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In this work, a compact affordable and portable spectral imaging system is presented. The system is intended to be employed in
general applications, such as material classification or determination of the concentration of chemical species together with
colorimetric sensors. The imaging device is reduced to a small digital color detector with an active area of 3 × 2mm2. This
device provides a quantification of the incident emission in the form of four digital words corresponding to its averaged
components blue, green, red, and near infrared. In this way, the size of the image is reduced to one pixel. The wavelength
selection is carried out by means of a LED array disposed surrounding the color detector. The LEDs are selected to cover the
wavelength range from 360 to 890 nm. A sequential measurement protocol is followed, and the generated data is transmitted to
an external portable device via a Bluetooth link where a classification protocol is implemented in a custom-developed Android™
application. The presented system has been applied in three different scenarios involving material classification, meat freshness
monitoring, and chemical analysis. The analysis of the data using principal components shows that it is possible to find a set of
wavelengths where the classification of the samples is optimal.

1. Introduction

Imaging spectrometry was firstly defined by Goetz et al. in
1985 [1] “as a major advance in remote sensing which con-
sists of the acquisition of images in many narrow contiguous
spectral bands throughout the visible and solar-reflected
infrared spectral bands simultaneously”. With this technique
it is possible to acquire a complete reflectance spectrum for
each picture element (pixel) in the image that it is considered
as a cube of information [2]. The term hyperspectral refers to
the multidimensional character of the spectral data set. The
technique is known as multispectral imaging when the
images are acquired at several discrete wavelengths in the
considered range of the spectrum, usually 6 to 10 or even less
[3, 4]. Imaging spectrometry is usually applied over a wide
range of wavelengths covering from ultraviolet (UV) at
380nm to near infrared (NIR) up to 1100nm. It combines
two methodologies, spectroscopy and imaging. The imaging

part of this technique provides the intensity at every pixel
of the image, whereas the spectrometry side generates a single
spectrum for the same element [5]. Spectral imaging was
introduced as a technique for remote sensing. Since then, this
analysis technique has expanded to many other fields, and
nowadays it is applied in a diversity of areas such as agricul-
ture, military, environment, geography, medicine, and nutri-
tion, among others. [6–11].

The main components that comprise a typical spectral
imaging system are lighting system, focusing optics, detec-
tion system, and wavelength selector. The design of the illu-
mination system is mostly determined by the method for
wavelength selection. First studies on multispectral imaging
systems employed a monochrome digital camera to collect
the reflected light of the previously filtered illumination
[12]. Other systems filter or disperse the reflected light to
select the desired wavelength [13, 14]. More recently, wave-
length selection is directly achieved within the illumination
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source by illuminating the sample with quasimonochromatic
light. Programmable light sources are commonly used in
these kinds of systems [15]. Nowadays, the expansion of very
effective light-emitting diodes (LEDs) that are invariant and
remarkably stable as compared with white lights has enabled
the development of LED-based multispectral imaging sys-
tems [16, 17]. Conventional spectral imaging systems
include complicated illumination sources, delicate optics,
and high-resolution cameras [18–21], so they tend to be
expensive and fragile laboratory equipment. Moreover,
the system control and the data collection and processing
are usually implemented in a personal computer (PC).

In a previous work, the authors presented a compact
multispectral system based on a Raspberry Pi module [22].
The low cost and compact size of this camera module, facing
other in the market, as well as the processing capacity of the
Raspberry in a compact and portable instrument, makes this
novel system suitable for a variety of applications. Following
these design criteria, that is, portability, low cost, and wide
range of applications, a new prototype is developed and pre-
sented here. The novelty of this instrument lies in the image
detector employed and the classification software imple-
mented as an Android™ application. While the previous sys-
tem, as it happens in most of the described multispectral
systems, was based on a camera for the image acquisition, a
simple digital color detector is used in this work. This device
provides the red, green, blue, and infrared (R, G, B, and IR)
components of the incident light on a small active area in a
form of 16-bit digital words. This is considered as an image
of only one pixel, which can be representative of an extensive
and homogeneous area, meaning that the texture and color of
the sample are constant on the whole surface. In this way, the
complexity of the system and the generated data is reduced,
and the color depth is improved in comparison with the
images generated with classical CMOS cameras. These
one-pixel images are transmitted to a remote portable device
such as a smartphone or a tablet where the results of the
classification process are presented.

