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más. También a los que empezaron el mismo camino bajo la brisa del mar hace
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Resumen

1. Introdución al problema

La comparación de radiograf́ıas (CR) es una técnica de identificación forense
basada en la comparación de estructuras esqueléticas, tales como huesos o cavidades,
en imágenes radiográficas ante-mortem (AM) y post-mortem (PM) para determi-
nar si pertenecen o no al mismo sujeto. Según las directrices del grupo de trabajo
cient́ıfico de antropoloǵıa forense para la identificación personal (SWGANTH), CR
es una técnica de identificación primaria que cuenta con una alta aceptación en la
comunidad forense. Solo por aportar una cifra orientativa a este respecto, cabe la
pena mencionar que se emplearon técnicas de CR en 193 identificaciones realizadas
por el Laboratorio de Antropoloǵıa Forense de la Universidad del Estado de Michi-
gan (MSUFAL) entre los años 2002 y 2015. Es importante remarcar que las técnicas
de identificación basadas en el esqueleto (SFI, por sus siglas en inglés, skeleton-based
forensic identification), como CR, pueden suponer la última posibilidad de identifi-
cación en muchos escenarios, en donde otras técnicas de identificación (como ADN
o huellas dactilares) no son aplicables por el estado de conservación del cadáver o la
degradación del tejido blando. En este sentido, el esqueleto generalmente sobrevive
a procesos de descomposición natural y no natural, como es habitual en escenarios
de desastres masivos. En la literatura relativa a CR, numerosas estructuras óseas,
como huesos y cavidades, se han mostrado útiles para realizar una identificación
positiva o para short-listing, dependiendo de su singularidad. No obstante, todav́ıa
se trata de un procedimiento de comparación visual eminentemente visual y basado
completamente en las habilidades y experiencia del experto forense. Como conse-
cuencia, la aplicabilidad de la técnica de CR se ve reducida por la subjetividad y
elevado tiempo requerido para su utilización. Mientras tanto, un número inabord-
able y vergonzoso de ciudadanos siguen sin ser identificados durante largos peŕıodos
de tiempo debido a la insuficiencia de medios humanos y tecnológicos para iden-
tificarlos. Además, los tribunales de justicia demandan la utilización de técnicas
reproducibles y objetivas en los peritajes forenses, reduciéndose la aceptación de las
técnicas de identificación basadas únicamente en un análisis subjetivo de los datos
AM y PM. Por todos estos motivos, hay una necesidad de métodos asistidos por
ordenador que ayuden a reducir los tiempos, aumenten la robustez y objetividad, y
automaticen el proceso de identificación mediante el método de CR.

Esta tesis doctoral se enfoca en la automatización de la comparación de radio-
graf́ıas AM e imágenes 3D PM. Para su automatización es necesario abordar varias
tareas manuales, lentas y tediosas: (1) la segmentación automática de la estructura
esquelética bajo estudio; (2) la superposición de las imágenes AM y PM; y (3) la
toma de decisiones en base a las superposiciones obtenidas.
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2 Resumen

2. Desarrollo realizado

En esta tesis doctoral se ha diseñado y validado un nuevo paradigma asistido
por ordenador para identificación por medio de CR. Dicho paradigma incluye la
automatización de las tres tareas mencionadas mediante el uso de computer vision
y soft computing. En particular, se ha abordado la automatización de todos los
procesos involucrados en la obtención de una radiograf́ıa PM “simulada”, que re-
produzca la pose y distorsiones de perspectiva de las radiograf́ıas AM. Estas tareas
(segmentación y superposición) son el principal inconveniente de los métodos man-
uales basados en CR. Por tanto, proporcionar una solución automática para estas
dos tareas es crucial para una mayor aceptación de las técnicas de CR por parte de
la comunidad cient́ıfica.

La tarea de segmentación ha sido automatizada utilizando redes neuronales con-
volucionales. Se han desarrollado 2 redes neuronales convolucionales, X-Net+ y
RX-Net+, capaces de segmentar cualquier estructura esquelética en radiograf́ıas.
X-Net+ se enfoca en obtener resultados de alta calidad, pero requiriendo una alta
capacidad de cómputo. Por otro lado, RX-Net+ obtiene resultados con una precisión
ligeramente mejor, pero requiere significativamente menos recursos computacionales.
Estos métodos solamente necesitan alrededor de 200 radiograf́ıas para aprender a
segmentar una estructura esquelética concreta. Se ha obtenido una precisión similar
a expertos humanos en la segmentación de clav́ıculas en radiograf́ıas de pecho, y
ligeramente inferiores en senos frontales en radiograf́ıas craneales.

La tarea de superposición se ha automatizado haciendo uso de algoritmos evo-
lutivos para el registrado de imágenes 3D-2D. Estos métodos buscan reproducir
de manera automática los parámetros de adquisición de la radiograf́ıa AM en una
proyección del modelo 3D PM. Este proceso de registrado será guiado por la silueta
de la estructura anatómica utilizada en la radiograf́ıa AM (teniendo en cuenta
también zonas donde ésta se encuentre ocluida, para identificar) y el modelo 3D
PM de dicha estructura anatómica. El problema de optimización subyacente es
altamente multimodal, ya que no se puede asumir una inicialización cercana y tam-
poco se puede depender del valor de intensidad de los ṕıxeles (enfoque tradicional
en imagen médica). Además, la evaluación de un escenario de adquisición determi-
nado requiere dos operaciones computacionalmente costosas: la generación de una
proyección 2D de la imagen 3D PM bajo un determinado escenario de adquisición;
y la comparación de la proyección 2D contra la segmentación de la estructura es-
quelética en la radiograf́ıa AM. Para abordar este complejo y computacionalmente
costoso problema de optimización se ha realizado un análisis comparativo de diver-
sos métodos de optimización numérica, aśı como de diversos algoritmos evolutivos.
El mejor optimizador en términos de precisión, robustez y coste computacional es
MVMO-SH.

Con el objetivo de validar el método de superposición automático para CR se han
segmentado los senos frontales en 180 radiograf́ıas y 180 tomograf́ıas computarizadas
(TACs). Cada radiograf́ıa fue comparada contra cada tomograf́ıa computarizada
produciendo 32.400 comparaciones cruzadas. Los resultados obtenidos han sido
analizados utilizando rankings. El método del ranking consiste en ordenar todas las
comparaciones realizadas contra una radiograf́ıa determinada en función de su error
de superposición. Los resultados obtenidos pueden ser considerados prometedores.
El caso positivo ocupa el primer lugar (de 180 candidatos, el 0,5% de la muestra



Resumen 3

total) en el 50% de las comparaciones cruzadas. Se clasifica en las primeras 10
posiciones en el 80% de las veces (5,5% de la muestra). Finalmente, para alcanzar
un nivel de confianza del 100% de éxito, hay que considerar las primeras 50 posiciones
(27% de la muestra). En consecuencia, el método actual reduce considerablemente
el número de candidatos que deben ser revisados por parte de los expertos forenses,
convirtiéndose aśı en un instrumento útil para la selección de candidatos. Por último,
estos resultados se obtienen utilizando una versión preliminar de un sistema de apoyo
a la toma de decisiones. Por tanto, el método actual con una versión muy preliminar
de un sistema de ayuda a la toma de decisiones (basado únicamente en el valor de
la métrica Masked DICE ), es capaz de filtrar el 73% de los posibles candidatos con
una tasa de error 0 de forma completamente automática.

3. Conclusiones y trabajos futuros

En conclusión, en esta tesis doctoral se han automatizado y validado las tareas
de segmentación y registrado del proceso de identificación forense mediante CR con
resultados prometedores en términos de precisión y robustez. El principal problema
del método de registrado es el tiempo requerido para obtener una superposición que,
a pesar de haber sido reducido, es aún alto.

Éste es el primer trabajo que afronta la automatización de un sistema de identi-
ficación forense mediante CR. Sin embargo, aún queda trabajo por delante antes de
que el método propuesto alcance la madurez cient́ıfica y tecnológica. Por otro lado,
con respecto a la tarea de segmentación automática, se planea el estudiar la capaci-
dad de X-Net+ y RX-Net+ para la segmentación de un mayor número de estructuras
esqueléticas en distintos tipos de radiograf́ıas. Por otro lado, con respecto a la tarea
de registrado automático, se planea reducir el tiempo de ejecución mediante el estu-
dio de métodos multi-resolución, funciones de evaluación subrogadas y la utilización
de GPUs. Finalmente, con respecto a la tarea de tomas de decisiones, se planea
desarrollar y validar de modo completo e integral el sistema jerárquico de toma de
decisiones propuesto en esta tesis. Una vez las tres tareas hayan sido completa-
mente automatizadas y validadas independientemente, se planea realizar estudios
de fiabilidad del sistema completo utilizando diferentes estructuras esqueléticas.



Abstract

Comparative radiography is a forensic identification technique based on the com-
parison of the same skeletal structure in ante-mortem and post-mortem radiographic
data to determine the identity of a deceased person. In particular, this PhD dis-
sertation focuses on the automation of the comparison of ante-mortem radiographs
and 3D post-mortem images (e.g. computed tomographies or 3D surface scans). To
automate comparative radiography-based identification, several manual and time-
consuming tasks have to be considered: (1) the segmentation of the anatomical
structure under study; (2) the superimposition of the ante-mortem and post-mortem
data; and (3) a decision making process based on the superimpositions obtained.

In this PhD dissertation, a novel framework has been designed to tackle these
tasks using computer vision and soft computing techniques. In particular, we tackle
the automation of every process involved in achieving the best superimposition of
the ante-mortem and post-mortem images, i.e. the solving of both segmentation and
superimposition problems. Providing an automatic solution for these two stages is
crucial for a wider acceptance of comparative radiography techniques by the scien-
tific community, since generating post-mortem radiographs is the main drawback
of manual approaches, and the reason why some experts recommend to only use
comparative radiography-based identification as a last resort.

The segmentation task has been automated using convolutional neural networks.
We have developed 2 convolutional neural networks, X-Net+ and RX-Net+, able
to segment any object within a radiograph with outstanding results. X-Net+ is
focused on yielding a high performance, requiring a significant amount of computer
resources, while RX-Net+ yields a slightly lower precision but demanding signifi-
cantly less resources. These approaches only require 200 radiographs with their
respective segmentations to be trained. We get human-competitive performance in
the segmentation of clavicles in chest radiographs, and high-quality segmentation
results in the challenging segmentation of frontal sinuses in head radiographs.

The superimposition task takes advantage of evolutionary 3D-2D image regis-
tration methods. The method searches for the ante-mortem acquisition set-up from
the forensic object’s silhouette considering occlusions. The underlying optimization
problem is highly multimodal since a close initialization cannot be assumed and the
image intensities are not reliable or not captured. Furthermore, the evaluation of
a particular set-up requires two computationally expensive steps: the generation of
a 2D projection of the post-mortem 3D image under a particular set-up, and the
comparison of the 2D projection and the ante-mortem 2D segmented radiograph. To
tackle this complex and computationally expensive task, a comparative analysis of
several numerical optimization methods and real-coded evolutionary algorithms has
been performed. The best optimizer is MVMO-SH in terms of precision, robustness
and computational cost.

4
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To validate the superimposition method for comparative radiography-based iden-
tification, the frontal sinuses were segmented in 180 radiographs and 180 computed
tomographies. The results were analyzed using rankings, and then, each radiograph
was compared against each computed tomography, resulting in a total of 32.400
crossed comparisons. The ranking method consists of ordering all the comparisons
performed against a particular ante-mortem radiograph according to the superim-
position error. Promising results have been obtained. The positive case ranks in the
first position 50% of times (0.5% of the sample). It ranks in the first 10th positions
80% of the times (5.5% of the sample), and ranks in the first 50th positions 100%
of the times (27% of the sample). Consequently, the current framework with a very
preliminary version of the decision making stage, based only on the value of the
Masked DICE metric, is able to filter out 73% of the possible candidates with 0
error rate in a completely automatic way.



Chapter I

Introduction

“No death, no doom, no anguish can arouse
the surpassing despair which flows from a loss
of identity.” — H.P. Lovecraft

Forensic identification [TB06, MBB14, CC17] is the act of unravelling the iden-
tity of an unknown deceased. From missing people to mass disaster victims, every
unidentified body represents a denied closure to grieving families and friends. Foren-
sic identification is not only crucial for the grieving ones, but it also resolves serious
legal and social predicaments. The “uniqueness” of the human body allows us to
determinate the identity even in the event of death with reasonable certainty. Both
inherent biological indicators (such as DNA, fingerprints, etc.) and acquired indica-
tors (such as medical implants, dental intervention, trauma, etc) that do not change
with time are reliable means in the forensic endeavour [TB06].

According to the Interpool [Int18], the primary and most reliable means of iden-
tification are fingerprints, comparative dental analysis, and DNA analysis. Unique
serial numbers from medical implants are also reliable identifiers in terms of prov-
ing identity. During the last two decades, techniques like DNA or fingerprints have
been employed in many identification scenarios. However, the application of these
methods fail when there is not enough information available, ante-mortem (AM)
or post-mortem (PM), due to the lack of data (second DNA sample) or due to
the state of preservation of the corpse (e.g. the soft tissue is degraded or is lost).
When primary methods are not able to secure a verifiable identification, secondary
methods may provide sufficient information to make identification in selected cases.
Secondary methods include several forensic anthropology identification techniques,
such as the comparison of skeletal structures in AM and PM medical images, and
craniofacial superimposition, as well as the analysis of medical records and patholo-
gies.

The skeleton usually survives both natural and non-natural decomposition pro-
cesses (fire, salt, water, etc.) and thus skeleton-based forensic identification (SFI)
techniques, such as comparative dental analysis (primary), represent the last chance
of identification in many cases [KH97]. The traditional SFI procedure is depicted
in the Fig. 1. According to the scientific working group for forensic anthropol-
ogy’s guidelines for personal identification [fFAS10], SFI methods for positive iden-
tification include the comparison of surgical implants and comparative radiogra-
phy (CR). Between them, identification using surgical implants is the easiest and
most powerful. The method typically involves locating and identifying the manu-

6
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facturer’s symbol along with unique serial number from the device. Unfortunately,
it can only be employed in the few cases presenting implants. Meanwhile, CR
[KH97, Kah09, RLM16] traditionally involves the visual (side-by-side) comparison
of AM radiographs (2D) of the suspected deceased and radiographs (2D) of the PM
remains that simulate the AM radiographs in scope and projection. The radiographs
are compared looking for consistencies and inconsistencies in the skeletal structures
(e.g. morphology, trabecular patterns, skeletal anomalies, dental features, patholog-
ical and trauma conditions, etc.). Another reason for the importance of CR is their
lower price and time required in comparison to DNA, which is a crucial factor in
mass disasters identification scenarios.

Figure 1: Skeleton-based forensic identification procedure. The usual procedure utilized by forensic
experts is the following: (1) a biological profile (sex, age, stature, etc) is obtained based on the
PM remains of the deceased; (2) the candidates that do not match the biological profile are
discarded; (3) all the possible AM records and medical images of the candidates are gathered; (4)
the PM remains are compared to the AM data through skeletal comparison techniques; and (5) an
identification decision is taken based on the results of as many available identification techniques
as possible.

In the literature, CR is used for identification or just for shortlisting depending on
the skeletal structure(s) considered [PTB11]. Several bones and cavities have been
reported as useful for positive identification in CR based on their uniqueness [KH97].
The most common ones are located in the skull, chest, and abdominal areas. In the
skull, the most frequently used are teeth [Pre01], frontal sinuses [QFS+96], and the
cranial vault [MR14]. In the chest and abdominal areas, clavicles [SWCT11], and
vertebral features [KGH02] are those most considered. There are also a few bones
outside these areas that are commonly used, such as the bones of the hand [KSF05]
and the patella [NSGF16].

The advance of medical imaging techniques naturally led to the comparison of
skeletal structures using all kind of medical images [TBV02] (e.g. the comparison of
a skeletal structure in an AM computed tomography (CT) (3D) and a PM CT (3D)
[RBC+16b, GCC+19]). As a consequence, the term CR has no longer “strictly” cov-
ered the comparison of radiographs but all possible identification scenarios based on
the comparison of skeletal structures. In fact, terms such as comparative radiology
or skeletal structure analysis seem more suitable but do not count with the support
of the forensic community. Despite of the terminology, in all cases the AM and PM
information must be precise and informative. Ideally, both AM and PM images are
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of the maximum possible dimensionality, i.e. CTs or 3D scans1 are preferred over
radiographs, since 3D images retain more information about the skeletal structure
than 2D images. Specifically, CT images are preferred as these can be rendered to
match almost any AM medical imaging examination [HDC+14], but sadly few foren-
sic labs can afford CT scans. Meanwhile, an increasing number of forensic labs are
relying on 3D scanners nowadays [DCI+11], thanks to their great availability and
relative low cost. However, the availability of 3D AM data is scarce compared to
the number of AM radiographs available (especially when people who disappeared
a long time ago are involved) limiting the applicability of methods based on the
comparison of 3D images. That is especially true in underdeveloped and develop-
ing countries, where forensic identification is usually a major need due to a larger
number of violent crimes and mass disaster events [Kah09]. As a consequence, most
comparisons are performed against AM radiographs. Meanwhile, the PM remains
can be scanned with any available acquisition device (e.g. CT scan or 3D scan-
ner). Thus, in practice, the most common identification scenarios are based on the
comparison of AM radiographs against PM radiographs or 3D images. In order
to quantify the importance of radiographs, it is important to notice that 2.02 mil-
lion chest radiographs were performed in 2015/16 by the National Health Service of
United Kingdom [Eng16] and that 150 million are annually acquired in the United
States alone [LLC+18].

In this PhD dissertation, as well as in many forensic works, the term CR refers to
any identification method based on comparison of AM radiographs and PM images2

of the remains, even if the current PhD dissertation is focused on CR based on the
comparison of AM radiographs and PM 3D images. The following subsections are
devoted to the justification of the work performed, the presentation of the objectives
and the structure of this PhD dissertation.

I.1 Justification

The application of a CR procedure is still based on a manual comparison of AM-
PM data through a time consuming and error prone visual inspection process that
completely relies on the forensic expert’s skills and experience. As a consequence, its
utility is reduced because of the time required and the errors related to the analyst’s
fatigue. Meanwhile, an unapproachable and shameful number of citizens continue
unidentified for long periods due to the insufficient human and technological means
to properly analyze and compare them. In addition, in recent years there has been
a shift within the courts of law from analysis of evidence based upon the skill and
judgment of the expert witness to one based upon independent judicial assessment
of the reliability of a particular methodology, demanding objective and reproducible
approaches [Bow01].

There is thus a need of (semi) automatic CR identification methods. The au-
tomation of the classical CR scenario based on the comparison of AM and PM radio-
graphs requires the manual acquisition of PM radiographs simulating the acquisition
set-up of the AM ones. These PM radiographs are performed by a forensic expert

13D scans are only possible for the PM image since these require direct access to the skeletal
structures without soft tissue in between.

2The term “image” is used in its broadest sense including both 2D and 3D images.
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within a trial-and-error process. This acquisition process relies completely on the
skills and experience of the expert who tries to mimic the available AM radiograph
acquisition conditions. However, the lack of information about the X-ray acquisi-
tion set-up and precise parameters make this task a subjective and time consuming
process. These approaches are based on the comparison of the AM and PM skeletal
structure’s morphology using geometric morphometrics techniques (such as elliptical
Fourier analysis [CBS17]). In particular, these have been employed to compare ra-
diographs of frontal sinus [Chr05b], cranial vault [MR14], and teeth [JC04, NAM05].
Apart from requiring the manual acquisition of a PM radiograph replicating each
AM one, all these methods also require the manual segmentation3 of the skeletal
structures in both AM and PM radiographs. Meanwhile, CR methods based on the
comparison of AM radiographs and PM 3D images can avoid these drawbacks since
they automate the search of the AM acquisition parameters. Consequently, this
operation mode allow us to obtain the best possible PM simulated radiograph from
a 3D image for each AM radiograph. These methods reduce the subjectivity within
the CR process and achieve a greater degree of reliability. However, there are just a
few computerized approaches for this scenario. In particular, the existing methods
are focused on the comparison of clavicles [SAT+14] and patellae [NSGF16]. Both
methods are based on the acquisition of 3D surface models with a 3D laser range
scanner of the clavicles/patellae but the final decision still involves a comparison of
a silhouette (again, a elliptical Fourier analysis descriptor) in a set of predefined 2D
projected images obtained through the 3D model rotation. Furthermore, this also
requires the manual segmentation of the skeletal structure’s silhouette in the AM
radiograph.

In summary, to cope with an automatic identification system based on CR via the
comparison of AM radiographs and PM 3D images, the following challenges/issues
should be taken into account:

• The skeletal structure’s silhouette should be automatically segmented in AM
radiographs (see Chapter V).

• The acquisition parameters of the AM radiographs should be automatically
calculated/searched. Some authors recommend to only use CR techniques
as a last resource because of this problem [ARG+10], thus solving it is of
crucial importance for a wider acceptance of the CR techniques by the scientific
community (see Chapter VI).

• The projective transformation underlying any kind of radiograph (e.g. regular
and angled posteroanterior radiographs, lateral radiographs, etc.) has to be
reproduced (see Chapters VI and VII).

• The intensity level depicted could have changed between the AM images and
the PM images since the time of the AM radiograph acquisition. The bone
density changes within the individual through time due to factors as aging
[RSFI15], osteoporosis, and the PM interval [BSJ96]. Besides, its representa-
tion in an image is sensitive to the acquisition device, and some old radiographs
show a low quality. Therefore, automatic superimposition methods should rely
on other features, such as the skeletal structure’s silhouette (see Chapter VI).

3Segmentation consists of partitioning an image into regions (i.e. sets of pixels) [PXP00], each
of them with a different semantic meaning (e.g. segmenting a frontal sinuses in a skull radiograph).
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• PM 3D images of skeletal structures obtained using a 3D scanner do not have
intensity information. This is of special importance because an increasing
number of forensic labs are relying on these scanners nowadays [DCI+11],
thanks to their great availability and low cost, in comparison to CT scans that
are only affordable by a small number of forensic labs (see Chapter VI).

• The proposed methods should be efficient and scalable. Currently, CR is
utilized mostly in verification scenarios (one-to-one comparison) [JH96]. Ver-
ification consists of comparing the AM and PM data to determine whether
they belong to the same person or not. It is a 1:1 comparison problem. Mean-
while, identification involves exploring a database of AM data for finding to
whom the PM data belong. It is a 1:n comparison problem, where n is the
number of AM cases in a database (although some AM cases can be directly
discarded based on criteria such as the biological profile). The applications
of CR to identification scenarios [JLK06] are strongly limited by the size of
the database, since an identification process usually takes, at least, n times
longer than a verification. Thus, the efficiency and scability of the methods
are crucial to enable the utilization of CR in identification scenarios with a
significant number of possible candidates (see Chapter VII).

• All methods should be utilizable and accurate for CR identification based on
any skeletal structure (frontal sinuses, clavicles, patellae, etc.) (see Chapter
VI).

I.2 Objectives

The main objective of this PhD dissertation is the development and valida-
tion of a novel computer-aided automatic framework for CR-based foren-
sic identification. It will automatically compare the available AM and PM images
of skeletal structures and support the expert in the decision making process in an
objective, fast, robust and reproducible manner. Computer vision and soft com-
puting techniques will be employed to provide the theoretical and practical means
to achieve this objective. This main objective can be divided into the following
research lines or subobjectives:

• Automatic skeletal structure segmentation: The goal is to develop a
common image segmentation (IS) framework for any skeletal structure in ra-
diographic images. To that end, deep learning techniques [GBC16], and in
particular convolutional neural networks (CNNs), will be employed. A neu-
ral network will be trained for segmenting each particular skeletal structure.
Unlike other approaches, CNNs are expected to enable the automatic approx-
imation of complex, non-linear, data-driven functions with minimal human
intervention, avoiding or minimizing the deficiencies (in robustness and accu-
racy) offered by other methods.

• Automatic skeletal structure superimposition: The objective is to de-
velop a novel framework for the superimposition of PM 3D images and AM
radiographs of a skeletal structure. It will be based on a 3D-2D image regis-
tration (IR) paradigm [MTLP12, OT14] which will automatically, objectively
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and precisely search for the AM acquisition parameters, applying them to the
3D image, and analyzing the match.

• Validation and reliability studies: In order to fulfill Daubert’s rules for
evidence admissibility in court testimony [FH99], objective validation and reli-
ability studies are required. Thus, an important goal of this PhD dissertation
is to objectively validate the developed methods over a significant number of
cross-comparisons using real cases. At the same time, these validation studies
will serve as a measurement of the accuracy of the methods.

The resulting computer vision and soft computing methods are expected to serve
to reduce the intra/inter observer variability thanks to more objective and repeatable
measurements and analysis. They will facilitate to address the worldwide human
identification challenge in a more effective, cheaper and faster manner while accom-
plishing the necessary standards (Daubert’s rules for evidence admissibility) for the
acceptance of forensic evidence in court testimony.

I.3 Structure

This PhD dissertation is divided into three parts (fundamentals, proposals, and
final remarks) apart from the current introduction. The first part, fundamentals, is
composed of two chapters. Chapter II reviews the basics, the history, and the state-
of the art of CR-based methods. Chapter III reviews the theoretical backgrounds
of the computer vision and soft computing techniques utilized in this PhD disser-
tation to automate CR-based identification processes. Meanwhile, the second part,
proposals, is formed by four chapters. Chapter IV introduces a novel computer-
aided automatic framework for CR-based forensic identification. The contributions
of this PhD dissertation to the design and implementation of this framework is the
development of all processes involved in achieving the best superimposition of the
AM and PM images: segmentation (Chapter V) and generation of the PM radio-
graphs (Chapters VI and VII). Chapter V develops and validates an IS framework
for segmenting skeletal structures in radiographs. Chapter VI develops and validates
an IR framework for generating PM radiographs simulating the acquisition set-up
of the AM-ones. Chapter VI performs a detailed comparative analysis of several
state-of-the-art real coded evolutionary algorithms for improving the IR framework
in term of robustness and computational time. Lastly, the third part, final remarks,
is comprised by only one chapter, Chapter VIII, devoted to present a summary of
the conclusions obtained and a discussion about possible future developments.
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Fundamentals
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Chapter II

Comparative radiography

“El que lee mucho y anda mucho, va mucho
y sabe mucho.” — Miguel de Cervantes

This chapter is devoted to review the basis of the forensic identification using CR,
since the main goal of the dissertation lies in the development of new approaches to
automatically tackle this task with the help of computational resources. Particularly,
it will focus on: (1) most frequent types of images employed in the CR identification
endeavour; (2) skeletal structures utilized for identification in the CR literature; and
(3) identification procedure for performing a CR-based identification using images
of skeletal structures.

II.1 Imaging techniques in comparative radiogra-

phy

This section is devoted to a brief review of the kind of AM and PM images that
are commonly employed for identification with the CR technique [CSG+18, HDC+14,
TBD03]: radiographs, CT images, and 3D surface models. We will focus on the most
relevant information with regard to the CR technique. There are many other imaging
techniques (e.g. magnetic resonance images [OW08, TYS+03]) but their use for CR
identification is scarce in comparison with the previous ones. Furthermore, some of
these are not recommended for the study of skeletal structures (e.g. sonographies
[FSF16], for their limited penetrative power that reduces the image quality in deeper
skeletal structures).

II.1.1 Radiographs

Radiographs were the first images of modern medicine and opened up a new world
of possibilities to all fields of medicine (see Fig. 2a). A radiograph is produced by the
action of X-rays on an image receptor (see Fig. 2b for a geometrical scheme of the
radiograph acquisition process) [BL13]. These X-rays pass through the object being
attenuated as they pass through each internal structure. The higher the density of
the internal structure, the higher the attenuation of the X-rays. As a result, each
internal structure is depicted in the radiograph with a different intensity depending
on its density. To sum up, a radiograph is basically a shadowgraph or a 2D projection

13
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of a 3D object/subject where its internal structures are visible. Since their discovery,
radiographs and their related technologies have evolved significantly: changing from
analog radiographs to digital ones, allowing to share them among medical experts,
developing post-processing algorithms to improve their quality and interpretability,
etc.

1

2
3

4

5

Figure 2: (Left) Posteroanterior radiograph of the head. (Right) Scene of the acquisition of pos-
teroanterior radiograph of the head. The main elements involved in a radiograph are shown: (1)
image receptor; (2) image generator; (3) bone (skull) and the target skeletal structure (the frontal
sinus); (4) geometric distances (source to image receptor distance and object to image receptor
distances) related with the perspective distortion on radiographs; and (5) geometric angles (central
ray angel) related with the perspective distortion on radiographs.

Since the discovery of X-rays by Roentgen in 1895 [Roe95], forensic experts
have made use of radiographic images as evidence in their endeavour (e.g. bullet
analysis [Kir84], age estimation [Goo95], and forensic identification [JAM96, BL00]).
During the first decades of the twentieth century, the use of X-rays as a method
of positive identification gradually consolidated in scientific literature. In 1921,
Schüller proposed the individuality of the frontal sinuses, visible on X-rays [Sch21].
Consequently, in 1927, Culbert and Law expanded the individualizing characteristics
of the skull [CL27] and by the mid-1940s the use of radiography was extended to the
postcranial skeleton in search of unique features for identification [Dut44, Sco45].
Later, in 1949, CR techniques played a crucial role in the identification of people
involved in the Noronic ship’s disaster, proving their importance for identification
and, subsequently, being included in many mass disasters identification protocols
[Sin51].

However, CR requires to acquire PM radiographs simulating the AM data. To do
it, it is necessary to have some insight about the radiographs acquisition protocols.
Acquisition protocols (some of them are depicted in Fig. 3) are designed to guarantee
the radiograph quality (in terms of brightness, contrast, noise, etc.) by establishing
several factors of the acquisition process. The most important parameters with re-
gard to CR techniques are those related with the geometrical scene set-up [BL13]
(see Fig. 2): (1) image receptor dimensions; (2) the X-ray source-to-image receptor
distance (SID); (3) the object-to-image receptor distance (OID); (4) the anatomic
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position of the body and its position with respect to the image receptor; and (5)
the central ray angle (i.e. the impact angle of the ray that joins the X-ray generator
with the centre of the image receptor). These geometrical parameters are set by
acquisition protocols to reduce occlusions caused by the overlap among objects and
perspective distortions that alter the objects’ silhouette shown in a radiograph (e.g.
magnification or silhouette distortion). In this sense, acquisition protocols establish
the values of these geometrical protocols according to the following guidelines: (1)
the SID should be as big as possible to minimise perspective distortion on the sil-
houette of the skeletal structure, since less perspective distortions occur at a greater
SID than at a shorter SID. Furthermore, the bigger the target skeletal structure is
the bigger the SID must be to avoid distortions (e.g. chest radiographs requires SID
over 180 cm to be able to study the skeletal structure properly); (2) the OID should
be as small as possible to minimise perspective distortion on the silhouette of the
skeletal structure; (3) the target skeletal structure should be placed over the centre
of the image receptor, since perceptive distortion has a greater effect as the distance
to the centre of the image receptors grows; (4) the target skeletal structure should be
parallel to the image receptor, otherwise perspective distortions occur; (5) the body
should be placed in a pose where the overlap of the target skeletal structure with
other body object is the minimum possible; and (6) the central ray angle should be
perpendicular to the image receptor, i.e. 90◦, since distortions increase as the ray
is further from perpendicularity. The central ray angle should be only varied when
it is needed to properly see a skeletal structure (e.g. Waters radiographs of frontal
sinuses) or when the patient cannot cooperate fully.

Radiographs are not as informative as 3D imaging techniques, like CTs, but
are still commonly employed for medical diagnosis purposes due to their low cost,
high resolution and lower radiation dosages. Furthermore, they are historically the
most frequent medical image modality acquired for diagnosis and thus it is still
common that many AM candidates only have radiographs as AM data. For all
these reasons, radiographs still have a crucial role in forensic identification, despite
the difficulty of reproducing the previous factors of acquisition set-up limits their
utilization [ARG+10].

