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Abstract: We establish spherical variants of the Gleason–Kahane–Żelazko and
Kowalski–S lodkowski theorems, and we apply them to prove that every weak-2-local

isometry between two uniform algebras is a linear map. Among the consequences,

we solve a couple of problems posed by O. Hatori, T. Miura, H. Oka, and H. Takagi
in 2007.

Another application is given in the setting of weak-2-local isometries between

Lipschitz algebras by showing that given two metric spaces E and F such that the
set Iso((Lip(E), ‖·‖), (Lip(F ), ‖·‖)) is canonical, then every weak-2-local Iso((Lip(E),

‖ · ‖), (Lip(F ), ‖ · ‖))-map ∆ from Lip(E) to Lip(F ) is a linear map, where ‖ · ‖ can

indistinctly stand for ‖f‖L := max{L(f), ‖f‖∞} or ‖f‖s := L(f) + ‖f‖∞.
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1. Introduction

Let Iso(X,Y ) denote the set of all surjective linear isometries between
two Banach spaces X and Y . Clearly Iso(X,Y ) can be regarded as a
subset of the space L(X,Y ) of all linear maps between X and Y . We
shall write Iso(X) instead of Iso(X,X). Accordingly to the notation
in [12, 13, 39, 38] and [42], we shall say that a (not-necessarily linear
nor continuous) mapping ∆: X → Y is a weak-2-local Iso(X,Y )-map
or a weak-2-local isometry (respectively, a 2-local Iso(X,Y )-map or a
2-local isometry) if for each x, y ∈ X and φ ∈ Y ∗, there exists Tx,y,φ
in Iso(X,Y ), depending on x, y, and φ (respectively, for each x, y ∈ X,
there exists Tx,y in Iso(X,Y ), depending on x and y), satisfying

φ∆(x) = φTx,y,φ(x) and φ∆(y) = φTx,y,φ(y)

(respectively, ∆(x) = Tx,y(x) and ∆(y) = Tx,y(y)). A Banach space X
is said to be (weak -2-iso-reflexive if every (weak-)2-local isometry on X
is both linear and surjective.
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If in the above definition A and B are Banach algebras and the
set Iso(A,B) is replaced by the set G(A,B) of all algebra isomorphisms
from A onto B we obtain the notion of (weak-)2-local isomorphism. For
A = B (weak-)2-local isomorphisms are called (weak-)2-local automor-
phisms.

For 1 ≤ p <∞ and p 6= 2, Al-Halees and Fleming [1] showed that `p is
2-iso-reflexive. In the setting of B(H), C∗-algebras and JB∗-triples there
exists a extensive literature on different classes of (weak-)2-local maps
(see, for example, [2, 3, 4, 9, 10, 12, 13, 18, 19, 22, 30, 34, 39, 38]
and [42]).

There are two main questions treated in recent times, the first asks
whether every (weak-)2-local isometry between certain Banach spaces X
and Y is a linear mapping. If the answer to the first one is affirmative, is
every (weak-)2-local isometry between X and Y a surjective isometry?

Let E and F denote two metric spaces. A function f : E → F is called
Lipschitz if its Lipschitz number

L(f) := sup

{
dF (f(x), f(y))

dE(x, y)
: x, y ∈ E, x 6= y

}
is finite. When F = Y is a Banach space, the symbol Lip(E, Y ) will
denote the space of all bounded Lipschitz functions from E into Y . The
space Lip(E, Y ) is a Banach space with respect to the following equiva-
lent and complete norms

‖f‖L := max{L(f), ‖f‖∞} and ‖f‖s := L(f) + ‖f‖∞.

Throughout this note F will either stand for R or C, and we shall write
Lip(E) for the space Lip(E,C). It is known that, for every metric
space E, (Lip(E), ‖ · ‖s) is a unital commutative complex Banach alge-
bra with respect to pointwise multiplication (see [45, Propositions 1.5.3
and 1.6.2, and Note 1.6]). Formally speaking, the norm ‖ · ‖L does
not satisfy the Banach algebra law ‖fg‖ ≤ ‖f‖‖g‖. The best inequal-
ity assures that ‖fg‖L ≤ 2‖f‖L‖g‖L (f, g ∈ Lip(E)). We refer to the
monograph [45] for the basic notions on Lipschitz algebras.

