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Granada, 25th November, 2019



Doctoral Thesis

Diseño, Caracterización y Simulación de

Nanodispositivos Electrónicos y

Optoelectrónicos basados en Materiales

Bidimensionales

Author: Supervisors:

José Maŕıa González Medina Dr. Francisco Javier Garćıa Ruiz
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With electronics, they just get smaller and smaller.
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como cuarto mosquetero, que me ha ayudado en igual medida. Entre todos, me han
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que os aprecio mucho y todo eso.

Quisiera dar las gracias al Ministerio de Educación, Cultura y Deporte por haber

financiado este proyecto a través del contrato FPU 14/02579. El esfuerzo de la insti-

tución pública en ir mejorando las condiciones de trabajo que tenemos los doctorandos

becados durante estos últimos años ha sido más que destacable, y me alegra haber sido

testigo de ese cambio.
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ella, pero me he prometido no pasar de las dos páginas de agradecimientos. Quiero
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Part I

Prologue





Physical constants

Here are summarized the physical constants considered in this woek. The materials

parameters are collected in Appendix D.

ε0 vacuum permittivity 8.85418782 × 10−12 F/m

m0 electron rest mass 9.10938291 × 10−31 Kg

h Planck’s constant 6.62606957 × 10−34 J×s

~ reduced Planck’s constant 1.05457172 × 10−34 J×s

kB Boltzmann’s constant 1.38064881 × 10−23 J/K

q elementary charge 1.60217656 × 10−19 C
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Abstract

PEARL Research Group

Departamento de Electrónica y Tecnoloǵıa de los Computadores

Design, Characterization and Simulation of Electronic and Optoelectronic

Nanodevices based on Bidimensional Materials

by José Maŕıa González Medina

This Doctoral Thesis aims to study the electronic and optoelectronic properties of

devices based on 2D materials and their heterostructures, with emphasis in photodiodes

and phototransistors.

For this purpose, a numerical method to self-consistently solve the 2D Poisson

and Drift-Diffusion equations is developed, which also allows the evaluation of the 1D

Schrödinger equation to calculate the carrier mobility. The code is able to handle

arbitrary combinations of semiconductor and isolator materials, solving the direct or

band-to-band tunneling in heterojunctions, and considering Ohmic or Schottky con-

tacts. Generation-recombination effects such as light generation, SRH, Auger and Ra-

diative recombinations are also included. Finally, traps with arbitrary energetic profile

are implemented. To accelerate the convergence of the simulator, the Newton-Rhapson

linearisation scheme is implemented.

The numerical method developed is applied in this Thesis to evaluate different

electronic and optoelectronic devices of interest based on bidimensional materials.

First, a theoretical study of the electron mobility in field effect transistors based on

MoS2 is performed, where it is shown that, at room temperature, polar optical phonons

constitute the most important scattering mechanism, while at low temperature acoustic

phonons and Coulomb-limited mobility need to be considered.

In collaboration with Prof. Max Lemme (RWTH Aachen) and his group, a pho-



todiode with interdigitated graphene-silicon and graphene-insulator-silicon regions is

analyzed in detail. Experimental results show that the presence of the insulator regions

increases the device photoresponse. Our simulations demonstrate that this impro-

vement is due to the degradation of the graphene-silicon interface.

Later, a MoTe2 channel phototransistor is studied, with emphasis in the influence

of traps on the photocurrent, through the so-called photogating effect, which in the

appropriate conditions can provide a high photoconductive gain.

Finally, a low-cost fabrication technique for submicron phototransistors based on

MoS2 with graphene contacts, developed in collaboration with Dr. Andrés Castellanos

(IEEE-CSIC), is presented. A full characterization is performed: structural, electronic

and optoelectronic. The simulations allow us to estimate the most relevant parameters

of the fabricated devices (i.e., mobility, Schottky barrier height, traps profile, etc.) and

analyze with detail the active area and responsivity of the devices.

In summary, our work delves into the potential applications of bidimensional mate-

rials and which elements should be taken into account in their fabrication, focusing on

the influence of contacts and the quality of the interfaces with other materials.
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Resumen

PEARL Research Group

Departamento de Electrónica y Tecnoloǵıa de los Computadores

Diseño, Caracterización y Simulación de Nanodispositivos Electrónicos y

Optoelectrónicos basados en Materiales Bidimensionales

por José Maŕıa González Medina

Esta Tesis Doctoral tiene como objetivo el estudio de las propiedades electrónicas y

optoelectrónicas de dispositivos basados en materiales 2D y heteroestructuras que los

contengan, con especial énfasis en fotodiodos y fototransistores.

Para ello, se desarrolla un simulador que resuelve autoconsistentemente las ecuaci-

ones de Poisson y Deriva Difusión en dos dimensiones, y que permite también resolver

la ecuación de Schrödinger para evaluar la movilidad de portadores. El programa ad-

mite combinaciones arbitrarias de materiales aislantes o semiconductores, considerando

túnel directo o banda a banda en las heterouniones, aśı como contactos óhmicos o de

tipo Schottky. Es posible también considerar efectos de generación-recombinación que

modelan distintos fenómenos f́ısicos, tales como generación por luz o recombinaciones

SRH, Auger y Radiativa. Por último, se ha implementado el modelado de trampas con

perfiles energéticos arbitrarios. Para acelerar la convergencia del código, se hace uso

del método de linealización de Newton-Rhapson.

El método numérico desarrollado se aplica en la Tesis a la evaluación de distintos

dispositivos electrónicos y optoelectrónicos de interés basados en materiales bidimensi-

onales.

En primer lugar, se realiza un estudio teórico de la movilidad electrónica en tran-

sistores de efecto campo basados en MoS2, donde se observa la importante influencia

de la dispersión debida a los fonones ópticos polares a temperatura ambiente, y de los

fonones acústicos y la dispersión de Coulomb a baja temperatura.

XXVII



En colaboración con investigadores del grupo del Prof. Max Lemme (RWTH Aachen),

se analiza un fotodiodo formado por heterouniones interdigitadas de grafeno-silicio y

grafeno-aislante-silicio. En este fotodiodo se ha comprobado experimentalmente la me-

jora de la fotorespuesta debido a la presencia de la región oxidada. Nuestras simula-

ciones demuestran que esta mejora es debida a la degradación de la interfaz entre el

grafeno y el silicio.

Se estudia también un fototransistor con canal de MoTe2, haciendo énfasis en la

influencia de las trampas en la fotocorriente, a través del denominado efecto de ’pho-

togating’, que en las condiciones apropiadas puede dar lugar a una elevada ganancia

fotoconductiva.

Por último, se presenta una técnica de bajo coste desarrollada en colaboración

con el Dr. Andrés Castellanos (IEEE-CSIC) para la fabricación de fototransistores

submicra de MoS2 y contactos de grafeno, y se caracterizan estructural, electrónica

y ópticamente los dispositivos resultantes. Las simulaciones realizadas nos permiten

estimar los parámetros más relevantes de los dispositivos fabricados (movilidad, barrera

Schottky, perfil de trampas, etc.) y analizar con detalle el área activa y responsividad

de los dispositivos.

En conjunto, el trabajo desarrollado profundiza en las aplicaciones potenciales de

los materiales bidimensionales y en qué elementos deben tenerse en cuenta en su fabri-

cación, enfocándose en la influencia de los contactos y de la calidad de las interfaces

con otros materiales.
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Chapter 1

Introduction

1.1 The prelude of a dream come true

For most of us, any ordinary day would start setting off the alarm of our mobile phone.

Then, we connect with the news application, read what has happened on the other

side of the world while we were sleeping, and continue with our morning routine. One

of these regular mornings, people from this side of the globe read a piece of news

from NASA announcing: ”American Astronauts will land on the Moon in 2024: NASA

Accepts Challenge” [1]. Two immediate reactions may be born in our brains: That is

wonderful!, and What business do we have in the Moon?. In no case we ask ourselves

about the viability of the project, as we trust that there is a corporation supporting it

with the determination, the facilities, the talent and the economical resources necessary

to success in such endeavor. The NASA might as well have announced the next inven-

tion of the gravitic spaceship, like the one mentioned in the Foundation saga of Isaac

Asimov, and we would have relied on the astonishing possibility that some inventive

(or crazy) enough team would be capable of dealing with it.

That wonderful naivety, derived from the confidence in ourselves, is product of a

continuous and successful race, in which the opponent has been usually the human

being itself. More than 2000 years has our calendar, but just the last 70 years are

enough to dizzy any inattentive person. The society has changed its way to wake up, to

eat, to dress, even to think. The unerring basis where this deep change is founded is the

continuous technology evolution. Every step forward, whether big or small, had its own

role modifying the society. And, in turn, the basis of this technology is grounded on a
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concept as simple as effective: the information, whose foundations were established by

Claude Shannon, the father of the information theory [2].

In the past, the possibility of storing, carrying, sharing and displaying information

was complex, expensive and time consuming. Even after the invention of the vacuum

tubes, already developed at the beginning of the 20th century, managing information

was challenging. Fortunately, during the same years in which the basis of the informa-

tion theory were being established, the key solution to achieve this task, the solid state

transistor [3], was developed. Initially, the Bipolar Junction Transistor, or BJT, inven-

ted in 1948 by Bardeen, Brattain and Shockley, would lead to develop the first solid

state commercial radio, known as Regency TR-1 [4]. Just one decade afterwards, in

1959, two breakthroughs sparked the revolution of the information and communication

technologies: The invention of the Metal-Oxide-Semiconductor (MOS) transistor by

Mohamed Atalla and Dawon Kahng at Bell Labs [[5]] and the integrated circuit. There

is some controversy about the fathers of this last invention, though we can mention

here Jack Kilby from Texas Instrument and Bob Noyce from Fairchild Semiconductor.

These elements were rapidly commercialized after overcoming the numerous pro-

blems that their development had to face. Some of these challenges were related to

the lack of knowledge of the physical mechanisms controlling the carrier transport in-

side the semiconductors, the inherent problems to grow different materials and their

interfaces, or the lack of reliability of the final products. So much so, that Donald G.

Fink, Philco’s director of research, talked about the potential of the transistor in this

way: ”Is it a pimpled adolescent, now awkward, but promising future vigor? Or has it

arrived at maturity, full of languor, surrounded by disappointments?” [6]. Nowadays,

it is clear that his first assertion was the right one.

Each progress in the solid state devices development has approached us to our

present society. The basic element of this technology revolution, the so-called Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET), has seen how its first concept

was muted and adapted, in an endless effort to meet a prediction, or better a promise,

known as Moore’s law in honour to Gordon Moore, who quite rightly estimated in

1965 the market tendency: that every 12 months, the number of components per chip

would duplicate [7]. One decade later, this formula was revised to every 18 months.

Almost like a dogma of faith, the companies and research centres have striven since

then to accomplish this law. Today, complex designs endeavour to solve the different

issues that the next technological nodes face [8, 9]. Some of these improvements are the

use of strained materials [10, 11] to improve the carrier mobility; of high-κ insulators
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between the gate and the channel to reduce the leakage current [12, 13, 14]; or the

application of several gates controlling the channel, instead of the standard planar top-

gate of traditional bulk devices [15, 16, 17], giving rise to different non-planar Multiple

Gate designs. In this way, the Silicon technology has been stretched to fulfill the market

and society demands (and in other cases creating new ones).

As a third leg of the stool, the electronic devices used to manage the important

information need to be supplied with energy. In this context, the interest for efficient

photovoltaic generation systems is rocketing due to two main reasons. First is the gro-

wing concern created by the global warming, that requires the shift to a new paradigm

of energy generation based on renewable sources. In this sense, wind and solar ener-

gies are expected to cover almost one third of the global energy needs by 2023 [18].

Second, is the massive deployment of autonomous sensors and systems that support

the so-called Internet-of-Things. Most of them will be located far from wired power

supplies and some kind of energy harvesting system must be incorporated to increase

the operative life of those systems.

In the case of sun light harvesting, solid state materials play a main role in the

photovoltaic generation. The first efforts to develop solar panels based on Silicon were

leaded in 1954 by Daryl Chapin, Calvin Fuller and Gerald Pearson, fabricating 6%

efficiency harvester [19]. Since then, the efficiency of photovoltaic devices have not

stopped improving. As an example, Multi Junctions solar cells (MuJ) created stacking

multiple materials with gradual bandgaps (the third generation of solar cells [20]), have

demonstrated efficiencies above 25% [21] and even 40% in some specific conditions [22].

The development of the photovoltaic industry is so remarkable, that recently the W·h
price of their electricity has dropped below the cost of the energy generated from non

renewable sources like coal [23].

The progress of all the aforementioned fields is mainly based on the profound kno-

wledge of the Silicon technology acquired after decades of work. However, this material

shows some physical limitations that preclude its effective usage in some applications,

and brakes its potential in others [24]. To overcome these challenges, numerous al-

ternative routes are being considered, such as the investigation of new materials that

complement or substitute Silicon for specific purposes. One of these alternatives is

the precursor of works like this Thesis, the isolation of a material known today from

Boehm et al.’s work as graphene, or sp2-hybridized Carbon [25]. Its astonishing pro-

perties inspired a debate about the usage of this and other new materials in the world

of electronics, which still remains.
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1.2 Graphene, the firstborn

The word graphene refers to a portion of a well known material, graphite. Typically

used to produce pencils, it is composed of multiple Carbon layers arranged in hexagonal

honeycomb panels, with an in-plane distance among atoms of 1.42 Angstrom and 3.45

Angstrom between layers [26]. The covalent bonds that keep the atoms united inside

each layer are very strong, but the forces between layers, known as van der Waals forces,

are not so intense. This weak interaction among layers facilitates their exfoliation,

an useful property for its application as industrial dry lubricant. Graphite has also

been commonly used as electrode, because its in-plane conductivity is very high, up

to 105 S/cm depending on the fabrication process [27, 28]. In addition, graphite has

an excellent thermal conductivity. In short, graphite shares many characteristics of

metals. However, the most interesting properties of this material bloom when it is

exfoliated up to isolate one single Carbon layer. Geim and Novoselov [29] successfully

carried out this exfoliation process in 2004, what allowed them to analyse graphene

properties experimentally, and awarded them the Nobel prize in physics in 2010 [30].

After the development of different mass production techniques [31], these properties

were extensively analyzed.

Graphene shows excellent thermal and mechanical properties, both individually

and in combination with other materials. The hybridized sp2 bonds that compose its

hexagonal structure [32] confers upon graphene a big resistance to be deformed, with

a Young’s module of around 1 TPa, and an intrinsic strength of 130 GPa [33]. Its

high fracture toughness is only endangered by the presence of cracks and voids in the

sheets [34]. These properties are important for its use in complex nanodevice designs,

as enhanced mechanical properties reduce the possibilities of a physical break in fragile

tiny devices. ”The interface is the device”, citing Kroemer’s words from his Nobel

lecture [35], and indeed, that is a law in this kind of two-dimensional (2D) materials,

which presents a high surface to thickness ratio. This feature opens a wide range

of possibilities, as graphene can be functionalized and then employed as a container

of numerous active principles and compounds, and used to select, carry and deliver

biomolecules and pharmaceutical products [36]. Also, it is possible to employ it as a

detector of adsorbents, as the presence of ions rapidly modifies its conductivity [37, 38,

39]. Sensors formed by single layers of graphene deposited between two electrodes can

work as biotransistors activated or deactivated by the presence of tiny amounts of ions

or molecules [40, 41, 42].
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The key of graphene, the property that makes this material so interesting, is related

to its band structure [43, 44]. Free-standing monochrystalline graphene presents a

conical band diagram, as depicted in Fig. 1.1, where the conduction and valence bands

are in touch with each other at the so-called Dirac-point, which makes that electrons in

graphene behave as massless two-dimensional particles [43]. This feature lends graphene

the behaviour of a semi-metal and some additional properties such as:

� Extremely high carrier mobility. Outstanding values, over hundreds of thousands

cm2/Vs, have been measured in ideal conditions [45]. This is substantially higher

than the typical 1400 cm2/Vs electron mobility in Silicon [46] and well above other

high mobility materials, such as InAs [47, 48], InSb [49] or InP [50]. Moreover,

the 2D nature of this material would shield transistors made of this material from

the undesired short channel effects (SCEs).

� Ambipolarity. The Fermi level can be tuned continuously in the conduction or

valence band as a function of the applied bias [51, 52]. This property is useful

to electrostatically modify the doping of different regions, creating p-n junctions

without any chemical doping. Moreover, as its Fermi level can be electrostatically

tuned, it could be possible to fit the workfunction of different contacted materials,

generating ohmic contacts as their corresponding resistance is minimized [53]. The

ambipolar, gap free feature of graphene can be appraised as an advantage, but

it would also become a challenge if used as the channel of FETs [54], due to

the impossibility of switching it off. To overcome this problem and increase the

ON/OFF current ratio, several alternative structures have been proposed, such

as tunnel the field-effect transistors [55, 56, 57]. An interesting option is the use

of bilayer structures, as they present a finite bandgap when the sheets are under

the influence of a transversal electric field, or when a doping is implanted (Figure

1.1).

The fascinating properties of graphene are fuelling applications in a wide variety of

emerging fields, not so far just theoretical entelechies, as e.g. topological insulators or

valleytronic-based devices [58, 59]. In the case of optoelectronic devices, a high material

absorbance is required to maximize the conversion of photons into carriers. For free-

doped graphene flakes, their gapless nature allow them to absorb light in a broad

spectrum range, from ultraviolet up to terahertz frequencies [60]. For photon energies

below 3 eV, the light absorption of one single Carbon sheet is 2.3 % [61], which linearly
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Figure 1.1: Band diagrams of (left) monolayer graphene and (right)
bilayer graphene, the latter under a transversal electric field. Conduction
and valence bands touch at the Dirac point for pristine monolayer sheets.
In the multilayer scenario, the non-null gap between the bands can also
be appreciated when the layers are functionalized [65].

increases with the number of layers [62]. This is a spectacular absorbance for just

one single atom thick layer, but at the same time this value makes monolayer graphene

practically transparent. This fact, together with its high ambipolar conductance, makes

graphene a suitable candidate as a transparent electrode to be employed in photovoltaic

devices [63, 64].

1.3 The family grows up

The two-dimensional (2D) nature of graphene encompasses as many advantages as

technological challenges, and has paved the way to other 2D materials, with comple-

mentary properties in such a way that their combination creating heterojunctions can

produce new structures and functionalities. A whole new family of 2D materials has

recently appeared to complement graphene, each one with their own peculiarities.

Fig. 1.2 depicts some representative members, including native insulators, like

hexagonal Boron Nitride h-BN, semiconductors, as most of the Transition Metal Di-

chalcogenides (TMDs), metals like TiS2, superconductors, and topological insulators

such as NbSe2 and Sb2Te3, respectively [32, 66]. The weak interaction between layers

due to the van der Waals forces, allows to stack different materials, making new van
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Figure 1.2: The denomination of 2D materials encompasses a wide vari-
ety of materials with different properties, which can be combined to design
and create a full new set of devices based on them. Figure inspired in [32].
Structures obtained with [69].

der Waals heterostructures [67], in a sort of Lego game as shown in the already iconic

picture of Fig. 1.3 [68].

In the case of the TMDs, their cell structure (MX2) is formed by one transition

metal atom (Mo,W) and two chalcogens (S, Se, or Te). The palette is very rich and

offers a wide variety of materials that behaves as semiconductors or metals. Even one

specific material can show different behaviour depending on its phase, as it is the case

of the semiconductor 2H-MoS2 and the metallic 1T-MoS2 [70]. In these materials (and

others like black Phosphorous [71, 72, 73, 74, 71]), the monolayer material differs from

its bulk counterpart, as the quantum confinement makes them transit from an indirect

bandgap in the multi layer (ML) situation [75] to a direct one for the single layer (SL)

case [76, 77, 78]. In contrast to graphene, some TMDs are semiconductors with sizeable

bandgaps, so they may be used in logic circuits [79, 80, 81, 82, 83]. Their atomic body

thickness makes them appropriate to control the SCEs, as the channel can be efficiently

controlled by the gate [84]. Some of these materials, such as MoS2 or WS2, also show

high absorption coefficients, around 5-10% [85], values comparable to those obtained
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with Silicon. Besides, their different absorption spectra can complement the ones of

Silicon and III-V compounds. This property may be useful to design photodetectors

for specific wavelength ranges [86, 87, 63, 88, 89], multijunction solar cells with higher

efficiencies when combined appropriately [90, 91, 92, 93, 94], as well as ultrathin solar

cells [85]. Light emitting diodes have also been fabricated making use of them [95, 96,

97, 98, 99, 100].

In spite of their many advantageous properties, 2D materials still face many challen-

ges. Some of them are related to achieving an optimal, efficient and scalable fabrication

process [101, 102, 103]. The synthesis of pristine samples is by itself a difficult task

[104, 105]. In addition, the introduction of new materials and fabrication techniques is

not a straightforward procedure as it requires time and expensive investments. To relax

the complexity of this process, a first approach would be the coexistence of both bulk

and 2D materials, in a way that the inherent characteristics of each one can be combi-

ned in specific applications [106, 107, 108]. This combination may face new difficulties

such as the presence of interface traps and point defects at the interface between bulk

and 2D semiconductors, which increases their contact resistance [109, 110, 111]. The

combination of 2D and 3D materials also rises the phonon scattering rate, dropping

the carrier mobility and increasing the recombination rates, and consequently clou-

ding their potential as logical or optoelectronic devices [112, 113]. Hence, numerous

challenges have still to be overcome before these materials result in practical devices

outperforming current ones [110, 114].

At this point, we could wonder how we can distinguish between a little or a big step

in the technology evolution. Who knows whether the day the first field effect transistor

was manufactured, this was considered a little or a great step. In any case, nowadays

there is no doubt about its transcendence. In a parallel reasoning, it seems already

demonstrated that the petty action of sticking graphite to a piece of adhesive tape

has produced a great step forward in the science of materials and other related fields.

However, for the time being it is still not so clear whether they will produce such a

huge impact on the society. In order to get that far, it is required to acquire a deeper

knowledge of their properties and working principles.
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Figure 1.3: Vertical stacking of 2D materials forming heterostructures.
Reprinted by permission from Springer Nature, Van der Waals heterostruc-
tures, A. K. Geim and I. V. Grigorieva, copyright© 2013 [68].

1.4 Objectives

Understanding the physical mechanisms that rule the behaviour of 2D materials, their

heterojunctions and devices, is essential to assess how far it is possible to progress ma-

king use of them. Both, theoretical and experimental results will help to complete the

remaining pieces of the puzzle, providing us with new and smart solutions to comple-

ment or even surpass the Silicon technology.

With this aim in mind, this Thesis is focused on the study of the electronic and

optoelectronic properties of different devices based on 2D materials, with emphasis on

photodiodes and phototransistors. The main objectives of this work are:

� The development of a numerical simulator designed to study the electrostatics and

charge transport performance of arbitrary electronic and optoelectronic devices,

paying special attention to the involved heterostructures.

� The numerical analysis of 2D-based devices, aiming to analyze different properties,

including:

– The electron mobility limited by different scattering mechanisms in back-

gated transistors with few-layer MoS2 as channel.
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– The influence of the interfaces in the light-to-current (mA/W) conversion

capability of hybrid bulk-2D interdigitated Schottky and MIS heterojuncti-

ons.

– The impact of interface traps on the photogating effect in phototransistors

based on few-layer 2D materials.

– The contact resistance and Schottky barrier height in junctions encompas-

sing few-layer 2D materials. Here we include the development of new techni-

ques to manufacture symmetrical, low cost, n-type contacts for 2D materials.

1.5 Outline

After this brief introductory Chapter, the main document is divided into two parts: the

first one deals with the description of the developed numerical tool, and the second one

focuses on the calculated results, together with the discussion of the main conclusions.

A more detailed summary is found next:

� The first part consists of a comprehensive shelling of the numerical tool developed

to study the 2D materials based nanodevices. Chapter 2 presents all the equations

applied in the simulator, named SAMANTA. This Chapter is complemented by

Appendices A to D. The appendix sections detail some mathematical issues: the

discretization of the equations included in the simulator is presented in Appendix

A, and their linearisation using the Newton method in Appendix B. Appendix C

includes some relevant considerations about the boundary conditions of the struc-

ture under study. Finally, the physical magnitudes of the studied semiconductors

are compiled in Appendix D.

� The second part comprises the results simulated and measured in different devices,

inspired by real experiments. Such results are presented and discussed along four

Chapters:

– Chapter 3 calculates the phonon and Coulomb scattering limited electron

mobility in a back-gated transistor, where the channel consists of few-layer

MoS2. The relative contribution of each mechanism is assessed at different

temperatures, electron densities and semiconductor thicknesses.

– Chapter 4 explores the hybridization of bulk Silicon devices by adding grap-

hene as a top contact, producing photodiodes for potential light detectors.
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This analysis is extended to ponder the effect of degraded 2D-bulk interfaces.

– Chapter 5 presents a twofold study. It firstly analyzes the importance of

the tunnel current through the contacts formed by metals deposited over

few-layer MoTe2 channels, and secondly, the influence of the photogating

effect enhanced by interface traps at the oxide-semiconductor junction of

the MoTe2 phototransistors.

– Chapter 6 explains a new experimental technique developed to create sym-

metrical graphite contacts for arbitrary 2D materials. Then, the Schottky

junction and the optoelectronic properties of some graphite-MoS2 photo-

transistors are studied both, experimental and numerically.

� Finally, the main conclusions of this Thesis, as well as the future work are enu-

merated in Chapter 7.
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Chapter 2

Electron devices models:

background

2.1 Introduction

Numerical tools have become essential to evaluate the behaviour of complex electronic

systems, where the material physical properties and devices features mix in an intricate

way. In this Thesis, we have designed and implemented from scratch a simulation

tool to study the electrostatics and transport properties of arbitrary structures made

of metals, oxides and semiconductors in a two dimensions system. We have called it

SAMANTA: Simulator for All Modern Assembled Nanodevices Transport Applications.

This Chapter aims to introduce the equations used for its implementation, as well as a

brief explanation about the simulator workflow.

The simulator comprises the Poisson and continuity equations, with the transport

evaluated in a drift-diffusion scheme. This level of approximation is the more appropri-

ate to model current experimental devices based on 2D-materials, whose dimensions are

above the carrier mean free path and can be accurately explained under a semi-classical

drift-diffusion framework [108, 115].

The rest of this Chapter is organized as follows. The expressions for Poisson and

continuity equations are presented in Section 2.2. In the case of metal-semiconductor,

semiconductor-semiconductor and semiconductor-oxide-semiconductor junctions, a ther-

mionic emission (TE) plus direct tunnel model (TFE, Thermionic-Field Emission) is

used to simulate the charge transport. This solver is presented in Section 2.3 for the
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thermionic scenario and in Section 2.4 for the TFE model in metal-semiconductor

junctions. For the rest of heterointerfaces, the implementation of the TFE model is

described in Section 2.5. The tunnel is complemented with the local and non-local

band-to-band tunnelling (BTBT) model in Section 2.6. In addition, several genera-

tion and recombination models are added to the continuity equations, and presented in

Section 2.7: Shockley-Read-Hall SRH recombination; Auger recombination; radiative

recombination; and light generation. Additionally, SAMANTA is able to evaluate trap

profiles at the interfaces of the device, including oxides, metals or other semiconductors.

The theoretical background for this feature can be found in Section 2.8. There is one

extra module, called SAMANTA-SP1D, explained in Section 2.9, which can solve the

one dimensional Schrödinger-Poisson equations, useful to obtain the wavefunctions and

energy levels of a confined system, and which can be thus used as a preliminary step

to evaluate the carrier mobility for a certain material system. The flowchart of the

program is presented in Section 2.10. Finite differences are employed, together with a

Newton linearisation method, to self-consistently solve the equations. All the numerical

details are given in Appendixes A to C.

2.2 The Drift-Diffusion and Poisson equation system

This Section describes the core equations considered in the simulator, i.e. the continuity

and Poisson equations, applied to evaluate the potential and the carrier density at each

position of a 2D system. The complete simulation framework is based on three sets of

equations: the Poisson equation, the continuity equation for electron and holes and the

drift-difussion equation for electron and holes.

The electric potential ψ (r) and the charge distribution ρ (r) are related through the

Poisson equation:

∇ · [ε (r)∇ψ (r)] = −qρ (r) (2.1)

where q is the electron charge and ε (r) is the dielectric tensor at the 2D location

r = (x, y). Since 2D materials can be anisotropic due to their layered structure, the

dielectric constant is directionally dependent, what implies not only a different dielectric

constant for each (x, y) but also different values for different directions. In this work,
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we have considered ε (r) as a diagonal 2-rank tensor:

ε (r) =

(
εxx (r) 0

0 εyy (r)

)
(2.2)

so to evaluate the anisotropy of the dielectric constant in the in-plane and out-of-plane

directions of the 2DM.

The charge density ρ (r) is given by:

ρ (r) = p (r)− n (r) +N+
D (r)−N−A (r) +NT (r) (2.3)

where n (r) and p (r) are the electron and hole densities, respectively, whose equations

are presented in Section 2.5, N+
D (r) and N−A (r) are the ionized donor and acceptor

impurities, discussed in Appendix B.1, and NT (r) is the trap density, evaluated using

the pseudo Fermi levels positions as explained in Section 2.8.

The charge conservation is taken into account through the continuity equation for

electron and holes [116], that can be derived from Ampere and Gauss laws:

∂n (r)

∂t
=

1

q
∇ · J n (r) +Gn −Rn (2.4a)

∂p (r)

∂t
= −1

q
∇ · J p (r) +Gp −Rp (2.4b)

where J n (r) (J p (r)) are the electron (hole) current densities, Gn (Gp) is the electron

(hole) generation rate and Rn (Rp) is the electron (hole) recombination rate. Both

generation and recombination rates will be introduced later in Section 2.7. For the

continuity equation, we only evaluate the stationary state, so the left hand sides in Eq.

(2.4) are set to zero.

Finally, the hole/electron currents comprises two terms: the drift component, which

is driven by the electric field, and the diffusion component, which is governed by the

electron density gradient. They can be written as:

J n (r) = qµn (r)n (r)∇ψ (r) +Dn (r)∇n (r) (2.5a)

J p (r) = qµp (r) p (r)∇ψ (r)−Dp (r)∇p (r) (2.5b)

where µn (r) (µp (r)) is the electron (hole) mobility; Dn (r) (Dp (r)) is the electron
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(hole) diffusivity; kB is the Boltzmann constant and T is the temperature. The dif-

fusive constant has been substituted following the Einstein relation for nondegenerate

semiconductors by Dn,p (r) = µn,p (r) kBT [116].

At the limits and boundaries of the system, boundary conditions must be specified,

as explained in Appendix C. Nevertheless, additional effects need to be taken into

account when potential barriers and non-ideal contacts are present. In heterojunctions

or metal-semiconductor interfaces, we use either the thermionic emission (TE) model,

or the thermionic plus direct tunnel, i.e. thermionic-field emission (TFE) model, which

is specially relevant when the energy barrier is large, but spatially thin. The next

two Sections explain the thermionic model for metal-semiconductor junctions with low

Schottky barriers and the general TFE model for all the scenarios.

2.3 Thermionic model for Schottky contacts

For most of the electronic devices, the semiconductor material is connected to the

outside environment via metallic contacts. These connections are part of the boundary

conditions of the system (whose details are explained in Appendix C) and give birth to

potential barriers for the current flow that must be taken into account in the continuity

equation. In this Section, we focus on the specific case of the Schottky contacts.

A Schottky barrier is an energy barrier formed at metal-semiconductor junctions.

Isolated metals are characterized by their metal workfunction, as shown in Fig. 2.1,

which is typically different from the Fermi level position of the semiconductor. When

both materials are contacted, their Fermi levels must line up, after a charge transference

between the materials, shifting the bands and generating a Schottky barrier at the

junction. In SAMANTA, we have focused on making a general model valid to a wide

set of structures and materials, although simpler models could be considered for 2D

materials [117].

At the interface, the current that flows from/to the metal contact must be modified

as cannot be described by a drift-diffusive paradigm. Let us consider the subset rI ⊆
r, which refers to all the Schottky interface points of the device. In the continuity

equations, the current density that flows to the contact at the rI location is computed

using a thermionic model [118],

Jn (rI) = −qvn
th (rI) (n (rI)− n0 (rI)) (2.6a)
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2.3. Thermionic model for Schottky contacts
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Figure 2.1: (a) Band diagram of a metal-semiconductor junction with
a p-type contact and an n-type semiconductor before joining them. (b)
Band diagram of the forming junction after contacting the materials. The
lining up of the Fermi levels normally induces a Schottky contact with a
built-in potential ψbi = φm − χsc.

Jp (rI) = qvp
th (rI) (p (rI)− p0 (rI)) (2.6b)

where p0 (rI) and n0 (rI) are the hole and electron densities in equilibrium, respectively

(see Section 2.5), and vn,p
th (rI) is the thermionic velocity of the contact for each kind of

carrier, evaluated as:

vn
th (r) =

A∗n (r)T 2

qNc (r)
(2.7a)

vp
th (r) =

A∗p (r)T 2

qNv (r)
(2.7b)

Here, T is the temperature, Nc (r) and Nv (r) are the semiconductor electron/hole

effective densities of states and A∗n (r) and A∗p (r) are the Richardson constants of the

contacted semiconductor for electrons and holes, respectively, which are defined as

A∗n,p (r) = 4πmn,p
eff (r) qk2

B/~3 (2.8)

where mn
eff (r)

(
mp

eff (r)
)

is the effective mass of electrons (holes), and ~ is the reduced

Planck constant.