II.1.2 Computed tomographies

The first computed tomography (CT) scanner was developed by Godfrey Houns-
field in the 1970s, revolutionising medical imaging techniques. A CT is a 3D volu-
metric image of an object and its internal parts. Volumetric images are acquired by
a CT scanner (see Fig. 4a) or one of its variants (such as multislice CT, nano-CT,
submicron CT, micro-CT, and cone beam CT [PIH+15]). Some variants are spe-
cially useful for forensic anthropologists since they allow them to analyze very small
objects [CSG+18]. CTs are composed of a set of slices of the object (see Fig. 4b),
where each internal part is represented with a different intensity level depending
on its density. CTs are obtained using X-rays projections and image reconstruc-
tion techniques [Her09]. In a CT image, internal objects and skeletal structures
are visible in 3D without suffering from overlap and perspective distortions, and
thus CTs allow us to fully study their shape, opening a new world of possibility for
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a b

c d

Figure 3: Acquisition protocols in radiographs can be divided into two main categories. Firstly,
routine projections, which are procedures that are commonly performed for medical examinatios,
such as posteroanterior projections (a), anteroposterior projections (b), and lateral projections (c).
Secondly, special projections taken for a better visibility of certain anatomical parts, or when the
patient cannot fully cooperate, such as anteroposterior axial projection (d). Images extracted from
[BL13].

medical diagnosis [Her09], anthropology [FSF16], etc. However, not all CTs1 have
enough quality for their utilization in forensic identification [BMR+14]. If the slice
thicknesses are higher than 2mm, the air-filled structures (such as frontal sinuses
and mastoid processes), small features (such as sutures and the clear separation of
dentition) and small bones, among others, are decimated [FD16]. Teeth are also
fused into column-like structures. All these anatomical fine details are crucial in the
identification of unknown individuals. Thus, a maximum slice thickness of 1.25 mm
is recommended when skeletal structures are utilized for identification (and 0.05 mm
when trabeculae in bones are analyzed [CSG+18]), otherwise it will result in a loss
of fidelity of the skeletal structures [FD16].

CTs have a crucial role in the forensic procedures related to virtual autopsies
(also called virtopsies) [DJV+06] as a complement to traditional autopsies or as an
alternative when the integrity of the body must be preserved. CTs are also employed
for sex estimation [UGK+05], anthropological measurement [REM+08], and age at
death estimation [DBKK09], among others. CTs can be compared against a wide
number of image modalities (such as radiographs, CTs, magnetic resonance images
[CSG+18]) for identification purposes. When compared against AM radiographs,
the forensic expert has to obtain simulated radiographs (digitally reconstructed ra-
diographs [RRM+05], also called DRR, see Fig. 4c) from the CT simulating the
acquisition set-up of the AM ones. This implies a tedious and subjective trial-and-

1In medical CT systems, the slice thickness generally ranges from 0.625 mm to 3.0 mm, while the
slice thickness from high-resolution industrial scanners is commonly less than 0.045 mm [CSG+18].
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Figure 4: (a) A CT scan where the image receptor and the X-ray generator are visible. These two
elements spin together obtaining several 2D X-ray images from which a 3D CT is reconstructed; (b)
A CT slice obtained using image reconstruction techniques; (c) A digitally reconstructed radiograph
(a simulated radiograph or DRR) of the CT with a horizontal line marking the location of the slice
displayed in (b). Images extracted from [Her09].

error process. Meanwhile, the comparison using 3D medical images is performed via
the comparison of anthropological measurements [TOA+07, CDLB+15] or via their
superimposition [GCC+19].

II.1.3 3D superficial models

Apart from medical acquisition scanners, there are two common approaches
for obtaining a 3D image of a skeletal structure within the forensic community
[FDGR11, MCA+05, GDGS+16]: laser surface scanners and photogrammetry (see
Fig. 6). However, they can only obtain a 3D surface image of an object (i.e. its
internal parts are not captured), and thus these approaches are only applicable when
a PM “clean” bone (i.e. without soft-tissue) is available. Furthermore, none of them
allows us to obtain 3D surface models of air cavities such as frontal sinuses.
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Figure 5: Effect of the slice thicknesses of a CT on three-dimensional reconstruction of anatomical
structures: (A) 0.625 mm, (B) 1 mm, (C) 1.25 mm, (D) 2 mm, (E) 2.5 mm and (F) 5 mm. Images
extracted from [FD16].

a b

Figure 6: (a) Acquisition of a skull 3D partial view using the Artec Space SpiderTM laser range
scanner of the Physical Anthropology Lab at the University of Granada (Spain). Image extracted
from [ICD12]; (b) Screenshot of the software 3D Scan Expert showing a 3D image obtained from
a series of photographs. Image extracted from [3SE].

II.2 Relevant skeletal structures for identification

purposes

This section focuses on reviewing the most relevant skeletal structures for CR-
based identification (the most important ones are depicted in Fig. 7). Particularly,
it analyzes those bones and cavities that have been reported as useful for positive
CR identification and with strong support by the forensic community, based on the
individuality and uniqueness of their external morphology [CGC11, KH97, Kah09,
CC17, WR10, SAT+14, NSGF16] and/or their internal trabecular patterns [Man98,
KHS98]. Most relevant skeletal structures are located in the cranial region, but
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there are also other useful skeletal structures in postcranial regions (mostly in the
chest and vertebrae regions).

a

b c

d e

Figure 7: Most relevant skeletal structures for CR-based identification: (a) Paranasal sinuses; (b)
Vertebrae; (c) Chest bones; (d) Cranial sutures; and (e) Bone ’s trabeculae. Images extracted from
[GJT08]

Notice that all skeletal structures are growing from infancy to adulthood and
their utilization for identification is only recommended when their growth process
has ended.

II.2.1 Cranial region

In the cranial region, the most reliable skeletal structure, and recommended for
primary identification, is the teeth [Int18]. Dental comparison plays a crucial role
in mass disasters and identification of decomposed and charred bodies [PMS12].
The combination of anatomic features, abnormalities, and dental treatments makes



20 CHAPTER II. COMPARATIVE RADIOGRAPHY

the teeth patterns hardly similar among different subjects [MdlHVdDLB10, Ada03].
The comparison of these features among AM and PM images (e.g. intra-oral radio-
graphs, extra-oral radiographs panoramic radiographs, and CTs) can provide useful
insight from which a positive identification can be made [VR17] by comparing con-
sistences and discrepancies. There are two types of discrepancies, those that can
be explained (e.g. a tooth present in AM radiographs that is missing in the PM
ones) and those that cannot (e.g. a tooth missing in AM radiographs but present
in PM ones). Full mouth-radiographs are preferred over intra-radiographs. In full
mouth radiographs, apart from a full view of the whole dentition, another various
skull structures are visible (such as frontal sinuses, maxillary sinus, etc.) and can
be used for improving the support of the identification decision.

Frontal sinuses are widely recognized as a useful and reliable method of iden-
tification [CH18], being one of the few skeletal structures for CR together with
the teeth, fulfilling the Daubert criteria [CDLB+15]2. Frontal sinuses start their
development at 1 year, being visible in radiographs around the 5-6 years, and reach-
ing their final appearance around 20 years. Furthermore, frontal sinuses are only
absent in 4% of the population [dSPC+09]) and are maintained unchanged dur-
ing the rest of the life [KWG02]. Although, rarely, some external factors such as
traumatisms can change slightly their morphology [CFM+05]. Frontal sinuses are
considered as a skeleton fingerprint. Their invariability along adult life and the
wide variability in shape and size, number of cavities, intersinus septum, among
other features, make them unique [KH97], being different even between homozy-
gotic twins [PVD+07]. Their uniqueness was firstly assessed using an elliptical
Fourier analysis [CBS17] of their contours in radiographs [Chr04]. Recently, their
3D shape variability has been quantified [GCC+19, NTG+18]. Their utilization for
CR-based identification was first reported in 1926 by comparing their morphology
in AM and PM radiographs [CL27]. Nowadays, CR identification based on frontal
sinuses’ pattern is widely accepted by the forensic community, and many works
have reported their utility via image comparison to establish positive identification
[YMSS87, dSPC+09, KWG02, CDLB+15, SAL+16, KLP+13, GCC+19]. Further-
more, there are standardised protocols to quantify frontal sinus size and shape and
to improve CR results [Chr04, BR10, RLM16, NTGL18]. However, these works
highlight that producing PM radiographs simulating the AM ones is an error-prone
and complex process, that requires a lot of time, and it is only recommended when
other techniques are not applicable. These drawbacks are avoided when comparing
the shape of frontal sinuses in AM and PM CTs, increasing their utilization in the
forensic endeavour [SAL+16, KLP+13, GCC+19].

Other cranial features, reported as useful for CR are cranial suture patterns
[RA04], sphenoid sinus [RKG+12], maxillary sinuses [Sol11], mastoid air cells [CL27],
hyoid [CFS+02], and the cranial vault [MR14]. However, the support of these skeletal
structures for CR positive identification by the forensic community is inferior to teeth
and frontal sinuses. Furthermore, the one with greater support (e.g. cranial suture
patterns) are not usually visible in radiographs.

2The Daubert criteria [Vic05] determinate whether evidence is admissible in a court of law. An
identification method fulfills the Daubert criteria when: (1) it is testable and peer reviewed; (2) it
possesses known potential error rates; and (3) it is accepted by the forensic community.
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II.2.2 Postcranial regions

In postcranial regions, multiples bones have been reported useful for identifica-
tion or shortlisting. In the chest and vertebrae regions, clavicles [SWCT11], vertebral
features [KGH02] and ribs [MWH77] have been reported as useful for identification.
There are also a few bones outside these areas that are commonly used, such as patel-
lae [NSGF16], pelvis [PVD+07], and bones of the hand and foes [KSF05], among
others.

II.3 Methodological approaches

Once the imaging techniques and skeletal structures have been reviewed, we
proceed to review methodological approaches utilized in the forensic literature for
performing CR-based identification. Methodological approaches are divided into
three groups according to the dimensionality of the data employed: 2D-2D, 3D-2D,
and 3D-3D. The greater the dimensionality, the greater the accuracy and robustness
of the methods. Within each of these groups, methods can be further classified
into manual approaches and (semi-) automatic approaches. In manual methods, all
the identification process is performed by forensic experts. Meanwhile, in (semi-)
automatic methods, some tasks of the identification process are automatised.

II.3.1 2D-2D approaches for comparative radiography

In forensic literature, the comparison of AM and PM radiographs is the most
extended approach. For instance, the Michigan State University Forensic Anthro-
pology Laboratory (MSUFAL) performed 193 identifications using this approach
between 2002 and 2015 [SF18] (see Fig. 8).

Manual approaches: The manual identification procedure [RLM16, Kah09]
consists of acquiring PM radiographs trying to reproduce the skeletal structures’
silhouettes of the AM radiographs (see Section II.1.1 for a brief review of the ac-
quisition parameters related with the silhouette to be reproduced). Once the PM
radiographs have been acquired, AM and PM radiographs are visually compared
looking for consistences, explainable inconsistencies (e.g. resulting from the time
elapsed among AM and PM radiographs, degenerative process, the effect of gravity
on the body, perspective distortions resulting from errors reproducing the AM ra-
diographs, etc) and inexplicable inconsistencies (e.g. point-to-point comparison of
frontal sinuses using an standardised protocol [RLM16]). The most relevant factors
reported in the literature are: skeletal structures’ silhouettes, anthropological mea-
surements, and the presence of pathologies or lesions. Direct measurements cannot
be performed since physical units are unknown and are affected by perspective dis-
tortions [MVIA18]. Only factors, such as proportions among distances, deviations
or asymmetries, can be utilized [dSPC+09, BR10].

(Semi-) automatic approaches: There are several works that (semi) auto-
matically compare different skeletal structures (e.g. frontal sinus [Chr05b, Chr05a],
cranial vault [MR14], and teeth [JC04, NAM07]) between AM and PM radiographs.
These methods are based on the comparison of the silhouettes of skeletal structures
in radiographs using geometric morphometric techniques (such as elliptical Fourier
analysis [CBS17]). Then, the AM and PM silhouettes are compared using the el-
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Figure 8: Number of CR-based identifications performed at the Michigan State University Forensic
Anthropology laboratory per year, from 2002 to 2015 (n = 193). The most common radiographs
employed were: chest/thoracic (32.2%), abdominal/lumbar (18.0%), ankle/foot (16.9%), and head
(3.7%; this low percentage is explained due to the few AM records with AM head/skull radio-
graphs). The most common projection was a posterior to anterior or anterior to posterior (77.2%),
with lateral (19.9%) and oblique (3.0%) projections also represented. Image extracted from [SF18].

liptical Fourier analysis obtaining a short list of the most probable PM matches
for each AM one. All the former methods require the segmentation of the skeletal
structures in every AM and PM radiograph. Nevertheless, there are a few compu-
tational approaches that avoid the need of manual segmentations, either via using
IS methods (e.g. automated dental identification system (ADIS) [DTM+11, AD18]
for teeth comparison [DHG18], or [TKWK08] for frontal sinuses segmentation, in
both approaches using ad-hoc rule-based segmentation methods, see Section 10) or
via the direct comparison of the intensities (e.g. computer-assisted decedent identi-
fication (CADI) [DHG18] for vertebrae comparison). However, the latter approach
suffers from the elapsed time between AM and PM radiographs and the consequent
change in the intensities of the skeletal structures (as stated in the introduction).
CADI [DHG18] reduces its impact via the manual selection of a region of interest
around each vertebra, the equalisation of the pixels within these areas (e.g. with a
histogram equalization filter), and lastly the comparison of AM and PM vertebrae
using the Jaccard similarity metric [Jac12].

Drawbacks of both manual and (semi-) automatic approaches: Acquir-
ing PM radiographs simulating the AM ones is a complex and error prone trial-
and-error process, since small changes in the acquisition parameters (e.g. SID,
OID, central ray angle) result in great changes in the skeletal structures’ silhou-
ettes [SG14]. Furthermore, both the acquisition of the PM radiographs and their
visual comparison against the AM ones rely completely on the forensic expert’s
skills and experience. As a consequence, the utility of the method is reduced be-
cause of the time required (2-8 hours per superimposition depending on the AM
radiograph [SF18]) and the inherent subjectivity. Some authors [ARG+10, CGC11]
have recommend to only use this approach as a last resource in validation scenarios
(confirming an identity or deciding among few possible candidates). Nevertheless,
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many forensic researchers [RLM16, CH16, SF18, SDW+18] are currently working to
provide standardized, quantifiable methods for radiograph-radiograph comparison.
These standards minimize the effect of these drawbacks and establish a minimum
number of matching points to make an identification or an exclusion), and thus have
improved the reliability of the radiograph-radiograph comparison approaches.

II.3.2 3D-2D approaches for comparative radiography

Manual approaches: The comparison methodology is similar to the manual
radiograph-radiograph comparison methodology but this requires the acquisition
of PM simulated radiographs from a CT trying to simulate the AM radiographs
[HDC+14, Kah09, PVD+07, SHNY17], instead of real radiographs. These simulated
radiographs are manually obtained by the forensic anthropologist through a trial-
and-error process using generic medical imaging software (such as Vitrea, see Fig.
9, or digital autopsy). Afterwards, AM radiographs and PM simulated radiographs
are visually compared as in the radiograph-radiograph approach. Therefore, these
approaches have the same limitations than the radiograph-radiograph comparison
approach (i.e. time-required and subjectivity) but allowing to generate as many PM
radiographs as necessary without the corpse after its CT scan. Another drawback
of this approach is the higher cost of a CT scanner in comparison of radiograph
acquisition device (composed by X-ray generator and an image receptor), as many
forensic labs cannot afford them (as stated in Section II.1.2) [DCI+11].

Figure 9: Screenshot of Vitrea R© Advanced Visualization [Vit] generating a simulated radiograph
from a CT. Image extracted from [Vit].

(Semi-) automatic approaches: Automatic 3D-2D CR approaches reduce the
errors related to the manual acquisition of PM real or simulated radiographs (i.e.
time required, subjectivity and errors caused by the fatigue of the forensic expert).
However, there are just a few automatic approaches for the comparison of AM ra-
diographs and PM 3D images [SAT+14, DGBS17, NSGF16]. These approaches are
based on the acquisition of 3D surface models with a 3D laser range scanner of the



24 CHAPTER II. COMPARATIVE RADIOGRAPHY

skeletal structure (clavicles in [SAT+14, DGBS17] and patellae in [NSGF16]). From
these PM 3D surface models, a set of predefined 2D projected images are generated
through the 3D model rotation. Notice that these 2D projections only contain the
silhouette of the target skeletal structure. Finally, this set of PM projections is
automatically compared to the manually segmented silhouette of the skeletal struc-
ture in the AM radiographs using elliptical Fourier analysis descriptors. However,
these methods are limited by the set of predefined 2D projections and assume the
value of the parameters related to perspective distortions. As far as we know, there
are no approaches that completely automatize the search for the best possible 2D
projection of the PM 3D surface model of the skeletal structure.

II.3.3 3D-3D approaches for comparative radiography

Manual approaches: Lastly, the CT-CT comparison approach is the most
reliable one and does not have any of the previous limitations since the 3D shapes
can be directly compared [IFY+16, HCO+17, RBC+16a, DDC+19]. The comparison
is performed via visually comparing their 3D shapes [GCC+19], avoiding occlusions
or perspective distortions, or via anthropological measurements [KLP+13], where
the distances can be directly compared since CTs maintain the original physical
units. Thus, when AM and PM CTs are available, this approach is recommended
over the latter two due to its greater reliability and forensic potential [GPF+18].

(Semi-) automatic approaches: Few computerised approaches have been
proposed for the comparison of AM and PM 3D data (such as [ZYF+11, ZYW+13,
ZOZF16] with teeth, [GCC+19] with frontal sinuses, or [DF19] with lumbar verte-
brae). These methods required the segmentation of the 3D skeletal structures in
both the AM and PM CTs (although the PM data could also be acquired with a 3D
laser range scanner), their automatic registration, and the measuring of the qual-
ity of the match. However, the availability of 3D AM data (such as CT) is scarce
compared to the number of AM radiographs available (specially, when people who
disappeared a long time ago are involved) reducing significantly their applicability.



Chapter III

Theoretical Background

“You see, but you do not observe.”
— Sir Arthur Conan Doyle

This chapter is devoted to briefly review the basics and the state of the art of the
techniques utilized in this PhD thesis to automate the CR problem. An extensive
survey of these techniques is beyond the scope of this dissertation, so the analysis
will only focus on the most relevant contributions in the literature. Particularly,
it focuses on two classical computer vision tasks, image segmentation (IS) and
image registration (IR), and in two soft computing techniques utilized to tackle
them, deep learning (DL) and evolutionary algorithms (EAs), respectively.
Both computer vision problems are considered middle-level tasks. In a nutshell, low-
level tasks are related to primitive operations, such as smoothing, enhancement, and
histogram transformations; middle-level tasks tackle the analysis of images; and high
level operations focus on image understanding and give meaning to image analyses
performed by low- and middle-level tasks. Thus, IS and IR allow us to analyse an
image to gain an insight about it, which in turn enables to tackle more complex
tasks as CR.

III.1 Image Segmentation

IS consists of partitioning an image into regions (i.e. sets of pixels) [PXP00], each
of them with a different semantic meaning (e.g. segmenting a frontal sinus in a skull
radiograph). Regions usually do not overlap, although there are some particular seg-
mentation scenarios where a pixel can be part of multiples regions (e.g. segmenting
lungs and clavicles in chest radiographs). Automated segmentation processes allow
many applications to be executed in real time (manual segmentations are tedious
and time-consuming), while reducing subjective and segmentation errors. Segmen-
tation algorithms are nowadays a crucial part of many computer vision systems,
both as a pre-processing stage and also as an end in itself. The range of practical
applications go from medical imaging systems [SFB+15] to traffic control systems
[SAANM03], ranging through many others such as human-robot interaction systems
[JJLL15], video surveillance systems [KH02], etc. As a consequence, the importance
of segmentation algorithms have grown exponentially and have become a hot topic
of research (as can bee seen in Fig. 10).

25
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Figure 10: Number of articles related to image segmentation published from 1967 to 2018 according
to Scopus. Search performed the 8th August 2019 using the keywords ( TITLE-ABS-KEY (“image
segmentation”) AND ( LIMIT-TO ( DOCTYPE , ”ar” ))).

In medical imaging applications, IS algorithms segment medical images (such
as radiographs) helping to the quantification and measurement of tissue volumes,
diagnosis, locating pathologies, and the study of anatomical structures [Mes14]. For
instance, clavicles are used to detect lesions, such as tumorous lesions [KTK08], or
for forensic identification [SAT+14] via comparing their silhouette in AM and PM
radiographs. Many different taxonomies can be presented to classify IS approaches
[VGRV01, WK07, Kha14, SFB+15]. One possible classification could be the follow-
ing based on the underlying computer vision techniques utilised:

• Rule-based methods, where the image is segmented by the application of a set
of low-level and spatially blind rules [VGRV01]. The most important families
of methods within this category are:

– Thresholding methods [BDBP15] are based on grouping all pixels belong-
ing to an intensity range into one group. Traditionally, only two groups
(background and foreground) are considered, needing only one threshold
value to separate them (lower values are background, greater values are
foreground). However, since spatial information is ignored, segmenta-
tion results are not sufficient, unless the intensity levels of the segmented
objects and the background are clearly separated.

– Edge detection methods [NSH08] focus on contour detection. These
methods usually work under the assumption that an abrupt change on
pixels intensities likely represent an edge. To detect these changes and
their directions, various edge operators can be utilized, most of them
based on pixels’ gradient information (e.g. convolutional filters such as
Sobel or Canny). However, these methods usually fail with overlaping
objects, fuzzy borders or noisy images.

– Region growing methods [PSB12] partition an image into connected re-
gions. To do so, several seed pixels are randomly selected or manually
selected inside the object of interest. Regions are then grown from these
seed pixels by grouping all neighboring pixels with similar features (e.g.
pixel intensity, colour, etc). Adjacent regions are merged when some sim-
ilarity criteria are accomplished (e.g. homogeneity or sharpness of region
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boundaries). The main drawback of these methods is that segmentation
results are not robust to the initial seeds.

• Deformable models [MICC16], where the segmentation is performed by match-
ing a model that includes some sort of prior shape information to the im-
age. Generally, these methods start from an initial boundary shape and iter-
atively modify the shape through several shrinking and/or expansion opera-
tions. These operations searches to minimize an energy function that measures
how well the shape fits the boundary of the object to be segmented. To tackle
this optimization process, numerical optimization methods and metaheuristics
are usually utilized. The two main drawbacks of this family of methods are
their sensibility to the initial shape and the risk of the optimizer being trapped
in a local minimum due to the high multimodality of the search space. There
are mainly two types of deformable models:

– Parametric/explicit methods represent curves and surfaces explicitly in
their parametric forms. These models incorporate information about the
object to segment, such as the mean shape, shape variability, mean loca-
tion, mean orientation or mean size. For example, some notable methods
are: active contour models, active shape models, and active appearance
models.

– Geometric/implicit methods (also called level set methods) represent
curves and surfaces implicitly without their parameterization via using
curve evolution theories and level set methods. These models allow us
to segment curves and surfaces that cannot be expressed in a parametric
form.

• Atlas-based methods [COL+11], generally based on the registration of an atlas
(i.e. an already segmented image) and a target image (see Section III.3 for
further detail of a registration process). Once registered, a mapping function
between both images is obtained. The segmentation is obtained by mapping
the segmentations in the atlas image to the target image.

• Graph-based methods [PZZ13] that represent the image as a graph that is
partitioned into a set of separated connected components (generally making
use of techniques such as conditional random fields or Markov random fields).

• Machine learning-based methods [SFB+15], traditionally based on handcrafted
features (e.g. SIFT) together with a classifier (i.e. k-NN or an artificial neural
network) but, with the advent of Convolutional Neural Networks (ConvNets)
[GGOEO+17], this paradigm has shifted towards end-to-end approaches where
the ConvNet input is directly the image to segment and the output is the target
segmentation.

Since each methodology has its own pros and cons, the best results are commonly
achieved via hybrid approaches that combine two or more of the former strategies
[CYRC18, TI11].

The automatic segmentation of anatomical structures in radiographs remains
very challenging, despite the great clinical importance of radiograph understanding.
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This is mainly due to the projective nature of X-ray imaging, which causes large over-
lapping of anatomies, fuzzy object boundaries and complex texture patterns. For
instance, even among expert radiologists, minor errors in diagnosis are performed in
circa 30% of studies [BWA15] and major errors in 3-6% [RWC+99, BLMM12]. As
a consequence, the automatic radiograph segmentation has been extensively stud-
ied since the 1970s [TSNF73, WS77]. More than 150 research works dealing with
this problem were already published during the twentieth century [VGRV01], rais-
ing the number to 388 at present, according to Scopus1. In general terms, in the
case of radiograph segmentation, most approaches are either rule-based [VGRV01],
shape-based [VGSL06], or machine learning-based [MHS17]. Given that the state
of the art in radiograph segmentation are deep learning techniques, and ConvNets
in particular, this category will be analized in Subsection III.2.2.

III.2 Deep Learning

As a general description, deep learning methods [GBC16, LBH15] learn high-level
abstractions from data by using hierarchical neural architectures. These machine
learning techniques have revolutionized many classical artificial intelligence domains,
such as computer vision, natural language processing, semantic parsing, and many
more. As a result, their popularity has grown exponentially, as did the amount of
papers employing deep neural networks (see Fig. 11).

Figure 11: Number of articles related to deep learning (dark gray) and deep learning for segmen-
tation (light gray) published from 2011 to 2018 according to Scopus. (Deep Learning) Search
performed the 8th August 2019 using the keywords ( TITLE-ABS-KEY (“deep learning”) AND (
LIMIT-TO ( DOCTYPE , ”ar” ))). (Deep Learning + Segmentation) Search performed the 8th
August 2019 using the keywords ( TITLE-ABS-KEY (“deep learning”) AND TITLE-ABS-KEY
(segmentation) AND ( LIMIT-TO ( DOCTYPE , ”ar” ))).

Artificial neural networks (ANNs) [B+95, Sch15] can be considered as the seeds
of deep learning, whose origin can be tackled back to the 1950s. ANNs are learning
algorithms roughly inspired in biological neural networks. ANNs are comprised of
neurons, and each neuron is composed of (see Fig. 12): (1) a set of n input signals
x; (2) a set of weights w that quantify the importance of each input; (3) a linear

1Search performed the 8th August 2019 using the keywords ( TITLE-ABS-KEY ( chest AND
X-ray AND segmentation ) OR TITLE-ABS-KEY ( chest AND radiograph AND segmentation )
AND NOT TITLE-ABS-KEY ( computed AND tomography ) )
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aggregator
∑

which gathers all input signals weighted by the synaptic weights
to produce an activation “voltage”; (4) an activation bias θ, that is a threshold
utilized to shift the activation function; (5) an activation potential u, equal to the
difference between the linear aggregator output (i.e. the activation “voltage”) and
θ (i.e. u =

∑n
i=1 wi · xi − θ); (6) an activation/transfer function g (e.g. sigmoid,

hyperbolic tanget, exponential linear unit (ELU), rectified linear unit (ReLU), etc.)
which limits the neuron’s output to a range of values; and (7) an output signal
y, that results of applying the activation function to the activation potential (i.e.
y = g(u)).

Figure 12: The artificial neuron. Image extracted from [DSSF+17].

There are numerous ANN architectures depending on how neurons are arranged
and interconnected, but in general ANNs are divided into three parts, input layer,
hidden layers and output layer (see Fig. 13). Hidden layers are responsible for
extracting patterns and abstractions from the data, and perform most of the internal
processing. When multiple hidden (intermediate processing) layers are introduced
into an ANN, it is usually called a “deep” neural network, hence the term deep
learning. ANNs can learn the relationship between the input data (e.g. a chest
radiograph) and the output (e.g. whether there is a tumour or not in the input
radiograph) by adjusting the weights and biases, i.e. the trainable parameters.
Thus, the fine-tuning/training process is crucial for the ANN performance. The
most relevant training approaches are the following:

• Supervised learning: the networks are trained with a dataset composed of pairs
of input data and its desirable output (each pair is usually referred as training
sample). The trainable parameters are adjusted to minimize the differences
between the desirable outputs and the network’s outputs. Within supervised
learning approaches, the following subfamilies can be distinguished:

– Offline learning (or batch learning approaches), which updates the train-
able parameters after one epoch (i.e. when all the training samples have
been presented to the network). Furthermore, there are some variants
that update the trainable parameters after each n trainable samples. The
value n is usually refereed as batch size. These methods are recommended
with unchanged problems where a complete dataset is avialable from the
beginning.

– Online learning, which updates the trainable parameters after each train-
ing sample. These methods are recommended with problems that change
quickly limited by the absence of a complete dataset from the beginning.
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• Unsupervised learning: the networks are only trained with input data without
knowing the desirable output. These methods are usually utilized to detect
patterns on data (e.g. clusters).

• Reinforcement learning: the network output represents the action of an agent
in an environment (e.g. the action utilized by a player in a videogame) and
the trainable parameters are updated according to a certain reward metric,
which measures the goodness of the action performed (e.g. the score achieved
on a videogame).

Figure 13: Example of a feedforward and fully-connected ANN with two hidden layers. Image
extracted from [DSSF+17].

In the 1970s, backpropagation methods [LBOM12] were a big step forward for
supervised training of ANNs. Backpropagation methods allow us to compute the
gradient of each neuron for a given input and a desirable output. These gradients
can be interpreted as an indicator of how each neuron’s output (and consequently its
trainable parameters) should change to increase the network accuracy with respect
to a loss function (e.g. percent of true positives and true negatives in classification
problems). These gradients are then utilized by a gradient-based numerical opti-
mization method [NW06] to find the best update of the network parameters. This
process is applied iteratively, improving on each iteration the network behaviour.
The most common optimization method utilized for training ANNs is gradient de-
scent, but other optimizers have also been utilized, such as the Adam optimizer
[KB14] or the Levenberg–Marquardt optimizer [Lev44, Mar63]. Nowadays, back-
propagation methods are still the basics for supervised learning of deep neural net-
works. However, these training methods suffer from the same issues of any complex
optimization problem, such as local minima, as well as some ad-hoc problems, such
as the vanishing gradient problem2 or the exploding gradient problem3. Another

2The vanishing gradient problem consists of the difficulty of training the first layers of very deep
neural networks since their gradients approaches zero. This is because gradients become smaller
at each backward propagation, and thus gradients are smaller as the distance to the output layer
increases.

3The exploding gradient problem is a difficulty found in training deep neural networks when
gradients accumulate and have a large value, which leads to very large updates of the network at
each iteration.
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crucial problem of deep neural networks was the computational cost of training
them. Thus, deep neural networks were considered hard to train efficiently for a
long time [Sch15]. In the meanwhile, several relevant contributions were performed
with a great importance in today’s deep learning techniques, such as recurrent neural
networks in the 1980s [Jor86], Boltzmann machine in 1985 [AHS85], restricted Boltz-
mann machine in 1986 [Smo86], convolutional neural networks in 1989 [LBD+89],
deep belief network in 2006 [HOT06], or deep Boltzmann machine in [SL10]. Finally,
in the 2010s, deep learning methods finally become feasible thank to the advances
on hardware, particularly in GPUs, parallelization, the incorporation of several ar-
chitectures changes (such as using ReLU activation function, dropout, etc), and the
availability of very large labeled datasets. Particularly, the spark that started the
deep learning revolution was a ConvNet proposed in 2012 called AlexNet [KSH12]
(which was an evolution of LeNet [LBD+89, LBD+90] proposed in 1990 for hand-
written numbers recognition) that obtained an improvement of ∼ 10% with respect
to state-of-the-art computer vision classification methods in the ImageNet compe-
tition [DDS+09] (see Subsection III.2.1 for further details of ConvNets, LeNet and
AlexNet).

Nowadays, in 2019, the most relevant families of deep neural networks are the
following [GBC16]:

• ConvNets: ANNs that use convolutional filters. ConvNets are mostly em-
ployed to solve computer vision problems. They are reviewed in greater detail
in the following section.