A. Jiménez-Vargas and M. Villegas-Vallecillos develop in [28] a de-
tailed study on 2-local isometries on Lip(E). In [28, Theorem 2.1] they
proved that for each bounded metric space E such that Iso((Lip(E),
‖ · ‖L)) is canonical, and each 2-local isometry ∆: (Lip(E), ‖ · ‖L) →
(Lip(E), ‖ · ‖L), there exist a subset E0 of E, a unimodular scalar τ , and
a bijective Lipschitz map ϕ : E0 → E such that

∆(f)
∣∣
E0
≡ τ(f ◦ ϕ),
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for all f ∈ Lip(E), and the same statement holds when ‖ · ‖L is replaced
by ‖ · ‖s (see Section 2 for the concrete definition of canonical surjective
isometry). However, we do not have a complete control of ∆(f) out-
side E0 to conclude that ∆ is linear. If, under the above hypothesis,
we additionally assume that E is separable, then every 2-local isometry
on (Lip(E), ‖ · ‖L), or on (Lip(E), ‖ · ‖s), is a surjective linear isome-
try (see [28, Theorem 3.3]). In this note we shall extend the study to
weak-2-local isometries between Lip(E) algebras.

We are also interested in some other classes of function algebras. Sup-
pose K is a compact Hausdorff space. The norm closed subalgebras
of C(K) containing the constant functions and separating the points ofK
(i.e., for every t 6= s in K there exists f ∈ A such that f(t) 6= f(s)) are
called uniform algebras. An abstract characterization of uniform alge-
bras can be deduced from the Gelfand theory and the Gelfand–Beurling
formula for the spectral radius; namely, if A is a unital commutative
complex Banach algebra such that ‖a2‖ = ‖a‖2 for all a in A, then there
is a compact Hausdorff space K such that A is isomorphic as a Banach
algebra to a uniform subalgebra of C(K).

Useful examples of uniform algebras include certain spaces given by
holomorphic properties. Suppose K is a compact subset of Cn, the
algebra A(K) of all complex valued continuous functions on K which
are holomorphic on the interior of K is an example of uniform algebra.
When K = D is the closed unit ball of C, A(D) is precisely the disc
algebra. On the other hand, it is known that Lip(K) is norm dense in
(C(K), ‖ · ‖∞) [44, Exercise in p. 23], however there exist continuous
functions which are not Lipschitz. Combining this fact with the Stone–
Weierstrass theorem, we deduce that Lip(K) is not, in general, a uniform
algebra. The reader is referred to the monograph [20] for additional
background on uniform algebras.

In [23] O. Hatori, T. Miura, H. Oka, and H. Takagi studied 2-local
isometries and 2-local automorphisms between uniform algebras. These
authors established some partial answers. As an application of the
Kowalski–S lodkowski theorem (see Theorem 3.1), they first proved that
for each uniform algebra A, every 2-local automorphism T on A is an
isometrical isomorphism from A onto T (A). Furthermore, if the group
of all automorphisms on A is algebraically reflexive (i.e., if every local
automorphism on A is an automorphism), then every 2-local automor-
phism is an automorphism (see [23, Theorem 2.2]). They also showed
the existence of non-surjective 2-local automorphisms on C(K) spaces
(see [23, Theorem 2.3]). For a compact subset K ⊆ C such that int(K)
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is connected and int(K) = K, Hatori, Miura, Oka, and Takagi combined
their results on local automorphism and local isometries on A(K) with a
previous contribution by F. Cabello Sánchez and L. Molnár (see [14]) to
prove that every local isometry (respectively, every local automorphism)
on A(K) is a surjective isometry (respectively, is an automorphism)
(see [23, Corollary 3.5]). Under certain restrictions on a set K ⊂ C or
K ⊂ C2, the same authors established that every 2-local isometry (re-
spectively, every 2-local automorphism) on A(K) is a surjective linear
isometry (respectively, an automorphism) [23, Theorems 3.6, 3.7, and
3.8]. In the same paper, these authors posed the following problems:

Problem 1.1 ([23, Problem 3.12]). Is every 2-local isometry on a uni-
form algebra linear?