The thermionic velocity models the quality of the contact, that is, its ability to

absorb/emit the carriers. A high thermionic velocity implies low carrier accumulation

close to the the contact. n0 (r) and p0 (r) are evaluated in equilibrium by setting

the potential, defined as the difference between the Fermi level and the conduction
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band ψ (r) = q [Ef (r)− Ec (r)], to ψ (rI) = q [φm (rI)− χsc (rI)], with φm the metal

workfunction and χsc the electron affinity of the semiconductor.

The thermionic emission is included in SAMANTA by computing the current com-

ponents pointing to the contact at the interface between the metal and the semicon-

ductor in the continuity equation (2.4) using the expressions from equation (2.6).

2.4 Direct tunnel in metal-semiconductor junctions

In a metal-semiconductor junction in equilibrium, the Fermi level of the semiconductor

must be aligned with the metal workfunction φm, as depicted in Fig. 2.2a, generating

an energy barrier at the interface. This barrier can be seen as a resistance (Rth in

Fig. 2.2b) in series with the channel resistance, therefore limiting the current. In

general, an ohmic contact (where the conctact resistance goes to zero) is desired to

avoid this problem. However, in many cases, specially when the semiconductor is a 2D

material, the metal workfunction is pinned to a value far from the desired ohmic contact

[109, 110, 119], and Schottky junction is formed. The simulated contact resistance can

greatly modify the behaviour of the device. Additionally, quantum mechanically, the

energetic barrier can also be tunnelled, resulting in thermionic-field emission (TFE)

tunnel current. Another resistance (Rtunn) in parallel with Rth, that can be several

times lower than the latter, appear.

The TFE model, as illustrated in Fig. 2.2a, is due to the fact that many times the

energy barrier is spatially thin, specially in 2D materials. In those cases, the carriers

can flow via direct tunnel from one side of the junction to the other, increasing the

total current that can operate in the device for the same bias conditions.

To include this tunnel effect, we have followed the formulation presented in the

works of Yang et al. [120] and Chang and Sze [121]. A Wentzel-Kramers-Brillouin

(WKB) approximation is used to evaluate the direct barrier between junctions of dif-

ferent materials. If the total tunnel current is injected only at the interface the tunnel

current must first drift to that point along the barrier. In many situations, this leads

to a bad evaluation of the actual tunnelling. This is specially relevant when the doping

density of the semiconductor is high. In this scenario, the barrier can be high and

the carriers cannot first drift along the strong potential barrier to later tunnel at the

interface. To overcome this problem, TFE must be considered in a region of points

not restricted to those exactly on the interface between both materials but including a
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Figure 2.2: (a) Band diagram of a metal-semiconductor junction with
a p-type contact and a n-type semiconductor in equilibrium conditions.
(b) Semiconductor and contact resistances, the last one formed by the
resistance related with the thermionic emission, which can be high due to
the band bending, and the resistance due to the thermionic-field emission.

region of a few-nanometers close to it. So, in a similar way as in [122, 123], instead of

adding all the tunnel current to the metal-semiconductor interface, we have distributed

their contributions along the positions inside the semiconductor close to the barrier.

To this purpose, in 1D, the electron tunnel current from ri to rI, JTn (ri) – where

rI is one arbitrary point exactly at the junction, and ri a point in the semiconductor

close to rI – is evaluated as:

JTn (ri) = qvn
th (ri)Nc (ri) γn (ri) {−fn

s (ri) [1− fn
m (rI)] + fn

m (rI) [1− fn
s (ri)]} (2.9)

and the corresponding hole current as:

JTp (ri) = qvp
th (ri)Nv (ri) γp (ri) {[1− fp

s (ri)] f
p
m (rI)− fp

s (ri) [1− fp
m (rI)]} (2.10)

where fs (ri) and fm (rI) are the Fermi-Dirac occupation functions at different positions

of the semiconductor and at the metal interface, respectively, evaluated as:

f (r) =
1

1 + e
Ef(r)−E(r)

kBT

(2.11)

where Ef refers to the pseudo-Fermi level of electrons in Eq. (2.9) and holes in Eq.
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(2.10). The tunnel contribution γn (ri), γp (ri) can be calculated as

γn (ri) =
1

kBT
Tn (Ec (ri)) ∆Ec (ri) (2.12a)

γp (ri) =
1

kBT
Tp (Ev (ri)) ∆Ev (ri) (2.12b)

where the transmission probability T (E) is obtained using the WKB approximation.

Here we assume a 1D system, so ri → xi and rI → xI and define the variable Ex as the

conduction band value at the spatial position xi, that is, Ex = Ec (xi). The general

form of the transmission probability for electrons is [120]:

Tn (Ex) =

{
exp

(
−4π

h

∫ xi
0 [2mn

eff (x) {Ec (x)− Ex}]1/2 dx
)

, Emin
c ≤ Ex < Emax

c

1 , Emax
c ≤ Ex

(2.13)

where h is the Planck constant, Ec (x) is the conduction band value at position x,

Emax
c = Ec (xI) is the maximum of the conduction band at the interface, and Emin

c =

max
[
Emin

c,I , Ec,W

]
, where Ec,W refers to the semiconductor conduction band far from

the interface and Emin
c,I refers to the minimum value of the conduction band at the

interface, which in this case it is simply Emax
c . In the next Section we will see how this

term can be different in heterojunctions. In a similar way, the transmission probability

for holes in one dimension is:

Tp (Ex) =

{
exp

(
−4π

h

∫ xi
0

[
2mp

eff (x) {Ex − Ev (x)}
]1/2

dx
)

, Emin
v < Ex ≤ Emax

v

1 , Ex ≤ Emin
v

(2.14)

with Emax
v = min

[
Emax

v,I , Ev,W

]
, and similar definitions for the rest of variables apply,

considering the valence band.

2.4.1 Image charges barrier lowering

Image charges induced at the surface of the metal due to the presence of opposite

charge particles in the semiconductor reduce the barrier height that carriers have to

face [118, 124]. The barrier lowering φδ (r) is conventionally modelled as proportional

to the module of the electric field |Efield (r) | close to the metal-semiconductor interface
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and is evaluated as

φδ (r) =

√
q|Efield (r) |

4πε (r)
(2.15)

where ε (r) is the value of the dielectric constant normal to the interface. This model

normally adds a small correction of the barrier, which however has a profound effect

on current transport processes in metal-semiconductor systems.

The barrier lowering is added to the interface equation, which now is not a fixed

Dirichlet condition (for more details about the boundary conditions, see Appendix C). If

we initially set the interface voltage to ψ0 = φm−χsc, the final potential in equilibrium

conditions is

ψ (rI) = ψ0 (rI) + φδ (rI) (2.16)

where rI refers to the interface location.

2.5 Heterojunctions and direct tunnel

An heterojunction consists of the union of two different materials with, therefore, dif-

ferent properties, such as electron affinity, energy gap or electron and hole effective

densities of states. When the two materials are connected, under equilibrium conditi-

ons, their Fermi levels are lined up and thus a band bending results [125]. This block

of the simulator is intended to get a more refined way to evaluate van der Waals hete-

rostructures, following a procedure similar to the one described in [126] and inspired by

the formulation presented in Yang et al. [120], Lundstrom et al. [127] and Verschraegen

et al. [128] works.

Figure 2.3a depicts the band diagram of an abrupt heterojunction, formed by two

materials with different electron affinities and bandgaps. These differences make the

conduction and valence bands to be discontinuous resulting in barriers for both carriers.

This is a special case of a more general situation, in which an oxide is present between

the two semiconductors, as in Fig. 2.3b. The potential inside the oxide varies linearly,

so the shape of the conduction and valence bands is linear. In the simplest case, where

only two semiconductors are involved, the left heterojunction interface is placed at the

rI location and divides the structure into two parts, each of them corresponding to

one material. The properties of each semiconductor are labelled with a minus (left

semiconductor) or plus (right semiconductor) superscript. Similarly, in the scenario

with an intermediate oxide, the left interface is labelled by rI. For electrons, the
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maximum of the conduction band Emax
c is used to define the barrier height. Emin

c,I is the

minimum of the conduction band at the junction, which can be also placed either at the

left or the right side. Here we consider a one dimensional scenario. The ∆E±c values

are the differences between the maximum value of the conduction band at the interface,

and the conduction band value for each semiconductor, that is, ∆E+
c = Emax

c − E+
c

and ∆E−c = Emax
c − E−c . In the case without intermediate oxide, this value matches

with the difference between the affinities of each material at the junction. For the

sake of simplicity in the notation, we define Ex as the energy at the xi position, so

Ex = Ec (xi), and Ec,W as the maximum of the conduction band at a point far from

the heterojunction. Similar definitions can be made for holes: ∆E±v is the valence

band gap for each side and Emin
v is the minimum of the valence band at the interface.

Ex and Ev,W have also the same definitions but referring to the valence band, with

Ex = Ev (xi) when the equations are referred to the hole current.

The drift-diffusion current expressions at the regions close to the junction are sub-

stituted by the thermionic emission equations, in which we have included a 1 + γn (rI)

term, which considers the thermionic-field emission contribution, TFE. So here we di-

rectly sum both the thermionic and tunnel contributions at the interface, which is

similar to the procedure presented in [120]. In γn (rI), the product of the occupation

and transmission probabilities is integrated, obtaining the tunnel contribution. The net

electron current at the interface xI is the sum of the left and right current components

[120, 128]:

Jn (rI) =J−n (rI)− J+
n (rI) =

− qv−th (1 + γn (rI))n
− exp

(
−∆E−c
kBT

)
+ qv+

th (1 + γn (rI))n
+ exp

(
−∆E+

c

kBT

)
(2.17)

where v±th and n± are the mean electron thermal velocity and the electron density for

each semiconductor. This probability is evaluated in the same way as in 2.13. γn (rI)

is obtained by integrating the transmission probability for all the energies:

γn (rI) =
exp

(
Emax

c
kBT

)
kBT

∫ Emax
c

Emin
c

exp

(
− Ex

kBT

)
Tn (Ex) dEx (2.18)
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Figure 2.3: Conduction band diagram of an abrupt heterojunction be-
tween (a) only two semiconductors and (b) two different semiconductors
and an oxide.

The hole current is evaluated in a similar way:

Jp (rI) = qv−th (1 + γp (rI)) p
− exp

(
∆E−v
kBT

)
− qv+

th (1 + γp (rI)) p
+ exp

(
∆E+

v

kBT

)
(2.19)

where γp (rI) at an arbitrary interface location rI is evaluated as

γp (rI) =
exp

(
−Emin

v
kBT

)
kBT

∫ Emax
v

Emin
v

exp

(
Ex

kBT

)
Tp (Ex) dEx (2.20)

using the transmission probability calculated as in 2.14.

The model adds some special considerations in equilibrium conditions. Here, the
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discontinuity in the conduction and valence bands caused by the difference of the pa-

rameters of each semiconductor has to be explicitly included in the Fermi function.

Taking one of the semiconductors as a reference (noted as ref), we evaluate [127]

n0 (r) =Nc (r)F1/2 (ηc) ,

with ηc =
ψ (r)

kBT
+
χsc (r)− χref

sc

kBT
+

1

2
ln

[
N ref

v exp
(
−Eref

g /kBT
)

N ref
c

]
(2.21a)

p0 (r) =Nv (r)F1/2 (ηv) ,

with ηv = −ψ (r)

kBT
− χsc (r)− χref

sc

kBT
− EG (r)− 1

2
ln

[
N ref

v exp
(
−Eref

g /kBT
)

N ref
c

]
(2.21b)

where χsc (r) is the electron affinity, Eg (r) is the band gap, and Nc (r) and Nv (r) are

the effective densities of states for electrons and holes, respectively.

2.6 Band to band tunnelling current

Previously, we discussed the tunnel phenomena in junctions of different materials within

the same band (conduction or valence). In this Section, we study a different scenario,

in which the conduction band, in some spatial locations, is energetically aligned to

the valence band in other positions. This is the typical scenario of a PN diode under

reverse bias. Under equilibrium or low bias, see Fig. 2.4a, below the thermal voltage

of the diode, the electrons (holes) from the conduction (valence) band can be energe-

tically aligned with unoccupied states of the valence (conduction) band. They have

a probability to tunnel from one band to the other, filling the unoccupied state, in a

recombination-like process. Similarly, under reverse bias, as depicted in Fig. 2.4b, very

few electrons are able to flow from the N doped region to the P doped. However, close

to the PN interface, there can be some occupied states in the valence band which are

energetically aligned with the conduction band. If the distance is narrow enough, an

electron can jump from the valence band to the conduction band, leaving a hole be-

hind, in which we can denote as a generation process. Here we use Kane’s model, which

derives from the WKB approximation in triangular bands, and that locally evaluates

the band to band contribution as a net generation-recombination U, which depends on
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2.6. Band to band tunnelling current

the electric field [129, 130]:

UKane (r) = AEα (r) exp

(
− B

|E (r)|

)
(2.22)

where A, B and α are fitting parameters, and E (r) is the electric field. This BTBT

method is local, which means that electrons and holes are generated or recombined in

the same spatial location, what can be inaccurate. Another drawback about using this

procedure is that it can give a non physical solution in equilibrium conditions, as this

model mathematically allows a non-zero generation-recombination rate, promoting an

unexpected current. To fix this problem, Hurkx’s model adds a prefactor that reduces

to zero the current in equilibrium conditions [131]:

H (r) =
n (r) p (r)− n2

i (r)

(n (r) + n0 (r)) (p (r) + p0 (r))
(2.23)

So the final generation-recombination using the Hurkx’s models is:

UHurkx (r) = UKane (r)H (r) (2.24)
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Figure 2.4: Band diagram of a PN junction with (a) a low bias, and
(b) a reverse bias. In (a), electrons flow from the n-conduction band to
the p-valence band, filling unoccupied states, which can be modelled as
a recombination process. In (b), electron-hole pairs are generated from
p-valence band the occupied states, as electron jump to the n-conduction
band, leaving a hole.
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2.6.1 Non local band to band tunnelling current

Usually, non local methods are more accurate when evaluating the band-to-band tunnel-

ling. In addition, they are physically more correct. It is possible to adapt the previously

presented models in a non local way. To do that, all the positions where band-to-band

tunnelling is possible (when valence band is aligned with conduction band) are eva-

luated, and the different generation-recombination contributions are added up. The

expression that evaluates all the contributions from different r′ into one single point r

is [130]:

Ubb (r) ∆r =
∑
(r′)

gbb

(
Eeff

(
r, r′

))
∆
(
r′
)

(2.25)

where ∆ (r) is the area associated to the location (r) and gbb (E) is a generation-

recombination rate calculated using the Hurkx or Kane’s model, that is, gbb (E) =

UKane (r) or gbb (E) = UHurkx (r), and changing its electric field by the effective electric

field, defined as

Eeff

(
r, r′

)
= ∆ψ/|r-r′| (2.26a)

∆ψ = ψ (r)− ψ
(
r′
)

(2.26b)

where |r-r′| is the distance between points. For all the tunnel current situations, it

must be fulfilled that Ec (r) < Ev (r′), for elastic transitions, or Ec (r) < Ev (r′) for

inelastic ones.

2.7 Generation and Recombination processes

Many physical phenomena that affect the transport can be modelled introducing a

generation-recombination rate that, in turn, is added to the drift-diffusion scheme

through the continuity equations. In this way, we have already seen the band-to-band

tunnelling models. The following subsections present the details of other processes

taken into account in this Thesis. Such phenomena included in the simulator are:

Schockley-Red-Hall effect, Auger and radiative recombinations, and light generation.

2.7.1 Schockley-Read-Hall recombination and generation

The SRH model [132] describes the statistic of the recombination and generation of

carriers occurring through the mechanism of trapping. The bandgap of the semicon-
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Figure 2.5: Graphical description of the various events that happen
during SRH generation or recombination process: (a) Recombination pro-
cesses. (b) Generation processes. (c) Relations with the trapped charges.

ductors tend to be larger than the kinetic energy of the carriers, making difficult the

promotion of a direct band-to-band generation event. But when the crystalline struc-

ture of the material is not perfect, for instance due to the presence of doping impurities,

a mid gap level, in between the conduction and the valence band, can be placed, so a

generation-recombination event can occur with a lower kinetic energy. The energy of

the carrier is exchanged in the form of a phonon. Four mechanisms, depicted in Fig.

2.5, are described by the SRH model [116]:

� Hole emission, ep, in which an electron jumps from the valence band to the trapped

level.

� Hole capture, cp, an electron moves from an occupied trap to the valence band

and annihilating a hole.

� Electron emission, en, an electron jumps from the trapped level to the conduction

band.

� Electron capture, cn, an electron moves from the conduction band to an unoccu-

pied trap.

The evaluation of this process is given by [133]

USRH (r) =
n (r) p (r)− n2

i (r)

τp (r)
(
n (r) + ni (r) exp

(
ET(r)
kBT

))
+ τn (r)

(
p (r) + ni (r) exp

(
−ET(r)
kBT

))
(2.27)

where τn (r) and τp (r) are the mean lifetime of electrons and holes, respectively, ET (r)

is the defect energy level relative to the intrinsic level Ei (r), which depends on the

selected simulated defect, and ni (r) is the intrinsic carrier density.
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Figure 2.6: Graphical description of the various events that happen
during Auger generation or recombination process: (a) Recombination
processes. (b) Generation processes.

2.7.2 Auger generation/recombination

This process is a the three particle transition that implies the recombination or gene-

ration of a carrier without absorbing or emitting the necessary energy from a photon.

Instead, another carrier gives or takes the necessary energy to promote a carrier capture

or emission, in four-step process schemed in Fig. 2.6 [134, 116]:

� Electron capture: an electron from the conduction band moves to the valence

band, transmitting the excess energy to another electron in the conduction band.

In the valence band the electron recombines with a hole.

� Hole capture: an electron from the conduction band moves to the valence band

transmitting the excess energy to a hole in the valence band, which moves away

from the valence band edge. The electron recombines with a hole.

� Electron emission: an electron from the valence band moves to the conduction

band by consuming the energy of a high energetic electron in the conduction band

and leaving a hole in the valence band.

� Hole emission: an electron from the valence band moves to the conduction band

by consuming the energy of a high energetic hole in the valence band. A hole is

left at the valence band edge.

This process is stronger in materials with low energy gap and high carrier densi-

ties. The energy exchange can be trap assisted. This mechanism has been proved of

relevance in 2D materials [135, 113]. The model used in SAMANTA relates the carrier
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concentrations with Cn (r) (Cp (r)), which are the Auger capture probabilities when

the increased carrier is an electron (hole) [134]:

UAug (r) = (Cn (r)n (r) + Cp (r) p (r))
(
n (r) p (r)− n2

i (r)
)

(2.28)

2.7.3 Radiative recombination

A radiative recombination provokes that an electron loses energy of the order of the

bandgap, which is emitted as a photon, and moves from the conduction to the valence

band. Figure 2.7a depicts the carrier transition. This process is stronger for narrow

direct gap semiconductors and it can be modelled by the following equation [134]:

RRad (r) = BRad (r)
(
n (r) p (r)− n2

i (r)
)

(2.29)

where BRad (r) is the radiative emission rate, i.e. the number of electrons N recombined

per unit time, which depends on the light frequency ω (which means, it also depends

on the photon energy Eph) and follows the rule

∂N

∂t
= −Bρ (ω)N (2.30)

where B is the Einstein B proportionality constant for photon induced emission, and

ρ (ω) is the radiation of the incident field at frequency ω.

2.7.4 Light generation

Photon-assisted generation promotes electron-hole pairs when the photon energy is hig-

her than the gap of the semiconductor, in the case of direct-gap materials. Figure 2.7b
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depicts the carrier generation process. The effect depends only on the light intensity and

the absorption coefficient, which can be assumed constant with the potential. Photon

power decreases exponentially as the light crosses the system. For a punctual mono-

chrome source light located at (r0), the generation rate at a semiconductor position (r)

can be computed as [136, 137]

Glight (r) =
Popt (r0)

Eph
α (r) exp (−α (r) |r-r0|) (2.31)

where Popt (r0) is the light power density, Eph is the photon energy, α (r) is the absorp-

tion coefficient and |r-r0| is the distance between each point and the beam.

The absorption coefficient can be extracted from the absorbance using the Beer-

Lambert law. Absorbance (A) is the logarithmic of the transmission coefficient, that is,

A = log10(T). Beer-Lambert law relates the transmission coefficient with the absorption

coefficient as:

α (r) = − log (T (r))

|r-r0|
(2.32)

2.8 Traps

At the junctions between different materials, defects, due to the disrupted periodicity of

the lattice, can appear, inducing unsatisfied bonds. The interface traps are energetically

located in the forbidden band and affect the device performance, as they can screen

carriers or trap them. In ideal pristine 2D materials, no traps are present. However, the

absence of dangling bonds in these materials promotes the appearance of unsatisfied

bonds in the oxide beneath them and could give place to a high density traps profiles

[109, 119]. This section explains the models that have been used in SAMANTA to add

the influence of interface traps in few-layer 2D materials.

The charge at the interface can be evaluated for acceptor and donor traps. In this

case, a Density of States (DoS) profile is defined for each of them: Da
it (E) and Dd

it (E).

The net charge of the interface is evaluated as [138]

Qit = Qd
it +Qa

it = q

∫ ∞
−∞

Dd
it (E)

[
1− f

(
E − Ep

f

)]
dE + q

∫ ∞
−∞

Da
it (E) f (E − En

f ) dE

(2.33)

where f (E − Ef) is the Fermi distribution. The Fermi level can be obtained from the
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carrier concentration as:
En

f − Ec

kBT
= F−1

1/2

(
n

Nc

)
(2.34a)

Ev − Ep
f

kBT
= F−1

1/2

(
p

Nv

)
(2.34b)

where F−1
1/2 (u) is the inverse of the Fermi-Dirac integral function, for which we employ

the following approximation [139]:

F−1
1/2 (u) ' ln (u)

1− u2
+

(3
√
πu/4)

2/3

1 +
[
0.24 + 1.08 (3

√
πu/4)

2/3
]−2 (2.35)

As for Dit (E), it is possible to select an arbitrary energetic profile. Some fixed

profiles have been defined, but SAMANTA is capable to use experimental results or

even a DoS obtained from first-principles simulations. It is possible to evaluate isolated

states or amphoteric compounds, in which the ions can act as donor or acceptor traps,

depending on the Fermi level position. Figure 2.8 depicts some models of amphoteric

densities of states using various profiles. In all the cases one of the curves can be

neglected in order to obtain only the term corresponding to the donor or acceptor

traps.

For a Gaussian profile, see Fig. 2.8a, the density of states is defined as

Dit (E) = Dmax
it exp

(E − Ea)2

2σ2
E

(2.36)

where Dmax
it refers to the maximum surface trap density per energy unit, which is set

to a gaussian distribution centred in the trap energy Ea with standard deviation σE.

In the case of a constant distribution, depicted in Fig. 2.8b, the expression is simply:

Dd
it (E) = Dmax

it , (E < Ea) (2.37a)

Da
it (E) = −Dmax

it , (E > Ea) (2.37b)

For the band tail distribution, shown in Fig. 2.8c, the density of states is evaluated as:

Dit (E) = Dmax
it exp

(
−E + Eg/2

ω

)
, with ω =

Eα
ln (αD)

(2.38)
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Figure 2.8: Models of amphoteric densities of states using (a) Gaussian
profile, (b) constant profile and (c) band tail profile. Red line refers to
donors traps, while blue line corresponds to the acceptor traps.

where the exponential decays in a way that the DoS in Eα is the 10% from the value in

the conduction/valence band. All the distributions can be applied for both donor and

acceptor traps at the same time, behaving as amphoteric traps.

The charge in Eq. (2.33) is a surface charge. In real devices we do not have a

perfectly flat surface, and therefore the traps are distributed in a certain region close to

the interface. The evaluated traps are thus distributed along a volume, with a spatial

distribution function. In the simulator, we employ a Gaussian distribution. Let rI an

interface point, and r the positions in which the traps are distributed, the expression

is given by

Qit (r) = Qit (rI)Agaue
(−|r−rI|2/2σ2

g) (2.39)

where x follows the direction perpendicular to the interface, starting from the interface,

σ2
g is the variance and Agau is the amplitude of the Gaussian distribution, defined by

Agau =
ti

σgto
√
π/2

erf

(
to

σg

√
2

)
+ ti

(
e−t

2
o/2σ

2
g − 1

)
(2.40)

here ti and to are the thickness of the material and the non-null region respectively,

and erf(x ) is the error function [140].
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2.9 The SAMANTA-SP1D block

The 2D Drift-Diffusion model gives a good electrostatic and transport description of the

simulated structures, provided that the band structure of the channel materials and the

carrier mobilities are accurate. In some cases, though, for example in back-gated few-

layer 2D-based materials devices, the quantum well formed by the created heterostruc-

ture (insulator and semiconductor) can modify the electrostatics (band structure) and

transport (mobility) properties of the materials. In such cases, a more detailed analysis

has to be carried out. In our simulator, the block SAMANTA SP1D has been deve-

loped to do it. By solving self-consistently the one dimensional Schrödinger-Poisson

equations, we evaluate the electrostatic potential, the wavefunctions and their corre-

sponding energy levels, which can be later employed to calculate the carrier mobility

(see Chapter 3). These elements let us evaluate the electron density more precisely

inside the semiconductor.

Similar to Eq. (2.1), the one dimensional Poisson equation in the y confinement

direction is used to calculate the potential:

∂

∂y
ε (y)

∂

∂y
ψ (y) = −ρ [ψ (y)] , (2.41)

where ψ (y) is the electric potential, ε (y) is the position dependent permittivity, and

ρ [ψ (y)] is the charge density. It is possible to use Dirichlet boundary conditions at the

metal interfaces, and Neumann conditions at the borders of the system. The charge

density is calculated from the 2D electron gas density of states expression [141] using

the orthogonal wavefunction envelopes ξi (y) and their corresponding energy subbands

Ei obtained from the Schrödinger equation. Here, we use the parabolic Effective Mass

Aproximation (EMA) to solve the stationary, single-electron Schrödinger equation as

[142] (
−~2

2

∂

∂y

1

mn
eff (y)

∂

∂y
+ χref − χ (y)− qψ (y)

)
ξi (y) = Eiξi (y) (2.42)

where mn
eff (y) corresponds with the effective mass along the y direction, χref is a refe-

rence electron affinity and χ (y) the corresponding to the y position. The Schrödinger

equation is solved for each considered conduction band valley. After normalizing the

magnitude of the wavefunctions, the electron density is evaluated by adding up the

Simulator 35



Chapter 2. Electron devices models: background

contribution of all the conduction band valleys as [143]

n (y) = gsgv

∑
i

g (Ei) ‖ξi (y)‖2 (2.43)

where the gs and gv refer to the spin and valley degeneracies, respectively, and gI (Ei)

is the integrated density of states of a 2D electron gas confined in 1D:

gI (Ei) =
mn

effkBT

2π~2
log
(

1 + exp−(Ei−Ef)/kBT
)

(2.44)

2.10 Program workflow

SAMANTA evaluates several modules along the simulation procedure. To facilitate the

understanding of this process, Figure 2.9 shows the flowchart of a common iteration.

The simulation starts with the geometry mesh, obtained from the material blocks

and contact parameters, and determines the boundary conditions, which are necessary

for heterostructures and external boundaries.

After that, the finite difference solvers are executed. First, the device is evaluated

under equilibrium conditions. This gives some initial values for the potential and car-

rier densities, which are useful to boost the simulations in non equilibrium conditions.

This module also contributes to the calculation of the boundary conditions for metal-

semiconductor interfaces and generation-recombination rates. Every iteration, different

modules that works in conjunction with the Poisson equation (that is, impurity ioni-

zation, barrier lowering and traps) update the corresponding terms of each equation.

Fermi statistics are used to calculate the electron and hole densities. Finally, after

evaluating the equation, it is modified adding the terms corresponding to the Newton

linearisation method. The module ends when convergence has been reached.

After that, if everything worked properly, the non-equilibrium resolutor starts. This

model evaluates the selected equations which satisfies the needs of the specific device.

Each submodule also includes its linearisation using the Newton method. The necessary

submodules for the continuity equations are run, including:

� Generation and recombination modules, including band-to-band tunneling.

� Drift-Diffusion equations following the continuity equations.

� The TE or TFE model for contacts is selected, including the barrier lowering when
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it is desired. This model modifies the corresponding terms to the Drift-Diffusion

equations.

� Finally, the Drift-Diffusion terms are also modified in case of presence of hetero-

junctions.

Finally, the matrix for the Poisson equation is evaluated, including the impurity

ionization, the presence of traps at the selected interfaces, and eventually the full Pois-

son equation. All the three matrices obtained for the potential and carrier densities are

combined and solved. This process is repeated until a convergence criteria is satisfied,

similar to the one presented in [144, 145]. After that, the non-equilibrium solver can

be directly recalled with a new bias, without running the equilibrium-conditions block.
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Figure 2.9: Flowchart of SAMANTA. The equilibrium model is evaluated
in the beginning, but after this first iteration it is not necessary to repeat
this operation for every bias.
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Chapter 3

Electron mobility in few-layers

MoS2 MOSFET

3.1 Introduction

As schematized during the Introduction of this Thesis, the scientific community’s inte-

rest on bidimensional materials has grown during the last few years, as they are con-

sidered as one of the best alternatives to the traditional Si-based technology. Among

2D materials, the so-called transition metal dichalcogenides (TMDs) present interesting

properties to design and fabricate ultra-thin body devices. One special feature of some

materials belonging to this family, such as MoS2, is their variable bandgap as a function

of the thickness [78, 146, 147] or the applied stress [148]. In the case of MoS2, there is

also a transition from direct-band (monolayer) to indirect gap (multilayer) [147], that

may be harnessed in electronic and optoelectronic devices design, as for example, to

manufacture more efficient multijunction solar cells [149].

TMD semiconductors, are interesting candidates for their use in field-effect transis-

tors (FET). Their 2D nature could allow the fabrication of ultra-thin FETs, improving

the channel control by the gate, which would result in lower power consumption and

the reduction of the short channel effects [56, 57, 150]. Moreover, the 2D nature of the

material may be useful to reduce interfacial states and surface roughness, mitigating

the induced degradation of the carrier mobility appearing in ultra-thin Silicon FETs

[151].

In order to analyse the potential of MoS2-based devices, their electrostatic and
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transport properties need to be studied. The carrier mobility (µ) of these materials

is limited by phonon-scattering processes, which are unavoidable, but also by other

surface related scattering processes, and in particular by trapped charge (the so-called

Coulomb-limited mobility). Some works have dealt with monolayer mobility [152, 153,

154, 155, 156] as well as for thick MoS2 FET structures, in this case employing bulk

expressions [157]. However, a comprehensive analysis of the behaviour of TMD-based

devices with few nanometers thickness (roughly, from 2 nm to 10 nm), which we will

denominate few-layer thicknesses, is still lacking.

Here, we focus on phonon-and Coulomb limited electron mobility of few-layer MoS2

back-gated transistors, as at the current state of the technology, back-gated transistors

are specially suitable for fabrication: the 2D samples can be placed directly on the gate

oxide without the necessity of additional fabrication steps.

To perform this study, we employ the SAMANTA-SP1D suite presented in Chapter

2, which self-consistently solves the Schrödinger and Poisson equations in the confine-

ment direction of the heterostructure. The effective mass extracted from ab initio simu-

lations is employed [148, 158] to take into account the quantum confinement through the

Schrödinger equation, as well as other parameters of special relevance for the mobility

evaluation [159, 160, 161, 162]. The energy levels and wavefunctions achieved from the

Schrödinger-Poisson equations are then used to evaluate the electron mobility using the

Kubo-Greenwood technique [163, 164]. Our results [165], also presented in this Chap-

ter, prove that the electronic mobility in pristine samples of MoS2 is strongly limited

by phonon and Coulomb scattering, obtaining a good agreement with the experimental

results presented in the literature.

The outline of this Chapter is as follows. First, in Section 3.2, we present the

mobility evaluation model, including the different scattering mechanisms here consi-

dered. In Section 3.3, the device under study is presented, as well as the simulation

parameters employed. After that, Section 3.4 analyses the Coulomb-limited mobility

as a function of gate bias, thickness and temperature. Section 3.5 adds the effect of

Coulomb scattering in the study. Finally, Section 3.6 summarizes the main conclusions

of this work.
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3.2 Mobility evaluation

Carrier mobility is a decisive physical parameter in semiconductor technology, specially

suitable to seize the limits of each material or heterostructure. Here we explain how this

parameter can be evaluated under the Momentum Relaxation Time (MRT) approxi-

mation in conjunction with the Kubo-Greenwood formula, and we provide an overall

explanation of the procedure followed to obtain the final evaluation expressions for the

mobility as a function of the different scattering mechanisms considered. As we will

see, the evaluation of the mobility requires the previous analysis of the electrostatics of

the confined system, which we perform using the SAMANTA-SP1D module explained

in Section 2.9.

In the case of few-layer MoS2, the electrostatic analysis is performed considering

the configuration of its conduction band. This is important, as some parameters, such

as the band gap or the valley degeneracy, depends on the selected band structure.