The system has been evaluated in three different scenar-
ios. In the first one, a material classification has been carried
out to analyze several kinds of white sheets of paper. In the
second experience, a package of fresh pork meat has been
monitored during eight days. In the third experiment, the

instrument has been applied to measure the concentration
of potassium in water solutions at pH9. With a simple
dimensionality reduction technique (principal component
analysis) combined with a standard low-complexity classifi-
cation tool (support vector machine), it is possible to deter-
mine at which wavelengths the samples can be separated
with high precision. The classification algorithm has been
implemented as an Android application to be used in a smart
device that communicates with the developed instrument via
a Bluetooth protocol.

2. System Description

As it has been exposed in the previous section, the presented
system has been developed as a low cost portable multispec-
tral imaging system where the imaging device is a digital
color detector that generates 1-pixel images. These data are
transmitted through a Bluetooth protocol to a portable device
(smartphone or tablet) or through a USB connection to a
computer that completes the system. In both devices, the data
are processed and presented to the user. The scheme of the
developed system, which is exposed in detail in the following
sections, is presented in Figure 1.

2.1. Instrument Design. The portable instrument is shown in
the picture of Figure 2(a). The printed circuit board has
dimensions of 8 × 12 cm2, and it is enclosed in a black box
of dimensions 9 × 15 × 3 cm3 to avoid external illumination
interference. This box has an aperture facing the sensing area
of the instrument composed of the imaging device and the
light source. The instrument is placed directly on the surface
of the sample to be analyzed; in this way, the distance to the
LED array and the imaging device is always the same as
depicted in Figure 2(b).

The imaging device is the color detector model
S11059-02DT (Hamamatsu Photonics K.K., Japan), which
is an I2C interface-compatible digital detector sensitive to
red (575 to 660nm, λpeak = 615 nm), green (455 to 630 nm,
λpeak = 530 nm), blue (400 to 540 nm, λpeak = 460 nm), and
near infrared (700 to 885nm, λpeak = 855 nm) radiations.
The incident light is directly codified into words of 16 bits
of resolution. The sensitivity and integration time can be
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Figure 1: Scheme of the presented system.
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adjusted so that light measurements can be performed over a
wide range. This device presents a photosensitive area of
0 56 × 1 22mm2.

The light source consists of a LED matrix surrounding
the color detector. The selected models are the following:
VLMU1610-365-135, VLMU3100 (Vishay Intertechnology
Inc., USA), LD MSVG-JGLH-46-1 (OSRAM Opto Semicon-
ductors GmbH, Germany), AA3021ZGSK, APTR3216PGW,
APT2012NW,APT2012SRCPRV (Kingbright Electronic Co.,
Ltd., China), SML-LX15HC-RP-TR (Lumex Inc., USA),
VSMG2700, and VSMF3710 (Vishay Intertechnology Inc.).
The emission peaks of these LEDs are, respectively, 367, 405,
455, 515, 555, 610, 655, 700, 830, and 890 nm as it can be
observed in Figure 3(a), where the normalized emission
spectra of the LEDs are depicted.

There are two LEDs of each model in the array disposed
in symmetrical positions as presented in Figure 3(b). In this
way, the color detector is always placed in the middle of every

two LEDs of the same model. The distribution of the array in
couples of LEDs is aimed to generate a uniform irradiance
distribution on the sample. It is known that for a two-LED
array the irradiance is homogenous at a distance z if the LEDs
are separated a maximum distance d given by [23, 24]

d = 4
m + 3 ⋅ z, 1

wherem is a number that depends on the relative position of
the LED-emitting region from the curvature center of the
spherical encapsulant. The value of m is given by the angle
θ1/2 defined as the view angle when irradiance is half of the
value at 0° (value typically provided by the manufacturer):

m = −ln 2
ln cos θ1/2
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Figure 3: Normalized emission spectra of the LEDs (a) and scheme of the distribution of the LEDs (b).
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Figure 2: Portable instrument (a) and measurement disposition (b).
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In the presented work, the distance to the sample is deter-
mined by the height of the box (see Figure 2(b)) which is
3 cm. For the selected LED, the angle θ1/2 ranges from 60 to
70°, therefore the value of m in equation (2) varies from
0.65 to 1. This range leads to a maximum distance between
LEDs of 3 to 3.14 cm for a distance to the sample z = 3 cm.
In the design of the LED matrix of Figure 3(b), the distance
of the LEDs in couple ranges from 2.2 cm in the middle of
the square to 3 cm from corner to corner. These values guar-
antee that the irradiance on the sample is homogeneous. The
wavelength selection is carried out activating the LEDs
sequentially in a growing wavelength.