Problem 1.2 ([23, Problem 3.13]). Is a 2-local isometry (respectively
automorphism) on a uniform algebra a 3-local isometry (respectively au-
tomorphism)? In general, is an n-local isometry an (n+ 1)-local isome-
try?

We recall that given a natural n, a map ∆ on a Banach algebra B
is called an n-local isometry (respectively, an n-local automorphism) if
for every n-tuple (a1, a2, . . . , an) in B there exists a surjective linear
isometry (respectively, an automorphism) S on B, depending on the
elements in the tuple, such that ∆(aj) = S(aj) for every 1 ≤ j ≤ n.

In this paper we give a complete positive answer to the above prob-
lems by proving that every weak-2-local isometry between uniform alge-
bras is linear (see Theorem 3.10). This conclusion is actually stronger
than what it was posed by Hatori, Miura, Oka, and Takagi. In or-
der to prove this result we first establish appropriate spherical variants
of the Gleason–Kahane–Żelazko and Kowalski–S lodkowski theorems (see
Propositions 2.2 and 3.2). The spherical version of the Gleason–Kahane–

Żelazko theorem is employed in Section 2 to describe weak-local isome-
tries on uniform algebras and on Lipschitz spaces.

Henceforth, let the symbol T stand for the unit sphere of C. Through-
out this note, the symbol σ(a) will denote the spectrum of an element a
in a complex Banach algebra A. The key result in this note is a spherical
variant of the Kowalski–S lodkowski theorem which assures that for an
arbitrary complex unital Banach algebra A, a mapping ∆: A→ C which
is 1-homogeneous (i.e. ∆(αx) = α∆(x) for all α ∈ C and x ∈ A) and
satisfies that

∆(x)−∆(y) ∈ Tσ(x− y), for every x, y ∈ A,
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must be linear. Furthermore, under these hypothesis, there exists λ0

in T such that λ0∆ is multiplicative (see Proposition 3.2).
We shall also apply the spherical variant of the Kowalski–S lodkowski

theorem in the study of weak-2-local isometries between Lipschitz al-
gebras. The concrete result reads as follows: Let E and F be metric
spaces such that the set Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L)) is canoni-
cal. Then every weak-2-local Iso((Lip(E), ‖ ·‖L), (Lip(F ), ‖ ·‖L))-map ∆
from Lip(E) to Lip(F ) is a linear map. Furthermore, the same con-
clusion holds when the norm ‖ · ‖L is replaced by the norm ‖ · ‖s (see
Theorem 3.5). Among the consequences of this result, we establish that
for each compact metric space K such that Iso(Lip(K), ‖ · ‖s) is canon-
ical, every 2-local isometry ∆: (Lip(K), ‖ · ‖s) → (Lip(K), ‖ · ‖s) is a
surjective linear isometry (see Corollary 3.8).

2. A spherical variant of
the Gleason–Kahane–Żelazko theorem

In this section we shall try to extend the study on 2-local isometries
developed by Jiménez-Vargas and Villegas-Vallecillos in [28].

To understand the whole picture it is worth to recall the notions
of local and weak-local maps. Following [15, 12], let S be a sub-
set of the space L(X,Y ) of all linear maps between Banach spaces X
and Y . A linear mapping ∆: X → Y is said to be a local S-map
(respectively, a weak-local S-map) if for each x ∈ X (respectively, if
for each x ∈ X and φ ∈ Y ∗), there exists Tx ∈ S, depending on x
(respectively, there exists Tx,φ ∈ S, depending on x and φ), satisfy-
ing ∆(x) = Tx(x) (respectively, φ∆(x) = φTx,φ(x)). When S is the
set Iso(X,Y ) of all surjective isometries from X onto Y , weak-local
Iso(X,Y )-maps are called weak local isometries. Local and weak-local
maps have been intensively studied by a long list of authors (see, for
example, [7, 8, 11, 14, 15, 16, 26, 29, 31, 35] and [36]).

