plot of Figure 44(b).

Eq. (150) suggests a quadratic dependence Sip[JIp? of the noise Sip on the DC current Ip. To inspect
this dependence, we choose Sip(75Hz) at frequency f=75Hz, as in the previous figure. The circles on the
solid lines in the main plots of Figure 44 and in the insets are Sip(75Hz) as obtained from the numerical
calculation with the white noise added. The squares in the insets depict the values of the DC current. The
comparison of the evolution of Sip(75Hz) and Ip with the temperature in the inset of the left-hand Figure
44(a) suggests that Sip is not exactly a quadratic function of Ip. Since the gate and drain bias voltages are
constants in Figure 44(a), then Ntor is also constant, and the “hyper”’-quadratic dependence of Sip on Ip is
due to the temperature increase of the Hooge parameter an, which has already been shown in the previous
figure.

On the other hand, in the inset of the right-hand Figure 44(b), the temperature is constant and the bias
is varied. Considering that the increase of the gate bias Vg is accompanied with proportional increases of
Nror and Ip, then one would expect a linear dependence between Sip and Ip, e.g. the circles should be
aligned to the slope of the dashed line in the inset, which is a scaled version of Ip by drawing to the axis of
Sp. (The slope of the dashed line in the drawing becomes Y2 of the slope of Ip by drawing on its axis.)
However, Sip increases faster than Ip, owing to the increase of the Hooge parameter with the gate bias
voltage Vg, as has been shown in the inset of the previous figure. The dependence of Sip becomes between
a linear and a quadratic function of Ip, when varying V. Nevertheless, the drain bias scales equally Sip and
Ip, so that the ratio Sip/Ip? does not change with Vp, as seen by the comparison of the separation between
circles and squares for the two cases of low Vp=-0.2V in the lower portion of the inset and for higher
Vp=-5V in the upper portion of the inset. The reasons for the dependences between LFN, bias and
geometry of the OTFT are discussed in [120, 121, 122, 123, 124, 125]. These reasons are weakly related to

the assumption for VRH charge transport; therefore, these reasons are not discussed here.
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For Step 7, one desires to compare the VRH prediction for LFN against experimental data.
Unfortunately, no data for LFN were reported for the particular pentacene sample, for which the mobility
data given in [73] were used to determine the VRH parameters in Table IV. Therefore, we have placed in
the right-hand Figure 44(b) some data reported in the literature for several other OTFTs, showing that the
calculation of LFN by means of VRH correctly spans the range of values that one normally observes in LFN
experiments with OTFTs. The experimental data shown in Figure 44(b) are, as follows. The upper gray
symbols are three sets of overlapping data. One set is from [120] for a bottom-contact pentacene OTFT
(W=220um, L=10um, Vp=-5V, Ve=-10V, Ip~1pA), and two sets of data from [121] for a p-channel DH-
aST OTFT (W=250um, L=12pum, Vp=-15V, Vg=-15V, Ip~0.3pA) and n-channel F-CuPC OTFT
(W=250pum, L=12pum, Vp=100V, V=100V, Ip~5pA). The gray lines are from our research on noise in
poly(3-alkylthiophene) OTFTs [122, 123]. In particular, the data are for poly(3-hexadecylthiophene),
P3HDT, OTFTs of sizes W=1.6cm, L=10um, at Vp=-5V, Vg=-27.6V, Ip=0.78pA for the upper gray line
and Vp=-12V, Vg=-24V, Ip=0.112pA for the lower gray line. The gray squares between the gray lines are
from [124] for an OTFT with a slowly grown 10-nm thick pentacene film (W, L, Vp, Vg and Ip have not
been reported). The gray squares in the bottom of the figure are from [125] for a PTV OTFT (W=500-
1000pum, L=40pum, Vp=-3V, Ve=-16V, Ip~50nA). Some values are restored by our best guess, since the
information for the samples, conditions or data processing are not fully disclosed in the publications. Again,
the comparison between experiments and prediction of VRH for LFN is only qualitative, since the samples
are very different. Overall, the comparison confirms that the procedure of the above seven steps of VRH
numerical calculations correctly predicts both the magnitude and the shape of the low-frequency noise, as

well as the bias and temperature dependences for LFN in OTFTs.

7. Conclusions
We have confirmed by fully numerical simulations that the VRH theory and corresponding analytical

models correctly describe the behavior of the conductivity and mobility in OTFTs. One key reason causing
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difficulties of using VRH theory for OTFTs are problems with the values of parameters and magnitudes of
quantities related to VRH. The origin of these problems is that a unique approach for derivations,
calculations and characterization based on VRH is not currently available. Therefore, we have described our
numerical simulator in detail, in order to anticipate the fitting and interpretation of experimental data by
analytical VRH models, which are often subjective (e.g., “up to a constant multiplier” that might be in
exponents of the analytical expressions).

While the above problems with values indicate that VRH is not mature for OTFTs at present, there are
sustainable trends in VRH for OTFT. We have shown that there are simple relations behind the bulky
integrals for VRH. For example, VRH is strongly tied to the electrostatics in OTFTs by the potential
bending in the semiconducting film, and the steepness of the logarithmic slopes and the magnitude of DOS
at the quasi-Fermi level play important roles for the VRH conductance, although the type of DOS has only
marginal importance for the overall behavior of VRH. Therefore, the approximation with an exponential
DOS works well in practice, especially at low temperatures, but the exponential DOS approximation does
affect magnitudes and details in the behaviors at high temperatures.

Among the simple relations, we can confirm for VRH in OTFT that there is a linear dependence
between hopping energy and electrostatic bending, which we have routinely observed in the numerical
simulations by any of the variations of the assumptions, even for different types of DOS. This linear
dependence binds VRH and electrostatics, leading to the currently available VRH analytical models. Both
the VRH and electrostatics depend on the effective steepness kTogr of the convolution between Fermi and
DOS distributions (with exponential steepness of kT and kT,, respectively), where kTogr is nearly the larger
of kT and kT,. The linear dependence between hopping energy and electrostatic bending also holds when
the effective steepness kTogr is considered. It is worth noting that there is not a direct relation between
charge and VRH, and the indirect relations follow from the linear dependence between hopping energy and
potential bending. The linear dependence between hopping energy and electrostatic bending also suggests a

convenient parameterization of VRH in terms of the hopping critical factor for bulk semiconductor at
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infinite temperature (sct-~10+4) and the activation energy q@To~(0.8+£0.1)eV of the critical factor. These
parameters can replace the presently used and difficult for characterization parameters, such as orbital
overlap and hopping attempt rate. The present-day VRH parameters require multiple integrations in order to
be used, by also imposing assumptions for DOS.

We have also shown a method for calculation of the distribution of the hopping time. The distribution
allows for establishing relations to non-stationary effects in OTFTs, such as dispersive transport, transitions
between on and off-states of the OTFT accompanied with the so-called “gate bias stress” or charge build-
up, and low-frequency noise in the channel current of the OTFT. Also, while we have demonstrated that
VRH is sufficient to describe many effects in OTFT, we should note that VRH is not a necessary condition
for the explanation of OTFTs characteristics since several of the relations, which we have discussed, have

been addressed by other approaches in the literature.
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Appendix 1. Volume of numerical computation of VRH for OTFT

The volume of computations in the VRH simulator is summarized in Table VI. The VRH principal eq. (4) is
computationally efficient, no iteration loops or large matrices, requiring 3 multiplications (~FLOP each), one
division (~2 FLOPs) and one exponentiation (~17 FLOPs), altogether about 20FLOPs (floating point operations)
and less than 100 bytes of memory. However, the calculation the value of s. that is used in eq. (4) is

computationally extensive, as discussed below.
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The computational volume of eq. (14) for single [dE integration is moderate and it is approximately
(8FLOPsxEn/dE), where Ex~1eV and dE~1meV, thus, ~8kFLOPs/iteration for normally less than 100 iterations.
The required memory is also not large, approximately 8Bytesx1Ovectorsx2En/dE~160kBytes for double
precision.

Eq. (16) is simple for coding, but it is computationally extensive because it is 2D and requires large
memory. Taking (Ewp—Ebotom)~2eV and dE~1meV, then n=(Ewp—Ebotom)/dE~2000, and Rj; is with a size of
n?x(8Bytes)~32Mbytes for double precision, requiring approximately n2x(9/4)FLOPs~9MFLOPs per iteration
with Ep, since the summation and subtraction are usually %4 FLOP, compared to one FLOP for multiplication.
Since many elements in the Rj; matrix are zero, then one may use sparse matrices. However, trading memory for
speed, one should be careful when coding with sparse matrices. Depending on the compiler, the sparse matrices
might be converted to complete matrices prior to operations; thus, the operation with sparse matrices might be
slow and require large memory, contrary to the expectations. Sparse matrices are useful for saving data on disc,
but this is not the case with eq. (16) during VRH simulations.

Eq. (18) is simple for coding, but one should be very careful with this equation, because it is
computationally the most extensive. The compilers usually perform the exponentiation y=x* as y=exp(axIn(x)),
which requires about 35-40FLOPs, consequently 40n2FLOPS~160MFLOPs per iteration (taking
n=(Etwp—Ebottom)/dE~2000), and one needs to also resolve the case y(x=0)=0. The calculation, as done in the
simulator, is much faster when coding (4ndE/3)} [R;R;R;jDOS;], which requires approximately (Sn+1)FLOPs
per Ei, or n(5n+1)FLOPs=5n?FLOPS~20MFLOPs per iteration, without problem when R;=0. Sparse
multiplication, omitting R;j=0, would greatly reduce the computational volume, but we did not use sparse
matrices, in order to minimize the probability for human errors when coding. The consequence was that we
needed to run parallel computing. However, sparse multiplication is desirable for commercial simulators, since
the conductivity or mobility calculation is just one of the many tasks to be performed for subsequent simulation
of the current in OTFTs. The vector BPS; that is generated by eq. (18) is of small size, n=(Ep—Ebowom)/dE~2000,
occupying approximately nx8 bytes = 16 kB for double precision, which is small increase in the allocated

memory.
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In eq. (20), the computational volume of the right-hand expression is moderate, since BPS; and DOS are
vectors of size n=(Eip—Ebottom)/dE~2000, requiring approximately not more than 2nx4FLOPs~16kFLOPs per
iteration and (8Bytes)x4vectorsxn~64kBytes memory for double precision.

Summarizing the approach of single [dE integration for Sec. 2.3 in line “sum 1” in Table VI, the approach
of single [dE is a one-step calculation, which uses eq. (14), and the computational volume with this approach is
small to moderate, approximately nx8FLOPs~8kFLOPs/iteration (floating point operations of multiplication)
and nx160Bytes~160kBytes memory for double precision by 1D energy mesh of size
n=En/dE=1eV/1meV~1000.

Summarizing the approach of multiple [[dEdE integrations for Sec. 2.3 in line “sum 2” in Table VI, the
approach of multiple [J[dEdE is a three-step calculation, which uses eqs. (16), (18) and (20), the calculation is
computationally extensive, because it is required to span the 2D mesh of size n? for the entire range of energies,
and n=(Ewp—Ebouom)/dE=2eV/1meV~2000. Consequently, the multiple [l[dEdE requires approximately
n?x(7.5FLOPs)~30MFLOPs/iteration and n?2x(8Bytes)~32MBytes.

Eq. (21) has a small contribution to the computational volume of the VRH calculation module. It requires
15 FPLOP for summation, 3 FLOPs for multiplication and division, and 17 FLOPs for logarithm; altogether, 20
FLOPs per iteration and not more than 100 bytes of memory. These are negligible, fractions of a percent,
compared to rows “suml1” and “sum?2 in Table VI.

Row “eq. (24)” in Table VI shows the combination of computational volumes for the generation of the 1D
energy mesh E and the DOS(E) vectors. The computational volume for the generation of the vector E with
double  precision is  small, roughly  nxIFLOP~2KkFLOPs and nx8Bytes~16kBytes  for
n=(Ewp—Ebottom)/dE~2eV/1meV=2000. The computational volume of eq. (24) depends on the selected function
f(...), it is approximately nx(exponentiation + division + multiplication + subtraction)=
nx(17+2+14+%)FLOPs=nx20FLOPs~40kFLOPs for single-side exponential DOSse of eq. (22) and two times
larger for the double-side exponential DOSpg of eq. (45). Thus, the computational volume is not more than
100kFLOPs for eq. (24) with n=2000. A small memory of nx8Bytes~16kBytes is required for eq. (24) for the

DOS vector of double precision. The vectors E and DOS are regenerated every time when calling the charge-
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energy calculation module, since the computational volume of the regeneration is small, keeping also code
compatibility in using both Er and IMREF.