All the LEDs have been biased at their typical forward
voltage by applying a voltage of 5V to the serial combination
of every LED and a resistor of 220Ω. In this situation, the
LEDs showed a stable radiance with intensity dispersion
below 0.1%. This configuration produces different intensities
for different LED models. In order to generate a uniform
response of the system, the integration time for each wave-
length is defined so that the product Ie × T i (intensity of
emission multiplied by the integration time) is constant. In
this way, the integration time associated with a wavelength
with a low-intensity emission is higher than the time corre-
sponding to a wavelength generated by a high-intensity
LED. These integration times range from 35 to 700ms.

The microcontroller used in this design is the model
PIC18F2550 (Microchip Technology Inc., USA). This device
integrates a full speed USB 2.0 (12Mbit/s) interface that has
been used for calibration purposes. The microcontroller acti-
vates the LEDs of the light source and receives the output of
the digital color detector. It transmits these results to an
external computer through the USB port or to a remote
device via a Bluetooth connection. To implement this wire-
less communication, a Bluetooth module RN-42 (Microchip
Technology Inc.) is included in the design. This module com-
municates with the microcontroller through a two-wire serial
protocol and integrates a small antenna.

2.2. Android Application. A user-friendly Android applica-
tion was developed to use a smartphone as the external
reader and processing unit of the multispectral imaging
device. The instrument is connected to the smartphone for
bidirectional data transmission using the Bluetooth interface.
The chosen integrated development environment (IDE) to
code the application was Android Studio 3.1.3. The applica-
tion was designed and tested against API 24 (Android 7.0)
using a Samsung smartphone model Galaxy S7, although it
supports different Android versions as the lowest API level
compatible with the application is API 18 (Android 4.3).

The application user interface consists of two screens.
The first one, shown in Figure 4(a), allows a generic use of
the multispectral imaging device. The user can choose
between a sequential measurement throughout all the fre-
quencies or the selection of a particular wavelength by means
of a slider control. After the measurement is done, the results
of the R, G, B, and IR components for each wavelength
can be consulted in a plain text report that is saved in
the internal memory of the smartphone. Figure 4(b) shows
the second user interface of the application, where the user

can choose among the three different classification scenarios
in which the system has been evaluated. The processing
algorithm is changed accordingly to the chosen scenario,
and the final results of the measurement are directly dis-
played on the screen.

3. Results and Discussion

The presented system has been applied in three different sce-
narios with very diverse objectives. The aim is to prove the
applicability of this instrument in a wide range of fields.

Automatic classification is one of the main applications
of spectral imaging [25, 26]. In the first experience, the sys-
tem has been used to analyze several kinds of white paper
with the objective of developing a classification algorithm
from the generated data (Scenario I).

In the second experience, a package of fresh pork meat
has been monitored during 8 days while it was stored at
4°C (Scenario II). It is known that the packaged meat is
affected by the microbial activity, which is the main respon-
sible for the food spoilage [27]. Although the external appear-
ance of the meat might not be altered to the naked eye, this
bacterial growth, which increases with the storage time, pro-
duces quality degradation [28]. The objective of this experi-
ence is to analyze the packaged meat daily in order to
develop a prediction algorithm that is able to estimate the
storage time of packaged meat and, therefore, the status of
the content.

In the third experiment, the instrument has been applied
to measure the concentration of potassium in water solutions
at pH9 (Scenario III). For this purpose, a potassium sensitive
membrane has been used. The reagents used to prepare the
sensing membrane were 0.8mg of dibenzo18-crown-6-ether

(a) (b)

Figure 4: User interfaces of the developed Android multispectral
imaging application for (a) a generic use of the instrument and (b)
a specific scenario-based use.
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(DB18C6) as ionophore, 1.3mg of 1,2-benzo-7-(diethyla--
mino)-3-(octadecanoylimino) phenoxazine (liphophilized
Nile Blue) as lipophilic pH indicator, 63.0mg of
o-nitrophenyloctylether (NPOE) as plasticizer, 1.1mg of
potassium tetrakis (4-chlorophenyl)-borate (TCPB) as
lipophilic salt and 26.0mg of polyvinyl chloride (PVC) as
polymer, all dissolved in 1mL of tetrahydrofurane (THF)
[29, 30]. Once dissolved, 60μL of the sensing cocktail is

dropped by spin coating on a Mylar sheet, obtaining in
this way a round-shape sensing membrane whose color
changes depending on the potassium concentration when
it is introduced for 3 minutes in the sample, working in
the range from 10-5 to 0.95M of potassium.