Figure 3.1 shows that six identical minima of the conduction band are placed at the

corners of the Brillouin region, called K points, for a monolayer MoS2, but shifted to an

intermediate position along the Λ direction (joining the Γ and K points) in multilayer

MoS2. Therefore, the valley degeneracy (gv) for monolayer MoS2 would be 2 (as each

minima is shared between the three adjacent Brillouin zones) but is increased to 6 for

any other number of layers.

3.2.1 Momentum Relaxation Time

In a one dimensional confined system, the electrostatics in equilibrium can be evaluated

employing the Schrödinger-Poisson equations system. In addition, perturbations due

to particle interaction with the environment may be added in what we call scattering

mechanisms, which can set the system out of equilibrium. In the Boltzmann Transport

Equation (BTE), the term corresponding to the variation of the distribution function

over time due to the collisions between particles can be written as [141]

∂f (k)

∂t
= Sin (k)− Sout (k) (3.1)

where Sin (k) (Sout (k)) stands for the rate of particles changing their wavevectors to

(from) k . In this context, the Momentum Relaxation Time (MRT) approximation con-

siders the perturbations in the system to cause small deviations from the equilibrium,

and assumes a uniform transport condition (i.e., that all the macroscopic quantities are
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(a) (b) (c)

Figure 3.1: Band structure of (a) monolayer, (b) six layer and (c) bulk
MoS2 semiconductor. In the bulk and few-layer cases, the conduction band
minima are placed in the Λ direction, and the valence band maxima at
the Γ point, giving an indirect bandgap. The material shifts to a direct
although larger gap when it is exfoliated up to its monolayer thickness,
moving both the conduction band minima and valence band maxima to
the K point. Reprinted by permission from Springer P.K. Eur. Phys.
J. B, Electronic structure of transition metal dichalcogenides monolayers
1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct
band gap semiconductors, A. Kumar and P. K. Ahluwalia, copyright ©
2012 [76].

independent of the r position in the transport plane). Under these conditions, if an

electric field F = Fαêα is applied, and then disappears at a given time, Eq. (3.1) for

the i -th subband becomes

∂fi (k)

∂t
' − δfi (k)

τi,α (k)
= −fi (k)− f0 (Ei (k))

τi,α (k)
= Sin (k)− Sout (k) (3.2)

which means that the deviation δfi (k) of the occupation function fi (k) with respect

to its equilibrium f0 (Ei (k)) decays governed by the time constant τi,α (k).

Using Eq. (3.2), it is possible to calculate the electron mobility. To do so, the

corresponding time constant of each scattering mechanism for each state (i,k) have to

be evaluated first. Here, three assumptions are considered in the physical modelling of

these scattering events [166]:

� The collisions is considered instantaneous, as they occur in a very short time

scale.

� The collisions originate a change in the particles trajectory, which modify their

wavenumber, but there is no change of their spatial positions.
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� The scattering interaction is weak.

Under these assumptions, the scattering balance can be calculated using the Fermi

Golden Rule, which provides an expression for the scattering rates Si,j
(
k , k ′

)
given a

perturbation potential ψ̃ (r) associated to the corresponding scattering mechanism. A

more detailed explanation of this procedure for a 1D gas can be found in [140]. The

general expression of the scattering rate is:

Si,j
(
k , k ′

)
=

2π

~
∣∣Mi.j

(
k , k ′

)∣∣2 δ [E′ − E ± ~ω
]

(3.3)

where δ (x) is the Dirac function, ~ω is the energy exchanged in the interaction and

Mi,j is the matrix element for the interaction between an initial state (i,k) with energy

E and a final state (j,k ’) with energy E′, which under the effective mass approximation

(EMA) for 1D confined-systems in the y direction has the general expression:

Mi,j

(
k , k ′

)
= 〈ξi (k , y) |ψ̃ (k , y) |ξj

(
k ′, y

)
〉. (3.4)

It strongly depends on the scattering mechanism considered, demanding a separated

analysis for each one of them. With this scattering rate definition, the final expression

of the flux balance reads:

Sin,i − Sout,i = −δfi (k)
∑
j,k ′

Si,j
(
k , k ′

) [1− f0 (E′)

1− f0 (E)

][
1−

τj,α
(
k ′
)

τi,α (k)

vj,α
(
k ′
)

vi,α (k)

]
(3.5)

where we have defined the electron velocity as vi,α (k) = ~−1∇Ei (k). This equality can

be used in Equation (3.2) to obtain an implicit expression of the MRT, as it is present

in both sides of the equation, giving:

1

τi,α (k)
=
∑
j,k ′

Si,j
(
k , k ′

) [1− f0 (E′)

1− f0 (E)

][
1−

τj,α
(
k ′
)

τi,α (k)

vj,α
(
k ′
)

vi,α (k)

]
(3.6)

An explicit expression of the MRT can be obtained under the approximation of

small differences between τi,α (k) and τj,α
(
k ′
)

for all subbands and wavevectors, which

reduces this equation to:
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1

τi,α (k)
=
∑
j,k ′

Si,j
(
k , k ′

) [1− f0 (E′)

1− f0 (E)

][
1−

vj,α
(
k ′
)

vi,α (k)

]
(3.7)

The contributions of each one of the scattering mechanisms per subband are summed

up to evaluate the total momentum relaxation time as:

1

τi,total (k)
=
∑
s

1

τ si (k)
(3.8)

where the superscript s is used to denote the corresponding scattering mechanism.

The next step is to evaluate the mobility of each subband µi, once τi,total (k) is calcu-

lated. Considering the assumptions of the MRT, we use the so-called Kubo-Greenwood

formula [163, 164]. Let us start defining the current density per unit length due to the

i-th subband of a 2D electron gas in one of its directions α:

Ji,α =
q2

A
Fα
∑

k

vi,β (k) vi,α (k) τi,α (k)

∣∣∣∣∂f0 (Ei (k))

∂E

∣∣∣∣ (3.9)

where τi,α (k) includes all the scattering mechanisms considered. At the same time, if

we assume a linear relation between current and electric field we also have:

Ji,α = (qni) (µi,ααFα + µi,αβFβ) (3.10a)

Ji,β = (qni) (µi,βαFα + µi,ββFβ) (3.10b)

where ni is the inversion electron density of the i-th subband without accounting for

the valley degeneracy. Combining both equations, we can obtain the four components

of the electron mobility. For example, the mobility component in the α direction when

an electric field in the same direction (Fα) is applied can be evaluated as:

µi,α =
Ji,α
qniFα

=
q

niA

∑
k

vi,β (k) vi,α (k) τi,α (k)

∣∣∣∣∂f0 (Ei (k))

∂E

∣∣∣∣ (3.11)

The sum over k of a generic function can be changed by an integral over the cor-

responding kinetic energy Ep = E − Ei and angle θ [141]. For circular, parabolic

bands, the mobility gets independent of the angle as well as of the direction of the

electric field. In that case, the mobility is a scalar, which we can simply denominate

µi = µi,αα = µi,ββ , and µi,αβ = µi,βα = 0. Equation (3.11) reduces to:
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µi =
q

niπ~2

∫ ∞
0

dEpEpτi (Ep)

∣∣∣∣∂f0 (E)

∂E

∣∣∣∣ , (3.12)

Finally, we can note that, when temperature is not too low, there can be many

subbands carrying a significant charge in the inversion layer, so the total current density

is given by the sum of the contribution of the different subbands, and the average or

effective mobility µ, including the contribution of the different energy levels of each of

the valleys ν, can be evaluated as:

µ =
∑
ν

∑
i

ni,ν∑
ni,ν

µi,ν (3.13)

3.2.2 Scattering mechanisms analysis

There are various classifications in which we can divide the scattering processes, and it

is worth to emphasize them before describing each of the scattering mechanisms that

should be considered in MoS2-based devices.

� Intravalley vs. Intervalley. An intravalley transition provokes a small va-

riation of k , thus maintaining the carrier in the same valley it was before the

transition (see Figure Fig. 3.2). On the other hand, in an intervalley transition,

the value of k can be greatly modified as the electron jumps from one valley to

another, as depicted in Figure 3.3, which represents this kind of transitions for a

Brillouin cell of a monolayer MoS2 flake.

� Intraband vs. Interband. It only makes sense to consider this kind of splitting

in intravalley transitions. An intraband transition maintains the potential energy

and only modifies either the energy or the wave vector (or both) inside the same

subband. An interband transition allows the conservation of energy through a

variation of both, potential and kinetic energies.

� Elastic vs. Inelastic. An elastic transition does not change the total energy of

the carrier before and after the transition, but only its wave vector. On the con-

trary, an inelastic transition provokes a change of its energy, and as a consequence

requires the emission or absorption of a phonon with energy ~ω in the process.

� Isotropic vs. Anisotropic. Some scattering mechanisms depends on the initial

k and final k ’ wave vector, more specifically, on the angle between both wave
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Figure 3.2: Intravalley transitions of an electron in a cut of a parabolic
band. The f and b subscripts refer to the two possible states in the plotted
cut. During the process, the k moment is slightly changed. If the scatte-
ring mechanism is elastic, the energy of the electron does not change, and
the transition corresponds to the one depicted as a green square, which is
also an intraband transition. For inelastic processes, the energy level of
the electron may change between discretized states due to the absorption
or emission of a phonon with energy ±~ωph, allowing the change of its
potential energy, marked as red circles.

vectors. This is the situation of anisotropic mechanisms. In contrast, for isotropic

processes, the MRT evaluation is independent of the angle between the initial and

final wave vectors, simplifying considerably the scattering rate evaluation.

In this Section we explain how to calculate the MRT associated to different scatte-

ring mechanisms, in particular those related to crystal vibrations (phonons) and fixed

charges in the semiconductor (Coulomb), that are of most interest to evaluate the mo-

bility in MoS2 devices [157]. More details on the derivation of the employed expressions

can be found in [141].

At any finite temperature, the atoms in the crystal lattice oscillate with respect to

their nominal positions. Such vibrations of the lattice produce perturbations of the

potential corresponding to the ideal lattice, which become a noticeable source of carrier

scattering, in particular at room temperature. The quantization of the lattice vibrati-

ons, identifying the different vibration modes by their corresponding wave vector and

energy gives rise to the concept of phonons. The phonon modes are closely related to

mechanical strain in the crystal. In fact, the propagation of an acoustic wave corre-
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Figure 3.3: Intervalley transition of an electron due to the absorption
or emission of a phonon with energy ±~ωph. The solid hexagon encircles
the Brillouin region, whereas the dashed one the positions of the bands in
the multilayer scenario. During the intervalley process, the k moment is
greatly modified. At the same time, as the depicted process is inelastic, the
energy level of the electron is altered, allowing the change of its potential
energy, as well as its global position in the cell.

sponds to an spatial and time dependent strain of the crystal, which alters its band

structure. The local strain is associated with an energy shift of the crystal electronic

bands. Such an energy shift is what we interpret as the phonon scattering poten-

tial, which is the magnitude required to evaluate the matrix element of the associated

scattering rate. There are several types of phonons that have to be considered in the

assessment of the carrier mobility. In the case of MoS2, the following should be taken

into account: longitudinal and transversal acoustic phonons (LA and TA), longitudinal

optical phonons (LO), homopolar phonons (Ho), and polar optical phonons (POP) due

to Frölich interaction.

In a similar way, a Coulomb centre produces a perturbation potential which can

effectively scatter the carriers in a semiconductor device. For instance, in an MOS

transistor, such electrically charged centres are the ionized dopants in the channel, as

well as the fixed charges, either in localized states at the semiconductor-oxide interface

or in the gate-oxide stack. As the presence of fixed or trapped charges at the interfaces

between MoS2 and the insulators is expected, the Coulomb scattering mechanism should

also be considered for a realistic evaluation of the devices mobility.
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Acoustic phonons

LA and TA phonons can be classified as intravalley, isotropic and elastic phonon scat-

tering processes. Thus, the MRT calculation is reduced to a sum over the different

subbands belonging to the same valley and each value of k of the scattering rate. To

do it, the corresponding matrix element has to be evaluated, by means of the calcu-

lation of the deformation potential for acoustic and optical phonons, as explained in

[141]. For one valley, the final expression of the MRT in this case is:

1

τac
i (E)

=
2πkBTD

2
ac

ρ~v2
s

∑
j

Fj,i gj (E) (3.14)

As this is an intravalley transition, the summation runs over the subbands j cor-

responding to the same valley as the i-th subband. We define Dac as the deformation

potential, ρ is the semiconductor volumetric density, gj (E) corresponds to the density

of states of the j-th subband for a 2D gas, vs is the sound velocity in the material

for each given phonon process, and Fj,i is the form factor between the i-th and j-th

subbands, which is calculated as:

Fj,i =

∫
y

∣∣ξ∗j (y) ξi (y)
∣∣2 dy. (3.15)

Only final states with positive kinetic energy are allowed in this evaluation.

Homopolar and Longitudinal Optical phonons

In the case of Ho and LO phonons, they are modelled as inelastic isotropic processes.

Ho phonons are intravalley, and they are evaluated using the following expression:

1

τHo
i (E)

=
πD2

Ho

ωHoρ

∑
j

Fj,i

[
nHo +

1

2
∓ 1

2

] [
1− f0 (E ± ~ωHo)

1− f0 (E)

]
gj (E ± ~ωHo) , (3.16)

where, ~ωHo, DHo and nHo are the homopolar phonon energy, optical deformation

potential and phonon number, respectively. The phonon number can be calculated as:

nHo =
1

e
~ωHo
kBT − 1

. (3.17)
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As for LO phonons, they are intervalley transitions, where the electron changes its

state from valley ν to valley ω, and therefore the valley degeneracy of the transition,

µω ν should be considered in the calculation (5 for thicker devices, 1 for monolayer

flakes). In addition, it must be employed the corresponding values ~ωLO, nLO and

DLO. Recalling the form factor to include the intervalley transition as Fω jν i , the final

expression is

1

τLO
i (E)

=
πD2

LO

ωLOρ

∑
j

µω νF
ω j
ν i

[
nLO +

1

2
∓ 1

2

] [
1− f0 (E ± ~ωLO)

1− f0 (E)

]
gω j (E ± ~ωLO) ,

(3.18)

where the form factor is

Fω jν i =

∫
y

∣∣(ξωj (y)
)∗
ξνi (y)

∣∣2 dy. (3.19)

Polar Optical phonons

Polar Optical phonons are intravalley anisotropic inelastic processes, for which the

following expression should be used:

|Mi,j (Q)|2 =
Q2~ωPOP

4AQ

(
1

ε (∞)
− 1

ε (0)

)(
nPOP +

1

2
± 1

2

)
Ii,j (Q) (3.20)

which depends on the transition between the initial and the final state Q =
∣∣k − k ′

∣∣.
Here, ε (0) and ε (∞) refer to the static and high frequency dielectric constant, respecti-

vely; ~ωPOP is the POP energy and nPOP the corresponding phonon number, which is

evaluated as in Eq. (3.17). The upper and lower signs correspond to the emission and

absorption processes, respectively. The term Ii,j (Q) is the form factor associated to

this scattering mechanism, which must include the dependence between the initial and

final wave vectors and is therefore calculated as

Ii,j (Q) =

∫
y
dyξ∗j (y) ξi (y) ·

(∫
y′
dy′ξ∗j

(
y′
)
e−Q|y−y

′|ξi
(
y′
))

. (3.21)

When substituting in Equation (3.3), and this in turn in Equation (3.6), a complex

expression dependent of k and k ’ is obtained. We have simplified this equation consi-
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dering circular and parabolic subbands, and modifying the sum over k ’ by an integral

over the angle of Q , θ. For an arbitrary function multiplied by the Dirac function, we

have [141]:

∑
k ′

f
(
k ′
)
δ
(
E′ − E −∆E

)
=

1

(2π)2

∫∫
k ′
f
(
k ′
)
δ
(
E′ − E −∆E

)
dk ′xdk ′z =

=
1

(2π)2

∫∫
k ′
f
(
k′, θ

)
δ
(
E′ − E −∆E

)
k ′ (θ) dk ′dθ

(3.22)

where k ’ is the k ’ module. We know the integral of a function multiplied by the Dirac

function at an arbitrary position x0 is the value of the function in that position x0. Here

we combine this fact with the relation between energy and wave vector for parabolic

bands:

vj =
1

~
dE

dk′
=

~
mtr (θ)

k′ (θ) (3.23)

where mtr is the effective mass in the transport direction, which is a constant value

along all the integral. Using the first equality and the Dirac property, we can solve one

of the integrals:

1

(2π)2

∫∫
k ′
f
(
k ′
)
δ
(
E′ − E −∆E

)
k′dk′dθ =

1

(2π)2

∫
θ
f (θ)

1

|~vj (θ)|
k′ (θ) dθ (3.24)

and using the second equality, we can delete the k ’ dependency:

1

(2π)2

∫
θ
f (θ)

1

|~vj (θ)|
k′ (θ) dθ =

1

(2π)2

∫
θ
f (θ)

mtr (θ)

~2k′ (θ)
k′ (θ) dθ =

=
1

(2π~)2

∫ 2π

0
mtr (θ) f (θ) dθ

(3.25)

Specifying to the scattering rate in Equation (3.25) to the POP matrix element and

substituting in Equation (3.6), an expression of the MRT dependent of this Q difference

is given by
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1

τPOP
i (E)

= U
∑
j

mtr

[
1− f0 (E ± ~ω0)

1− f0 (E)

] ∫ 2π

0
dθIi,j (Q)

1

Q

(
1−

∣∣k ′∣∣
|k |

cos (θ)

)
(3.26)

where the electron velocities quotient has been substituted according to the equality

in (3.23) by a term dependent of k ’, k module and the angle between them, and U is

given by

U =
q2~ωPOP

8π~3

(
1

ε (∞)
− 1

ε (0)

)(
nPOP +

1

2
± 1

2

)
(3.27)

Coulomb centres

Finally, we have included the Coulomb scattering associated with the presence of fixed

charges in the semiconductor. Coulomb scattering is an intravalley elastic scattering

mechanism, in which we have included the non parabolicity of the bands to generate

a more general formula. The MRT of the Coulomb scattering follows the formula

[141, 167]

1

τi (E, θ)
=
Hν (Ep)

2π~3
[1 + 2αnpEp]

∫ 2π

0
dθ′mxy

(
θ′
)
|Mi,j (Q)|2

[
1− cos (θ′)

cos (θ)

]
. (3.28)

Here, Hν is the step function, αnp is the non-parabolicity factor and mxy (θ′) is a

ratio between the confinement and the transport effective masses, following

mxy

(
θ′
)

=

[
cos2 (θ′)

mx
+

sin2 (θ′)

my

]−1

(3.29)

where the θ′ is the angle between the final state j of the electron with wave vector k ′

and the electric field. The angle θ has a similar meaning, in this case considering the

initial state i with wave vector k . The vector Q has the same meaning as in the POP

scattering rate evaluation, that is Q = k ′−k . Its module is the distance between them,

and can be evaluated as Q2 = k2 + k′2 - 2kk′cos(θ′ − θ). Finally, the matrix element

|Mi,j (Q)|2 has been evaluated considering the screening effect. The screening produced

by the free carriers in the inversion layers has a large impact in the Coulomb scattering

rate, so neglecting the screening in calculation of the scattering rates may result in a
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vast over-estimation of their values. Considering this effect, the matrix element can be

calculated as

|Mi,j (Q)|2 =

∫
y

∣∣M0
i,j (Q , y0)

∣∣2NII (y0) dy0 (3.30)

where NII is the volumetric density of Coulomb centres and the screening matrix ele-

ment
∣∣∣M0

i,j (Q , y0)
∣∣∣2 is evaluated using the scalar dielectric function εD (Q), which adds

the screening effect:

∣∣M0
i,j (Q , y0)

∣∣2 =

∫
y
ξ∗j (y)

ψpc (Q , y, y0)

εD (Q)
ξi (y) (3.31)

Here, the ψpc (Q , y, y0) is the scattering potential, calculated using the method

explained in [168, 169, 170] for oxide-semiconductor-oxide stacks. This Equation is

applied only in intra-subband transitions. For inter-subband transitions, the dielectric

function is approximately equal to one. The scalar dielectric function can be calculated

as:

εD (Q) = 1−
∑
ν,i

q2

Q (εsc + εox)
Πν,i,i (Q) (3.32)

where Πν,i,i (Q) is the polarization factor, evaluated in a more general way as

Πν,i,j (Q) =
∑

k

fν,j (k + Q)− fν,i (k)

Eν,j (k + Q)− Eν,i (k)
(3.33)

and fν,i (k) is the occupation function of the subband (ν, i), which for low fields can be

reduced to the one corresponding to the Fermi-Dirac occupation function:

fν,i (k) = f0 (Eν,i (k)) (3.34)

where the sum over k has been converted to an integral according to Eq. (3.22), so we

finally evaluate:

Πν,i,j =
2gνm

tr

2π~2

∫ ∞
0

(1 + 2αnpEpdEp)

∫ 2π

0

f0 (k, q, θ)− f0 (k)

Eν,j (k, q, θ)− Eν,i (k)
(3.35)
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3.3 Device under study

Due to their interest in logical applications, we have focused this chapter on the analysis

of the electron mobility of back-gated Metal-Insulator-Semiconductor transistors, with

MoS2 as the channel material, for various thickness Tsc ranging from 2nm to 10nm.

The device under study is inspired in the experimental device presented by Kim et

al. in [157]. The structure is depicted in Figure 3.4, where Al2O3 is employed as a

gate insulator, with thickness Tox = 50 nm, and Ti is the metal gate used. The device

channel is oriented along the x direction, being y the confinement direction (as assumed

in the rest of this Chapter). Both x and z directions are assumed large enough, so that

the thick long channel device can be accurately modelled employing the SAMANTA-

SP1D module. This allows us to evaluate the potential, wave vector, energy levels and

electron densities, values that will be used later to calculate the phonon and Coulomb

electron limited mobility in the transport direction.

VBG

VDS

Channel
Oxide

x

y

Tox

TSc

z

Source
Drain

Gate

Figure 3.4: Back-gated transistor studied in the confinement direction.
The plot also includes the direction of the electric field Fα in the transport
direction, as well as a representation of one wavefunction ξi.

3.3.1 Material Parameters

The aforementioned model needs several material parameters for both, electrostatic

and transport descriptions, which have been extracted from [157, 148, 171, 172, 152]

and are summarized in Table 3.1 and Table 3.2, respectively.

The few-layer MoS2 conduction band has been modelled as six equivalent parabolic

Λ valleys (gv = 6), with the effective mass values extracted from [148]. The in-plane
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effective mass has been considered as isotropic, and thus it coincides with the trans-

port effective mass m* tr
sc . It is calculated as

√
m∗‖m

∗
⊥, with m∗⊥ and m∗‖ the values

perpendicular and parallel to the Λ direction, respectively.

For the mobility calculations, several specific parameters related to the scattering

mechanisms are needed. Some of them can be found in the literature for bulk [157] and

monolayer [152] structures. However, which parameters provide the best fit for few-

layer flakes is not clear. In this study we chose to employ those parameters available

from the bulk published data sets, and complete the gaps employing the corresponding

monolayer MoS2 constants. The obtained values are presented in Table 3.2. This

approach can be justified from the fact that several parameters found in the literature

for both monolayer and bulk MoS2, such as ~ωPOP and ~ωHo, have been modelled with

almost identical values [152, 173, 157].

Parameter Unit Value

φm (eV) 5.2 †

χsc (eV) 4.3 †

εsc (ε0) 7.6 †

εox (ε0) 9 �

mconf
sc (m0) 0.49 ∗

mox (m0) 0.2 �

mtr
sc (m0) 0.62 ∗

gv (−) 6 †

∆EC (eV) 2.6 †

Table 3.1: Parameters employed to perform the electrostatic simulations:
† [157]; ∗ [148]; � [171]; � [172]. The ”sc” subscript refers to the semicon-
ductor, whereas the ”ox” one to the oxides. The ”tr” superscript refers
to the transport direction, and the ”conf” to the one corresponding to the
confinement direction. The ∆EC parameter is the semiconductor-insulator
potential barrier.
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Parameter Unit Value

DLA
ac (eV) 2.6

DTA
ac (eV) 1.0

ρ
(
kg · cm−3

)
7.03× 10−3

vLA
s

(
cm · s−1

)
6.7× 105

vTA
s

(
cm · s−1

)
4.2× 105

DHo
op

(
eV · cm−1

)
4.1× 108 (∗)

DLO
op

(
eV · cm−1

)
2.6× 108 (∗)

~ωHo (meV) 52

~ωLO (meV) 48 (∗)

~ωPOP (meV) 49

Table 3.2: Parameters employed to calculate the electron mobility in
few-layer structures, extracted from [157]. The (∗) values are taken from
monolayer calculations [152].

3.4 Phonon scattering results

In this Section, the phonon-limited electron mobility in few-layer MoS2-devices is ana-

lysed. We evaluate the effect of the temperature, the back gate bias and the channel

thickness. The back-gated transistor under study was presented in the previous Section

(Fig. 3.4).

First, we have validated the results of our simulator by comparing them with the

experimental data provided by Kim et al. [157], whose dimensions are Tsc = 30 nm

and Tox = 50nm. In the experimental conditions, the total inversion electron density is

set to Ni = 1.6× 1012 cm−2, so we have tuned the back gate bias in the simulations to

achieve the same inversion charge. Under these conditions, the electron mobility as a

function of temperature is shown in Fig. 3.5. The results show an excellent agreement

between the experimental data and our simulation results for temperatures higher than

200 K. Next Section will demonstrate that to provide more accurate results for lower

temperatures, Coulomb scattering needs to be included.

Once the numerical approach is validated, we focus on the analysis of the contri-

bution of the different phonon scattering mechanisms on the total mobility. To do it,

we deal first with a relatively thick device, with Tsc = 10 nm, and change both the

temperature and bias conditions. The electron mobility has been evaluated isolating

each of the different phonon mechanisms, and compared with the total phonon-limited

mobility as a function of the temperature. The achieved results are depicted in Fig.
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Figure 3.5: Comparison between experimental results (circles), extracted
from [157], and simulation results (dashed line).

3.6. Here, two values of the inversion charge Ni have been plotted, in weak inversion

regime, Ni = 1011 cm−2 (solid), and in strong inversion regime, Ni = 7 × 1012 cm−2

(dashed). In all the cases, the phonon-limited mobility increases as the temperature

is reduced. LO and Ho phonons have a negligible role in all the temperature interval

considered (although it should be noted that the influence of the scattering mechanism

when isolated from the rest may be underestimated, as the Matthiessen’s rule is not

applicable). For temperatures above 200 K, the most degrading scattering mechanism

is the polar optical phonons, and the total mobility clearly follows the POP-limited

mobility trend. In contrast, at lower temperatures, the POP mobility increases very

abruptly and acoustic phonons become the dominant rate. As for the influence of the

inversion charge, the trend in all the scattering mechanisms is shared, showing a re-

duction of the mobility when Ni is increased, except for the case of the polar optical

phonons, where the behaviour is the opposite. As a consequence of this trade-off, the

total mobility for the two Ni values considered is almost the same in the range of

temperatures between 200 K and 500 K.

The influence of the channel thickness is analysed in detail in Fig. 3.7, where two

temperatures have been considered: T=300 K (Fig. 3.7a) and T=100 K (Fig. 3.7b).

MoS2 thicknesses from 2 nm to 10 nm are studied, and the same values of Ni as in Fig.

3.6 are employed. Here, the POP-limited mobility depicts a non-monotonic behaviour

with the device size. In contrast, acoustic phonon-limited mobility simply decreases

with the device size. As for the total phonon-limited mobility, it follows the trend of

the most limiting scattering mechanisms at each temperature: i) at room temperature,
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Figure 3.6: Total phonon-limited mobility (blue circles) as a function of
the temperature, and contribution of each scattering process: LO (green
cross), Ho (purple plus signs), LA and TA already combined (yellow as-
terisks) and POP (red squares). The semiconductor thickness for this
evaluation is Tsc = 10 nm. We have considered two values of Ni: weak,
Ni = 1011 cm−2 (solid lines) and strong, Ni = 7× 1012 cm−2 (dashed lines)
inversion.

as POP is the main scattering mechanism, its non-monotonic behaviour is reflected

into the total phonon-limited mobility. ii) As the temperature is decreased, as shown

in Fig. 3.7b for T = 100 K, the POP and acoustic phonon contributions are flipped, so

the total mobility increases monotonically as a function of the semiconductor thickness,

following the acoustic phonon-limited mobility trend.

Finally, Fig. 3.8 shows the total phonon-limited mobility at room temperature as a

function of the inversion charge Ni, for three different semiconductor thickness: Tsc = 2

nm, 5 nm and 10 nm. As shown, the calculated mobility presents the non-monotonic

trend with the device thickness already depicted in Fig. 3.7a. The highest value of

mobility for the studied thickness interval, in the whole Ni range considered, is obtained

for Tsc = 5 nm channel. In very thin devices, such as Tsc = 2 nm (corresponding to

only three layers of the 2D material), the strong quantization and its influence on the

scattering form factors provokes a strong reduction of the mobility.
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Figure 3.7: Phonon-limited mobility dependence on the semiconductor
thickness for (a) T = 300 K and (b) T = 100 K. The contribution of each
scattering mechanism is also depicted, using the same symbol code as in
Fig. 3.6. Two values of Ni are considered: Ni = 1011 cm−2 (solid lines)
and Ni = 7× 1012 cm−2 (dashed lines). Device thickness from 2 nm to 10
nm are simulated.
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Figure 3.8: Phonon-limited mobility versus inversion electron density at
room temperature for three thicknesses: Tsc = 2 nm (blue circles), Tsc = 5
nm (red squares) and Tsc = 10 nm (green crosses).
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3.5 Coulomb scattering results

As shown in the previous Section, the calculation of the mobility taking into account

only phonon models provides a very good fit to experimental results detailed in [157]

at Ni = 1.6× 1012 cm−2 for temperatures above 200 K (see Fig. 3.5). For lower tem-

peratures, the phonon models deviate from the experimental results and additional

mechanisms are needed to explain the measured data. In particular, Coulomb scat-

tering should be considered for an accurate modelling at this range of temperatures.

So that, we have included Coulomb scattering in our simulations employing the model

presented in Section 3.2.2 and we have sought to improve the fit with the experimental

mobility [157] in an extended range of temperatures.

The best overall fit was achieved when employing a volumetric density of Coulomb

centres of 6.9× 1016 cm−3 in the whole semiconductor. For that value, we have recal-

culated the mobility as depicted in Fig. 3.9, together with the decomposition for each

one of the scattering mechanisms as well as the experimental results. As can be seen,

the Coulomb-limited mobility has a strong influence for the whole range of temperatu-

res. The reason may be found in the fact that the value for Ni is not large enough to

effectively screen the Coulomb potential. At higher Ni values, the influence of Coulomb

limited mobility should be reduced.
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Figure 3.9: Calculated mobility as a function of temperature. Compa-
rison with experimental results, considering both phonon and Coulomb
scattering. This second effect includes the screening produced by the car-
riers in the inversion layer.
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3.6 Conclusions

Phonon limited electron mobility

Back-gated FETs with a channel formed by few-layers of MoS2 have been analysed in its

one-dimensional confinement direction using the SAMANTA-SP1D solver. The band

structure of the semiconductor has been modelled using the effective mass approach.

By applying the Kubo-Greenwood formula, the phonon-limited mobility was calculated,

obtaining a solution in good agreement with experimental data for medium and high

temperatures. Our results demonstrate that the polar optical phonons govern the

phonon-limited mobility for high temperatures, and acoustic phonons play an important

role for low temperatures. The phonon-limited mobility has also shown a non monotonic

dependence with thickness, with a maximum around Tsc ' 5nm. This effect is related

to the form factor behaviour in the POP scattering mechanism. Thinner flakes drop

their mobility due to the strong quantum confinement.

Coulomb scattering for low temperatures

Coulomb scattering, including the screening effect, is modelled considering anisotropic

bands and a scalar dielectric function. Our results let us conclude that this scattering

mechanism is the most important degradation element of the electron mobility for low

temperatures.
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Chapter 4

Graphene-Silicon Photodiodes

4.1 Motivation

Optoelectronic devices based on graphene are getting the attention of a large number of

research groups and the industry during the last years [174]. Two key factors encourage

this interest. The first one is the broadband spectral range of graphene [60, 175], caused

by the uniqueness of its conical and gap-less energy dispersion relation which provides

a noticeable responsivity from Terahertz to the visible range. The second factor is the

ultrafast response [176, 177] owing to the exceptionally high carrier mobility, the high

saturation velocity and an important internal quantum efficiency of around 30% [178].

All these ingredients turn this material into a very good option to be used as part of

numerous optoelectronic devices.

Despite these promising properties, photodetectors and solar cells exclusively based

on graphene experience an extremely low absorption, eventually leading to a small

photoresponsivity [62]. The cointegration of graphene with traditional semiconductors

is proposed as the solution to fabricate practical hybrid devices, benefiting from the

unique properties of each material.

The extremely low photon absorption and reduced sheet resistance of graphene

makes it a suitable transparent electrode which could be placed on top of the absorbing

material without shadowing it. This idea is a common approach in the design of

optoelectronic devices, currently implemented by means of the so-called Transparent

Conductive Films (TCFs), with Indium Tin Oxide (ITO) and Fluorine-doped Tin Oxide

(FTO) as their more popular representatives. But although these materials present a

Results 63



Chapter 4. Graphene-Silicon Photodiodes

high level of transparency and conductivity, they suffer a variety of notable drawbacks,

such as their chemical instability, brittleness, and high cost due to the scarcity of Indium

[179, 180].