Row “eq. (27)” in Table VI shows the combination of the computation volumes for the calculation of the
Fermi occupation factor F(E), the concentration of occupied states Nc and the flat-band level FB. For
n=(Ewp—Ebottom)/dE~2eV/1meV=2000, the expression of the Fermi occupation factor
F(E-Er)=1/{14+exp[(E-Er)/kT]} results in a computation volume of nx(exponentiation + divisionx2 + sum
+ subtraction) = nx(17+3x2+Y2)FLOPs~57kFLOPs and memory nx8Bytes~16kBytes for double precision of the
vector F(E). The computational volume for Nc and FB by eq. (27) is approximately nx(multiplication +
summationx4)= nx2FLOPs~4kFLOPs and nx8Bytes for the vector CFDOS. The search for the index IFB uses
roughly two subtractions per element, that is nx/2FLOPs~2kFLOPs.

Row “sum 3” of Table VI shows that the computational volume of the charge-energy calculation module is
moderate and scales with the size n=(Eiwp—FEbotom)/dE~2eV/1meV=2000 of energy mesh: nx1FLOP and
nx8Bytes for calculation of the energy mesh E; less than nx5S0FLOPs and nx8Bytes for the DOS vector in eq.
(24); nx23.5FLOPs and nx8Bytes for the Fermi occupation factor F; nx2FLOPs for Nc and FB and nx8Bytes for
the vector CFDOS in eq. (27). Altogether, this is not more than nx100FLOPs~200kFLOPs and
nx8bytesx10vectors~160kBytes, taking a conservative estimate for overhead due to for-loops, comparisons and
branching and temporary variables in charge-energy calculation module.

In row “eSt” of Table VI, the computational volume of the charge-distance calculation module is shown
only for the electrostatic calculations. The computational volume for electrostatics of the charge-distance
calculation module is mostly determined by the calls of the charge-energy calculation module for different
spatial points, the latter charge-energy calculation module having the computation volume shown in row “sum
3” of Table VI, as mentioned above. The spatial point is one (for bulk material) in the first part the charge-
distance calculation module, while in the second part, the number of spatial iterations is approximately equal to
the number n~2000 of energy points in the charge-energy calculation module. The computational volume for
electrostatics of the charge-distance calculation module is mostly determined by the calls of the charge-energy
calculation module at every spatial iteration, eq. (33), including also the call for bulk material at far depth in the
first part of the charge-distance calculation module, eq. (29). Therefore, the computational volume of the charge-
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distance calculation module becomes (n?+n)x100FLOPs~400MFLOPs and 160kBytes for calling charge-energy
calculation, including the calculation for bulk semiconductor. Other calculations in the charge-distance
calculation module add negligible nx(SOFLOPs)~100kFLOPs for calculation of profiles and management of the
step dt and iterations for nx(8Bytesx12vectors)~200kBytes for distance mesh t and profiles with double
precision. Altogether, a moderate computational volume of n?x105FLOPs~410MFLOPs and 0.4Mbytes memory
for electrostatic calculations is required.

In row “eSt+vrh1” of Table VI, the computational volume of the charge-distance calculation module is
shown together with the VRH calculation for bulk conductivity that adds nx(50FLOPs)~1MFLOPs for the single
[dE, using memory ~0.2MBytes, which is of little concern. As above, n=(Ewp—Ebotom)/dE~2000 is the size of
energy mesh for VRH calculation. However, in row “eSt+vrh2” of Table VI, if the VRH bulk conductivity
calculation uses multiple [JdEdE, then the VRH calculation dominates the computational volume of the charge-
distance calculation module, requiring n?x(750FLOPs)~3GFLOPs and ~32MBytes memory. The computational
volume of the charge-distance calculation module is also the computational volume of pass 1 of the VRH
numerical simulator (Sec. 2.6 and Figure 5). Pass 1 allocates the most of the memory, which can be as large as
100MBytes for multiple [JdEdE, including overhead and temporary matrices. After return from the charge-
distance calculation module, the memory is released and reused by the following pass 2 and pass 3. Therefore,
the memory allocation is not considered for further discussion in this Appendix 1.

It is possible, in principle, to include the VRH calculation in the loop of the electrostatic calculation, but
the VRH calculation should be postponed to be performed on a sub-sampled depth mesh D, as indicated in
Figure 4, because, if it is included in the loop of the charge-distance calculation module, then the computational
volume would be unnecessary large, e.g., n2x(S0FLOPs)~200MFLOPs for the single [dE, which is acceptable,
but n3x(750FLOPs)~6TFLOPs, which is not a task for a regular desktop computer, while the majority of the
calculated data will be also deleted, since they correspond to film depths larger than the thickness of the
semiconducting film of the OTFT. Therefore, in the third part in charge-distance calculation module, the
distance mesh D is logarithmically sub-sampled to about 50 points (to have many points near the oxide interface
and also enough points in the depth of the semiconducting film) and the profiles are reduced only to the points of
the sub-sampled mesh. The VRH calculation module is then called in pass 2 of the VRH simulator presented in
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Sec. 2.6 only for the reduced distance mesh D. The reduction of the distance mesh for VRH calculation results in
acceptable computational volume of approximately 50n?x(750FLOPs)~150GFLOPs per VRH simulation of one
bias-temperature point (Vg-T point) even when the approach of multiple [l[dEJE integrations for calculation of
the VRH conductivity is used.

In row “pass 2” of Table VI, the computational volume of the VRH numerical simulator is shown. The
energy mesh E and DOS(E) have not been stored in pass 1 in order to save memory, and because the
regeneration of the energy mesh E is easy by calling the charge-energy calculation module, which is
computationally efficient, only mxnx100FLOPs~10MFLOPs for the reduced depth mesh D of about m=50
points. After the regeneration, the second step in pass 2 is the call of the VRH calculation module with IMREF
and DOS(E), which calculates the specific conductivity ¢ and hopping energy En for the particular point in the
reduced mesh D. Thus, the profiles for ¢ and Ex are obtained by m sequential calls of the VRH calculation
module, which computational volume is the largest in the VRH simulator, approximately
mxn?x(750FLOPs)~50x(2000)?x(750FLOPs)~150GFLOPs for multiple [[dEdE integrations by calculation of
the VRH conduction, and much smaller for single [dE integration,  approximately
mxnx(800FLOPs)~50x2000x(800FLOPs)<0.1GFLOPs.

In row “eq. (41)” of Table VI, the computational volume of pass 3 in the VRH numerical simulator is
given for calculation of supplementary quantities, such as the sheet conductance osq by eq. (41). The
computational volume of pass 3 is negligible. For eq. (41), for example, it is mx(multiplication + summation
+ subtraction)=mx(FLOP+2FLOP)<100FLOPs for m=~50 points in the reduced spatial mesh D, using a memory
of mx8Bytes=500Bytes for storing the values of osq with double precision. Even conservatively multiplying by
10 these computational volume and memory, as given in row “eq. (41)” of Table VI, the computational volume
of pass 3 is still negligible, compared to those in row “pass 2” of Table VI. Therefore, the row “pass 2” of Table
VI is essentially repeated in the row “total for a Vg—T point” for the computational volume of the VRH

numerical simulator for one Vg-T (bias-temperature) point.
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Appendix 2. Derivation of analytical expression for sheet conductivity csq
Several steps of the derivation of eq. (66) for the OTFT sheet conductivity csq are given below. The substitution

of eq. (48) in eq. (65) yields

f D)dD = aFBjexp(V jexp{ 208 1,y [1 ﬂdD
0 b op La

Placing the constant multipliers in front of the integral, then
tf _2¢B /¢T
V; D
Oy = Ofp €Xp —BS I expyIn| | 1+— dD
5q q) L
T Jp=o A
Since La is assumed constant, then one can change the integration variable, as
' -2
) Vs t D bg/dr D
Ogqq =LaOpgexp| —B5 | [ [1+— dl 1+—
q ) L L
T Jp=o A A

The solution of the integral depends on whether 1=2¢g or not, thus

(1_2¢B/¢T)
t
;[HBJ Cif ¢, £20,
_ Vis 1-20, /0, L, D=0
O-Sq _LAOFB exXp (I)_ X
T

D |t .
In| 1+— , ifo. =2
(1 -
Substituting the limits for D from zero to t, then
(1-205/07)
(1+tf/LA) B lfq) ¢2¢
V, 120, /0 oo
0, =L\ xp| 2 [ o/ Or
T
In(1+t,/L,) , if ¢, =2¢,
Thus, the analytical formula for the sheet conductivity c5q becomes
te
- J' o
0
~(205/01-1)
v (2¢ /¢ -y T
=L,0,, exp| =2 |x BT
Oy
In(1+t,/L,) , if ¢, =2¢,
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where the terms in the round brackets are usually larger than unity, (...)>1, because normally the film thickness
tr>>La and the potential bending Vgs in the semiconductor at the gate dielectric interface is in the range 0.5-1eV
(see Figure 24). Thus, Ves>20s>0r, since p=kTp/q~0.02—0.05V with T=T,~240-600K with the exponential
representation of the DOS (see Table I in [6]), and OTFTs are mainly suitable for room-temperature applications
T<273K+100°C, thus the thermal voltage is @1=kT/q<0.033V. Therefore, one can omit the case @r=2¢p and
some terms in eq. (151), and expanding L from eq. (47), the order of magnitude for the sheet conductivity Gy

can be estimated by

e

o, :J'G(D)dDz(I)—A 0., O €X p(vsj

C.V,
0 ¢B ox ' G ¢T (152)
¢.€
~ C;Vf Opg €Xp| —— ¢T , 0, =5 >0, t, /L, >10nm/Inm
Expanding ors with the expression from eq. (64), then the order of magnitude for the sheet conductivity s
becomes as
q€ f o dro BS
o —exp(—s Tw)exp[ jexp( J (153)
M7 Cox VG Ao ¢ b b

Note that @t can be cancelled from numerator and denominator. Thus, the term (kT/q) in the expression for the
conductivity prefactor 6, in eq. (3) and in the principal eq. (4) for VRH has little significance for an OTFT, when
(kT/q) is outside the exponential terms. The potential bending Vgs in the semiconductor at the gate dielectric
interface (D=0) can be estimated as follows.

Consider eq. (49) for D=0 and substitute La with the expression from eq. (47). The carrier concentration
Nc(D=0)=Ncpo in the semiconductor at the gate dielectric interface becomes approximately
260 _ 260 _(CoxVa)

quA ( 2(pA£f ]2 2qsf¢A
q - £ X
COXVG

Nepo =N (D=0) = , with pa=@c=kTc/q and Tc=T,, (154)

when also considering the single-sided exponential distribution DOSsk of eq. (23) with Vg=Vgs. Assume kT<kT,

and step approximation for Fermi occupancy factor F at IMREF=(Er+qVss) in eq. (25). Then
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N.(D=0)= f F(E - IMREF) DOS; (E)dE

—00

E —-E V V,
= Ny exp(—_"kT0 F|]exp L—llTj;Lj = N €XP (—llTjL] ,

where Ncre=Nsexp(—|Eo—Eg//kT,) is the concentration of occupied charge states in the DOS and the carrier

(155)

concentration for VRH in bulk semiconductor (no bending, Vg=0). The quantities in the left-hand sides of egs.

