Hindawi

Wireless Communications and Mobile Computing
Volume 2019, Article ID 1684906, 12 pages
https://doi.org/10.1155/2019/1684906

Research Article

WILEY

Hindawi

A LoRaWAN Testbed Design for Supporting Critical Situations:

Prototype and Evaluation

Jorge Navarro-Ortiz ,l Juan J. Ramos-Munoz ,1 Juan M. Lopez-Soler ©,
,2 and Marisa Catalan

Cristina Cervello-Pastor

1
3

'Department of Signal Theory, Telematics and Communications, University of Granada (UGR), Granada, Spain
*Department of Network Engineering, Universitat Politécnica de Catalunya (UPC), Castelldefels, Spain

3Fundacié i2CAT, Barcelona, Spain

Correspondence should be addressed to Jorge Navarro-Ortiz; jorgenavarro@ugr.es

Received 29 November 2018; Accepted 7 February 2019; Published 21 February 2019

Academic Editor: Laurie Cuthbert

Copyright © 2019 Jorge Navarro-Ortiz et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Internet of Things is one of the hottest topics in communications today, with current revenues of $151B, around 7 billion
connected devices, and an unprecedented growth expected for next years. A massive number of sensors and actuators are expected
to emerge, requiring new wireless technologies that can extend their battery life and can cover large areas. LORaWAN is one of the
most outstanding technologies which fulfill these demands, attracting the attention of both academia and industry. In this paper,
the design of a LoRaWAN testbed to support critical situations, such as emergency scenarios or natural disasters, is proposed. This
self-healing LoORaWAN network architecture will provide resilience when part of the equipment in the core network may become
faulty. This resilience is achieved by virtualizing and properly orchestrating the different network entities. Different options have
been designed and implemented as real prototypes. Based on our performance evaluation, we claim that the usage of microservice
orchestration with several replicas of the LoRaWAN network entities and a load balancer produces an almost seamless recovery

which makes it a proper solution to recover after a system crash caused by any catastrophic event.

1. Introduction

The Internet of Things (IoT) is one of the hottest topics
in communications today. Although previous forecasts may
have overestimated the growth of connected IoT-devices, it
is clear that the current and short-term market revenues are
impressive: from $151B in 2018 up to $1,567B by 2025. Current
IoT-devices vary from 6 to 9 billion devices (e.g., the current
number of IoT devices in 2018 is 7 billion, according to IoT-
analytics [1]) whereas forecasts estimate from 20 to 30 billion
IoT devices by 2020 (e.g., Ericsson figure is 28 billion by 2021
[2]).

Many of the 10T services follow the category of massive
Machine-Type Communications (mMTC), one of the three
major 5G use cases (in addition to enhanced mobile broad-
band and ultrareliable and low latency MTC). Since mMTC
communications assume a massive number of devices, in
most of the cases battery-powered and in a high number of

locations and environments, its main requirements are low-
power communications and a wide range coverage.

Two main technologies which fulfill these requirements
are being used for these applications: cellular evolution and
Low Power Wide Area Networks (LPWAN).

Regarding cellular evolution, the Third Generation Part-
nership Project (3GPP) has tried to adapt the existing mobile
standards for the requirements of IoT devices. In this way,
cellular ToT standards utilize the existing mobile network
infrastructures in an effort to integrate both worlds. Some of
the main cellular technologies for IoT are Extended Coverage
Global System for Mobile communications (EC-GSM), LTE
Cat-0 (new low complexity Long Term Evolution device,
defined in 3GPP Release 12), LTE-M, and narrow-band IoT
(NB-IoT). NB-IoT addresses the specific requirements of
mMTC but, unlike LTE Cat-0 and LTE-M devices, requires
a specific frequency band different from those used for LTE
or LTE-Advanced.

http://orcid.org/0000-0003-4719-3156
http://orcid.org/0000-0001-5428-3913
http://orcid.org/0000-0003-4572-2237
http://orcid.org/0000-0002-8056-0774
http://orcid.org/0000-0002-5700-4892
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1684906

To the contrary of cellular technologies, LPWAN tech-
nologies have been born with IoT requirements from the
very beginning. Previous attempts such as local or mesh
networks can accommodate part of IoT services, such as
low battery consumption and optimization for low data
rates but are not intended for global coverage. Some of the
most popular LPWAN technologies are LoRaWAN, SigFox,
RPMA, and NWave. They offer long range (up to several tens
of kilometers), very low power consumption (years of battery
operation), and very low bandwidth (tens of kbps) and
utilize license-exempt frequency bands. Another advantage
of LPWAN:S is that they require a much lower investment
compared to mobile networks, allowing new players to
compete with current Mobile Network Operators (MNOs).
For this reason, many MNOs (e.g., KPN, Orange, SK Telecom,
Bouygues Telecom, Swisscom, and SoftBank) have started
to deploy LoORaWAN (Long-Range Wide Area Network) to
complement their current cellular networks deployments.

In this article, we propose the design of a LoRaWAN
testbed for supporting critical situations, i.e., an IoT testbed
that shall be able to automatically recover if part of its network
infrastructure is destroyed. Since, in the case of LoRaWAN,
the radio equipment is cheap and can be easily replaced, we
will focus on the core network infrastructure.

This testbed will be integrated with the demonstrator
from the 5G-City [3] project. 5G-City is a Spanish coordi-
nated research project among five universities and research
centres (Universitat Politecnica de Catalunya, Universidad de
Granada, Fundacié i2CAT, Universidad Carlos III, and Uni-
versidad del Pais Vasco), which aims at providing an adaptive
management of 5G services to support critical events in cities.
In that sense, 5G-City is focused on one of the most difficult
situations for current and future communications systems:
unexpected events that affect a relatively large amount of
mobile users which are concentrated in a small area, such as
traffic jams due to congestion or accidents, disasters, or any
other emergency situations that may affect a large number of
users. An overview of the 5G-City demonstrator is shown in
Figure 1.