• Recurrent neural networks: ANNs with backward connections among layers.
These networks are mostly employed in domains where the order within a data
sequence is crucial, such as in natural language processing, speech synthesis,
and machine translation.

• Autoencoders: ANNs composed of a down-sample stage, followed by a central
layer called code, and lastly followed by an up-sampling stage, all comprised
by hidden neurons. As a general description, these networks are trained to
copy the input into the output, obtaining a simplification or an extraction of
the principal components of the input in the code layer. Autoencoders are
typically employed for dimensionality reduction and to distinguish between
real and fake data (e.g. in bank transitions).

• Generative adversarial networks (GANs): ANNs composed of two networks,
a generator and a discriminator, which are trained simultaneously. These two
networks compete with each other, since the generator is trained to generate
realistic fake data while the discriminator is trained to distinguish between
real and fake data. GANs are mostly utilized for image generation and for
style transfer among images.

The rest of this section is devoted to review ConvNets for general purposes
(see Subsection III.2.1) and for IS (see Subsection III.2.2), as well as training and
regularisation strategies (see Subsection III.2.3). In these subsections, only the most
notable ConvNets and architectural innovations are presented, due to the immense
number of works presented in this area in recent years.
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Figure 14: Summary of the papers related to deep learning and medical imaging published from
2012 to 2017 by year of publication according to: (a) type of ANN (CNN refers to ConvNets; RBN
to restricted Boltzmann machine; RNN for recurent neural networks; and AE to autoencoders); (b)
task addressed; (c) imaging modality; and (d) application area. Image extracted from [LKB+17].

III.2.1 Convolutional neural networks

ConvNets are a family of deep neural networks designed to directly process data
with a grid-like topology, e.g. images, without any preprocessing or feature ex-
traction stage. Particularly, in the computer vision field, ConvNets have solved
numerous tasks with an increasing level of difficulty [VDDP18, GLO+16], such as
object detection, motion tracking, action recognition, human pose estimation, and
IS, among many others. As a consequence, ConvNets have also revolutionised the
analysis of medical images (see Fig. 14), allowing us to automate crucial tasks
[LKB+17], such as landmarks location, disease detection and classification, organ
and lesion segmentation, and many others.

The typical pipeline of a ConvNet (see Fig. 15a) is composed of convolutional
layers and pooling layers in the body of the ConvNet, and fully-connected layers in
its end. These layers are detailed below:

• Convolutional layers (see Fig. 15b) are the key component of ConvNets.
They are layers that employ a linear operation called convolution [Sze10].
The input layer is a tridimensional grid composed by two spatial dimensions
(width and height) and depth (related to colour channels and to the feature
maps4 generated in the previous layer). In general terms, a convolutional layer
convolves the input using various learned kernels of a given size. Kernels are
tridimensional having a size of width×height×input depth size (e.g. 3×3×1),
where width and height are hyper parameters, and input depth size is set by
the layer input dimensions. Thus, each output neuron interacts only with a
small set of input neurons (e.g. 9 neurons with 3 × 3 × 1 kernels), instead of
interacting with all input neurons as in traditional ANNs (see fully-connected
layers), and the output dimension is equal to the number of learned kernels.
Notice that the output of a convolution operation is not the neuron output

4A feature map is the result of applying a convolutional filter to a given input.
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Figure 15: (a) The pipeline of a general ConvNet architecture for classification; (b) Convolution
operation; (c) Pooling operation; and (d) Fully connection operation. Images extracted from
[GLO+16].

but instead the input of the neuron activation functions. Furthermore, instead
of learning an ad-hoc kernel for every output neuron as in traditional ANNs,
kernels are shared among all input neurons, making ConvNets equivariance to
translation (but not to other spacial transformation such as rotations or scale).
These features reduce significantly the number of weights/parameters that
have to be learned (e.g. for a input of 100×100×1 neurons with 1 convolutional
kernel of 3×3×1, only 9 weights have to be learned instead of 90,000 weights),
making easier to train ConvNets and reducing their memory requirements. In
summary, the main hyper-parameters of a convolutional layer are the following:

– Number of kernels, the output depth dimension is equal to the number
of kernels.

– Kernels size, composed of its height, width and depth. Width and height
are hyper parameters that have to be chosen, although height and width
are usually equal, and the depth is always equal to the depth of the layer
input.

– Activation function, which limits the neuron output to a range of values,
and basically determines whether a neuron should be activated or not,
i.e. it determines whether the neuron’s input is relevant for the prediction
or whether it should be ignored. Examples include sigmoid, ELU, ReLU,
etc.

– Stride, which is the step size of the kernel when moving through the
input (e.g. convolution is applied on each pixel with a stride of 1, and
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convolution is applied only to 1 out of every 2 pixels with a stride of 2).
Thus, the stride affects directly to the output size, which is equal to input
size divided by the stride, i.e. the input is downsampled with any value
different to 1.

– Padding strategy, which indicates how convolution is applied in the bor-
der of the input, i.e. when a position of the kernel is outside the limits.
Padding strategies are either based on not using convolution operations
on the borders reducing the output size, or on using convolution on the
borders via assuming that the values outside the limits are equal to a
certain value, typically this value is equal to 0 (zero padding strategy).

• Pooling layers (see Fig. 15c) reduce the spacial dimension (width × height)
of the layer input by the pooling size (e.g. a pooling size of 2 reduces an input
of 100×100×10 to 50×50×10), while depth is not reduced. Pooling layers are
beneficial to ConvNets since they significantly reduce the computation and
weights required by subsequent layers, reducing over-fitting and increasing the
equivariance to scale transformations. Average pooling and max pooling are
the most commonly used strategies.

• Fully-connected layers (see Fig. 15d) are regular ANN layers. In these
layers, every output unit interacts with every input unit. These layers have
high computational and memory requirements and have a significant amount
of weights to be learned, and thus its utilization in ConvNets is usually only
seen at their end when the input dimensionality has been reduced after sev-
eral pooling layers. The most relevant hyper-parameters of these layers are
the number of output neurons (e.g. in classification problems, the last fully-
connected layer usually has the same number of output neurons as classes)
and the activation function.

One of the first ConvNets was LeNet, proposed in 1990 [LBD+90]. LeNet is
composed of two blocks, each comprised by a convolutional layer followed by a pool-
ing layer, and two fully-connected layers at the end. LeNet was able to recognize
digits in 32 × 32 images but due to its computational requirements it was hard to
implement until the 2010s. In 2012, a new ConvNet, called AlexNet [KSH12], was
proposed for classifying colour images of 224×224 pixels in the ImageNet competi-
tion [DDS+09]. The most relevant features of AlexNet with respect to LeNet were
the usage of ReLU as activation function, the inclusion of a reguralization technique,
called Local Response Normalization (see the subsection III.2.3 for further details
about regularization), and a few architectural changes (particularly, AlexNet was
composed of 5 convolutional layers, 2 max pooling layers, and 2 fully-connected
layers).

Afterwards, numerous ConvNets architectures were proposed but the first one
that significantly improved the AlexNet behaviour in the ImageNet competition was
a ConvNet called VGG [SZ14]. The main contribution of VGG was showing that the
depth of a network is a critical component to achieve a better accuracy. The basic
version of VGG, called VGG-16, was composed of 5 blocks, each of them composed
of 2 or 3 convolutional layers and a max pooling layer, followed by 3 fully-connected
layers (the last of them utilizing a softmax activation function instead of a ReLU).



CHAPTER III. THEORETICAL BACKGROUND 35

The next relevant contribution was the incorporation of inception modules/
layers. An inception layer is composed of several convolutional layers computed
in parallel, each with a different kernel size, whose outputs are concatenated in the
depth dimension (see Fig. 16). Some variants reduce the computational require-
ments by decreasing the input depth by adding an extra 1x1 convolution before the
convolutional layers. In general terms, inception layers allow us to capture local and
global features simultaneously, and to increase the scale equivariance. GoogLeNet
[SLJ+15] was the first ConvNet that incorporated inception layers. The utiliza-
tion of inception layers, a regularization technique called batch normalization (BN)
[IS15] and a deeper architecture with 22 layers, led GoogLeNet to be the winner of
ILSVRC 2014 competition.

Figure 16: (Left) Example of a naive inception module. (Right) Example of an inception module
with dimension reduction. Images extracted from [ATY+19].

However, despite increasing ConvNet depths can be beneficial for the perfor-
mance [SZ14], the vanishing and exploiting gradient problems make these ConvNets
hard and slow to train. Residual connections [HZRS16] lessen this problem allow-
ing us to significantly increase ConvNets depth. Residual connections are basically
feedforward connections between nonconsecutive layers (see Fig. 17), i.e. the input
of a certain layer with a residual connection is the concatenation of the output of its
directly previous layer and one or more other previous layers. The first ConvNet with
residual connections was ResNet [HZRS16], which was the winner of the ILSVRC
2015 competition for classification and also obtained the best results with the COCO
dataset [LMB+14]. Particularly, residual connections have allowed us to successfully
train several variants of ResNet going from 34 to 1202 layers (e.g. ResNet-50 is com-
posed of 49 convolution layers, 2 pooling layers and 1 fully-connected layer at the
end of the network).

Figure 17: Example of a residual connection. Image extracted from [HZRS16].
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Overall, numerous ConvNets have been proposed obtaining better performances
in some particular computer vision problems but these are mostly variants and com-
binations of the ConvNets described below and/or their architectural innovations.
Furthermore, these are the basis of ConvNets designed for IS, although there are
also several ad-hoc architectural innovations in ConvNets for solving the IS problem
(e.g. atrous convolution [CPSA17]), which are reviewed in Subsection III.2.2.

III.2.2 Convolutional neural networks for image segmenta-
tion

The first ConvNet trained end-to-end for IS was a Fully Convolutional Network
(FCN) [LSD15] with a loss function based on the pixel segmentation accuracy. FCN
(see Fig. 18) is mostly based on VGG-16 [SZ14], sharing its 5 convolutional blocks
(each of them composed of 2 or 3 convolutional layers and a pooling layer), but
without the last 3 fully-connected layers. Instead of the fully-connected layers, FCN
appends 3 convolutional layers (the first with convolutional filters of 7×7 and the
last two with filters of 1×1; the last of them with the same number of filters as
classes to be segmented). Notice that 5 pooling layers are utilized in total and,
thus, the input images are down-sampled by a factor of 32, decreasing significantly
their quality. To minimize this drawback, a last up-sampling layer with a residual
connection with the input is utilized. Up-sampling layers increase the dimension-
ality of their input by a given factor f , which allows us to restore the size loss by
the down-sampled layers (notice that down-sampled layers cannot be removed since
it will hugely increases the memory requirements of the ConvNet and allow us to
obtain spatial information). Up-sampling layers are based either on interpolation
functions (e.g. bilinear interpolation) or on deconvolution filters. Deconvolutional
layers are basically convolutional layers with a fractional stride of 1/f , that allow
us to learn nonlinear up-sampling functions, instead of using fixed linear interpola-
tion functions, thus achieveing a better performance. However, the global perfor-
mance of FCN was insufficient in comparison to other state-of-the-art methods in
the VOC2012 competition [EEVG+15] for IS.

U-Net [RFB15] is an evolution of FCN composed of 2 parts following an encoder-
decoder architecture (see Fig. 18) with residual connections between the two
parts. The first block, or down-sampling part, has a FCN-like architecture com-
posed of 4 blocks, each with 2 convolutional layers with filters of 3×3 and 1 pooling
layer, followed by 3 last convolutional layers. This part reduces the feature maps
dimensionaly decreasing the memory and computation requirements while extract-
ing features and spatial information. Meanwhile, the second block, or up-sampling
part, is composed of 4 blocks, each comprised by 2 convolutional layers with filters
of 3×3 and 1 up-sampling/deconvolutional layer, and one final convolutional layer
with filters of 1×1 with the same number of filters as classes to be segmented. This
second part progressively reduces the number of feature maps while increasing their
height and width. Furthermore, the residual connections allow us to avoid loosing
pattern information in the down-sampling and up-sampling processes while dealing
with the exploiting and vanishing gradient problems. It overcomes the results of
FCN on the VOC2012 competition.

Both FCN and U-Net, as well as their variants, are based on the same layers
of ConvNets designed for other computer vision tasks. The most relevant ad-hoc
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Figure 18: (Left) Fully Convolutional Networks, image extracted from [LSD15]; (Right) U-Net,
image extracted from [RFB15]

architectural innovation for IS is atrous convolution. Atrous convolution (also
called dilated convolution) is a convolutional operation that introduces a spacing
between the values in a kernel (the number of spaces between values is called rate
or dilated rate) (see Fig. 19). This allows us to adjust the filter’s field-of-view and
capture multi-scale context information without reducing the spatial dimensions of
the feature maps (i.e. a 3 × 3 kernel with a dilation rate of 2 will have the same
field-of-view as a 5×5 kernel, while only using 9 parameters and without down-
sampling). However, this is computationally expensive and takes a lot of memory,
as a consequence its use is normally preceded by a few pooling layers to make
the features maps computationally approachable. Atrous convolution was firstly
introduced in [YK15], which is a variant of VGG-16 without the last 2 pooling
layers (leaving 3 pooling layers and thus reducing the input only by a factor of 8)
and with atrous convolution in the last 2 blocks (with a rate of 2 and 4 in the 4th
and 5th blocks, respectively) and a final 1×1 convolutional layer similar to the one
of FCN or U-Net. This ConvNet with atrous convolution outperformed FCN and
U-Net, but also other advanced ConvNets, such as DeepLab V1 [CPK+14], which
is a variant of VGG-16 with a final fully-connected conditional random field (CRF)
layer [KK11].

DeepLab V2 outperforms previous ConvNets and all state-of-the-art methods
in terms of performance in the VOC2012 competition. The main innovations of
DeepLab V2 were: (1) adopting ResNet-101 instead of VGG-16, which by its own
improved significantly the performance; (2) the utilization of the only 3 first pooling
layers of ResNet-101, reducing the input image only by a factor of 8, instead of
32; (3) the combination of inception modules with atrous convolution resulting on
atrous spatial pyramid pooling (ASPP) modules (see Fig. 19), which allows us
to obtain even more spatial context of the input feature maps reducing the effect of
only down-sampling by 8; and (4) maintaining the last fully-connected CRF layer
of Deep Lab V1.

Afterwards, Deep Lab V3 rethinked [CPSA17] the utilization of atrous convo-
lution by combining cascade modules, which are composed of consecutive atrous
convolution layers with an increasing rate size (e.g. 5 layers with rates of 1, 2,
4, 8 and 16), and deeper ASPP modules, boosting its performance over its pre-
vious version without using fully-connected CRF layers, which is no longer needed
since detailed spatial context is already introduced through atrous convolution based
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Figure 19: Several atrous convolution filters with rate sizes of 6, 12, 16, and 24. The combination of
these filters with an inception module results on a atrous spatial pyramid pooling (ASPP) module.
To classify the centre pixel (orange), ASPP exploits multi-scale features by employing multiple
parallel filters with different rates. The effective Field-Of-Views are shown in different colours.
Image extracted from [CPK+17]

modules. Lastly, Deep Lab V3 is extended by Deep Lab V3+ [CZP+18], introduced
in the second semester of 2018, by adopting a U-net like architecture where the
encoder part is basically Deep Lab V3 and the decoder part is similar to the one
in U-Net but with some architectural changes (see [CZP+18] for further details).
Furthermore, there is also a “light” version of Deep Lab V3+ with a lower com-
putational complexity, while having a similar performance, which replaces standard
convolution and atrous convolution layers by depthwise separable convolution and
depthwise separable atrous convolution layers, respectively (see Fig. 20). Depth-
wise separable convolution factorises a standard convolution operation into 2
consecutive operations: (1) a depthwise convolution layer (see Fig. 20a) or depth-
wise atrous convolution layer (see Fig. 20c), which performs a convolution operation
for each depth level independently; and (2) pointwise convolution, which is a 1×1
convolutional operation that combines the output from the depthwise convolution
operations.

Figure 20: (a) Depthwise convolution; (b) point wise convolution; and (c) depthwise atrous con-
volution. Image extracted from [CZP+18]

However, despite the success of Deep Lab V3+ in computer vision competitions,
U-Net (and some variants, such as InvertedNet [NLM+18]) is still frequently uti-
lized in many application domains. U-Net is designed in a way that can be trained
with only a few hundreds of images, due to its low number of parameters to be
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learned. Therefore, U-Net is suitable for IS of medical images since, in the medical
domain, there are rarely large datasets available. Furthermore, it was published
(code included) in 2015 in MICCAI (Medical Image Computing and Computer As-
sisted Intervention), which is a main medical conference. It propitiated its use for
the segmentation of medical images in many application domains.

III.2.3 Regularization strategies for training convolutional
neural networks

A crucial problem on training ConvNets, specially in very deep ones and/or with
a large number of learnable parameters, is achieving a similar performance with
training data (which was used to train the ConvNet) and with test data (which has
never been seen by the ConvNet) avoiding overfitting. In other words, ConvNets
should learn to generalize from the training data to perform well in new data, in-
stead of just “memorizing” the training data. Regularization strategies [GBC16]
increase generalization (and in consequence also reduce overfitting) improving the
results on testing data, at the expense of slightly increasing training errors. The most
remarkable, and commonly employed, regularization strategies utilized for training
ConvNets are the following:

• Data augmentation [GBC16]. The simplest strategy to improve general-
ization is to train ConvNets with more data but this is not always possible,
specially with medical data. An intermediate solution is to create fake training
data from the real training data through image transformations (e.g. transla-
tions, rotations, flip, crop, zoom, etc.) and add them to the training dataset.

• Early stopping [GBC16]. When training ConvNets, the training error de-
creases steadily over the epochs. However, if the ConvNet is validated after
each epoch with new data (also called validation data, which is usually a split
of the training data that is only utilized for validation), the validation er-
ror starts to increase after a certain number of epochs. An early stopping
strategy consists of stopping the training process after a certain number of
epochs without improvement on the validation error, and then returning the
learned parameters that achieved the lower validation error rather than the
latest parameters, which provided the smallest training error.

• Dropout [SHK+14]. The dropout technique reduces co-adaptation, which is
a learning problem involving that some neurons have a greater importance
in the ConvNet’s predictions than others. This increases overfitting, that it
is usually caused by learning all the weights of the ConvNet simultaneously.
Dropout consists of randomly dropping or disabling neurons, along with their
connections, from the ConvNet during training. Each neuron is disabled ran-
domly with a fixed probability p, independently of the rest of neurons, fol-
lowing a Bernoulli distribution (regular dropout) or a Gaussian distribution
(Gaussian dropout). On each epoch, a different set of neurons is dropped
and, consequently, a different set of weights is employed and “learned”.

• Batch normalization (BN) [IS15]. BN allows us to reduce the training
time of ConvNets and to improve generalization, via reducing covariate shift.
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Covariate shift refers to the change in the distribution of ConvNet activations
due to the change in their parameters during training. These distribution
changes force the subsequent layers to adapt to those changes, which slows
down the learning process. As a general description, BN reduces covariate
shift by normalizing the ConvNet activations of a layer across spatial locations
(in the case of convolutional layers) and the batch. Furthermore, if the batch
size is equal to 1, BN normalizes the activations only across spatial locations
(a variant called instance normalization [UVL16]). Instance normalization has
a better performance than regular BN in some ConvNet architectures and
problems.

As a brief summary, designing or choosing a ConvNet, choosing its hyper-
parameters and its training strategy for solving a particular problem is far from
trivial, and there are few guidelines [LMAPH18], since all design choices are strongly
interconnected and the high computational cost of exploring all possibilities prohibit
an exhaustive finetune.

III.3 Image registration

Image registration (IR) [MTLP12] is the process of integrating two images into a
common coordinate system, where one of the images is fixed and the other is trans-
formed. IR has multiple applications [OT14], specially in remote sensing, medical
diagnosis and image guided surgery. Thus, numerous IR approaches and applica-
tions have been proposed in the literature through the years, as can bee seen in Fig.
21.

Figure 21: Number of articles related to image registration published from 1949 to 2018 according
to Scopus. Search performed the 8th August 2019 using the keywords ( TITLE-ABS-KEY (“image
registration”) AND ( LIMIT-TO ( DOCTYPE , ”ar” ))).

There is not a universal standard for any IR method because several consider-
ations of the particular application must be taken into account. Nevertheless, IR
methods usually require the four following components (see Figure 22): (1) the fixed
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model image and the scene image to be transformed; (2) the registration transfor-
mation that relates the scene and the model images; (3) a similarity metric, which
measures the resemblance between the fixed model image and the transformed scene
image; and (4) an optimizer, which looks for the best parameters for the transfor-
mation to minimize the error of the similarity metric. These components are further
detailed in the following subsections.

Figure 22: Basic schema of an IR process where the scene image is transformed through an
optimization process to minimize its error with respect a fixed model image. Image extracted from
[Ber18]

III.3.1 Nature of the images

According to the dimensionality of the images, IR approaches are categorised as
2D-2D, 3D-3D, and 3D-2D. The choice of one over the others depends on the
data available. 3D-3D IR approaches are the most informative and robust, and they
are the focus of a large amount of research [Ber18] (both with CTs [MVM+18] and
3D surface scans [GD18]) because of their utility in many scenarios, specially in the
medical domain. However, the availability of 3D images, although becoming more
popular in developed countries, is still scarce compared to the number of 2D images.
When one of the images is forcefully a 2D image, 3D-2D IR approaches show the
best performance since these are robust to object’s pose in the 2D image. Even so,
finding the best 2D projection of the 3D images with respect to the fixed 2D image
is complex and computationally expensive [TLSP03]. Lastly, 2D-2D IR approaches
are the less informative and are sensitive to the pose of the object in the images.
Furthermore, another relevant factor in IR approaches is that the images have been
obtained with the same acquisition device (monomodal IR) or with different ones
(multimodal IR).

Regardless the dimensionality, IR approaches are classified into intensity-based
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and feature-based according to the information that guides the optimizer. Intensity-
based methods compare intensities [MTLP12] (approaches are based on mean squares,
normalized correlation, pattern intensity, or mutual information) of a 2D projection
of the volumetric image with the 2D image. In medical imaging, intensity-based
methods are more extended because they do not require segmentation, that usually
involves subjectivity and errors (e.g. they have been successfully applied to the
3D-2D IR of CTs and radiographs [MTPL08]). Feature-based methods minimize
the distance between geometrical features (i.e. isolated points or point sets, con-
tours, or surfaces) to be extracted in both images. The main use of feature-based
approaches in medical domains are in those scenarios where the modality of the
images is different or in those where the intensities between the images cannot be
related.

III.3.2 Registration transformation

A registration transformation is a mapping function between the space of the
scene and the model images. There are two main categories: linear transformations
and elastic transformations [Ber18]. Linear transformations modify the entire im-
age but preserving geometrical features, such as distances, lines and angles. There
are several subcategories within linear transformations depending on the geometri-
cal information preserved by the mapping functions: i) rigid transformations, which
alter translation and rotation preserving lengths and angles; ii) similarity transfor-
mations, which alter translation, rotation and scale (in the same proportion in all
axis) preserving the aspect ratio and angles; and iii) affine transformations, which
alter translation, rotation, scale (in a different proportion in each axis) and shear
preserving only parallelisms. Meanwhile, elastic transformations deformate locally
the image using “internal” and “external” forces without preserving any geometrical
feature. These transformations alter the scene image preserving their dimensionality
and thus are utilized for both 2D-2D and 3D-3D IR approaches.

Meanwhile, 3D-2D IR approaches are based on projective transformations,
which are a kind of liner transformations that only preserve collinearity. A pro-
jective transformation describes a mapping from 3D to 2D coordinates. Projective
transformations are classified according to the type of camera that they model into:
orthographic projections that model an orthographic camera (see Fig. 23a); and
perspective projections that model a pinhole camera (see Fig. 23b) [HZ03]. A
pinhole camera is composed of 6 extrinsic parameters (3 translations and 3 rotations
of the camera), related with the position of the 3D object in the world, and 5 intrinsic
parameters (1 focal distance, 1 pixel aspect ratio, 2 principal point coordinates, and
1 skewness), related to perspective distortions. The 11 degrees of freedom (DoF) of
a pinhole camera allow us to reproduce the Even so, projection of any photograph
or radiograph. Although the pinhole camera is often simplified by assuming that
the principal point is in the centre of the image, that the aspect ration of the pixels
is square and that there is no skewness. This simple pinhole camera with 7 DoF
(6 extrinsic parameters: 3 translations and 3 rotations of the camera; and 1 intrin-
sic parameter: focal distance), which considerably reduces the complexity of the
search space, while allowing perspective distortions to be reproduced within most
photographs and radiographs. Furthermore, the pinhole camera is further simplified
in some applications by assuming the value of the focal distance, reducing the DoF
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to 6. Meanwhile, an orthographic camera is a particular case of a pinhole camera
located at the “infinity” and thus it does not model perspective distortions. Fur-
thermore, the orthographic camera is more mathematically tractable (only 6 DoF:
2 translations, 3 rotations, and 1 scale) and the constraint of the translations and
the scale does not require expert knowledge.

Figure 23: (a) Orthographic projection. (b) Perspective projection. Images extracted from
[JLJW14].

III.3.3 Similarity metric

Similarity metrics asses the quality of a registration transformation by measuring
the matching between the fixed model image and the transformed scene image.
Several similarity metrics have been proposed due to its importance in the field
of computer vision [VH01] and in its application to medical imaging [MTLP12].
Again, similarity metrics are classified into two distinct categories depending on the
information that guide the optimization process:

• Intensity based metrics measure the similarities between the intensity distri-
butions of the pixels or voxels of two images. Common intensity based metrics
are: sum of squared differences [OSP02], normalized correlation [Son11] and
mutual information [PMV03]. Their suitability depends on whether the inten-
sities between the images can be correlated or not, e.g. with monomodal or
related modalities as radiographs and CTs.

• Feature based metrics measure the similarity of geometrical features between
the images. The most common metrics for measuring the similarities between
two sets of 3D (or 2D) corresponding points are mean square error [WB09]
and median square error [SCDI09]. Meanwhile, the most common metrics for
comparing two 2D silhouettes are Hausdorff Distance (HD) [BTE98], Jaccard
Index (JI) [Jac12], and Dice Similarity Coefficient (DICE) [Sør48].
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III.3.4 Optimization

The key idea of the IR process is finding the best registration transformation of
the scene image to model image with respect to a similarity metric. Many factors
affect to the structure and complexity of the search space tackled, as the registra-
tion transformation and its DoFs or the similarity metric. Since IR search spaces
are often highly multimodal with numerous local minima, even in their simplest
versions, exhaustive search methods are unsuitable. Furthermore, IR problems are
computationally expensive since the evaluation of the fitness of a candidate so-
lution requires two computationally expensive operations: the transformation of
the model image and the measurement of the matching between the scene and
the model images. Numerical optimization methods, both linear search methods
(Nelder-Mead, BFGS, LBFGS) and trust region methods (Levenberg-Marquardt,
BOBYQA), have been employed for IR [Mod04]. However, these methods have
only obtained a good performance in those problems where either a good initial-
ization can be assumed or the registration transformations and their parameters
can be significantly constrained. These drawbacks have been overcome by IR meth-
ods based on real-coded evolutionary algorithms (RCEAs), also called evolutionary
IR methods, in several IR problems [DCS11, SCD11, VBDC18, Ber18]. RCEAs
[BFME97, YG10, MLH18, ZYQ19] have improved the results obtained by tradi-
tional methods in many IR problems [CDS07, InBC+09, Ber18]. RCEAs are global
optimization techniques with a robust performance that enables them to tackle com-
plex medical IR problems. As a consequence, several image registration problems
have been tackled using RCEAs over the last years [DCS11, SCD11, VBDC18] (see
Fig. 24).

Figure 24: Number of scientific contributions related to evolutionary image registration published
from 1985 to 2018 according to Scopus. There is a clearly growing trend, specially after the year
2000 and, currently, between 10 and 20 contributions are published every year, making a total
of 559 works published until the year 2018. Search performed the 2nd October 2019 using the
keywords ( TITLE-ABS-KEY ( ”image registration” ) AND ( TITLE-ABS-KEY ( ”evolutionary
algorithm” ) OR TITLE-ABS-KEY ( ”genetic algorithm” ) OR TITLE-ABS-KEY ( ”evolutionary
algorithm” ) OR TITLE-ABS-KEY ( ”evolutionary” ) OR TITLE-ABS-KEY ( ”metaheuristic” )
OR TITLE-ABS-KEY ( ”metaheuristics” ) OR TITLE-ABS-KEY ( ”stochastic optimization” )
OR TITLE-ABS-KEY ( ”stochastic search” ) OR TITLE-ABS-KEY ( ”heuristic search” ) ) ).
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III.4 Real-coded evolutionary algorithms

RCEAs [BFME97, YG10, MLH18, ZYQ19] are global optimization techniques
inspired by biological evolution for solving optimization problems over continuous
search spaces. RCEAs are population-based optimizers, i.e. RCEAs maintain a
population of candidate solutions (also called individuals). Each candidate solution
is composed of an array of parameters coded as real numbers (each parameter is
called gene and the array of all the genes is called chromosome). As a general
description, RCEAs usually contain the following operations: (1) the population is
randomly initialized; (2) several offsprings (i.e. new candidate solutions) are
generated by varying the candidate solutions of the population using operation such
as selection, crossover, mutation, etc; (3) the “goodness” of each candidate solutions
is measured using a fitness function; (4) a new population is formed with candidates
solutions from the previous population and the offsprings according to a certain
criteria based on their fitness (e.g. the best ones); (5) repeat the operations 2 to 4
(these operations together are known as a generation) until some stop criteria are
reached (e.g. a maximum number of generations or a fitness threshold). Through
these evolutionary processes, the candidate solutions evolve in parallel to meet
the the criteria defined by the fitness function without any assumption about the
underlying fitness landscape. Furthermore, these evolutionary processes have to
look for a trade-off between exploration (i.e. exploring new regions of the search
space, related with the population diversity) and exploitation (i.e. improving the
current candidate solutions, related with local optimization) [Mar91] of the search
space to avoid local minima and to find the best possible solutions. Lastly, RCEAs
are stochastic optimizers since they involve several random operations in their
initialization and in the generation of the offsprings. As a consequence, RCEAs do
not guarantee to find the same final solution in each execution of the algorithm. It
is recommended to perform several runs of a RCEA to study their robustness.

RCEAs have been widely applied in many real-world problems because of its
robustness, fast convergence, and the reduced number of parameters to set in some
variants [DS11]. They have been successfully applied to optimization problems in-
cluding non-linear, non-differentiable, non-convex and multi-modal functions [Cha08].

III.4.1 Promising real-coded evolutionary algorithms for im-
age registration problems

Differential Evolution (DE) [SP97], a classical RCEA, has shown an outstand-
ing performance on global numerical optimization problems, as demonstrated in the
IEEE CEC competitions [QL13]. DE is widely praised by its reduced number of pa-
rameters to fine tune [DS11], its robustness and its fast convergence. Furthermore,
several self-adaptive DE approaches yielded better results than the classical DE in
many different problems [DS11]. Among them, a self-adaptive DE approach with a
linear reduction of population and an external memory of elite solutions (to enforce
diversity in the mutation), called L-SHADE [TF14], has shown a very significant
performance. L-SHADE ranked on the first positions at the IEEE CEC2014 compe-
tition on real-parameter single objective optimization [TF14]. In this competition,
L-SHADE’s results outperformed other state-of-the-art DE variants.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [HMK03], another
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classical RCEA, has also demonstrated an great performance on global optimiza-
tion competitions [Los13]. CMA-ES has advantageous convergence properties and
performs well with small populations, which makes it even more promising when it
comes to improve the computational time. Several modern CMA-ES variations have
yielded better results than the classical CMA-ES in many different problems [Los13].
Among them, a restart CMA-ES with two interlaced restart strategies (one with an
increasing population size and another with varying small population size) called
BI-population-CMAES (BIPOP-CMA-ES) [Han09a, Han09b] has outperformed the
classic CMA-ES and other modern CMA-ES versions in the BBOB-2009 function
testbed [Han09a, Han09b].