(154) and (155) are the same, Ncpo=Nc(D=0), then

2
E,-E V, C. V
Ng exp(—| 0 F|jexp( | BS| )= ( oxX G) , with a=kTa/q and Ta~T,, (156)
kT, kTo/ q 2qgr P A
V, C,V,) E -E
exp 4| Vis| = (Cor Vo) exp —F| , with a=kTa/q and Ta~T,, (157)
KT, ) 2qe,¢,N, KT,
Since exp(x/a)=exp[(x/b)x(b/a)]=[exp(x/b)]*'¥, then exp(x/b)=[exp(x/a)]*, and having a=kT, and b=kT=qer,
then
5 T,/T
V, C.V E,-E
exp£| BS'J _| {CoxVa) exp£| i F|J (158)
bt 2qe¢¢ANg kT,

Substituting in eq. (153), one obtains the formula in eq. (66) for the sheet conductivity osq in a format expected

for VRH in OTFTs.

Appendix 3. Derivation details for the relation between conductance and charge concentration, eq. (83)
At given spatial point in the depth D of the OTFT semiconducting film, the relation between VRH specific
conductivity ¢ and the charge concentration qNc is obtained by the following derivations. Rewrite eq. (49) for

(14D/La)?, as

2
2¢
[1 +£J = zf"& , with pogr in place of @c. (159)
Lo ) LaqNc (D)
2¢
Note from eq. (47), that Qg =Coy Vg = % . (160)
A

After substitution, take the natural logarithm of the previous eq. (159) to get
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ln[1+L£J2 =ln((L2—G]—ln[qNC(D)]. (161)

A A

Rewrite now eq. (48) for the same quantity, as

2

V, Vg (D

In [1 +£j =_'BS _'B ( ) , with @oEr in place of @s. (162)
La)  90rr  QOEF

Since the left-hand sides of the last two equations are the same, then

ln[Q—GJ—ln[qNC(D)]= Ves _ Vi (D) (163)
La boer  $oEF

Now, the key eq. (63) for the relation between VRH specific conductivity o(D) and electrostatics is rewritten for

the bending voltage Vg(D), as
Vg (D) =0y 1n| 2L (164)
o (T) |

where orp for the bulk semiconductor is due to eq. (64), ors is bias-space independent, although it strongly
depends on temperature, and ors is known, as assumed above. Substitute Vs in the preceding eq. (163), arrange
the terms so that ¢ and qNc are on the left-hand side, and take antilogarithm to obtain

b dT/90OEF o1/0
[o(D)] MJL_A[OFB (T)] TR (165)

aN¢ (D) i Xp(‘bOEF Qg

With Qe=CoxVs and with @okr in place of kTo/q, one gets an expression for the term exp(Vas/@oer) from eq.

(157), as

-1

2

V, E.-E

exp[ BS ]: e Ng exp(——| - F|J - % (166)
boer ) 29t PoEF qbopF LAgNcEB

The last expression is obtained by recalling from eq. (160) that Qc/(2&/porr)=1/La, and noticing that the term in
the square brackets is the concentration Ncrg of occupied charge states in the DOS and the carrier concentration
for VRH in the bulk semiconductor (no bending, Vg=0) in eq. (155) in Appendix 2 at the assumption for an
exponential DOS. The substitution of the last eq. (166) in the previous eq. (165) is accompanied with cancelling

of the bias-dependent Qg and La, and yields eq. (83). Indeed, there is a shortcut for deriving eq. (83), by
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expressing @rln(c/ore)=Ve=@oerln(Nc/Ncrs) from eqgs. (63) and (155), respectively, but this shortcut hides the

reasons behind the scaling rule, and therefore, it is not discussed.

Appendix 4. Contributions from the trivial and non-trivial integrals in eq. (103)
In this appendix, we estimate the contributions from the non-trivial [xrdx/(1+x)" and the trivial [x*dx=x™1/(n+1)
integrals in eq. (103), repeated below with the constant multiplier omitted, and considering that the constant b

defined by eq. (101) is in the range 1V~! to 10 V~!, while V>1V and Vp does not exceed V.

L a
Ip—=| = |xI,
Pw (bj

1= [ x| 1- -
X:b(VG _VD) (1+X)

We also follow notations accepted in mathematics, which are different from the notation in the main text.

The solution of the trivial portion of the integral, I, is

b(Vg —Vs )=bVg _n+l bVg pol pn+l »
Ig = [ x"dx = o = var - o (Vg - Vp)" (167)
X:b(VG _VD) n X:b(VG _VD ) n

The solution of the non-trivial portion of the integral (Intr) can be found as a difference of definite integrals, by

b(Vg ‘\}s)szG 0 b(Vg ‘\}s)szG n b(VGJ__VD) 0
INTR = dx = dx - dx (168)
x=b(Vg-vp) (1+x)" 0 (1+x)" o (1+x)°

As follows from integral number 3.194.1 on page 313 in [92] with p=n+1, v=n and B=1, or by using software for

symbolic integration, such as Maple, the solution of the definite integrals is

+
N ul 1

dx = n,n+l;n+2;—-u); Re[n+1]>0,
(1) . 2B ( )

I(u) = arg (1 +u)| <, (169)

S e—,c

where the Gauss hyper-geometric function 2Fi=HypGeom; is denoted with - HypGeom; in the main text in order
to distinguish it from Fermi occupation factor. The Gauss hyper-geometric function »F; with the particular

parameters is given by
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2Fl(n,n+1;n+2;—u)=Zm:{( n+1 }

k=0 n+2

—1+2 nx(n+1) (-u)  n(n+1)x n+1)(ﬂ+2)(—u)2
(n+2) 1 (n+2)(n+3) 1x2
+n(n+1)( ) (n+l()(n+2)(n+3) (_u)s .

(n+2)(n+3)(n+4) 1x2x3

where the Pochhammer symbols can be expressed by the Gamma function I'(z), and denote

(170)

MNn+k k-1 .
(n)k = I('(n) ) =n(n+1)(n+2)..(n +k—1)=i|:(|)(n +i)
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Substituting in eq. (168), the non-trivial portion of the integral is

b(Vg—Vs)=bVg n b(Vg—Vs)=bVg n b(V6-Vp) n

INTR: J. X ndX: J. ndX_ J. X " X
x=b(Vg-Vp) (1+x) 0 (1+x) 0 (1+x) (172)

+1 n+l
_bMlvg*t b" (Vg - Vi)

n+1

2F1(n,n+1;n+2;—bVG)— 2F1(n,n+1;n+2;—b(VG —VD))

n+1

Combining with the trivial portion Itr, the current of the square-shaped OTFT becomes

L a
ID,FULL =1, W = (Bj X (ITR I )

_ab" Ve [1= LB (n.n+Ln+2;-bV, ) | (173)
n+l1 —(VG —VD)“+1 [1— B (n,n +l;n+2;—b(VG _VD)):I

whereas, omitting the hyper-geometric part, the current is approximately

L a abn +1 n+l
Ip. APPR = IDW :(EJXITR ZE{VE ~(Vg - Vp) } (174)

We draw Iprurr, Ipappr and the magnitude of the difference Am=|Iprur—Ip.appr| in Figure 45, using in eqs.
(173) and (174) the interpolation for effective overdrive [28], given by

Veopr(Va,V)=VssxIn{ 1+exp[(Vc—V)/Vss]}, instead of Vg and (Vg—Vp), where Vss is related to the
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subthreshold slope and V denotes either Vs=0 or Vp#0. The interpolation resolves the problem with complex
numbers from (Vg—Vp)™! in the saturation regime of operation of the OTFT when (Vg—Vp)<0, preserving
Veobr=(VG—Vp)>0 in the linear regime of operation of the OTFT. One observes in the figure that the difference
between the currents is small, in the range of 0.01-0.3% at the reasonable gate bias [Vg|>10V for this virtual
OTFT. Thus, the contribution of the hyper-geometric component can be neglected in practice. Reverting the
notations for a, b and n from eq. (101), then the magnitude of the drain current for a square-shaped OTFT can be

given only with the trivial part, as

L a
Ip.appr =Ip = (—j XItgp

w (b
or/bom [n(r)c3 )" veltoer /] (v -y bore/en] | (1092
- - T COX
(200er/d1 ~1) [ 26 00F } n(T) :

which is eq. (104) in the main text.
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Table I. Energy parameters of materials for gate electrodes

Material Parameter Recommended min (max) Average value References
value values (st. deviation)

AgHSC,H4CeFi7 -work function -5.5eV [35]

Platinum (Pt) -work function -5.5+0.4 eV -5.93 (-5.12) eV -5.525(0.573) eV | [36]

p* Silicon (Si) Fermi level -5.16 eV [37, 38]

Gold (Au) -work function -5.1+0.2 eV -547 (4.8) eV -5.172 (0.222) eV | [35, 36, 37, 38, 39,
40, 41, 42, 43, 44,
49, 50]

Silver (Ag) -work function -5+0.2 eV -5.1 (-4.26) eV -4.69 (0.31) eV [35, 36, 37, 38, 41]

PEDT/PSS -work function -5+0.2 eV -5.2(-4.8) eV -5(0.204) eV [40, 45]

also PEDOT/PSS

poly(3,4-

ethylenedioxythiophene)/

poly(styrenesulfonate)

Copper (Cu) -work function -4.940.25 eV -5.1 (-4.53) eV -4.73 (0.22) eV [36, 37, 41, 44]

Tungsten (W) -work function -4.8+0.5 eV -5.22 (-4.32) eV -4.77 (0.64) eV [36]

Chromium (Cr) -work function -4.7+0.15 eV -4.8 (-4.25) eV -4.57 (0.166) eV [36, 38, 39, 41, 43,
44, 46]

ITO (Indium Tin -work function -4.65+0.25 eV -4.9 (-4.3) eV -4.65 (0.25) eV [35, 45, 46]

Oxide), In203/SnO;

typ. 90%/10%)

intrinsic Silicon (Si) | Fermi level -4.6+0.15 eV -5.1 (-4.55)eV -4.74 (0.23) eV [36, 38, 47, 48]

Nickel (Ni) -work function -4.5+0.1 eV -4.55 (-4.45) eV -4.5(0.05) eV [37, 38]

Tin (Sn) -work function -4.42 eV [35, 36]

Titanium (Ti) -work function -4.33 eV [35, 36]

Aluminium (Al) -work function -4.1+0.1 eV -4.33 (-4) eV -4.16 (0.118) eV [35, 36, 37, 38, 41,
43, 49]

Indium (In) -work function -4.1+0.03 eV -4.12 (-4.09) eV -4.105 (0.021) eV | [35, 36]

n* Silicon (Si) Fermi level -4.04 eV [37, 38]

Magnesium (Mg) -work function -3.5+0.2 eV -3.7 (-3.25) eV -3.56 (0.204) eV [35, 36, 37, 38, 42]

Calcium (Ca) -work function -2.9+0.05 eV 2.9 (-2.87) eV -2.885 (0.021) eV | [35, 36]
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Table II.

Energy parameters of materials for gate insulators

Material Parameter Recommended min (max) Average value References
value values (st. deviation)

Silicon Dioxide -affinity -0.9+0.2 eV -1.3(-0.7) eV -0.95 (0.18) eV [38,47, 48, 51, 52,

(Si0y) -ionization -9.9+0.2 eV -10.2 (-9.52) eV | -9.81 (0.24) eV 53, 54]

(ALLO3) -affinity -1.7+0.75 eV -2.5(-1.2) eV -1.6 (0.75) eV [47, 54, 55]
-ionization -9.7+£0.3 eV -10 (-9.5) eV -9.75(0.35) eV

Nitrided Si oxide -affinity -1.15+0.1 eV -1.2 (-1.01) eV -1.095 (0.081) eV | [51]

(SixN2%-5%0y) -ionization -9.25+0.1 eV -9.38 (-8.91)eV | -9.17 (0.201) eV

(HfSi04) -affinity 2.5eV [47]
-ionization -8.5eV

(HfO2) -affinity -2.6+0.2 eV -2.87 (-2.5) eV -2.62 (0.21) eV [47,52, 54, 55]
-ionization -8.4+0.15 eV -8.5(-8.2) eV -8.4 (0.173) eV

Silicon Nitride -affinity -1.6eV [47]

(Si3Ny) -ionization -6.9 eV

BCB -affinity -1.35eV [46]

(benzocyclobutene) | -ionization -6.45 eV

SAM (9-phospho LUMO -2eV [48]

anthracene) HOMO -6.1 eV
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Table III.