In each of the three scenarios, each measurement is a
four-dimensional vector xλ, where λ is the LED-emitting
wavelength. We consider ten different values of the emitting
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Figure 5: Two-dimensional projection with PCA of the dataset in Scenarios I (a), II (b), and III (c) at three wavelengths. Legend in (c) refers to
logarithmic pH values.
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wavelength (see Figure 2) and a total of six measurements per
wavelength. Figures 5(a)–5(c) shows the resulting data pro-
jected in a two-dimensional space using principal component
analysis (PCA) for representative wavelengths where the data
is visually separated among classes. Data has been standard-
ized to have zero mean. In Figure 5(a), the results for
Scenario I when λ = 700 nm are shown. In Figure 5(b),
Scenario II when λ = 405 nm is depicted. Figure 5(c) shows
Scenario III when λ = 515 nm. In all cases, data points corre-
sponding to the same class (paper, days of storage, or potas-
sio concentration) cluster together, reasonably separated
away (compared to the cluster variance) from data corre-
sponding to other classes.

To assess the performance of a classifier that uses the
low-dimensional measure embedding described in Figure 6,
we compare the average classification test error rate for each
wavelength for a linear support vector machine (SVM) [31]
when the 30% of the data is left out for test. Each experiment
is repeated 1000 times for different train/test partitions. The
results are shown by means of a box plot, where the dashed
central line shows the median of the empirical distribution
of the error along the 1000 repetitions of the experiment,
the box boundaries represent the first and 3 quartiles of the
error, and the lines outside the boxes represent the extreme
error values in the sample. It can be observed that the error
rate heavily depends on the wavelength, but for every case
we can find a wavelength λ for which the error mode is close
to zero. Further, only results for Scenarios II and III are
presented, as for Scenario I the error rate for all wavelengths
is zero (i.e., a linear classifier perfectly separates the available
data no matter the choice of the training set). For Scenario II,
the average error rate is minimized at λ = 515 nm (2.25%),
and for Scenario III the average error rate is minimized
at λ = 655 nm (0.4%).

Further, the normalized inverse distance to the SVM
decision boundary can be used as an approximation to

the classifier’s probabilistic confidence [32]. In the experi-
ments summarized in Figure 6, it is numerically observed
that the confidence in the right class is typically 10 times
larger than for the rest of the classes. For instance, in Sce-
nario II, the average confidence in the right class is 0.567,
while for the rest of the classes the average confidence is
only 0.042.

The results described above demonstrate that the pro-
posed portable multispectral imaging system is able to
provide discriminative measurements using only four light
bands, and hence it can be used for cheap low-complexity
detection device for a wide set of potential industrial
applications.

The previous experiments have been repeated using the
CMOS camera of a smartphone instead of the color detector,
maintaining the same geometry presented in Figure 2. Since
the analyzed samples are homogeneous in texture and color,
only 1 pixel of the photography provided by the camera is
considered. In this scenario, the difference in the two sets of
experiments, the one carried out with the color detector
and the other with the CMOS camera, is only the color depth
(16 bits for the color detector and 8 bits for the CMOS cam-
era). The prediction errors generated with both systems are
presented in Table 1. As it can be observed, the error rates
in the prediction where the analysis is carried out with the
CMOS camera are much higher than the ones obtained with
the original system.

4. Conclusions

In this work, we have presented a prototype of a multispectral
imaging system for general purposes. It is based on the use of
a high-resolution digital color detector as the imaging device
and a LED panel for the wavelength selection. The color
detector generates one-pixel images in a four-dimension
space (R, G, B, and IR) that are considered representative of
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Figure 6: Classification performance for Scenario II (a) and Scenario III (b) using a linear SVM classifier trained over 70% of the
available data.
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an extensive homogeneous area. These images are transmit-
ted to a remote smart device through a Bluetooth wireless
connection. A custom application for Android operative sys-
tem has been developed for the acquiring and processing of
the images. This scheme implies a simplification of the tradi-
tional multispectral imaging system based on a complex
camera not only in the hardware requirements but also in
terms of signal processing. The result has been a compact
and portable field measuring instrument that is easy to use
for any nontrained user.

The feasibility of the prototype has been proved in three
different scenarios. In the first one, the analysis of different
white paper samples has been carried out. In the second
one, the external appearance of packaged pork meat has been
monitored during 8 consecutive days. In the last experience,
the system has been applied for the determination of potas-
sium concentration by the analysis of a potassium-sensitive
membrane. The generated data in each experiment have been
studied by multivariate analysis techniques such as principal
component, finding that in every case it is possible to select a
wavelength for which the samples can be separated with high
precision. Therefore, we have proved that the presented sys-
tem offers broad application possibilities including automatic
samples classification, monitoring of the status of stored
food, or colorimetric determination of analytes in solution.
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