It is known that every weak-local isometry ∆: X → Y is contractive.
Namely, for each x ∈ X and φ ∈ Y ∗, there exists Tx,φ ∈ Iso(X,Y ), de-
pending on x and φ, satisfying φ∆(x) = φTx,φ(x). Therefore, |φ∆(x)| ≤
‖φ‖‖Tx,φ(x)‖ = ‖φ‖‖x‖, for all x ∈ X and φ ∈ Y ∗. It follows from the
Hahn–Banach theorem that ‖∆(x)‖ ≤ ‖x‖ for all x ∈ X.

In their study on local isometries between Lipschitz algebras, A. Jimé-
nez-Vargas, A. Morales Campoy, and M. Villegas-Vallecillos revealed the
connection with the Gleason–Kahane–Żelazko theorem (see [26, p. 199]);
a similar strategy was applied by F. Cabello Sánchez and L. Molnár
in [14] for local isometries on a uniform algebra. Here, we shall try
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to determine the connection between 2-local isometries on complex-val-
ued Lipschitz algebras and new subtle generalizations of the Gleason–
Kahane–Żelazko and Kowalski–S lodkowski theorems. Let us recall the
statement of these results. We briefly recall that, accordingly to stan-
dard references (see [6]), a complex Banach algebra is an associative
algebra A over the complex field which is also a Banach space satisfying

‖x y‖ ≤ ‖x‖‖y‖, ∀x, y ∈ A.

Theorem 2.1 (Gleason–Kahane–Żelazko theorem [21, 32, 46]). Let
F : A → C be a non-zero continuous linear functional, where A is a
complex Banach algebra. Then the following statements are equivalent:

(a) F (a) ∈ σ(a), for every a ∈ A.
(b) F is multiplicative.

We begin with a technical spherical reformulation of the Gleason–
Kahane–Żelazko theorem.

Proposition 2.2. Let F : A → C be a continuous linear functional,
where A is a unital complex Banach algebra. Suppose that F (a) ∈ Tσ(a),

for every a ∈ A. Then the mapping F (1)F is multiplicative.

Proof: The arguments are very similar to those in [32, 46], we shall
insert here a brief revision containing the required changes.

We fix a in A, and define a mapping ϕ : C→ C, ϕ(λ) = F (eλa). Since

F is linear and continuous, ϕ(λ) =
∞∑
n=0

F (an)
n! λn for all λ ∈ C. Clearly,

ϕ is an entire function. By the assumptions ϕ(λ) ∈ Tσ(eλa), and hence
ϕ(λ) 6= 0 for every λ ∈ C. It is known that every entire function which
never vanishes admits a “logarithm”, that is, there exists ψ : C → C
entire such that ϕ(λ) = eψ(λ) (λ ∈ C).

We also know that the inequality

|ϕ(λ)| ≤
∞∑
n=0

|F (an)|
n!

|λ|n ≤ ‖F‖e|λ| ‖a‖

holds for every complex λ, and hence ϕ has exponential type bounded
by one. It follows from Hadamard’s Factorization theorem (see [5, The-
orem 2.7.1]) that ψ(λ) = αλ+ β for suitable α, β ∈ C.

Therefore,

∞∑
n=0

F (an)

n!
λn = ϕ(λ) = eαλ+β = eβ

∞∑
n=0

αn

n!
λn,
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for all λ ∈ C. Consequently, F (an) = eβ αn for all natural n, in partic-
ular e−β F (a) = α and e−β F (a2) = α2 = (e−β F (a))2.