One of the objectives of the 5G-City research project
is the design of a virtualized 5G network for massive IoT
and broadband experience. Within the 5G context, different
wireless technologies will coexist as technological alternatives
for the interconnection between information producers and
consumers.

In the case of IoT, one of the wireless technologies that
will be included in the 5G-City demonstrator will be the
LoRaWAN network prototype proposed in this paper. For
that purpose, this prototype will be integrated with the 5G-
City 4G/5G network demonstrator following our previous
work in [4].

The literature that defines the state of the art regarding
the evaluation of LoRaWAN and LoRa testbeds in real
deployments is very rich in quality and quantity. A number
of papers have been devoted to measuring LPWAN perfor-
mance metrics in both indoor and outdoor deployments, as
well as in rural, urban, and suburban scenarios.

Almost invariably all of these works focus on cov-
erage measurements. Particularly, different evaluations are

Wireless Communications and Mobile Computing

reported, ranging from covered distance [5-8] to percentage
of packets successtully delivered [9], in different scenarios
and operation conditions, i.e. different payload sizes [10] and
different impairments or spreading factors [11, 12], in high-
density urban environments with many multifloor buildings
[13].

In [14] a comparison of different LoORaWAN testbeds
is provided in terms of several metrics (RSSI, SNR, and
distances covered). Reference [15] evaluates the packet trans-
mission time for different spreading factors. Additionally, [16]
evaluates the average LoORaWAN throughput as a function of
the spreading factor for different payload sizes.

However, none of the reported papers evaluates the
LoRaWAN resilience dimension under a critical situation,
i.e., the elapsed time for recovery and packet losses impact
after a system crash. Note that these quantitative evaluations
will definitively help to determine the LoRaWAN suitability
for IoT deployments under critical circumstances.

The main objective of this paper is the proposal of a self-
healing LoRaWAN network architecture in order to provide
resilience under critical situations such as earthquakes, fires,
or hurricanes. Under such conditions, part of the network
equipment may become faulty. By virtualizing the different
entities in the core network, i.e., converting them into VNFs
(Virtual Network Functions), we will be able to reduce
costs, increase flexibility, and provide resilience. We have
implemented different options for the virtualization of the
LoRaWAN core network entities which will be compared
in terms of time for recovery, packet losses, and resource
usage.

For this objective, the rest of the article is organized as
follows. Section 2 provides a LoRaWAN technology overview,
including main transmission characteristics and architecture.
Section 3 describes LoORaWAN implementation issues. Partic-
ularly, both NFV (Network Function Virtualization) orches-
tration options using microservices and virtual machines are
explained. Section 4 explains our testbed. It includes the
hardware setup and the software platform details. Section 5
identifies the evaluated four use cases, and it includes the
obtained results. Finally, Section 6 sums up the paper and
provides the main conclusions.

2. LoRaWAN Overview

LoRaWAN [17] is a standardized Low Power Wide Area
Network (LPWAN) which uses LoRa [18] or FSK modu-
lations. LoRa is a proprietary modulation owned by the
French company Semtech. This modulation is based on CSS
(Chirp Spread Spectrum) and it features the same low-power
characteristics of FSK but increases the coverage range. The
bandwidth of a LoRa signal can be 125, 250, or 500 kHz, and
different spreading factors (SF) can be used to achieve a trade-
oft between data rate and coverage.

The spreading factor is defined as SF = log,(R-/Rg),
where R, is the chip rate and Ry is the symbol rate. Since
the chip rate is constant for a fixed bandwidth (R, = BW
chips/sec, where BW is the bandwidth), a higher SF implies a
lower data rate but increases the transmission range due to a
higher robustness. Codes from different SFs are orthogonal,

Wireless Communications and Mobile Computing

Cloud Computing Platform

0

Ao, NG-PON2
% Commercial UE Distributed Managementw 100GPON = \1@
D [ESenssE and Control Plane)
DEGRANADA = (" Cloud ™ t) A
: Z oud Managemen
Virtual MME SW UE e —
Virtual HSS ()
Virtual S-GW
B SDN
Virtual P-GW = —
2 —=
% SDN % OLTs
[Cloud Manager (Openstack) } E g == et ONUs
: N Y \ - ONTs
[Service Orchestrator (TENOR)] SDN \f - i e Ne_____7
[SDN Controller (Opendaylight)] @ @ é "'/5 Cloud Computing
S e Platform
[Jyw= N | T
== 1= N/ . - 4 /u\
o ek oo y ‘
Cloud cluster 5
Fog nodes SRN—”'@ UNII‘V}[\}}]\&[();\DE

Fognodes Beieg 1.

5 WKES - ~.| controller
High-end nodes (Eizinl-leravnt System\\\ :\\'
ELwUD (MANO) Slice N

ELwUD (VIM) controller

 —

DynPAC (SDN)

GPON/DOCSIS
EHU-OEF (NFVI)

) virtualizatio
Euskal Herriko
Unibertsitatea

Universidad
del Pais Vasco

Control plane

Metering and
Monitoring
Deep learning

MAVs

_Controller 7 A

A T T C— Fﬁ - Fﬁ
- SDN)
@ — A UNFs ~ B
LN N
& Crenflow @ | single board computers
switches e)
NFV System

n

FIGURE 1: Testbed of the 5G-City research project [3].

so multiple frames can be simultaneously transmitted on the
same channel as long as they utilize different SFs.

LoRaWAN is an open standard managed by the LoRa
Alliance. LoRaWAN defines the Medium Access Control
(MAC) layer on top of the LoRa physical layer. It also defines
the system architecture.