Energy parameters of organic semiconducting materials

Material Parameter Recommended | min (max) Average value References
value values (st. deviation)
pentacene derivatives LUMO -4.2+0.3 eV -4.63 (-4) eV -4.23 (0.286) eV [34]
Fermi level -5.7£0.3 eV -5.92 (-5.62) eV -5.73 (0.14) eV
HOMO -7.240.1 eV -7.24 (-1.22) eV -7.23 (0.012) eV
PTCDA LUMO -4.5+0.3 eV -4.6 (-4.1) eV -4.35 (0.354) eV [35]
Fermi level -5.55+0.3 eV -5.7(-5.2) eV -5.45 (0.354) eV
HOMO -6.6£0.3 eV -6.8 (-6.3) eV -6.55 (0.354) eV
6P vacuum level 0eV -0.8 eV on Au 0.35 eV onPD/PSS | [40]
(para-sexiphenyl) Fermi level -4.9+0.3 eV -5.15(-4.3) eV -4.725 (0.601) eV
HOMO -6+0.1 eV -6.1 (-5.9) eV -6 (0.14) eV
Green-B (green LUMO -3.2eV [45]
electrolum. conjug. Fermi level -4.55 eV
polyfluorene) HOMO -59eV
Alqg3 LUMO -3+0.2 eV -32(-25) eV -2.85 (0.495) eV [35]
[aluminium tris(8- Fermi level -4.4 eV -4.5 (-4.05) eV -4.275 (0.32) eV
hydroxyquinoline)] HOMO -5.8+0.1 eV -5.8(-5.6) eV -5.7(0.14) eV
MEH-PPV [2-methoxy, 5- | LUMO -3.5£0.5eV -3.8(-2.8) eV -3.3(0.71) eV [35]
(2'-ethyl-hexoxy)-1, 4- Fermi level -4.5+0.3 eV -4.7 (-3.85) eV -4.275 (0.6) eV
phenylenevinylene] HOMO -5.5+0.2 eV -5.6 (-4.9)eV -5.25(0.495) eV
F8T2 [poly(9,9- LUMO -2.3+0.1 eV -2.35eV -2.35eV [39, 46]
dioctylfluorene-co- Fermi level -3.9eV
bithiophene)] HOMO -5.5+0.1 eV -5.5(-5.45)eV -5.475 (0.035) eV
PTCDI-C;3H27 (N,N'-di LUMO -34eV n-type conductance [42]
tridecylperylene-3,4,9,10 - | Fermi level -4.4 eV
tetracarboxylic diimide) HOMO 54eV
TPD [N,N’-diphenyl-N, LUMO -240.1 eV 2.1 (-1.8) eV -1.95(0.21) eV [35]
N’-bis(3-methylphenyl)- Fermi level -3.7£0.2 eV -3.77 (-3.45) eV -3.61 (0.226) eV
[1,1’biphenyl]4,4’diamine] | HOMO -5.4+0.25 eV -544 (-5.1) eV -5.27 (0.24) eV
o-NPD [N,N'-bis-(1- vacuum level 0eV -1.15 eV on Au -0.3 eV on PD/PSS [35, 40]
naphthyl)-N,N'-diphenyl1- | LUMO -0.8£0.5 eV -2.3(-0.75) eV -1.3(0.87) eV
1,1-biphenyl1-4,4'- Fermi level -3.05+0.5 eV -4.85 (-3.85) eV -4.23 (0.551) eV
diamine] HOMO -5.3+0.1 eV -5.4(-5.25) eV -5.333 (0.076) eV
P3HDT [poly(3- Fermi level -4.72 eV [35, 56]
hexadecylthiophene)] HOMO -5.2eV
P3HT vacuum level OeV -0.5 eV on Au [35, 44, 45, 50, 56]
[poly(3-hexylthiophene)] LUMO -3+0.1 eV
Fermi level -4.1£0.2 eV -4.92 (-4.05) eV -4.49 (0.355) eV
HOMO -5.240.2 eV -5.7(-5.1) eV -5.243 (0.207) eV
NPB LUMO -2.1eV [35]
(4,4-bis-1-naphtyl-N- Fermi level -3.65eV
phenylaminobiphenyl) HOMO -52eV
PDOT LUMO -3.4 eV -342 eV [35]
Fermi level -4.2eV -4.22 eV
HOMO -5eV -5.02 eV
pentacene vacuum level OeV -1.05 eV on Au -0.1 eV on PD/PSS [3, 32, 35, 40, 42,
CrHis LUMO -2.8+£0.3 eV -5.27 (-2.5) eV -3.07 (0.991) eV 48]
Fermi level -3.9+0.3 eV -5.79 (-3.65) eV -4.44 (0.77) eV
HOMO -5+0.3 eV -6.35 (-4.8) eV -5.128 (0.474) eV
PPV LUMO -2.5eV [35]
Fermi level -3.75eV
HOMO -5eV
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Table IV.

Parameters used in the majority of the numerical simulations, assuming a double-exponential
DOSpe and values reported in the literature for the three OTFTs whose characteristics are shown
in several figures. The values of Ns, To, Ao and I, are different by the different assumptions for

single-side exponential DOSsg, eq. (22), and normally-distributed DOSnp, eq. (58), as indicated

in Figure 22.
Parameter | single |dE | multiple J[dEJE | literature comment
entacene OTFT from [73]
Ns, nm™ 10 5 Figure 2
To, K 441 400 Meyer—Neldel E=38meV [73] O in Figure 16a
Ao, nm 0.195 0.175 Figure 17a
I',, THz 150 800 (...) in Figure 20
C1, nF/cm? 17 17 200nm SiO; [73] middle Figure 24
DOS type double-exponential, eq. (45) Figure 37 and after
entacene OTFT from [22]
Ns, nm™3 20 10 Stated irrelevant in [22] [1in Figure 16a
To, K 385 385 385 [22] Figure 17b
Ao, nm 0.107 0.139 0.22 [22] (...) in Figure 20
I'o, THz 250 330 6o=1.6x10'" S/m [22] Figure 32a
C1, nF/cm? 17 17 200nm SiOa, [24]
DOS type double-exponential, eq. (45)
annealed PQT-12 film OTFT from [60]
Ns, nm™ 70 15 0.65-1.5 for mobility edge in [60] | < in Figure 16a
To, K 270 270 320-325, (kTo=27.6-28meV) [60] | Figure 17c
Ao, nm 0.05 0.05 0.1-0.128 [60] Figure 18
I'o, THz 4500 700 000 60=(0.35-1.9)x10'? S/m [60] Figure 19
C1, nF/cm? 30 30 100nm SiO», with SAM [60] (...) in Figure 20
DOS type double-exponential, eq. (45) Figure 32b and ¢
All numerical simulations and all devices
Er, eV 0.3, referred to gate conductor All devices
Eo, eV -0.6, referred to gate conductor
gr= 3¢,, fF/cm 265.5
te, nM 50 30-50 [22], 20-60 [60]
B. 9/t~ 2.86 approx., from [20], adopted in [22] | All simulations
dE, meV 2
Eiop, €V 0.8, referred to gate conductor
Ebvottom, €V -1.1, referred to gate conductor
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Table V. Variation of non-reported (in [60]) values for sample parameters of two PQT-12 OTFTs, when
matching by means of eq. (53), the experimental data for the drain current Ip—Vg transfer curves

at low drain voltage Vp=—1V, to numerical VRH simulations of the OTFT channel sheet

conductance osq. This is illustrated in Figure 18.

For device with | matching 65 | at absolute using channel and taking turn- | Symbol in
Ip—Vgreported | simulation by | temperature width to length | on voltage Von, | Figure 18
in method of T, Kelvin ratio W/L Volts
[dE 150 K 19.00 43V
{dE 200 K 20.00 6.5V Not shown
. . dE 300 K 30.00 15V
Fig. 2a.in [60] JldEdE 150 K 25.00 55V O
IJdEdE 200 K 20.00 65V O
[JdEdE 300 K 30.00 15V O
[dE 90 K 5.00 20V
{dE 140 K 14.00 -10.0V Not shown
. . dE 180 K 19.50 -13.0V
Fig. 8ain [60] [TdEdE 90 K 425 oV A
[JdEdE 140K 10.50 85V N
[JdEdE 180K 16.00 120V ]
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This Table VI should be placed in Appendix 1

Table VI. Computational volume of the numerical simulations for VRH in one bias-temperature point

(Details in Appendix 1)

row label simulation FLOPs memory Ey iterations | Energy steps, n Spatial steps, m
eq. (4) [dE and JJdEJE 20 | <100 Bytes 1 any 1
eq. (14) [dE 0.8x10° |  ~160 kB 100 max 1000 1
eq. (16) IJdEdE 0.9x10° |  ~32MB 100 max 2000 1
eq. (18) JJdEdE 2x10° ~16 kB 100 max 2000 1
eq. (20) JJdEdE 1.6x10° ~64 kB 100 max 2000 1
sum 1 On for JdE 0.8x10° | ~160 kB 100 max 1000 1
sum 2 On? for [[dEdE 3x10° | ~32 MB 100 max 2000 1
eq. (21) JdE and J[dEJE 2x10° | < 100 Bytes 100 max any 1
eq. (24) charge-energy 0.1x10° ~32 kB any 2000 1
eq. (27) charge-energy 63x10° ~32 kB any 2000 1
sum 3 On for charge-energy 0.2x10° ~160 kB any 2000 1
eSt Omxn for charge-distance 0.41x10° ~400 kB any 2000 2000~=n
eSt+vrhl JdE for bulk 0.41x10° | ~600 kB 100 max 2000 2000~n
eSt+vrh2 | JIdEdE for bulk 3x10° |  ~32 MB 100 max 2000 2000~n

Omxn for [dE 0.11x10° | ~600 kB
pass 2 Omxn? for JIAEAE 150x10° 30 MB mx100 max 2000 50
eq. (41) Om for supplements 1000 ~5kB any any 50
total for a Omxn for [dE 0.11x10° ~605 kB
Vo-T point | Omxn? for [JdEJE 150x10° | ~32mMp | Mx100max 2000 50

FLOP = floating point operation of multiplication of double precision.
Comparison, summation and subtraction = % FLOP
Division = 2 FLOPs
Exponentiation, square rooting and logarithm = 17 FLOPs

Double precision number allocates 8 bytes in the memory.
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Call with parameters A, [cm], T [K], B, [9/x] and variables
Eg [eV, (1x1)], E [eV, (nx1)] from E,yom t0 E,o, in steps of dE [eV, (1x1)], DOS(E) [1/(cm3eV), (nx1)]

Initial guess E=sE, with logarithmic step sE =kT |

>

single |dE multiple [[dEJE

| 1D mesh E;=-Ey, -Ey+dE, ..., +Ey | | 2D mesh E&E=Eqquoms Enottom*dE, .-, Eqgp
|

| Ry(E,.E, E)=(A/2KT) max{0, max(|E-E|,|E-EcLIE-Ex)) } | €q. (16)
|

eq. (14) BPSi(Ei,EH|)=4/3ndEzj(Rii)aDOS(EF+Ej) eq. (18)
B(Ey)=dE {(E,-|E;|)’DOS(E¢+E;) B(E)=) ;(BPS;)2DOS(E;+E) / > iBPSDOS(E+E) | eq. (20)
target=(6B./n)(KT/A,)? target=B,

> <
»<

New guess nE,=E,+sE,xIn(B/target)
(correct if wrong nE;=max[kT/100, nE,]) |€q- (21)

Accept the new guess E,=nEy B otherwisem Less than 10-15. Stop iterating.
< H: H' 1

and iterate
| Conductivity o=[ar /(A KT/a)lexp(-Ey/kT) | €4S- (1), (2) and (3)
v
Exit with results for o and E;,.
Note that Ry=(A,/2)(E,/kT) eq- (2)

Figure 1. Algorithm of the VRH calculation module with iterative numerical calculation of hopping
energy En by methods of single |dE and multiple [|[dEJE integrations, and with a gradual variation of Ep.
The output from the VRH calculation module includes Ex and the specific conductivity o.
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D=0, interface D=t;, film back
Film back: Eyg,,,, = 0.671349929 eV