We have shown that the mapping G(a) := e−βF (a) is a linear func-
tional with G(a2) = G(a)2 for every a ∈ A, that is, G is a Jordan ho-
momorphism (i.e., G preserves products of the form a ◦ b = 1

2 (ab+ ba)).
The arguments in [46] can be literally applied to conclude that G is
multiplicative (see also [6, Proposition 16.6]).

Another application of the hypothesis gives eβ = ϕ(0) = F (1) = λ0 ∈
T, and hence F (1)F = G is multiplicative.

F. Cabello Sánchez and L. Molnár proved in [14, Theorem 5] that for
each uniform algebra A, every local isometry T on A has the form

T (f) = τ ψ(f), ∀f ∈ A,

where τ is a unimodular element in A, and ψ : A→ A is a unital algebra
endomorphism. Actually, the result of Cabello Sánchez and Molnár only
requires that for each f ∈ A, the element T (f) lies in the norm closure of
Iso(A)(f) = {S(f) : S ∈ Iso(A)}. Furthermore, if A = A(D) is the disc
algebra, then every local isometry on A(D) is a surjective linear isometry
(see [14, Theorem 6]). The spherical version of the Gleason–Kahane–

Żelazko theorem established in Proposition 2.2 provides a powerful tool
to extend the study by Cabello and Molnár to the setting of weak-local
isometries between uniform algebras.

Theorem 2.3. Let T : A→ B be a weak-local isometry between uniform
algebras. Then there exists a unimodular element u ∈ B and a unital
algebra homomorphism ψ : A→ B such that

T (f) = uψ(f), ∀f ∈ A.

Proof: Suppose B is a norm-closed subalgebra of some C(Q). Let us fix
s ∈ Q, and consider the linear mapping δs ◦ T : A→ C. The hypothesis
combined with [17, Corollary 2.3.16] imply that, for each f ∈ A, there
exist a unimodular element us,f ∈ B and a unital algebra isomorphism
ψs,f : A→ B such that

δs ◦ T (f) = T (f)(s) = us,f (s)ψs,f (f)(s) ∈ Tσ(f),

because us,f (s) ∈ T, and since ψs,f a unital algebra isomorphism, we
have ψs,f (f)(s) ∈ σ(ψs,f (f)) = σ(f).
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We have already commented that weak-local isometries are contrac-
tive. Therefore δs ◦ T is a continuous linear mapping. Furthermore, for
the unit element 1 ∈ A there exist a unimodular element us,1 ∈ B and a
unital algebra isomorphism ψs,1 : A→ B such that δs◦T (1) = T (1)(s) =
us,1(s)ψs,1(1)(s) = us,1(s) ∈ T. This shows that δs ◦ T is surjective.

By Proposition 2.2 the mapping T (1)(s)(δs ◦ T ) : A → C is a homo-
morphism. We also know from the hypothesis and [17, Corollary 2.3.16]

that T (1) is a unimodular mapping and T (1) = T (1) ∈ B. Since s was
arbitrarily chosen, we deduce that

T (1)(s)(δs ◦ T )(fg) = T (1)(s)(δs ◦ T )(f)T (1)(s)(δs ◦ T )(g),

for all f, g ∈ A, equivalently ψ = T (1)T : A → B is a homomorphism
and T = T (1)ψ.

Henceforth, the symbol SF will denote the unit sphere of F.
Back to the setting of Lipschitz algebras, we recall that given a sur-

jective isometry ϕ : F → E between two metric spaces, and an element
τ ∈ SF, the mapping

Tτ,ϕ : Lip(E)→ Lip(F ), Tτ,ϕ(f)(s) = τf(ϕ(s)), ∀f ∈ Lip(E),

is an element in Iso(Lip(E),Lip(F )). Fortunately or not, there exist
elements in Iso(Lip(E),Lip(F )) which cannot be written as weighted
composition operator via a surjective isometry ϕ and τ ∈ SF as in
the previous example (cf. [44, p. 242] or [45, §2.6]). The elements in
Iso(Lip(E),Lip(F )) which can be written as weighted composition oper-
ators via a surjective isometry ϕ and τ ∈ SF as above are called canonical.
We shall say that Iso(Lip(E),Lip(F )) is canonical if every element in this
set is canonical.

