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ABSTRACT
We investigate the lithospheric structure beneath the Gibraltar 

arc (western Mediterranean) using S-wave receiver functions (SRFs). 
From a dense network deployed in the Ibero-Maghrebian region 
during different seismic surveys, we calculated ~11,000 SRFs that 
sample the upper mantle detecting the lithosphere-asthenosphere 
boundary (LAB). The observed seismic LAB belongs to different 
lithospheric domains: Iberian and African forelands, Alboran domain, 
and Atlantic Ocean. Common conversion point (CCP) migrated pro-
files show the geometrical relation among them. Under the Strait of 
Gibraltar, we observe a deep LAB (~150 km). It can be associated 
with Jurassic-age lithosphere of ~120 km thickness, one of the thick-
est ever reported in oceanic environments. There is an abrupt offset 
between the oceanic LAB and the shallow (80-km-deep) continental 
LAB of the Iberian foreland, suggesting displacement along a former 
transform fault. The northwestern African continental LAB is 90–100 
km deep. The oceanic LAB under the Gibraltar arc continues to ~180 
km depth beneath the Alboran Sea, showing the connection between 
the Alboran slab and the oceanic lithosphere in the central Gulf of 
Cádiz. This geometry agrees with an ~200-km-wide corridor of oce-
anic lithosphere between the central Atlantic and the Alpine Tethys, 
developed during the Middle–Late Jurassic. Our results support the 
proposed westward rollback of an oceanic east-dipping slab, which 
has continuity at least to the central Gulf of Cádiz.

INTRODUCTION
The southern Iberian Peninsula and the western Maghreb include a 

sector of the Nubia-Eurasia plate boundary zone that is characterized by 
complex tectonics, widespread deformation, and the interaction between 
continental and oceanic domains. At the center of this region, the Strait of 
Gibraltar separates the Atlantic Ocean (Gulf of Cádiz) from the Mediter-
ranean (Alboran Sea), and at the same time connects the Alpine mountain 
ranges in Iberia (Betics) to Africa (Rif). The present-day configuration, 
with the characteristic tightly curved orogenic arc (Fig. 1), results mainly 
from the interplay between slow, northwest-southeast convergence between 
Eurasia and Nubia and fast westward slab retreat since the Miocene (e.g., 
Lonergan and White, 1997; Spakman and Wortel, 2004; Chertova et al. 
2014). The complexity of the Iberia-Maghreb plate-boundary zone has 
been represented with increasing detail as more and more observational 

data from different disciplines have become available. Yet, fundamental 
aspects of the geodynamics and lithospheric structure are still discussed 
controversially (e.g., Gutscher et al., 2012; Mancilla et al., 2013).

The Alboran slab is a key element for understanding regional geody-
namics. Together with the Calabrian slab, these structures represent the 
present configuration of the western Mediterranean subduction system, 
involving the cold oceanic lithosphere of the Alpine Tethys (e.g., Loner-
gan and White, 1997; van Hinsbergen et al., 2014). While the Calabrian 
subduction remains clearly active today, with associated seismicity, active 
volcanism, and an active accretionary wedge (e.g., Gutscher et al., 2017; 
Scarfi et al., 2018), there is a lack of evidence for ongoing subduction of 
the Alboran slab. Deep and intermediate-depth earthquakes do not depict 
a continuous Wadati-Benioff zone (e.g., Buforn et al., 1991; Heit et al., 
2017). Earthquake focal mechanisms, the stress field, and geodetic defor-
mation (e.g., Stich et al., 2006) reflect Nubia-Eurasia plate motion rather 
than subduction dynamics. Furthermore, absolute plate motions appear to 
have strong influence on the current slab dynamics (Spakman et al., 2018).

The Alboran slab has been imaged clearly by recent tomographic 
inversions as a subvertical high-velocity anomaly beneath the western 
Alboran Sea and southern Spain. However, its possible connection to the 
oceanic lithosphere west of Gibraltar remains debated (e.g., Spakman and 
Wortel, 2004; Bezada et al., 2013). The variability in the geoid height in 
the region (Fig. 1) points to relevant topography of the lithosphere-asthe-
nosphere boundary (LAB) in the region. In this study, we map the depth 
of the seismic LAB from S-wave receiver functions (SRFs), showing the 
conversions of teleseismic S-to-P waves at the LAB discontinuity. The 
analysis builds upon several seismic deployments during the last decade 
(Fig. 1B), which allows for broad coverage of the LAB over the region, 
and favors the use of stacking techniques to enhance the LAB signals. We 
attempt to increase frequency range and spatial resolution compared to 
previous SRF studies (Miller et al., 2015) in order to shed more light on 
the interaction of the subduction system with the surrounding lithosphere.