Surface: Eyy, o, = 0.358470143 eV

17 E = =5 T =
[Bjtarget-1| 2 Lo d0 |B/target-1| 2
2081 $108 % 2 0.8 L EHEnrna r'd 108 F
o 3 w o 3 10 3 w
+ E - O 1 - E X
w 3 w c l! 3 w
o iter. 1,06 — Q u oL ter. 1 6 =
1 0.6 1 © 100 = S 1061 K $108 &
B F % o I 30 B
o 030 3 < -~ > 3 2
£ iter. 1,9 8 C s H iter.—» 30 i o 8
@ 04T 30 7107 & () @ 04T T10° &
..:9 FY : ﬁ - -:9 |EH/EHF|NAL'1| : '5
S o | Bhtarget F1012E S 2021 % 0 110128
2T |EW/Eppnacll w50 ] £ ; Bltarget 54 3 E
505 54 3 E _ 58 ] =
0 vt 10°1° 0 e o718
1 10 100 1 10 100
Iteration 20V Iteration
(a) (b) (©)
Figure 2. Convergence of the iterative numerical calculation of VRH by multiple [[dEdE integrations

with a gradual variation of En at surface with gate oxide (left-hand plot) and at the pentacene film back
(right-hand plot), and at room temperature T=300K. Increasing the iterations (horizontal axes), the lines
without symbols show the improved matches B(En)/B. and Enu(iteration)/En(final) with thick gray and black
lines, respectively. The lines with symbols show the decreasing mismatches |B(En)/Bc—1| and
|[En(iteration)/En(final)—1| with gray and black colors, respectively. Open symbols with numbers close them
highlight results after 5, 10, 20 and 50 iterations.
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gate

oxide

Figure 3. Energy diagram (not to scale) of p-type OTFT under negative gate bias Vg above threshold
voltage Vr. HOMO (double line) and LUMO (dotted line) are bent up with (—qVs)>0 (vertical arrows).
Note that Vg and Vg are negative voltages for p-type TFT, thus, they increase the electron potential energy.
The DOS (dashed curves) is for HOMO (with energy level Es in the figure at no bias, Vs=0), following the
bending voltage Vg. Gray-color shaded area in the left-hand DOS depicts the charge induced in the DOS tail
by the gate bias. The centroid energy level FB of the induced charge can be different from Fermi level Er.
Consider IMREF=(Er+qVB) as a quasi-Fermi level under bending due to bias and exponential
DOSKTe Oexp(HOMO-E), then DOS(Eo—qVs—Er+AE)=DOS(E,~IMREF+AE), where AE is an energy span
of interest and the bending —qVs is embedded in IMREEF; see after eq. (23) for more explanations.

168



Part (i) @all with all Parameterg

Charge-energy calculation with IMREF=E; — Vg5=FB , No5=N; and mesh E of step dE | €4 (29)

VRH calculation (/dE or ][dEdE) with mesh E of step dE and IMREF=E; — 0z=0 and Ezz=E} | eq. (30)

Part (ii)
\ Initialize: t=0, dt=dD, E=0, Vg=dExsign(Vs-Veg) no yes <Exit with resultSD

for profiles = bul

P

t=t-dt — new point for distance mesh in reverse direction (from « bulk — oxide interface) | eq. (32)

Charge-energy calculation with IMREF=E.+V; — FB, N; | €q. (33)

If Nc=N¢gg, then numerical truncation. “Push gently” with Nc=(10-%/cm)*Q%/q+Nceg |

Nyc=Nc-Ncrs — add to profile for bias induced carrier concentration (1/cm?) | €4. (34)
E.=E.+qxNygxdt/er — add to profile for electric field (V/cm) eq. (35)
Vg=Vg-E.xdt — add to profile for potential bending (V) )
Q5=(Vs-Vg-Ves)Cox — update gate charge (C/cm?) eq. (36)
Postpone VRH calculation for pass 2 with sub-sampled mesh D

Part (ii1)
Revert to gate oxide interface distance mesh: D=t-min(t) | eq. (37)

Accelerate: dt=2dt | Subsample the distance mesh
3 and profiles for D = t;

next point
for distance
y

Recalculate next Vg | eq. (38)
*

Exit with results
for bulk: N¢rg, Ve, 0rg and Erg,
for V4: mesh D, profiles for Ny, E, and Vg

Decrease dt
yes no | Refine mesh

Figure 4. Flow of the algorithm of the charge-distance calculation module. First, the equilibrium
charge Ncrs and potential Veg in bulk material are calculated, along with VRH conductivity ors and
hopping energy Enrs for the bulk material. Then, at given gate bias voltage Vg, the potential bending Vs
and corresponding profiles for electrostatic quantities are calculated in an iterative loop with variable step dt
in reverse of the film depth (t<0, last t=min corresponds to dielectric-semiconductor film interface) until the
gate charge Qg is balanced by the electric field Eei (Qg<¢rEel). Finally, the reversed mesh t is reverted to
mesh D=[t—min(t)] for film depth D from gate dielectric-semiconductor film interface (D=0) up to the film
thickness (D=tr), and the mesh D and profiles are sub-sampled logarithmically to reduce the subsequent
VRH calculations.
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| Complete parameter list and settings with default |
v

| Modify parameters and settings and execute simulation |

For each temperature T in a list

» For each bias V; in a list |

|—> Execute VRH simulation for one V;-T point

Pass 1 Calculate Electrostatics (call Charge-distance calculation module)
Electrostatic and VRH in bulk at T: mesh E of step dE, Vg, N¢eg, 0rg and E
Electrostatic in depth at V; and T: reduced mesh D of log step, profiles for N, E., and Vg

Pass 2 Calculate VRH (For each Vjy in profile with reduced mesh D, IMREF=E¢+qVp)
call Charge-energy calculation module: regenerate mesh E of step dE and DOS(E)
call VRH calculation module with IMREF and DOS(E) at V and T: profiles for E,; and o

Pass 3 Result Logging
Constants, parameters and settings:
q, k! €5 T’ VG! cox’ EF! € tt! dD’ Etop’ Ebono ) dE
for DOS{Ng, E,, T,...}, for VRH {B_, A, ro,"} or [[}
Bulk semiconductor quantities at T : Vg, Neeps Eyeps OFps O5qp=0ksl;
Sheet quantities at Vg and T: Qg, 0,,=>,0,dD,
v Profiles in reduced mesh D at V; and T: Ny, E,, Vg, E;and o

Load Experimental Data

plot | _.
pvs. 1/T

All done

Sort, consolidate and store logged data

Figure 5. Overall flow of the VRH numerical simulator for the OTFT’s conductivity. The simulation
core is for one bias-temperature (Vg-T) point and comprises three passes for electrostatic and VRH
calculations and logging of the simulation results.
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Figure 6. Wave functions for HOMO of isolated pentacene molecule (adapted from [32], with
permission 3437410676840 from Elsevier). The dark color represents a positive sign, the light color a
negative sign. (a) isosurface at +0.05/A32; (b) coefficients of the wave function: large circles 0.12-0.3, small
circles 0.01-0.09.
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Figure 7. Metal work function (middle plot) of conductive materials (top axis) that might be used as

gate electrodes in OTFT, and electron affinity (upper plot) and ionization energies (bottom plot) of
insulating materials (bottom axis) that can be used as gate dielectrics in OTFT. The data correspond to
columns ‘“Recommended values” in Table I and Table II. All values are inverted in order to correspond to
the vacuum reference level (the solid line on the top).

172



‘g aIn31q

‘[2A9] WINNJOBA OIZ

AU 01 PIJUAISJAI Ik SAN[BA [[V ‘11 2[9BL PUe [ 9[qe] Ul SON[EA PIPUIWWOIY,, SUWN[OD 0) puodsariod
elep QUL °/ 2SI Ul se awes dY) SI I pue ‘L0 Ul SOpoNdd[e ks se pasn oq S jey) (sixe doy)

S[BLISJRW QATIONPUOD JO UONOUN] YIom Y} I0J ST OINNT PUB OINOH U99m1aq aul] Aei3 oy ], ‘(S[eqe] wo310q)
s[eLRIeW SunonpuodIwas oruedio 10y (Joid doy ay) ur sieq Jo0113) Yrys ofodip yum (aurp doy) [9A9[ wnnoea

pue (jord 1addn) QINNT ‘(elppr 9yl ur sjoquiks) ASroud 1w ‘(1ojd wonoq) OINOH

€LT

pentacene derivatives

PTCDA

6P (para-sexiphenyl)

Green-B (electroluminescent
conjugated polyfluorene
copolymer, green color)

Alg3
(tris(8-hydroxyquinoline))

MEH MEH-PPV [2-methoxy,
5-(2"-ethyl-hexoxy)-1,
4-phenylenevinylene]

F8T2 (poly(9,9-dioctylfluorene-
co-bithiophene))

PTCDI-C13H27
n-conductance (N,N'-
ditridecylperylene-3,4,9,10-
tetracarboxylic diimide)
TPD N,N’-diphenyl-
N,N’-bis(3-methylphenyl)-

[1,1"-biphenyl]-4,4-diamine |

a-NPD a-NPD (N,N"-bis-
(1-naphthyl)-N,N'-diphenyl1-

1,1-biphenyl1-4,4'-diamine)

P3HDT (poly(3-
hexadecylthiophene))

P3HT (poly(3-
hexylthiophene))

NPB

PDOT

pentacene Cy,H,,

PPV

|oA3] wNNJeA

OWOH —=—
W9 ==
ONNT —=—

Bys _ e

[ELE]]

winnoea

1/

8'¢-

uoIdUN} YIOM [BloW

g¢c

AgHSC,H,CeF,

Platinum (Pt)

p+ Silicon (Si)

Gold (Au)

Silver (Ag)

| PEDT/PSS, also PEDOT/PSS
(poly(3,4-ethylenedioxythiophene)/
| poly(styrenesulfonate))

Copper (Cu)

Tungsten (W)

Chromium (Cr)

ITO (Indium Tin Oxide,
In,04/Sn0O, typ 90%/10%)

intrinsic Silicon (Si)
Nickel (Ni)

Tin (Sn)

Titanium (Ti)
Aluminium (Al)
Indium (In)

n+ Silicon (Si)
Magnesium (Mg)

Calcium (Ca)




12

Pentacene, V=-5V
10— 3 T=400K
81 o 2 0.6 eV dipoles
6 9
v 4 vacuum
> . —
[+)) 4 ".,.. S | A
'f: ...,... oqo':
E 2 2 ~—— o~y LUMO >
= » '... e Q
o Fermi *-{ B
= 0 ~{ (03eV) [— y
, HOMO
I : e bulk
'4 1 1 — .
metal ! SiO, &= material
-6 ! ‘ ! !
-200 0 50

Distance from insulator-semiconductor interface, nm

Figure 9. Energy diagram of a pentacene TFT with 200nm SiO: gate dielectric and gate electrode
corresponding to p*Si, Au or Ag, and at temperature of T=400K and gate bias of Vg=—5V. Note the dipole
shift of —0.6eV, the difference between Fermi and flat-band (FB) levels, and the steps between the levels at
the back of the film and the levels corresponding to bulk material.
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-50nm 0

50nm

-50nm 0 50nm
forbulic | \ v 4 " forbulk for bulk |4 for bulk
) . pentacene 10V K pentacene pentacene 20V pentacene |
. LUmMO __ LUMO LUMO L LUMO
-5V -10V
] | Ve Vo
> -V >
® | L EBattok | L. Fermi ... Fermi___ RO - .. B ®
Fermi " FB at 300K
0 N N \___ L FBataok
i +_FB at 500K
Si0, i flm ~ HOMO | Si0, film  HOMO sio, | film — HOMO sio, i film ~ HOMO
4 Y , A4 Y ; . v
-50nm 0 50nm -50nm 0 50nm
Distance from insulator-semiconductor interface, nm
Figure 10. Close look at the energy diagrams of the pentacene OTFT from Figure 9 at three gate bias

voltages, Vg={-5V, —10V and -20V} and from left to right for four temperatures, T={ 100K, 300K,
400K=T, and 500K}. Note that the levels in the back of film do not reach the LUMO, FB and HOMO levels
of the bulk material, the difference decreases when the temperature increases, accompanied with a shift of
the flat-band level FB from the Fermi level at low temperature to the HOMO level at high temperature.
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] 1 bulk pentacene (T,=400K)
4KT,
+o_ Q Ve F
1077 1 DOS )
i Ng ) Fermi
density occupation
. b of states factor
107 ¢
100 +
109 +
1 @
1012 + :
i 1
! :
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1 1 5
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i g ® © s
i T=300K £ (£ & 2| o
10721 N R e Tl T S
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Energy (E), eV