Many attempts have been conducted to determine when the set
Iso(Lip(E),Lip(F )) is canonical (see [40, 41, 43, 44]). More precisely,
Iso(Lip([0, 1]), ‖ · ‖s) is canonical (see [40]) and, for a compact and con-
nected metric space K with diameter at most 1, Iso(Lip(K), ‖ · ‖L)
is canonical (cf. [41, 43]). K. Jarosz and V. D. Pathak established
in [25, Examples 8 and 3] that for every compact metric space K,
Iso(Lip(K), ‖ · ‖s) is canonical, and under a certain separation prop-
erty, Iso(Lip(K), ‖ ·‖L) is canonical too. It should be noted here that, as
pointed out by N. Weaver in [44, p. 243], there is a gap in the arguments
applied in [25, Example 8]. The difficulties in the proof by Jarosz and
Pathak mentioned in this paragraph have been completely solved in a
recent paper by Hatori and Oi [24].
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N. Weaver introduced subtle novelties in [44] by proving that if E
and F are complete metric spaces of diameter ≤ 2 and 1-connected then
Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L)) is canonical (see [44, Theorem D] or
[45, Theorem 2.6.7]).

In the introduction of [44] (see also [45, §1.7]), Weaver illustrated
why it is worth to restrict our study to the class of complete metric
spaces of diameter ≤ 2, essentially because given a metric space (E, d),
we can consider the metric space (F0, d

′) whose underlying set is E and
whose distance is given by d′(x, y) = min{d(x, y), 2}, whose completion
is denoted by (F, d′). Then F is a complete metric space of diameter ≤ 2
and Lip(E) and Lip(F ) are isometrically isomorphic as Banach spaces.

Let us observe that while (Lip(E), ‖ · ‖s) is a commutative and unital
complex Banach algebra, the algebra (Lip(E), ‖ · ‖L) only satisfies the
weaker inequality

‖fg‖L ≤ 2 ‖f‖L‖g‖L, ∀f, g ∈ Lip(E)

(see [45, §4.1]).
In [26] A. Jiménez-Vargas, A. Morales Campoy, and M. Villegas-

Vallecillos proved the following result:

Theorem 2.4 ([26, Theorem 2.3]). Let E be a compact metric space.
Then every local isometry on (Lip(E), ‖ · ‖s) is a surjective isometry.

Next, thanks to the spherical version of the Gleason–Kahane–Żelazko
theorem, we extend the study to weak-local isometries between Lipschitz
spaces when they are indistinctly equipped with the norm ‖ · ‖s or with
the norm ‖ · ‖L.

Theorem 2.5. Let E and F be metric spaces. Then the following state-
ments hold:

(a) Suppose that the set Iso((Lip(E), ‖·‖s), (Lip(F ), ‖·‖s)) is canonical.
Then every weak-local isometry T : (Lip(E), ‖·‖s)→ (Lip(F ), ‖·‖s)
can be written in the form

T (f) = τ ψ(f), ∀f ∈ Lip(E),

where τ ∈ Lip(F ) is unimodular, and ψ : Lip(E) → Lip(F ) is an
algebra homomorphism.

(b) Suppose that the set Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L)) is canoni-
cal. Then every weak-local isometry T : (Lip(E), ‖ ·‖L)→ (Lip(F ),
‖ · ‖L) can be written in the form

T (f) = τ ψ(f), ∀f ∈ Lip(E),

where τ ∈ Lip(F ) is unimodular, and ψ : Lip(E) → Lip(F ) is an
algebra homomorphism.
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Proof: We shall give a unified proof for both statements. To simplify the
notation let T : (Lip(E), ‖ · ‖)→ (Lip(F ), ‖ · ‖) be a weak-local isometry,
where ‖ · ‖ denotes ‖ · ‖L or ‖ · ‖s. By the Hahn–Banach theorem every
weak-local isometry is continuous and contractive.