The MAC layer utilizes a duty cycle to reduce the
probability of collisions in a simple and hardware-efficient
manner. Depending on regional regulations [19], this duty
cycle can be, e.g., 1%, meaning that a LoRaWAN node can
only transmit 1% of the time, thus affecting its maximum data
rate. This limitation makes the SF selection have a high impact
on the transmission rate since it is determining the Time on
Air (ToA). ToA can be computed as

ToA = Tpreumble + Tpayload = Tpreamble + TS X npayload’ (1)

where T, coppie a0d Tgy1004> TeSPectively, are the preamble
and payload transmission time, whereas T = 257 /BW is the
symbol period.

In the case of European regulations, the duty cycle is 1%
and the combination between SFs and bandwidths produces
the different data rates (DR) included in Table 1. This table
also includes the ToA and the minimum time between
consecutive frames (i.e., to fulfill the duty cycle limitation)
assuming an application payload of 12 bytes.

The architecture of a LoRaWAN network is based on a star
topology, as shown in Figure 2. This figure shows the different
entities in a common LoRaWAN deployment. It includes the
Radio Access Network (RAN) and the Core Network (CN).
The RAN is composed of nodes and gateways, which act as
base stations forwarding the frames received from the radio
interface to the core network entities. The CN is composed

server

4 Wireless Communications and Mobile Computing
TABLE 1: Parameters for the different LoRaWAN DRs.

DR SF BW (kHz) data rate (bps) ToA (ms) Time between frames (s)
0 SF12 125 250 1482.8 148.3
1 SF11 125 440 823.3 82.3
2 SF10 125 980 411.6 41.2
3 SF9 125 1760 205.8 20.6
4 SF8 125 3125 113.2 11.3
5 SE7 125 5470 61.7 6.2
6 SE7 250 11000 30.8 3.1

 LoRaWAN Radio Access Network 1 LoRaWAN Core Network)

] "]

I I

| | CONFIDENTIALITY e |

I & b —]

: () . 1" — = :

: (@) (‘A’) !' " INTEGRITY = :

l 09, 00 :

W = =

: ((R) () o IP network = el i

! (§3) 00

| X I N — .

et ‘. |

2 7av: 1

| nodes gateways " network application i

| |

\ 1

FIGURE 2: LoORaWAN network architecture.

of an IP network and two types of servers: network and
application servers.

All the frames forwarded from the gateways to the
network server are integrity protected (thanks to a Message
Integrity Code (MIC) generated with a network session key,
NwkSKey), whereas privacy is kept up to the application
server (thanks to the encryption of the payload with an
application session key, AppSKey). The network server sends
packets to the appropriate application server, which handles
the customer application and processes the customer data.
Since this architecture achieves end-to-end security, the IP
network infrastructure can be from a different provider.

In order to exchange the required session keys (NwkSKey
and AppSKey), the LoORaWAN standard defines two activa-
tion methods when the node is attached to the network: Acti-
vation by Personalization (ABP) and Over-the-Air Activation
(OTAA).

In the first case, the developer shall include this infor-
mation in both the nodes (i.e., stored in their firmware) and
the servers. Thus, no signalling is needed. In the second case,
the node shall send a JoinRequest frame with a device
identifier (DevEUI), an application identifier (AppEUI), and
arandom challenge (DevNonce). Upon receiving this frame,
the gateway shall send a JoinResponse frame with the
device address (DevAddr), a network identifier (NetID), and
another random challenge (AppNonce). With these data and
a preshared key (AppKey), both the node and the servers are
able to derive the same NwkSKey and AppSkey, which are
used for the subsequent transmissions. Both activation types
are summarized in Figure 3.

LoRaWAN allows nodes to have bidirectional commu-
nications with gateways although asymmetric, since uplink
transmissions (from nodes to gateways) are strongly favored.
Three types of devices are defined (classes A, B, and C) with
different capabilities. Class A is the most energy efficient
and must be supported by all nodes. Class A nodes use
pure ALOHA for uplink access, and they can only receive
a downlink frame after a successful uplink transmission.
This class is intended for battery-operated sensors. Class B
nodes utilize beacons sent from the gateway to determine
whether they have to receive downlink frames or not, using
scheduled receive windows at a predictable time without
the need of successful uplink transmissions. This class is
intended for battery-operated actuators. Finally, class C nodes
are always listening to the radio interface except when they
are transmitting. Due to its power consumption, class C is
intended for main powered actuators. As commented, class A
is mandatory for all LoRaWAN nodes, and the three classes
may coexist in the same network.

3. Implementation of a Virtualized LoORaWAN
Network Architecture

This section presents the two options which have been imple-
mented for the virtualization and the automatic orchestration
of a LoRaWAN network. As commented, the first proposal
is based on microservices using the Kubernetes platform.
The second implementation is based on virtual machines,
using OpenStack along with its modules for the automatic
deployment of the LoORaWAN services.

Wireless Communications and Mobile Computing

’
// Over The-Air Activation (OTAA) \
I 1
! 1
. (((-))) Join-request (AppEUI, DevEUI, DevNonce) —
| > — :
H —
1
! DevEUI Join-accept (AppNonce, NetID, DevAddr, ...) sl E
| AppEUI !
1
! AppKey E
! AppSKe
', Derive PP . v P /
NwkSKey L
ST T T T T T T EEmmmEEEEmE IS \\
ll Activation By Personalization (ABP) '
= =
1 1
1 () = 1
H /' A (no signaling required) / - H
! DevAddr Devaddr |
| AppSKey f AppSKey) !
' NwkSKey NwkSKey ﬁ /

F1GURE 3: LoRaWAN activation types.

3.1. LoRaWAN NFVs Orchestration Using Microservices.
Due to the architecture of a LoRaWAN network and the
lightweight functionalities of the different entities, they can
be deployed as microservices. With the success of container-
ization technologies, such as Docker [20], microservices can
be realized as containers that result to be extremely fast to
start up and can be easily deployed.