So that, the transparency and high conductivity of graphene, as well as its reduced

cost, abundance and flexibility makes it prone to replace TCFs and traditional opaque

metals currently employed to collect photogenerated carriers. Hence, we begin focusing

on a simple photodetector structure, which combines graphene above n-type Silicon,

an heterostructure extensively employed due to its ease of fabrication as well as its

widespread application, specially among photovoltaic devices [181, 182].

To date, most of the studies dedicated to these hybrid graphene-Silicon photodi-

odes are focused on improving their performance, using the responsivity as the main

figure of merit (FOM). This parameter depends on numerous aspects of the fabricated

heterostructure, among which we can highlight:

� The number of graphene layers. The use of more than one layer reduces the

sheet resistance, but also drops the transmission coefficient. The optimum num-

ber of layers can be estimated as a trade-off between both factors, although the

fabrication process can also play a noticeable role [183, 184].

� The use of Antirreflective coatings (ARC), useful to reduce the reflection of the

incident light [185].

� The graphene workfunction, which can be tuned via electrostatic [186] or chemical

doping [177, 183, 187, 188], allows to shift the Fermi level in a controlled way. The

difference with the workfunction of the doped substrate sets a built-in potential

that lets the photogenerated carriers to be separated and extracted from the

absorber layer to the graphene flake, originating a photocurrent.

� The inclusion of an interfacial insulator between graphene and Silicon [189, 190].

So that, an increment of the photoresponsivity due to the presence of SiO2 has

been experimentally demonstrated [191, 192, 193].

However, there is still a lack of clear understanding about the physical mechanisms

that determine the behaviour of these devices. To shed light on them we have carried

out this work in close collaboration with the research group leaded by Professor Max

Lemme, at the RWTH Aachen (Germany), where different photodetectors based on

a graphene-Silicon heterostructure have been fabricated and thoroughly characterized.
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Our numerical simulator has been adapted to reproduce the experimental results thanks

to the inclusion of several modules.

4.2 Introduction: overview of the experimental results

The research work developed in this Chapter is founded in the hybrid graphene/Si-based

device presented by Riazimehr et al. in [194]. There, a continuous graphene layer was

placed across SiO2 and over a Si trench to form a device consisting of a graphene-Si

heterojunction (GS, from now on) and a graphene/SiO2/Si (GIS) field effect structure.

For the sake of completeness, let us provide some details of the fabrication process

employed. The fabrication of the device began with a lightly phosphorous doped n-

type Si <100> wafer (2 × 1015 cm−3), over which a silicon dioxide (SiO2) layer of 85

nm was thermally grown. To get the n-Si substrate exposed, the SiO2 was partially

etched after a standard UV–photolithography step with the desired pattern. Next,

the metal electrodes were defined in a second photolithography step by sputtering of

20 nm chromium (Cr) and 80 nm gold (Au) and lift-off process. To achieve good

ohmic contacts, the metals were deposited immediately after the native oxide removal.

Then, a graphene layer grown by a CVD process was transferred on top of the pre-

patterned substrate, ensuring the covering of the electrodes, part of the SiO2 and the

n-Si substrate. Prior to graphene transfer, the native SiO2 grown on the Si substrate

was removed, ensuring good electrical contact between graphene and Si substrate. The

last photolithography step was the oxygen plasma etching of graphene to define the

junction areas. The total surface covered by the GS junctions were ranging between

0.64 mm2 and 1.6 mm2. Here we have just sketched the fabrication process, a thorough

explanation can be found [194].

The experimental work of Riazimehr et al. [194] started with a detailed analysis of

the so-called reference device DRef, shown in Fig. 4.1a, in which Scanning Photocurrent

(SPC) measurements were carried out. In this process, a laser of λ = 532 nm, spot

size of 2.4 µm and light intensity of 5 µW, was swept along all the active area of the

photosensor for a fixed VR. At each position, the laser is stopped enough time to acquire

a stationary value of the current. Finally, a complete map of the current measured in

the whole device is achieved and the results are depicted in Fig. 4.2 for VR = −1 V

and VR = −2 V. There, we can observe that, for the larger reverse bias, the GIS stack

provides a much higher contribution (around one order of magnitude) than the GS
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(b) (c)(a)

DRef

Dx

Figure 4.1: Schematics of the full Dref (a) and Dx (b) fabricated devices.
(c) Photograph of a wire-bonded diode chip in its chip package. Figure
extracted from [195].

Schottky junction.

Those results led them to modify the design of the photodetectors in an attempt

to improve the device performance. As a result of this research, the interdigitated

Schottky and GIS structures shown in Fig. 4.1b were fabricated. Two different oxide

widths, 30 and 100 microns, were considered to analyse its influence on the device

performance. The interdigitated devices were named as Dx, with x referring to the

finger width. The three photosensors were compared when uniformly illuminated with

a monochromatic light source of 30 µW/cm2, showing noticeable differences in the

responsivity, as depicted in Fig. 4.3. These findings highlight the advantages achieved

using interdigitated GIS structures in these kind of photosensors.

Hence, in this Chapter, we will try to gain insight in the main mechanisms explaining

the differences between those devices, providing useful conclusions for the enhancement

of their efficiency. The Chapter is comprised of three main sections, each one targeting

different aspects:

� Analysis in dark conditions of the reference device, used to calibrate most of the

physical magnitudes.

� Results in illumination conditions using a lamp that covers the entire device. We

start studying the different photosensors in ideal conditions, and then we evaluate

the impact induced by the degradation of different magnitudes, specially those

related with the quality of the graphene-Silicon interface.
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0.09 μA

0.15 μA

V = -1 V

0.16 μA

1.59 μA

V = -2 V

(a) (b) (c)

Figure 4.2: (a) Optical micrograph of the DRef device. The black dashed
rectangle demarcates the graphene flake. (b) and (c) Measured current
using a Scanning PhotoCurrent (SPC) with λ = 532 nm and spot size of
2.4 µm. Light power intensity is 5 µW. Results for (b) VR = −1 V and
(c) VR = −2 V. Figure extracted from [194].

� Results under laser illumination. We emulate the Scanning PhotoCurrent (SPC)

measurements in our simulations, paying special attention to the most degraded

scenarios, to see the differences between the GIS and the GS stacks.

Each section provides a description of the scheme employed during the simulation,

as well as of the physical variables used to carry them out. The Chapter finishes putting

forth the main conclusions of this study.
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Figure 4.3: Measured responsivity for different light wavelengths at a
reverse bias VR = −2 V. Results for (solid line) D30, (dashed line) D100

and (dotted line) DRef devices. Figure extracted from [195]
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4.3 Reference device in dark conditions

The reference device is inspired by the photodiodes fabricated and characterized in

[194] and already shown in Fig. 4.1a. In order to carry out the numerical simulations

of these devices, we have considered a cross-section as depicted in Fig. 4.4.

SiO2GrapheneCr/Au

x = 0 μm  50 μm  300 μm  1200 μm  1400 μm  

Si-nTSi Wox

x

TOx
80 nm

300 μm

L = 400 μm

Figure 4.4: Schematic of reference device DRef similar to the one pre-
sented in [194].

The thickness of the oxide is Tox = 20 nm, a value high enough to prevent the elec-

tron tunnelling through it. In the simulations, both graphene and SiO2 are considered

transparent, so the photons are not absorbed when they pass through both materials

for the whole range of wavelengths employed in this study. In addition, we assume that

the potential is constant along the graphene layer, neglecting any potential drop. For

the simulation we have considered the same substrate thickness as for the real device,

TSi = 300 µm. This thickness ensures that all the photogenerated carriers are taken

into account in the evaluation, because it has been checked that, under uniform lamp

illumination, the carriers can diffuse far away from the top interface.

To carry out the simulations, we have employed the material parameters presented

in Table 4.1, where the meaning of each symbol is explained in Chapter 2. Most of the

simulations performed in this Chapter have also employed these parameters, although

there are Sections where some of them are modified to assess their impact.

In this section we compare the experimental measurements achieved in [194] with

the numerical results obtained after simulating the device depicted in Fig. 4.4 in dark

conditions. In particular, we have focused on calibrating the dark current (Idark). This

procedure aims to adjust one of the main parameters in this structure, the graphene

Fermi level (Ef,gr). As demonstrated in [196], due to the reduced DoS of graphene,
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Parameter Value

φref (eV) 4.52

φgr (eV) 4.82

Eg (eV) 1.12

χ (eV) 4.05

τbulk(µs) 1

µn

(
cm2/V s

)
1500

µp

(
cm2/V s

)
400

vth (cm/s) 1000

ND

(
cm−3

)
2× 1015

Table 4.1: Material parameters used in the simulations of the graphene-
Silicon photodetectors.

Ef,gr changes with the reverse bias as the substrate depletion charge is modified. As

graphene tends to present an intrinsic p-type doping, in addition to the charge needed

to compensate the fixed charge due to ionized donors in the surface of the Si substrate

close to the graphene film, these contributions shift Ef,gr from the theoretical Dirac

point ED that could be expected in an isolated material. This behaviour is described

with the equation [196]:

ED − Ef = −p0~νF

√
πp0 +QS (4.1)

where ~ is the reduced Planck constant, νF = 1.1 × 108 cm/s is the Fermi velocity,

p0 is the p-doping concentration of graphene and QS is the space charge per unit area

formed in the depletion region below the graphene contact. The Dirac point is located

4.5 eV below the vacuum energy. To achieve a good fit with the experimental results,

the initial hole concentration of graphene is set to p0 = 6.3× 1012 cm−2, resulting in a

graphene workfunction φgr = 4.82 eV. As the electron affinity of Silicon is χ = 4.05 eV,

the resulting Schottky barrier height (SBH) between graphene and Silicon is estimated

as 0.77 eV, a value quite similar to the one calculated in [194]. As for the metal

workfunction, it has been set to φref = 4.52 eV.

These parameters, together with those displayed in Table 4.1, were used in the

calculation of the dark current. A comparison between the data measured (symbols)

[194] and the simulated current density (solid-line) is shown in Fig. 4.5. A very good

agreement is achieved between both approaches, especially in the reverse bias region,

which is the one employed in the photodetector operation.
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Figure 4.5: Current density in the reference device in dark conditions.
Experimental data (circles), extracted from [194], and simulated results
(solid line) show a good agreement, especially for reverse bias.

4.4 Analysis under Lamp Illumination

The next analysis tries to explain the physical processes that determine the device

behavior under a uniform surface illumination.

Before proceeding with the simulations, let us present the model employed for the

interdigitated photodetector Dx. This device exhibits a complex structure where the

three spatial dimensions are relevant, complicating its analysis by means of our 2D si-

mulator. To deal with this challenge we have considered the structure depicted in Fig.

4.6, which corresponds to a transversal cut of one finger and assuming that the rest

of fingers behave in a similar way as the one under study, reducing the computational

burden required to simulated the whole structure. The reference contacts (Cr/Ni) are

placed on both sides of the finger. The active area is formed by a stack of graphene-

SiO2-Silicon (GIS) surrounded by graphene-Silicon (GS) heterojunctions. Graphene

width (Wg) at each side of the GIS stack is fixed to 20 µm, and the insulator/finger

width (Wox) is varied as part of our study. We assume a fixed value of the graphene

layer of 0.5 mm2, similar to the one employed in the experiments. So that, a different

number of identical fingers are covered by the graphene layer depending on the chosen

value of Wox. In our simulation of the D30 device a total width of Wg+Wox+Wg = 70

µm is considered and its length is fixed to 7.14 mm to achieve a final surface of 0.5

mm2. For D100 a total width of 140 µm must be employed and its length is reduced to

3.57 mm to achieve the same surface.
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Graphene Cr/Ni

Si-n

SiO2

TSi

x

Cr/Ni

Graphene

TOx

20 nm

300 μm

Wr 50 μm Ws 250 μm Wg 20 μm Wox 30/100 μm

Figure 4.6: Schematic of device Dx where one finger of width Wox = x
is coated by a graphene sheet with two lateral sides of Wg = 20 µm. The
length of the finger corresponds to the out-of-plane dimension and it is
scaled to keep a constant area of 0.5 mm2.

For the light wavelengths considered, both oxide and graphene have been safely

assumed as transparent. The applied light intensity is a parameter that can be varied,

and from it the total current is estimated. Hence, the device responsivity is evaluated

as the ratio of the photocurrent Iph to the light power density Popt multiplied by the

active area A:

R = Iph/ (A · Popt) . (4.2)
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Figure 4.7: Absorption coefficient of Silicon vs. light wavelength in nm.
Highlighted wavelengths, 532nm and 800nm are the ones employed in the
simulations. Data for this Figure have been extracted from [197].

Hence, the responsivity reports on the achieved photocurrent per Watt of applied
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Figure 4.8: (a) Scheme of the fingers of D30, showing the x -axis for (b).
(b) Module of the electric field in the GIS region of D30. Arrows indicate
the direction of the field.

optical power. To reproduce the experimental values of R achieved in [195], we have

illuminated the D30 photodiode with a monochromatic 800 nm light, placed above it.

The device operates with a reverse bias of VR = −2 V and the parameters contained

in Table 4.1 have been used to simulate the structure. The absorption coefficient (α)

for Silicon is a function of the light wavelength employed to illuminate the device. In

this sense, Figure 4.7 depicts this parameter for a wide range of wavelengths and the

two highlighted λ values correspond to those used in our study, α(532 nm) = 7850

cm−1, and α(800 nm) = 850 cm−1, respectively. As photons are absorbed following the

Lambert’s law, we can safely estimate the distance that photons have to traverse along

the Si-substrate to be absorbed in a 95% as 3/α.

First, the electric field below the GS and GIS heterojunctions is analyzed. To do

so, Figure 4.8a indicates the z -x axes employed in the representation of the D30 device.

Please, be aware of the different scale employed for the vertical and horizontal axes,

nm and µm, respectively.
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Figure 4.9: Lateral electric field component in the Silicon substrate for
the D30 device and different depths ( z), for VR = −2 V. Positive and ne-
gative values indicate electric fields aiming to the right or left, respectively.

Figure 4.8b shows the calculated electric field for the D30 device in both x and z

directions. A twofold representation has been employed. The colour scale indicates the

magnitude of the electric field as stated by the vertical colour column on the right side

and the arrows serve as eye-guide to approximately show the direction and intensity

of the field. As can be observed, the electric field is uniform below the GS and the

GIS regions, pointing to the graphene contact due to the negative applied voltage.

However, at the edge between both junctions the electric field is more intense and

pointing from the GIS to the GS junction. This lateral electric field component reveals

itself as determinant to understand the device behaviour, as its presence is responsible

of the high carrier injection in the corner via drift current.

In Fig. 4.9 a zoom of the lateral electric filed (Ex) is depicted for different depths

below the graphene-Si interface, located at z = 20 nm. It should be highlighted how

the Ex component is negligible in the whole substrate except for the transition region

between both heterojunctions. The Ex value is maximum at z=20 nm and decreases as

going inside the substrate. This lateral electric field extracts the holes photogenerated

in the Silicon substrate below the GIS junction and previously pushed by the vertical

field (Ez) up to the proximity of the oxide interface. As these holes accumulate below

the insulator they are extracted by the lateral field and injected into the graphene

contact.

Fig. 4.10 shows the band diagram along the x-axis for z = 20 nm in the D30 device.

Electrons are removed from the regions close to the interface while holes are attracted
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Figure 4.10: Band diagram of the GS and GIS regions of D30 for
VR = −2 V. The high graphene workfunction, combined with the strong
electric field reduces (increases) significantly the surface electron (hole)
concentration, causing the pseudo-Fermi levels approach to the valence
band.

there due to the strong electric field aforementioned. Both, the conduction and the

valence bands in the GIS junction are displaced with respect to the GS one, creating a

band-step in the transition region around x = ±15 µm. This difference is originated by

the small voltage drop in the oxide region, absent in the GS junction as the graphene

contacts directly on the silicon. This fact can be clearly observed in Fig. 4.11.
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Figure 4.11: Illustration of the band diagrams for (a) the graphene-
insulator-silicon junction and (b) the graphene-silicon junction. In the
first case the reverse bias is shared between the SiO2 and the Si while in
the second one it is totally applied on the substrate.

Let us now focus on the current balance in the device, mainly in the hole contribu-

tion, as the presence of the electron counterpart close to the interface is quite limited.

The presence of both drift and diffusion currents is represented in Fig. 4.12. As the

device is symmetric, vertical and horizontal contributions are plotted separately in the

left and right side of the device, respectively. Below the GS block, the presence of

drift current is predominant in both directions. For the GIS junction, the large con-

centration of holes gathered below the SiO2 is displaced to the lateral contacts by the

concentration gradient, so that diffusion current pushes the holes below the oxide up

to the graphene, because tunnel current through the oxide is forbidden.

Next, we can graphically check the current flow in the substrate as depicted in Fig.

4.13a. Deep inside the semiconductor, the arrows present the same length in both

the GS and the GIS stacks, indicating that the magnitude of the current is similar.

Moreover, at those locations the horizontal current is negligible. However, the current

decreases in the center of the device as it approaches to the insulator, and from there it

splits to the lateral contacts. In the transition region between both junctions, the lateral

electric field (Ex) drifts the holes to the graphene contact, achieving the maximum

injected current at that point. Fig. 4.13b shows the vertical current density (Jpz) at

the interface. The current can not be injected in the graphene contact in one single

point due to the finite thermionic velocity in the GS junction, distributing them in a

wider area to be absorbed. This diffusion process takes place very close to the interface.
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Figure 4.12: Drift and diffusion current influence in vertical (left) and
horizontal (right) directions. Below the oxide, diffusion current displaces
the holes to the contacts. In the corner drift current in both horizontal
and vertical directions pushes these holes to graphene.

Now, let us study the linearity of the photocurrent as a function of the applied light

power density. Henceforth, we study the two interdigitated experimental devices, D30

and D100. Figure 4.14 shows Iph for two different values of the light power density,

Popt = 25µW/cm2 and Popt = 100µW/cm2, as a function of the reverse bias. For

these illumination intensities, the increment in the light intensity results into the same

increase in the photocurrent, indicating that both devices are in the linear regime. This

result agrees with the previous analysis of Fig. 4.13, which showed how the magnitude

of the current density deep inside the Silicon is the same in both the GIS and GS

regions. For VR = −2 V, we see the photocurrent is 26% higher for D30 than for D100.

The calculated responsivities for these photocurrent values are 848 mA/W and 672

mA/W for D30 and D100 respectively. The difference between D30 and D100 agrees with

the experimental results in [195], where it is even wider (around 630 and 370 mA/W,

respectively). This is probably caused by the presence of other defects not considered

in this first iteration. The measured results, more similar to the simulated ones for high

reverse voltage, suggest that the performance of the device is close to the ideal one.

This means the difference between both experimental devices is not specially caused by

the interface quality, but by the structure dissimilarities.

These analysis let us conclude that, for non degraded interfaces, the D30 photosen-

sor shows a similar contribution to the photocurrent from the different regions. The

carriers photogenerated below the insulator diffuse to the contacts. This extra path
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Figure 4.13: (a) Hole current in the Silicon substrate of D30, for VR = −2
V. Arrows indicate the direction of the current. Current below the insula-
tor splits and flows to the contacts via diffusion. (b) Vertical component
of the hole current (Jpz) at the interface (z = 20 nm). Maximum injection
is reached at the edges between the GS and the GIS junctions, indica-
ting a strong carrier injection. Hole current is reduced for |x| > 15 µm
until a constant value is reached whose origin corresponds to the holes
photogenerated right below that point and drift by Ez.

may be useful to explain the degraded behaviour of D100. As the current model in

these simulations include a SRH recombination, the bulk carrier lifetime might be low

enough to recombine part of the holes that flow from the GIS region to the GS ones.

Figure 4.15 lets us check this fact. As can be seen, this Figure depicts the hole density

below the interface between the Silicon and the insulator/graphene for both D30 and

D100. The GS regions of D30 have been extended to allow the comparison. The hole

density in the GIS region for the wider device is around one order of magnitude higher

than for the narrower one, as holes are not as efficiently extracted as in the D30 photo-

sensor. In the next analysis the degradation applied to the graphene-Silicon interface

will show how the difference between D30 and D100 can narrow.
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Figure 4.14: Iph vs. voltage in D30 and D100 devices two uniform light
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Figure 4.15: Hole density in the GIS and GS interfaces for D30 and
D100, for VR = −2 V. GS regions of D30 have been extended to conduct
the comparison.
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4.4.1 Light wavelength dependence

A noticeable aspect to analyse is the variation of the photocurrent with the wavelength

of the applied light. This behaviour can be attributed to the dependence of the absorp-

tion coefficient (α) with λ. As it was shown in Fig. 4.7, lower values of α are related to

higher λ, as they correspond to less energetic photons. Assuming an exponential ab-

sorption of those photons inside the substrate, we can consider that a distance of 3/α is

a reasonable estimation of the substrate depth where carriers are photogenerated. The

thickness of the depletion region below the contact is of a few microns and, therefore,

most of the contributing carriers are photogenerated below it.
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Figure 4.16: Photocurrent vs. voltage in the D30, D100 and DRef photo-
diodes illuminated with two different light wavelengths, 532 nm (dashed)
and 800 nm (solid), respectively. The lower λ value produces a higher
photocurrent, due to the higher absorption coefficient.

Fig. 4.16 depicts the I-V plots simulated for the three photodiodes under study,

D30, D100 and Dref, illuminated with two different wavelengths, 800 nm and 532 nm,

at the same power density of 25 µW/cm2. The lower the wavelength the higher the

absorption coefficient and, therefore, the path length that carriers have to traverse to

be extracted through the contacts is reduced: as aforementioned, 95 % of the photons

are absorbed in the absorption length Labs = 3/α, which for the wavelengths of our

study results in Labs(532nm) =3.8 µm and Labs(800nm) = 35.3 µm. The probability

of recombination increases for those carriers that are photogenerated deep inside the

substrate. This fact explains the differences achieved among different wavelengths, with

a consistent larger contribution for lower λ values.

Moreover, when carriers are photogenerated within the depletion region they are

quickly attracted to the proximity of the contact. Therefore, the dependence with the

Results 79



Chapter 4. Graphene-Silicon Photodiodes

reverse bias is also more prominent for the lower wavelength as the increasing depletion

width allows the collection of a higher amount of photogenerated carriers.

4.4.2 Evaluation of parameters

Once the basic characteristics of the photodetector have been analyzed, this Section is

devoted to the assessment of the impact of different material and device parameters

on its performance. In particular, relevant parameters related to the graphene-silicon

interface properties will be considered, while the bulk properties, associated with the

silicon substrate, will be kept constant to their ideal values. Two important factors

considered for their evaluation are the thermionic injection velocity and the graphene

workfunction. Moreover, a low quality interface can be characterized by a high density

of interface traps, which would results in a carrier mobility degradation, a higher surface

recombination or the presence of a high surface doping.

Each of the considered parameters will be degraded in a thin region of thickness

Tint = 20 nm below the graphene layer, and the impact of such degradation on the

device behaviour will be evaluated. We assess the impact of each parameter individually,

namely, a specific magnitude is modified while the rest are kept constant to its initial,

non-degraded, value.

Thermionic velocity (vth)

The quality of the graphene-Silicon interface determines the easiness for carriers to be

injected into the contact. The thermionic velocity is a key parameter in the thermionic-

emission (TE) model that explains the behaviour of Schottky contacts. Hence, in this

section we have considered four different thermionic velocities, covering a wide range of

values (from 100 cm/s to 103 cm/s) [198], in two different photodiodes, D30 and D100,

for both, dark and illumination conditions (λ = 800 nm and Popt = 25 µW/cm2). The

results depicted in Fig. 4.17 demonstrate the limited impact of this parameter on the

total current achieved for both, illuminated (a) and dark (b) conditions. Only under

illumination and for very low biases we can appreciate a photocurrent reduction for the

lower recombination velocities. However, these differences disappear for larger reverse

bias conditions.

Figure 4.17 (b) demonstrates that dark current is independent of vth and the same

magnitude is achieved for both devices, D30 and D100. The reason is Idark mainly
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Figure 4.17: Photocurrent (a) and dark current (b) vs. voltage in the D30

and D100 photodiodes evaluated with four different recombination veloci-
ties. Only for (a) a small degradation of the photocurrent is appreciated
at low biases. (a) is illuminated with λ=800 nm and Popt=25 µW/cm2.

depends on the substrate quality and the distance between contacts, being both para-

meters identical in this case.

In spite of the limited influence of vth on the measured current, we have noticed

appreciable changes in the carrier density below the SiO2. To analyse this phenomena

Fig. 4.18 plots the electron and hole densities in the middle of the finger, at (x, z) =

(0, 20 nm). In dark conditions (bottom row), the influence of the thermionic velocity

results negligible for both types of carriers. Under illumination (top row), the electron

density becomes independent of vth for reverse biases lower than -0.4V. This result

could be expected as the electric field generated by VR pushes the electrons far from

the top interface as seen in the previous analysis related to Fig. 4.8. However, under

illumination, the hole density is modified when vth increases from its lowest value. It is

very interesting, from the viewpoint of the finger efficiency, to compare the hole density

behaviour for both devices as D30 shows a consistent lower hole density as D100 for all

the vth values simulated. Moreover, hole density tends to decrement with the reverse

bias in D30 while for D100 the opposite behaviour can be observed, as holes tend to

accumulate below the central point of the Si/SiO2 region. This different trend agrees

with the result depicted in Fig. 4.15, allowing us to conclude that narrower fingers are

more efficient extracting the photogenerated carriers.

As the reverse voltage is incremented, holes can be extracted more efficiently through

the lateral edges of the GIS junction reducing the hole density in its central region. Ho-

wever, for the D100 device, the insulator is wide enough to hide the effect of those lateral
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Figure 4.18: Electron (left) and hole (right) densities under the oxide,
in the middle of the finger vs. voltage in the D30 and D100 photodiodes
for different vth values in dark (bottom row) and under illumination (top
row).

drains. In that sense, we can find a close analogy to the channel in a MOSFET and

the reduction of channel charge close to the drain edge when drain bias increases.

Graphene workfunction (φgr)

In this section we analyse the impact of the graphene workfunction on the performance

of the photosensor. In contrast to metals, graphene presents a variable workfunction

as a result of the limited DoS, thus, the position of Ef can be modified due to the

presence of puddles, imperfections and even the applied bias that modifies the space

charge region below the contact. Hence, depending on those factors the Fermi position

can be shifted in a limited range around the selected value of 4.82 eV. As a higher value

of φgr would only enhance the hole extraction, no degradation would be seen in this

case. Therefore, we analyse a lower value of φgr = 4.70 eV.
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Figure 4.19: Photocurrent vs. voltage in the D30 and D100 photodiodes
for different graphene workfunctions.

The results shown in Fig. 4.19 demonstrate that only at very low reverse voltages

slight differences are appreciated. Moreover we have checked that these differences are

significant only for low vth values. For this reason, in Fig. 4.19 a value of vth = 1 cm/s

was considered, as for higher vth values negligible differences between both φgr were

achieved. The reason behind this behaviour lies in the fact that a reduced graphene

workfunction results in a lower built-in potential in the Schottky contact, reducing the

amount of holes attracted by the contact. However, for a high enough reverse voltage

those differences are masked and the current saturates to similar values, independently

of φgr.
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Figure 4.20: Electron (a) and hole (b) densities under the oxide vs.
voltage in D30 and D100 photodiodes for different graphene workfunctions
and uniform illumination of 25 µW/cm2. Thermionic velocity is set to vth

= 1 cm/s. Lower workfunction reduces the amount of holes attracted to
the oxide interface for low biases.
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Fig. 4.20 analyses the carrier concentration below the insulator for two different

φgr values under a uniform illumination of 25 µW/cm2. For low bias, the smaller

workfunction produces a higher electron concentration which decreases, as it could be

expected, up to a saturated value when the reverse voltage increases. Simultaneously,

the hole density drops continuously as the reverse bias increases and the D100 device

shows a higher hole concentration then its D30 counterpart, for the same reasons ex-

plained in the previous section. The workfunction value depicts a noticeable impact on

the voltage value necessary to achieve a null current, namely the open circuit voltage,

as a higher positive voltage is needed to reduce the potential barrier created by the

graphene-silicon junction.

Carrier lifetime under the graphene and the oxide

In this section we provide a critical analysis of the impact of carrier lifetimes τ on the

measured photocurrent. The variation of the time constant is related with the quality

of the materials and the interfaces, those being related with the fabrication process of

the device as the SiO2 is eliminated after an etching process is applied (see Ref. [195]).
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Figure 4.21: Photocurrent vs. voltage in the D30 and D100 photodiodes
for different recombination times in a 20 nm thickness below the oxide
(dashed-dotted line) and under the graphene.

As the quality of the interfaces at the GS and GIS junctions is quite different, this

parameter τ will be changed independently at each one in a region of thickness Tint

= 20 nm below the graphene layer and the oxide, respectively. Figure 4.21 depicts

the photocurrent evolution for three different recombination times under graphene,

τ=1 µs (solid), 10 ns (dashed), and 0.1 ns (dotted), and a constant value under the
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oxide, τox = 1 µs. A low recombination time indicates a degraded interface region,

which implies an increased recombination probability and a degradation of the device

performance. Figure 4.21 indicates that the achieved current is quite similar for τ =1

µs and τ =10 ns, and only for the lowest τ = 0.1 ns (dotted) a noticeable difference is

observed.

Finally, to assess the influence of the carrier lifetime below the oxide, τox has also

been reduced to 0.1 ns while τ below the graphene is kept constant to its highest value,

1 µs. The calculated photocurrent (yellow dashed-dotted line in Fig. 4.21) is similar to

that achieved with the much higher value of τox =1 µs, indicating the reduced impact

of that parameter on the device performance. The reason for its limited influence is

the reduced thickness where this degradation is considered, as the carriers circulate in

a much wider path below the SiO2. Moreover, as the insulator has been grown in a

thermal process, a high quality of the Si-SiO2 interface should be expected, leading to

a large value of τox, enhancing the important role played by the GIS junction in the

photodiode performance.

Variable doping under the graphene

Charged species in the surface of the active layer can originate from oxygen, organic

impurities, or metal atoms due to metallic contamination introduced from the grap-

hene’s transfer process [199]. In some cases, water and molecular oxygen have been

found to diffuse into the active layer through grains and pinholes in the graphene layer.

The presence of fixed charges at the interface between graphene and Silicon can seri-

ously hinder the extraction of photogenerated carriers as they screen the electric field

below the contacts. In this analysis, the presence of these fixed charges located in the

surface of the substrate are represented as an extra doping density in a thin region

of 20 nm, right below the graphene layer. The presence of these charges modifies the

electrostatics of the device, reducing the depletion region where the photogenerated

electron-hole pairs are separated by the electric field. To model this phenomena, two

different densities of donor impurities have been located below the graphene for the

D30 device.

The calculated results are plotted in Fig. 4.22, including a curve with the standard

background doping (ND = 2 × 1015 cm−3) for comparison purposes. The first doping

density, ND = 1018 cm−3, produces a considerable reduction of the photocurrent at

low reverse bias, but for VR < −0.3 V the current achieved is similar to the one in the
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standard situation. Hence, we increase the value of the surface doping up to ND = 1019

cm−3, to assess its impact. In contrast with the rest of curves depicted until now, this

one presents a S-shape, and the photocurrent achieved is considerably lower than the

previous ones for the whole range of applied bias. It has been checked that most of the

current contribution for ‖VR‖ < 1 V comes from the oxide region. For ‖VR‖ > 1 V,

carriers originated below the GS junction can flow and are extracted by the contact.

This additional contribution is manifested by the increasing slope obtained around -1 V.
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Figure 4.22: Photocurrent vs. voltage in the D30 photodiode for different
doping densities under the graphene contacts (Tint = 20 nm).

The electric field below the oxide does not suffer modifications compared with the

previous situations, as the considered doping is located just right below the GS junction.

The effect of this extra doping is similar, to some extent, to the concept of back-surface

field commonly employed in solar cells to avoid the recombination at the surface through

the reduction of the minority carrier concentration [200]. Only for high enough reverse

bias, the field is able to traverse this highly doped region, increasing significantly the

thickness of the depletion region and boosting the amount of collected photocarriers.

However, the asymptotic photocurrent is always lower than the one without this extra

doping.

To gain further insight on this phenomenon, Ez is depicted inside the device sub-

strate for VR = −0.5 V in Fig. 4.23, with the inset zooming the interface area. For

the applied reverse voltage, the high doping at the silicon surface screens the contact

charge. Hence, the depletion region below the graphene does not extend far inside the

substrate. On the other hand, the electric field can penetrate deeper below the oxide,

as no extra donor doping is present in the GIS stack. Graphene-Silicon interfaces pre-
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Figure 4.23: Vertical component of the electric field (Ez) for the D30

photodiode with an applied bias of VR = −0.5 V, and a donor doping
density of ND = 1019 cm−3 below graphene in a thickness of 20nm. Inset
shows a zoom of the interface, where a strong electric field is originated
by the presence of a high donor doping.

sent a strong electric field in a narrow region due to the high doping located in that

region, giving rise to a much shorter depleted region as shown in Fig. 4.23. For |VR| >
1 V, more charge is necessary to screen the graphene contact, depleting deeper regions

below the contacts, and increasing the amount of photocarriers collected. This is the

physical reasons behind the S-shape in the photocurrent. Moreover, this S-shape in the

photocurrent is very similar to the experimental results shown in [195], where it is even

more pronounced.