(zero is 5eV below vacuum level)

Figure 11. Evolution of the DOS occupancy with temperature, resulting in a shift of the flat-band (FB)
level from close to the Fermi level at low temperatures (T<T,) to close to the DOS centroid level
(Ec=HOMO for p-type OTFT) at high temperatures (T>T,). The normalized double-exponential DOS/Ns
with a characteristic temperature To=400K is shown with a gray line. The total concentration of states is
Ns=/DOS(E)dE for (-oo<E<+w). Thick, thin and dotted lines denote a low temperature (T=300K<T,),
through T=T,=400K, to a high temperature (T=500K>T,), respectively, for the majority carrier (holes in
this case) Fermi occupation factor (F) and for the normalized DOS occupation (FxXDOS/Ns). The HOMO,
Fermi and flat-band levels are shown with vertical dashed lines. Circles illustrate the characteristic values
for DOS(E,) and F(Er). Squares pointed with arrows illustrate the normalized values for the half
concentration of occupied states, ¥2JFxDOSAE/Ns by (—o<E<+w), and correspond to the condition in eq.
(26) for determination of the flat-band (FB) level.
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Figure 12. Simulated profiles of the potential bending Vg (solid lines) in the OTFI’s 50nm pentacene
film for three gate bias voltages Vg (triplets of curves that coincide on right at each temperature) and at
several ambient temperatures T (each triplet of curves is for one temperature). The gate insulator is 200nm
Si0,. The characteristic temperature of the double-exponential DOS is To=400K and the concentration of
states is Ns=/DOS(E)dE=5x10%! cm™ for (—oo<E<+00). The permittivity of the organic material is assumed
£=3€0~2.66x10713 F/cm. The dashed lines with circles represent the logarithmic dependence of Vg on the
depth D in the film, calculated with eq. (48) for Vg=—20V (top dashed line) and Vg=-5V (bottom dashed
line). The values for Vps are arbitrarily chosen so that the dashed lines are close to, but not overlapping the

profiles of V.
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Figure 13. Simulated profiles of carrier concentration Nc (solid lines) in the OTFT’s 50nm pentacene

film at different gate bias voltages Vg and ambient temperatures T. Parameters are as in Figure 12. The
circles are calculated with eq. (49).
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Figure 14.

in Figure 12.
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Profiles of the (a) electric field, (b) hopping critical energy, (c) conductance and (d) mobility
in the OTFT’s 50nm pentacene film at different gate bias voltages Vg and temperatures T. Parameters are as
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Figure 15. Correlations between several quantities in the S0nm pentacene film of an OTFT at different

gate bias voltages Vg and ambient temperatures T. Parameters are as in Figure 12. Note that the correlations
are bias-independent, since the lines at different Vg={-5V, -10V, -20V} overlap, just spanning different
intervals. The correlations are temperature-dependent, as indicated by arrows for the effect of increasing

temperature T={ 100K, 150K, 200K, 300K, 400K to 500K}.
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Figure 16.  Analyses of the correlation (Eu+qVex|OEn/0Vs|)=Er, with |0Eu/0Vs| obtained from the slope
of the linear regression of Ex vs. Vg, between hopping critical energy En and potential bending Vg, see eq.
(50), at different temperatures (T) and gate bias (Vi) in three OTFTs by two simulation methods for the
hopping conduction, single [dE integration (gray color) and multiple J|dEJE integrations (black color). (a)
The values for Er are denoted with symbols OI<> for two pentacene OTFTs and a PQT-12 OTFT, from
[22, 60, 73], respectively, and Er is bias-independent, since the symbols overlap (one exception: look at the
three circles in the bottom-left). The values for the correlation slope |0En/0Vg|=1 are denoted with dashes.
(b) Statistics of the slope [OEn/0Vp| for deviations from unity. The curved lines (mean) represent average
values for the slope |OEu/0Vp| vs. the energy step normalized to the thermal energy kT, dE/kT=2meV/kT.
They are evaluated with numerical integrations with error bars for one standard deviation (mean—oc) and
greatest reduction (min), showing that the deviation of the slope |0En/0Vs| from unity is due to a coarse
integration step at low temperatures (dE/kT>10% at T<200K). The histogram (dotted bars for 108 data
points, blue color) of the slope |0En/0Vs| values implies that [JEx/0Vs|=1£1% with 90% confidence.
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Figure 17. Temperature-bias dependence of mobility in three OTFTs. Experimental data (circles) in

plots (a) from [73], (b) from [22] and (c) from [60] are for two pentacene OTFTs (at gate bias voltages Vg)
and a PQT-12 OTFT (at gate overdrive voltages Voar=Vs—Vr), respectively. The lines are data obtained by
two simulation methods for the hopping conduction, single [dE integration (gray-color thick lines) and
multiple [J[dEdE integrations (black-color thin lines). The parameters used in the simulations are given in
Table IV. The colors and plots (a), (b) and (c) correspond to the colors and symbols O[<> in Figure 16(a).
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Figure 18. Linear (a), semi-logarithmic (b) and logarithmic (c) plots of the sheet conductance (csq) of

PQT-12 OTFTs vs. gate overdrive (Vg—Von), corresponding to the mobility in Figure 17c¢ and diamond
symbols (<) in Figure 16a. The lines are data obtained by two simulation methods for the hopping
conduction, single |dE integration (gray-color thick lines) and multiple [[dEJE integrations (black-color thin
lines). The symbols are recalculated using 65¢=(In/Vp)x(L/W), eq. (53) from the experimental data for the
drain current Ip at low drain voltage Vp=—1V reported in [60], respectively, in Fig. 2a (open symbols at
lower |[Vc—Von|) and Fig. 8a (filled symbols at higher [VG—Von|).
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Figure 19. Close look at the numerical simulation results for the PQT-12 OTFT sheet conductance (osq)

vs. gate overdrive (Vg—Von) at different temperatures. The data from the simulation of cyq are shown with
square symbols, corresponding to Figure 18c. Power-law trend lines osqJ|Vc—Von|* are fitted to the data
denoted with filled squares, and the trend lines intersect in points denoted with large circles at values of
|VGx—Von| and osqx, as indicated. The slopes of the trend lines are the exponential factor (n) in the power law,
and the values for n are shown in the inset as function of the reciprocal of the temperature 1/T,
demonstrating the 1/T dependence of n, and thus, of the thermal activation in eq. (56). Note also the
deviations from the power law at low and high gate biases. Gray color corresponds to VRH simulation with
single [dE integration. Black color corresponds to VRH simulation with multiple [[dEdE integrations.
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Figure 20. Temperature-bias dependence of the mobility in OTFTs, assuming different types of DOS

and using VRH simulations with single [dE integration (upper plots) and multiple J|dEJE integrations
(bottom plots). Dashed lines are for normally distributed DOS, eq. (58). Dotted lines are for double-sided
exponential DOSpg, eq. (45). Solid lines are for single-sided exponential DOSsg, eq. (22). Experimental
data are shown with open circles (O), and are the same as in Figure 17.
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Schematic representation of the effect of DOS “rectangularity” on the behavior of the

thermal activation of VRH mobility. The “rectangularity” of normally distributed DOSnp is the highest,
compared with the double-sided exponential DOSpg and the “peaking” single-sided exponential DOSsk. For
p-type OTFTs, flip horizontally the single-sided exponential distribution.
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Figure 23. Apparent /T dependence for the hopping critical factor
ScFB=Sc+VB/o1=10+4+(0.84£0.1)e V/KT, see eq. (60), observed in the top plot, in which all data points are
collected from the other plots below. The crosses in the latter plots are for scr=Enrs/kT in bulk
semiconductor (Vp=0), and the crosses match the overlapping circles for (En+qVe)/kT at different bending
voltages Vg corresponding to different gate bias voltages V.
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Figure 24. Comparison between numerical (O) and analytical (lines, red color) calculations of profiles

for single-sided exponential DOS (top plots), double-sided exponential DOS (middle) and normally
distributed DOS (bottom plots). Thick gray-color lines depict the DOS as function of bending
(qVB=IMREF-EE). Thin black lines illustrate exponential approximation for the DOS by the analytical
calculations.
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Figure 25. Iustration of several quantities related to VRH in a pentacene OTFT at temperature T=100K
and gate bias Ve=—20V (see the text for correspondence to other figures). Note that all the quantities
(except for the vertical error bars for hopping energy En) are given as function of potential bending Vs in
the vertical axes of the plots. The two plots show the same data at logarithmic (left-hand plot) and linear
(right-hand plot) scales for distance (bottom horizontal axes), except for the data depicted with lines (green
color) for part of the sheet conductance (% of csq) in the left-hand plot and hopping distance Ry in the right-
hand plot. The small open circles (o) are the profile for the bending voltage V(D) after numerical
calculations and the thin line (red color) through the circles is the analytical approximation Vg (D) of the
potential bending profile. The gray-color error bars begin at the small open circles (o) and their length show
the results of the following numerical calculations. Vertical error bars: The length of the vertical error bars
corresponds to the hopping energy En; the upper ends of these error bars reach a constant level
(En+qVB)=Eurs denoted with a dotted blue horizontal line in both figures. Horizontal error bars: The
length of the horizontal error bars corresponds to the hopping distance Ry; the right-hand end of these error
bars is the depth (Ru+D) to which the VRH carriers reach in the organic film; (Ruy+D) is denoted with a
dotted blue curve in each figure. The normally distributed DOS (used in the numerical calculations) is
shown with a thick solid curve in each figure. The DOS values in 1/(cm3eV) are represented on the
logarithmic horizontal axes on top of the plots vs. the vertical linear axes for energy in eV. The thin black
dashed lines indicate the approximation with exponential DOS in analytical calculations. The slope of the
exponential DOS approximation is dln(DOS)/0E=1/@B.n, in which the value of @B was deduced after
fitting the potential bending with the analytical expression Ve(D)=VB.an(D)=[VBs—2¢B.anXIn(1+D/LA an)] of
eq. (48). The magnitude of the exponential DOS approximation is equal to the magnitude of the normally
distributed DOS at the condition avgVg for average Vs. The value of avgVsg is calculated with eq. (70),
weighting Vg by the conductivity, as explained in the text when describing eq. (70). The values for DOS
and other quantities represented in the figures corresponding to this condition of average Vg are denoted
with large circles (O, filled in red color). The values of the same quantities evaluated at other conditions are
depicted by large diamonds (<>, filled in green color) for the depth of the channel at which the sheet
conductance is 95% of oy, and by large squares (LI, filled in yellow color) for a depth equal to La,
respectively.
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Figure 26. Comparison between bending (qVs, at various conditions for extraction of the values for

Vs), DOS and hopping energy (En) for a pentacene OTFT, after fitting of experimental data for mobility
from [73] and by assumption for normally distributed DOS. Note that the polarities of bending and energy
are inverted, since the pentacene OTFT is a p-type device. (a) The bending decreases at high temperature, as
shown for given gate bias voltage Vg=—20V. (b) The bending increases as the logarithm of gate bias voltage
Vg={-5V, -10V, =20V}, as shown for low (T=100K) and high (T=500K) temperatures. The conditions for
extraction of the values for Vg and notations in (a) and (b) are: solid lines (—) for the semiconductor-gate
dielectric interface (depth D=0, Vg(0)=Vss); circles (O, filled in red color) for the average bending avgVg —
see eq. (70); diamonds (<>, filled in green color) for the bending Vg(95%0s) at depth D=Dosgosq,
corresponding to sheet conductance 95% of osq — see eq. (69); and the squares (L, filled in yellow color) are
for the bending Vg(La) at depth D=La, where La=Laan is obtained after fitting the charge profile Nc(D)
from numerical calculations with Nc(D)O(D+Laan) 2, see eq. (49). (c) The values for bending for all cases
of biasing and conditions for extraction are aggregated and shown with small dashes surrounded with dotted
ellipses, illustrating also with blank bars the trend of decrease of the bending with temperature. However,
the hopping energy En (upper portion of the bars, filled in gray color) increases with temperature, so that the
sum (Eu+qVe)=Enrs (straight line, green color) increases with temperature; and Engr is well above the DOS
centroid E,, where E, corresponds to HOMO level of pentacene (reminder — to show magnitudes in the
plots, the polarity of the energy is inverted for the p-type pentacene OTFT, so that E, of HOMO is “above”
the Fermi level EF).
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Figure 27. Comparison between characteristic electrostatic and hopping distances for a pentacene