In order to implement a LoRaWAN network which
supports autorecovery in the case of an emergency situation
such as an earthquake, fire, hurricane, or any other situation
that may destroy part of the core network infrastructures, the
usage of a microservice orchestration platform may suit these
requirements due to its efficiency in terms of CPU, memory,
and storage consumption compared to virtual machines [21-
23].

In particular, we propose to utilize the Kubernetes plat-
form [24] (also named K8S) for the container orchestration.
Figure 4 presents the proposed architecture. The details
about the hardware and software that implement the 5G-City
Kubernetes cluster are described in Section 4.

The LoRaWAN network and application servers are
based on the LoORaWAN Server Project [25], an open-source
project that provides the components for building LoORaWAN
networks. Figure 5 summarizes the interaction between
the different dockers and the exposed services to allow
external connectivity. The docker images that implement
the LoRaWAN network and application servers, along with
the required services, have been modified and stored in
a personal repository to support the communication with
Kubernetes.

3.2. LoORaWAN NFVs Orchestration Using Virtual Machines.
In the case of the implementation using virtual machines,
due to its popularity, large community, high availability of
modules, and being open-source, we have opted for using

OpenStack. Our OpenStack testbed is based on the Rocky
release and has been installed using the DevStack scripts.

Apart from the primary OpenStack services (Keystone for
the identity service, Glance for the image service, Nova for the
provision of compute instances or virtual machines, Neutron
for network connectivity, and Horizon for the dashboard
user interface), Heat and Ceilometer have been installed
for the orchestration and the telemetry service. The chosen
hypervisor is KVM (Kernel-based Virtual Machine) using
QEMU Copy-on-write (qcow2) as the virtual machine image
format.

For comparison purposes, the virtual machine images are
based on CentOS 7 cloud images, similarly to the Kubernetes
deployment. For the same reason, the LoORaWAN network
and application servers have also been installed using the
LoRaWAN Server Project [25]. Our prototype using Open-
Stack is depicted in Figure 6.

For our OpenStack testbed, we have developed a module
which automatically starts the provision of resources for a
new instance, which is then launched. This procedure is
triggered once that the original instance is destroyed due
to, e.g., a catastrophic event. The module utilizes the API
provided by the heat orchestrator and the metrics from
ceilometer.

4. Testbed Proposal

This section describes both the hardware and software used
for the design of our LoRaWAN network prototype.

4.1. Hardware Setup. The radio access network of our
LoRaWAN network prototype is composed of 5 gateways and
12 nodes. The gateways are LiteGateways from iMST [26],
which utilize one Raspberry Pi connected to an iMST ic880A
LoRaWAN concentrator and 868MHz antenna (see Figure 7).

Wireless Communications and Mobile Computing

5GCity Kubernetes cluster

Kubernetes

LoRaWAN Radio Access Network‘.

Kubernetes

Master e,

10.10.10. 5|1|

UNIVERSIDAD
DEGRANADA

'
1
1 1
' i
1
! () ! Node
' R Q@ ()« H v Backend
b :
.) ——¢ —
H)
i 4 (f&’ DE— : 10.10.10.
1 : Kubernetes vy External
:_ . -Ijo-d-ei - -gjtf‘:/iy-s- - Jl ! LoRaWAN servers ;.(ge;t a
i =
: :
: N=HN=l
1 10.10.20.53, = i
1 1 = !
: Kubernetes V2 1 ! :
1 Node Yio :network application::
: 3 1 server server] 1
N | [!
! (i '
: 4 i
|\ ,I
FIGURE 4: Proposed network architecture based on microservices
(ST m e MOTT TTTTTTTTTTTTTTTTT N
! Kubernetes pod Q i
1 network !
gateway i ateway bridge server !
((K) UDP port1700 MQTT ((a?”)) MQTT gRPC KD redis é [
<—r> <—>
! mosauitii ===- o, :
i V' (4 :
H 1
1 1
! i
! postgresql gresql .
L KN)
MQTT
(frames)
11 ~ HTTP (GUI)
external
agent

FIGURE 5: Kubernetes pod (group of colocated containers that are tightly coupled and need to share resources) for LoRaWAN deployment.

The nodes are TTGO-LoRa32 devices (see Figure 8)
which are based on the ESP32 microcontroller with a
Semtech’s SX1276 LoRa transceiver.

Our core network prototype is composed of two servers
with an Intel Core i7-7820X CPU (8 cores operating at 3.6
GHz) and 32 GB of RAM located in University of Granada
(UGR). These two servers act as the master node of the
Kubernetes cluster and the first worker node (minion-1). In
addition, we have other two servers located in Barcelona
at Universitat Politecnica de Catalunya (UPC) (based on a
six-core Intel i7-5820K operating at 3.3 GHz) and Fundacié
i2CAT (based on a Intel Xeon E312xx (Sandy Bridge) with
32 cores operating at 2.5 GHz), which acts as the second and
third worker nodes (minion-2 and minion-3), respectively.

The IP network is a direct Ethernet connection between
the gateways and the master server located at University
of Granada, which also implements the frontend using one
NGINX ingress controller.

4.2. Software Configuration. The nodes are programmed
using the Arduino framework, based on the IBM’s LMIC
library [27]. Before transmitting a LoRaWAN frame, the
nodes connect to a server (named experiment manager) to ask
whether it shall transmit or not, thus allowing us to control
the network load. In addition, the transmission parameters
are also commanded from the server. These parameters
include the spreading factor and the time between frames,
which is composed of a constant term and a random term.