Variable carrier mobility

Close to the Si-substrate interface with air and graphene, carrier mobility can be sever-

ely reduced due to the presence of charged traps and defects. In this section, we assess

the impact of these non-idealities on the mobility of both, electrons and holes, located

in a region of thickness Tint. Fig. 4.24 depicts the calculated I-V characteristics for

both D30 and D100 with Tint = 100 nm (dashed) and Tint = 20 nm (solid) when µn and

µp are halved respect to their bulk value right below the GS regions. As it is obser-

ved in the Figure, the photocurrent is systematically reduced as the degraded region

gets thicker, and the reduced mobility impacts Iph uniformly in the whole bias range.
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Hence, we conclude that this parameter plays a noticeable role in the performance of

the device as it affects its responsivity. In this study, we have modelled the mobility

degradation as a step function in a limited depth just to demonstrate its relevance.

However, a more elaborated model could be proposed to fit the numerical simulations

with the experimental results.
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Figure 4.24: Photocurrent vs. voltage in the D30 (blue) and D100 (red)
devices when the carrier mobility is lowered to half of its bulk value in a
region of thickness Tint = 20 nm (solid) and Tint = 100 nm (dashed) right
below the GS junction.

As in previous discussions, electron and hole concentrations under the centre of the

oxide are depicted in Fig. 4.25 for the usual bias range, with the mobility degradation

limited to Tint = 20 nm. For electrons there are no discernible differences between

both, D30 and D100 devices when mobility is halved. However, for holes, the reduced

mobility produces a higher accumulation, more noticeable for wider fingers. Holes

photogenerated below the SiO2 are firstly pushed vertically by Ez and then they move

laterally due to a concentration gradient until they reach the lateral contacts. As

mobility and diffusion coefficients are related by the Einstein relation, the increased

difficulty of holes to diffuse laterally results in a higher hole density below the insulator.

The D30 device depicts an interesting situation as the hole concentration increases or

decreases depending on µp. The resulting trend depends on the balance of two factors.

First, as the reverse bias increases a higher amount of photogenerated holes are collected

and guided to the Si-SiO2 interface by the vertical field. Second, an increasing reverse

bias also produces higher lateral fields at the edges of the GS-GIS junctions. If the

mobility, and therefore the diffusion coefficient is high enough, this demand of carriers

in the lateral contacts can be supplied and therefore the hole density at the centre will

88 Results



4.5. Laser analysis

-2 -1 0

Voltage (V)

1012

1014

1016

h
+

de
ns

ity
 (

cm
-3

)

D
30

D
100

/2

-2 -1 0

Voltage (V)

102

104

106

108

1010
e

-
de

ns
ity

 (
cm

-3
)

/2

D100
D30 (a) (b)

Figure 4.25: Electron (a) and hole (b) densities under the oxide vs.
voltage in the D30 and D100 photodiodes when mobility under the inter-
faces corresponds to the bulk value and half of its value.

be reduced. But, if the mobility is low, the amount of received photoholes is higher

than those that are extracted through the lateral contacts, resulting in the increased

hole density observed for µ/2. For the D100 device, due to the higher width of the

finger, an increased amount of holes are collected and therefore, even for the high µ

scenario the hole concentration in the centre of the SiO2 grows.

Therefore, after this analysis we can conclude that the optimal finger width is closely

dependent on the carrier mobility efficiency. In the case examined here, the D100 device

is less efficient than the D30, and this efficiency depends on the diffusion coefficient and

the carrier lifetime. In an extreme situation (specially in the D100 finger), if very low

mobilities were considered, the GIS region would behave similarly to an isolated Metal-

Insulator-Semiconductor structure, which would produce a quick hole accumulation

with the increase of the reverse voltage.

4.5 Laser analysis

In the previous section we have analysed the behaviour of the photodiodes when a

uniform illumination is applied on its surface. Now, we focus on the relative contribution

of each one of the regions that constitute the device under study. To do so, we consider

a similar situation to the experimental scanning spectroscopy shown in Fig. 4.2, where

a laser with a fixed power density and wavelength scans the whole device surface while

the photocurrent is permanently monitored. This process will allow us to weigh the
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Figure 4.26: Schematic of the D30/D100 devices under test, depicting
the laser positions: on the air-Si surface, 50 µm away from the graphene
edge, on the centre of the left graphene-Si contact and on the middle of
the GIS junction. The values on top of the laser beam correspond to the
positions employed in the D30 device.

relative contribution of each region on the total photocurrent.

We begin this section studying the effect of a laser beam applied on three different

locations along the x-direction of both, the D30 and D100 devices. Fig. 4.26 represents

the situation corresponding to the finger of 30 nm width. For the D100 device, an extra

35nm should be added to the laser locations with respect to the numbers shown in that

Figure:

1. At the centre of the GIS region, position x = 0 µm.

2. At the centre of the graphene-Silicon junction; x = -25 µm for D30 and x = -60

µm for D100.

3. At the air-graphene region, 50 µm away from the graphene edge; x = −85 µm

for D30 and x = −120 µm for D100.

In some of the simulation sets, the selected laser positions will be shifted, and it will

indicated accordingly. The experiments carried out in [194] made use of a laser spot

with a diameter of 2 µm. To simulate a similar situation we consider the laser beam as

a rectangle of 1 µm × 3.14 µm area, achieving an equivalent illuminated surface.
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Figure 4.27: Photocurrent vs. voltage of devices D30 (blue) and D100

(red) when a laser beam is applied on the GS interface (solid), on the
center of the GIS junction (dotted), and onto both points simultaneously
(dashed). Light power density is set to Popt = 25µW/cm2, with an area
of 1 µm ×3.14 µm.

In our first evaluation, the laser power density is the same of the previous section,

where a uniform illumination of 25 µW/cm2 was employed. The structure implemented

in this case is assumed as ideal, namely, without specific degradation. The results,

depicted in Fig. 4.27, do not show visible differences between the laser focused on

the GS (solid) or on the GIS (dotted) section. The reason for this lies in the very

low applied power, as the laser spot is illuminating a surface ∼ 105 times lower than

the lamp. The case where the laser is applied on the air-Si region is not plotted, as

the current is negligible compared with the previous two situations. The simultaneous

application of two lasers on the GS and GIS junctions produces a total Iphoto (dashed)

identical to the addition of the individual contributions.

Fig. 4.28 depicts the hole density generated by the laser spot of λ = 800 nm and

Popt = 25µW/cm2 for the D100 device with a laser beam located on the GIS junction

(a) and the GS contact (b). Note that the maximum carrier density is much lower than

those achieved in the previous Section with the lamp illumination. Here, carriers are

photogenerated in the region where the laser is focused and from there, they rapidly

diffuse far away due to the pronounced concentration gradient. In the case of holes,

as depicted in Fig. 4.28, they need more than 50 µm from the laser location to return

to their bulk value. This distance is large enough to cover the whole D100 insulator

if the beam is placed at its centre. On the contrary, when a uniform illumination

is considered, the substrate increases its carrier concentration uniformly, without the
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lateral gradients presently observed.

Here, the carrier concentration and the photocurrent cannot be fairly compared

with the uniform illumination due to the large differences in the total applied power

in both situations. So that, using the same light intensity for the laser beam as for

the lamp provides very different carrier concentrations and therefore different photo-

currents. That is why higher laser intensities has also been analyzed, so as the achieved

photocurrent is comparable to those of uniform lamp analysis. To do so, we consider

two higher laser intensities of 15 W/cm2 and 150 W/cm2. Those intensities correspond

to a power of 0.68 µW and 6.8 µW, respectively, on the same spot area of 3.14 µm2.
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Figure 4.28: Hole concentration in the D100 photodiode originated by
an applied 25 µW/cm2 laser beam with VR = −2 V on the centre of the
GIS junction (a) and on the centre of the GS one (b).
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Figure 4.29: Photocurrent vs. voltage in D30 (blue) and D100 (red) for
a laser power density of (a) 15 W/cm2 and (b) 150 W/cm2 when the spot
is focused on the GS (solid) and GIS (dashed) junctions interfaces.

The obtained photocurrents for the ideal D30 and D100 devices are depicted in Fig.

4.29. The 15 W/cm2 laser intensity provides a total value of the photocurrent quite

similar to the one achieved with the uniform lamp illumination, above 100 nA, as in

Fig. 4.14. Applying the laser spot on the GS or the GIS junctions generates in this

situation a similar behavior for both devices. Only the photocurrent generated when

the laser is focused on the GIS junction of the D100 is slightly lower than for D30.

The reason can be found in the longer path that holes must traverse in this device to

reach the contacts, increasing the probability to be recombined. The situation is similar

when a higher light intensity is applied, 150 W/cm2, Fig. 4.29 (b). The applied power

is augmented in a factor ×10, so the photocurrent increase achieved is in this range

(' ×8).

For both applied powers, Iph quickly grows with the reverse voltage to reach its

saturation value. Nevertheless, higher |VR| values are needed for the larger laser power:

this effect is particularly well observed in the GIS curve of the D100 device. This

behaviour is similar to the experimentally measured, where the saturated Iph is reached

at different VR values depending on the applied light intensity.

To simulate a more realistic situation, we have assessed the impact of different non-

idealities making use of the parameters included in Table 4.2, that correspond to a

degraded situation compared with the ideal one.

Additionally, we have considered a trap distribution spatially distributed below the

graphene layer in a 2 nm thickness. Its energy profile follows a Gaussian distribution

centred 0.2 eV below the mid-gap, with a variance of σE = 0.15 eV and a maximum
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Parameter Value

Tint (nm) 20

τint(ns) 1

µn,int

(
cm2 V−1 s−1

)
15

µp,int

(
cm2 V−1 s−1

)
4

vth (cm/s) 1

Table 4.2: Set of parameters used to simulate degraded conditions in D30

and D100 photodiodes in Fig. 4.30.

value of Dmax
it = 5× 1013 eV−1cm−2. This high trap density can be caused during the

fabrication process as the SiO2 coating is removed through a wet etching step. Besides,

it has been experimentally demonstrated that heterointerfaces can also have a noticeable

trap charge density, due to incomplete bonds or the interaction between atoms of the

different interfaces [201, 202]. When a negative bias is applied to the contact, the

hole pseudo-Fermi level approaches the valence band and the traps become positively

charged as they are unoccupied. This Gaussian distribution is equivalent to apply an

uniform donor doping density of 2 × 1020 cm−3 in a thickness of 2 nm. The presence

of these positive charges originates a similar effect to those observed during the lamp

analysis when a donor doping density was regarded.
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Figure 4.30: Photocurrent vs voltage in the D30 (blue) and D100 (red)
photodiodes when a laser beam is applied on the GS (solid) and the GIS
(dashed). Simulation results (lines) were calculated making use of the
degraded conditions indicated by Table 4.1 and an laser intensity of 110
µW/cm2. Symbols represent experimental results. Circles/crosses corre-
spond to the GIS/GS junction of the D30 device.

This final evaluation has been carried out for both D30 and D100 photosensors and
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Fig. 4.30 gathers the main results when a laser of 110 W/cm2 is applied. That power

density corresponds to a 5 µW laser with a spot diameter of 2.4 µm. Those values

are similar to those employed in [195]. The experimental measurements for the 30

nm width finger have been included in the figure (symbols) as a comparison with the

simulation results. These solid and dashed curves highlights the noticeable impact of the

non-idealities located in the GS junction as they reduce considerably the photocurrent

compared with the same illumination in the GIS region.

The consequence of these non-idealities is the reduction of Iph when the laser beam

is placed on the graphene, as well as the observed S-shape curve in both the GS and

the GIS tests. The saturation voltage increases as the charged traps screens the gate

voltage, reducing the extension of the depletion width beneath the graphene, as it

happened in the lamp analysis with the interface donor density.

Overall, the degradation reduces the maximum photocurrent available for a fixed

light intensity. Moreover, the presence of the oxide is important to increase the efficiency

of the photosensor, specially if the graphene-Silicon interface is degraded, as it is usually

the case for the non-optimized technology. However, the width of the finger must

be careful selected as it is demonstrated by the experimental results, where the D100

photodiode depicted a lower efficiency than the device with a shorter finger.

This analysis proves the importance of the interface locally to the laser position,

as it was demonstrated by the good agreement between simulations and experimental

results shown in Fig. 4.30.

Figure 4.31: Hole density in the D100 device for VR = −2 V when a laser
beam of 110 µW/cm2 is focused on the (a) air-substrate junction, (b) GIS
region and (c) GS junction. Degraded conditions are imposed in these
cases (see Table 4.2). Top row: Tilted view of the hole density from the
xz-plane. Bottom row: Vertical view of the hole density on the xz-plane.
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To finish this section we focus our attention to Fig. 4.31, that shows the hole

distribution generated by the laser beam focused on three different locations of the D100

photodiode for VR = −2 V. It has to be stressed how holes are spread in the substrate for

the first and third scenarios, while in the second one, photogenerated carriers are picked

up by the electric field, reducing considerably their spreading through the substrate.

This gives an idea of the photosensor efficiency, depending on the easiness for the holes

to be attracted to the Silicon surface.

4.6 Conclusions

Photodiode performance in ideal conditions

For non-degraded interfaces, the graphene-Silicon heterojunction can provide the best

performance as the photogenerated carriers are collected directly by the graphene con-

tact. In this situation, the presence of the GIS stack forces the carriers to flow to the

contacts, first by drift and as they accumulate below the gate insulator as a lateral

diffusion current. This longer path makes carriers prone to suffer recombination.

Interface degradation

During the fabrication procedure, the interface between graphene and Silicon can be

seriously degraded, affecting a variety of parameters that have been analysed. Ther-

mionic velocity and graphene workfunction degradation can modify the short-circuit

current and the saturation voltage. Carrier lifetime and mobility degradation redu-

ces the maximum photocurrent achievable. Traps and doping density at the interface

originate an S-shaped I-V characteristic, due to the screening of the electric field.

Scanning Photocurrent

Laser analysis shows how the degradation of the silicon surface in contact with the

graphene layer affects the device performance when that region is locally illuminated.

The presence of the SiO2 with a high quality interface increases the available Iphoto

in good agreement with the experimental results. This fact is especially noticeable for

high light densities.
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Chapter 5

Photogating in MoTe2

Phototransistors

5.1 Introduction

In the forefront of technological maturity, and intensively studied for a variety of ma-

terials and structures, are photodetectors [86]. So far, graphene and transition metal

dichalcogenides (TMDs) are promising candidates to this purpose, as discussed in the

Introduction of this Thesis. Regardless, the complexity of the device structure and

comprising materials, 2D photodetectors are still quite influenced by non-idealities. In

particular, traps and charges at the channel-substrate interface can impact strongly or

even dominate the device photoresponse. The influence of traps can, indeed, be trans-

lated into a beneficial mechanism, by which the trapped minority carriers contribute

to increase the photocurrent. The so-called photogating effect [203] has already been

observed experimentally in several 2D photodevices [204, 205], but apart from some

simplified analytical models [206, 150] there is still a lack of deep understanding on its

actual role. Here, by means of detailed numerical simulations, we explore and rationa-

lize the photogating effect in 2D photodetectors considering a MoTe2 phototransistor,

and analyse different traps characteristics, illumination and bias conditions.

This Chapter is structured in three parts. First, we validate the simulator against

experimental results in dark and illumination conditions in Section 5.2. Next, we inves-

tigate and rationalize the photogating effect, considering different traps and contact-

metal features in Section 5.3. Finally, we discuss the main conclusions in Section 5.4.
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5.2 Device structure and metal considerations

The photosensor here considered is inspired in the experimental realization described

in [207]. It consists of the back-gated phototransistor schematically depicted in Fig.

5.1. The semiconductor channel consists of a few-layer MoTe2 sheet, 8.4 nm-thick, and

5 µm × 8 µm long and wide, respectively. It lays on top of a bulk SiO2 substrate

(280 nm thick), back-gated by a p-type doped Silicon. The few-layer MoTe2 channel

is contacted by two Au/Cr electrodes acting as source and drain, respectively. The

response of the photosensor is analysed under a 637-nm monochromatic beam above

the device. The diameter of the spot light is 50 µm, completely covering the channel.

5 μm
MoTe2

SiO2

Au/Cr

8 μm

Figure 5.1: 3D schematic depiction of the MoTe2 photosensor (not to
scale).

To obtain both electrostatic and optoelectronic parameters, two experimental re-

sults have been employed: 1) the transfer curves in dark conditions for various drain

voltages, and 2) the output characteristics for different light intensities. First of all, we

have calibrated the MoTe2 parameters, as well as the metal workfunction, whose values

are shown in Table 5.1. The electron affinity is set to 4 eV, close to the ab-initio value

[208] while the band gap has been set to 1.07 eV, which is not far to the corresponding

value of monolayer MoTe2 [209, 210]. This is a reasonable value, as the change from

monolayer to bulk in MoTe2 is just around 0.15 eV [211]. As for carrier mobility, the

values considered in the simulations are slightly lower than the ones extracted in [207],

which are 5.9 cm2V−1s−1 and 0.3 cm2V−1s−1 for holes and electrons, respectively.

However, in the experimental extraction, the contact resistance is obliterated, what,

indeed, is a key factor to obtain the right trend of the transfer curves. The few-layer

MoTe2 is contacted by two Au electrodes playing the role of Schottky source and drain
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Parameter Value

ND

(
cm−3

)
1017

χ (eV) 4

Eg (eV) 1.07

φm (eV) 4.6

µn

(
cm2 V−1 s−1

)
0.06

µp

(
cm2 V−1 s−1

)
1.24

Table 5.1: Material parameters used for the MoTe2 simulation.

contacts with metal workfunction φm = 4.6 eV. This low workfunction can be explained

by the promotion of overlapped orbital states (also called metal-induced gap states)

[212, 213] that pin the Fermi level, resulting in a high contact resistance. The junction

between Au and the few-layer MoTe2 is, therefore, non-ohmic, as we can see in the

experimental transfer curves, presented in Fig. 5.2, where the slow current response

is not governed by the channel resistance, but by the contacts one. For low-doped

semiconductors and low VGS, the evaluation of a thermionic model with a Schottky

barrier would be sufficient to model the response. However, in this case the doping

density is expected, as in most TMDs samples, to be high. The large doping density

affects to the bands at the metal junction, depleting the semiconductor at the interface,

and allowing a tunnelling current component if the barrier thickness is thin enough [121].
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Figure 5.2: Experimental (symbols) and simulated (lines) transfer cha-
racteristics of the MoTe2 transistor in dark conditions for different VDS

values.

The slow current response with VGS can be explained in terms of the channel and

contact resistances. In particular, the large VGS applied should rapidly increases the
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channel conductivity, but the result points out that there is another resistance controlled

by the gate bias which slowly decreases as VGS is incremented. This is the contact

resistance, which apparently becomes the main actor controlling the device response.

In order to assess the influence of the contact, a distributed tunnel model in conjunction

with the barrier lowering explained in Section 2.4 are used. The contact behaviour can

be checked out in the band diagram depicted in Fig. 5.3. This diagram, as well as a

zoom of the source contact, have been plotted for VGS = 10 V and VDS = 0.2 and 1 V.

As can be seen, the Fermi level is always close to the conduction band, which would lead

to a very low channel resistance. However, the current is lower than the expected under

ohmic conditions. This is caused by the high energy barrier presents in both contacts.

As the doping density of this sample is not specially high, the tunnel barrier is thick

enough to prevent the flow of carriers. When the gate voltage increases, the barrier

is thinned, reducing the contact resistance and slowly increasing the device current.

The importance of this resistance can be contrasted in the first band structure, where

two different biases are shown. As the drain to source voltage is increased, the bands

tend to shift down in energy in the left corner, where the source is located. This effect

lowers the electric field in the channel, dropping the final drift current. The current

is therefore limited by the tunnel probability for these bias conditions. The contact

resistance reduction caused by the gate voltage is too weak unless the barrier lowering

induced by the charge image in the contacts is considered. This model shifts the metal

workfunction closer to the conduction or valence band, reducing the barrier height. Te

change is up to 0.2 eV for high gate biases, reducing the barrier in the case of electrons,

from 0.6 eV to 0.4 eV, and in the case of holes from 0.47 to 0.27 eV.
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Figure 5.3: (a) Band diagram of the device in dark conditions for VGS =
10 V and VDS = 0.2 V (solid) and 1 V (dashed). (b) Zoom of the source
contact for VDS = 0.2 V.

After the calibration of the electrostatic parameters, the light absorption coefficient

α, as well as the traps required to suit the photogating effect are also adjusted. The

absorption values are extracted from [209] and are close to the measured absorbance of

monolayer samples. In the case of traps, their features and a more extensive discussion

of their influence on the photocurrent is provided in the next Section. Here, we focus

only on the effect of the contact resistance and the light absorption.

Using the previously extracted parameters, the output curves are compared in Fig.

5.5 for three different light power magnitudes and VGS = 10 V. As can be seen, the si-

mulation results (solid lines) fit very well with the experimental ones, keeping the linear

regime for the applied biases. If we consider a modified situation with higher channel

conductivities balanced with lower absorption coefficients (dashed lines) the resulting

curves tend to saturate as the drain voltage is increased, due to the dominant role

played by the contact resistance, showing the importance of this effect also when the

device is illuminated. The energetic barrier that carriers have to traverse is mitigated
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as the light intensity increases, due to its narrowing with the increment of photogene-

rated carrier density close to the metal-semiconductor interface. Figure 5.5 also shows

other curves with reduced absorption coefficient and carrier mobilities (dashed). The

improvement of the channel conditions reveals the limitation of the photocurrent due

to the contact resistance.
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Figure 5.4: Absorption coefficient, α, of few-layer MoTe2 for different
light wavelengths after [209].

0 0.5 1 1.5 2

V
DS

(V)

0

0.05

0.1

0.15

0.2

0.25

C
ur

re
nt

 (
A

)

Experimental

Simulation

3 mWSimulation fitting

1 mW

0.6 mW

Figure 5.5: Experimental (symbols) and simulated (lines) output cha-
racteristics for VGS = 10 V under three different optical powers.

5.3 Photogating analysis

In order to understand the role of defects and imperfections and exemplify how they

can impact or even control 2D photodetectors, we have investigated how the energetic

features (amplitude, position, dispersion) of the traps influence the photocurrent under
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different bias and illumination conditions. We have considered the presence of hole

deep traps following a Gaussian energetic distribution, which would correspond to deep

localized states. The magnitude, standard deviation and energetic position of the traps

are evaluated in this Section. Here we focus on positive gate bias, but negative biases

would also produce a photogating effect if acceptor-like traps were evaluated. An

schematic depiction of the photogating effect induced by the traps is shown in Fig.

5.6: the noticeable influence of charged traps in localized states close to the interface,

playing the role of local gates, leads to a large photoconductive gain [203].

Figure 5.6: Schematic depiction of the MoTe2 photosensor. The interface
traps promote the photogating effect, due to the reduction of the channel
resistance for electrons.

The first analysis checks out the effect of a regular trap profile with different light

intensities. An energetic Gaussian profile with an amplitude of 3.5×1012 cm−2 eV−1, an

standard deviation of 35 meV, and centred 0.1 eV below the intrinsic level is used. The

integration of that trap distribution for all the available energies would produce a total

surface density of 3× 1011 cm−2. The traps are uniformly extended in a 0.7 nm thick

spatial profile inside the oxide. Then, the calculated photocurrent with and without

the presence of traps as a function of VGS is depicted in Fig. 5.7, for VDS = 1 V, and

two different metal workfunctions, φm = 4.6 eV (a) and 4.4 eV (b). As can be seen,

there is a remarkable difference between low and high light power intensities. For the

case with the higher calibrated metal workfunction:

� Without traps, the photocurrent increases linearly with the light intensity. On

the other hand, the curve as a function of the gate voltage presents an starting

increasing trend, up to certain point, where the hole depletion in the channel
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causes the photocurrent reduction.

� In presence of traps, the photoresponse is quite different. First, for gate biases

larger than 10 to 20 V, it shows a photoconductive gain due to the photogating

effect. This behaviour is specially remarkable for the lower light intensities and

higher gate voltages, where the evaluated photocurrent can be orders of magnitude

larger than the traps-free scenario. In this case, the hole population is not a

relevant factor for the photocurrent, as the photogating effect is caused by an

improvement of the electron channel conductivity. The traps are occupied with

the photogenerated holes, so the enhancement is not degraded unless a very high

gate bias completely depletes the holes of the channel.

� The available trap density is determined by the Gaussian energetic profile: once

all the traps have been activated, there is not any further improvement of the

channel conductivity. As a consequence, the difference between the photocurrent

in presence/absence of traps gets narrower as the light intensity is increased.

In order to study the impact of the contact resistance, this analysis is repeated with

a lower metal workfunction, φm = 4.4 eV (Fig. 5.7b). In presence of traps, Iph is clearly

boosted, w.r.t. φm = 4.6 eV; additionally, the photoconductive gain quickly becomes

saturated with VGS because the contact resistance is lower than the channel resistance

and affects to a lesser extent to the collection of the photogated electrons. On the other

side, in the absence of traps, photocurrent shows less differences, what confirms that

holes have a lower contribution to the total photocurrent when φm = 4.6 eV.

Next, we study how the increment of the conductivity due to the photogating effect

impacts on the current distribution along the channel. Figure 5.8 illustrates the electron

drifted-diffused photocurrent density in absence/presence of traps for VGS = 60 V,

VDS = 1 V, φm = 4.6 eV and Popt = 40 µW. As it can be deduced, positively charged

traps augment the electron population close to the oxide interface boosting the current

density in that region. It is interesting to remark the effect of the tunnel current in

the source contact (located in the left side of the channel, x=0 µm). As the current

approaches to the contact, it is injected through the energy barrier (what is appreciated

as a reduction of the drift-diffusion current). In the case with traps, the increment of

carriers at the proximity of the interface lets a higher amount of current to be injected.

We have extended the analysis to other workfunctions emulating different metals

contacting the MoTe2 channel. In particular, we have varied the metal workfunction of
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Figure 5.7: Photocurrent as a function of the gate voltage for different
light intensities in presence (solid) and absence (dashed) of traps for VDS =
1 V and φm = 4.6 eV. b) Same as a) with φm = 4.4 eV.

both contacts from φm = 4.3 eV up to φm = 4.7 eV focusing only on one light intensity,

Popt = 40µW, which results in an intermediate photoconductive gain. Figure 5.9 shows

Iph vs. VGS for different metal workfunctions. As can be seen, low metal workfunctions

produces the lowest photocurrent without traps, and the highest including them, while

high workfunctions yield very low photoconductive gains, and Iph is less dependent on

the gate voltage sweep. In more detail, we can split the effect of the metal workfunction

on the photocurrent into three broad scenarios:

� Low workfunctions (φm = 4.3eV) result in high energy barriers for holes, origi-

nating low photocurrents regardless the gate bias for the traps-free scenario. On

the contrary, when traps are activated, the low workfunction reduces the contact

resistance for electrons, giving rise to a photoconductive gain of a factor 4.

� As the metal workfunction is increased, more holes can be injected into the con-

tacts, balancing both carrier contributions. The contact resistance for electrons

is increased, degrading the impact of the photogating. So that, the final photo-
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Figure 5.8: Photocurrent density in the channel when traps are disabled
(a) and enabled (b). Dashed black line in the inset of (a) shows the section
of the device which is being plotted. Inset in (b) depicts Jph in the middle
of the channel. VGS = 60 V and VDS = 1 V.

current is mainly due to photoconduction.

� For the higher metal workfunctions, Iph increases continuously with VGS in pre-

sence of traps. This fact is due to the progressive reduction of the contact resis-

tance with VGS, which lets the photogating effect to be predominant.

In order to quantify the photogating gain, we have calculated the ratio of Iph in

presence and absence of traps, and the responsivity for VGS sweeping from 0 V up to

60 V and for optical powers from 0 µW up to 100 µW. Metal workfunction is set to

φ = 4.4 eV, and the results are plotted in Fig. 5.10. The maximum gain induced

by traps happens for low Popt and high VGS and can achieve more than two orders of

magnitude (due to the low value of Iph in the traps-free scenario). Trap-induced gain is

reduced for the lowest VGS values while it keeps high (around one order of magnitude)

for moderate VGS regardless the optical power. A similar analysis is reproduced for

φ = 4.6 eV in Fig. 5.11, showing the same trend, although this workfunction presents
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Figure 5.9: Photocurrent as a function of the gate voltage for different
metal workfunctions, in presence (solid) and absence (dashed) of traps for
VDS = 1 V and Popt = 40µW.

lower gains.

Finally, we have investigated how the device is affected by the specific features of

the trap profile. In particular, we have varied both the position of the Gaussian profile

and its standard deviation. To avoid the influence of the contact resistance, we kept the

metal workfunction to a value of 4.4 eV. An intermediate light intensity, Popt = 40µW,

is used. The maximum integrated trap profile is kept constant to 3× 1011 cm−2 so to

compare the different profiles in fair conditions. The amplitudes and σ of the considered

Gaussian profiles are summarized in Table 5.2.

σE (meV) Dit

(
cm−2eV−1

)
35 3.5× 1012

50 2.45× 1012

65 1.88× 1012

Table 5.2: σE (Standard desviation) and Dit (Amplitude) of the Gaus-
sian profile for a constant integrated trap density of 3 × 1011 cm−2. The
parameters of the first row, with the Gaussian centered 0.1 eV below the
intrinsic level, defines the default trap profile used in most of the analysis
carried out in this Chapter.

Fig. 5.12 shows Iph as a function of VGS for VDS = 1 V. The actual position of the

traps profile highly alters the photogating response. As the centre of the profile (Etrap)

is shifted closer to the valence band, the number of active traps (for low-to-medium

optical powers) is severely diminished, and Iph behaves in a more similar fashion to

the traps-free scenario. In particular, for Etrap = Ei − 0.4 eV, there is almost not
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Figure 5.10: (a) Responsivity and (b) Photocurrent ratio with traps
and without traps as a function of the gate voltage and the light intensity,
for VDS = 1 V, and φm = 4.4 eV (c) Zoom of the photocurrent ratio for
VGS = 60 V.

photogating effect, while for Etrap = Ei − 0.3 eV some impact in Iph is still observed.

Less impacting is the standard deviation change that results in variations in Iph below

7%. Interestingly, a smaller σ results in a higher Iph when the traps profile is nearer

to Ei, while for Etrap centred closer to Ev, a lower Iph is observed. This fact can be

understood from Fig. 5.13, which shows the energetic trap profile for the different

standard deviations studied, as well as for two positions of the Gaussians. The hole

Fermi level in the channel, at the vicinity of the oxide interface is indicated as a vertical

dashed line, for VGS = 60 V and VDS = 1 V. From the results we conclude:

� As the position of the Gaussian is located above the Fermi level (Etrap = Ei− 0.2

eV), spreading its DoS produces that a higher amount of states falls below Efp,

so those traps are not activated.

� In contrast, if the Gaussian profile is placed (Etrap = Ei − 0.4 eV) well below
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Figure 5.11: (a) Responsivity and (b) Photocurrent ratio with traps
and without traps as a function of the gate voltage and the light intensity,
for VDS = 1 V, and φm = 4.6 eV (c) Zoom of the photocurrent ratio for
VGS = 60 V.

Efp, an increment in the standard deviation leads to a higher number of activated

traps and therefore an increase in the photoconductive gain.
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Figure 5.12: Photocurrent for various trap profiles, varying its standard
deviation, amplitude and energetic position for Popt = 40µW, φm = 4.4
eV and VDS = 1 V.

Figure 5.13: Density of states of different trap profiles, varying the stan-
dard deviation of the Gaussian profile and its energetic position. The hole
Fermi level in the channel, close to the oxide interface is plotted (vertical
dashed line) for VG = 60 V, VDS = 1 V, Popt = 40µW, and φm = 4.4 eV
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5.4 Conclusions

Metal considerations in highly doped TMD semiconductors

In this chapter, we have checked the impact of interface traps in the behaviour of a

MoTe2 photosensor. In particular, the device parameters have been calibrated against

experimental results using a distributed direct metal-semiconductor tunnelling current

model including the image charge barrier lowering effect. Using this model, we have

reproduced to a very good degree of accuracy the experimental transfer and output

characteristics in dark and illumination conditions, respectively.

Photogating effect

We have then investigated the photogating effect as an important feature of photode-

vices based on 2D materials, which must be considered to properly model them. The

traps have been placed at the interface between the oxide and the channel sheet. For

low light intensities, we have observed that the total photocurrent is dominated by

the photogating effect, especially for low metal workfunctions. Photogating has been

analysed for different trap profiles, showing that the photoconductive gain is enhanced

with very deep level traps and narrower energetic profiles.
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Chapter 6

Graphene-MoS2 Phototransistors

6.1 Motivation

At the current stage of technology, 2D material-based devices are strongly affected by

the interfacial regions between the metal leads and the 2D crystals, which in most

cases define the device response as much as the intrinsic material properties do it. We

already discussed this fact in a MoTe2 phototransistor (see Chapter 5), where the metal

contacts presented a strong Fermi level pinning, setting a heavy contact resistance that

controlled the device response. There is a consequent interest to develop efficient,

affordable techniques able to create contacts with a reduced impact on the overall

performance of the device.