As stated, both DE and CMA-ES variants have shown a superb performance in
numerous optimization problems. Thus, the choice between them mainly depends
on the problem to tackle and its fitness landscape. For instance, some publications
[RKP05, HK04] have shown that DE and its variants face significant difficulties on
non-linearly separable functions, and are outperformed by CMA-ES. With regards
to their performance in IR problems, both DE and CMA-ES variants have already
shown an excellent performance [SDGTC12, DFDCMT08, InBC+09].

Recently, a powerful and versatile RCEA called Coral Reef Optimization with
substrate layers (CRO-SL) was proposed in [SSMBV17]. CRO-SL is inspired on the
formation and reproduction of coral reefs. CRO-SL simulates the different phases
that corals undergo during their lives, such as reproduction, larval settlement, or
fight for a space in the reef. Furthermore, CRO-SL simulates the substrate layers
in coral reefs. Substrate layers affect to the growth and development of the coral.
These layers are modeled by using different exploration operators (e.g. DE search,
Gaussian mutation, etc.) on different regions of the coral reef. Their simulation
mixes very different exploration operators within the competitive evolution rules of
the coral reefs, providing a competitive grid-based co-evolutionary strategy to CRO-
SL in just one population. Lastly, CRO-SL also improves the best solution using a
local search (LS) method with a limited number of evaluations, making it become
a powerful memetic algorithm [OLC10].

There is a lot of controversy with the proposal of new bio-inspired algorithms
[Sör15] and their justification must be based on their actual performance beyond the
natural metaphor. CRO-SL presents a high novelty since it provides an excellent
exploration-exploitation trade-off and robustness as results of the combination of all
the previous mentioned features, specially for its competitive environment and the
incorporation of multiple search patterns. In addition, CRO-SL usually converges
quickly to high quality solutions even in multi-modal seach spaces, being suitable for
computationally expensive optimization problems both satisfying quality and com-
putation time constraints. However, its performance varies significantly depending
on the CRO’s parameters and the different substrates included in the simulated
reef. In particular, CRO-SL has outperformed both classical and state-of-the-art
evolutionary IR methods in 3D-3D medical IR problems [BCD+18], making it a
really promising RCEA for CR with the only drawback of the complex tuning of its
parameters.

The best RCEA for solving computationally expensive optimization problems
according to the IEEE CEC competitions is the mean-variance mapping optimiza-
tion (MVMO) optimizer [EVW10]. MVMO has ranked in top positions in expensive
optimization competitions, such as IEEE CEC 2013 [RE13], 2014 [ERWS14], 2015
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[RE15], 2016 [RTE16], and 2018 [RE18], showing an excellent performance and ro-
bustness. MVMO is a novel single-individual RCEA that considers a best solution
archive, but its novelty lies within a new mapping function employed for mutating
the offspring. This mapping function is based on the mean and variance of the
best solution archive. MVMO has been numerically compared to other enhanced
RCEAs showing a better performance in many problems, especially in terms of con-
vergence speed. For instance, a powerful variant called MVMO-SH (the “S” refers
to the offspring approach based on single parent and multi-parent crossover, and
the “H” for the hybridization of MVMO with the use of LS) improves the global
search performance of the classical MVMO. MVMO-SH considers a set of solutions
(i.e. particles of a swarm) instead of just one, each having its own best solution
archive and mapping function, and allows the exchange of information and dynamic
reduction of the swarm size.

Motivated by the analysis of the literature, the RCEAs to be studied in this
dissertation are as follows: (1) DE; (2) L-SHADE, one of the best self-adaptive
variants of DE; (3) CMA-ES, a classic RCEA that has outperformed DE in many
problems; (4) BIPOP-CMAES, one of the best modern variation of CMA-ES; (5)
CRO-SL, a powerful RCEA that is the state-of-the-art method in 3D-3D IR problems
but is complex to finetune; and (6) MVMO-SH, a novel RCEA that has obtained
groundbreaking results in many prestigious competitions such as those held within
IEEE CEC, especially in costly optimization problems [ERWS14]. They are briefly
introduced in the next six subsections.

III.4.1.1 Differential Evolution

DE [SP97] is a variant of an evolutionary strategy [Bey13]. It begins with a
random initialization of a population of n candidate solutions. Afterward, DE
searches for better solutions by combining the candidate solutions’ parameters using
a crossover operator along a limited number of generations. The crossover opera-
tor combines the parameters of three random candidate solutions from the previous
generation (detailed equations can be reviewed in [SP97]). Lastly, DE also has an
elitism mechanism which maintains the best candidate solution so far into the next
generation. In summary, DE has the following parameters: the population size p,
the differential weight F , and the crossover probability Pc.

III.4.1.2 L-SHADE

L-SHADE is a self-adaptive DE approach proposed by Tanabe et al. in 2014
[TF14] based on a previous adaptive DE optimizer called SHADE [TF13]. Its main
addition was a linear reduction of the population size (which is initially set to pinit)
through the generations. L-SHADE maintains the automatic adjust of the F and Pc
parameters in each generation of SHADE. To this end, it keeps a historical memory
with H entries for both F and Pc. Furthermore, it also conserves its mutation
strategy, to-pbest/1, where the greediness is adjustable using a parameter pb, and
the use of an external archive for maintaining diversity, its size equal to pinit plus
rarc. The goal is to adjust the optimizer behaviour during the first generation to
promote the search space exploration and subsequently to reinforce its exploitation.
To sum up, the parameters to be tuned for L-SHADE are: pinit, H, pb, and rarc.
Their recommended ranges are reported in [TF14].
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III.4.1.3 CMA-ES

CMA-ES [HMK03] has been largely considered as the state of the art in RCEAs
and outperforms DE and its variants in many optimization problems, as stated in
Section II. CMA-ES is based on updating the covariance matrix of the multivariate
normal distribution along the algorithm’s generations to focus the exploration on
the most promising regions. Afterward, CMA-ES performs the following two steps
in each generation: (1) λ candidate solutions are generated according to the multi-
variable normal distribution, the covariance matrix, and the step size σ; and (2)
the distribution centre and the covariance matrix are updated based on the µ best
candidate solutions and σ is updated based on the improvement achieved (detailed
equations can be reviewed in [HMK03]).

CMA-ES only requires to set three parameters µ, λ (number of best solutions
considered to update the distribution center and number of individuals of the pop-
ulation, respectively) and initial step size σ. Their default value in function of the
number of decision variables n according to the authors is: λ = 4+b3 ln(n)c and µ =
λ/2. However, some works have shown that larger λ and a modification of the value
of µ can lead to make CMA-ES more robust and/or exploitative on multimodal
problems [InBC+09].

III.4.1.4 BIPOP-CMA-ES

BIPOP-CMA-ES [Han09a, Han09b] is a restart CMA-ES with two interlaced
restart strategies, that modifies the values of λ and µ in each restart. The first restart
strategy consists of increasing the population size λ by a factor of 2. Meanwhile,
the second restart strategy involves decreasing the population size λ based on the
previous and the default values of λ (detailed equations can be reviewed in [Han09a]).
In both restart strategies, the new value of µ is obtained by halving the new value of
λ. Performing the first or second restart strategy depends on which restart strategy’s
budget value is smaller. Nevertheless, the first and last restarts always utilize the
first strategy. Lastly, the maximum number of restarts that can be performed is
nine. To sum up, BIPOP-CMA-ES requires to set the three same parameters than
CMA-ES (λ, µ, and σ). The only difference is that the values of λ and µ given to
BIPOP-CMA-ES are only their initial values since they are adapted in each restart.

III.4.1.5 CRO-SL

CRO-SL [BCD+18] is based on natural processes occurring in coral reefs. The
coral reef R is represented as a bi-dimensional grid of p positions (population size),
where each position stands for solutions to the current optimization problem. At the
beginning, p0 positions (given as a percentage of the total population) are randomly
initialized with candidate solutions to the problem tackled while the rest are empty,
reserved to allow other corals to grow. For each generation, the following stages
will be applied to the coral reef sequentially (these stages are further detailed in
[BCD+18]): (1) Broadcast spawning: it consists of generating new larvae from a
pair of candidate solutions using a crossover operator; (2) Brooding: new larva are
generated via a mutation mechanism that is applied to a fraction of corals 1 - Fb;
(3) Larvae setting: each larvae will try to set in a random position of the coral reef,
they will only set if it the location is free or the larvae has a better fitness value than
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the solution occupying that position; (4) Depredation: a fraction (Fd) of the corals
with the worst fitness are removed from the population with very small probability
(Pd).

CRO-SL is an extension of the basic algorithm that also simulates the substrate
layers in coral reefs. It divides equally the coral reef R into several substrate’s layers
and the crossover operator of the step 2 will vary depending in which layer the larvae
falls. The choice of the crossover operators (or substrate layers) to be used has a
significant effect in the optimizer’s behaviour. In particular, the crossover opera-
tors considered for IR in [BCD+18] are: Harmony search, DE, Gaussian mutation,
Cauchy Mutation, SBX, and BLX-α. Furthermore, CRO-SL (as stated in Section
II) also has a LS to improve the larvaes with the BOBYQA optimizer [Pow09] using
a maximum of nLS evaluations.

To sum up, the parameters to be tuned for CRO-SL are as follows: reef size
p, number of coral reef positions initialized p0, number of generations g, number
of LS evaluations nLS, deprecation fraction Fd, deprecation probability Pd, asexual
reproduction proportion Fa, mutation fraction Fb, mutation probability, the set of
substrate layers utilized, and the parameters from the crossover operators (e.g. F
for DE, and δ for harmony search).

III.4.1.6 MVMO-SH

MVMO-SH [RE13] begins with a initialization stage where the p particles (candi-
date solutions) of the swarm are randomly generated. The particles are normalized
to the range [0, 1], which is a necessary condition to the latter mutation via mapping
function (a key element in MVMO) and are only des-normalized for their fitness eval-
uation. Afterward, the following steps are performed for each generation (these are
detailed in depth in [RE13]): (1) LS optimization of the particles with a probability
pLS; (2) If a particle founds a better solution in terms of fitness than those in its
solution archive, the new solution is added to the particle’s solution archive (notice
that if the archive has reached its maximum size As the solution archive’s worst
solution is removed); (3) Particles are sorted and divided into two groups according
to their fitness value, the GP best ones are classified as “good particles” and the
rest as “bad particles” (GP is adapted along the process taking values between the
20% and 70% of p). The good particles are modified via a custom single parent
crossover operation based on local best [ERWS14] and bad particles via a custom
multi-parent crossover operation based on a subset of good particles [ERWS14]; (4)
the particles are mutated using a mapping function. This mapping function is based
on the mean and variance of each particle’s solution archive and a scaling factor fs
that modulates the function’s shape. The scaling factor usually begins with a small
value fstart and progressively increases until reaching its maximum value fend to
progressively increase the algorithm’s accuracy.

To sum up, the parameters to be tuned are: number of particles p (the recom-
mended value is 15*number variables. If the number of particles chosen is equal
to 1, MVMO-SH will perform as the standard MVMO), LS probability pLS, archive
size As, scaling factor start (fstart) and end values (fend), initial value of the shape
of all the variables at the beginning of the optimization dr (values around 1-5 are
suitable to guarantee good initial performance. In practice, it is usually set to 1),
and parent selection method (random, neighbor group selection in single step or
block steps, or sequential selection of the first variable and the rest randomly).
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Proposal

50



Chapter IV

Computer-based framework for
comparative radiography

‘Over and over, we begin again.”
— Banana Yoshimoto

This chapter is devoted to present a novel computer-aided automatic frame-
work for CR-based forensic identification. The proposed framework tackled the
CR-based identification based on the comparison of a 2D AM image (i.e. a radio-
graph) and a 3D PM image (i.e. a CT or a surface model) with any non-articulable
skeletal structure. This framework overcomes all the issues of current state-of-the-
art approaches (enumerated in Section I.1 and detailed in Chapter I), while reducing
subjectivity and time. It automatically compares the available AM and PM images
of skeletal structures and supports the expert in the decision making process in an
objective, fast, robust and reproducible manner, shifting from current observational
methods to computer-aided ones.

The automation of a CR-based identification procedure can be divided into three
consecutive stages (see Fig. 25) related with the different tasks performed in manual
approaches (see Chapters I and II):

1. Skeletal structure segmentation. The delimitation of the skeletal struc-
tures silhouette in 2D and 3D images (not required with 3D surface scans).

2. AM-PM Overlap. The goal is to produce a PM radiograph that simulates
the scope and projection of each of the AM radiographs.

3. Decision Making. Based on the superimpositions achieved, the identification
is performed by comparing consistencies and inconsistencies in the bone or
cavity morphology, together with other elements such as the quality of the
AM radiograph, the visibility of bone or cavity, etc. Notice that, the use of
computers aims to support the final identification decision that will always be
made by the forensic anthropologist.

IV.1 Stage 1. Image segmentation

In this framework, the identification process is guided by the silhouette of the
bone or cavity. Thus, it requires its segmentation within the 2D and 3D images. The
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Figure 25: Three stages proposed for automating forensic identification using comparative radiog-
raphy.

goal is to develop a common IS framework for any skeletal structure in any image.
This first stage is required since the intensities are not reliable, because these could
have changed between the AM and the PM images (see Chapter I). Besides, its image
representation is sensitive to the acquisition device, and some old radiographs show
a low quality. Furthermore, intensities are not depicted with 3D surface scans (see
Subsection II.1.3). Therefore, automatic superimposition methods should rely on
other features as the skeletal structure’s silhouette (see Chapter I).

In the segmentation of 3D images, we can distinguish two scenarios depending
on the image modality: CTs and 3D surface images. In CT scans, bones are di-
rectly segmented by thresholding the CT according to the corresponding Hounsfield
units. When dealing with cavities like frontal sinuses, a further hindrance has to be
addressed: by their nature, cavities can be connected among them and even with
the external air. To overcome this problem, the cavity is first isolated by using one
or several planes. These planes are horizontal or vertical and must go through a
bone landmark (i.e. in frontal sinuses, it is a horizontal plane that goes through
a clearly identifiable landmark, called the crista galli). Finally, the internal air of
frontal sinus is selected by thresholding it with the particular Hounsfield units. In
3D surface scans, segmentation is not needed. However, internal cavities such as
sinuses cannot be acquired.

Meanwhile, in the 2D case (radiograph), the segmentation of the skeletal
structure is more difficult, since its silhouette can be occluded by other structures.
Therefore, it is also desirable and informative to segment the region where the skele-
tal structure is occluded or not clearly defined (e.g. due to fuzzy boundaries), called
occlusion region. Furthermore, without the occlusion region, the projection of the
3D PM image under the AM acquisition set-up will be larger than the segmented
regions, biasing subsequent tasks. To sum up, two regions have to segmented in
radiographs (see figure 26): the silhouette of the skeletal structure and the region
of occlusion. This task can be automated using IS techniques (see Section III.1). In
particular, the state-of-the-art methods for segmentation of radiographs are Con-
vNets (see Subsection III.2.2).

In our IS framework, a different CNN is trained for the segmentation of each
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Figure 26: (Left) Skull radiography. (Right) Skull radiography segmented, with the frontal sinuses
silhouette in black and the occlusion region in white.

skeletal structure, see Fig. 27. Each CNN can be trained from scratch or from
the weights of another network trained to segment another skeletal structure (fine-
tuning and transfer learning). Since these are data-driven learning methods, it is
necessary a dataset of radiographs, together with the correspondent ground truth
(GT) of the target skeletal structure to carry out the learning process. However,
most public radiograph segmentation datasets are composed of just a few hundred
of radiographs. Thus, the training process cannot only rely on the amount of data
but also requires more sophisticated techniques, as ConvNets trainable using small
data-sets, data augmentation or few-shot learning. Furthermore, one important goal
in radiograph IS is to design a network able to work without any down-sampling or
at least to reduce it to the minimum possible. The objective is to avoid upsampling
the results since it causes a loss of detail in the final segmentation, which could be
crucial for identification purposes.

Figure 27: A general scheme of IS framework for automating the stage 1.
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IV.2 Stage 2. AM-PM overlay

The goal is to reproduce the acquisition parameters of the AM radiographs and,
in consequence, to obtain the best 2D projection of the 3D PM image with respect to
the 2D AM image. This superimposition process can be automated using a 3D-2D IR
approach [MTLP12, OT14] based on an optimization process, that searches for the
best match between the silhouette of a skeletal structure in an AM radiograph and a
2D projection of the 3D PM skeletal structure (either obtained via the segmentation
of a PM CT or digitized with a 3D scanner), see Fig. 28. The optimizer cannot
assume any parameter value related to perspective or initial pose, since the AM
radiographs were acquired in an unknown conditions, where pose and radiograph
device are unknown. These requirements make classic 3D-2D IR techniques not
suitable for CR (see Section VI.1). Thus, more sophisticated techniques should
be considered in order to solve it satisfactorily, such as advanced numerical search
methods [Mod04] and evolutionary algorithms [DCS11].

Figure 28: A general scheme of IR framework for automating the stage 2.

IV.3 Stage 3. Decision making

The final goal of the framework is to help forensic practitioners to take decisions
based on one or several superimpositions of one or multiple skeletal structures (see
Fig. 29). The system will integrate these partial assessments with other aspects
affecting the final identification decision as:

• The quality of the bones (preservation) and images (resolution, artefacts, etc.)
examined.

• The special characteristics of the bone under study, the uncertainties related
to the whole process (e.g. segmentation errors).
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• The aggregation of multiple evidences from the same bone (comparison with
more than one AM image, assessment of more than one anatomical criterion).

All the previous issues are considered in the decision process followed by foren-
sic experts. Modelling this human reasoning task involves two different problems:
knowledge representation under uncertainty and combination of multiple evidences.

Figure 29: Three stages proposal for automating comparative radiography with one or several
superimpositions of one or multiple skeletal structures.

This decision-making stage can be automated using a hierarchical decision sup-
port system [CAICW18]. The proposed hierarchical information fusion system com-
prises the following levels of abstraction (although some of them can be skipped
depending on the available data), where the information is fused using aggregation
functions [BPC+07] (see Fig. 30):

• Level 4 (Criteria): This level analyses a superimposition under a certain
criterion using multiple metrics.

• Level 3 (Superimposition): It aggregates all the criteria with which a
superimposition can be analyzed (performed at level 4), such as morphological
differences between AM and PM information. This level also aggregates all
the information related to a superimposition, such as the quality of images
employed and the visibility of the skeletal structure.

• Level 2 (Skeletal structure): It aggregates all the information of all the
superimpositions of a skeletal structure (performed at level 3) as well as the
quality of the skeletal structures involved in the superimposition (e.g. state of
conservation), the discriminatory potential of each skeletal structure, and the
presence of special/non-frequent characteristics.

• Level 1 (Subject): It aggregates all the information available of the same
subject, considering multiple skeletal structures and multiple superimpositions
of each of them.
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Figure 30: Overview of the 4-level hierarchical decision support system in the 3D-2D scenario. The
input of the system is one or more superimpositions of one or more skeletal structures, and the
output is the degree of confidence that the AM and PM data belong or do not belong to the same
subject.

IV.4 Comparative radiography framework devel-

opments addressed in this PhD dissertation

The contributions of this PhD dissertation to the development of this framework,
apart from its design, is the development of all processes involved in achiev-
ing the best superimposition of the AM and PM images. Particularly, we
develop and validate an IS framework for segmenting skeletal structures in
radiographs (stage 1), see Chapter V, as well as an IR framework for generat-
ing PM radiographs simulating the acquisition set-up of the AM-ones, see
Chapters VI and VII. Providing an automatic solution for these two stages is crucial
for a wider acceptance of the CR techniques by the scientific community [ARG+10],
since generating PM radiographs is the main drawback of manual approaches and
the reason why some experts recommend to only use CR-based identification tech-
nique as a last resort. Furthermore, a simplified decision support system (based
only on one skeletal structure, one superimposition, one criterion, and one metric)
is also developed with the purpose of validating the previous developments.



Chapter V

Deep learning for semantic
segmentation of skeletal structures

‘Words can be like X-rays if you use them
properly – they’ll go through anything. You
read and you’re pierced” — Aldous Huxley

V.1 Introduction

In this chapter, we tackle the automatic segmentation of two anatomical struc-
tures using convolutional neural networks (ConvNets): i) the clavicle in chest ra-
diographs, including the segmentation of hearts and lungs at the same time as will
be explained later; ii) and the frontal sinuses in skull radiographs. To this end,
we have proposed a new ConvNet architecture, called X-Net. X-Net incorpo-
rates structural changes in the state-of-the-art ConvNet architecture for segmenting
radiographs, INET [NLM+18], as well as integrates several techniques barely used
by radiograph segmentation algorithms, such as instance normalization [UVL16]
and atrous convolution (a.k.a. dilated convolution) [CPK+16]. These modifications
allow us to improve the segmentation accuracy of the state of the art. Further struc-
tural modifications (resulting in an extension termed X-Net+) also allow us to work
with images up to 1024 × 1024 in only one GPU (an example of a segmentation
obtained by X-Net+, our best network, is shown in Fig. 31). We have also proposed
a simplification of X-Net and X-Net+, called RX-Net (Reduced X-Net) and RX-
Net+, respectively, that reduces even more both memory usage and training time,
while keeping similar results. Lastly, we have investigated single-class (a ConvNet
is trained to segment each organ separately) and multi-class (a ConvNet is trained
to segment all organs simultaneously) segmentation approaches to elucidate which
one is more suitable for the task at hand.

This chapter is structured as follows. Section V.2 reviews the current state of
the art in radiograph segmentation. Section V.3 describes our proposals. Section
V.4 presents experiments and results.
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Figure 31: Example of segmentation obtained by X-Net+. The overlap between the ground truth
and the segmentation obtained is displayed in green, blue, and red for clavicle, lungs and heart,
respectively. The over-segmented area is displayed in orange, and the under-segmented one in
yellow.

V.2 Related works

The automatic segmentation of X-ray images has been extensively studied since
the ’70s, at least regarding the segmentation of lungs, rib cage, heart, and clavi-
cles [TSNF73, WS77]. Nevertheless, just a few works [FFM07, FFM08, TKWK08]
have been published, in the late 2000s, for the segmentation of frontal sinuses in
radiographs. Conventional methods rely on prior knowledge [ZPW+09] to delineate
anatomical objects from X-ray images. Modern approaches utilize deep convolu-
tional networks and have shown superior performance [RFB15]. More than 150
research works dealing with this problem were already published during the twenti-
eth century [VGRV01], raising the number to 331 at present, according to Scopus1.
Most works have focused on the segmentation of a single organ, mainly the lungs
[MHS17, SGG+14, YLL+18] for their medical importance2; followed by the heart
[BKP14], where most works plainly extrapolate the approaches used for lungs; and
lastly the clavicles [HSdJ+12], the organ whose segmentation entails greater diffi-
culty (reflected in a lower quality of the final segmentation [NLM+18]). Despite
the great advances made in the automatic segmentation of these organs, limitations
still persist, such as the need to use down-sampled radiographs or the irregular-
ity and imprecision of the edges resulting from segmentation, which reduce their
applicability in clinical settings.

V.2.1 Automatic segmentation of clavicles in chest radio-
graphs

The Japanese Society of Radiological Technology (JSRT) [SKI+00], in cooper-
ation with the Japanese Radiological Society (JRS), created the standard digital
image database with and without chest lung nodules (JSRT dataset) in 1998. Since
then, the JSRT dataset has been used by a significant number of researchers in the

1Search performed the 8th September 2018 using the keywords ( TITLE-ABS-KEY ( chest AND
X-ray AND segmentation ) OR TITLE-ABS-KEY ( chest AND radiograph AND segmentation )
AND NOT TITLE-ABS-KEY ( computed AND tomography ) )

2According to the International Agency for Research on Cancer, lung cancer was the most
common cause of cancer death in 2015 with 1.69 million deaths.
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world for various research purposes such as image processing, image compression,
and computer-aided diagnosis. In particular, the JSRT dataset represents the most
popular dataset for chest radiograph segmentation, including high resolution images
(2048×2048 size, 0.175mm pixel size) and high resolution segmentation masks (pro-
vided by [VGSL06]) of clavicles, as well as hearts and lungs. Those segmentation
masks have a resolution of 1024×1024 (i.e. ground truth resolution). However,
methods tested on JSRT are commonly evaluated using images of smaller resolution
(256×256).

The state of the art in lungs segmentation with the JSRT dataset [CYRC18] is
based on a hybrid approach with four stages devoted to: 1) preprocessing the X-ray
images by augmenting the contrast between the lungs and their surrounding area; 2)
extracting the foreground (which incorporates the upper torso region) by using an
intelligent block-based binarization; 3) excluding lung regions from the foreground
through a series of spatial-based processing operations; and 4) employing an adaptive
graph cut technique to locally refine the preliminary lung boundaries.

On the other hand, the state of the art in hearts [BFK18] and clavicles [NLM+18]
segmentation is based on deep learning approaches. In particular, chest radiograph
segmentation methods based on ConvNets have outperformed prior state-of-the-art
methods based on classical techniques. Firstly, an encoder-decoder network called
U-Net [RFB15] was studied for multi-class segmentation of lungs, heart and clavicles
achieving comparable, or higher, accuracy on most of the structures when compared
with the state-of-the-art segmentation methods [Wan17]. They also studied the
differences between multi-class and single-class training approaches, showing that
for U-Net a multi-class approach helps the deep neural network to converge faster
and deliver better segmentation results on the clavicles than the single-class. How-
ever, network outputs present holes inside the targeted structures as well as artifacts
(i.e. small isolated segmented areas), which were solved with a post-processing step
based on a level-set method. Afterwards, another work proposed a small modifi-
cation of U-Net, called LF-SegNet [MHS18]. LF-SegNet modified the up-sampling
strategy, incorporated normalization techniques such as batch normalization [IS15],
and employed data augmentation, slightly improving the performance on lungs seg-
mentation in both the JSRT dataset and the Montgomery dataset [JCA+14] (that
includes 138 chest radiographs and ground truth only for the lungs). Very recently,
several articles tackled the segmentation of chest radiographs employing fully Con-
vNets [HMS18, Wan17]. Besides, a generative adversarial network approach called
dual-path adversarial learning (DAL) based on a hybridization of a fully convo-
lutional network and U-Net [BFK18] was proposed for different kinds of medical
IS problems. DAL was tested for the segmentation of lungs and hearts, trained
with images of 512 × 512 and evaluated on images on the ground truth resolution
1024× 1024 resulting in the state of the art for heart segmentation.

A work closely related to ours was published by Novikov et al. [NLM+18] in
2018, where a modification of U-Net, called InvertedNet (INET), segmented the
three organs and achieved state-of-the-art results for clavicle segmentation. INET
outperformed prior state-of-the-art methods by reducing the number of filters per
convolutional layer, therefore decreasing the possibility of over-fitting. Furthermore,
motivated by the Gaussian noise inherited from the X-ray images acquisition process,
INET added Gaussian dropout layers [SHK+14] (see Subsection III.2.3 for further
details about Gaussian dropout) and utilized a weighted loss function based on
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the Dice Similarity Coefficient (DICE) [Sør48]. This new form of dropout amounts
to adding a Gaussian distributed random variable with zero mean and standard
deviation equal to the activation of the unit. INET only considers the multi-class
approach and does not compare with training the network for only one class. Finally,
it can only be used with down-sampled images (with a resolution of 256×256 pixels)
and the main option pointed by the authors to operate with higher resolution images
was the use of a multi-GPU scenario, unlike in this work where we opted for the
modification of the network architecture.

V.2.2 Automatic segmentation of frontal sinuses in skull ra-
diographs

There are no public repositories of X-ray images including the ground truth
segmentation of frontal sinuses. As a consequence, little research [FFM07, FFM08,
TKWK08] has been performed for automating the segmentation of frontal sinuses
in radiographs. The first two works [FFM07, FFM08] are semi-automatic methods
requiring the selection of several initial seed pixels within the frontal sinuses by the
forensic expert. From these seed pixels, the whole sinuses are segmented using a
graph-based method called differential image foresting transform (DIFT) [FB04].
The DIFT method calculates the minimum path forests in the graph derived from
the image, restricting the search to paths originated from the seeds. The method
was tested in a dataset composed of 90 skull radiographs, but the results were
reported in terms of the identification capability of the segmented frontal sinuses,
i.e. equal error rate, instead of in terms of the segmentation accuracy. Meanwhile,
the latter work [TKWK08] is based on an ad-hoc rule-based segmentation method.
This method is composed of three consecutive stages: detection of the region of
interest, detection of the bottom border of the frontal sinus, and detection of the
top border of the frontal sinus. This method automates these stages using prior
knowledge of the frontal sinuses anatomy, connectivity-preserving thresholding, and
on watersheds. The method was tested in a dataset composed of 50 skull radiographs
but the results were only qualitatively analyzed.

V.2.3 Room for improvement

To the best of our knowledge, there are no other works in the literature that
apply the atrous convolution [CPK+16] to the segmentation of radiographs, while it
is one of the key elements of the state-of-the-art network for IS in general [CPSA17].
Atrous convolution is a convolutional operation that introduces a spacing between
the values in a kernel (the number of spaces between values is called dilated rate).
This allows us to adjust filter’s field-of-view and capture multi-scale context infor-
mation without reducing the spatial dimensions of the features maps (i.e. a 3 × 3
kernel with a dilation rate of 2 will have the same field-of-view as a 5×5 kernel, while
only using 9 parameters). However, this is computationally expensive and takes a
lot of memory, as a consequence its use is normally preceded by a few pooling layers
to make the feature maps computationally approachable as in DeepLab [CPSA17].
Besides, we are not aware of other works studying the compression/simplification
of deep networks, devoted to medical image segmentation, for their deployment
in single-GPU devices or to allow them to work with larger images. Many re-
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searchers have pointed out that ConvNets suffer from heavy over-parameterization
and can be efficiently reconstructed with only a small subset of its original parame-
ters [DSD+13]. Therefore, several works have been published studying the simplifi-
cation/compression of ConvNets reducing the required resources without significant
loss in the original accuracy [HLM+16, KPY+15]. Furthermore, we also perform
a comparison between multi-class and single-class approaches using a k-fold cross-
validation protocol, which is a much more rigorous evaluation strategy than the
one commonly employed in the deep learning literature (where generally a simple
hold-out is used).

V.3 Proposals

V.3.1 Architectures

The deep architectures proposed in this chapter are inspired by INET [NLM+18]
(described in Section V.2 and depicted in Fig. 32) which, in turn, is a modification
of U-Net. INET is devoted to the segmentation of lungs, hearts and clavicles in
chest radiographs, and represents the state of the art in clavicle segmentation.
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Figure 32: Schematic view comparing two preceding deep networks (a and b), and two of the deep
networks proposed in this chapter (c and d). All architectures employ Gaussian dropout, except
U-Net that uses conventional dropout. ’in’ stands for ’instance normalization’.

Even if INET currently offers the best performance in chest radiographs multi-
class segmentation, it does not include some very relevant advances made in the IS



62 CHAPTER V. DL FOR IS OF SKELETAL STRUCTURES

research field (atrous convolution) and deep learning in general (instance normal-
ization). Consequently, the first methodological contribution of this chapter is the
introduction of a new architecture, called X-Net, that aims to increase the accuracy
of INET through the inclusion of these advances in order to develop the automatic
segmentation of some skeletal structures useful to perform CR-based identification.
X-Net takes its name both from being designed to segment X-ray images and from
the shape of the network (where, as usual, there is an encoding stage, which provides
a reduced dimensionality representation of the input, and a decoding stage, that al-
lows to recover an output of equal size to the input). First, X-Net takes advantage
of instance normalization [UVL16] at the end of each convolutional layer to add
a normalization factor, accelerate the training, improve generalization, and reduce
the dependency on the weights initialization. Second, X-Net changes the two cen-
tral convolutional layers of INET by five atrous convolutional layers with increasing
dilated rates of 1, 2, 4, 8 and 16 (see Fig. 32). These specific dilated rates are the
most commonly employed in recent literature [LHL+18, LCC+18, GLL+18]. Atrous
convolutions are convolutions with upsampled filters that allow us to enlarge the
field-of-view and, therefore, to take into account more contextual information. The
combined use of atrous convolution and instance normalization leads to a greater
gain in performance than when they are employed separately (detailed in Section
V.4.4).