OTFT, after fitting of experimental data for mobility from [73] and assuming a normally distributed DOS.
The bending and energies are shown in Figure 26. The top-left plot is aggregated data for the set of the three
characteristic electrostatic distances D"={La, Dosaosq, Daveve} (L, black color), hopping distances Ry (O,
red color) and their product D”xRyu (-, blue-color dashes) for all cases of biasing and conditions for value
extraction, as per the caption of Figure 26(c). The bottom-left plot details the temperature dependences at
gate bias voltage Ve=-20V, as in Figure 26(a), with solid lines denoting data for the set of characteristic
distances D" (large symbols) and dashed lines denoting data for hopping distances Ry (small symbols), and
also indicated with ellipses labeled with D" and Ry, respectively. The remaining plots, as in Figure 26(b),
detail the bias dependences at low and high temperatures (T=100K and T=500K, top and bottom plots,
respectively) for D and Ru (middle and right-hand plots, respectively). Following the scheme of symbols in
Figure 26(a) and (b), and except for the top-left plot with aggregated data, the conditions for value
extraction are denoted with triangles (A, filled in blue color) for the semiconductor-gate dielectric interface
(depth D=0), circles (O, filled in red color) at condition for average bending avgVg — see eq. (70), diamonds
(<, filled in green color) at depth Dosqssq corresponding to sheet conductance 95% of osq — see eq. (69),
and squares (L1, filled in yellow color) are for depth D=La, where La=Laan is obtained after fitting the
charge profile Nc(D) from numerical calculations with Ne(D)O(D+Laan) 72, see eq. (49).
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Figure 28. Comparison between characteristic “thermal-like” voltages (¢’s) after fitting of experimental

data for mobility from [73] and assuming a normally distributed DOS (on the left) and single-sided exponential
DOS (on the right), as function of absolute temperature T (upper plots, for Vc=—20V) and gate bias voltage Vg
(bottom plots for low T=100K and high T=500K). The polarity of Vg is inverted, since the pentacene OTFT is p-
type transistor. The DOS widths are @onp=100mV for the normally distributed DOSnp (horizontal solid lines in
all plots, green color) and @ogxp=34.9mV for the exponential DOSsg (horizontal solid lines in all plots, blue
color). The thermal voltage ¢r=kT/q (solid lines in all plots) is proportional to the absolute temperature T, as
shown with raising straight lines in the upper plots, and ¢r is bias independent (horizontal lines in bottom plots).
The values of the characteristic voltages @aan ((J), PB.an (<) and @can (A) are obtained after fitting profiles from
the numerical calculations with the analytical approximations for La, Vg and Nc(D=0) at the gate dielectric-
semiconductor interface (D=0), eqs. (47), (48) and (49), respectively, and the symbols are around the dashed
lines (---), which depict the empirical relation for “dominance of the larger”, eq. (79) with n=5 for the normally
distributed DOS, and n=10 for the exponential DOS. The values @pos (O) for the reciprocal of DOS slope are at
the condition for average bending (IMREF=Er+qxavgVg), and dotted lines (...) connect the circles with linear
trend in the upper-left plot and power-law trend in the bottom-left plot. The high temperature T=500K in the
bottom plots is depicted with light color (pink), and the black color corresponds to low temperature T=100K.

193



1.8 £ -
17T
i T,= 500K
1.6 % ° 425K
IS 350K
15 ¢ 250K o0
Lo 14 i — numerical ’
- F ¢ ((pOEF)n = (‘Po)" + (‘PT)ns with n=10
w13 10
o i
o2t
11T
- T,=250K-7 ),
10 F~"="""""=====--° o
r — numerical
09 o (Togp)" = (T)" + T, with n=10
0.8 + — —
0.1 1 10
T,/T
Figure 29. Overlap between (solid lines) the numerical simulations reported in the appendix of [11] for

To={250K, 350K, 425K and 500K} and (symbols) the analytical expression of eq. (79), illustrated with data
for the effective characteristic temperature Togr (main plot Toer/To vs. To/T) and the effective characteristic
voltage poer=kToer/q (inset, poer=kToer/q vs. p1=kT/q). The value of the exponential factor n=10 is taken
as deduced for exponential DOS in Figure 28. Torr and ¢@okr replace T, and @.=kTo/q, respectively, in
analytical approximations based on exponential DOS, when the absolute temperature T is elevated close or
above the characteristic temperature T, of the exponential DOS, e.g., T>To/2. The dashed line in the main
plot denotes Toer=T, at low temperatures, e.g., T<To/2. The dashed line (blue color) in the inset denotes
@oer=0r at high temperatures, e.g., T>2T,.
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of the effective characteristic temperature Togr of the exponential DOS.
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Figure 31. Comparison between characteristic values for DOS (left-hand plots) and carrier

concentration Nc (right-hand plots) after fitting of experimental data for mobility from [73] for a pentacene
OTFT and assuming a normally distributed DOS (solid lines) and a single-sided exponential DOS (dashed
lines), as function of absolute temperature T (upper plots, for Vc=—20V, same data shown in linear and
logarithmic scales) and gate bias voltage Vg (bottom plots for low T=100K and high T=500K). The polarity
of Vg is inverted, since the pentacene OTFT is p-type transistor. The bottom-right plot Nc vs. Vg uses two
vertical axes shifted one decade from each other for the two temperatures, because data overlap, since
Nc(D=0) and Nc(La) are almost independent of the temperature, as seen in the upper-right plot Nc vs. T. As
in Figure 28, the symbols denote the conditions at which the values are extracted, in particular, triangles (A,
filled in blue color) for the semiconductor-gate dielectric interface (depth D=0), circles (O, filled in red
color) at condition for average bending avgVs — see eq. (70), diamonds (<>, filled in green color) at depth
Dosaosq  corresponding to sheet conductance 95% of osq — see eq. (69), and squares (L, filled in yellow
color) are for depth D=L, where La=La an is obtained after fitting the charge profile Nc(D) from numerical
calculations with Nc(D)O(D+La an) ™2, see eq. (49).
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Figure 32. Film thickness dependence of the VRH film mobility in OTFTs at low (T=100K) and room
(T=300K) temperatures, and at gate bias voltages Vg, as indicated in the plots, by VRH calculations of
single (/dE) and multiple (/ldEdE) integrations with energy step dE=(1meV), (2meV) or (SmeV), as also
indicated in the plots with different labels, type and colors of lines. Double-exponential DOSpE, eq. (45), is
assumed in the simulations with device and simulation parameters as listed in Table IV, except for film
thickness tr (horizontal axis of the plots) and the integration step dE, which have been varied. (a) pentacene
OTFT with parameter values obtained after the fitting shown in Figure 17(b) of the experimental data for
mobility reported in [22] for one film thickness. The two dashed lines denote the electrostatic length La for
the two temperatures, connecting symbols corresponding to the three gate bias voltages. (b) PQT-12
annealed-film OTFT with parameter values obtained after the fitting shown in Figure 17(c) of the
experimental data reported in [60] for one film thickness, and by the two methods for VRH calculation with
single [dE and multiple [[dEJE integrations. (c) same as (b), but at different energy integration steps dE and
only by the method of multiple [[dEdE integrations.
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Figure 33. Film thickness dependence of mobility from numerical VRH calculation is coinciding with

the trend for mobility in OTFTs [82]. Filled circles (@, blue color) correspond to the top dashed line in
Figure 32 (c) for the virtual PQT-12 OTFTs of film thicknesses t={10nm, 20nm, 50nm and 100nm }at room
temperature T=300K and after VRH calculation by multiple [[dEdE integrations with integration step
dE=1meV. Open triangle (A) and diamond (<) are data from experiments with PQT OTFTs of film
thicknesses t=35-40nm, reported in [60, 77], respectively. Small open squares (L], gray color) are data
collected in [88] for OTFTs with other organic semiconductors, coinciding with the trend lines to rubrene
(1), pentacene (2), solution-processed polymers (3) and other “low-mobility” materials (4). The trend lines
are according to eq. (82). The dotted polygon denotes the normally observed range for variation around
material line (3), and the polygon corresponds to the margins for p., & and Sp of solution-processed
polymeric semiconductors, given also by eq. (82).
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Figure 34. Computational demand of one-dimensional VRH numerical calculation for one bias-

temperature point (Vg-T). Circles (@, red color) for VRH calculation with multiple [[dEJE integrations and
diamonds (4, blue color) for VRH calculation with single |dE integration, with quadratic and linear trend
lines, respectively, correspond to the left-hand axis for computational time (in seconds) when using parallel
computing of 18 or more (Vg—T) points. Dashed lines correspond to the right-hand axis, as indicated by
right-pointing arrows, denoting computational volume in GFLOPs for VRH calculation with multiple
[JdEdE integrations (no symbols), VRH calculation with single JdE integration (squares (1) and electrostatic
calculation (triangles A). Dotted line (-, brown color) with small circles (0) depicts the average mismatch
(errQg) by balancing the film charge with the gate charge (Qc=Cox|Vc—Vrs|) during the electrostatic
calculations, and the vertical error bars are of size (~Y%errQg) for the standard deviation of errQg. All
quantities are given as function of the horizontal axis for number (n) of points in the energy mesh
E={Ebottom, (Ebottom+dE), (Ebotom+2dE), ..., Ewp}, as explained in previous sections, see between eqs. (16)
and (18), for example. Since |Ewp—Ebotom|~2¢V, then an energy integration step of size dE=2meV
corresponds to n=1000. Note that (n) is in unit “thousands of points” in the expressions of the trend lines.
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Figure 35.

Relative variations of mobility due to finite thickness tf<co of the semiconducting film in the
OTFT. (a) as function of film thickness tf at a low temperature (T=100K, open symbols, blue color) and
room temperature (T=300K, filled symbols, red color). (b) as function of temperature, and (c) as function of
gate bias voltage Vg. The data are after calculation with the approximate eq. (98) and the symbols are when
the condition t>2La is satisfied in this equation. The trend in the plots is that the effective mobility
relatively increases (as compared to the mobility put=o of infinite-thick film OTFT), when the film thickness
(tr), the temperature (T) or the bias (Vi) decrease. (The trends for the absolute magnitude of the mobility are
different) The parameters used in the calculation correspond to Figure 32 (b) and (c) for the PQT-12
annealed-film OTFT, assuming an exponential DOS, except for film thicknesses, and the values of the

parameters are: Cox=30nF/cm2, £=3£,=2.6x10~13 F/cm, To=270K, Toer"=To"+T", n=10 for all plots and film
thickness t/=20nm in plots (b) and (c).
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Figure 36. Comparison of the temperature shaping functions (TSF?) normalized to their constant