Wireless Communications and Mobile Computing

4
u openstack

Controller Node

Compute Node

Frontend

Compute Node

nodes gateways

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
J
1
\
1
1
1
1
1
1
1
1
1
1
1
1
A}

5GCity OpenStack cluster

Identity
o || service

Tim
B
Ager

ml2 plugin

AY
1
1
1
: .
YR ARG YR '
~” I b i 1
Keystone Glance Nova Neutron Horizon 1
1
i
e || e || | .
) 1
' Backend
o« ¥ 1 MQTT
= || £ i
Neutron Nova 1
ml2 plugin || Compute 1
=
b
“"‘“““
: (i i External
{J
b ‘ ‘u) I agent
Neutron Nova |
ml2 plugin || Compute I%
XC !
1
|

|| &

Neutron Nova

FIGURE 6: Network architecture based on OpenStack and virtual machines.

wyd] |

FIGURE 8: LoORaWAN nodes used in the proposed testbed.

Figure 9 includes an example of the "TTGO #1” node,
which is connected to our server through the Wi-Fi network
”5gcity-testbed” with the IP address shown. The last trans-
mission parameters were the usage of spreading factor 7 (SF7)
and a time between frames with a fixed part (f) of 10 seconds
plus a random part (r) between 0 and 10 seconds. It shall be
noted that the ESP32 contains the hardware to generate true
random numbers whenever an RF subsystem is running (i.e.,
Bluetooth or Wi-Fi is enabled) [28].

In order to avoid that the connection between the nodes
and the experiment manager may impact the results of the
experiments, e.g., due to additional delays, all the nodes
connect to the Wi-Fi network only when they are switched
on; i.e., there is no connection establishments during the
experiments. The mean response time, between the request
from the node and the response from the server, has been

uudn ‘rroo #1, ABP v1.0
testbed -54 dBr
IP -«r 162.168.1.154/24.
LoRa: SF7, {=10, r=10
10

Packet: 1

FIGURE 9: Detail of a LoRaWAN node.

measured around 85 ms, which is much lower than the time
between LoRaWAN frames (which has a minimum value
of 6.2 seconds according to Table 1 for SF7 and 125 kHz
and has never been lower than 10 seconds in the performed
experiments). Besides, the server collects stats from the nodes
since it knows when they are going to transmit a frame and
with which parameters.

As previously stated, the gateways are based on the
Raspberry Pi platform with the iC880A concentrator. The
software is based on the reference gateway implementation
from TTN-ZH (Zurich community of The Things Network)
[29], which has been configured to use our own LoRaWAN
network servers. The gateways are also connected to the
experiment manager, which collects the logs related to their
LoRaWAN activity.

Our Kubernetes cluster is based on Kubernetes version
1.5.2. For portability and reproducibility purposes, both
master and worker nodes have been virtualized and executed
using VirtualBox version 5.2.22. The host operating system
is Ubuntu Server 16.04.05 (64 bits), and the guest operating
system is CentOS 7.5.1804 (64 bits) running with 1 core and
2 GB of RAM. We utilize Vagrant version 2.1.5 in order to
automatize the virtual machines deployment, and Ansible
version 2.6.4 to automatize the installation and configuration
of the required packages.

In order to simplify the requirements for connecting the
worker and master nodes, a VPN was created using Open-
VPN version 2.4.6 using client certificate authentication. In

nodes
() gateway
(‘)‘\((w))
*\ N «— —
(@) x

. EXPERIMENT
NN MANAGER _,’
~ AY 8 F 3

Frontend

Wireless Communications and Mobile Computing

5GCity Kubernetes cluster

Kubernetes
Node
»

Kubernetes
deployment

External services:
-MQTT (TCP 1883)
-Gateway bridge (UDP 1700)
-GUI (HTTP)

FIGURE 10: Experimentation testbed.

this way, only the master node is required to have a public
IP address. In addition, it eliminates the possibility of issues
due to firewall rules. In our VPN, the master node acts
as the OpenVPN server whereas the worker nodes act as
OpenVPN clients. The workers also collect tcpdump traces
on the TCP/UDP ports that are used by services related
to the LoORaWAN deployment, which are later sent to the
experiment manager.

The dockers that implement the LoRaWAN deploy-
ment are also connected to the experiment manager, which
starts/stops the services depending on the experiment and
collects the required logs and stats.

The experiment manager connects to the different entities
using SSH connections, which enable us to execute com-
mands (e.g., to start or to stop a particular service), to upload
files (e.g., a configuration file), or to download files (e.g., logs,
tcpdump traces, or stats). In the case of the LoORaWAN nodes,
they connect to the experiment manager after transmitting
one LoRaWAN frame to request the transmission parameters
for the next frame. If the connection manager commands
the node not to transmit, it will ask again after 10 seconds.
Figure 10 shows a simplified view of the testbed for experi-
mentation.

The NGINX ingress controller has been configured with
the default values for load balancing the different external ser-
vices, i.e., the UDP port 1700 (which is used by the lorawan-
gateway-bridge container), the TCP port 1883 (which is used
by the MQTT broker), and the TCP port 443 (which is
used for the HTTPS-based GUI). The main parameters are
max_fails=3 and fail_timeout=30s, meaning that the backup
server will be used after the main server has failed to respond
to at least 3 packets in a period of 30 seconds.

Based on this experiment manager, we have developed a
framework based on scripting to generate different scenarios
for both the radio access network and the core network and to

automatically collect statistics, which will be used in the next
section for the experimental evaluation.

5. Use Cases and Experimental Results

Considering the two options that we have followed for the
virtualization of the LoORaWAN network entities, i.e., using
microservices (Kubernetes) and virtual machines (Open-
Stack), the following use cases have been tested:

(i) UCIL: Kubernetes deployment with one replica and
default parameters: the chosen version of Kubernetes
considers a deployment (i.e. a set of pods and services
available externally) to be unavailable after five min-
utes. Thus, a new replica will be deployed after this
time.