The second proposal introduced in this chapter, termed Reduced X-Net (RX-
Net), consists of a simplification of X-Net with the aim of obtaining similar accuracy
but with a significantly lower memory usage and training time. Importantly, the
main source of memory usage is not the trainable parameters, but instead the feature
maps. Reducing the number of features maps of resolution N × N will result in a
large memory reduction. RX-Net represents one alternative that makes possible
experimenting with images of higher resolution than the one generally used, as
we will discuss in the next paragraph. Therefore, the simplification involves the
elimination of the first and last convolutional blocks of X-Net (notice that the first
and last layers have the largest activation maps), and the reduction to half the
number of convolutional filters of each convolutional layer (see Fig. 32), since these
changes lead to the larger reduction in the ConvNet memory usage with the smaller
drop in accuracy.

One important goal in chest radiographs image segmentation is to design a net-
work able to work without any down-sampling or at least to reduce it to the minimum
possible. The objective is to avoid upsampling the results (or diminish its impact)
since upsampling causes a loss of detail in the final segmentation. In this sense, our
next proposals are able to manage images of up to 1024 × 1024 in a single GPU
(see subsection V.4.3 for the technical details) without any down-sampling. Thus,
these proposals are able to work with the ground truth resolution [VGSL06] of JSRT
[SKI+00]. INET and X-Net would require too much memory or a multi-GPU sce-
nario, being only able to work with images up to 256×256 (that is the resolution in
which INET results, and most of the results in literature, are reported [NLM+18]).
Our RX-Net can handle images up to 1024× 1024, four times the usual resolution,
but changing the input resolution results in a change in the relation between filter’s
field-of-view and feature maps, which would lead to a different behaviour than the
one showed by RX-Net with images of 256 × 256. To avoid this drawback, a new
architecture called RX-Net+ is proposed. This network is an incremental step from
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RX-Net maintaining all their layers (except the last convolutional block) with the
same resolution (i.e. the value N/4 of RX-Net+ is equal to 256).

It allows us to employ the weights resulting from training RX-Net with 256×256
in RX-Net+ for images of 1024×1024, which significantly reduces the total training
time. Additionally, RX-Net+ adds two pooling layers at the beginning (they could
be replaced by convolutional layers but, if the number of feature maps introduced as
input to the pre-trained RX-Net block is different to one, it would make impossible
to re-use the weights from RX-Net in RX-Net+) and two final convolutional blocks
connected to the inputs of the first two pooling layers. Furthermore, performing
the pooling within the ConvNet allows to pass high-resolution information to the
final layers of the ConvNet (see Fig. 32). Notice that comparing RX-Net and RX-
Net+ for images of 1024×1024 will allow us to study the importance of the relation
between the filter’s field-of-view and the feature maps. This approach could also
be applied to X-Net giving rise to X-Net+. X-Net+ combines all the advantages
of X-Net as well as allows to work with images of 1024 × 1024 in just one GPU.
Training time and accuracy for both X-Net+ and RX-Net+ are improved thanks to
training X-Net and RX-Net, respectively, then re-using the central block of common
weights, and finally employing a simple fine-tuning. We will refer to our proposed
deep networks as X-Net architectures, since they all are based on X-Net.
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Figure 33: Schematic view of two of the deep networks proposed. These networks are extension
of X-Net and RX-Net, respectively, allowing us to handle ground truth resolution images (i.e.
1024× 1024) in just one GPU. The legend of this figure can be seen in Fig. 32.
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V.3.2 Training strategies

Two strategies are compared to train all networks: a single-class approach (to
train a network to segment only one organ, i.e. three different networks are required
to segment the three organs) and a multi-class approach (to train a network to jointly
segment the three organs). The loss function in the single-class approach is directly
the usual DICE [Sør48] (see Section V.4.2) and for the multi-class segmentation
we employ a balanced version of this measure, defined as the product of the DICE
values obtained for each single organ, i.e. DICE =

∏n
i=1DICEi, where n is the

number of classes to segment, and DICEi is the DICE value for the segmentation
of class i (corresponding to each organ to segment). This loss function allows us
to deal with the imbalanced nature of the chest radiographs segmentation problem
(for instance, in the JSRT dataset ground truth [VGSL06], the 73.53%, 21.85%, and
4.62% of image pixels on average belong to lungs, hearts and clavicles, respectively)
looking for solutions that properly segment the three classes. This loss function is
stricter than others employed in the state of the art (for instance, the weighted mean
in [NLM+18]) because we intend to encourage solutions that segment properly the
three organs. INET has been trained using the weighted mean as loss function as
in the original work [NLM+18].

V.3.3 Post-processing

The predictions provided for each pixel by the neural architectures range from
0 to 1. To turn this soft classification into a binary mask, it is necessary to thresh-
old the output at a given value. In this work, we use the same threshold value
(0.25) as in [NLM+18] where this value was fixed empirically based on a preliminary
experimentation. This output does not ensure the presence of a single connected
object for the heart and two for clavicles and lungs. Therefore, a last and very
simple post-processing step is considered: the largest connected object is selected
for the hearts, and the two largest ones for the clavicles and lungs (notice that this
post-processing step is a simplified version of the one proposed by [VGSL06] since it
does not fill the holes within the object). The algorithm employed for this task was
the Block-Based Decision Table algorithm [GBC10] with 8-way connectivity. This
very simple post-processing step has a minor but positive impact, as can be seen in
Table 8, and it does not differ from other simple post-processing strategies employed
[VGSL06, SVZ13, LST+16, QSMG17].

V.4 Experiments

The empirical evaluation of this work includes three experiments, the first two
for segmenting chest radiographs and the last one for segmenting skull radiographs:

• The first experiment is devoted to the study of performance, precision, ro-
bustness, and the trade-off between accuracy and memory/time consumption
of the X-Net architectures and INET with both single-class and multi-class
training approaches for segmenting clavicles, as well as hearts and lungs. This
study is performed using a 3-fold cross validation protocol as in [NLM+18].
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• The goal of the second experiment is the comparison of the X-Net architec-
tures performance (except the worst performing architectures from the latter
experiment, that are excluded from the comparison) with the state-of-the-
art results using a 10-fold cross validation to avoid any bias caused by the
stochastic components of training a ConvNet for segmenting clavicles, hearts
and lungs.

• Lastly, the third experiment is devoted to study the accuracy, robustness and
memory/time consumption of the X-Net architectures for segmenting frontal
sinuses and occlusion regions in skull radiographs. This experiment is per-
formed using a 3-fold cross validation protocol, and again single-class and
multi-class training strategies are compared.

It is important to highlight the computational cost of performing the experimen-
tation following a rigorous experimental design in deep learning (cross validation).
Overall, around 1608 hours (67 days) were required to perform Experiment I, around
1840 hours (77 days) were necessary to run Experiment II, and around 960 hours
(40 days) were necessary to run Experiment III. Detailed information about training
times are included in Sections V.4.5, V.4.6, and V.4.7.

V.4.1 Data

The dataset employed in the experiments I and II is the JSRT dataset [SKI+00].
It is the most widely used dataset in chest radiographs segmentation. This dataset
is composed of 247 chest radiographs of 2048 × 2048 pixels with a grayscale depth
of 12 bits. These images contain manual/ground-truth segmentations of the lungs,
clavicles, and heart[VGSL06] with a resolution of 1024× 1024 pixels, where ∼73%,
∼5%, and ∼22% of pixels belong to lungs, clavicles, and hearts, respectively.

Meanwhile, the dataset employed in experiment III is comprised by 234 skull
radiographs of 512×512 pixels with a grayscale depth of 12 bits, provided by the
Hospital de Castilla-La Mancha, Spain. The frontal sinuses and the occlusion re-
gion were manually segmented by two trained forensic anthropology MSc students
(Andrea Cerezo Vallecillo and José Manuel Pérez Jiménez) from the Physical An-
thropology lab (PAL) of the University of Granada.

V.4.2 Performance metrics

Three metrics are employed to quantitatively evaluate the quality of the seg-
mentation results obtained: HD [BTE98], JI [Jac12], and DICE [Sør48]. The HD
represents a measure of the spatial distance between two sets of points: it is the
largest of all distances from any point in the resulting segmentation to the closest
point in the ground truth and a value of 0 indicates perfect agreement. Meanwhile,
the DICE and the JI measure set agreement: a value of 0 indicates no overlap with
the ground truth while a value of 1 indicates perfect agreement. Notice that, DICE
and JI are equivalent metrics, and one can be derived from the other. Thus, for the
comparison between X-Net architectures only the HD and JI will be reported. How-
ever, in order to facilitate the comparison with competitor methods (Experiment
II), the DICE is also included in the tables.
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Our final goal is to be able to segment radiographs in the original resolution of
their ground truth segmentation (i.e. 1024×1024), and not in a down-sampled reso-
lution, because up-sampling to the ground truth resolution will worsen the accuracy
of the final segmentation. As a consequence, all results are reported in the ground
truth resolution, either if they correspond to the ConvNet output (e.g. X-Net+ and
RX-Net+) or to the up-sampled version of it (e.g. INET, X-Net and RX-Net).

V.4.3 Experimental set-up

The first experiment involves the application of 6 deep network configu-
rations (INET and X-Net can only run using the 256×256 resolution, RX-Net with
256×256 and 1024×1024 resolutions, and lastly X-Net+ and RX-Net only with the
1024×1024 resolution), and two training strategies (single-class and multi-class
approaches). INET, X-Net and RX-Net are trained from scratch for 4000 epochs
(since that was the number of epochs required by INET to converge according to
[NLM+18]). X-Net+ and RX-Net+ are trained for 100 epochs using as initialization
the weights of X-Net and RX-Net in the shared layers, respectively. These are tested
using a 3-fold cross validation approach (as in INET [NLM+18]), where one fold
is devoted to testing (33% of all available data), and each one of the remaining two
folds is divided into training and validation (90% and 10%, respectively). Further-
more, the results are evaluated with and without post-processing to measure the
contribution of this refinement step. To sum up, 12 deep networks are evaluated
(see Table 3), rising up to 24 architectures if we include results with and without
post-processing (see Table 4). The notation employed to refer to each model uses the
following labeling protocol: <Network Name> <Single(s) or Multi(m) organ prob-
lem> <Input/Output resolution>. As an example, the architecture INET m 256
corresponds to INET trained to solve the multi-class problem on 256× 256 images.

The second experiment involves the comparison of INET and the best pro-
posals from the latter experiment in terms of accuracy (X-Net+ for single-class and
multi-class) and accuracy-memory/time balance (RX-Net+) with a 10-fold cross
validation, where on each fold 80% of data are used for training, 10% for validation,
and 10% for test. This allows us to study more rigorously the proposals reducing
possible bias, as remarked in [LMAPH18], caused by the stochastic effect inherent
to the training process or the effect that different training and test sets have on
the final performance. The results obtained by X-Net architectures are compared
among them and with the state-of-the-art methods (see Tables 6, 7, and 8).

Both experiments (Sections V.4.5 and V.4.6) include the results provided by our
implementation of INET. This allows us to replicate the exact same experimental
conditions in all methods and, therefore, to perform a fair comparison. The only
exception is Table 8, dedicated to the comparison with the state of the art, where we
show the original results reported on each paper. The difference between the results
provided by our implementation of INET and the results reported in [NLM+18] is
minor, as can be seen by comparing the results in the original paper with Tables 3
and 6, and can be due to several reasons: from differences in the partitions employed
in the 3-fold and 10-fold, respectively; differences in the batch size employed (as
theirs is not reported in the chapter); or just the inherent stochastic behavior of
training a network from scratch.

The third experiment involves the application of the two best network con-
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figurations, X-Net+ and RX-Net+, for frontal sinuses segmentation using the
original resolution, 512 × 512. These ConvNets are trained using two strategies,
single-class and multi-class approaches, and the same protocol employed in the pre-
vious experiments. They are tested using a 3-fold cross validation approach, where
one fold is devoted to testing (33% of all available data), and each one of the remain-
ing two folds is divided into training and validation (90% and 10%, respectively).
Furthermore, the results are evaluated with and without post-processing to measure
the contribution of this refinement step. To sum up, eight networks are evaluated
(see Tables 9 and 10), rising up to sixteen architectures if we include results with
and without post-processing.

No data augmentation is performed in Experiments I and II. Meanwhile, data
augmentation operations (flip, rotation and zoom) are employed in Experiments III,
due to the smaller size of the dataset. Particularly, for each training image, five
new images are generated using random rotations, between -15◦and 15◦. For each
of the resulting images and the original one, five new images are generated using
zoom or unzoom with zero padding, between 85% and 115%. Finally, all images are
flipped. As a result, the size of the training dataset is multiplied by 50. The images
are zero centered, as in [NLM+18], using the mean and standard deviation of the
training set. The batch size was set to 1. The optimizer is Adam (with a learning
rate of 1e-5, beta1 of 0.9, and beta2 of 0.999). The outputs of lower resolution than
the ground truth (i.e. 1024× 1024) are scaled using a bicubic interpolation, since it
showed better results than the other alternatives tested, although the gap between
the best and worst interpolation was lower than 0.001 according to the JI.

All experiments have been performed on an Nvidia Titan X with 12 GBs of
memory using Keras 2.1.6 with TensorFlow 1.4.1 as backend.

V.4.4 Preliminary Experiment: Evaluating the influence of
architectural changes on INET and post-processing
for segmenting chest radiographs

The purpose of the first preliminary experiment is to measure the influence of the
different architectural changes introduced on INET to obtain X-Net. The results of
this ablation study are shown in Table 1. The best results are obtained by instance
normalization together with atrous convolution, being both sources of improvement.
However, we can claim that instance normalization has a greater contribution to
this improvement. Instance normalization introduces some noise into the network,
helping to improve its generalization ability. We hypothesize that, since we have
at our disposal a small dataset, this noise inducing process contributes to enforce
regularization and, therefore, to improve the results obtained.

A second preliminary experiment was performed to measure the impact of the
post-processing step (see Section V.3.3). The post-processing step (see Table 2) has
shown to improve the results according to both JI and HD, providing statistically
significant differences according to Wilcoxon’s rank sum test [Geh65] (9.8 · 10−90 for
JI; and 0 for HD). On average, the JI improves from 0.895 to 0.899, and the HD from
86.699 to 35.069. This simple post-processing step is important for metrics that focus
on the quality of the final contours (like HD), since removing the artifacts allows
for a better comparison of the error in the boundaries of the segmented organs.
We want to highlight that, even if the post-processing has a positive impact on the
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Table 1: Summary of the preliminary experiments according to the average JI and HD of the three
organs to study the influence of architectural changes on INET without post-processing. ’in’ and
’ac’ stand for ’instance normalization’ and ’atrous convolution’, respectively.

Network
JI

mean sd min max
INET 0.885 0.012 0.685 0.944
INET + ac 0.892 0.013 0.721 0.953
INET + in 0.910 0.007 0.832 0.963
X-Net (INET + in + ac) 0.925 0.007 0.797 0.967

Network
HD

mean sd min max
INET 132.37 72.38 100.33 255.27
INET + ac 128.27 68.10 99.03 239.50
INET + in 124.65 84.30 97.54 226.27
X-Net (INET + in + ac) 121.68 62.32 98.27 188.73

final result, almost all X-Net architectures without post-processing yield a better
performance than our implementation of INET with post-processing.

Table 2: Summary of the preliminary experiments according to the average JI and HD of the three
organs to study the influence of the post-processing.

Network
Without post-processing With post-processing
JI mean HD mean JI mean HD mean

INET 0.876 132.522 0.883 43.143
X-Net 0.905 91.653 0.908 31.006
RX-Net 0.899 60.599 0.899 34.400

V.4.5 Experiment I: Comparison of X-Net architectures and
INET with single-class and multi-class strategies for
segmenting chest radiographs

The results obtained for the single-class and multi-class strategies are shown in
Table 3, employing JI and HD as evaluation metrics. The first conclusion worth
mentioning is that single-class training strategies generally outperform multi-class
strategies for chest radiographs segmentation. There are statistically significant
differences in favor of the former with p-values, according to the Wilcoxon’s rank
sum test [Geh65] of 0.02 for the JI, and 6.5 · 10−20 for HD. In particular, single-
class approaches obtain the best segmentation results for clavicles and lungs, while
the best results on hearts are obtained by a multi-class approach. Thus, despite
multi-task learning has shown useful in other problems [ZLLT14, WVBWK15], its
use must be studied for each particular problem. Finally, the comparison of the
results of RX-Net and RX-Net+ for images of 1024×1024, i.e. RX-Net m 1024 and
RX-Net+ m 1024, provides support about the fact that the relation between the
filter’s field-of-view and the feature maps affects significantly to the performance.
Since this simple post-processing has shown to be beneficial, all results of X-Net
architectures and our implementation of INET include it (see Tables 3, 4, 6, and 7).

We rank the performance of the X-Net architectures, as well as our implemen-
tation of INET, in Table 4 according to JI and HD. Methods with a difference in
performance smaller than 0.0025 and 5 for JI and HD, respectively, are considered
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Table 3: Summary of results evaluated using JI and HD per architecture and organ. All X-Net
and INET variants are included.

Network Organ\Metric
JI HD

mean std median min max mean std median min max

INET m 256
Clavicles 0.833 0.015 0.843 0.639 0.905 22.390 10.721 20.180 6.031 72.764

Heart 0.869 0.024 0.894 0.511 0.955 50.245 32.378 40.464 13.867 195.971
Lungs 0.951 0.006 0.957 0.842 0.972 56.795 40.207 42.804 13.176 229.373

INET s 256
Clavicles 0.862 0.017 0.876 0.635 0.931 20.375 12.672 17.825 5.846 88.730

Heart 0.866 0.032 0.896 0.350 0.961 51.971 33.839 40.764 13.403 185.146
Lungs 0.949 0.007 0.957 0.821 0.974 49.071 37.883 35.783 11.362 207.247

X-Net m 256
Clavicles 0.876 0.013 0.887 0.701 0.934 18.518 9.538 16.383 5.025 64.325

Heart 0.890 0.014 0.905 0.751 0.963 38.317 18.297 34.434 11.369 93.118
Lungs 0.961 0.004 0.965 0.903 0.976 36.183 25.384 27.083 10.599 140.922

X-Net s 256
Clavicles 0.855 0.013 0.867 0.682 0.919 19.151 11.812 16.434 6.640 89.206

Heart 0.889 0.017 0.905 0.654 0.969 37.501 18.953 34.505 10.295 100.593
Lungs 0.959 0.004 0.961 0.892 0.976 36.909 29.552 25.281 10.343 176.254

X-Net+ m 1024
Clavicles 0.883 0.015 0.894 0.686 0.949 18.468 10.761 15.818 4.824 67.755

Heart 0.892 0.014 0.903 0.735 0.965 37.732 19.318 33.318 10.889 118.317
Lungs 0.963 0.004 0.967 0.908 0.980 38.352 27.830 27.611 10.181 144.794

X-Net+ s 1024
Clavicles 0.885 0.016 0.896 0.630 0.953 18.022 11.241 15.941 4.824 87.660

Heart 0.890 0.016 0.907 0.706 0.970 37.207 20.542 32.514 8.872 107.929
Lungs 0.963 0.004 0.967 0.896 0.980 36.100 29.485 26.605 7.912 184.837

RX-Net m 256
Clavicles 0.860 0.017 0.874 0.661 0.929 20.047 10.479 17.202 7.066 70.187

Heart 0.889 0.015 0.905 0.738 0.961 38.007 18.074 34.350 13.150 99.823
Lungs 0.955 0.005 0.961 0.889 0.976 45.146 30.254 36.291 11.338 167.700

RX-Net s 256
Clavicles 0.869 0.017 0.881 0.606 0.934 18.049 10.101 16.058 4.667 70.237

Heart 0.883 0.016 0.898 0.704 0.963 40.068 19.971 36.872 11.312 105.527
Lungs 0.959 0.004 0.963 0.899 0.976 38.694 29.625 27.335 11.105 168.505

RX-Net m 1024
Clavicles 0.855 0.023 0.880 0.548 0.942 22.872 11.765 19.616 6.535 66.767

Heart 0.874 0.020 0.894 0.657 0.967 46.055 26.915 39.795 13.631 155.417
Lungs 0.951 0.007 0.959 0.823 0.976 51.204 35.061 41.329 14.524 190.915

RX-Net s 1024
Clavicles 0.866 0.019 0.880 0.642 0.949 21.762 13.535 18.989 5.878 95.639

Heart 0.855 0.032 0.880 0.367 0.961 49.850 31.894 41.383 12.801 182.362
Lungs 0.953 0.006 0.961 0.869 0.976 49.069 35.060 37.430 11.656 190.086

RX-Net+ m 1024
Clavicles 0.867 0.018 0.880 0.612 0.940 19.472 9.751 16.962 7.333 60.711

Heart 0.889 0.015 0.903 0.726 0.961 37.330 18.653 33.224 11.646 105.080
Lungs 0.955 0.005 0.961 0.881 0.978 44.751 30.678 34.837 11.600 167.060

RX-Net+ s 1024
Clavicles 0.880 0.016 0.892 0.646 0.946 17.728 9.301 15.695 5.277 53.971

Heart 0.883 0.017 0.896 0.686 0.965 40.472 21.172 35.936 11.200 119.962
Lungs 0.961 0.004 0.967 0.894 0.978 38.596 29.747 26.927 10.051 169.883

Table 4: Average ranking position of X-Net architectures and INET per organ and metric (JI, HD,
and their average) using 3-fold cross validation [NLM+18]. Two networks are considered equal if
the difference in performance between them is lower than 0.0025 for JI and 5 pixels for HD.

Network\Metric
Clavicles Lungs Hearts 3 organs

JI HD Aver. JI HD Aver. JI HD Aver. JI HD Aver.
X-Net+ s 1024 2.2 5.3 3.8 4.8 2.8 3.8 2.8 4.2 3.5 3.3 4.1 3.7
X-Net+ m 1024 2.2 5.3 3.8 4.8 3.8 4.3 2.8 4.2 3.5 3.3 4.4 3.9
X-Net m 256 3.3 5.3 4.3 4.8 2.8 3.8 2.8 4.2 3.5 3.7 4.1 3.9
RX-Net+ s 1024 2.8 5.3 4.1 4.8 5.2 5.0 6.7 5.5 6.1 4.8 5.3 5.1
X-Net s 256 9.7 5.3 7.5 4.8 3.8 4.3 4.7 4.2 4.4 6.4 4.4 5.4
RX-Net s 256 6.3 5.3 5.8 4.8 5.2 5.0 7.0 5.5 6.3 6.1 5.3 5.7
RX-Net+ m 1024 6.8 5.3 6.1 6.7 7.3 7.0 5.2 4.2 4.7 6.2 5.6 5.9
RX-Net m 256 8.7 5.3 7.0 6.2 8.7 7.4 4.0 4.2 4.1 6.3 6.1 6.2
RX-Net s 1024 6.8 7.7 7.3 6.2 9.5 7.8 11.7 10.3 11.0 8.2 9.2 8.7
INET s 256 7.5 7.0 7.3 9.5 9.0 9.3 10.3 11.0 10.7 9.1 9.0 9.1
RX-Net m 1024 9.7 11.2 10.4 11.3 10.2 10.8 9.3 9.7 9.5 10.1 10.3 10.2
INET m 256 12.0 9.5 10.8 9.2 9.7 9.4 10.7 11.0 10.8 10.6 10.1 10.3
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equivalent. This ranking does not show the values of JI and HD, but the average
position of each network for a given metric and organ. Thus, the values of the
ranking goes from 1 to the number of networks, and smaller values are associated
with a better performance. All our proposals outperform INET (even the reduced
ones which require lower resources than INET), with INET being the worst per-
forming approach in the comparison. It is important to remember that INET is
the current state-of-the-art approach in multi-class chest radiographs segmentation.
Another important conclusion is that, generally, ground truth resolution approaches
(1024× 1024) outperform downsampled approaches. In particular, the best method
in all rankings is X-Net+ in ground truth resolution using a single-class training ap-
proach (see Fig. 34 for some segmentation examples), with X-Net+ m 1024 being
the second best performing approach.

Figure 34: Examples of segmented clavicles obtained by X-Net+. In green, area correctly seg-
mented. In red, areas that were, erroneously, not segmented. In blue, over-segmented areas.
(Top) Examples of segmentations with errors of around 0.84 and 0.91 for JI and DICE, respec-
tively. (Bottom) Examples of segmentations with errors around 0.92 and 0.96 for JI and DICE,
respectively.

The time required to train INET was about 26 hours per run (i.e. 26 hours for
multi-class approach and 78 hours for single-class since three networks are trained),
and 9 GBs of memory are necessary (for both the single-class and multi-class con-
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Table 5: Summary of the average time and memory requirements of X-Net architectures and INET
with both the mono-class and multi-class approaches.

Network Muti-class time (h) Single-class time (h) GPU memory (GB)
INET (256× 256) 26h 26h×3=78h 9GB
INET (1024× 1024) Cannot be trained due to its GPU memory requirements.
X-Net (256× 256) 36h 36h×3=108h 9GB
X-Net (1024× 1024) Cannot be trained due to its GPU memory requirements.
X-Net+ (1024× 1024) 36h+3h =39h (36h+3h)×3=117h 12GB
RX-Net (256× 256) 12h 12h×3=36h 3.5 GB
RX-Net (1024× 1024) 55h 55h×3=165h 11GB
RX-Net+ (1024× 1024) 12h+2h =14h (12h+2h)×3=42h 10GB

figuration). X-Net requires 36 hours and 9 GBs to train, while the finetuning of
X-Net+, from the X-Net weights, takes only 3 hours (for a total of 39 hours), re-
quiring almost 12GBs of GPU memory. RX-Net requires only 12 hours and 3.5 GBs
with images of 256 × 256, and 55 hours and 11 GBs with images of 1024 × 1024.
Meanwhile, RX-Net+ with images of 1024×1024 takes only 2 hours to be finetuned
from the weight of RX-Net (256) (i.e. a total of 14 hours) and 10 GBs. Thus,
RX-Net outperforms INET in accuracy but also reduces the required memory and
the training time (see Table 5 for a summary of the time and memory requirement
of all the architectures). Overall, around 1608 computational hours (67 days) were
required to perform the 3-fold cross validation.

Given that X-Net, the proposal that is closest to INET, is better than INET (see
rankings of Table 4, where X-Net s and X-Net m are systematically ranked above
their INET counterparts), we can conclude that the modifications introduced in X-
Net are responsible for such improvement. Thus, the use of atrous convolution and
instance normalization to improve the results is highly recommended.

V.4.6 Experiment II: Comparison with state-of-the-art ap-
proaches for segmenting chest radiographs

The results obtained by the best X-Net architectures employing 10-fold cross
validation are shown in Table 6. All those results include post-processing. The
results of INET [NLM+18] correspond to our implementation, in order to perform
a comparison as rigorous as possible with the same 10-folds. The comparison of
Tables 3 and 6 shows that the results obtained have not changed significantly from
the 3-fold to the 10-fold cross validation protocol. X-Net architectures are robust to
different initialization and training-test subsets. This is supported by the unchanged
positions of the different proposals in the ranking showed in Table 7. Lastly, the
Nemenyi test [HW99] was performed to look for statistically significant differences
between the best ranked proposal, X-Net+ s 1024, and all the other networks. The
test showed that there is no statistical significant difference with X-Net+ m 1024
with p-values larger than 0.1 for both and HD. Therefore, both X-Net+ s 1024 and
X-Net+ m 1024 must be considered the best performing approaches. More specifi-
cally, when employing JI and DICE as evaluation metrics, X-Net+ s 1024 is better
for clavicles, and X-Net+ m 1024 for lungs and hearts. However, X-Net+ s 1024
becomes also the best method in clavicles when HD is considered. The Nemenyi
test finds statistically significant differences with all the other networks with a p-
value always lower than 1 ·10−06 for both JI and HD. In particular, for INET m 256,
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Table 6: Summary of JI and HD results per architecture and organ employing a 10-fold cross
validation protocol to the best performing architectures in Experiment I (see Section V.4.5).

Network Organ\Metric
JI HD

mean std median min max mean std median min max

INET m 256
Clavicles 0.835 0.018 0.850 0.663 0.905 21.937 10.946 19.732 8.218 55.271

Heart 0.850 0.033 0.883 0.546 0.944 64.605 41.183 50.472 20.807 178.663
Lung 0.953 0.005 0.959 0.885 0.972 51.679 36.886 41.390 13.676 163.012

X-Net m 256
Clavicles 0.848 0.017 0.862 0.667 0.910 20.507 12.043 17.734 7.519 60.869

Heart 0.881 0.019 0.901 0.663 0.951 42.179 23.456 36.361 14.808 119.029
Lung 0.951 0.005 0.957 0.890 0.972 47.416 35.574 35.761 13.287 170.676

X-Net s 256
Clavicles 0.859 0.013 0.869 0.748 0.912 18.381 9.789 16.133 7.826 51.733

Heart 0.878 0.017 0.892 0.718 0.955 45.603 24.703 40.355 14.842 110.086
Lung 0.951 0.006 0.957 0.880 0.972 46.333 37.479 32.960 11.806 177.618

X-Net+ m 1024
Clavicles 0.874 0.018 0.889 0.678 0.940 20.361 11.891 17.336 7.587 59.583

Heart 0.883 0.018 0.898 0.698 0.959 42.638 27.027 35.422 13.773 132.061
Lung 0.957 0.005 0.961 0.898 0.976 46.477 34.094 35.544 13.321 161.642

X-Net+ s 1024
Clavicles 0.883 0.015 0.896 0.745 0.944 18.357 11.567 15.795 6.595 60.463

Heart 0.878 0.018 0.896 0.714 0.957 43.671 24.269 37.844 13.342 107.652
Lung 0.955 0.006 0.961 0.881 0.976 46.248 37.529 32.567 12.189 174.856

RX-Net m 256
Clavicles 0.838 0.018 0.852 0.645 0.905 21.515 12.103 18.920 8.449 61.395

Heart 0.876 0.019 0.896 0.682 0.951 44.508 23.747 38.192 16.442 117.139
Lung 0.947 0.006 0.951 0.866 0.969 53.350 35.161 44.273 17.195 162.182

RX-Net s 256
Clavicles 0.845 0.017 0.860 0.685 0.908 19.882 11.984 17.109 7.620 61.342

Heart 0.864 0.020 0.878 0.684 0.946 50.112 30.619 42.176 16.232 147.602
Lung 0.947 0.007 0.955 0.860 0.970 51.975 42.228 38.710 13.080 198.489

RX-Net+ m 1024
Clavicles 0.864 0.019 0.881 0.653 0.934 20.718 11.953 17.965 7.962 62.627

Heart 0.880 0.017 0.896 0.717 0.953 43.526 23.499 37.026 15.560 111.432
Lung 0.951 0.006 0.957 0.873 0.972 51.912 37.211 41.463 16.028 172.276

RX-Net+ s 1024
Clavicles 0.871 0.019 0.890 0.676 0.942 19.404 12.283 16.332 7.292 63.905

Heart 0.866 0.020 0.880 0.689 0.949 50.412 31.395 43.437 16.247 144.748
Lung 0.925 0.012 0.940 0.779 0.969 79.469 45.211 69.918 21.169 208.965

Table 7: Average ranking position of the best X-Net architectures and INET per organ and metric
(JI, HD, and their average). Two networks are considered equal if the difference in performance
between them is lower than 0.0025 for JI and 5 pixels for HD. A 10-fold cross validation protocol
is applied to the best performing architectures in Experiment I (see Section V.4.5).