DATA AND METHOD
We analyze S-to-P conversions of teleseismic earthquakes (SRFs) 

recorded at a dense network of ~300 permanent and temporary seismic 
stations in Iberia and Morocco (Fig. 1B). This corresponds to an aver-
age interstation distance of ~60 km over most of the area and ~30 km 
locally. SRF analysis is a particularly suitable approach to study deep 
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lithospheric structures. S-to-P conversions arrive before the direct onset, 
thus avoiding the interference of LAB converted signals with crustal 
reverberations, common in P-to-S receiver functions (PRFs; e.g., Yuan 
et al., 2006). Furthermore, SRF analysis permits sampling larger areas 
compared to PRFs, due to the larger incidence angle of S-waves. This 
allows for better coverage in offshore areas because the piercing points 
of SRFs are located farther away from the stations (Fig. 1B).

We use teleseismic events with magnitude Mb >5.8 within the epicentral 
distance range of 65°–85°. We include in the analysis all of the available 
seismograms with signal-to-noise ratio >2.5, and rotate the three-compo-
nent records into the ZRT (vertical, radial, transverse) coordinate system 
using theoretical back-azimuth angles. Following, a rotation into ray-based 
longitudinal, radial, transverse (LQT) coordinates is done, minimizing the 
SV-wave energy on the Q component at the theoretical S-wave onset. We 
time-reverse the traces about the S-wave onset in order to analyze the SRF in 
the precursor time window, only affected by the primary S-to-P conversions.

Prior to deconvolution, we use a band-pass filter from 1 to 30 s. We 
apply a time-domain deconvolution method of the SV component (Q 
component) from the vertical component (L component) using the itera-
tive deconvolution method developed by Ligorría and Ammon (1999) 
with a 2-s-wide Gaussian basis function. A 6 s low-pass filter is applied 
after deconvolution to enhance the LAB conversion. We obtain ~11,000 
individual SRFs (Fig. DR1 in the GSA Data Repository1). The LAB can 
be identified by the prominent negative signal (blue color) after the Moho 
conversion, at 15–20 s travel time.

Piercing points at 100 km depth show a dense distribution, includ-
ing offshore areas in the Alboran Sea and Gulf of Cádiz (Fig. 1B). This 
enables us to build cross-sections by stacking SRF amplitudes applying 
a common conversion point (CCP) approach (e.g., Mancilla et al., 2015). 
We consider single scattering, taking into account the first Fresnel zone, 
for back-projection of SRFs in the IASP91 velocity model (Kennett and 
Engdahl, 1991). We build north-south and west-east cross-sections by 
stacking all receiver-function amplitudes with piercing points within 
1° distance at both sides of each profile (Fig. 2). We apply a binning of 
5 × 5 km2; bins with fewer than 10 samples are not taken into account.

1 GSA Data Repository item 2019084, raw S-wave receiver functions, is avail-
able online at http://www.geosociety.org/datarepository/2019/, or on request from 
editing@geosociety.org.

RESULTS AND DISCUSSION
Migrated profiles show clear and coherent signals. Two principal signals 

can be recognized in all cross-sections. The shallower signal corresponds 
to a positive conversion (increasing velocity with depth) within the first 
60 km, attributed to the Moho discontinuity. Within the resolution of SRFs 
(>10 km), the lateral variations of the Moho topography in this study agree 
with previous PRF observations (e.g., Mancilla and Diaz, 2015). The deeper 
signal corresponds to a negative velocity contrast at depths between 50 
and 180 km. This signal is interpreted as the seismic LAB discontinuity.

Common conversion point (CCP) sections across the Iberian massif 
show a relatively flat LAB located at 80–90 km depth (IBL in Fig. 2, 
profile W-I). Similar lithospheric thickness has already been reported by 
previous tomographic (e.g., Palomeras et al., 2017), PRF (Mancilla et 
al., 2015), and SRF (Miller et al., 2015) studies. This shallow LAB dis-
continuity has been attributed to a large-scale delamination of thickened 
continental lithosphere of the Variscan belts in Europe during middle 
Permian time (e.g., Gutiérrez-Alonso et al., 2011).

In northern Morocco, a west-east profile shows relatively large topo-
graphic variations in the LAB (Fig. 2, profile W-III). An offset of ~40 km 
occurs near 4°W longitude from 100 km depth under the Rif mountains 
to 60–50 km depth near the Nekor fault to the east. This observation 
agrees with previous studies that reported strong crustal and lithospheric 
thickness contrasts in the area, coincident with the intersection between 
the Trans-Alboran shear zone and the Moroccan margin (e.g., Gil et al., 
2014; Miller et al., 2015).

The largest variations in the topography of the LAB discontinuity 
are observed beneath the Strait of Gibraltar and Gulf of Cádiz. The CCP 
profiles reveal two different negative converters (Fig. 2, profiles W-II, 
N-I, and N-II). The shallower one has depths of 80–90 km and represents 
the Iberian LAB (IBL in Fig. 2). The deeper signal emerges at 8°W at 