Here we introduce a novel technique based on van der Waals bonded contacts using

few-layer graphene that can be employed to define sub-micrometer channels, in a simple

and cost-effective way. The technique is based on the mechanical cut of graphene flakes

by means of an atomic force microscopy (AFM) suspended micro-tip. The resulting

cut defines the channel length where the 2D crystal is later deposited. The technique is

exemplified by fabricating a MoS2 photosensor, achieving large ON currents and high

photo-responsivity.
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6.2 Introduction

There is a recurrent Achilles’ heel spoiling the expected response of most 2D material-

based devices: the contact resistance, that in most cases is playing a comparable role

to the intrinsic 2D crystal properties in determining the device performance [214].

The conventional 3D solution to the contacts question (i.e. the chemical doping of an

intermediate region between the semiconductor and the metal) is, so far, not a feasible

and controllable alternative in 2D materials. Nevertheless, a similar behaviour may

be accomplished taking advantage of the stacking versatility of 2D crystals [68]. In

particular, the conciliation of metal leads and 2D materials could be reached by using

intermediate layers, specifically graphene. Graphene presents ohmic contacts with most

of the transition metal dichalcogenides (TMDs) [67], and improved charge injection

with metals making it an optimal substitute to the doping interfacial region in 2D

crystals. Indeed, graphene-TMDs contacts are less affected by the Fermi level pinning

than photolitographed metal-TMDs contacts [215, 216, 217], due to their cleaner van

der Waals interface. On the other hand, the graphene-metal contact is favoured by

the semi-metallic nature of graphene, and the possibility to improve the injection by

edge-patterning [114].

However, building these metal-graphene-TMD heterostructures is often jeopardized

by the complicated spatial alignment of several flakes of 2D materials. This constitutes a

major limitation for the fabrication of sub-micrometer channels, as it implies the precise

placement of two electrically isolated graphene flakes or the use of complex lithography

techniques. In order to face these limitations, in this Chapter we analyse an original

and cost-reduced fabrication technique that should enable high quality contacts to 2D

materials, in which sub-micron channel lengths can be achieved by mechanically cutting

few-layer graphene flakes using an Atomic Force Microscope (AFM) tip. The proposed

technique, that plays the role of a mechanic lithography, enables the fabrication of

sub-micrometer MoS2-based photodevices with graphene-gold contacts, and it is easily

extendible to any other 2D-crystal device, provided that a good electrical contact with

graphene is granted.

In the following we report the fabrication technique employed electrically and op-

tically characterizing the graphene-metal contacts before and after the AFM cut in

Section 6.3. Later, the electronic and photonic response of a fabricated multilayer

MoS2 photodevice are characterized and analysed in Section 6.4, observing photo-

responsivities as high as 113 A/W. This Section includes the experimental results of a
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similar device, in this case using a monolayer MoS2 sheet as channel. We complete the

study with thorough numerical simulations of the physical mechanisms controlling the

device current photoresponse and electrical conduction in Section 6.5. The Chapter

finishes with the corresponding conclusions in Section 6.6.

6.3 Device fabrication

In first place, both graphene and MoS2 flakes are exfoliated from bulk materials using

a viscoelastic stamp (GelFilm by GelPak) made of Polydimethylsiloxane (PDMS). In

general, exfoliated MoS2 tends to behave as an n-type semiconductor, due to the na-

tural presence of transition elements, specially Rhenium [104]. Both MoS2 few-layer

and monolayer scenarios have been studied, due to the improved mobility and light ab-

sorption of the multilayer case [143] and the direct gap of the monolayer material. The

thicknesses of the exfoliated graphene and MoS2 are characterized by AFM measure-

ments (ezAFM, NanoMagnetic Instruments), resulting in 9.7 nm for the few-layer MoS2

flake (corresponding to around 15 layers) and 2.3 nm for the graphene flake (roughly 6

layers).

(b) (c)

MoS2

(a)

Gold Graphene

PDMS

Chromium

SiO2

AFM tip

Figure 6.1: Fabrication process of the device. (a) The few-layer graphene
(grey) is deposited onto the pre-patterned Cr/Au contacts (yellow) using
a viscolastic stamp. (b) Next, the tip of the AFM cantilever is placed
gently touching the oxide close to the flake. The board is moved toward
the tip, breaking the graphene flake and forming two split sides. (c) A
MoS2 flake (blue) is deposited in the same way as in (a), contacting both
sides of the graphene flake. The measurement tips are placed touching the
Gold contacts.
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Figure 6.1 schematically depicts the process followed to fabricate the phototransis-

tors from these materials. First, the few-layer thick graphene is transferred onto a SiO2

(280 nm) / p-Si substrate, where Cr/Au leads (2/70 nm thickness) have been previously

patterned (Figure 6.1a). An optical image of the deposited graphene flake can be seen

in Fig. 6.2a. The structure is annealed for one hour at 200 ◦C, in order to improve the

adhesion of the flake to the substrate. Electrical measurements are performed at this

point to check that the current in the graphene flake is not modulated by the back gate,

confirming the semimetallic nature of the graphene layer, as seen in Fig. 6.3. From it,

one can observe the good electrical contact between the Au and graphene [216]-

Next, the deposited graphene flake is cut in order to create the channel region.

Laser-mediated techniques have been successfully used to ablate MoS2, obtaining very

good and uniform cuts even for thick flakes in a controllable way with times exposures

' 0.1s. We used a Raman laser with P = 28 mW, λ = 532 nm and diameter d = 1

µm attempting to vaporize the graphene flakes. However, no change was found when it

was applied to the graphene flakes, neither for monolayer nor thicker graphene flakes,

even when the time exposure to the light was increased beyond 100 s.

20 μm Gold

SiO2

Graphene

Graphene

Gold

SiO2

10 μm
0
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60

45

30

155 μm

z 
(n

m
)

(a) (b) (c)

Figure 6.2: Few-layer graphene flake before (a) and after (b) the cut. The
graphene (dark blue above the SiO2) is higlighted by the white dashed line.
The cut is indicated by the dotted line. Graphene is placed on top of the
SiO2 board (purple) overlapping both contacts (yellow). (c) AFM picture
of the graphene flake after the cut.

Alternatively, we designed a way to mechanically cut the flakes. To do it, we use a

brand new AFM tip (spring-constant K = 42 N/m, Bruker, model NCHV-A) to define

the channel length by mechanically slitting the graphene flake, Fig. 6.1b. The tip is

directed at a 75◦angle over the graphene plane, at a slow pace, ' 10 µm/s, to improve

the quality of the cut edges- Dotted lines in Fig. 6.2b frame the formed channel. Figure

6.2c shows an AFM image of the resulting structure. Once the graphene is divided into
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Figure 6.3: Experimental IDS − VGS curve before cutting the few-layer
graphene. The curve shows a very low gate modulation of the few-layer
graphene. Inset shows the absent of current flow after the cut.

two sections, electrical characterization is used to check that they are isolated (see Fig.

Fig. 6.3 inset). For the tested device, the distance between the two graphene flakes

is optically measured. The photographed channel is digitally processed to obtain the

distance from one side of the channel to the other pixel by pixel, with a sampling

resolution of 12 nm. The analysis carried out provides the histogram of the channel

length depicted in Fig. 6.4. As can be seen, the channel length is in the range between

200 and 600 nm, and can be modelled with a Gaussian distribution, with a mean value

of µ = 396 nm and a variance of σ = 120 nm.

Figure 6.4: Histogram of the flake channel length along its width. The
sampling resolution is 12 nm.

After this process, the exfoliated MoS2 flakes are deposited on top of the two grap-

hene sections (Fig. 6.1c). The final achieved phototransistor is shown in Fig. 6.5a. An
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Figure 6.5: (a) Optical image of the final device where the 10 nm thick
MoS2 flake (light blue, framed by the yellow dashed lines) is deposited.
(b) AFM picture of the final device before annealing, demonstrating how
the graphene groove is overlapped by the MoS2 flake. Bright spots may
correspond to blisters in the MoS2 flake, where OH groups accumulate
between the MoS2 and the graphene surfaces. (c) The same sample after
annealing.

AFM image is depicted in Fig. 6.5b, showing the appearance of some blisters in the

MoS2 flake over the graphene, which may be caused by an electrocatalytic activity when

the flakes are contacted, that would provoke the accumulation of OH groups between

both surfaces [218, 219]. To eliminate these deposits, the resulting device is annealed

at 350 ◦C for 18 hours in vacuum (0.1 mbar). This process reduced the number of

blisters at the surface, as depicted in Fig. 6.5c, at the cost of spoiling a few of them.

The irregularities of the cut generates many blisters close to the channel region, a fact

that may severely affect the device performance.

Figures 6.2, 6.3, 6.4 and 6.5, that have been used to illustrate the fabrication process,

correspond to the few-layer MoS2 device. Figure 6.6 presents the information regarding

the fabricated monolayer MoS2 device. Figures 6.6a to c show the different steps for

the fabrication process. We successfully fabricated a monolayer MoS2 phototransistor

with an average channel length of 852 nm: the channel is longer than the one achieved

for the multilayer device, although the cut is more uniform (Fig. 6.6d). The AFM

images (Fig. 6.6e and f) were captured after the annealing process, and they confirm

the monolayer thickness of the MoS2 flake.

During the experimental process, we have detected that the graphene surface is less

suitable to mechanically deposit MoS2 than the insulator and metal surfaces, as it did

not stick properly to the graphene surface. This drawback is particularly noticeable

when employing monolayer MoS2 flakes, which are more fragile and prone to cracks

and folds. Thus the experiment had to be repeated several times until we successfully
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got a monolayer MoS2 transistor without cracks. The best approach to get it is to start

depositing part of the flake on top of the oxide substrate, so that it is well grabbed,

reducing the damage in the flake when it is separated from the PDMS in the graphene

region.
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Figure 6.6: (a) Optical image of the final device where the few-layer
graphene is deposited, (b) cut and (c) completed with the monolayer MoS2

flake. (d) Histogram of the channel length, with an average value of 852
nm. (e) AFM image after the cut and (f) after depositing the MoS2 layer
and annealing. The monolayer surface presents less blister than in the
multilayer region.

6.4 Experimental results

In this Section, we present the electrical and optical characterization results achieved

for the fabricated graphene-MoS2 phototransistors. Let us first focus on the few-layer

MoS2 device.

First, the device current (IDS) was measured in dark conditions by connecting the

Source-measurement unit (SMU Keithley 2450) probes to the Au contacts attached to

the graphene flakes, to avoid their scratching, as shown in Fig. 6.1c. The output curves

are depicted in Fig. 6.7, where several values of the back gate voltage, from -10 V

to 60 V, were applied. The results reveal the symmetry of the contacts, which is well

preserved after applying the mechanical cut technique.
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Figure 6.8 shows the transfer characteristic of the device before (Fig. 6.8a) and after

annealing (Fig. 6.8b). The curves were taken with a double (forward and backward)

sweep, at a pace of 8 V / min. As can be seen, there is a strong difference between the

results for the forward and backward direction, specially in the results before annealing

(presenting a shift in the threshold voltage of around 40 V). The reason may be the

presence of traps in the MoS2 semiconductor and in the interface with the substrate.

We hypothesize this behaviour is closely related to the blisters seen before in Fig. 6.5b.

As a consequence, the device annealing softens this effect and reduces the differences

between the forward and backward sweeps, as shown in Fig. 6.8b.
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Figure 6.7: Experimental IDS − VDS curve for VGS values from -10 V to
+60 V in steps of +10 V.

As depicted in Fig. 6.8b, a negative value of the threshold voltage is obtained,

revealing the n-doped nature of the MoS2 flake. For high positive gate voltages, the

current begins to saturate, indicating the presence of a Schottky barrier between the

graphene and the MoS2 flake.

From the experimental curve it is possible to extract the field-effect effective electron

mobility in low field transport, assuming the contact resistance is low enough, as [141]

µ =
Lch

Wch

(
dIDS

dVGS

)
tox

VDSεox
(6.1)

where Lch and Wch are the channel length and width, respectively, tox and εox are the

insulator thickness and permittivity, and VGS and VDS are the back-gate and drain to

source voltages respectively. From this expression, the estimated electron mobility in

the fabricated device is 6 cm2/V ·s (for the forward curve) and 10 cm2/V ·s (for the

backward curve).
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Figure 6.8: Transfer characteristic for VDS = 0.1 V. (a) Before annealing,
(b) after annealing. Solid lines refer to the forward sweep, whereas dashed
lines refer to the backward one.

In order to evaluate the photodetection responsivity, the device is biased at VGS

= 0 V and VDS = 0.1 V and exposed to a monochromatic light source, with Popt =

27.7 µW, spot diameter 757 µm, and varying wavelength (λ) values from 420 nm to

850 nm. The light is applied through an ON-OFF keying shift with 0.1 Hz frequency.

The applied laser power was measured by shinning the LED’s light on a power meter

console (Thorlabs PM100D).

The measured current has been recorded and is depicted as a function of time in

Figure 6.9, for each of the applied wavelengths. Regardless the AC changes provoked

by the light turning on and off, there is a very slow drift in the captured current, which

may be caused by the presence of very slow traps, although this effect needs to be

confirmed. If enough time is allowed for the experiment, a stationary state is reached.

The photocurrent is then extracted using the current measured during the last minute

(corresponding to the last six cycles of the applied laser signal). First, the current is

filtered to delete any remaining slow drift caused by the traps. After that, a median
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Figure 6.9: Current vs. time for different light wavelengths after anne-
aling the few-layer MoS2 device. VDS = 0.1 V and VGS = 0 V. A time
varying square wave photo signal of frequency 0.1 Hz is applied.

filter is applied to suppress high frequency noise. Finally, the photocurrent is evaluated

as 〈IDS,ON−IDS,OFF〉, i.e., the average value of the difference between the ON and OFF

current states.

The results for the extracted photocurrent are depicted in Fig. 6.10 as a function of

the wavelength, and show a peak at λ = 660nm, coinciding with one of the excitons of

MoS2, and consistently with the energy gap of bulk MoS2 [220]. For wavelength values

higher than 660 nm, the photoresponse shows a rapid decay, as can be expected in a

MoS2 device, and this fact demonstrates that graphene has little or none influence in

the photocurrent, as its photoresponse is higher for these longer wavelengths [62, 221].

In order to evaluate the device responsivity, the following expression is employed:
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Figure 6.10: Photocurrent extracted for the few-layer MoS2 device as a
function of the wavelength for bias conditions VGS = 0 V and VDS = 0.1
V.

R =
Iph

Popt Aaa
Aspot

(6.2)

where Popt is the applied light power, Aspot = 4.5 · 105 µm2 is the light spot area, and

Aaa = 7.23 µm2 is the active area of the channel contributing to the photocurrent. This

expression normalizes the light intensity by the ratio between the area of the beam and

the active area of the sample: here, we assume only the channel region acts as an active

area. An excellent value of the responsivity, 113 A/W, is obtained at λ = 660 nm. This

responsivity value is in the range of previously published results, that vary from 10−3

to 105 A/W [222, 223, 224, 225].

The experiment was repeated for the device fabricated with the monolayer MoS2

flake. The output and transfer curves, measured after the device annealing, are plotted

in Fig. 6.11 and Fig. 6.12, respectively. The IDS-VDS curves are not as symmetric

as the ones achieved for the few-layer device and presented in Fig. 6.7. The total

resistance though is quite similar, with values around 720 mΩ·cm at VGS = 60V. As

for the transfer curve in Fig. 6.12, it presents a very important hysteresis, even after

annealing.

Final photoresponse was analysed, using the same method described for the few-

layer device. The measured light power density is 8.12 mW/cm2. The photocurrent

results, shown in Fig. 6.13, are unfortunately too noisy, and the photocurrent extraction

was too complicated, even after the filtering process. Only for λ=595 nm and λ=660

nm, reliable values could be extracted, resulting in 6.3 nA and 9.5 nA, respectively.
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Figure 6.12: Transfer curve after annealing in logarithmic and linear
scale for VDS = 1 V.

For these values, a maximum responsivity of R = 9.06 A/W can be calculated, much

lower than the value achieved for the few-layer device. Although this may be caused by

the lower thickness of the monolayer nature (which would not be compensated by its

direct gap and higher IQE [226, 85]), the results of the experiment are not conclusive

and further work would be needed.
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Figure 6.13: Current vs. time for different light wavelengths after anne-
aling of the monolayer channel thickness device. VDS = 1 V and VGS = 0
V. A time varying square wave photo signal of frequency 0.1 Hz is applied.
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6.5 Simulation results

To get further insights into the behaviour of the device, detailed numerical simulations

of the phototransistor are also carried out. We focus on the few-layer device, that has

showed the most promising response in the previous Section.

GrapheneMoS2

SiO2

Si-p

tMoS2

tGr

tox

LchLov
VGS

VDSWch

Figure 6.14: Schematic of the simulated few-layer MoS2 phototransistor,
where tMoS2 is the MoS2 thickness, tGr the few-layer graphene thickness,
tox the oxide thickness, Lch and Wch are the channel length and width,
respectively, and Lov stands for the overlapping length of Graphene and
MoS2.

The schematic of the simulated device is presented in Fig. 6.14. The channel length

Lch has been adjusted to the mean measured value (395 nm) and the width has been set

from the optical images to 17.5 µm. As we noted in Fig. 6.3, graphene has a very low

sheet resistance, much lower than the channel resistance in all the measurements that

have been performed, so we have neglected any resistance associated to the graphene

flakes. The technique applied to slit the graphene and form the channel provides the

device with symmetrical electrodes. Thus, source and drain contacts are modelled as

metals, whose work-function will be treated as a fitting parameter. All the simulations

are performed at room temperature (T = 300 K), i.e., the same conditions of the

measurements. The power applied in illumination conditions is Popt = 6.15 mW/cm2,

coinciding with the one measured in the multilayer experiment (see Section 6.4). Table

6.1 presents the geometrical parameters employed in the simulations.

Before analysing in detail the behaviour of the devices, we have proceeded to validate

the simulator. In this regard, two sets of simulations have been carried out:

� First, under dark conditions, and at room temperature T , the forward sweep

of the transfer curve in Fig. 6.12b (after annealing) has been fitted. Figure
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Parameter Value Parameter Value

Lch (nm) 395 Lov (nm) 200

tMoS2 (nm) 9.7 tGr (nm) 3.2

tox (nm) 280 Wch (µm) 17.5

Table 6.1: Geometrical parameters used in the simulations of the few-
layer MoS2 phototransistor.
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Figure 6.15: Comparison between the experimental forward-direction
IDS vs. VGS curve of the few-layer MoS2 phototransistor after annealing
(see Fig. 6.12b), in blue circles, and the simulation results, in dashed red
line.

6.15 shows an excellent agreement between the experimental and the simulation

curves. To achieve it, a low Schottky barrier height(SBH) between the MoS2 and

the graphene (ψB = 67 meV) has been considered, resulting in a graphene work-

function of φgr = 4.17 eV. Although the workfunction for graphene is typically a

little higher, it has been shown that it can present a wide range of values from 3.5

eV up to 5.1 eV [183]. In addition, it has been demonstrated that a weak Fermi

level pinning between few-layer graphene and n-type MoS2 can appear, reducing

the electron barrier height [119]. The small SBH is also consistent with the

assumption we made when extracting the electron mobility from the experimental

data, i.e., a small contact resistance so Eq. (6.1) to be valid. The electron mobility

extracted from the fitting process is µn = 7.5 cm2/V ·s, quite close to the one

extracted from the experimental data.

� Next, a set of simulations including light are performed. A monochromatic light

with λ = 660 nm and uniform power density Popt = 6.15 mW/cm2 is applied on

the surface of the device (including the channel and the contact regions, to better
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emulate the experimental setup). For the wavelength considered, the absorption

coefficient is α = 106 cm−1, according to absorbance results in [220]. Shockley-

Read-Hall (τSRH = 5 ns) and Auger (CAug = 5×10−25 cm6/Vs) recombination

mechanisms are considered. Auger recombination has been demonstrated to have

a relevant impact in MoS2 few-layers flakes under illumination conditions [113,

135, 226], which is the reason why this mechanism has been included in our

simulations. The hole mobility has been set to the same value as electron mobility,

7.5 cm2/Vs. As discussed in Chapter 5, the presence of traps in bulk oxide-

semiconductor interface may have a strong impact in the photoresponse of the

device. In this case, interfacial traps at the insulator-MoS2 interface were also

included to fit the experimental results: a Gaussian energetic distribution has

been assumed (see Fig. 6.16, with its maximum set at Ea = Ei − 0.32 eV,

a standard deviation of σE = 0.16 eV and Dmax
it = 5 × 1011 cm−2eV −1 as a

maximum amplitude. They are uniformly distributed in ttrap = 0.65 nm inside

the semiconductor. Through the simulations, we have verified the strong influence

of these traps on the high photocurrent measured, as they contribute to the

photogating effect, which has been shown by other authors in MoS2 over opaque

substrates [227]. Under these conditions, the achieved photocurrent is 36.14 nA

at λ = 660 nm, a value very close to the experimental measurements.
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Figure 6.16: Trap density of states used for the validation of the photo-
current in few-layer MoS2 phototransistors: a Gaussian profile is employed
(see Table 6.2 for details). Traps are uniformly distributed along the MoS2

layer in contact with the insulator substrate (6.5 Å thickness), as depicted
in the inset.
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To summarize, the parameters that have been extracted during the fitting process

of the few-layer MoS2 device are presented in Table 6.2.

Parameter Value Parameter Value

µn (cm2/V ·s) 7.5 µp (cm2/V ·s) 7.5

ND (cm−3) 1.5×1018 ψB (meV) 67

τSRH (ns) 5 CAuger (cm6/s) 5×10−25

α660 (cm−1) 9.7×105 Popt (mW/cm2) 6.15

Dmax
it (cm−2eV −1) 5×1111 Nmax

it (cm−2) 0.9×1010

ttrap (nm) 0.65 Ea (eV) Ei-0.32

σE (meV) 70 T (K) 300

Table 6.2: Parameters used in the simulations.

Let us now analyse the current flow through the device, which is shown in Fig.

6.19. The schematic of the simulated device is shown in Fig. 6.19a, and 6.19b presents

a ’zoom’ to the active area where the currents are evaluated. Figures Fig. 6.19c and Fig.

6.19d depict the electron and hole current densities, respectively, in dark conditions,

for VGS = 0 V and VDS = 0.1 V. Due to the n-type character of the MoS2 channel,

electrons are the main contributors to the total current, that is quite homogeneously

distributed along the channel thickness.

The photocurrent density is next evaluated, by subtracting the current density in

dark conditions to the total current density under illumination. The results are depicted

in Figures 6.19e (for electrons) and 6.19f (for holes). When the light is turned on, holes,

which are the minority carriers in this device, increase their conductivity. Nevertheless,

the n-type contacts block them, and they get trapped in the oxide-semiconductor inter-

face, in a similar way as it happened in the MoTe2 phototransistor studied in Chapter

5. The charged traps generate an electrostatic field in the region close to the oxide

channel interface, attracting more electrons and, as a consequence, incrementing the

conductivity of the channel in this region (See Fig. 6.19e). The obtained photocurrent

is mainly promoted by this photogating effect. As for holes, they slowly diffuse to both

contacts, and their contribution to the total photocurrent is negligible. In addition, it

can be seen that the electron current coming from the overlapping area (Lov) is quite

small. To analyse this effect in more detail, a new simulation has been run where only

the channel area is illuminated, as seen in Fig. 6.17. The rest of the parameters are kept

as in the experimental validation. Under this condition, the calculated photocurrent is

Iph = 34.92 nA, only 3.5% lower than when the whole device is illuminated. Thus, it
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Illuminate
active area

Illuminate
channel and

overlapped area

Figure 6.17: Schematic of the active area region: Red square points the
total light spot used in the simulations. Blue square shows the incident
light where the majority of the photocurrent is obtained.

can be concluded that the active area of the device corresponds to the channel section,

supporting the high responsivity of the device calculated in the experimental results

via Eq. (6.2).

The influence of the channel length on the device performance is now evaluated,

in dark and illumination conditions. Figure 6.18 shows IDS under dark conditions and

the photocurrent, for channel lengths ranging from 400 nm to 1200 nm, at VDS = 0.1

V and VGS = 0 V. It is shown how a larger channel reduces both the dark and the

photocurrent, in the last case despite the larger active area. This could be caused

by the recombination of the carriers generated in the middle of the channel, or by a

degradation of the photogating effect due to the increment of the channel resistance,

and highlights the convenience of fabricating short channel phototransistors to increase

their responsivity.

Next, we have simulated the effect of the trap density in the photocurrent, main-

taining all of the parameters as in the validation (see Table 6.2), except for Dmax
it . The

results are depicted in Fig. 6.20 as a function of Dmax
it , and in Fig. 6.21 as a function

of the applied gate voltage. Here, VDS is set to 0.1 V. Both figures show an increasing

trend of the photocurrent with traps, in line with the results of Chapter 5 and therefore

pointing out a photogating effect. Figure 6.20 shows an almost linear relation between

Iph and Dmax
it for positive VGS values, while a saturation behavior appears for gate

voltages closer to the device threshold voltage (Vth ' −20 V).

In the case of Fig. 6.21 the effect of VGS is more clearly appreciated. Regardless

the trap density, the trend as a function of VGS is similar, with a peak value around
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Figure 6.18: Dark current (a) and photocurrent of the device changing
the channel length. VDS = 0.1 V and VGS = 0 V.

the device threshold voltage, and a reduction for higher values of the gate voltage. The

reason of this reduction is that charged traps are promoted from the presence of holes

at the oxide-semiconductor interface, which strongly depends on the applied bias. So

that, an increment of the gate voltage repels the holes from the interface, reducing

the number of charged traps and therefore diminishing the photogating effect, and as a

consequence decreasing Iph. In addition, it is important to point out that the maximum

photocurrent is achieved for a gate bias of around -20 V; this maximum value can be

more than one order of magnitude higher than the value calculated for higher gate

voltages. For VGS values lower than the threshold voltage, electrons are repelled from

the channel and the photocurrent rapidly decreases.
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Figure 6.19: Schematic of the simulated device (a) and zoom of the
represented region (b) in the rest of figures. Dark current (mid) and
photocurrent (bottom) due to electron (left) and hole (right) flow in the
device, for VGS = 0 V and VDS = 0.1 V. Photocurrents are obtained from
subtracting the dark current (Figs. c and d) to the total current under
illumination.
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it , in a few-layer MoS2 device with the rest of parameters given in
Tables 6.1 and 6.2.

Results 133



Chapter 6. Graphene-MoS2 Phototransistors

6.6 Conclusions

Sub-micron graphene-contacted channel fabricated with AFM tips

A novel, low-cost technique to fabricate sub-micron channel length 2D-materials-based

devices has been presented. After depositing a few-layer graphene flake between two

bulk metal contacts, it is slitted to form the device contacts employing an AFM tip.

The 2D material forming the channel is deposited then in touch with the resulting

graphene layers to form the sub-micron FET structure.

Graphene-MoS2 photosensors

Using this technique, a few-layer MoS2 flake is deposited to fabricate a phototransistor,

which can be used as a photosensor. The electrical and optoelectronic properties of

the resultant device have been studied both experimentally and theoretically. It has

been showed that the intermediate graphene layer enables a low Schottky barrier height

with the selected semiconductor, providing a low contact resistance. In addition, the

fabrication of both contacts from the same graphene flake results in symmetrical con-

tacts, which would be more complicated to get from different mechanically exfoliated

graphene. When illuminated, the device shows a high photoresponse, owing to the sub-

micron narrow channel length that makes it possible for the photogenerated carriers to

flow to the graphene contacts before they are recombined.
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Conclusions and future work

7.1 Conclusions

As explained in the Objectives Section, the purpose of this PhD Thesis was the study

of electronic and optoelectronic devices based on 2D materials. In this context, the

main contributions of this work to the state of the art are the following:

� Development of the SAMANTA simulation tool. It can be described as a self-

consistent 2D Poisson-Drift-Diffusion solver, including a 1D Schrödinger-Poisson

solver, which is able to deal with different arbitrary materials and geometries. It

evaluates the potential and electric charge, either using the continuity equations

in the 2D transport scenario, or the evaluated wavefunctions and energy levels

in the 1D confinement one. The 2D transport model also allows to evaluate the

tunnel current in metal-semiconductor junctions and heterostructures, as well as

band to band tunnelling. It also includes different generation and recombination

processes, such as the SRH process, light generation, and Auger and radiative

recombinations. In addition, it can evaluate arbitrary profiles of interfacial sta-

tes. All the equations involved are solved by using the finite differences method,

linearised with the Newton method.

� Analysis of the carrier mobility in multilayer MoS2-based back-gated transis-

tors. The Schrödinger-Poisson solver was employed to evaluate the potential,

wavefunctions and energy levels of the system, in order to obtain the phonon and

Coulomb limited electron mobility. These are calculated evaluating the associated

momentum relaxation times and applying them in the Kubo-Greenwood formula.
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We checked that the polar optical phonons are the main limiting scattering pro-

cess for temperatures over 200 K, whereas Coulomb and acoustic phonons govern

the device electronic mobility for temperatures below 200 K. The phonon-limited

mobility also showed a non-monotonic dependence with thickness, with a maxi-

mum around 5 nm. This effect is related with the form factor associated to the

polar optical phonon scattering mechanism.

� Study of hybrid graphene-Silicon photodiodes. Experimental results of hybrid

graphene-Silicon photodiodes with interdigitated graphene-insulator-semiconductor

(GIS) stacks were analysed using the 2D simulator. The presence of these GIS

structures was checked to improve the responsivity and photoresponse of devices

when the graphene-Silicon interface is degraded, although the wider the oxide

regions, the larger the recombination effect. Interface states are the main degra-

dation parameter, as they screen the electric field, reducing the depleted region

thickness and eventually diminishing the number of extracted holes.

� Evaluation of MoTe2 based Phototransistors. When bulk metals are used as

contacts for few-layer MoTe2, their Fermi level is pinned, forming high Schottky

barriers for both carriers. We have demonstrated that this barrier can be overcome

via tunnelling provided that there is a high doping density in the semiconductor,

keeping the ambipolar behaviour thanks to the narrow bandgap of the few-layer

MoTe2. Traps at the oxide-semiconductor greatly enhance the responsivity of the

device due to the photogating effect, although this improvement depends on the

nature of the traps and the workfunction of the metal contacts.

� Fabrication and simulation of sub-micron few-layer MoS2 phototransistors. Back-

gated transistors were fabricated using a low-cost technique, based on a mecha-

nically cut of a few-layer graphene flake by means of an AFM tip. The sliced

graphene was then used as the drain and source contacts for a few-layer MoS2

back-gated transistor. As contrasted with the simulation results, the Fermi level

of the 2D semimetal is pinned when it is contacted with the MoS2, providing a

very low Schottky barrier for electrons. The device was also studied in illumi-

nation conditions, achieving a good photoresponse for wavelengths in the range

of 420-660 nm. By means of simulations, we determined that this photoresponse

was promoted by the trap-assisted photogating effect.
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7.2 Future work

The SAMANTA simulator implemented in this Thesis exhibits a great potential for

future works in the optoelectronic field of 2D materials, and our aim is to exploit it in

further studies on the matter. In addition, expanding the capabilities of this custom

tool to other fields, such as biosensing, is interesting. Then, following these concerns,

we define the next advances:

� An improved light generation process which considers more physical parameters

and the transfer matrix method to include the diffractions and refractions between

materials will be implemented. This model could also be expanded to include light

emission. This would allow the simulator to provide more accurate results for the

optoelectronic behaviour of complex devices.

� Integration of time dependence. The current simulations are performed for stati-

onary conditions: the next steps include the addition of the time dependence in

the continuity equations. Also, we will complete this model with time dependent

interface traps, as experimental measurements in non-stationary conditions can

be highly affected by very low interface states, which can be explained with this

model.

� Completing the heterojunctions to include the distributed TFE model. This

will allow us to study more complex devices, such as multi-junction solar cells

and PN diodes made of different materials. These harvesting components already

offer excellent capabilities using classical materials, but their fabrication and study

when using 2D materials is still a challenge both theoretically and experimentally.

The inclusion of other new 2D materials, such as noble TMDs, can offer a wide

variety of optoelectronic devices that should be analysed in detail.

� Integration of densities of states extracted from ab-initio calculations. This will

increase the desciption of the properties of the semiconductors, providing more

accurate results, specially in thin confined semiconductors. We will implement

a 2D continuity model which uses 1D Drift-Diffusion equations to calculate the

in-plane current, and the current TFE model for the out-of-plane direction, evalu-

ating the pseudo-Fermi levels with pre-calculated densities of states. This model

can be flexible and powerful, and would allow to study complex 2D-based devices.
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� Exploiting the 2D Drift-Diffusion transport to simulate electrolyte-gated devices.

These type of structures are used for biological and chemical sensors. Using

our 2D carrier transport model for the device including the electrolyte and the

semiconductor will provide a state of the art simulation environment for this kind

of devices. In addition, the evolution towards a time dependent implementation

would allow the simulation of very complex scenarios such as neuron-transistors

interfaces to study the capabilities of MOSFET devices to detect synapses.

� Modelling of the absorption of ions in the device surface to study chemical sensors.

The Site-Binding model is mostly used for the absorption of H+ and OH− ions on

top of the insulator surface. However, it can be extended to model the absorption

of other ions to study chemical sensors. Thus, the combination of the Site-Binding

and the 2D ions transport models will provide a quite detailed description of these

sensors.
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Appendix A

Finite Differences Method

A.1 Finite difference method basics and notation

This appendix is devoted to present the numerical scheme applied to solve the equations

proposed in Chapter 2. To do that, the Finite Differences Method (FDM) [228] is

applied. In the FDM, each derivative is splitted into a two-point numerical derivative.