Network\Metric
Clavicles Lungs Hearts 3 organs

JI HD Aver. JI HD Aver. JI HD Aver. JI HD Aver.
X-Net+ s 1024 1.8 3.2 2.5 4.4 3.7 4.0 3.9 3.5 3.7 3.3 3.5 3.4
X-Net+ m 1024 2.5 5.4 3.9 3.8 2.8 3.3 3.3 4.1 3.7 3.2 4.1 3.6
X-Net s 256 4.8 3.2 4.0 4.1 3.9 4.0 4.0 4.9 4.4 4.3 4.0 4.1
X-Net m 256 6.5 5.4 5.9 4.1 3.4 3.8 4.0 3.7 3.8 4.8 4.2 4.5
RX-Net+ m 1024 4.1 6.4 5.2 4.5 5.6 5.0 4.5 4.4 4.4 4.3 5.4 4.9
RX-Net s 256 6.7 5.2 5.9 5.2 5.5 5.4 6.5 6.2 6.4 6.1 5.6 5.9
RX-Net m 256 7.8 6.0 6.9 6.3 6.2 6.2 4.9 4.3 4.6 6.3 5.5 5.9
RX-Net+ s 1024 2.8 3.4 3.1 8.7 8.5 8.6 6.4 6.0 6.2 6.0 6.0 6.0
INET m 256 8.3 7.0 7.7 4.1 5.5 4.8 7.7 8.1 7.9 6.7 6.9 6.8

it obtains a p-value of 5.2 · 10−15 for JI and 1.2 · 10−12 for HD.
The time required to train a fold of all architectures with the two training ap-

proaches is lower since only 3000 epochs are performed instead of the 4000 from
the previous experiment, and also the number of X-Net architectures compared is
lower. Nevertheless, the computational time needed to tackle this experimentation
is significantly higher because a 10-fold cross validation were performed, and thus
circa of 1840 computational hours (i.e. 77 days) were required.

Table 8 shows the comparison of our best X-Net-based architectures using a 10-
fold cross validation protocol, with and without post-processing, and including state-
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of-the-art approaches. JI and DICE represent the results reported in the trained
resolution (indicated by the number in parentheses at the end of the name of the
method). JI Full and DICE Full report the results in the original resolution of the
segmentation mask (i.e. 1024×1024). DICE and DICE Full (as well as JI and JI Full)
have the same value for methods trained with the original image resolution. Notice
that all approaches report better results in the down-sampled resolution than in the
ground truth resolution. The reason is that the resulting segmentation is evaluated
more roughly, and thus we lose details and nuances. Since the segmentation results
are always more precise in the ground truth resolution, we employ it as reference
to highlight in bold the performance of the different algorithms under comparison.
Results without the post-processing step are also reported to allow a fair comparison
with “pure” deep learning methods. As a conclusion, X-Net+ provides better results
in the ground truth resolution than all the other methods in the state-of-the-art (9
competitor approaches) for clavicles and lungs. It also yields comparable results
with the state-of-the-art method [BFK18] for heart segmentation (with a difference
in performance smaller than 0.01 (JI) and 0.005 (DICE)). X-Net+ also outperforms
the human observer in lungs and hearts (see Table 8). Importantly, X-Net+ without
post-processing yields comparable results to X-Net+ with post-processing.

Table 8: Comparison of our best X-Net-based architectures, with and without post-processing,
with state-of-the-art approaches. The best results in the ground truth resolution, 1024× 1024, are
displayed in bold per organ and metric. Cells containing a “—” represent either that the proposed
method does not tackle the segmentation of the organ, or that the results at the original or down-
sampled resolution are not reported. Values calculated from other metric, where only one of them
was reported, are marked with a “*”.

Clavicles Lungs Hearts

Method JI
JI

Full
DICE

DICE
Full

JI
JI

Full
DICE

DICE
Full

JI
JI

Full
DICE

DICE
Full

Human observer [VGSL06] — 0.896 — 0.945* — 0.946 — 0.972* — 0.878 — 0.935*
TVC2018 (512) [BFK18] — — — — — 0.951 — 0.975 — 0.893 — 0.943
WPC2018, a.k.a. LF-SegNet (224)
[MHS18]

— — — — 0.951 — 0.975* — — — — —

WPC2018-2, a.k.a. FCN (224)
[HMS18]

— — — — 0.959 — 0.979* — — — — —

JBHI2018 (256) [YLL+18] — — — — 0.952 — 0.975 — — — — —
MP2017 (256) [XSM+17] — — — — 0.955 — 0.977 — — — — —
N2018 (256) [CYRC18] — — — — 0.963 0.948 0.983 0.974 — — — —
MIA2012 (256) [HSdJ+12] 0.860 — 0.925* — — — — — — — — —
SCIA2017 (256) [Wan17] 0.863 — 0.926* — 0.959 — 0.979* — 0.899 — 0.947* —
TMI2018, a.k.a. INET (256)
[NLM+18]

0.868 — 0.929 — 0.950 — 0.974 — 0.882 — 0.937 —

X-Net+ m 1024 without post-proc. 0.871 0.931 0.954 0.976 0.879 0.935

X-Net+ m 1024 0.874 0.933 0.956 0.978 0.884 0.938

X-Net+ s 1024 without post-proc. 0.880 0.936 0.954 0.976 0.863 0.927

X-Net+ s 1024 0.883 0.938 0.955 0.977 0.879 0.935
RX-Net+ m 1024 without post-
proc.

0.859 0.924 0.948 0.973 0.876 0.934

RX-Net+ m 1024 0.864 0.927 0.951 0.975 0.880 0.936

RX-Net+ s 1024 without post-proc. 0.867 0.929 0.924 0.960 0.849 0.919

RX-Net+ s 1024 0.870 0.931 0.925 0.961 0.865 0.928
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V.4.7 Experiment III: Tackling the segmentation of frontal
sinuses in skull radiographs

The results obtained for the X-Net architectures are shown in Table 9 employing
DICE, JI and HD as evaluation metrics. The reported results according to DICE and
JI metrics are not comparable to the reported results in the clavicle segmentation
problem. Apart from the differences related to the employment of a different skeletal
structure, the underlying reason is that there is not an anatomical limit between the
frontal sinuses and the occlusion region. In fact, the occlusion region contains the
continuation of the frontal sinuses by definition (see Chapter IV). As a consequence,
these limits vary significantly between the predicted and GT segmentations, since
no method can possibly detect the GT limit. Nevertheless, the HD metric is robust
to this problem, allowing to study both the quality of the upper area of the frontal
sinuses segmentations, and the presence of gaps between the frontal sinuses and
the occlusion region. The best performing method is again X-Net+ (see Fig. 35 for
some segmentation examples). However, in contrast to chest radiographs, multi-class
training strategies generally (X-Net+ m 1024) outperform single-class strategies (X-
Net+ s 1024) for head radiographs segmentation. The rationale behind this fact
is that X-Net+ m 1024 barely produces gaps between the frontal sinuses and the
occlusion region, while X-Net+ s 1024 cannot deal satisfactorily with them. Thus, it
is necessary to study multi-task learning for each particular problem, even between
similar segmentation problems. Furthermore, all single-class methods rank better
than their multi-class counterparts (see Table 7). Lastly, the rest of conclusions
remain unchanged: (1) the simple post-processing step is beneficial; and (2) the
greater the image resolution, the better the obtained results.

Figure 35: Examples of segmented frontal sinuses obtained by X-Net+. In green, area correctly
segmented (frontal sinuses in dark green, and occlusion region in light green). In red, areas that
were, erroneously, not segmented. In blue, over-segmented areas. The errors related to limit
between the frontal sinuses and the occlusion regions are not reported in these images since these
are misleading as previously stated. (Top) Examples of segmentations with errors of around 0.66
and 0.79 for JI and DICE, respectively. (Bottom) Examples of segmentations with errors around
0.69 and 0.84 for JI and DICE, respectively.
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Table 9: Comparison of the X-Net-based architectures, with and without post-processing, for
segmenting frontal sinuses and occlusion regions in head radiographs.

Network Object\Metric

Without post-processing
JI DICE HD

Mean Std Mean Std Mean Std
RX-Net m 128 Frontal Sinuses 0.564 0.082 0.721 0.152 67.383 387.932
RX-Net m 128 Occlusion Regions 0.643 0.051 0.783 0.098 20.801 15.693
RX-Net s 128 Frontal Sinuses 0.570 0.074 0.726 0.137 28.136 28.033
RX-Net s 128 Occlusion Regions 0.649 0.042 0.787 0.081 21.540 15.964
RX-Net+ m 512 Frontal Sinuses 0.648 0.083 0.787 0.154 107.455 535.785
RX-Net+ m 512 Occlusion Regions 0.690 0.057 0.817 0.107 22.787 27.841
RX-Net+ s 512 Frontal Sinuses 0.656 0.074 0.792 0.139 28.014 34.417
RX-Net+ s 512 Occlusion Regions 0.692 0.048 0.818 0.092 21.376 16.962
X-Net m 128 Frontal Sinuses 0.582 0.073 0.735 0.135 30.410 34.792
X-Net m 128 Occlusion Regions 0.639 0.050 0.780 0.094 27.948 39.624
X-Net s 128 Frontal Sinuses 0.587 0.069 0.740 0.130 28.700 29.917
X-Net s 128 Occlusion Regions 0.646 0.048 0.785 0.092 34.494 46.622
X-Net+ m 512 Frontal Sinuses 0.667 0.069 0.801 0.129 29.728 38.711
X-Net+ m 512 Occlusion Regions 0.699 0.047 0.823 0.090 19.286 12.149
X-Net+ s 512 Frontal Sinuses 0.653 0.071 0.790 0.133 24.510 18.577
X-Net+ s 512 Occlusion Regions 0.692 0.052 0.818 0.099 24.231 27.970

Network Object\Metric

With post-processing
JI DICE HD

Mean Std Mean Std Mean Std
RX-Net m 128 Frontal Sinuses 0.564 0.083 0.722 0.152 65.299 382.655
RX-Net m 128 Occlusion Regions 0.643 0.052 0.783 0.099 19.564 9.163
RX-Net s 128 Frontal Sinuses 0.572 0.073 0.728 0.137 22.582 12.126
RX-Net s 128 Occlusion Regions 0.649 0.043 0.787 0.082 20.113 10.052
RX-Net+ m 512 Frontal Sinuses 0.649 0.085 0.787 0.156 105.490 535.104
RX-Net+ m 512 Occlusion Regions 0.689 0.058 0.816 0.110 18.203 9.600
RX-Net+ s 512 Frontal Sinuses 0.657 0.075 0.793 0.139 21.077 13.364
RX-Net+ s 512 Occlusion Regions 0.691 0.049 0.817 0.094 19.275 9.746
X-Net m 128 Frontal Sinuses 0.585 0.073 0.738 0.136 22.341 11.075
X-Net m 128 Occlusion Regions 0.642 0.049 0.782 0.094 19.487 9.215
X-Net s 128 Frontal Sinuses 0.589 0.073 0.741 0.136 22.944 14.609
X-Net s 128 Occlusion Regions 0.649 0.047 0.787 0.089 20.564 9.486
X-Net+ m 512 Frontal Sinuses 0.670 0.069 0.802 0.129 20.799 13.142
X-Net+ m 512 Occlusion Regions 0.699 0.048 0.823 0.092 18.016 9.436
X-Net+ s 512 Frontal Sinuses 0.655 0.071 0.792 0.133 21.296 12.507
X-Net+ s 512 Occlusion Regions 0.690 0.057 0.817 0.107 19.625 13.311

Table 10: Average ranking position of the best X-Net architectures per segmentation object and
metric (JI, HD, and their average). Two networks are considered equal if the difference in perfor-
mance between them is lower than 0.0025 for JI and 5 pixels for HD.

Network\Metric
Frontal Sinuses Occlusion Regions All

JI/DICE HD Aver. JI/DICE HD Aver. JI/DICE HD Aver.
X-Net+ m 512 post 2.0 3.5 2.8 3.5 3.5 3.5 2.8 3.5 3.1
RX-Net+ s 512 post 4.8 3.5 4.2 5.2 5.0 5.1 5.0 4.3 4.6
X-Net+ s 512 post 4.8 5.3 5.1 4.3 5.3 4.8 4.6 5.3 5.0
RX-Net+ m 512 post 5.5 7.3 6.4 4.7 3.5 4.1 5.1 5.4 5.3
X-Net+ m 512 2.0 13.7 7.8 3.5 5.7 4.6 2.8 9.7 6.2
RX-Net+ m 512 6.0 7.7 6.8 4.7 12.3 8.5 5.3 10.0 7.7
X-Net+ s 512 4.8 9.3 7.1 5.7 10.8 8.3 5.3 10.1 7.7
RX-Net+ s 512 6.0 11.0 8.5 4.5 9.8 7.2 5.3 10.4 7.8
X-Net m 128 post 11.2 3.5 7.3 14.2 6.5 10.3 12.7 5.0 8.8
X-Net s 128 post 11.3 6.0 8.7 11.5 9.3 10.4 11.4 7.7 9.5
RX-Net s 128 post 14.0 6.5 10.3 11.5 6.7 9.1 12.8 6.6 9.7
RX-Net m 128 post 14.0 9.7 11.8 12.8 6.5 9.7 13.4 8.1 10.8
RX-Net m 128 14.0 12.0 13.0 12.8 9.3 11.1 13.4 10.7 12.0
RX-Net s 128 14.0 12.0 13.0 11.5 11.0 11.3 12.8 11.5 12.1
X-Net s 128 10.3 12.3 11.3 11.5 16.0 13.8 10.9 14.2 12.5
X-Net m 128 11.2 12.7 11.9 14.2 14.7 14.4 12.7 13.7 13.2



Chapter VI

Evolutionary image registration
for 3D-2D skeletal structure’s
silhouette overlay

‘Nothing was your own except the few cubic cen-
timetres inside your skull.” — George Orwell

VI.1 Introduction

The superimposition process for CR is complex. This complexity has its origin
on multiple factors such as the unknown set-up of the AM radiograph or the fact that
image intensities are not reliable or even not captured. Most 3D-2D IR approaches
are designed for a controllable set-up, which is a common situation in many medical
domains [RRM+05, SGW+12, JBVH+06]. Therefore, they can assume a calibrated
case, with only 6 degrees of freedom (DoF), where the parameters related to the
perspective distortions are known, and with a initial pose close to the GT pose
(i.e. an error of around 20 mm in translation and 20◦in rotation in [JBVH+06],
a maximum target registration error [vdKPT+05] of 16 mm in [RRM+05], etc).
However, these assumptions are not suitable for CR since the AM radiograph is
generally taken under unknown conditions (neither the pose nor the radiograph
device are known in advance). Therefore, the search for the optimal solution in
the CR scenario is more challenging. Of course, there are a few exceptions such as
Feldman et al. [FAB95], which proposed a 3D-2D IR method based on the silhouette
that does not rely on assumptions about the initial pose by using free-form curves
and surfaces. However, this is only applicable in the calibrated case (6 DoF). To
the best of our knowledge, there is no other 3D-2D IR approaches based on the
silhouette considering 7 DoF without these constraints.

The objective of this work is twofold. First, to propose and validate a novel
computer-aided paradigm, based on a 3D-2D IR feature-based approach (second
stage), for the superimposition of the silhouettes of a 3D PM model of any bone
or cavity and an AM radiograph. This is validated with synthetic images of two
bones (clavicles and patellae) and one cavity (frontal sinuses). Second, to study how
optimization performance and both variability and differences in the segmentation

76



CHAPTER VI. EVOLUTIONARY 3D-2D IR FOR CR 77

performed by human operators, affect the identification using synthetic and real
images of frontal sinuses (a first and partial approach to tackle the third stage).

This chapter is structured as follows. Section VI.2 describes our proposal to
tackle the 3D bone scan-2D radiograph superimposition problem. Section VI.3
presents the experiments and their results.

VI.2 Image registration for comparative radiog-

raphy

There is not a universal standard for any IR method because several consider-
ations of the particular application must be taken into account. Nevertheless, IR
methods usually require the components presented in Section III.3 (see Fig. 36
for the 3D-2D IR proposal scheme for CR): (1) the model (PM 3D surface model
of the bone) and the scene image (AM radiograph); (2) the projective transfor-
mation responsible of generating a 2D image from a 3D object; (3) the expert
knowledge/context information of the problem that delimit the target transforma-
tion (radiographs acquisition protocols); (4) a similarity metric, which measures the
resemblance of a 2D projection with the original 2D image (overlapping); and (5)
an optimizer, which looks for the best parameters for the transformation to mini-
mize the error of the similarity metric (to be developed). The composition of each
element for our framework is introduced in the following subsections.

Optimization 

process

Perspective

Parameters: tx, ty, tz, rz, ry, rz, SID

Context and expert knowledge

Oclusion region

Camera /

X-ray generator
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Figure 36: Scheme of the proposal of 3D-2D IR for CR.

VI.2.1 AM and PM images

The raw images to be registered are as follows:

• The 2D image: an AM radiograph acquired in an image receptor, which is usu-
ally a flat surface (i.e. flat panels or photographic films) whose size frequently
ranges from 240 mm × 350 mm to 430 mm × 430 mm (although there are
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other sizes such as those used for tooth radiographs) [BL13] and whose reso-
lution is around 3-10 pixels per mm depending on the technology. However,
the resolution could be lower in older radiographs.

• The 3D image: a PM 3D surface model acquired either by scanning a “clean”
bone with a laser surface scanner or segmenting the bone in a CT of the
deceased (in both cases, the scale of the 3D image is in mm).

In this proposal, the IR process is guided by the silhouette of the bone or cavity
requiring the segmentation of the raw images. In the 2D image, the skeletal structure
and the occlusion region have to be segmented (see Fig. 26). In the 3D image, there
are two different scenarios depending on the raw image: CT or 3D surface scan. In
the first scenario, a bone is segmented by thresholding the CT (i.e. a volumetric
image) according to the corresponding Hounsfield units. When dealing with cavities
like frontal sinuses, a further hindrance has to be addressed. By their nature, cavities
can be connected among them and even with the external air. To overcome this
problem, the cavity is first isolated by using one or several planes. These planes are
horizontal or vertical and must go through a bone landmark (i.e. in frontal sinuses,
it is a horizontal plane that goes through a clearly identifiable landmark called the
crista galli). Finally, the internal air of frontal sinus is selected thresholding with the
particular Hounsfield units. In 3D surface scans, no preprocessing is needed although
internal cavities such as sinuses cannot be acquired. Lastly, in both scenarios, the
center of mass of the 3D surface is moved to the coordinate center.

In general, these segmentation processes always add an unavoidable degree of
error in both the 3D and 2D images. Nevertheless, the proposed method may
tolerate small segmentation errors, what will be subject of study of this chapter.

VI.2.2 Projective transformation

A projective transformation describes a mapping from 3D to 2D coordinates.
Projective transformations are classified according to the type of camera that they
model into [HZ03]: perspective projection that models a pinhole camera; and ortho-
graphic projection that models an orthographic camera.

The projective transformation behind a radiograph can be modeled (for the
most part) with a simple pinhole camera [Mer15]. A simple pinhole camera is a
simplification that only considers 7 DoF (6 extrinsic parameters: 3 translations and 3
rotations of the camera; and 1 intrinsic parameter: focal distance) out of the 11 DoF
of a the complete model (not considering changes in the rest of intrinsic parameter
of a pinhole camera: principal point, assumed in the centre of the image; aspect
ratio of the pixels, assumed square; and skewness). Notice that, in a radiograph
the perspective distortion is related to the source to image receptor distance (SID)
[Mer15] (see Fig. 36) instead of the focal distance. Most works consider a calibrated
scenario (only 6 DoF) and the SID is assumed as known which is not the case for
the CR problem. [RRM+05, SGW+12, JBVH+06]. Thus, 7 DoF are considered for
the CR problem with the perspective transformation.

Meanwhile, an orthographic camera is a particular case of a pinhole camera
located at the “infinity” and thus it does not model perspective distortions (see
Section III.3.2). Almost all clinical X-ray images have perspective distortions (asides
those with a large SID as cephalometric images with a SID of 4 meters). However
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even though it does not model a radiograph, it is worth of study to test whereas it is
sufficient for identification purposes or not. In addition, it is more mathematically
tractable (only 6 DoF: 2 translations, 3 rotations, and 1 scale) and the constraint
of the translations and the scale does not require expert knowledge.

The 3D surface model does not have any intensity information (as stated in Sec-
tion 2) and thus a Digitally Reconstructed Radiograph (DRR) [RRM+05] can not
be obtained. Fortunately, a 2D projection can still be provided with a ray-tracing
approach producing a binary image with the silhouette of black color and white
background. In our case, the implementation of the CGAL library [The17] has been
used. This is the most time consuming part of the IR process and thus its optimiza-
tion is crucial. Therefore, the ray-tracing is only calculated in the surrounding of
the silhouette of the segmented bone in the AM radiograph (2.5 times its bounding
box), which is the only region of interest for the metric. This approach requires
significantly less calculation and time (on average, it takes 0.020 seconds for a pro-
jection of 1290 × 1050 pixels in a standard computer) than a DRR approach (e.g.
0.025 seconds for a DRR of 512× 512 pixels using GPUs [SGW+12]), although they
are not comparable.

VI.2.3 Parameters and their Constraints using Expert Knowl-
edge

In summary, the parameters of the perspective transformation (7 DoF) are the
translation (tx, ty, and tz) in world coordinates, the rotation (rx, ry and, rz), and
the SID. Meanwhile, the parameters of the orthographic transformation (6 DoF) are
translation (tx and ty), that represents the position of the center of the silhouette in
the 2D image with respect to the center of the image, rotation (rx, ry, and rz), and
scale (s), that represents the percentage of pixels occupied by the bounding box of
the silhouette in the image.

The ranges of the parameter are only delimited by the acquisition protocol [BL13]
as stated in the introduction. Radiographs are taken with the body in a known
position (posteroanterior, anteroposterior, or lateral) and thus the rotation is known
with a certain margin of error in both transformations (e.g. ±10◦ or ±20◦ in Euler
angles). In the perspective transformation, the acquisition protocols serve us to also
delimit the translation and SID and to set the dimensions of the image receptor and
its resolution (pixels per mm). The translation on x-axis and y-axis are limited by
the width and height of the image receptor respectively. The SID is also limited
by the protocol with a margin of error and at the same time the SID also limits
the translation on the z-axis since the body is placed as close as possible to the
image receptor. Meanwhile, in the orthographic transformation, the translation is
not limited by the acquisition protocol but instead by the limits of the image in
normalized coordinates of the image for both axis (from -1 to 1). The scale is
limited by the percentage of pixels expected to be occupied by the silhouette in the
radiograph (from 5% to the 80%). Lastly, the dimension and resolution of the image
receptor are not needed.
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VI.2.4 Similarity metric

To measure the similarities of two silhouettes/regions, several similarity metrics
have been proposed due to its importance in the field of computer vision [VH01]
and in its application to medical imaging [MTLP12]. The most utilized to measures
the overlap of silhouettes is the DICE metric [Sør48].

However, metrics based on the overlap or on the distance between silhouettes are
not robust against occlusion and do not consider partial matching. In intensity-based
IR for medical imaging, a Region of Interest (ROI) [PWL+98] is usually considered
to address the occlusion problem and increase the accuracy in the visible area. It
defines a region with a mask that restricts the evaluation to that region. In our
problem, it makes more sense to consider it in the opposite way. The metric is
computed in the area of the segmented bone in the AM radiograph but excluding
the region where the expert has doubts in the segmentation stage (the occlusion
region).

Therefore, a Masked DICE metric that combines the DICE metric with a ROI
approach is proposed (see Fig. 37). It computes the overlap of the two silhouettes
in the whole image except in the mask region (the occlusion region) (see Eq. VI.1).
Notice that, in cases without occlusion the Masked DICE value is equal to the DICE
value. Lastly, the metric value is set to 1.5 when the projection of the 3D bone is
outside the field of view.

Masked DICE =
2 · |(IA \M) ∩ (IB \M)|
|IA \M |+ |IB \M |

(VI.1)

where IA is the set of pixels of object A (segmented bone) silhouette, IB is the set
of pixels of object B (PM project bone) silhouette, and M is the occlusion region.

Figure 37: (Left) Superimposition of the silhouette of the AM bone (partially occluded) and the
projection of the PM 3D bone; (Right) Masked superimposition by the occlusion region of the
silhouette of the AM bone and the projection of the PM 3D bone.

Furthermore, preliminary tests were performed also using the Hausdorff distance
but it was discarded because of the poor convergence of the optimizer even in cases
without occlusion and being more time consuming.

VI.2.5 Optimizer

A preliminary analysis of the search spaces has been performed using the fit-
ness distance correlation [TVCC05] (see Eq. VI.2 for the distance function) with
synthetic data of a clavicle, a patella and a frontal sinus (see Section 4.1.1.).
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Dist =

∑n
i=1 |

ti−mini

maxi−mini
− GTi−mini

maxi−mini
|

n
(VI.2)

where n is the number of parameters, ti is the parameter i-th of a transformation
t, GTi is the parameter i-th of the ground truth transformation GT , mini is the
minimum possible value of the parameter i-th, and maxi is the maximum possible
value of the parameter i-th.

This has uncovered the highly multimodality nature (i.e. it has multiple local
minima) of the search space with a sample of 100.000 random transformations for
each bone/cavity even in the simplest scenario (no occlusion) as shown in Fig. 38.
The fitness distance correlation according to the Pearson’s correlation coefficient
[Pea95] is 0.85 for the orthographic camera model (strongly correlated) and 0.47 for
the perspective one (weakly correlated). Thus, the search space of the perspective
camera model is more complex than that of the orthographic one. This correlation
will decrease as the complexity of the problem increases.

Figure 38: Scatter plots of DICE metric of a transformation versus its distance to the ground truth
transformation according to bone/cavity, and camera model.

Thus, to tackle such a complex optimization scenario, two approaches are pro-
posed. The first approach is based on a numerical optimization method called
BOBYQA [Pow09], that has already been used for IR. The second approach is
based on a metaheuristic called differential evolution (DE) [SP97], that has shown a
great performance on the global optimization problems of the Evolutionary Compu-
tation Congress Competition CEC-2013 [QL13] and it is easy to use because it has
few parameters to set (see Section III.4.1.1). The components of both IR methods
for CR are introduced in the following subsections.

VI.2.5.1 EG-BOBYQA

Several numerical optimization methods based on both linear search (Nelder-
Mead, BFGS, LBFGS) and trust region (Levenberg-Marquardt, BOBYQA) were
tested to solve our IR problem using the DLIB library [Kin12]. Preliminary experi-
ments were carried out and, among the considered methods, the best performing one
was BOBYQA. In fact, it is considered the state-of-the-art trust region numerical
optimization method [Pow09, MTWL16] and has been already used for IR, includ-
ing 3D-2D IR scenarios. In particular, it was used for 6 DoF pose estimation from
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X-ray [MTWL16]. In that contribution, BOBYQA was compared with Hill Climb-
ing and Nelder-Mead achieving a similar accuracy but with a significant advantage
in convergence speed, which is a relevant factor in our problem due to the high
computational cost of generating 2D projections.

Even so, the accuracy obtained by BOBYQA in our 3D-2D IR problem was in-
sufficient because its performance greatly depends on the initialization. It resulted
to be especially sensitive to the rotation parameter and as stated in the introduc-
tion a close initialization is unrealistic in the CR problem as in many other IR
approaches. To avoid this problem, we proposed an EG-BOBYQA method (estima-
tion grid-BOBYQA). It includes an initialization grid with the rotation parameters.
Furthermore, the translation and scale are estimated for each configuration of the
grid with the orthographic transformation (see Eqs. VI.3 and VI.4 respectively),
and the estimated solution is improved using BOBYQA.

Translation = cAM + (cPM − bPM) (VI.3)

where cAM is the center of mass of the bone in the AM image, cPM is the center
of mass of a projection of the PM 3D model with a certain rotation in the center
of coordinates and known scale, and bPM is the center of bounding box in the
projection. Notice that cPM − bPM vary with each rotation value.

Scale =
PAM
PPM

BPM

(VI.4)

where PAM is the percentage of pixels occupied by the bone within the AM image,
PPM is the percentage of pixels occupied by the bone within a projection of the
PM 3D model with a certain rotation in the center of coordinates, and BPM is the
percentage of pixels occupied by the bounding box of the PM 3D model within the
same projection (it is set up to the 20% of the image, although other percentages
are valid). Notice that PPM

BPM
vary with each rotation value.

However, a grid with a step of one degree over a certain rotation range in the
three axes (where the rotation parameters are delimited) is computationally unap-
proachable when the rotation range is superior to 20◦. Therefore, it is tackled with
several grids with a decreasing step and rotation range around the best solution of
the previous grid. Several configurations were tested and the best tradeoff (in terms
of time and accuracy) configuration was a step of a quarter of the rotation range for
each grid and a decrease of the rotation range of the following grid to [best rotation
- step

2
, best rotation + step

2
] for the three axes until a step smaller than 1 degree is

reached.
The translation and scale are estimated with enough accuracy when a near ro-

tation (around 1 degree) is tested and there are no significant occlusions. However,
the method is not accurate in the presence of occlusions. Therefore, BOBYQA is
used to refine the estimation. However, it significantly increases the execution time
and the required number of evaluations and thus this refinement is limited to 50
evaluations (again a tradeoff value between time and accuracy).

Finally, the best solution of the grid is optimized again with BOBYQA without
limit of evaluations. See Fig. 39 for a graphical explanation of the proposed EG-
BOBYQA algorithm for 3D-2D CR.

The main drawback of this approach is that it is only applicable with the ortho-
graphic transformation because in the perspective transformation the scale and the
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Figure 39: Schema of the EG-BOBYQA optimization proposal.

translation cannot be directly estimated because they depend on several parameters
(i.e. the scale depends on the translation on the z-axis and the SID).

VI.2.5.2 Differential Evolution

As reviewed in Section III.4, metaheuristics [CDS06], and in particular DE
[SDGTC12], have shown a great performance on 3D-3D IR problems. DE is a
variant of an evolution strategy [Bey13] proposed by Storn and Price [SP97]. It
is an stochastic search technique for solving optimization problems over continuous
spaces. It has been successfully applied to optimization problems including non-
linear, non-differentiable, non-convex and multi-modal functions [Cha08]. It has
also been widely applied in many real-world problems because of its robustness, fast
convergence, and its reduced number of parameters to set [DS11]. In particular, it
was considered for IR in [DFDCMT08] with a very good performance. See Section
III.4.1.1 for further details.

VI.3 Experiments

The experimental study is divided into three parts. The first experiment is de-
voted to the study of performance, precision and robustness of the different methods
proposed with simulated CR problems of different bones/cavities (frontal sinuses,
clavicles and patellae) where the AM and PM data belong the same person (only
positive cases). Meanwhile, the goal of the second experiment is to study how op-
timization performance affect the identification capability of the best proposal in
a n-to-n scenario with simulated CR problems of frontal sinuses. Last, the third
experiment studies how segmentation errors, inter-expert variability and optimiza-
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tion performance affect the identification capability of the best proposal in a n-to-n
scenario with real CR problems of frontal sinuses. This experiment is performed
with frontal sinuses only because we do not have real AM radiographs of clavicles
and patellae available.

For all the experiments, a stop criteria is set when the optimizer reaches an error
lower than 0.01%, which means that the 99.99% of the pixels outside the occlusion
region are superimposed correctly with respect to the GT.

Furthermore, the parameters of the optimizers were also set for all the experi-
ments in preliminary studies. In particular, the best configuration for BOBYQA’s
initial trust region was set to 0.05 (see Section 3.5.1), while the best configura-
tion achieved in the case of the DE considered the following parameter values: 100
individuals, 50000 evaluations, a crossover probability Pc of 0.5, and F set to 0.5.

All the experiments have been performed on a computing server with 12 nodes
that have an Intel Core i7 4930k 3.4 GHz, running Ubuntu 16.04.

VI.3.1 Experiment 1: Validation of the image registration
approach

VI.3.1.1 Data set generation

Simulated CR problems were used to validate the capability of our method to
accurately perform 3D-2D IR. A simulated CR problem is composed of a 3D surface
model and a 2D perspective projection of the 3D model with a random transforma-
tion (within a given parameter range) to be superimposed. It allows the quality of
a superimposition to be objectively measured, even if there are occlusions present,
because its GT projection without occlusions is known.