By hypothesis, for each s ∈ F , there exist τs,1 ∈ T and a surjective
isometry ϕs,1 : F → E such that

T (1)(s) = δs(T (1)) = τs,1 1(ϕs,1(s)) = τs,1.

Therefore T (1)(s) ∈ T for all s ∈ F . Similar arguments show that
for each f ∈ Lip(E), there exists τs,f ∈ T and a surjective isometry
ϕs,f : F → E such that

T (f)(s) = δs(T (f)) = τs,f f(ϕs,f (s)) ∈ Tσ(Lip(E),‖·‖s)(f).

In case (a) we know that (Lip(E), ‖ · ‖s) is a commutative unital
complex Banach algebra, and δs ◦T : Lip(E)→ C is continuous. We can
therefore apply Proposition 2.2 to conclude that

T (1)(s)(δs ◦ T ) : (Lip(E), ‖ · ‖s)→ C

is a homomorphism for all s ∈ F . Consequently, the operator ψ =
T (1)T : Lip(E) → Lip(F ) is a homomorphism and T (f) = T (1)ψ(f),
for all f ∈ Lip(E).

In case (b), as we have commented above, (Lip(E), ‖·‖L) is not strictly
a Banach algebra (see comments before Theorem 2.4). However, the
algebras underlying (Lip(E), ‖·‖s) and (Lip(E), ‖·‖L) are both the same.
Furthermore, for each s ∈ F the mapping δs◦T : (Lip(E), ‖·‖L)→ C can
be also considered as a continuous functional on (Lip(E), ‖·‖s) satisfying
the hypothesis of Proposition 2.2; we can therefore apply case (a) to
conclude the proof.

We observe that statement (b) in the above Theorem 2.5 is a new
result even in the setting of local isometries. When the group of surjec-
tive isometries is not canonical the spherical Gleason–Kahane–Żelazko
theorem can not be applied. For example, let E = {p, q} be the com-
pact metric space consisting of two elements with d(p, q) = 1. We can
identify Lip(E) with C2 with norm ‖(a, b)‖L = max{|a|, |b|, |a−b|}. The
mapping T : Lip(E) → Lip(E) defined by T (a, b) = (a, a − b) is a sur-
jective linear isometry which is not canonical (see [44]). Furthermore,
the functional δq ◦ T : Lip(E) → C, (a, b) 7→ a− b does not satisfy that
δq ◦ T (f) ∈ T f(E) = Tσ(f) for all f ∈ Lip(E).

Remark 2.6. If in Theorem 2.5 the hypothesis

Iso((Lip(E), ‖ · ‖s), (Lip(F ), ‖ · ‖s)) being canonical
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(respectively, Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L)) being canonical) is
replaced by the weaker assumption that every element T in the set
Iso((Lip(E), ‖ · ‖s), (Lip(F ), ‖ · ‖s)) (respectively, in the set Iso((Lip(E),
‖ · ‖L), (Lip(F ), ‖ · ‖L))) is of the form

T (f)(s) = τ(s) f(ϕ(s)), ∀f ∈ Lip(E), ∀s ∈ F,
where τ is a unimodular function in Lip(F ) and ϕ : F → E is a surjective
isometry, then the conclusion of the quoted Theorem 2.5 remains true.

3. A spherical variant of
the Kowalski–S lodkowski theorem

The Kowalski–S lodkowski theorem is less widely known than the Glea-
son–Kahane–Żelazko theorem, however it shows that at the cost of re-
quiring a 2-local behavior, the linearity assumption in the Gleason–
Kahane–Żelazko theorem can be relaxed. Actually, the Kowalski–
S lodkowski theorem was the motivation to consider 2-local automor-
phisms (see [42]). The concrete result reads as follows.

Theorem 3.1 (Kowalski–S lodkowski theorem [33]). Let A be a complex
Banach algebra, and let ∆: A → C be a mapping satisfying ∆(0) = 0
and

∆(x)−∆(y) ∈ σ(x− y),

for every x, y ∈ A. Then ∆ is linear and multiplicative.