Applying Taylor series, the partial derivative of a function u(x) evaluated in x0 can be

approximated by:

∂u

∂x

∣∣∣∣
x=x0

=
u (x0 + ∆x1)− u (x0 −∆x2)

∆x1 + ∆x2
+O

(
∆x2

)
+O′ (|∆x1 −∆x2|) (A.1)

where O
(
∆x2

)
is a second order error depending on ∆x = max (∆x1,∆x2), and

O′ (|∆x1 −∆x2|) is a first order error due to the difference between ∆x1 and ∆x2.

To apply the previous scheme to a physical system with an arbitrary geometry,

this one has to be sliced into small regions, which in a 2D system are rectangular, as

shown in Figure A.1. The dashed box represents one of such regions, where each of

the physical parameters is defined (e.g., the dielectric constant, the carrier mobilities,

etc.). As for the variables of the equations, such as potential, charge and current,

they will be evaluated either on the nodes (corners of each region) or on the so-called

seminodes (intermediate positions along the edges of the rectangles). The nodes are

defined by their position (xi, yj). For the sake of simplicity, the notation for an arbitrary

magnitude Yi,j stands for Y(xi, yj). In a similar way, the variables and constants at
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the seminodes are represented as Yi±1/2,j and Yi,j±1/2.

x
y Region

i-1,j

Node

i,j i+1,j

i,j-1

i,j+1

i-1/2,j i+1/2,j

i+1/2,j

i,j+1/2

i-1/2,j-1/2

Seminode

Figure A.1: Schematic of node splitting for finite differences. Materials
are divided in regions, represented by the dashed box, each one with its
own physical magnitudes, such as mobility, permittivity, light absorption,
etcetera. The corners of the regions are the nodes (orange circles), where
the potential and carrier density are evaluated. Between the nodes, the
seminodes are assigned (blue crosses), in which the current densities are
evaluated. The separation between nodes can be non-uniform.

As can be seen, the distance between points can be non-uniform, and it is repre-

sented by a ∆xi or ∆yj , depending on the direction. When the equations need for

a physical magnitude in a node or seminode, this is evaluated as an average from the

corresponding regions. To take into account the non-uniformity of the grid, the average

value of a magnitude Y at the node (i, j) is calculated as:

Yi,j =

1/2∑
m=−1/2

1/2∑
n=−1/2

Ai+m,j+nYi+m,j+n∑1/2
m=−1/2

∑1/2
n=−1/2Ai+m,j+n

(A.2)

where Ai+m,j+n refers to the area of each of the four regions in contact with node (i, j).

A similar calculation is performed to obtain the parameters needed at the seminodes.

A.2 2D Poisson and continuity equations

In this Thesis, the bidimensional Poisson equation is solved taking into account the

anisotropy of the bidimensional materials (see Section 2.2) as:
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∇·(ε (r)∇ψ (r)) =

(
∂

∂x
ı̂+

∂

∂y
̂

)
·
(
εxx (r)

∂ψ (r)

∂x
ı̂+ εyy (r)

∂ψ (r)

∂y
̂

)
= −qρ (r) (A.3)

which can be rewritten as:

P (r, ψ) =
∂

∂x

[
εxx (r)

∂ψ (r)

∂x

]
+

∂

∂y

[
εyy (r)

∂ψ (r)

∂y

]
+ qρ (r) = 0 (A.4)

This notation will be useful later when applying the Newton technique to accelerate

the convergence. Let us focus on the discretization of the x dependent derivatives. First,

we apply the Finite Difference (FD) scheme to the outer derivative as:

∂

∂x

[
εxx (r)

∂ψ (r)

∂x

]
'
εxx,i+1/2,j

[
∂ψ(r)
∂x

]
i+1/2,j

− εxx,i−1/2,j

[
∂ψ(r)
∂x

]
i−1/2,j

(∆xi+1 + ∆xi) /2
(A.5)

Next, the FD expression is applied again to the remaining derivatives of ψ (r),

resulting in:

∂

∂x

[
εxx (r)

∂ψ (r)

∂x

]
' 2

∆xi+1 + ∆xi

[
ψi+1,j

εxx,i+1/2,j

∆xi+1
−

− ψi,j
(
εxx,i+1/2,j

∆xi+1
+
εxx,i-1/2,j

∆xi

)
+ψi−1,j

εxx,i-1/2,j

∆xi

] (A.6)

The same procedure can be applied to the y derivatives term to obtain the discre-

tized Poisson equation, which reads:

Pi,j (ψi,j) =
2

∆xi+1 + ∆xi

[
ψi+1,j

εxx,i+1/2,j

∆xi+1
−

− ψi,j
(
εxx,i+1/2,j

∆xi+1
+
εxx,i-1/2,j

∆xi

)
+ ψi−1,j

εxx,i-1/2,j

∆xi

]
+

+
2

∆yj+1 + ∆yj

[
ψi,j+1

εyy,i,j+1/2

∆yj+1
−

− ψi,j
(
εyy,i,j+1/2

∆yj+1
+
εyy,i,j-1/2

∆yj

)
+ψi,j−1

εyy,i,j-1/2

∆yj

]
+ qρi,j (ψi,j) = 0

(A.7)
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In this equation, the relation between ρ and ψ has been explicitly consigned. As

this relation is non-linear, the resulting discretized equation system has to be self-

consistently solved. In the next Appendix, a technique to linearise this equation, allo-

wing a better computation performance, will be presented.

Now we focus on the discretization of the continuity equations, presented in Section

2.2. Considering only the x derivative term, for electrons, the divergence of the current

seen in Eq. (2.4) can be calculated as:

∂J n

∂x

∣∣∣∣
xi,yj

=
Jn,i+1/2,j − Jn,i−1/2,j

(∆xi + ∆xi+1) /2
(A.8)

where the current density is evaluated at the seminodes according to the Scharfetter-

Gummel scheme [229, 116], which ensures the stability of the solution. This approach

considers the charge as n = ueψ, where u (x) is a positive unknown function. Substi-

tuting this charge into the electron drift-diffusion equation at the position i − 1/2, j,

after recasting for integration convenient from, one gets:

e−ψi−1/2,jJn,i−1/2,j = kBT
µn,i,j + µn,i−1,j

2

du

dx
(A.9)

Now, we integrate both sides between nodes i − 1, j and i, j, assuming a linear

variation for ψ between the two nodes. The equation becomes

−Jn,i−1/2,j

∆xi−1/2,j

ψi,j − ψi−1,j

(
e−ψi,j − e−ψi−1,j

)
= kBTµn,i−1/2,j

(
ni,je

−ψi,j − ni−1,je
−ψi−1,j

)
(A.10)

The final equations at the nodes i− 1/2, j and i+ 1/2, j are then given by

Jn,i−1/2,j =
qkBTµn,i−1/2,j

∆xi

[
ni,jB

(
ψi,j − ψi−1,j

kBT

)
− ni−1,jB

(
ψi−1,j − ψi,j

kBT

)]
(A.11a)

Jn
i+1/2,j =

qkBTµ
n
i+1/2,j

∆xi+1

[
ni+1,jB

(
ψi+1,j − ψi,j

kBT

)
− ni,jB

(
ψi,j − ψi+1,j

kBT

)]
(A.11b)

which uses the charge density and the potential at the grid points, and the mobility

between points; B (x) is the Bernoulli function, defined as:
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B (x) =
x

ex − 1
, with B (0) = 1. (A.12)

So here we reorganize the continuity equation, in a similar way as in Eq. (A.7).

Let Wn (r, ψ, n) = 0 and Wp (r, ψ, p) = 0 the continuity equations for electrons and

holes, respectively. Coming back to the discretization, in the two dimension scenario,

the final continuity equation for electrons is:

Wn,i,j (ψ, n) =
2

∆xi + ∆xi+1

[
ni−1,jB

(
ψi−1,j − ψi,j

kBT

)
kBTµn,i−1/2,j

∆xi
−

− ni,j
[
B

(
ψi,j − ψi+1,j

kBT

)
kBTµn,i+1/2,j

∆xi+1,j
+B

(
ψi,j − ψi−1,j

kBT

)
kBTµn,i−1/2,j

∆xi

]
+

+ni+1,jB

(
ψi+1,j − ψi,j

kBT

)
kBTµn,i+1/2,j

∆xi+1

]
+

+
2

∆yj + ∆yj+1

[
ni,j−1B

(
ψi,j−1 − ψi,j

kBT

)
kBTµn,i,j−1/2

∆yj
−

− ni,j
[
B

(
ψi,j − ψi,j+1

kBT

)
kBTµn,i,j+1/2

∆yj+1
+B

(
ψi,j − ψi,j−1

kBT

)
kBTµn,i,j−1/2

∆xj

]
+

+ni,j+1B

(
ψi,j+1 − ψi,j

kBT

)
kBTµn,i,j+1/2

∆yj+1

]
−Rn,i,j +Gn,i,j = 0

(A.13)

In the case of holes, the corresponding equations for the nodes i−1/2, j and i+1/2, j

are

Jp,i−1/2,j =
qkBTµp,i−1/2,j

∆xi

[
pi,jB

(
ψi−1,j − ψi,j

kBT

)
− pi−1,jB

(
ψi,j − ψi−1,j

kBT

)]
(A.14a)

Jp,i+1/2,j =
qkBTµp,i+1/2,j

∆xi+1

[
pi+1,jB

(
ψi,j − ψi+1,j

kBT

)
− pi,jB

(
ψi+1,j − ψi,j

kBT

)]
(A.14b)

and the final discretized continuity equation for holes is
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Wp,i,j (ψ, p) =
2

∆xi + ∆xi+1

[
pi−1,jB

(
ψi,j − ψi−1,j

kBT

)
kBTµp,i−1/2,j

∆xi
−

− pi,j
[
B

(
ψi+1,j − ψi,j

kBT

)
kBTµp,i+1/2,j

∆xi+1
+B

(
ψi−1,j − ψi,j

kBT

)
kBTµp,i−1/2,j

∆xi

]
+

+pi+1,jB

(
ψi,j − ψi+1,j

kBT

)
kBTµp,i+1/2,j

∆xi+1

]
+

+
2

∆yj + ∆yj+1

[
pi,j−1B

(
ψi,j − ψi,j−1

kBT

)
kBTµp,i,j−1/2

∆yj
−

− pi,j
[
B

(
ψi,j+1 − ψi,j

kBT

)
kBTµp,i,j+1/2

∆yj+1
+B

(
ψi,j−1 − ψi,j

kBT

)
kBTµp,i,j−1/2

∆xj

]
+

+pi,j+1B

(
ψi,j − ψi,j+1

kBT

)
kBTµp,i,j+1/2

∆yj+1

]
−Gp,i,j +Rp,i,j = 0

(A.15)

The expressions in Eq. (A.13) and (A.15) are applied only inside the semicon-

ductors. When the current needs to be evaluated at the interfaces, they have to be

modified. The next sections deal with these situations.

A.3 Continuity equations at heterojunctions

As seen in Section 2.5, in simple heterojunctions formed by two different semiconduc-

tors, the electron and hole densities have different values at each side of the junction.

In the simulator, when the system is sliced into several nodes and regions, the hetero-

junction nodes are split into two nodes. An scheme of this slicing procedure is shown in

Fig. A.2. Two split nodes share the same spatial location but their variables can have

different values, eg., ni+,j and ni−,j . The only variable which keeps the same value for

both sides is the potential. So we set:

ni−,j 6= ni+,j (A.16a)

pi−,j 6= pi+,j (A.16b)

ψi−,j = ψi+,j (A.16c)
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Figure A.2: Schematic of node splitting at an heterojunction. At the in-
terface, nodes are split into two, sharing the same spatial location. In these
nodes (labeled with superscript + or -) the electric potential is shared, but
the rest of variables can differ. The current at node i, j is divided into one
corresponding to node i−, j and another to node i+, j.

The material parameters (e.g., affinity, bandgap, mobility, doping, trap density,

etc.) assigned to each of the split nodes correspond to the ones of the material of its

side.

Following the scheme in Fig. A.2 for heterojunctions between two semiconductors,

the current in the negative branch (position i−, j) can be evaluated as:

(
Ji−,j − Ji−1/2,j

)
∆xi/2

+

(
Ji−,j+1/2 − Ji−,j−1/2

)
(∆yj + ∆yj+1) /2

= ±q
(
Ri−,j −Gi−,j

)
(A.17)

which applies for electrons (right hand side positive sign) and holes (negative sign). A

similar expression is employed for the right side (i+, j):

(
Ji+1/2,j − Ji+,j

)
∆xi+1/2

+

(
Ji+,j+1/2 − Ji+,j−1/2

)
(∆yj + ∆yj+1) /2

= ±q
(
Ri+,j −Gi+,j

)
(A.18)

The currents Ji−,j and Ji−,j correspond to the ones presented in Eq. (2.17) for

electrons and Eq. (2.19) for holes, whereas the rest of them follow the Drift-Diffusion

model presented in Equations (A.11) and (A.14).

For metal-semiconductor interfaces using the TE model, the equation is similar. The
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thermionic current is evaluated not at the seminode but at the interface node between

the metal and the semiconductor. If we consider the semiconductor is placed on the

left side and the metal on the right side of our system, the corresponding discretized

continuity equation for electrons and holes is

(
Ji,j − Ji−1/2,j

)
∆xi/2

+

(
Ji,j+1/2 − Ji,j−1/2

)
(∆yj + ∆yj+1) /2

= ±q
(
Ri−,j −Gi−,j

)
(A.19)

where the current Ji,j is substituted by Eq. (2.6).

When TFE model is applied at the metal-semiconductor interface, located at the

I, j position for this explanation, the tunnel current contributions are distributed along

the positions of the potential barrier, as shown in Fig. A.3. To do that, drain points

are placed at the i,j positions of the barrier, which collects the Drift-Diffusion current

from positions far from the barrier interface. We simply add this current as in the

Kirchchoff equation, which we will explain in the next Section. Let us consider the

tunnel contributions are evaluated in n nodes from the I, j interface. Selecting a node

i, j placed on the left side of the interface I, j, we would have for electrons and holes:

Ji+1/2,j − Ji−1/2,j + JT,i,j

(∆xi + ∆xi+1) /2
+
Ji,j+1/2 − Ji,j−1/2

(∆yj + ∆xj+1) /2
= ±Ri,j −Gi,j (A.20)

where JT,i,j corresponds to the tunnelling current presented in Eq. (2.9).

At the interface I, j, we add the thermionic current, following Eq. (2.6). Figure A.4

shows how the current is modelled at the metal-semiconductor interface, using these

definitions. Thermionic contribution has been labelled as Jth,I,j . Final current flowing

to/from the metal contact is the sum of the thermionic component at the I, j location

and all the tunnel currents coming from the different i, j locations considered, that is

JI,j = Jth,I,j +

I∑
i=I−n

JTi,j (A.21)

Note that this expression is not included in the corresponding continuity equation

of the interface node I, j, only Eq. (A.19) is used, as the tunnel contribution does not

flow from the I, j node. This equation only shows the current assigned to the metal at

that position.
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Figure A.3: Schematic of tunnel drains placed along the barrier when
using the TFE model at the metal-semiconductor interface. All the cur-
rents excepting the tunnel current, labelled as JT

i,j in the picture, are eva-
luated using the Drift-Diffusion model. Tunnel current is drained to the
closest metal node.

I-1,j

x
y

Semic.

I,j+1
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Figure A.4: Schematic of intermediate node in a metal-semiconductor
junction using the TFE model. At the interface, the current that flows to
the metal is the sum of the thermionic and tunnel currents in that position.
The rest of the currents are evaluated using the Drift-Diffusion model.
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A.4 Special conditions for corners: Kirchhoff equation

In some cases, there are nodes whose entire area is not freely crossed by the current.

That is the case of the nodes at the interfaces and corners between materials. Each

node can belong up to four different materials, as it is depicted in Fig. A.5. The

current of each direction crosses two of these areas. However, the two regions can not

be assigned to its current in all cases. For instance, when a node is an interface between

an oxide and the semiconductor, the region that belongs to the oxide is not assigned to

the current of the semiconductor parallel to the interface. In the same way, the current

of a Schottky contact is not assigned to the region that belongs to the semiconductor.

To satisfy these special conditions, the Kirchhoff equation is used [118]:

∑
Iin =

∑
Iout (A.22)

In the 2D discretized system, the current can be calculated by multiplying the

current density with the width of the flux, that is, the width of each area, and the

thickness of the device, which would correspond to the z dimension and is common

for all the regions. Including the deviation caused by the net generation-recombination

rate, inside the semiconductor, we obtain:

Ji+1/2,j∆yR − Ji-1/2,j∆yL + Ji,j+1/2∆xD − Ji,j-1/2∆xU = ±q (Ri,j −Gi, j) (A.23)

where each ∆y, ∆x corresponds to the length of the assigned region, and we have

used the subscript L, R, U, D for left, right, up and down in the grid, respectively.

In a normal node inside the semiconductor, as depicted in Fig. A.5a, ∆yR = ∆yL =

(∆yj + ∆yj+1) /2 and ∆xD = ∆xU = (∆xi + ∆xi+1) /2, which gives the continuity

equation, Eq. (A.13), Eq. (A.15) in the case of holes. However, in the case of the

example in Fig. A.5b, where an oxide and a metal interface have been added, ∆xD =

∆xU = ∆xi+1/2 and ∆yR = ∆yj+1/2, as the current can not flow through the oxide,

and the region assigned to the metal corresponds with the ∆xU width. In the Equation

(A.23), the current Ji,j−1/2 would be substituted by Ji,j using the TE model. The

current that flows to the right is assigned to the semiconductor.

As we see, the current for each direction is assigned depending on the corresponding

material. Each direction shares two quadrants, whose materials can be different. To
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select the material priority, it is possible to follow the algorithm presented next:

� If there is a quadrant assigned to a semiconductor, the current is assigned to that

semiconductor, and it only flows along the semiconductor quadrant.

� In the case of quadrants with the presence of a metal, if the other quadrant is

also a metal or an oxide, the current is assigned to the metal (that is, TE or TFE

models) and flows to/from the metal.

� When one quadrant is assigned to an oxide, the width of the quadrant is deleted

for the current evaluation.

This algorithm lets us assign the correct quadrants for the currents in those corners

where different materials surround a node.

i,j
i-1,j i+1,j

i,j-1

i,j+1

x
y

Oxide

Metal

i,j
i-1,j i+1,j

i,j-1

i,j+1

x
y

Semiconductor

(a) (b)

Semiconductor

Figure A.5: Schematic of current splitting as a function of the material
of each region, showing the criteria to assign the currents for metals and
semiconductors. In (a), the typical case inside the semiconductor is de-
picted. The example in (b) includes an oxide and a metal region. The
halves of the region that belong to the oxide are neglected during the cur-
rents evaluation, while the current that flows to the metal from the node
i, j is assigned to the depicted ∆xU region width.

A.5 1D Schrödinger equation

For the SAMANTA-SP1D code, the Poisson equation is discretized as in the last

Section. Here, let us call ξn i the wavefunction value corresponding to the n th energy
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level at the i location. In the case of the 1D Schrödinger Equation (2.42), the finite

differences method is applied in this way:

∂

∂y

(
m−1

eff (y)
∂

∂y
ξn (y)

)
=

2

∆yi + ∆yi+1

[
ξn i+1

m−1
eff i+1/2

∆yi+1
−

−ξn i

(
m−1

eff i+1/2

∆yi+1
+
m−1

eff i−1/2

∆yi

)
+ ξn i−1

m−1
eff i−1/2

∆yi

] (A.24)

The total equation in its matrix form is then

M0 N0 0 0 · · · 0 0 0 0

L1 M1 N1 0 · · · 0 0 0 0

0 L2 M2 N2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 Ln−1 Mn−1 Nn−1

0 0 0 0 · · · 0 0 Ln Mn


Ψ = EΨ (A.25)

where Ψ and E refers to the total wavefunctions and energy levels of the system,

respectively. The terms Li, Ni and Mi are

Li =
m−1

eff i−1/2

∆yi

2

∆yi + ∆yi+1

~2

2
(A.26a)

Ni =
m−1

eff i+1/2

∆yi+1

2

∆yi+1 + ∆yi+1

~2

2
(A.26b)

Mi =

(
m−1

eff i−1/2

∆yi
+
m−1

eff i+1/2

∆yi+1

)
−2

∆yi + ∆yi+1

~2

2
− ψ (yi) + χi (yi) (A.26c)

As can be seen in Eq. (A.26c), the main diagonal has added the values of the potential

and the electron affinity. The terms M0 and Mn are evaluated assuming ∆y0, ∆yn+1

identical to ∆y1, ∆yn respectively.

The Schrödinger equation is solved using the Arnoldi algorithm [230], which evalu-

ates the energy levels of the system up to a certain specified level.
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Newton method to linearise the

equations

The direct evaluation of the set of equations used in the simulator tends to converge

slowly and diverges very easily unless a strong relaxation parameter between iterations

is used. A common way to solve this issue consists of linearising the equations. In this

way, the solver does not obtain a potential or a carrier density, but a residual part of it,

which is added to the result of a previous iteration. There are many ways a system of

equations can be linearised. One of the most popullars is called the Newton-Raphson

method [231, 232], which is based on the Taylor series and uses the Jacobian J (f (x))

matrix

J (f (x)) δx = −f (x) (B.1a)
∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3


 δx1

δx2

δx3

 = −

 f1

f2

f3

 (B.1b)

where fi (x1, x2, x3...) are the equations, which depend on their corresponding variables

xi, and δxi the corrections of the solution. The equations are rewritten, so they are

equated to zero, that is fi (x1, x2, x3...) = 0 After each iteration, the solution at iteration

k+1 is updated according to the scheme

x
(k+1)
i = xki + λδx

(k+1)
i (B.2)
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where the λ ∈ [0, 1] term is a value used in the self-consistent loop, which follows a

scheme similar to the one presented in [144, 145].

Another linearisation similar to this one which could has been used consists of

obtaining the Hessian matrix, which is formed by the second partial derivative of each

function. This method is usually faster than the Newton method used in this simulator,

but its convergence can fail if the function crosses the abscissa axis, so we finally used

the first derivative order to ensure the correct convergence. The Newton-Raphson

method has been applied to the full set of equations of the simulator, including the

generation and recombination processes. After this update, the simulator is able to

converge in practically all the scenarios, using a very low number of iterations, even

for very complex structures. For this model to work, an initial guess of the result is

needed to improve the convergence, which is obtained from the results in equilibrium

conditions. Once the algorithm has converged for the first bias value, the results are

used as a starting point for the the next bias. Thus, if the bias steps are small, the

simulator solves the equations in a very fast and efficient way.

B.1 Linearisation of the Poisson equation in Equilibrium

The Newton method has been applied to solve the Poisson equation in equilibrium

conditions. In this situation, following the Equation (B.1), Poisson Equation (2.1) can

be linearised in this way:

∇ · [ε (r)∇ (ψ (r) + δψ (r))] + ρ (r) + δρ (r) = 0 (B.3)

where ε (r) refers to the dielectric constant at each r position, ψ (r) is the potential and

ρ (r, ψ) the total charge density. The variables δψ (r) and δρ (r) are their corrections

counterparts. Here we have omitted the potential dependence of the charge density just

to simplify the notation. We can derive the charge density correction as a function of

the potential to obtain a direct expression where we only evaluate this variable using

the results from the last iteration (k):

∇ ·
[
ε (r)∇

(
ψ(k) (r) + δψ(k+1) (r)

)]
+ ρ(k) (r) +

∂ρ (r)

∂ψ

∣∣∣∣(k)

δψ(k+1) (r) = 0 (B.4)
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where the (k) and (k+1) superscripts stand for iterations k and k + 1 of the algorithm,

respectively.

Here we must derive the charge density Equation (2.3) seen in Section 2.2 as a

function of the potential. The terms corresponding to the donor and acceptor concen-

trations, which depends on the impurity ionization, follow the equations [118]:

N
+ (k)
D (r) =

ND (r)

1 + n(k)(r)
Nc(r) gD (r) exp

(
Ef(r)−ED(r)

kBT

) =
ND (r)

1 +AD (r)n(k) (r)
(B.5a)

N
− (k)
A (r) =

NA (r)

1 + p(k)(r)
Nv(r) gA (r) exp

(
EA(r)−Ef(r)

kBT

) =
NA (r)

1 +AA (r) p(k) (r)
(B.5b)

where the terms which do not depend on the electric potential nor the electron and

hole densities have been grouped in AD and AA for the sake of simplicity. The gD (r)

(gA (r)) and the ED (r) (EA (r)) terms are the ground-state degeneracy and impurity

energy level of the donor (acceptor) impurities, respectively.

Fermi statistics are used to relate the potential with the electron and hole densities.

The expressions for n (r) and p (r) can be seen in Equations (2.21), referred as n0 (r, ψ)

and p0 (r, ψ), respectively. If we derive Equation (2.3), we obtain:

∂ρ (r)

∂ψ

∣∣∣∣
(k)

=
q

kBT

−N+ (k)
D (r)Nc (r)F−1/2

(
η

(k)
c (r)

)
AD (r)

1 +AD (r)n(k) (r)
−Nc (r)F−1/2

(
η(k)

c (r)
)
−

−
N
− (k)
A (r)Nv (r)F−1/2

(
η

(k)
v (r)

)
AA (r)

1 +AA (r) p(k) (r)
−Nv (r)F−1/2

(
η(k)

v (r)
)

(B.6)

where we have omitted the evaluation of the derivative of the traps, as their change

between iterations tends to be low enough it has no effect on the convergence.

As we have seen, the electrostatic equations used in equilibrium conditions can be

linearised using Equations (B.4) and (B.6). After that, they are implemented in the

simulator using the finite differences discretization method. The procedure is similar to

the one explained in Appendix A. The full discretized and linearised Poisson equation

is the sum of Eq. (A.7), which would correspond to the terms of the last iteration k,
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and the following correction terms:

∇ · ε (xi, yj)∇δψ(k+1) (xi, yj) =
2

∆xi+1 + ∆xi

[
δψ

(k+1)
i+1,j εxx i+1/2,j

∆xi+1
−

− δψ(k+1)
i,j

(
εxx i+1/2,j

∆xi+1
+
εxx i−1/2,j

∆xi

)
+
δψ

(k+1)
i−1,j εxx i−1/2,j

∆xi

]
+

+
2

∆yj+1 + ∆yj

[
δψ

(k+1)
i,j+1 εyy i,j+1/2

∆yj+1
−

− δψ(k+1)
i,j

(
εyy i,j+1/2

∆yj+1
+
εyy i,j−1/2

∆yj

)
+
δψ

(k+1)
i,j−1/2εyy i,j−1/2

∆yj



(B.7a)

δρ (xi, yj) =
qδψ

(k+1)
i,j

kBT

−N+ (k)
D i,j Nc i,jF−1/2

(
η

(k)
c i,j

)
AD i,j

1 +AD i,jn
(k)
i,j

−Nc i,jF−1/2

(
η

(k)
c i,j

)
−

−
N
− (k)
A i,j Nv i,jF−1/2

(
η

(k)
v i,j

)
AA i,j

1 +AA i,jp
(k)
i,j

−Nv i,jF−1/2

(
η

(k)
v i,j

)
(B.7b)

So the full linearised and discretized equation for Poisson in equilibrium conditions

is:

P(k) (xi, yj , ψ) +∇ · ε (xi, yj)∇δψ(k+1) (xi, yj) + δρ (xi, yj) = 0 (B.8)

This is a simplified way of using the Newton method, where electron and hole

densities are not linearised. Despite this, this method has been proved to be faster and

more stable than using the Poisson equation directly.

B.2 Linearisation of the Poisson-Continuity equations

In this case, all the equations involved have been adapted to use the Newton method.

The total system considers the Poisson and the continuity equations in one only matrix,

where all the variables are updated at the same time. This way, the convergence is

improved. The linearisation is specially useful when applied to the continuity equations,

given their non-linear dependence with the potential.
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As we defined in the previous Appendix, let us call P (r, ψ, n, p) the Poisson equa-

tion, grouped all the terms in one side of the equation (that is, displacing the charge

density in Eq. (2.1) to the left hand side of the equation), so that P (ψ, n, p) = 0.

Similarly, letWn (r, ψ, n) andWp (r, ψ, p) be the continuity equations for electrons and

holes, respectively, seen in Eq. (2.4), neglecting the temporal partial derivatives. By

applying the Newton method seen in Eq. (B.1), we get the following system:


∂P
∂ψ

∂P
∂n

∂P
∂p

∂Wn
∂ψ

∂Wn
∂n

∂Wn
∂p

∂Wp

∂ψ
∂Wp

∂n
∂Wp

∂p


 δψ(k+1)

δn(k+1)

δp(k+1)

 = −

 P
(k)

W(k)
n

W(k)
p

 (B.9)

To implement this procedure, we must derive each of the equations by their corre-

sponding variables (ψ, n and p). The resultant system is three times larger than the

corresponding to the direct equations, although the matrices hold their sparsity. To

solve this system, the Jacobian matrix must be inverted, what in large device structures

requires a large time to evaluate. Despite this fact, the number of iterations required

to converge is much lower, compensating the extra processing time for each iteration.

Let us start with the Poisson equation. To make the notation easier, we can rewrite

it as:

P (r, ψ, n, p) = Lψ (r) + ρ (r) = 0 (B.10)

where L is the ∇ε∇ operator. We can numerically linearise the equation following the

Newton method seen in Eq. (B.1). So the first row of the matrices operation presented

in Eq. (B.9) is

L
(
ψ(k) (r) + δψ(k+1) (r)

)
+ ρ(k) (r) + δρ(k+1) (r) = 0 (B.11)

where ψ(k) (r) and ρ(k) (r) are the potential and charge density of the previous

iteration, and δψ(k+1) (r) and δρ(k+1) (r) are the calculated corrections added to the

potential and the charge density, respectively. Once linearised and discretized, the L
operator is applied to the correction term of the potential as in Eq. (B.7a), and the

corresponding term for the charge density is:
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δρ(k+1) (xi, yj) = q
(
−δn(k+1)

i,j + δp
(k+1)
i,j + δN+

D i,j
(k+1) − δN−A i,j

(k+1)
+ δNT i,j

)
(B.12)

where the terms for the ionized impurities are given by the expressions

δN+
D i,j

(k+1)
= −

N
+ (k)
D i,j ni,j

(k) + 1
AD i,j

δ
n

(k+1)
i,j (B.13a)

δN+
A i,j

(k+1)
= −

N
− (k)
A i,j pi,j

(k) + 1
AA i,j

δ
p

(k+1)
i,j (B.13b)

and the term associated with the trap density is evaluated as shown in Section B.3.9.

The terms shown in Eq. (B.7a) and (B.12) are added to Eq. (A.7), resulting in the full

discretized and linearised Poisson equation in non-equilibrium conditions, that is:

P(k)
i,j (ψ, n, p) + Lδψ(k+1)

i,j + δρ
(k+1)
i,j = 0 (B.14)

In a similar procedure, the continuity equations for electrons and holes can be

linearised. The second and third rows of Eq. (B.9) are:

∇
(

J (k)
n (r) + δJ (k+1)

n (r)
)

+G(k)
n (r)−R(k)

n (r)+ δG(k+1)
n (r)− δR(k+1)

n (r) = 0 (B.15a)

∇
(

J (k)
p (r) + δJ (k+1)

p (r)
)
−G(k)

p (r)+R(k)
p (r)−δG(k+1)

p (r)+δR(k+1)
p (r) = 0 (B.15b)

where the δG(k+1) (r) and δR(k+1) (r) terms include all the generation and recombina-

tion correction terms, which we study in the following Sections.

Let us start by focusing on the electron current density. The spatial derivative of

J
(k)
n (r) can be evaluated hastily, following the procedure described in Appendix A.2.