To do so, 10 clavicles and 10 patellae from the bone collection of the Physical
Anthropology lab at the University of Granada were scanned with a laser range
scanner (Artec SpiderTM 3D scanner). Furthermore, 10 3D surface models of frontal
sinuses were obtained by manually segmenting 10 CTs (provided by the Hospital de
Castilla la Mancha, Spain) using 3D slicer 4.5.0-1 (see Section VI.2.1). The frontal
sinuses and clavicles 3D surface models were placed in frontal positions and the
patellae 3D surface models in lateral positions because they are respectively the
most common acquisition positions in a radiography [BL13]. For each of the 30 3D
surface models, 5 perspective projections were generated within the ranges showed
in Table 11 with a resolution of 3 pixels per mm. These ranges were set following
the international acquisition protocols [BL13] and the constraints stated at Section
3.3. The image receptor dimension and SID for the frontal sinuses and patellae are
240 mm × 300 mm and 1000 mm respectively, and for clavicles 430 mm × 350
mm and 1800 mm respectively, resulting in images of 750 × 900 pixels for frontal
sinuses and patellae, and 1290× 1050 for clavicles. From each of the 150 simulated
CR problems, two additional simulated problems were generated with an increasing
degree of occlusion of the target bone of 15% and 30% in order to model bone
silhouette occlusion in real radiographs. These occlusions are located at the bottom
for the frontal sinuses and the patella and in the mid-region near the sternum for
clavicles because that is where the occlusion usually takes place on real radiographs.
A total of 450 positive simulated CR problems with their corresponding GT were
generated.
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Table 11: Parameter range of each bone/cavity for the perspective transformation constrained by
international acquisition protocols [BL13] and expert knowledge (see Section 3.3).

Parameter
Bone/Cavity

Frontal Sinuses Patellae Clavicles

tx (mm) [-125, 125] [-125, 125] [-210, 210]
ty (mm) [-150, 150] [-175, 175]
tz (mm) [900 - 200, 900 + 200] [900 - 200, 1700 + 200]

rx, ry , and rz (degrees) [-10◦, 10◦], [-20◦, 20◦]
SID (mm) [1000 - 100, 1000 + 100] [1800 - 100, 1800 + 100]

VI.3.1.2 Experimental set-up

This experimentation involves the application of two different optimizers (EG-
BOBYQA and DE), two kinds of projective transformations (perspective and or-
thographic), and two rotation ranges (±10◦and ±20◦) for each of the 450 CR cases
(generated as described in Section 4.1.1). Notice that, the only parameter ranges
altered are those related to the rotation of the bone/cavity and the rest remain
unchanged (see Table 11 and Section 3.3 for the ranges of the perspective and or-
thographic transformations, respectively). However, the EG-BOBYQA optimizer
cannot be used with the perspective transformation because the translation and the
scale cannot be directly estimated. In summary, a total of 2700 experiments were
carried corresponding to:

1. Orthographic transformation: 2 optimizers (EG-BOBYQA and DE), 2 rota-
tion values (±10◦and ±20◦), and 450 simulated CR problems (notice that, the
450 cases were generated with a perspective transformation), i.e. an overall of
1800 experiments.

2. Perspective transformation: 1 optimizer (DE), 2 rotation values (±10◦and
±20◦), and 450 simulated CR problems, i.e. an overall of 900 experiments.

Since the DE approach is based on a stochastic process, 16 independent runs were
performed for each problem instance to compare the robustness of the methods and
to avoid any possible bias when the DE optimizer is utilized. The initialization of
each run is random in the whole parameter range for all the degrees of freedom of its
corresponding projective transformation. A closer initialization would be unrealistic
in a real identification scenarios where the AM radiograph would have been taken
in unknown conditions.

VI.3.1.3 Ground truth metrics

Two GT metrics are considered to objectively measure the quality of the results.
The first one is GT DICE. This metric measures the percentage of not superimposed
pixels of the 2D projection obtained by the optimizer and the GT projection (which is
equivalent to the AM 2D projection used by the optimizer, but without occlusions).
Notice that, in cases without occlusion Masked DICE is equal to the original GT
DICE (see eq. VI.1).

To avoid any possible bias caused by the high correlation between the two DICE
metrics, a second independent metric is also utilized, the mean reprojection distance
error (mRPD) [vdKPT+05], that allows to perform standardized evaluation in 3D-
2D IR. It measures the average distance from each 3D point of the 3D surface model
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to a reprojected line (which is a line composed of all the 3D points whose projection
under a certain transformation results in the same 2D point). A reprojected line
is calculated using the inverse of the transformation obtained by the optimizer and
the 2D projection of the 3D point projected with the GT transformation (see eq.
VI.5).

mRPD =
1

m
·
m∑
i=1

|||pi, P−1
reg(PGT (pi))||| (VI.5)

where pi is the i-th 3D point of the 3D surface model, m is the number of points of the
3D surface model, PGT is the GT projective transformation, PGT (a) is the 2D point
resulting from the projection of the 3D point a with the GT transformation, Preg is
the projection transformation obtained by the optimizer, and P−1

reg(b) is basically a
straight line composed of all the 3D points that multiplied by Preg result in the 2D
point b.

VI.3.1.4 Results

The results obtained are shown in Table 12 according to the Masked DICE
metric, the GT DICE metric, and the mRPD metric. The GT metric is strongly
correlated with the Masked DICE metric (the metric that guided the optimizer)
with a correlation of 0.845 according to the Pearson’s correlation coefficient [Pea95].
Meanwhile, the mRPD metric is also correlated with both metrics for the perspective
transformation (0.780 for Masked DICE and 0.801 for GT DICE).

Table 12: Summary of the Masked DICE metric results, the GT metric results, and the mRPD
metric results according to bone/cavity type, camera model, and optimizer.

Bone Optimizer Camera
Model

Masked DICE GT DICE mRPD (mm)
mean sd mean sd mean sd

Clavicle
DE

Ortho. 0.015 0.011 0.037 0.018 12.128 14.442
Persp. 0.001 0.003 0.002 0.005 0.055 0.088

EG-BOBYQA Ortho. 0.044 0.025 0.083 0.065 12.714 14.373

Patella
DE

Ortho. 0.014 0.016 0.029 0.034 11.981 16.270
Persp. 0.005 0.008 0.015 0.025 0.761 1.544

EG-BOBYQA Ortho. 0.035 0.020 0.103 0.081 12.148 16.892

Frontal
Sinus

DE
Ortho. 0.014 0.055 0.020 0.058 8.471 3.571
Persp. 0.001 0.003 0.002 0.006 0.028 0.067

EG-BOBYQA Ortho. 0.029 0.034 0.051 0.060 8.285 3.399

As expected, it can be clearly seen how the results obtained by both optimization
approaches with the perspective transformation perform better (with a mean error
lower than 0.1 mm for clavicles and frontal sinuses, and lower than 1 mm for patellae
according to the mRPD metric) than with the orthographic transformation (with
a mean error always higher than 8 mm according to the mRPD metric). That
fact is confirmed by the Wilcoxon’s test [Geh65] and the sign test obtaining p-
values of 2.2 · 10−16 and 8.6 · 10−203 respectively. This difference can be explained
since only the perspective transformation can reproduce the perspective distortions
present in the AM simulated radiographs. For the orthographic projection, the DE
optimizer performs better than EG-BOBYQA in average and standard deviation.
Furthermore, DE’s mean is significantly lower, which is confirmed by the Wilcoxon’s
test obtaining a p-value of 2.2 · 10−16. DE also outperforms EG-BOBYQA in most
scenarios, which is confirmed by the sign test [DM46] obtaining a p-value of 9.2 ·
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10−110. The robustness of both optimizers can be improved because the results have
a dispersion that leads some runs to have quite large errors (up to 40 % for the GT
metric and 60 mm according to mRPD metric).

The minimum error obtained by the DE optimizer (i.e. the result of the best
run) for the perspective transformation is lower than a 0.5% of badly superimposed
pixels according to GT DICE metric or 0.1 mm according to mRPD metric for
clavicles, patellae and frontal sinuses (see Fig. 40). Meanwhile, the min error
for the orthographic projection is higher (around 1% for GT DICE and 2.5 mm
for mRPD with patellae and frontal sinuses, and 3% for GT DICE and 1 mm for
mRPD with patellae and frontal sinuses). Furthermore, occlusions have a visible
effect on the accuracy according to the GT DICE Metric but not according to the
mRPD. Meanwhile, the influence of the rotation affect mainly to robustness but not
significantly according to both metrics.

A first-sight conclusion is the strong influence of bone/cavity on the performance
(see Fig. 40). Better results are always obtained for frontal sinuses in terms of accu-
racy and robustness than for clavicles and patellae, probably due to the singularity of
the visible region of the frontal sinuses. For instance, frontal sinuses have been used
in several works for identification [QFS+96] and are different even in homozygous
twins whereas the clavicles and the patellae have been mainly used for short listing
[NSGF16, SWCT11]. Last, the worst results are obtained for patellae in terms of
robustness for the lower singularity of the visible region.

The main weakness of both optimizers is the computational time required to
achieve the results. As shown in Table 13, the time to obtain a superimposition
is large (30 minutes in average), making it hard to run the algorithm again when
a bad superimposition is achieved. EG-BOBYQA requires more time than DE for
the orthographic model (73 and 25 minutes in average, respectively), which makes
the DE optimizer better also in terms of computation time. This is due to the
high number of evaluations performed by the optimizers in order to overcome the
problem of not relying on an initialization (notice that, the time required for clavicles
is higher due to the larger size of their radiographs).

Table 13: Summary of the required computation time (in seconds) according to bone/cavity type,
camera model, and optimizer.

Bone Optimizer Camera.Model
Time (seconds)
mean sd

Clavicle
DE

Orthographic 3775 954
Perspective 2370 981

EG-BOBYQA Orthographic 6947 2381

Patella
DE

Orthographic 1121 400
Perspective 841 493

EG-BOBYQA Orthographic 2052 714

Frontal Sinus
DE

Orthographic 2128 760
Perspective 966 611

EG-BOBYQA Orthographic 3421 1342

With the perspective transformation, DE usually reaches the stop criteria before
the 300-th generation which explains its lower run time. However, the orthographic
transformation does not reach the stop criteria, despite it usually converges at the
200-th generation.

In summary, the DE optimizer is able to obtain good superimpositions for both
camera models, but DE has only shown a robust behavior for frontal sinuses due to
the singularity of their silhouettes.
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Figure 40: Boxplots of the minimum errors according to bone/cavity, camera mode, and optimizer
for the GT DICE metric (Top) and mRPD metric (Bottom).
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VI.3.2 Experiment 2: Validation of the automatic CR method-
ology

The aim of this experiment is to study how the precision of DE affects the
identification capability with simulated CR problems of frontal sinuses.

VI.3.2.1 Data set generation

For the experiment, 2 perspective projections were generated for each of the 10
frontal sinuses within the ranges of Table 11. For each of theses 20 frontal sinuses
projections, two additional simulated problems were generated with an increasing
degree of occlusion of the target bone of 15% and 30%, resulting in 60 simulated AM
projections and 10 PM 3D surface models. These are combined into 600 simulated
CR problems (60 positive cases and 540 negative cases).

VI.3.2.2 Experimental set-up

This experimentation involves the application of the best optimizer according
to Section 4.1 (DE), the two rotation ranges (±10◦ and ±20◦, and again the rest
of parameter ranges remain unchanged), and the two projective transformations
(perspective, and orthographic), resulting in 2400 experiments.

Since the DE approach is based on a stochastic process, several runs must be
performed in order to validate the robustness of the method. However, this study
has already been performed for frontal sinuses with the DE optimizer (see Section
4.1.) showing the robustness of the optimizer with a positive case. For this reason
(and due to the great amount of computational time required to perform again 16
independent runs), only 2 independent runs are performed.

VI.3.2.3 Results

Promising results were obtained. Positive and negative cases have shown a great
difference in terms of fitness according to the Masked DICE Metric (see Fig. 41).
The GT DICE and mRPD metrics are not suitable for this study because they
cannot be known in real CR cases. Furthermore, the positive cases always rank the
first in the ranking resulting of ordering each AM projection against all the PM 3D
models according to the Masked DICE metric for the perspective camera model.
Meanwhile for the orthographic camera model, the positive cases rank the first in
the 99% of the cases but this percentage goes up to the 100% if the best run of each
experiment is considered.

VI.3.3 Experiment 3: Validation of the CR methodology on
real cases

The third experiment is devoted to study how the accuracy of our best proposals
affects the identification on real CR problems of frontal sinuses. Furthermore, this
experiment studies the validity of the orthographic and perspective camera models
for identification, while analyzing the effect of inter-observer segmentation errors.
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Figure 41: Boxplots of the mean (Top) and minimum (Bottom) error for the Masked DICE metric
of positive or negative cases according to the rotation range and the camera model.

VI.3.3.1 Data set

The data set for this last experiment is composed of 10 pairs of a PM 3D surface
model and a AM radiograph of a frontal sinus. Each of the AM radiographs was
segmented by 3 different persons (as seen in Section 3.1.), and also a consensus
segmentation was calculated (which contains the pixels segmented in at least 2 out
of 3 manual segmentations). This results in 40 real segmented AM radiographs
and 10 PM 3D surface models which are combined into 400 real CR problems (40
positive cases and 360 negative cases).
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VI.3.3.2 Experimental set-up

This experimentation involves the application of the best optimizer (DE), the two
rotation ranges (±10◦, ±20◦), and the two projective transformations (perspective,
and orthographic), resulting in 1600 experiments.

Since the DE approach is based on a stochastic process, 16 independent runs with
random initializations were performed for each experiment, due to the DE optimizer
has not been tested with real radiographs manually segmented yet.

VI.3.3.3 Results

The results are reported using Cumulative Match Characteristic (CMC) curves
[LJ05] to study the identification capabilities of the proposal as done in [CAICW18].
A CMC curve measures the probability that the correct match for a identification
case is present in a candidate list of the r best matches, where r denotes the position
in the rank. For example, rank 5 identification accuracy denotes the probability that
the correct match is one of the subjects in a list of the top 5 matches. To focus on
the potential identification capability of the method and not in the robustness only
the best run of each experiment is considered. In this case, the rank 1 includes the
10% of the sample (i.e. 1 out of the 10 comparisons performed for each AM case
with a given configuration). The rank 2 includes the 20% of the sample, and so on
until reaching the rank 10 that includes the 100% of the sample.

Figure 42: Example of a positive case with a frontal sinus ranked in the first position (left) and a
negative case ranked in the second position (right). The AM segmentation is represented in blue,
the projection of the PM 3D model in red, and the occlusion region in white.

The results obtained show that the 58% of the 160 experiments with positive
cases rank the first in the ranking resulting of ordering each AM projection against
all the PM 3D models according to the Masked DICE metric. The percentage
goes up to 85% if a rank 3 identification is considered. Furthermore, the CMC
curve shows that the perspective camera model has a better performance than the
orthographic one (see Fig. 43a). For instance the perspective camera model obtains
a probability of 97% with a rank 4 identification while the orthographic model only
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obtains a 87%. Furthermore, the rotation range also has a significant effect in the
performance (see Fig. 43b). The best rotation range was the ±10◦ as in the first
experiment. Lastly, the performance is greatly affected by the segmentation errors
(see Fig. 43c).
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Figure 43: (Top left) CMC curve according to the camera model. (Top right) CMC curve according
to the range of rotation. (Bottom) CMC curve according to the segmentation.The number in
parenthesis represents the percentage of the sample included in each rank.

Deepening into the differences according to the AM case, the results show that
five of the ten frontal sinuses always rank the first regardless of the camera model, the
rotation range, or the segmentation (see Fig. 44). In addition, another two frontal
sinuses also rank the first but only with one of the segmentations (segmentation
2). The AM radiographs of these two frontal sinuses present several differences
depending on the segmentation on the available radiographs, due to a lower visibility
of the upper area (which is its most characteristic and identifying part). Lastly,
the remaining 3 frontal sinuses never rank the first (ranking between the second
and the sixth position depending on the scenario) and their segmentation were the
hardest presenting an occlusion region even on the upper part (again due to the low
visibility).
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Chapter VII

Performance analysis of the
real-coded evolutionary algorithm
for comparative radiography

‘There is something at work in my soul,
which I do not understand.” — Mary Shelley

VII.1 Introduction

Most limitations of current CR approaches are overcome by the evolutionary 3D-
2D IR approach presented in the previous chapter. However, the proposed method
still shows the following drawbacks: (1) the projective transformations cannot re-
produce the perspective distortion of radiographs where the X-ray generator was not
perpendicular to the image receptor (e.g. in the Water’s projection of radiographs
of frontal sinuses [TBV02]); (2) the robustness of the DE algorithm is low in some
cases, especially with clavicles and patellae, where it led to bad superimpositions
in some runs, due to the stochastic nature of DE and the highly multimodal search
space tackled (see Section VI.2.5 for further details of the landscape analysis); and
(3) the large amount of time required to obtain a superimposition with DE (1,800
seconds on average). This elevated time is motivated by the high computational cost
required by each evaluation (on average, it takes 0.25 seconds to obtain a projec-
tion of 1290× 1050 pixels in a standard computer), uncovering the computationally
expensive optimization nature of the CR problem as well as the high number of
evaluations needed by the optimizer to converge.

Apart from the high computation requirements of CR, the numerical optimiza-
tion problem underlying the superimposition process is complex, even when the
perspective distortions related to the first drawback are not modeled, resulting in a
highly multimodal search space. The complexity of the problem comes from several
sources, such as the segmentation errors and the inherent uncertainty in both the AM
and PM image, the lack of assumptions regarding the initialization, the strong inter-
relation among the parameters (e.g. the apparent size of the projection is affected
by all the parameters in a perspective projection), the dependency on the singular-
ity of the bone, etc. Thus, the choice of the optimizer plays a crucial role in the
superimposition process. While numerical methods have proved to be insufficient,

94
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considering an evolutionary IR method based on DE has shown a great performance
but still suffers from the second and third drawbacks described. Therefore, a compar-
ative study of several high performance RCEAs [BFME97, YG10, MLH18, ZYQ19],
with particular focus on those tested in complex real-world problems as well as in
competitions from the IEEE Congress on Evolutionary Computation (CEC), is nec-
essary in order to determine the influence of the RCEA considered in the 3D-2D IR
framework.

The goal of this chapter is thus three-fold. Firstly, to propose and validate a new
projective transformation that can reproduce the perspective distortion of any kind
of radiograph. This new projective transformation can model regular radiographs
as well as radiographs where the X-ray generator is not perpendicular to the image
receptor, as in the Water’s projection of radiographs of frontal sinuses [TBV02].
Furthermore, this new projective transformation can also model small alignment
errors in regular radiographs. Secondly, to perform a comparative study of several
state-of-the-art RCEAs looking for better accuracy, robustness, and convergence
speed in the automatic CR process. These two goals are studied with synthetic
images of three skeletal structures (clavicles [SWCT11], patellae [NSGF16], and
frontal sinuses [QFS+96]), which have been commonly utilized in the CR literature
as well as along this dissertation. Thirdly, to study the performance of the best
RCEA in real images of frontal sinuses as well as its robustness to intra-expert
and inter-expert segmentation variability. With this third goal, we will be able
to evaluate the actual capability of our methodology to implement an automatic
CR-based identification method to assist the forensic anthropologist.

This chapter is structured as follows. Section VII.2 describes the additions to the
IR methodology, the new projective transformation, and the state-of-the-art RCEAs
utilized. Section VII.3 presents experiments and results.

VII.2 Methodology

The methodology is similar to that proposed in the previous chapter following
a IR approach with five components (the data, the projective transformation, the
expert knowledge that delimit the transformation, the similarity metric, and the
optimizer). These five components are further detailed in Chapter VI. The main
contribution of this chapter is in the proposal of a new projective transformation
and the analysis of the optimizers (the second and fifth components, respectively)
that will be detailed in the following subsections (see Fig. 45).

VII.2.1 Projective transformation

The projective transformation [HZ03] behind a radiograph image is, in most
of the cases, a simple perspective transformation obtained using a pinhole camera
model [Mer15]. As already described, simple perspective transformation considers 6
extrinsic parameters (3 translation and 3 rotations) and 1 intrinsic parameter (focal
distance; assuming that the rest of intrinsic parameters of a complete perspective
transformation are known: the principal point is located in the center of the image,
pixels’ aspect ratio is square, and no skewness). Particularly, in a radiograph, the
focal distance is represented by the SID [Mer15] (see Fig. 45).
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Figure 45: Scheme of the proposal of 3D-2D IR for CR. Three main interconnected blocks are
represented: (Right) the projective transformation to obtain a projection of the 3D model with
9 parameters: translation (tx, ty, and tz), rotation (rx, ry, and rz), and perspective distortions
(SID, cx, and cy); (Top left) The similarity metrics that compares the PM projection (colored
in blue) and the AM segmentation (colored in red) considering an occlusion region (colored in
gray); (Bottom left) the optimization process to estimate the 9 parameters of the registration
transformation that are only weakly limited by the context and expert knowledge from the X-ray
acquisition protocol.

Figure 46: (Left) Diagram of a frontal sinus radiograph with a posteroanterior view, where the ray
between X-ray generator and the center of the image receptor is perpendicular. (Right) Diagram
of a frontal sinus radiograph with a Water’s view, where the ray between X-ray generator and the
center of the image receptor is not perpendicular.

However, radiographs acquired with procedures where the ray that joins the
X-ray generator and the center of the image receptor is not perpendicular cannot
be modeled with a simple perspective transformation. That is the case of frontal
sinuses radiographs taken in one of the acquisition protocols of the Water’s view (see
Fig. 46 for a graphical example). In these radiographs, the acquisition protocols
[BL13] establish that the X-ray bean is angled at β to the center of the receptor.
It causes that the principal point of the image is not located at the center of the
images (as can be seen in Fig. 46) and can be located even outside the image limits.
Thus, to model these radiographs, a more complex perspective transformation that
also models changes in the principal points is needed (resulting in 9 parameters to
be optimized). The movement of the principal point in an axis can be calculated
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according to the following equation:

ci = SID · sin(90− βi)
sin(βi)

(VII.1)

where ci is the principal point displacement in the axis i and βi is the angle of the
ray that joins the center of the image receptor and X-ray generator in the axis i.

Furthermore, even radiographs taken in conventional views as the posterioante-
rior can be affected by this distortion (although with a minor effect), due to the
small alignment errors between the image receptor and X-ray generator and the
modeling of changes in the principal point can also be beneficial for them.

To sum up, two projective transformations are considered in this contribution,
aiming to improve the performance of the automatic CR-method: the simple per-
spective projection with 7 parameters (tx, ty, tz, rx, ry, rz, and SID) from the
previous chapter and a new more complex perspective projection with 9 parameters
(tx, ty, tz, rx, ry, rz, SID, βx, and βy). The two transformations will be referred
from now on as P7 and P9, respectively. Their parameters’ ranges are stated in
Section VII.3.1.

VII.2.2 Real-coded evolutionary algorithms for the image
registration optimizer

As stated in Section VI.2.5, RCEAs can tackle complex and multimodal opti-
mization problems. In our case, this complexity has increased with the new projec-
tive transformation P9. This can be confirmed by studying the fitness’s landscape of
the CR problem by using the fitness-distance correlation [TVCC05] (see Eq. VI.2 for
the distance function). As in previous chapters, the complexity of the CR problem
is uncovered by studying its simplest scenario, i.e. synthetic data without occlusions
or segmentation errors. To analyze the simplest optimization scenario, a sample of
200,000 random transformations near to the GT transformation have been generated
and evaluated for each skeletal structure (clavicles, patellae and frontal sinuses) and
perspective transformation (P7 and P9), as shown in Fig. 47. This depicts many
poor superimpositions with a small distance to the GT transformation, as well as
good superimpositions with a big distance to the GT transformation. It hints the
multimodality of the search space. Furthermore, the fitness distance correlation ac-
cording to the Pearson’s correlation coefficient [Pea95] is 0.47 for P7 and 0.42 for
P9, both weakly correlated, confirming that P9 is more complex and multimodal
than P7.

To tackle the real-coded optimization problem of P7 and P9, six RCEAs are
studied and fine-tuned using the Masked DICE metric as fitness function. The
RCEAs to be studied are the following (see Section III.4.1 for further details): (1)
DE, a classic RCEA and the one originally used in our methodology; (2) L-SHADE,
one of the best self-adaptive variants of DE; (3) CMA-ES, a classic RCEA that has
outperformed DE in many problems; (4) BIPOP-CMAES, one of the best modern
variations of CMA-ES; (5) CRO-SL, a powerful RCEA that is the state-of-the-
art method in 3D-3D IR problems but is complex to fine-tune; and (6) MVMO-
SH, a novel RCEA that has obtained groundbreaking results in costly optimization
problems [ERWS14].
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Figure 47: Scatter plots of DICE metric of a transformation versus its distance to the GT trans-
formation according to bone/cavity, and perspective transformation.

VII.3 Experiments

The experimental study is divided into three parts. The first experiment is
devoted to fine-tune the different RCEAs to find their best configuration in terms of
accuracy and robustness. For this experiment, only simulated CR problems (positive
cases, i.e. the AM and PM data belong to the same person) of frontal sinuses are
considered, since these are of great forensic interest and result in the most complex
optimization scenario (as it has to model both posterioanterior and Water’s views).
Furthermore, it is computationally unaffordable (because of its high computational
cost) to perform this experimentation also with clavicles and patallae. Meanwhile,
the second experiment is devoted to compare the best configuration of each RCEA
with simulated CR problems of frontal sinuses, clavicles, and patellae with P7 and P9
in order to find the best RCEA in terms of accuracy and robustness. The third part is
devoted to study the identification capability of the proposed IR framework using P9
and the best resulting RCEA, in turn MVMO-SH, in real images of frontal sinuses,
as well as its robustness regarding intra-expert and inter-expert segmentation errors.

The same stop criteria is established for all the RCEAs to allow a fair com-
parison in terms of computational resources. The optimization process ends when
at least one of the following three conditions holds: (1) the maximum number of
evaluations is reached. This value is set to 50,000 evaluations (it includes the eval-
uations performed by the LS methods); (2) the optimization process has got stuck.
It is considered that the optimization process has stagnated when it has performed
10,000 evaluations without improving the fitness of the best solution; and (3) the
optimization process has archived a good solution/superimposition. A solution is
considered of good quality when it shows an error lower than 0.001 in terms of fitness
(i.e. the 99.9% of the pixels are correctly overlapped).

All the experiments (I, II and III) have been performed on the high performance
computing server Alhambra from the University of Granada composed of 1808 cores
Fujitsu PRIMERGY CX250/ RX350/RX500 nodes running Red Hat Enterprise 6.4,
although on average only 50 cores were available for this experimentation. Further-
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more, several preliminary experiments were performed in the supercomputing center
of Galicia (CESGA). It is important to remark the large computational cost of the
experimentation following a rigorous experimental design of a computationally ex-
pensive optimization problem as CR. Overall, around 1,950 computation hours (81
days) were required to perform Experiments I, II and III when the 50 cores were
available uninterruptedly.

VII.3.1 Simulated dataset

The dataset employed in Experiments I and II is formed by 900 simulated CR
problems (i.e. 300 for each skeletal structure to be studied), each of them composed
of a 3D surface model and a random 2D perspective projection (either generated with
P7 or P9) of the 3D model with occlusions. In all these simulated CR problems, the
GT transformation and the GT projection without occlusions are known allowing
to objectively measure the quality of the superimpositions archived.

The dataset has been generated using 30 3D surface models (10 of each skele-
tal structure studied in this work, i.e. 10 frontal sinuses, 10 clavicles, 10 patellae)
obtained as in the previous chapter (see Section VI.3.1.1). Particularly, frontal sin-
ueses’ models were obtained by manually segmenting CTs (provided by the Hospital
de Castilla la Mancha, Spain) using 3D Slicer 4.5.0-1 [PHK04]. Meanwhile, clavicles
and patellae’ models were obtained by scanning bones (from the bone collection of
the Physical Anthropology Lab at the University of Granada) using a laser range
scanner (Artec SpiderTM 3D scanner). All these 3D models were placed in their
respective most frequent positions in a radiograph [BL13] (a frontal position for
frontal sinus and clavicle’s models, and a lateral one for patella’s models). For each
3D surface model, 10 perspective projections (5 with P7 and 5 with P9) were ran-
domly generated within the ranges showed in Table 14 (these ranges have been set
based on international acquisition protocols [BL13] and are detailed in Chapeter VI
with the exception of the new parameters βx and βy. Notice that, these parameters
are set to 0 with the P7 transformation). The parameters βx and βy have been
added to model small alignment errors in the posterioranterior view for clavicles
and patellae, as well as to model posterioranterior and Water’s views for frontal
sinuses (as stated in Section VII.2). With frontal sinuses, the parameter βy has a
larger range to allow the optimizer to adapt automatically to both posterioranterior
and Water’s views. In addition, the rotation range has been increased to [-40, 40]
to study the robustness of the RCEA to a greater uncertainty on the initial pose
of the 3D model. These projections are generated with a resolution of 2 pixels per
mm, resulting in images of 480 × 600 pixels for frontal sinuses and patellae, and
860 × 700 pixels for clavicles. Lastly, in order to model the occlusions present in
real radiographs, two additional projections were generated with occlusion on the
skeletal structure of 20% and 40% for each of the previous projective projections.
The occlusion ranges are greater than in the previous chapter to test the RCEAs in
a more complex optimization scenario.

VII.3.2 Real dataset

The dataset employed in Experiment III was provided by the Hospital de Castilla-
La Mancha, Spain, and is composed of 180 CTs and 180 radiographs where the
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Table 14: Parameter range of each skeletal structure according to international acquisition proto-
cols [BL13] and expert knowledge.

Parameter
Bone/Cavity

Frontal Sinuses Patellae Clavicles

Image receptor dimension (mm) 240 × 300 430 mm × 350
tx (mm) [-125, 125] [-125, 125] [-210, 210]
ty (mm) [-150, 150] [-175, 175]
tz (mm) [900 - 200, 900 + 200] [900 - 200, 1700 + 200]

rx, ry , and rz (degrees) [-40◦, 40◦]
SID (mm) [1000 - 100, 1000 + 100] [1800 - 100, 1800 + 100]
βx (degrees) [-10◦, 10◦]
βy (degrees) [-50◦, 10◦] [-10◦, 10◦]

frontal sinuses are visible. The data was segmented by two forensic anthropol-
ogy MSc students from the Physical Anthropology lab (PAL) of the University of
Granada. All CTs were segmented by the forensic student A (Andrea Cerezo Valle-
cillo), and all radiographs were segmented by forensic students B (José Manuel Pérez
Jiménez). Furthermore, forensic student A and B performed five segmentations of
40 CTs and 40 radiographs, respectively, to study the intra-expert segmentation
error. Finally, both forensic students, A and B, also segmented 50 radiographs and
50 CTs, respectively, to study the inter-expert segmentation error.

Table 15: Summary of all the parameters of the different RCEAs and their studied values in
Experimentation I

Fixed parameters
General par. Number of evaluations: 50,000

DE p = 100 F = 0.5 Pc = 0.5
L-SHADE rarc = 21 None
CMA-ES None

BIPOP-CMA-ES None

CRO-SL
p0 = 0.42 nLS = 503 F = 0.5

Substrates = (Harmony search, DE, Cauchy Mutation4,
SBX, and BLX-α)

MVMO-SH
fstart =1 dr = 1 GP = 5 pLS = 0.015

Parent selection strategy = sequential selection of the 1st variable,
and the rest randomly5

Parameters to fine-tune N◦conf.