(ii) UC2: Kubernetes deployment with one replica and an
eviction pod timeout of 30 seconds. Instead of waiting
the default 300 seconds, this use case attempts to
react faster to possible unavailability of worker nodes
due to a catastrophic situation. We did not select a
lower timeout value (e.g. 3 seconds) in order to avoid
new replica deployments due to temporary network
fluctuations.

(iii) UC3: Kubernetes deployment with two replicas: in
this case, the replica at UGR is chosen initially, and
the replica available at UPC/i2CAT will be used for
backup.

(iv) UC4: OpenStack deployment with one replica and
default parameters: similar to the first use case but
using the OpenStack platform.

The reason of selecting these four use cases is twofold.
First, testing and comparing different configurations using

Wireless Communications and Mobile Computing

microservices have been proved to be suitable for the deploy-
ment of LoORaWAN servers. For that purpose, we want to
compare the usage of Kubernetes with default values (UCI,
with a timeout of 300 seconds), with two replicas in order
to achieve a solution (almost) without service interruption
(UC3) and an intermediate situation (UC2). Second reason
is to compare both Kubernetes (with containers, UCI) and
OpenStack (with virtual machines, UC4) with their default
configurations.

Since we want to simulate a high-loaded IoT scenario,
nodes will transmit 12-byte frames using SF7 and 125 kHz,
leading to a minimum time between frames of 6.2 seconds
due to the duty cycle (see Table 1). Since we want trans-
missions to be uncorrelated, the time between frames are
composed of a fixed part, f=10 seconds, and a random part, r,
which follows a random uniform distribution between 0 and
10 seconds. This also avoids the problem of collisions due to
the simultaneous powering on of the nodes.

With these values, the average time between
frames is 15 seconds, ie., leading to a load of
12nodes/(15sec/ frame[node) = 0.8 frames/sec, which
is similar to approximately 1000 nodes transmitting one
frame every 20 minutes. These frames will be received by
only one gateway, meaning that it will be high-loaded since
other works (e.g., [30]) suggest that the maximum load that
a LoRaWAN gateway can support without frame losses is
around 0.1 frames/sec. This is the maximum load that can
be generated with the real equipment in our testbed. It is left
for future work to include a load testing tool which would
allow us to evaluate the performance of our testbed under
stress conditions (e.g., in [31], the authors emulate the load
generated from 14,000 nodes).

In the proposed use cases, the main performance indi-
cators are the recovery time, i.e., the time that elapses from
the failure in one worker node until another worker node
executes the pod with the LoRaWAN deployment, and the
lost frames during that recovery. It shall be noted that the
lost frames will depend on the gateway load, and the results
shown in this section are given for the aforementioned
load of 0.8 frames/sec. Additionally, we also want to show
the different requirements, in terms of CPU and memory,
between the usage of a Kubernetes cloud or OpenStack.

Figures 11 and 12 depict the main performance indicators
related to the recovery of the LoRaWAN core network after
an equipment failure due to, e.g., a catastrophic situation. All
the use cases (UCl1 to UC4) are included. These box-and-
whisker charts include a box bounded by the first and third
quartile and lines that extend to the minimum and maximum,
respectively. The median is also included as the line that
divides the box.

As shown, UCI takes between 5 and 6 minutes (with
an average of 321 seconds and an standard deviation of
13.6) to recover due to the default value of the pod eviction
timeout (300 seconds). In the case of UC2, we have reduced
this timeout to 30 seconds, leading to a recovery time of
around one minute (average of 64 seconds with an standard
deviation of 14.7). To conclude with the Kubernetes-based
use cases, UC3 has an almost negligible recovery time. This
is because two replicas are already executed, and the second

S EEREEEEE R
350 Diiiiiiil
so|
250 : : :
200
150
100

Recovery time

SECONDS

| UcCl1 = ucs3
| UC2 Uc4

FIGURE 11: Recovery time after server failure.

400 L0§t frar:nes

350
300
250
200
150
100 i
50| i ——

FRAMES

| UcCl1 @ ucs
| UC2 UcC4

FIGURE 12: Frames lost during recovery.

one takes over when the first one fails. Since we utilized the
default values for the NGINX frontend, only three packets
are required to change from one replica to another. The
rate of these packets depends on the transmissions from
the LoRaWAN nodes and some periodic packets, being the
recovery time of 4 seconds with a standard deviation of 2.4.
As it was expected, the number of lost frames is approximately
proportional to the recovery time.

In the OpenStack use case (UC4), the developed module
waits 5 minutes (like the default timeout value for Kuber-
netes) before provisioning and launching the new instance,
leading to a total recovery time of around six minutes (with an
average of 358.1 seconds and a standard deviation of 0.72). As
in the previous use cases, the number of lost frames is almost
proportional to the recovery time.

Next, we compare the usage of resources of both options.
For Kubernetes, we employed cAdvisor [32], a tool that
provides the resource usage and performance characteristics
of running containers. The resources used by the different
containers that compose the Kubernetes deployment for
LoRaWAN under a load of 0.8 packets/second are summa-
rized in Table 2.

The results from Table 2 show that the CPU usage is
almost negligible (lower than 0.01%) and the total memory
usage of the LoRaWAN deployment is 39 MiB.

10 Wireless Communications and Mobile Computing
TABLE 2: Usage of resources for the containers of the LoORaWAN deployment.
Container CPU % MEM % MEM (MiB)
lora-app-server 0.00 0.60 11.3
loraserver 0.00 0.40 7.6
lora-gateway-bridge 0.00 0.20 4.0
mosquitto 0.00 0.00 1.5
postgres 0.00 0.70 13.0
redis 0.00 0.00 1.6

CPU
Total Usage
0.0700 -
0.0665 -
g
k=)
© 00630 -
0.0595 - -
= = =
~ ~ ~
n (=] wn
< S —
N on o
N | I
q = 3
— Total

12:23:30 PM
12:23:45 PM
12:24:00 PM
12:24:15 PM

F1GURE 13: Total CPU usage including all Kubernetes processes.