~150 km depth (Fig. 2, profile W-II), starts deepening eastward under the 
Strait of Gibraltar (~6.5°W), reaching ~180 km depth at ~5°W beneath 
the Alboran Sea (JOL in Fig. 2, profile W-II). By 4°W, the oceanic LAB 
(JOL) has disappeared completely, and a shallow LAB at 50 km depth 
emerges eastern side of the profile W-II (Fig. 2), corresponding to the 
thinned continental Alboran lithosphere, already imaged in previous stud-
ies (ALL in Fig. 2, profile N-III; e.g., Mancilla et al., 2015; Heit et al., 
2017). The western termination of the oceanic LAB signal (JOL) can be 
attributed to the lack of data coverage beyond 8°W (Fig. 1).
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Figure 1. A: Shaded-relief map and geoid height of Gibraltar arc area (global model EGM2008 with WGS84 reference ellipsoid: 
Pavlis et al., 2012; retrieved from the International Centre for Global Earth Models [ICGEM] at GeoForschungsZentrum–Potsdam, 
Germany). G. Strait—Strait of Gibraltar. B: Distribution of seismic stations (inverted triangles) and piercing points at 100 km depth 
(colored contours). Blue lines mark common conversion point profiles shown in Figure 2.
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We associate the deeper negative velocity contrast (JOL in Fig. 2, profile 
W-II), under the Alboran Sea, to the LAB discontinuity of the Alboran slab 
observed in tomography studies (e.g., Spakman and Wortel, 2004; Bezada 
et al., 2013, Palomeras et al., 2017). The eastern termination of the LAB 
signal (~5°W; Fig. 2, profile W-II) agrees with the location where the Albo-
ran slab starts subducting nearly vertically, impeding detection by S-to-P 
conversions (Li et al., 2011). Our results show the continuity of the LAB 
discontinuity from Alboran slab oceanic lithosphere across the Strait of 
Gibraltar to the Gulf of Cádiz (JOL in Fig. 2, profile W-II). This allows for 
connecting the Alboran slab with the oceanic crust detected in the Gulf of 
Cádiz (Sallarès et al., 2011), providing direct evidence for the presence of a 
corridor of oceanic lithosphere beneath the Strait of Gibraltar. This corridor 
has been inferred by paleogeographic reconstructions to be Jurassic-age 
oceanic materials connecting the Alpine Tethys with the central Atlantic 
Ocean (Frizon de Lamotte et al., 2011; Stampfli and Borel, 2002). The 
extent of the oceanic LAB along cross-section N-I (Fig. 2) shows a good 
match with the geoid low under the Strait of Gibraltar (Fig. 1).

The apparent width of the oceanic corridor can be estimated as 
~200 km in the north-south profiles (Fig. 2, profile N-I). To the north, the 

flat oceanic LAB is limited by an offset of ~70 km with respect to the 
Iberian continental LAB at ~37°N. This lithospheric offset may be related 
to a prior transform fault, in agreement with the sharp transition between 
continental and oceanic crust observed by Sallarès et al. (2011) and with 
the location and focal mechanisms of subcrustal earthquakes (Stich et 
al., 2005) possibly associated with this structure. This observation is sup-
ported, too, by CCP images of PRFs along a similar north-south profile 
(Mancilla et al., 2015). The PRF profiles image Moho offsets of roughly 
6–9 km under the Strait of Gibraltar, in agreement with the expected 
thickness of oceanic crust (Mancilla et al., 2015). The apparent overlap 
of the Iberian continental and oceanic LABs in profile N-II (Fig. 2) is 
likely an artifact due to the projection of independent structures within 
1° at both sides of the profile. To the south, the transition to the African 
foreland LAB is imaged less abruptly at ~35°N.

The observed LAB depth of the oceanic corridor is unusually large 
in a global comparison (e.g., Rychert and Harmon, 2018). The thickness 
of oceanic lithosphere depends on age and is currently explained by two 
competing models: a half-space cooling model (HSC; Stein and Stein, 
1992) and a plate model (PM; Grose and Afonso, 2013). They differ for 
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ages >70 Ma. The oceanic lithosphere in the Gulf of Cádiz is from the 
Middle to Late Jurassic (>145 Ma, e.g., Stampfli and Borel, 2002), among 
the oldest not yet consumed by subduction. For these ages, PM predicts 
a lithospheric thickness of slightly less than 100 km, and HSC predicts 
values of ~110–130 km (Rychert and Harmon, 2018). The observed LAB 
of the oceanic corridor supports the HSC model. The remaining differ-
ence can be attributed to the presence of ~30 km of overriding Alboran 
domain crust on top of the oceanic lithosphere at the Strait of Gibraltar.

CONCLUSIONS
The analysis of a large number of SRFs (~11,000) has revealed the 

topography of the seismic LAB discontinuity beneath the complex plate-
boundary zone between Iberia and northern Africa. Four different domains 
can be clearly distinguished, some of them limited by sharp vertical offsets. 
We confirm previous LAB depth estimates for the Iberian and Moroccan 
forelands. Under the Alboran domain, we find a thin lithosphere of 50–60 
km thickness. The largest LAB depths are observed under the Strait of 
Gibraltar, outlining an ~200-km-wide corridor of Middle to Late Jurassic 
lithosphere with ~120 km thickness, being one of the thickest oceanic 
lithospheres ever detected. The main conclusion that emerged from the 
CCP images is the clear spatial connection between the Alboran slab 
under the Alboran Sea and the Atlantic oceanic crust through this oceanic 
corridor below the Gulf of Cádiz.
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