DE
None. DE’s parameters were already

fine-tuned in Chapeter VI)
1

L-SHADE pinit = (15, 20, 25) pb = (0.05, 0.1, 0.15) H = (2, 5, 10) 27

CMA-ES λ & µ = (100 & 15, 40 & 15, d6 & d7). σ = (0.01, 0.1, 0.3) 9

BIPOP-CMA-ES λ & µ = (100 & 15, 40 & 15, d6 & d7). σ = (0.01, 0.1, 0.3) 9

CRO-SL p = (25, 50, 100) δ = (0.1, 0.25, 0.4) 9
MVMO-SH p = (1, 25, d8) As = (5, 10, 25) fend = (1.5, 2.5) 12

1 other values (1, 3) were also studied in a preliminary experimentation with worst performance results.
2 other values (0.15, 0.65) were also studied in a preliminary experimentation with worst performance results.
3 other values (0, 100) were also studied in a preliminary experimentation with worst performance results.
4 the Gaussian Mut. was studied as alternative to the Cauchy Mut. in preliminary experiments with worst

results.
5 the rest of selection strategies were tested in preliminary experiments with worst performance results.
6 d = default value calculated according to the following equation: λ = 4 + b3 ln(n)c. Thus, it is equal to 9

and 10 for P7 and P9, respectively.
7 d = default value calculated according to the following equation: µ = λ/2. Thus, it is equal to 4 and 5

for P7 and P9, respectively.
8 d = default value calculated according to the following equation: 15*number variables. Thus, it is equal

to 105 and 135 for P7 and P9, respectively.



CHAPTER VII. PERFORMANCE ANALYSIS OF THE RCEA FOR CR 101

VII.3.3 Performance metrics

Two GT metrics are employed to objectively measure the quality of the su-
perimpositions archived by RCEAs: GT DICE [Sør48] and the mean reprojection
distance error (mRPD) [vdKPT+05]. The GT DICE metric measures the overlap
between the GT projection’s silhouette (equal to the simulated AM projection but
without any occlusion) and the 2D projection’s silhouette archived by the RCEA.
However, the GT DICE metric and the fitness function (i.e. Masked DICE, see
Section VII.2) are highly correlated (e.g. they are equal in cases without occlusions)
and thus, to avoid any possible bias, the mRPD metric is also employed. mRPD is
an standardized metric for the evaluation of 3D-2D IR methods by computing the
retroprojection error between the transformation obtained by the RCEA and the
GT transformation (see Chapter VI for further details of the utilization of mRPD in
the CR problem). Notice that these metrics can be employed only in simulated CR
problems since in real CR problems the GT projection and the GT transformation
are unknown.

VII.3.4 Experiment I: Fine-tuning of the evolutionary algo-
rithms for the CR problem

VII.3.4.1 Experimental set-up

This experimentation involves the application of six different RCEAs (DE, L-
SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and MVMO-SH) and two kinds of
projective transformations (P7 and P9) for each of the 300 CR cases of frontal si-
nuses to achieve our goal of determining the influence of the evolutionary optimizer
used by the automatic CR method. As mentioned above, this experiment is meant
to fine-tune the six RCEAs. While there are unsupervised methods for parameter
tuning [LIDLC+16], they tend to evaluate a very large number of parameter con-
figurations, making them infeasible for an expensive optimization problem as CR
(since each configuration should be tested over the 300 CR problems to compare
them rigorously). Therefore, we have utilized a grid search where the parameter
values are chosen based on the recommendations present on the RCEA’s original
paper and on expert knowledge about its behaviour. Taking these considerations
into account, the parameter grid shown in Table 15 was designed. Lastly, in order to
allow for a fair comparison, every RCEA will have the same computational resources
with maximum number of 50,000 evaluations.

In summary, a total of 67 parameter configurations were considered, resulting in
20.100 executions. For each of these executions, 10 independent runs were performed
to study the robustness of the RCEAs for solving the CR problem due to their
stochastic component. Thus, 201,000 runs (i.e. superimpositions) were performed.
Each superposition takes 1,000 seconds on average, resulting in an experimentation
of around 55,833 computation hours (2,326 computation days) that performed on
the 50 available cores of computing server Alhambra required “only” around 1,100
computation hours (45 computation days).
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VII.3.4.2 Results

Fig. 48 shows the results obtained by the different RCEAs and their configura-
tions according to the GT DICE metric. The performance varies significantly de-
pending on the RCEA and projective transformation in terms of mean and standard
deviation values. Better results are always obtained with P7 proving that P9 is sig-
nificantly more complex as stated in Section 3, which is confirmed by the Wilcoxon’s
test [Geh65] obtaining a p-value lower than 1 · 10−15 with both metrics. CMA-ES
is an exception obtaining better results with P9 but its results are still significantly
worse than those provided by the other RCEAs with both P7 and P9. Nevertheless,
P9 holds a greater forensic interest since it allows to model radiographical scenarios
that P7 cannot model.

Studying the influence of the different parameters, it can be observed large dif-
ferences for each RCEA, specially with respect to their sensibility to the parameter
choice. L-SHADE presents the more robust behavior since the results are similar for
the different parameter values for each one of the problems. On the contrary, CMA-
ES gives very different results in P7 depending on the parameter values used (in P9
there are very similar). More in detail, the most influential parameter in CMA-ES
seems to be sigma, σ, obtaining better results with higher σ values. In BIPOP-
CMA-ES this tendency is increased, corroborating that σ parameter is clearly more
influential in both problems. By setting an appropriate σ value, BIPOP-CMA-ES
obtains for both problems better results than the majority of the remaining RCEAs
but DE and MVMO-SH. MVMO-SH is very sensitive to the number of particles, p.
In P7, results are clearly different with p=1 and p=25, obtaining two performance
levels based on that parameter value. For P9, results show three very different per-
formance levels, for p=1, p=25, and p=d. In both problems, the results provided
by MVMO-SH with p=1 are worse than the other RCEAs but with p=25 it out-
performs the majority of algorithms, and with p=d, MVMO-SH achieves the best
results overall.

In terms of accuracy and robustness of the best configuration of each RCEA, the
worst performing RCEA (i.e. the sixth position) is CMA-ES (best configuration: λ
= 100, µ = 25, and σ = 0.3). It is followed by L-SHADE (pinit = 25, pb = 0.15,
H = 2, and rarc = 2) and CRO-SL (p = 100, and δ = 0.25) in the fifth and fourth
positions, respectively, closely tied. Neither CMA-ES and L-SHADE nor CRO-SL
can obtain better results than DE, the original RCEA for CR, either with P7 and
P9. BIPOP-CMA-ES (λ = 100, µ = 25, and σ = 0.3) and DE are also closely tied
(taking the third and second positions). Finally, the best RCEA in terms of average
and standard deviation values, and confirmed by the Wilcoxon’s test with p-values
lower than 1 · 10−7 in the comparison with all the other RCEAs, is MVMO-SH (p
= d, As = 4, and Fend = 2.5).

MVMO-SH has greatly improved the previous results both in terms of accuracy
and robustness with P7 (see Chapter VI). MVMO-SH has also successfully solved
a more complex version of the CR problem based on the projective transformation
P9, that allows us to model both posterioanterior and Water’s views, as well as,
being robust to occlusions up to the 40% of their silhouettes and rotation ranges of
up to 80◦([-40◦, 40◦]) in the three axis.
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VII.3.5 Experiment II: Comparison of the RCEAs over all
the CR problems

VII.3.5.1 Experimental set-up

This experimentation involves the application of the best configuration of the
six different RCEAs (DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and
MVMO-SH) from Experiment I to all the 900 CR cases (300 frontal sinuses, 300
clavicles, and 300 patellae) using the two kinds of projective transformations (P7
and P9). The best configuration of the variable parameters of Table 15 for each
algorithm are as follows:

• DE: p = 100, F = 0.5, and Pc = 0.5 (fine-tuned in Chapter VI).

• L-SHADE: pinit = 25, pb = 0.15, H = 2, and rarc = 2.

• CMA-ES: λ = 100, µ = 25, and σ = 0.3.

• BIPOP-CMA-ES: λ = 100, µ = 25, and σ = 0.3.

• CRO-SL: p = 100, and δ = 0.25.

• MVMO-SH: p = d, As = 4, and Fend = 2.5.

In summary, the six RCEAs are applied to the 900 CR cases resulting in 3,000
executions. As in the first experiment, 10 independent runs are performed to avoid
any possible bias caused by the stochastic component of the RCEA, resulting in
30,000 runs/superimpositions and around 200 computation hours (8 days) when
performed using the 50 cores.

VII.3.5.2 Results

Table 16 shows the results obtained by the different RCEAs according to Masked
DICE, GT DICE, and mRPD metrics. In view of those results, the impact of the
considered skeletal structure on the RCEA’s performance depicted in Chapter VI
has been reduced but not eliminated. When a P7 transformation is considered,
the best results are still obtained with frontal sinuses, followed by clavicles and
patellae. This is probably due to the frontal sinus’ silhouettes are more singular
than those from clavicles and patellae. In fact, frontal sinuses are usually employed
for identification [QFS+96], while clavicles and patellae are mainly employed for
short listing [NSGF16, SWCT11]. However, when P9 is considered, clavicles achieve
the best results since the optimization problem to solve with frontal sinuses is more
complex (notice that, βy has a range of 50◦compared with the 20◦of clavicles and
patellae). Nevertheless, frontal sinuses are able to obtain significant results with a
mean error of 0.02 (i.e. an error of only the 2% of the pixels of the silhouette) and
14 mm according to GT DICE and mRPD metrics, respectively. They also show
a low standard deviation of 0.009 and 29 mm for GT DICE and mRPD metrics,
respectively. As in P7, patellae had the last position due to their lower singularity.

In this experiment, MVMO is again the best RCEA for CR in terms of mean and
standard deviation values, as confirmed by the Wilcoxon’s test [Geh65] obtaining a
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p-value equal or lower than 2 · 10−16 in the comparison with the other RCEAs con-
sidering the two metrics and the three bones. The rest of the RCEAs are ranked as
follows: the second best is DE; the third best is BIPOP-CMA-ES, that outperforms
DE in some particular scenarios (e.g. with patellae and P9); followed by L-SHADE
and CRO-SL with no significant differences between them (p-value of 0.166 in the
Wilcoxon’s test); and the worst results are obtained by CMA-ES.

Table 16: Summary of the results according to projective transformation, skeletal structure type,
and RCEA optimizer (Experiment II).

Bone Opt. Proj.
Tran.

Masked DICE GT DICE mRPD
Mean Sd Mean Sd Mean Sd

Frontal
Sinus

CMA-ES P7 0.414 0.140 0.446 0.130 8.736 4.767
P9 0.272 0.067 0.307 0.078 46.306 36.856

BIPOP-
CMA-ES

P7 0.011 0.054 0.015 0.061 0.595 1.998
P9 0.016 0.044 0.029 0.070 15.453 28.762

CRO-SL P7 0.073 0.069 0.111 0.100 2.458 2.930
P9 0.198 0.075 0.249 0.084 44.723 35.268

DE P7 0.008 0.034 0.015 0.048 0.307 1.396
P9 0.048 0.040 0.076 0.066 29.024 31.458

L-SHADE P7 0.079 0.085 0.113 0.110 2.553 3.213
P9 0.147 0.071 0.202 0.091 49.439 31.324

MVMO-SH P7 0.001 0.009 0.002 0.009 0.047 0.369
P9 0.011 0.020 0.021 0.042 14.778 29.968

Clavicle

CMA-ES P7 0.542 0.130 0.564 0.140 22.695 16.785
P9 0.519 0.139 0.537 0.149 32.044 17.304

BIPOP-
CMA-ES

P7 0.089 0.186 0.109 0.220 7.063 17.111
P9 0.132 0.220 0.155 0.246 30.573 29.887

CRO-SL P7 0.107 0.134 0.149 0.178 10.092 18.339
P9 0.133 0.122 0.176 0.153 27.121 16.946

DE P7 0.005 0.021 0.010 0.036 0.461 3.116
P9 0.028 0.053 0.046 0.077 23.024 15.253

L-SHADE P7 0.105 0.142 0.129 0.159 7.396 15.648
P9 0.111 0.149 0.136 0.164 33.862 20.716

MVMO-SH P7 0.001 0.000 0.002 0.002 0.065 0.051
P9 0.004 0.004 0.009 0.009 19.383 14.008

Patella

CMA-ES P7 0.273 0.117 0.330 0.116 15.318 15.878
P9 0.268 0.136 0.326 0.122 22.001 15.865

BIPOP-
CMA-ES

P7 0.016 0.024 0.045 0.063 9.486 19.605
P9 0.019 0.028 0.053 0.072 22.163 25.054

CRO-SL P7 0.043 0.033 0.096 0.070 12.395 19.434
P9 0.080 0.054 0.152 0.092 22.558 19.350

DE P7 0.014 0.022 0.045 0.057 7.057 16.320
P9 0.025 0.026 0.073 0.073 21.411 20.970

L-SHADE P7 0.096 0.083 0.143 0.089 14.228 23.969
P9 0.146 0.144 0.184 0.134 28.048 23.771

MVMO-SH P7 0.003 0.010 0.009 0.026 2.650 13.130
P9 0.006 0.011 0.026 0.044 17.151 18.216

Table 17 shows the mean and standard deviation, according to the Masked DICE
metric, of each RCEA and projective transformation after 5,000, 10,000 and 50,000
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Table 17: Summary of the Masked DICE metric results according to bone/cavity type, projective
transformation, and RCEA optimizer at 5,000, 10,000 and 50,000 evaluations (Experiment II).

Opt N. Ev.
P7 P9

Mean Sd Mean Sd

CMA-ES
5,000 0.429 0.168 0.418 0.163
10,000 0.422 0.169 0.391 0.167
50,000 0.410 0.169 0.351 0.169

BIPOP-CMA-ES
5,000 0.174 0.180 0.221 0.200
10,000 0.079 0.159 0.109 0.186
50,000 0.053 0.137 0.075 0.167

CRO-SL

5,000 0.087 0.098 0.168 0.120
10,000 0.078 0.094 0.146 0.109
50,000 0.072 0.092 0.134 0.102

DE

5,000 0.096 0.061 0.152 0.080
10,000 0.036 0.036 0.078 0.052
50,000 0.009 0.027 0.034 0.042

L-SHADE

5,000 0.094 0.109 0.142 0.130
10,000 0.093 0.108 0.135 0.128
50,000 0.093 0.108 0.135 0.128

MVMO-SH

5,000 0.241 0.138 0.338 0.171
10,000 0.157 0.096 0.269 0.145
50,000 0.001 0.007 0.006 0.013

evaluations. Meanwhile, Fig. 49 reports the average time required by the RCEAs to
reach a stop condition and the average results obtained according to the GT DICE
metric. In view of Table 17, the convergence speed of MVMO-SH is lower than that
of the other RCEAs, needing almost all the 50,000 evaluations to obtain significant
results in terms of accuracy and robustness. On the contrary, the other RCEAs
have a similar performance with 10,000 and 50,000 evaluations, and the only one
showing acceptable results with only 10,000 evaluations is DE. However, after the
50,000 evaluations limit, the best RCEA in terms of time is also MVMO-SH (as can
also be seen in Fig. 49). In that figure, we can also observe that every algorithm
except CMA-ES, and sometimes DE, does not stop due to the maximum number
of evaluations condition but to the premature convergence (worse case) or good
superimposition (best case) stop conditions. CRO-SL and L-SHADE stops more
than 90% of times for premature convergence, while BIPOP-CMA-ES stops for good
superimposition more than half of the times. The most frequent stopping condition
reached by MVMO-SH is the good superimposition in 92% of all executions, while
the converged condition arises in 7%, and the maximum number of evaluations
condition only in 1% of runs (see Fig. 50). Thus, MVMO-SH has obtained an
improvement in accuracy, robustness, convergence, and run time in the solution of
the CR problem. In general, every RCEA (but CMA-ES, and DE for P9) is not
limited by the maximum number of evaluations and thus no further improvements
are to be expected with further run times.
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Figure 49: (Top) Boxplots of the time required to perform a superimposition according to projective
transformation and RCEA optimizer. (Bottom) Relation between the average time (seconds) and
the GT DICE metric according to projective transformation and RCEA optimizer (Exp. II).

Figure 50: Boxplots of stop condition (defined in Section VII.3) reached by the optimization process
according to skeletal structure, projective transformation and RCEA optimizer.
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VII.3.6 Experiment III: Testing the identification capability
of our 3D-2D IR-based CR framework with frontal
sinuses

VII.3.6.1 Experimental set-up

This experimentation studies the identification capability of the proposed 3D-
2D IR-based CR framework using frontal sinuses and the best RCEA configuration
(MVMO-SH with p = d, As = 4, Fend = 2.5, and P9). It is divided into 5 blocks or
individual studies:

1. Reliability study: comparison of 180 radiographs against 180 CTs, in order
to study the identification capability of frontal sinuses using the proposed IR
framework.

2. Radiograph intra-expert study: comparison of 5 segmentations performed by
the same forensic expert on 40 radiographs against 40 CTs.

3. Radiograph inter-expert study: comparison of 2 segmentations performed by
different forensic experts on 50 radiographs against 40 CTs.

4. CT intra-expert study: comparison of 5 segmentations performed by the same
forensic expert on 40 CTs against 40 radiographs.

5. CT inter-expert study: comparison of 2 segmentations performed by different
forensic experts on 50 CTs against 40 radiographs.

In summary, 32,400 comparisons are performed in the reliability study (1), 8,000
in the radiograph intra-expert study (2), 5,000 in the radiograph inter-expert study
(3), 8,000 in the CT intra-expert study (4), and 5,000 in the CT inter-expert study
(5). A total of 58,400 CR comparisons, or CR cases. Since previous experiments have
already shown the robustness of MVMO-SH, and due to the large computational
cost of employing again 10 repetitions, only 2 independent runs are performed. Each
of the 116,800 runs takes on average 1,000 seconds, resulting in 32,445 hours of
computation (or 1,352 computation days) that, performed on the 50 available cores
of computing server Alhambra, required “only” around 650 computation hours (27
computation days).

VII.3.6.2 Results

Promising results have been obtained (see Fig. 51). In the reliability study,
positive and negative cases have shown important differences in terms of fitness
according to the Masked DICE Metric (see Fig. 52). However, this metric alone is
not sufficient to precisely distinguish between positive and negative cases.

Therefore, the results are reported using CMC curves to study the identification
capabilities of the proposal as done in [CAICW18] and in Chapter VI. To focus on
the identification reliability of the method only the best run (out of two) of each
experiment is considered. The results of the reliability study are significant (see Fig.
53). The positive case ranks in the first position in 50% of the cross-comparisons
(out of 180 candidates, 0.5% of the total sample). It ranks in the first 10 positions
in 80% of the times (5.5% of the sample). Finally, to reach a confidence level of
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Figure 51: (Left) An example of a positive case, radiograph A compared against CT A; (Right)
Example of negative cases, radiograph A compared against CTs A, B and C.
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Figure 52: Boxplots of the minimum error of positive and negative cases according to the Masked
DICE metric.

100% of success, we have to consider the first fifty positions (27% of the sample),
i.e., in all the 32,400 cross-comparisons we will always find the positive case among
the first fifty positions. One direct implication of this result is that the current
framework with a very preliminary version of the decision making stage, based only
on the value of the Masked DICE metric, is able to filter out 73% of the possible
candidates with 0 error rate in a fully automatic manner.

Furthermore, the superimposition framework is robust to intra-expert (see Fig.
54) and inter-expert (see Fig. 55) segmentation errors in radiographs and in CTs,
since results hardly vary between segmentations. In radiographs, the intra-expert
error is small and barely affects the identification power of the proposed framework.
Meanwhile, the inter-expert segmentation error has a greater effect, remarking the
importance of automating the segmentation of radiographs. Nevertheless, the pos-
itive cases always rank within the first 30% of the cases with both segmentations.
Lastly, in CTs, both the inter and intra segmentation errors are insignificant since
the segmentation of skeletal structures in volumetric images is simpler and better
defined than in radiographs. This is due to the fact that they do not suffer from
fuzzy and overlapping boundaries as in radiographs.
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Figure 53: CMC curve of the comparison of 180 radiographs against 180 CTs.
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Figure 54: CMC curves of the intra-expert study (five segmentations perfomed by the same an-
thropologist; 40×40 comparisons per segmentation): (Left) Radiographs; (Right) CTs. In CTs,
the intra-expert variation is non-existent and therefore only one curve is observed instead of five
as they completely overlap.
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Figure 55: CMC curves of the inter-expert study (two different segmentations performed by two
different anthropologists; 50×50 comparisons per segmentation): (Left) Radiographs; (Right) CTs.
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Chapter VIII

Conclusions and future works

“And once the storm is over, you won’t remember how you made
it through, how you managed to survive. You won’t even be sure,
whether the storm is really over. But one thing is certain. When
you come out of the storm, you won’t be the same person who walked
in. That’s what this storm’s all about.” — Haruki Murakami

VIII.1 Conclusions

We have presented a novel framework for automating the comparison of 2D
ante-mortem and 3D post-mortem materials, e.g. X-ray images and computed to-
mographies (or 3D surface scans), respectively. As a general description, the inputs
of the proposed framework are the ante-mortem radiographs of all potential candi-
dates and the 3D post-mortem images of the deceased (scanned with a laser range
scanner or with a computed tomography scan), while the output is a short list of po-
tential matches. To this end, we have divided the problem into three tasks or stages,
segmentation, superimposition, and decision making, and we have automated each
of them using artificial intelligence (in particular, soft computing) techniques.

In the first stage, skeletal structure segmentation, several new deep architectures
are proposed to deal with this complex problem. First, X-Net focuses on improving
the segmentation accuracy in images of 256× 256 (the conventional resolution used
in the literature). Second, RX-Net represents a simplification of X-Net focused on
reducing the required computational resources (training memory and time) without
significant loss in the original accuracy. Finally, X-Net+ and RX-Net+, are exten-
sions of the former architectures that allow us to work with images up to 1024×1024,
maintaining the original relation between filter’s field-of-view and feature maps, and
to transfer the learning from their precedent versions (X-Net and RX-Net, respec-
tively, for images of 1024×1024).

Our best performing proposal for clavicle segmentation, X-Net+ for single-class
segmentation obtains better results than the state-of-the-art methods with an aver-
age error of 0.884 (JI), 0.939 (DICE), and 18.022 (HD). The quantitative evaluation
of our X-Net architectures by means of a rigorous experimental design protocol (10-
fold cross validation, rankings and statistical tests) shows the empirical advantages
of employing them in this task. Overall, the single-class training approach achieved
better segmentation than the multi-class approach. This shows that multi-task
learning is not always the best solution, despite its success in many other applica-
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tions, and it must be analyzed for every particular problem separately. Further-
more, we have empirically shown, by comparing RX-Net and RX-Net+ for images
of 1024×1024, that re-sizing a network to fit an input alters the relation between
filter’s field-of-view and the feature maps leading to a change in its behaviour. In
our case, this change has significantly worsened the results of RX-Net obtaining the
worst results among our proposals, meanwhile RX-Net+ has been ranked in the
top 5. Meanwhile, X-Net+ outperforms all the other proposed architectures for the
segmentation of frontal sinuses in head radiographs. Furthermore, multi-class learn-
ing approaches have shown to be better suited for the frontal sinuses and occlusion
region segmentation problem, since both structures are strongly related. Multi-class
X-Net+ has obtained segmentation errors of 0.668 (JI), 0.801 (DICE), and 20.799
(HD). Despite the low values of the JI and DICE metrics, the obtained segmenta-
tions are of high quality. The underlying reason is that there is not an anatomical
limit between the frontal sinuses and the occlusion region. Thus, these limits vary
significantly between the predicted segmentations and the GT segmentations. These
variations bias the JI and DICE metrics. Nevertheless, the HD metric is more robust
to the this problem regarding the fuzzy boundaries of the frontal sinuses, allowing
to successfully measure the quality of the segmentation results.

The second stage is devoted to the calculation of the ante-mortem and post-
mortem overlay. We have tackled the superimposition problem using an evolutionary
3D-2D IR approach based on the silhouette of the skeletal structure. We have
studied three projective transformations (orthographic with 6 degrees of freedom,
simple perspective with 7 degrees of freedom, and perspective with 9 degrees of
freedom) and several numerical optimizers (e.g. BOBYQA), ad-hoc variants of
numerical optimizer (EG-BOBYQA), and advanced RCEAs (DE, L-SHADE, CMA-
ES, BIPOP-CMA-ES, CRO-SL, and MVMO-SH).

In summary, after a detailed analysis of the results obtained by the different
RCEAs, we can conclude that the underlying optimization problem within compar-
ative radiography is really complex for reasons such as the strong correlation among
the parameters, their order of magnitude, the strong multimodality of the search
space, and the high computational cost. We also confirmed there is a strong influence
of the kind of RCEA employed. Advanced RCEAs such as CMA-ES, L-SHADE, and
CRO-SL have not been able to obtain accurate results despite their good behavior
in other real-world optimization problems. Nonetheless, promising results have been
obtained with MVMO-SH overcoming BIPOP-CMA-ES and DE. The best configu-
ration of MVMO-SH allowed us to obtain accurate superimpositions with an error
lower than the 1% of the pixels for the simple perspective projection and lower
than the 3% for the complete perspective projection in all the studied skeletal struc-
tures (frontal sinuses, clavicles, and patellae). Despite of its stochastic nature, it
also showed a robust behaviour with a low standard deviation (frontal sinuses, 1%
for the simple perspective projection and 4% for the complete perspective projec-
tion; clavicles, 1% with the simple and the complete perspective projection; and
patellae, 3% for the simple perspective projection and 5% for complete perspective
projection) according to the GT DICE metric. Furthermore, by using MVMO-SH,
the strong dependency on the kind of bone or cavity is greatly reduced obtaining
accurate results with every skeletal structure under study.

We have compared 180 skull radiographs against 180 skull CTs, where the frontal
sinuses were segmented by forensic anthropology master students at the Physical
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Anthropology lab (PAL) of the University of Granada. The positive case ranks in
the first position (out of 180 candidates, 0.5% of the total sample) in 50% of the
cross-comparisons. It ranks in the first 10 positions in 80% of the times (5.5% of
the sample). Finally, to reach a confidence level of 100% of success, we have to
consider the first 50 positions (27% of the sample). That is to say, in all the 32,400
cross-comparisons we will always find the positive case among the first 50 positions.
One direct implication of the latter result is that the current framework with a very
preliminary version of the decision making stage, based only on the value of the
Masked DICE metric, is able to filter out 73% of the possible candidates with 0 error
rate in a completely automatic way. Furthermore, the superimposition framework
is robust to both intra-expert and intra-expert segmentation errors in radiographs
and in CTs, since results hardly vary between segmentations (specially with CTs).

In conclusion, we have managed to automate the IS and IR tasks within the
CR-identification process with promising results, as well as to design a preliminary
version decision making stage, obtaining a significant performance in terms of accu-
racy and robustness even in the most complex version of the problems. The main
drawback is the computation time required to obtain the superimpositions that, in
spite of having been reduced to its minimum, is still high.

VIII.2 Future works

This is the first and probably most complex work of a future system intended to
fully automate CR. However, there is still work to do before the framework is fully
developed and validated:

• With respect to the IS framework, the first future work will be to design
and validate an ad-hoc metric robust to the subjectivity of the limits between
the frontal sinuses and the occlusion region. This new metric will prioritize
the quality on the upper region of the frontal sinuses, due to its greater impor-
tance for identification. This new metric will allow to better train ConvNets
for the given task and, consequently, to significantly improve the segmenta-
tion results in terms of utility for the CR task. Furthermore, we also aim to
study the capability of our proposals to be applied to other problems, such as
the segmentation of different sets of skeletal structures, different datasets, and
different kinds of radiographs. Third, we aim to adapt our methods to the vol-
umetric medical IS scenario following an approach similar to V-Net [MNA16].
Lastly, we would like to further study network simplifications following an
automatic pruning approach as in ThiNet [LZZ+19].

• Meanwhile, regarding the 3D-2D IR framework, future research is planned
to reduce the run time required by studying evolutionary multi-resolution IR
methods, surrogate assisted approaches [HVC16], and computation on GPUs.

• In the decision-making problem, we plan to fully develop and validate the
designed hierarchical decision support system. In particular, we firstly plan
to develop and validate the fourth (criteria) and third (superimposition) lev-
els using frontal sinuses radiographs. Once these two levels are successfully
developed and validated, we will tackle the second level (skeletal structure)
using several superimpositions of frontal sinuses. Afterwards, we will validate



CHAPTER VIII. CONCLUSIONS AND FUTURE WORKS 115

these three levels with other skeletal structures (such as clavicles, patellae,
etc). Lastly, we will tackled the first level (subject), which will aggregate all
the information available of the same subject, considering multiple skeletal
structures and superimpositions.

• Once the three stages have been developed and validated independently, we
plan to validate them jointly.

• Finally, we plan to study the identification reliability of different bones and
cavities (both separately and combined) for the CR task [PTB11] through a
collaboration with the Israel National Centre of Forensic Medicine and the
Hebrew University of Jerusalem.

VIII.3 Publications
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PhD dissertation.
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[KK11] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in
fully connected CRFs with gaussian edge potentials. In Advances
in neural information processing systems, pages 109–117, 2011.

[KLP+13] Deog-Im Kim, U-Young Lee, Sang-Ouk Park, Dae-Soon Kwak,
and Seung-Ho Han. Identification using frontal sinus by three-
dimensional reconstruction from computed tomography. Journal
of Forensic Sciences, 58(1):5–12, 2013.

[KPY+15] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi,
Lu Yang, and Dongjun Shin. Compression of deep convolutional
neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

[KSF05] Michael G Koot, Norman J Sauer, and Todd W Fenton. Radio-
graphic human identification using bones of the hand: A valida-
tion study. Journal of Forensic Sciences, 50(2):263–268, 2005.



130 CHAPTER IX. BIBLIOGRAPHY

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages 1097–
1105, 2012.

[KTK08] Sudhir Kapoor, Akshay Tiwari, and Saurabh Kapoor. Primary
tumours and tumorous lesions of clavicle. Int Orthop, 32(6):829,
2008.

[KWG02] Nigel J Kirk, Robert E Wood, and Marc Goldstein. Skeletal iden-
tification using the frontal sinus region: a retrospective study of
39 cases. Journal of Forensic Sciences, 47(2):318–323, 2002.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Hender-
son, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel.
Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

[LBD+90] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Hen-
derson, Richard E Howard, Wayne E Hubbard, and Lawrence D
Jackel. Handwritten digit recognition with a back-propagation
network. In Advances in neural information processing systems,
pages 396–404, 1990.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436, 2015.

[LBOM12] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Müller. Efficient backprop. In Neural networks: Tricks of the
trade, pages 9–48. Springer, 2012.

[LCC+18] Jiamin Liu, Jinzheng Cai, Karthik Chellamuthu, Mohammadhadi
Bagheri, Le Lu, and Ronald M Summers. Cascaded coarse-to-fine
convolutional neural networks for pericardial effusion localization
and segmentation on CT scans. In 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), pages 1092–1095,
April 2018.

[Lev44] Kenneth Levenberg. A method for the solution of certain non-
linear problems in least squares. Quarterly of Applied Mathemat-
ics, 2(2):164–168, 1944.

[LHL+18] Baiying Lei, Shan Huang, Ran Li, Cheng Bian, Hang Li, Yi-Hong
Chou, and Jie-Zhi Cheng. Segmentation of breast anatomy for
automated whole breast ultrasound images with boundary regu-
larized convolutional encoder–decoder network. Neurocomputing,
321:178 – 186, 2018.
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[MBB14] Xanthé Mallett, Teri Blythe, and Rachel Berry. Advances in foren-
sic human identification. CRC Press, 2014.

[MCA+05] Zulkepli Majid, Albert K. Chong, Anuar Ahmad, Halim Setan,
and Abdul Rani Samsudin. Photogrammetry and 3D laser scan-
ning as spatial data capture techniques for a national craniofacial
database. The Photogrammetric Record, 20(109):48–68, 2005.

[MdlHVdDLB10] Stella Martin-de-las Heras, Aurora Valenzuela, Juan
de Dios Luna, and Manuel Bravo. The utility of dental
patterns in forensic dentistry. Forensic Science International,
195(1-3):166–e1, 2010.

[Mer15] Domingo Mery. X-ray Testing, pages 1–33. Springer International
Publishing, Cham, 2015.

[Mes14] Pablo Mesejo. Automatic segmentation of anatomical structures
using deformable models and bio-inspired/soft computing. PhD
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