Figure 13 presents the total CPU usage for one of the
worker nodes of the Kubernetes cluster. As shown, Kuber-
netes (and docker in general) utilizes very few resources in
terms of CPU, between 6% and 7% of one core. The main
consumers are processes related to the management of the
Kubernetes cloud (kubelet with 2.8%, dockerd-current with
0.5% and kube-proxy with 0.4%).

In terms of memory, around 1.6 GB are used by the
worker node. The processes that reserve more memory are
also related to Kubernetes (java with 392 MB, kubelet with
75.9 MB, dockerd-current with 51.5 MB, kube-proxy with 39.9
MB, and flanneld with 26.8 MB).

In the case of OpenStack, the total memory employed
by the worker node is 8.45 GiB when no instances are
deployed and 288 MiB more when one virtual machine with
the LoORaWAN is executed. In terms of CPU, worker node
consumes 1.28 CPU cores. This means that, in our given
scenario, OpenStack requires more than 5 times the memory
needed by Kubernetes and more than 18 times in terms of
CPU consumption.

6. Conclusions

In this paper, we propose the usage of a microservices plat-
form such as Kubernetes for the deployment of a LoRaWAN
network infrastructure. Based on its orchestration capabili-
ties, the proposed framework is able to support catastrophic
situations and to rapidly recover from equipment failure in

the core network. To evaluate the performance of this solu-
tion, a prototype testbed of a complete LoRaWAN network
has been implemented. By using an experiment manager, we
have been able to automatize the node traffic generation and
the automatic recollection of stats, as well as the presence
of failures. We have evaluated our implementation in terms
of time to recover, lost frames, and resource usage. After
the conducted evaluation, we claim that the usage of several
replicas of the LoORaWAN core network entities and a load
balancer, which automatically changes between servers in a
fast and eflicient way, produces an almost seamless recovery,
what makes it a proper solution to recover after a system crash
caused by any catastrophic event.

For future work, based on our previous analysis [33, 34],
we plan to mathematically model the implemented VNFs in
order to estimate the performance for a given configuration
and to derive when to scale out by requesting more resources.

Data Availability

The data has been generated from live tests in our LoRaWAN
testbed. Logs or any other information is available upon
request to the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Wireless Communications and Mobile Computing

Acknowledgments

This work is partially supported by the Spanish Min-
istry of Economy and Competitiveness and the European
Regional Development Fund (Projects TEC2016-76795-C6
and EQC2018-004988-P).

References

[1] K. L. Lueth, “State of the IoT 2018: Number of IoT devices

[8

(10

]

]

now at 7B —market accelerating, 2018, https://iot-analytics
.com/state-of-the-iot-update-ql-q2-2018-number-of-iot-devices-
now-7b/.

A. Nordrum, “Popular Internet of Things forecast of 50 billion
devices by 2020 is outdated,” IEEE Spectrum’s General Technology
Blog, 2016, http://spectrum.ieee.org/tech-talk/telecom/internet/
popular-internet-of-things-forecast-of-50-billion-devices-by-
2020-is-outdated.

C. Cervello-Pastor, “5G-City: Flexible management of 5G
services oriented to support urban critical situations, project
TEC2016-76795-C6 of the Spanish Ministry of Economy, Indus-
try and Competitiveness, 2017-2019”.

J. Navarro-Ortiz, S. Sendra, P. Ameigeiras, and J. M. Lopez-
Soler, “Integration of LoRaWAN and 4G/5G for the Industrial
Internet of Things,” IEEE Communications Magazine, vol. 56,
no. 2, pp. 60-67, 2018.

X. Xiong, K. Zheng, R. Xu, W. Xiang, and P. Chatzimisios,
“Low power wide area machine-to-machine networks: Key
techniques and prototype,” IEEE Communications Magazine,
vol. 53, no. 9, pp. 64-71, 2015.

A. Cenedese, A. Zanella, L. Vangelista, and M. Zorzi, “Padova
smart city: an urban internet of things experimentation,” in
Proceedings of the 15th IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM
’I4), pp. 1-6, Sydney, Australia, June 2014.

T. Petri¢, M. Goessens, L. Nuaymi, L. Toutain, and A. Pelov,
“Measurements, performance and analysis of LoRa FABIAN,
a real-world implementation of LPWAN,” in Proceedings of the
27th IEEE Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications, PIMRC 2016, pp. 1-7, Spain,
September 2016.

M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-
range communications in unlicensed bands: The rising stars in
the ToT and smart city scenarios,” IEEE Wireless Communica-
tions Magazine, vol. 23, no. 5, pp. 60-67, 2016.

J. Petdjdjarvi, K. Mikhaylov, A. Roivainen, T. Hinninen, and M.
Pettissalo, “On the coverage of LPWANSs: Range evaluation and
channel attenuation model for LoRa technology,” in Proceedings
of the 14th International Conference on ITS Telecommunications,
ITST 2015, pp. 55-59, Denmark, December 2015.

M. Aref and A. Sikora, “Free space range measurements with
Semtech Lora™; technology,” in Proceedings of the 2014 2nd
International Symposium on Wireless Systems within the Confer-
ences on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS-SWS), pp. 19-
23, Odessa, Ukraine, September 2014.

T. Wendt, E Volk, and E. Mackensen, “A benchmark survey
of long range (LoRaTM) spread-spectrum-communication at
2.45 GHz for safety applications,” in Proceedings of the 2015 16th
IEEE Annual Wireless and Microwave Technology Conference,
WAMICON 2015, pp. 1-4, USA, April 2015.