In the case of δJ
(k+1)
n (r), the expression is split into four parts, which are each of the

derivative terms, δJn,i±1/2,j±1/2, obtained from applying Eq. (A.8) in the two directions

x and y. If for one or more directions the currents are TE or TFE, their evaluations

are substituted by the corresponding term. Focusing on the x direction, the equations
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corresponding to the Drift-Diffusion core are:

δJ
(k+1)
n,i,j+1/2 =

qkBTµn,i,j+1/2

∆yj+1

[
δn

(k+1)
i,j+1 B

(
Γ

(k)
V j+1

)
− δn(k+1)

i,j B
(
−Γ

(k)
V j+1

)
+

+
(
n

(k)
i,j+1B

′
(

Γ
(k)
V j+1

)
+ n

(k)
i,j B

′
(
−Γ

(k)
V j+1

))
δΓ

(k+1)
V j+1

] (B.16a)

δJn,i,j−1/2 =
qkBTµn,i,j−1/2

∆yj

[
δn

(k+1)
i,j B

(
Γ

(k)
V j

)
− δn(k+1)

i,j−1 B
(
−Γ

(k)
V j

)
+

+
(
n

(k)
i,j B

′
(

Γ
(k)
V j

)
+ n

(k)
i,j−1B

′
(
−Γ

(k)
V j

))
δΓ

(k+1)
V j

] (B.16b)

where B′ (x) is the derivative of the Bernoulli function, given by:

B′ (x) =
ex (1− x)− 1

(ex − 1)2 (B.17)

Γ
(k)
V j and Γ

(k)
H i are the normalized potential difference

Γ
(k)
V j =

ψ
(k)
i,j − ψ

(k)
i,j−1

kBT
and Γ

(k)
H i =

ψ
(k)
i,j − ψ

(k)
i−1,j

kBT
(B.18)

and δΓ
(k+1)
V j and δΓ

(k+1)
H i are the correction terms for the potential difference:

δΓ
(k+1)
V j =

δψ
(k+1)
i,j − δψ(k+1)

i,j−1

kBT
and δΓ

(k+1)
H i =

δψ
(k+1)
i,j − δψ(k+1)

i−1,j

kBT
(B.19)

Similar equations are obtained for the y direction. In the case of the continuity

equation for holes, the obtained linearisation and discretization of the horizontal current

density terms is:

δJ
(k+1)
p,i,j+1/2 =

qkBTµp,i,j+1/2

∆yj+1

[
δp

(k+1)
i,j+1 B

(
−Γ

(k)
V j+1

)
− δp(k+1)

i,j B
(

Γ
(k)
V j+1

)
−

−
(
p

(k)
i,j+1B

′
(
−Γ

(k)
V j+1

)
+ p

(k)
i,j B

′
(

Γ
(k)
V j+1

))
δΓ

(k+1)
V j+1

] (B.20a)

δJ
(k+1)
p,i,j−1/2 =

qkBTµp,i,j−1/2

∆yj

[
δp

(k+1)
i,j B

(
−Γ

(k)
V j

)
− δp(k+1)

i,j−1 B
(

Γ
(k)
V j

)
−

−
(
p

(k)
i,j B

′
(
−Γ

(k)
V j

)
+ p

(k)
i,j−1B

′
(

Γ
(k)
V j

))
δΓ

(k+1)
V j

] (B.20b)
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Finally, for the full discretized and linearised electron continuity equation, we follow

the Eq. (B.15), and add the correction terms to Eq. (A.13). Here we only include the

full correction term corresponding to the current density. The correction terms assigned

to the generation and recombination rates are explained in the following Sections. The

correction terms for the electron continuity equations are:

− δR(k+1)
n,i,j + δG

(k+1)
n,i,j = −

∑
r

δR
(k+1)
n,r,i,j +

∑
s

δG
(k+1)
n,s,i,j +

∑
t

δU
(k+1)
n,t,i,j (B.21a)

∇δJ (k+1)
n,i,j =

2

∆xi + ∆xi+1

[
δn

(k+1)
i−1,j B

(
−Γ

(k)
H i

) kBTµn,i−1/2,j

∆xi
−

− δn(k+1)
i,j

[
B
(
−Γ

(k)
H i+1

) kBTµn,i+1/2,j

∆xi+1
+B

(
Γ

(k)
H i

) kBTµn,i−1/2,j

∆xi

]
+

+ δn
(k+1)
i+1,j B

(
Γ

(k)
H i+1

) kBTµn,i+1/2,j

∆xi+1
+

+
(
n

(k)
i+1,jB

′
(

Γ
(k)
H i+1

)
+ n

(k)
i,j B

′
(
−Γ

(k)
H i+1

))
δΓ

(k+1)
H i+1

qkBTµn,i+1/2,j

∆xi+1
−

−
(
n

(k)
i,j B

′
(

Γ
(k)
H i

)
+ n

(k)
i−1,jB

′
(
−Γ

(k)
H i

))
δΓ

(k+1)
H i

qkBTµn,i−1/2,j

∆xi

]
+

+
2

∆yj + ∆yj+1

[
δn

(k+1)
i,j−1 B

(
−Γ

(k)
V j

) kBTµn,i,j−1/2

∆yj
−

− δn(k+1)
i,j

[
B
(
−Γ

(k)
V j+1

) kBTµn,i,j+1/2

∆yj+1
+B

(
Γ

(k)
V j

) kBTµn,i,j−1/2

∆yj

]
+

+δn
(k+1)
i,j+1 B

(
Γ

(k)
V j+1

) kBTµn,i,j+1/2

∆yj+1
+

+
(
n

(k)
i,j+1B

′
(

Γ
(k)
V j+1

)
+ n

(k)
i,j B

′
(
−Γ

(k)
V j+1

))
δΓ

(k+1)
V j+1

qkBTµn,i,j+1/2

∆yj+1
−

−
(
n

(k)
i,j B

′
(

Γ
(k)
V j

)
+ n

(k)
i,j−1B

′
(
−Γ

(k)
V j

))
δΓ

(k+1)
V j

qkBTµn,i,j−1/2

∆yj

]
(B.21b)

where the r, s, t subscripts refers to the different generation and recombination mecha-

nisms, and Un,t,i,j corresponds to the generation-recombination mechanisms. Finally,

the full linearised and discretized electron continuity equation is formed by Eq. (A.15)

evaluated with the results obtained in the iteration k and the equations (B.21), giving:
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W(k)
n,i,j (ψ, n) +∇δJ (k+1)

n,i,j − δR
(k+1)
n,i,j + δG

(k+1)
n,i,j = 0 (B.22)

Similarly, for the full continuity equation for holes, following the Eq. (B.15), the

next terms are included to Eq. (A.15):

δR
(k+1)
p,i,j − δG

(k+1)
p,i,j =

∑
r

δR
(k+1)
p,r,i,j −

∑
s

δG
(k+1)
p,s,i,j −

∑
t

δU
(k+1)
p,t i,j (B.23a)

∇δJ (k+1)
p,i,j =

2

∆xi + ∆xi+1

[
δp
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i−1,j B

(
Γ

(k)
H i
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(
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(k)
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(
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+
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(k)
H i+1

) kBTµp,i+1/2,j
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(
p

(k)
i+1,jB

′
(
−Γ

(k)
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)
+ p

(k)
i,j B

′
(

Γ
(k)
H i+1

))
δΓ
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H i+1
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+

+
(
p

(k)
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′
(
−Γ

(k)
H i

)
+ p

(k)
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′
(

Γ
(k)
H i

))
δΓ

(k+1)
H i
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∆xi

]
+

+
2
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[
δp

(k+1)
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(
Γ

(k)
V j

) kBTµp,i,j−1/2

∆yj
−

− δp(k+1)
i,j

[
B
(

Γ
(k)
V j+1

) kBTµp,i,j+1/2

∆yj+1
+B

(
−Γ

(k)
V j

) kBTµp,i,j−1/2

∆yj

]
+

+δp
(k+1)
i,j+1 B

(
−Γ

(k)
V j+1

) kBTµp,i,j+1/2

∆yj+1
−

−
(
p

(k)
i,j+1B

′
(
−Γ

(k)
V j+1

)
+ p

(k)
i,j B

′
(

Γ
(k)
V j+1

))
δΓ

(k+1)
V j+1
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∆yj+1
+

+
(
p

(k)
i,j B

′
(
−Γ

(k)
V j

)
+ p

(k)
i,j−1B

′
(

Γ
(k)
V j

))
δΓ
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qkBTµp,i,j−1/2

∆yj

]
(B.23b)

where the superscripts r, s and t have the same meaning than for electrons. Thus, the

final continuity equation for holes is formed by the term from Eq. (A.15) evaluated

with the results from iteration k and the Equations (B.23b):

W(k)
p,i,j (ψ, p) +∇δJ (k+1)

p,i,j + δR
(k+1)
p,i,j − δG

(k+1)
p,i,j = 0 (B.24)
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B.3 Other correction terms

As we did with the Poisson and continuity equations, the rest of models explained in

Chapter 2 have also been linearised. The following points describe the final equations

applied in the simulator for the contact models, heterostructures and the considered

generation and recombination rates.

In the case of the generation and recombination terms, they are added up and

conform the total correction term for the rates seen in Eqs. (B.21a) and (B.23a).

B.3.1 Thermionic model for Schottky contacts

As explained in Section 2.3, the current density term at the (rI) interface positions is

substituted by the TE current definition. In the same way, its corresponding correction

term is substituted in Eq. (B.15). Here we modify the spatial derivative as explained

in Section A.3 to correctly evaluate the change of the widths due to the shift of the

position of the current evaluation from the seminode to the node. Let us consider a

discretized point, belonging to the interface positions, i, j ∈ rI. The discretized and

linearised term assigned to the TE model can be evaluated as

δJ
(k+1)
n,i,j (n) = −qvn

th i,jδn
(k+1)
i,j (B.25a)

δJ
(k+1)
p,i,j (p) = qvp

th ,i,jδp
(k+1)
i,j (B.25b)

for electron and hole current densities, respectively. They substitute the current com-

ponent in the corresponding direction in Eq. (B.22) and (B.24).

B.3.2 TFE in metal-semiconductor junctions

In metal-semiconductors junctions, the tunnel contributions are distributed. In this

case, the Newton linearisation has been simplified, as the tunnel contribution is consi-

dered as a constant, as this value slightly change between iterations. In this case, for

a position i, j ∈ rB, where rB refers to the positions of the barrier in which tunnel is

evaluated, the following term for electrons is added

δJ
(k+1)
n,i,j (ψ, n) = −qvn

th i,jγn i,jNc i,j

(
δfn

s,i,j
(k+1) − δfn

m i,j
(k+1)

)
(B.26)
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where the correction terms of the occupation functions are evaluated as

δfn
s i,j

(k+1) =

exp

−F−1
1/2

(
n
(k)
i,j

Nc i,j

)
1

Nc i,j

dF−1
1/2

(
n
(k)
i,j

Nc i,j

)
d(n/Nc)


[
1 + exp

(
−F−1

1/2

(
n
(k)
i,j

Nc i,j

))]2 δn
(k+1)
i,j (B.27a)

δfn
m i,j

(k+1) =

exp

(
Vbi i,j−ψ

(k)
i,j

kBT

)
1

kBT(
1 + exp

(
Vbi i,j−ψ

(k)
i,j

kBT

))2 δψ
(k+1)
i,j (B.27b)

where Vbi is the built-in potential, and the derivative of the inverse operator of the

Fermi function is approximated as:

dF−1 (u)

du
=

1− u2 (1 + 2ln (u))

u (1− u2)2 +

(
3
√
π

4 u
)−1/3 √

π
2

A2

(
A + 2.16B (A− 1)3/2

)
(B.28)

with A = 1 +
[
0.24 + 1.08 (3

√
πu/4)

2/3
]−2

and B = (3
√
πu/4)

2/3
, respectively.

The treatment for holes is very similar:

δJp,i,j
(k+1) (ψ, p) = qvp

th i,jγp i,jNv i,j

(
δfp

m i,j
(k+1) − δfp

s i,j
(k+1)

)
(B.29)

and the corresponding correction terms given by:

δfp
s i,j

(k+1)
=

exp

F−1
1/2

(
p
(k)
i,j

Nv i,j

)
1

Nv i,j

dF−1
1/2

(
p
(k)
i,j

Nv i,j

)
d(p/Nv)


[
1 + exp

(
−F−1

1/2

(
p
(k)
i,j

Nv i,j

))]2 δp
(k+1)
i,j (B.30a)

δfp
m i,j

(k+1)
=

exp

(
Vbi i,j−ψ

(k)
i,j −Eg i,j

kBT

)
1

kBT(
1 + exp

(
Vbi i,j−ψ

(k)
i,j −Eg i,j

kBT

))2 δψ
(k+1)
i,j (B.30b)
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B.3.3 Schottky Barrier lowering

As the barrier lowering depends on the electric field, the corresponding correction term

can be obtained by deriving the Equation (2.15) with respect to the potential. In a

system with the metal contact set to the left of the semiconductor, the corresponding

expression is:

δφ
(k+1)
δ i,j =

1

2

√
q/4πεs∣∣∣E(k)
i,j

∣∣∣3/2
∣∣∣E(k)

i,j

∣∣∣
∆xi

(
δψ

(k+1)
i,j − δψ(k+1)

i+1,j

)
= A

(k)
BL

(
δψ

(k+1)
i,j − δψ(k+1)

i+1

)
(B.31)

This term is used to linearise Eq. (2.16), in which we move all the terms to the

left-hand side and get the correction terms:

ψ
(k)
i,j + δψ

(k+1)
i,j − δφ(k+1)

δ i,j − φ
(k)
δ i,j − ψ

(k)
0 i,j = 0. (B.32)

Substituting Eq. (B.31) in (B.32), we obtain

(1−ABL) δψ
(k+1)
i,j +A

(k)
BLδψ

(k+1)
i+1,j = −ψ(k)

i,j + ψ
(k)
0 i,j + φ

(k)
δ i,j (B.33)

This equation substitutes the corresponding one in the Poisson equation at (i, j) ∈
rI, i.e., the metal interface positions.
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B.3.4 Heterostructures

Let us consider an interface position (i, j) ∈ rI, where two different semiconductors are

in contact along the y direction. In that case, let (i+, j) and (i−, j) be the nodes in

which (i, j) is divided, the former belonging to the right material and the latter to the

left one. The correction term for the current in both positions, referred as δJ
(k+1)
n,i±,j , once

discretized, can be evaluated as

δJ
(k+1)
n,i±,j =qvn

th i+,j exp

(
−

∆Ec i+,j

kBT

)
(1 + γn i,j)δn(k+1)

i+,j
+
n

(k)
i+,j

kBT

(
δψ

(k+1)
i+,j

− δψR (k+1)
i,j

)−
− qvn

th i−,j exp

(
−

∆Ec i−,j

kBT

)
(1 + γn i,j)δn(k+1)

i−,j +
n

(k)
i−,j

kBT

(
δψ

R (k+1)
i,j − δψ(k+1)

i−,j

)
(B.34a)

δJ
(k+1)
p,i±,j =− qvp

th i+,j
exp

(
∆Ev i+,j

kBT

)
(1 + γp i,j)δp(k+1)

i+,j
+
n

(k)
i+,j

kBT

(
−δψ(k+1)

i+,j
+ δψ

R (k+1)
i,j

)+

+ qvp
th i−,j exp

(
∆Ev i−,j

kBT

)
(1 + γp i,j)δp(k+1)

i−,j +
p

(k)
i−,j

kBT

(
−δψR (k+1)

i,j + δψ
(k+1)
i−,j

)
(B.34b)

where ψR refers to the minimum value of potential at the barrier in the case of elec-

trons, and the maximum for holes. This equation is general for both simple and SOS

heterostructures, that is why the exact potential position has been specified, although

in simple heterojunctions they share the same value.

In the case of semiconductor-oxide-semiconductor heterostructures, the procedure

is exactly the same, just changing the nomenclature of Eq. (B.34) to fit with the SOS

interfaces. The position (i+, j) would correspond to the right interface, whereas (i−, j)

would refer to the left interface.
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B.3.5 Local band to band tunnelling current

The generation-recombination term can be linearised using the Newton method. For

the Hurkx model presented in Eq. (2.24), the new correction term that is added is

δU
(k+1)
Hurkx i,j = A exp

(
− B√

CK i,j

)
×

×

δn(k+1)
i,j BH i,j

(
p

(k)
i,j AH i,j − CH i,j

)
A2

H i,jB
2
H i,j

+
δp

(k+1)
i,j AH i,j

(
n

(k)
i,j BH i,j − CH i,j

)
A2

H i,jB
2
H i,j

C
α/2
K i,j+

+
n

(k)
i,j p

(k)
i,j − n2

i i,j

AH i,jBH i,j
·DK i,j

(
δψ

(k+1)
i,j − δψ(k+1)

i−1,j

∆xi
Ex i,j +

δψ
(k+1)
i,j − δψ(k+1)

i,j−1

∆yj
Ey i,j

)]
(B.35)

where the elements AH i,j , BH i,j , CH i,j , CK i,j and DK i,j correspond to

AH i,j = ni,j + ni i,j (B.36a)

BH i,j = pi,j + ni i,j (B.36b)

CH i,j = ni,jpi,j + n2
i i,j (B.36c)

CK i,j = E2
x i,j + E2

y i,j (B.36d)

DK i,j = BC
α−3
2

K i,j + αC
−α

2
K i,j (B.36e)

and the rest of constants follow the nomenclature seen in Section 2.6.

Considering only the Kane model, the equation simplifies to:

δU
(k+1)
Kane i,j =A exp

(
− B√

CK i,j

)
DK i,j×

×

(
δψ

(k+1)
i,j − δψ(k+1)

i−1,j

∆xi
Ex i,j +

δψ
(k+1)
i,j − δψ(k+1)

i,j−1

∆yj
Ey i,j

) (B.37)

This model could be applied in the non-local approach although, due to the relation

between remote nodes, the Jacobian matrix would lost its sparsity and the time required

to solve the system would be highly increased.
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B.3.6 SRH recombination

Here we evaluate the correction term associated with the SRH recombination, seen in

Eq. (2.27). If we call

A
(k)
i,j = τn i,j

[
p

(k)
i,j + ni i,j exp

(
−ET i,j

kBT

)]
+ τp i,j

[
n

(k)
i,j + ni i,j exp

(
ET i,j

kBT

)]
(B.38)

and

B
(k)
i,j = p

(k)
i,j n

(k)
i,j − n

2
i i,j (r) (B.39)

the correction term is

δR
(k+1)
SRH i,j = δp

(k+1)
i,j

n
(k)
i,j A

(k)
i,j −B

(k)
i,j τn i,j(

A
(k)
i,j

)2 + δn
(k+1)
i,j

p
(k)
i,j A

(k)
i,j −B

(k)
i,j τp i,j(

A
(k)
i,j

)2 (B.40)

which is added to the δRi,j total correction recombination term.

B.3.7 Auger generation/recombination

In the same way as it was added the correction term in the SRH recombination, it is

possible to add the corresponding term for this process as the partial derivative with

respect to the electron and hole densities from Eq. (2.28). We obtain

δU
(k+1)
Aug i,j = δn

(k+1)
i,j

[
Cn i,j

(
2n

(k)
i,j p

(k)
i,j − n

2
i i,j

)
+ Cp i,j

(
p

(k)
i,j

)2
]

+

+ δp
(k+1)
i,j

[
Cp i,j

(
2n

(k)
i,j p

(k)
i,j − n

2
i i,j

)
+ Cn i,j

(
n

(k)
i,j

)2
] (B.41)

B.3.8 Radiative recombination

We follow the same derivation process with Eq. (2.29), which gives

δRRad i,j = BRad i,j

(
δn

(k+1)
i,j p

(k)
i,j + δp

(k+1)
i,j n

(k)
i,j

)
(B.42)

In the case of light generation, there is no correction term, as it is independent of the

potential and charge densities.
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B.3.9 Traps at interfaces

The interface charge can be also linearised using the Newton method. The associated

correction term is obtained deriving the interface charge density shown in Eq. (2.33)

by the selected of carrier, electron or hole. In the case of electrons, it is given by:

δQ
a (k+1)
it i,j =

− q
∫ ∞
−∞

D
a (k)
it i,j (E − Ei i,j) exp

(
E−Ef i,j

kBT

)
kBT

(
1 + exp

(
E−Ef i,j

kBT

))2

∂ (Ef i,j − Ei i,j)

∂p

∣∣∣∣
(k)

δp
(k+1)
i,j d (E − Ei i,j)

(B.43)

while in the case of holes can be expressed as:

δQ
d (k+1)
it i,j =

q

∫ ∞
−∞

D
d (k)
it i,j (E − Ei i,j) exp

(
E−Ef i,j

kBT

)
kBT

(
1 + exp

(
E−Ef i,j

kBT

))2

∂ (Ef i,j − Ei i,j)

∂n

∣∣∣∣
(k)

δn
(k+1)
i,j d (E − Ei i,j)

(B.44)

where

∂ (Ef i,j − Ei i,j)

∂p

∣∣∣∣
(k)

= − kBT

Nv i,j

dF−1
1/2

(
p
(k)
i,j

Nv i,j

)
dp/Nv

(B.45a)

∂ (Ef i,j − Ei i,j)

∂n

∣∣∣∣
(k)

=
kBT

Nc i,j

dF−1
1/2

(
n
(k)
i,j

Nc i,j

)
dn/Nc

(B.45b)

The derivative of the inverse operator of the Fermi function can be found in Eq.

(B.28). These equations can be used for all the described DoS profiles in Section 2.8.

The correction terms are added to the correction terms of the charge density in Eq.

(B.12) in this way

δN
(k+1)
T i,j = ∆Qd

it i,j
(k+1)

+ ∆Qa
it i,j

(k+1) (B.46)

170 Appendixes



Appendix C

Boundary conditions

During the simulations, the evaluated device is enclosed in a 2D system, surrounded

by boundary conditions [233]. SAMANTA has two kind of border conditions: Dirichlet

and Neumann. The former is used in contacts, whereas the latter is placed in the rest

of borders.

Contacts can be placed inside the system too, as one material block. However, only

the borders of these blocks are considered in the evaluation. Figure C.1 is an example

of a phototransistor, where the different borders are highlighted.

ContactSemiconductor

Oxide

Gate

Contact

Air

Neumann

Dirichlet

Figure C.1: Schematic of a phototransistor with the different boundary
conditions highlighted. Blue borders fix the potential and charge densities.
Orange borders set the potential, which can be shifted by the barrier
lowering δφ. Green borders enable Neumann conditions.

Neumann conditions match the potential and charge densities at the borders to the

values of the closest point normal to the interface. Consider the interface points I and
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be the i points the closest positions to each point of the interface that does not belong

to the interface itself, that is i 6⊆ I , then:

ψ (I ) = ψ (i) (C.1a)

n (I ) = n (i) (C.1b)

p (I ) = p (i) (C.1c)

In the case of Dirichlet conditions, the potential is fixed, unless barrier lowering is

enabled. Now, let I be the metal interface points. The potential value is determined as

ψ (I ) = φm (I )−χsc (I ). In equilibrium and ohmic conditions, charge carriers are fixed

too, following Eq. (2.21) and setting n (I ) = n0 (I ) and p (I ) = p0 (I ). In the case of

contacts with TE or TFE current models, charge carriers are evaluated as part of the

continuity equations using Equations (2.6), (2.17) and (2.19). Finally, in metal-oxide

interfaces, charge carriers at the metal interface are set to zero.
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Materials parameters

This Appendix collects the material parameters applied in the simulations carried out

in this work. Some of them has ”this work” as reference. It means their values are the

ones used to fit with the experimental results. Table D.1 has the default magnitudes

for Silicon, without any degradation, while Tables D.2 and D.3 contain the evaluated

parameters for the two studied 2D materials, Molybdenum Ditelluride and Molybdenum

Disellenide, respectively.

D.1 Silicon

Parameter Value

εr (ε0) 11.9

mn
eff (m0) 0.91

mp
eff (m0) 0.49

χ (eV) 4.05

Eg (eV) 1.12

Nc (cm−3) 2.82×1019

Nv (cm−3) 1.83×1019

ni (cm−3) 8.89×109

µn

(
cm2 V−1 s−1

)
1500

µp

(
cm2 V−1 s−1

)
400

Table D.1: Material parameters used for Si. Obtained from [234].
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D.2 Molybdenum Ditelluride

Parameter Value Ref

ε⊥ (ε0) 10.4 [235]

ε‖ (ε0) 22.2 [235]

mn
eff (m0) 0.55 [236]

mp
eff (m0) 0.64 [236]

χ (eV) 4 This work

Eg (eV) 1.07 This work

Nc (cm−3) 1.31×1019 [206]

Nv (cm−3) 1.28×1019 [206]

ni (cm−3) 5.09×109 [237]

µn

(
cm2 V−1 s−1

)
0.06 This work

µp

(
cm2 V−1 s−1

)
1.24 This work

Table D.2: Material parameters used for MoTe2.

D.3 Molybdenum Disulphide

Parameter Value Ref

ε⊥ (ε0) 7.6 [235]

ε‖ (ε0) 16.1 [235]

mn
eff (m0) 0.49 [236]

mp
eff (m0) 0.43 [236]

χ (eV) 4 [238]

Eg (eV) 1.29 [239]

Nc (cm−3) 7.35×1019 [236]

Nv (cm−3) 8.00×1019 [236]

ni (cm−3) 1.12×109 [237]

µn

(
cm2 V−1 s−1

)
7.5 This work

µp

(
cm2 V−1 s−1

)
0.01 This work

Table D.3: Material parameters used for MoS2.
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Bei Wang, Ruitao Lv, Florentino López-Uŕıas, Vincent H. Crespi, Humberto Ter-

rones, and Mauricio Terrones. Extraordinary room-temperature photolumines-

cence in triangular ws2 monolayers. Nano Letters, 13(8):3447–3454, 2013. PMID:

23194096.

[101] S. Saqib Shams, Ruoyu Zhang, and Jin Zhu. Graphene synthesis: a Review.

Materials Science-Poland, 33(3):566–578, sep 2015.

[102] Jiawen You, Md Delowar Hossain, and Zhengtang Luo. Synthesis of 2D transition

metal dichalcogenides by chemical vapor deposition with controlled layer number

and morphology. Nano Convergence, 5(1), sep 2018.

References 189



Bibliography

[103] Seolhee Yoo, Sangsig Kim, and Yong-Won Song. Lithography-free fabrication of

field effect transistor channels with randomly contact-printed black phosphorus

flakes. Materials Science in Semiconductor Processing, 86:58–62, nov 2018.

[104] Rafik Addou, Luigi Colombo, and Robert M. Wallace. Surface Defects on Natural

MoS2. ACS Applied Materials & Interfaces, 7(22):11921–11929, 2015. PMID:

25980312.

[105] Li Lin, Jincan Zhang, Haisheng Su, Jiayu Li, Luzhao Sun, Zihao Wang, Fan

Xu, Chang Liu, Sergei Lopatin, Yihan Zhu, Kaicheng Jia, Shulin Chen, Dingran

Rui, Jingyu Sun, Ruiwen Xue, Peng Gao, Ning Kang, Yu Han, H. Q. Xu, Yang

Cao, K. S. Novoselov, Zhongqun Tian, Bin Ren, Hailin Peng, and Zhongfan Liu.

Towards super-clean graphene. Nature Communications, 10(1), apr 2019.

[106] Liu Wang, Jiansheng Jie, Zhibin Shao, Qing Zhang, Xiaohong Zhang, Yuming

Wang, Zheng Sun, and Shuit-Tong Lee. MoS2/si heterojunction with vertically

standing layered structure for ultrafast, high-detectivity, self-driven visible-near

infrared photodetectors. Advanced Functional Materials, 25(19):2910–2919, mar

2015.

[107] Rup K. Chowdhury, Rishi Maiti, Arup Ghorai, Anupam Midya, and Samit K.

Ray. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibi-

ting broadband photoresponse and superior detectivity. Nanoscale, 8(27):13429–

13436, 2016.

[108] Changli Li, Qi Cao, Faze Wang, Yequan Xiao, Yanbo Li, Jean-Jacques Delaunay,

and Hongwei Zhu. Engineering graphene and TMDs based van der waals hete-

rostructures for photovoltaic and photoelectrochemical solar energy conversion.

Chemical Society Reviews, 47(13):4981–5037, 2018.

[109] Changsik Kim, Inyong Moon, Daeyeong Lee, Min Sup Choi, Faisal Ahmed, Seung-

geol Nam, Yeonchoo Cho, Hyeon-Jin Shin, Seongjun Park, and Won Jong Yoo.

Fermi level pinning at electrical metal contacts of monolayer molybdenum dichal-

cogenides. ACS Nano, 11(2):1588–1596, jan 2017.

[110] Kyung-Ah Min, Jinwoo Park, Robert M Wallace, Kyeongjae Cho, and Suklyun

Hong. Reduction of Fermi level pinning at Au–MoS2 interfaces by atomic passi-

vation on Au surface. 2D Materials, 4(1):015019, nov 2016.

190 References



Bibliography

[111] R. N. Sajjad, W. Chern, J. L. Hoyt, and D. A. Antoniadis. Trap Assisted Tunne-

ling and Its Effect on Subthreshold Swing of Tunnel FETs. IEEE Transactions

on Electron Devices, 63(11):4380–4387, November 2016.

[112] Lang Zeng, Zheng Xin, Shao-Wen Chen, Gang Du, Jin-Feng Kang, and Xiao-Yan

Liu. Remote phonon and impurity screening effect of substrate and gate dielectric

on electron dynamics in single layer MoS2. AIP, 103, 2013.

[113] Haining Wang, Changjian Zhang, and Farhan Rana. Surface recombination limi-

ted lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide

MoS2. Nano Letters, 15(12):8204–8210, nov 2015.

[114] Vikram Passi, Amit Gahoi, Enrique G. Marin, Teresa Cusati, Alessandro Fortu-

nelli, Giuseppe Iannaccone, Gianluca Fiori, and Max C. Lemme. Ultralow specific

contact resistivity in metal–graphene junctions via contact engineering. Advanced

Materials Interfaces, 6(1):1801285, nov 2018.

[115] Wei Cao, Jiahao Kang, Wei Liu, and Kaustav Banerjee. A Compact Cur-

rent–Voltage Model for 2D Semiconductor Based Field-Effect Transistors Con-

sidering Interface Traps, Mobility Degradation, and Inefficient Doping Effect.

IEEE Transactions on Electron Devices, 61(12):4282–4290, dec 2014.

[116] Dragica Vasileska, Stephen M. Goodnick, and Gerhard Klimeck. Computational

Electronics, Semiclassical and Quantum Device Modeling and Simulation. Taylor

& Francis Group, 2010.

[117] Yee Sin Ang, Hui Ying Yang, and L. K. Ang. Universal Scaling Laws in Schottky

Heterostructures Based on Two-Dimensional Materials. Physical Review Letters,

121(5), aug 2018.

[118] Kwok K. Ng Simon M. Sze. Physics of Semiconductor Devices. Wiley-Interscience,

3 edition, 2006.

[119] Yuanyue Liu, Paul Stradins, and Su-Huai Wei. Van der Waals metal-

semiconductor junction: Weak Fermi level pinning enables effective tuning of

Schottky barrier. Science Advances, 2(4):e1600069, apr 2016.

[120] Kyounghoon Yang, Jack R. East, and George I. Haddad. Numerical modeling

of abrupt heterojunctions using a thermionic-field emission boundary condition.

Solid-State Electronics, 36(3):321 – 330, 1993.

References 191



Bibliography

[121] C. Y. Chang and S. M. Sze. Carrier transport across metal-semiconductor bar-

riers. Solid-State Electronics, 13:727–740, 1970.

[122] Yuji Ando and Tomohiro Itoh. Calculation of transmission tunneling current

across arbitrary potential barriers. Journal of Applied Physics, 61(4):1497–1502,

1987.

[123] Gregor Cernivec, Andri Jagomägi, Franc Smole, and Marko Topic. Numerical

and experimental indication of thermally activated tunneling transport in {CIS}
monograin layer solar cells. Solid-State Electronics, 52(1):78–85, 2008.

[124] Nacer Debbar. Investigation of the dark electrical characteristics of the lateral

metal-semiconductor-metal photodetectors using two-dimensional numerical si-

mulation. International Journal of Numerical Modelling: Electronic Networks,

Devices and Fields, 24(4):335–344, jul 2010.

[125] Eric Bersch, Sylvie Rangan, Robert Allen Bartynski, Eric Garfunkel, and Elio

Vescovo. Band offsets of ultrathin high-κ oxide films with Si. Physical Review B,

78:085114, Aug 2008.

[126] Abhinandan Borah, Punnu Jose Sebastian, Ankur Nipane, and James T. Te-

herani. An Intuitive Equivalent Circuit Model for Multilayer Van Der Waals

Heterostructures. IEEE Transactions on Electron Devices, pages 1–7, 2018.

[127] M.S. Lundstrom and R.J. Schuelke. Modeling semiconductor heterojunctions in

equilibrium. Solid-State Electronics, 25(8):683 – 691, 1982.

[128] J. Verschraegen and M. Burgelman. Numerical modeling of intra-band tunneling

for heterojunction solar cells in SCAPS. Thin Solid Films, 515(15):6276–6279,

2007. Proceedings of Sympodium O on Thin Film Chalcogenide Photovoltaic

Materials, EMRS 2006 Conference.

[129] M. G. Bardon, H. P. Neves, R. Puers, and C. Van Hoof. Pseudo-Two-Dimensional

Model for Double-Gate Tunnel FETs Considering the Junctions Depletion Regi-

ons. IEEE Transactions on Electron Devices, 57(4):827–834, April 2010.

[130] Arnab Biswas, Surya Shankar Dan, Cyrille Le Royer, Wladyslaw Grabinski, and

Adrian M. Ionescu. TCAD simulation of SOI TFETs and calibration of non-local

band-to-band tunneling model. Microelectronic Engineering, 98:334 – 337, 2012.

Special issue MNE 2011 - Part II.

192 References



Bibliography

[131] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers. A new recombination

model for device simulation including tunneling. IEEE Transactions on Electron

Devices, 39(2):331–338, 1992.

[132] W. Shockley and W. T. Read. Statistics of the Recombinations of Holes and

Electrons. Physical Review, 87(5):835–842, sep 1952.

[133] R. N. Hall. Recombination processes in semiconductors. The Institution of Elec-

trical Engineers, 1960.

[134] Siegfried Selberherr. Analysis and Simulation of Semiconductor Devices.

Springer-Verlag Wien, 1 edition, 1984.

[135] Haining Wang, Changjian Zhang, and Farhan Rana. Ultrafast dynamics of

defect-assisted electron–hole recombination in monolayer MoS2. Nano Letters,

15(1):339–345, dec 2014.

[136] Jenny Nelson. The Physics of Solar Cells. Imperial College Press, 2003.

[137] Nacer Debbar. Theoretical study of the DC and transient characteristics of a

lateral Schottky barrier photodiode for application as high-speed photodetector.

International Journal of Numerical Modelling: Electronic Networks, Devices and

Fields, 29(2):333–342, jun 2015.
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