multipliers, discussed between eqs. (108) and (111). The two plots show the same data for the normalized
TSF? vs. inverse temperature, (a) on left; and proportional to temperature, (b) on right; in order to magnify
at low and high temperatures, respectively. The horizontal axis of plot (a) is flipped so that the low
temperature is on the left-hand side and the high temperature is on the right-hand side in both plots. Circles
(O, red color), diamonds (<>, blue color) and squares ([, black color) denote the three TSF? of type
sinc(nT/To), AT/[exp(AT)-1], and the power-law TSF2(To/Torr)TOHTo) respectively, the latter TSF2
defined by eq. (110) and the former two TSF? in [6]. The significance of the normalized TSF? is that it
describes the deviation of the thermal activation of o from Arrhenius law via temperature variation AEA(T)
of the activation energy Ea, since puoJ(TSF2)XTKT from eq. (108), then In(po)=Eao/KT+AEA/KT, where Ex is
temperature independent and the activation energy temperature variation becomes a logarithmic function of
the variation of TSF?, as AEa=kToXIn(TSF2)=q@oxIn(TSF?), thus, at rate q@o, which is reflected in the
complementary vertical axes on left in plot (a) and on right in plot (b). It was chosen To=403.2567 K in the
calculations, in order to have round number for q@oxIn(10)=34.75meVx2.3=0.08eV, which synchronizes
the linear axis for AEa with the logarithmic axis for the normalized TSF2.
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Figure 37. Distributions of hopping time (solid black lines, being the same as the normalized
distributions of hopping bonds) at several characteristic depths D in the semiconducting film of an OTFT at
temperature T=300K and gate bias voltage V=—20V, after VRH calculations with multiple [[dEdE
integrations. The parameters correspond to the pentacene OTFT from [73] in Table IV. The characteristic
depths from top to bottom are D=0 (gate dielectric — semiconductor interface, electric field Eci=<1.2MV/cm),
La=0.55nm (electrostatic depth for Qr=Y2Qg, E¢~0.64MV/cm), Dosqe=1.87nm (depth for 95% sheet
conductance Osq, Ee=0.3MV/cm), D=5nm (10%xt;, Ee~0.12MV/cm), D=17.5nm (35%xt;,
Ee=0.04MV/cm), D=t=50nm (semiconducting film back, E¢~14kV/cm) and D=co (bulk material, E¢=0).
Circles (O, red color, aligned to the dotted trend line 0.4/t.) denote the critical hopping time t.=1/T for
each depth D. The distributions are of type 1 with two values for the characteristic slope n. For the range of
the “plateau”, n=~~V4>—1 between Tmin~toeXxp(6)=0.4ps and Tmax~1.eXp(—6), where Tmin and Tmax are denoted
with small diamonds (¢, blue color). The values corresponding to Tmax are aligned on the trend line
0.02/tmax. For the range t>1.exp(6), the distribution densities gradually tend to 1/t distribution, with
(=0.9>n>-1), as depicted with the two dashed lines on the right-hand side and denoted with 1% and 7!
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Figure 38. Temperature evolution of the hopping time distributions (thin black lines, being the same as the

normalized distributions of hopping bonds), increasing the temperature from (a) to (d). The device, the gate bias
V=—20V and the depths in the film are the same as in Figure 37 (e.g., labels D=co, D=t and D=0 from bottom
to top denote a bulk material, the back of the semiconductor film and the interface with the gate dielectric,
respectively). Thick solid lines (red color) labeled with “Average” are after weighed averaging with the charge
profile Nc(D), according to eq. (131), and coincide well (but slightly above) with the distributions at the
electrostatic depths La. Open circles (O) denote the critical hopping time t.=1/T'c for each depth D, and are
always aligned around b/t function (dashed trend lines, blue color), with b={0.32, 0.39, 0.43 and 0.43} being a
logarithmic function of the temperature T, when T<T,, and constant at T>T,. The other straight dashed lines
(also blue color) illustrate the slope of the t distributions, with n={-%2, =4, 0 and +%}=(T/T,—1), according to
eq. (127). Note that the relaxation time, assumed in the range of the critical hopping time t., decreases with the
temperature, being t1.={350 years, 9 minutes, 0.12 seconds and 0.6 milliseconds} for bulk material at
temperatures T={200K, 300K, 400K and 500K}. The temperature variations of 7. are much smaller under gate
bias, just 2-3 decades at D=0 and D=L close to interface with the gate dielectric, and almost vanishing at high
gate biasing (not shown).
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Figure 39. Temperature evolution of the hopping conductance distributions in a pentacene OTFT, increasing

the temperature from (a) to (d). The device, the gate bias Vg=—20V, the depths in the film and temperatures
T={200K, 300K, 400K and 500K} are the same as in Figure 38. Unlabeled thin black lines are for the
distributions 0c/0t of the specific conductance o(D) at different depths D in the semiconducting film from the
gate dielectric interface on the top, down to the back of the film and bulk material in the bottom. Dotted lines
(blue color) denote the approximations for dc/0t by eqgs. (139) and (140) with normalization coefficients A
calculated by eq. (142), using in these equations t,exp(3) instead of 1, for all temperatures, and t./3 instead of 1.
for T=500K. The thick solid lines illustrate the distributions 6csq/Ot of the sheet conductance Gyq. These thick
lines are labeled. The upper thick lines (red color) are for dos/Ot at Vg=—20V, corresponding to the on-state of
the OTFT, and the lower thick lines are for dos¢/0t of bulk pentacene of thickness equal to the thickness of the
semiconductor film of the OTFT, corresponding to the off-state of the OTFT.
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Figure 40. Transient VRH conductivity of a pentacene OTFT, as deduced by time demarcation between

on- and off-states. The device, the temperatures T={200K, 300K, 400K and 500K}, the gate bias Vc=—-20V
for the on-state and Vg=0 (bulk semiconductor) for the off-state are the same as in Figure 39. The
demarcation is between on- and off-states of the sheet conductivity csq, With corresponding distributions
00sq/0t, as shown by the thick lines in Figure 39. Arrows point to the lines of the evolution of the off-state.
Arcs surround the lines of the evolution of the on-state. Open circles () illustrate the superposition of these
evolutions. The steps of the gate bias voltage Vg corresponding to transition from off- to on-state (on left)
and from on- to off-state (on right) are depicted on the top of the plots for the sheet conductance Gsq.
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Figure 41. Average distributions 0(B/B¢)ava/Ot of the hopping time t in a pentacene OTFT under bias
Vg#0, calculated by the different hypotheses in eq. (147) for possible origin of the flicker low-frequency
noise. The device and method of VRH calculation are the same as given in the caption of Figure 37. The
reference plot is (b), and plot (a) is for low bias, while plot (c) is for high temperature. Labels @ and black-
color solid lines correspond to non-weighted averaging (Y=1) of hypothesis (1), thus, represent the
distributions of 7 itself. Labels @ and blue-color solid lines correspond to hypothesis (2) for Au noise by
using weighting function Y=0/Nc[u in eq. (147). Labels @ and red-color solid lines correspond to
hypothesis (3) for AN noise by using weighting function Y=Nc in eq. (147). Labels @ and green-color solid
lines correspond to hypothesis (4) for conductance Ac noise by using weighting function Y=o in eq. (147).
Labels ® and gray-color solid lines correspond to hypothesis (5) for correlated conductance-carrier number
(Ac—AN) noise by using weighting function Y=06xNc in eq. (147). Observe that the distributions tend to 1/t
distribution (dashed lines) at t™>10us, and the higher is t, the smaller are the differences between the
distributions obtained by different hypotheses. In contrast, large differences exist at t<10ns, especially when
increasing the bias - compare plots (a) and (b). Also, the slopes of the distributions vary with temperature,
being 1 functions at t<lns, c.f. eq. (123), with n=(T/T¢—1) according to eq. (127) - compare dashed lines
labeled with 7™ and t*" in plots (b) and (c). Other observations are that the magnitudes of d(B/B¢)ava/Ot
increase changing the hypothesis from @ to ®, but ®=@ and @=® at high temperature, and ® is just a
little above @ at all temperature and bias conditions.
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Figure 42. Single-carrier normalized noise Sni by the different hypotheses ®@®®@® in eq. (147) for
the origin of the LFN in an OTFT. (a) For different temperatures T={200K, 300K, 400K, 500K} at gate bias
voltage Vg=—20V. (b) For different Vg={-5V, —10V, —20V} at room temperature T=300K. The device and
method of VRH calculation are the same as given in the caption of Figure 37. The insets show the values of
the Hooge parameter an and the frequency exponent B of the single-carrier flicker noise, after fitting the
numerically calculated spectra Sy (main plots) with the approximation an/f’=Sy1, see eq. (146). The insets
in (a) are drawn vs. the reciprocal 1000/T of the temperature T, but note that the axes are linear. The insets
in (b) are drawn vs. the magnitude of gate bias voltage; showing that both an and B are nearly logarithmic
functions of the bias.
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Figure 43. Device normalized noise Snxorm by the hypothesis @ in eq. (147) for Ac origin of the LFN.
(a) For different temperatures T={200K, 300K, 400K, 500K} at gate bias voltage Vg=—20V. (b) For
different Vg={-5V, —-10V, -20V} at room temperature T=300K. The device and method of VRH
calculation are the same as given in the caption of Figure 37. The data also correspond to the subset @ of
the data in Figure 42 for the single-carrier normalized noise Syi and its approximation with ap/f’~Sy1. The
solid lines in the main plots denote the numerical calculation Snorm=Sn1/Ntor, where Nror is the total
number of carriers. The dashed lines are after the approximation Snorm~(ow/f?)/Nrtor. The insets show the
split of the different contributions for the increase of Snxorm from the increase of the reciprocal (1/Ntor),
diamonds (#), from the increase of an, squares (M), and from the decrease of the frequency exponent 3 of
the flicker noise, triangles (4), so that f/f® is larger when B is smaller. By this formulation of the split
factors, the factors are with multiplicative contribution to SnorMm, and therefore, are plotted in logarithmic
scales when examining the contributions from variations with temperature and bias. The data points shown
in the insets are scaled versions of (1/Ntor) and Sxorw, in order to bring the data together with ax and f/f® in
plots with one vertical axis. The scaling multipliers are 3x10'° for (1/Ntor) and 10'? for S~xorm. To avoid
misinterpretations of the use of the multipliers, the numerical data shown in the insets are the original un-
scaled values of the quantities for the right-most points at T=500K and Vs=-20V in (a), and at T=300K and
Vg=-20V in (b). The open circles (O) denote Snxorm (or its scaled version in the insets) at an arbitrary
chosen frequency of =75 Hz.
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Figure 44. Power spectrum density of the OTFT channel noise current by the hypothesis @ in eq. (147)
for Ac origin of the LEN. (a) For different temperatures T={200K, 300K, 400K, 500K} at gate bias voltage
V=-20V and drain bias voltage Vp=-2V. (b) For different Vg={-5V, —10V, -20V} and Vp={-0.2V,
-5V} at room temperature T=300K. Thermal noise (4kTosqW/L) or shot noise (2qlp) is added, as indicated.
The device and method of VRH calculation are the same as given in the caption of Figure 37. The solid
lines in the main plots denote the numerical calculation Sip=Ip?SxorM=Ip2Sn1/Ntot. The tilted dashed lines
represent the approximations with the de-normalized Hooge equation Sip=IpZau/(Nrtorf?) for the flicker
noise component, and the horizontal dashed lines depict the white noise due to the fundamental thermal or
shot noise. The insets are arranged to examine the proportionality Sip(75Hz)UIp? at an arbitrary chosen
frequency of f=75 Hz for Sip. The open circles (O) on the solid lines and in the insets are Sip(75Hz), as
obtained from the numerical calculation with the white noise added. The squares (W) in the insets are the
corresponding values for the DC current Ip. For qualitative only comparisons, the gray symbols and lines in
(b) are experimental data published in [120, 121, 122, 123, 124, 125] for several OTFTs of different sizes and
fabrication approaches, since no data for noise are available for the particular pentacene sample, which
mobility data is given in [73], and we have used the mobility data to determine the VRH parameters in
Table IV.
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This Figure 45 is in Appendix 4
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Figure 45. Comparison between the full solution Iprurr (solid lines), eq. (173) with hyper-geometric

component, and the approximate solution Ipappr, (circles O), eq. (174) without hyper-geometric
component, for the drain current IpL/W in square-shaped OTFT. The dashed lines in (b) and (c) denote the
difference Amp=|Ip ruLL—Ip.appr|- The trend is that IpruLi=Ip.appr, since the circles overlap with the solid
lines, and the difference Amp is a small fraction of a percent at normal gate bias |[Vg|>10V, but A raises to
about 10%Ip in subthreshold regime, when the approximation with dominant gate charge Qr=Qg is not
precise. The parameters used in the calculations are T=300K, T,=405K, Torr=406.33K, Cox=17.3 nF/cm?,
£=3£0=265fF/cm, t=50nm, n=0.0584 (S/cm)ToEFT/C, Vss=0.8686V, resulting in values for b=4.64V~! and

a=3.6x107'2 (complex unit) calculated by the definitions in eq. (101).
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