(12]

(13

(16]

(17

(18]

(20]

(21]

[25]

[26]

(27]

[28

1

A.J. Wixted, P. Kinnaird, H. Larijani, A. Tait, A. Ahmadinia, and
N. Strachan, “Evaluation of LoRa and LoRaWAN for wireless
sensor networks,” in Proceedings of the 15th IEEE Sensors
Conference, SENSORS 2016, pp. 1-3, USA, November 2016.

P. J. Raddliffe, K. G. Chavez, P. Beckett, J. Spangaro, and
C. Jakob, “Usability of LoRaWAN technology in a central
business district,” in Proceedings of the 2017 IEEE 85th Vehicular
Technology Conference (VTC Spring), pp. 1-5, Sydney, Australia,
June 2017.

J. M. Marais, R. Malekian, and A. M. Abu-Mahfouz, “LoRa
and LoRaWAN testbeds: A review;” in Proceedings of the IEEE
AFRICON 2017, pp. 1496-1501, South Africa, September 2017.

N. Vatcharatiansakul, P. Tuwanut, and C. Pornavalai, “Exper-
imental performance evaluation of LoORaWAN: A case study
in Bangkok,” in Proceedings of the 2017 I4th International
Joint Conference on Computer Science and Software Engineering
(JCSSE), S. T. P. Chantamunee and S. Doung-in, Eds., pp.
1-4, Institute of Electrical and Electronics Engineers Inc.,
NakhonSiThammarat, Thailand, July 2017.

A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A Study
of LoRa: long range & low power networks for the internet of
things,” Sensors, vol. 16, no. 9, article 1466, 2016.

LoRaWAN™ 1.1 specification, “LoRa Alliance, Specification,
Oct. 20177 https://lora-alliance.org/sites/default/files/2018-04/
lorawantm_specification_-v1.Lpdf.

LoRa™ modulation basics, “Semtech Corporation, Application
Note ANI200.22, May 2015 https://www.semtech.com/
uploads/documents/an1200.22.pdf.

LoRaWAN™ 1.1 regional parameters, “LoRa Alliance, Spec-
ification, Jan. 2018, https://lora-alliance.org/sites/default/files/
2018-04/lorawantm_regional_parameters_vl.1rb_-_final.pdf.

Docker, “Docker, enterprise-grade
https://www.docker.com.

Q. Zhang, L. Liu, C. Pu, Q Dou, L. Wu, and W. Zhou,
“A comparative study of containers and virtual machines in
big data environment,” in Proceedings of the 2018 IEEE 1ith
International Conference on Cloud Computing (CLOUD), pp.
178-185, San Francisco, CA, USA, July 2018.

M. Chae, H. Lee, and K. Lee, “A performance comparison of
linux containers and virtual machines using Docker and KVM,”
Cluster Computing, 2017.

container platform,”

A. M. Joy, “Performance comparison between Linux containers
and virtual machines;” in Proceedings of the 2nd International
Conference on Advances in Computer Engineering and Applica-
tions, [CACEA 2015, pp. 342-346, India, March 2015.

Google, “cadvisor (container advisor), https://github.com/
google/cadvisor.

O. Brocaar, “LoRa server v2.3.0,” https://www.loraserver.io/,
2018.

IMST, “Lite gateway,” https://shop.imst.de/wireless-modules/
lora-products/36/lite-gateway-demonstration-
platform-for-lora-technology.

M. Kooijman, “IBM’s LoRaMAC-in-C;” https://github.com/
matthijskooijman/arduino-Imic.

“ESP32’s random number generation,” https://docs.espressif.
com/projects/esp-idf/en/latest/api-reference/system/system
html#_CPPv210esp_randomv.

“TTN-ZH’s iC880a-gateway; https://github.com/ttn-zh/ic880a-
gateway/wiki.

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_regional_parameters_v1.1rb_-_final.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_regional_parameters_v1.1rb_-_final.pdf
https://www.docker.com
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://www.loraserver.io/
https://shop.imst.de/wireless-modules/lora-products/36/lite-gateway-demonstration-platform-for-lora-technology
https://shop.imst.de/wireless-modules/lora-products/36/lite-gateway-demonstration-platform-for-lora-technology
https://shop.imst.de/wireless-modules/lora-products/36/lite-gateway-demonstration-platform-for-lora-technology
https://github.com/matthijskooijman/arduino-lmic
https://github.com/matthijskooijman/arduino-lmic
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/system/system.html#_CPPv210esp_randomv
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/system/system.html#_CPPv210esp_randomv
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/system/system.html#_CPPv210esp_randomv
https://github.com/ttn-zh/ic880a-gateway/wiki
https://github.com/ttn-zh/ic880a-gateway/wiki

12

[30] D. Bankov, E. Khorov, and A. Lyakhov, “On the limits of
LoRaWAN Channel Access,” in Proceedings of the 2016 Interna-
tional Conference on Engineering and Telecommunication (EnT),
pp. 10-14, 2016.

[31] Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “X-LoRa: An
Open Source LPWA Network,” http://arxiv.org/abs/1812.09012,
2019.

[32] Cloud Native Computing Foundation, “Kubernetes, production-
grade container orchestration,” https://kubernetes.io/.

[33] J. Prados-Garzon, P. Ameigeiras, J.]. Ramos-Munoz, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Analytical modeling for
Virtualized Network Functions,” in Proceedings of the 2017 IEEE
International Conference on Communications Workshops, ICC
Workshops 2017, pp. 979-985, France, May 2017.

[34] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and Dimen-
sioning of a virtualized MME for 5G mobile networks,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 5, pp. 4383-
4395, 2017.

Wireless Communications and Mobile Computing

http://arxiv.org/abs/1812.09012
https://kubernetes.io/

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