As in the case of the Gleason–Kahane–Żelazko theorem, we shall es-
tablish a spherical variant of the Kowalski–S lodkowski theorem. We
shall say that a mapping ∆: X → Y between complex Banach spaces
is 1-homogeneous or simply homogeneous if ∆(λx) = λ∆(x), for every
x ∈ X, λ ∈ C.

Proposition 3.2. Let A be a unital complex Banach algebra, and let
∆: A→ C be a mapping satisfying the following properties:

(a) ∆ is 1-homogeneous.
(b) ∆(x)−∆(y) ∈ Tσ(x− y), for every x, y ∈ A.

Then ∆ is linear, and there exists λ0 ∈ T such that λ0∆ is multiplicative.

Let S be a subset of the space L(X,Y ) of all linear maps between
two complex Banach spaces. Suppose that ∆: X → Y is a weak-2-local
S map in the sense of [12] (i.e. for every x, y ∈ X and φ ∈ Y ∗, there exists
Tx,y,φ ∈ S, depending on x, y, and φ such that φ∆(x) = φTx,y,φ(x) and
φ∆(y) = φTx,y,φ(y)). It follows from [12, Lemma 2.1] that every weak-
2-local Iso(X,Y ) is 1-homogeneous. So, the hypothesis in the above
proposition are fully motivated in the study of weak-2-local isometries.
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The arguments here are somehow inspired by the original ideas due
to Kowalski and S lodkowski. Before dealing with the proof of the above
proposition we establish a variant of [33, Lemma 2.1]. Let us first make
an observation. Given a compact Hausdorff space K and t ∈ K, the
mapping δt : C(K) → C, f 7→ δt(f) = f(t) is conjugate linear, and
satisfies the property that δt(f) ∈ Tσ(f), for each f ∈ C(K). So,
the just quoted property is not enough to guarantee that a real linear
functional is complex linear.

Lemma 3.3. Let A be a unital complex Banach algebra, and let F : A→
C be a bounded real linear functional satisfying the following property:

F (x) ∈ Tσ(x), for every x ∈ A.
Then F is complex linear or conjugate linear.

Proof: In a first step we assume that F is unital, that is F (1) = 1. Fix
an element x ∈ A. By hypothesis, we have

eitF (e−itx) ∈ eitTσ(e−itx) = Tσ(x)

for each real t. We can write

eitF (e−itx) =
F (x)− iF (ix)

2
+ e2itF (x) + iF (ix)

2
,

which shows that eitF (e−itx) is precisely the circle S
(F (x)−iF (ix)

2 , ρx
)

of

center F (x)−iF (ix)
2 and radius ρx =

∣∣F (x)+iF (ix)
2

∣∣, and consequently this
circle is entirely contained in Tσ(x). It is not hard to check that the
functionals

F1(x) := <eF (x) + i=m(−iF (ix)) = <eF (x)− i<eF (ix),

F2(x) := <e(−iF (ix)) + i=mF (x) = =mF (ix) + i=mF (x)

are continuous and satisfy the following properties:

(1) Fj(ix) = iFj(x) for all j = 1, 2 and all x ∈ A, and hence F1 and F2

are complex linear.

(2) Fj(x) ∈ S
(F (x)−iF (ix)

2 , ρx
)
⊆ Tσ(x), for every x ∈ A, j = 1, 2.

(3) <e(F (x)) = <e(F1(x)) and =m(F (x)) = =m(F2(x)) for all x ∈ A.

Property (2) implies that we can apply Proposition 2.2 to conclude

that G1 = F1(1)F1 and G2 = F2(1)F2 are multiplicative functionals.
It also follows from (2) that F1(1) ∈ T. Since F (1) = 1 we have

T 3 F1(1) = <eF (1)− i<eF (i1) = 1− i<eF (i1),

which assures that <eF (i1) = 0 and hence F1(1) = 1. This shows that
F1 = G1 is multiplicative.
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Similarly, from (2) and F (1) = 1 we get

T 3 F2(1) = =mF (i1) + i=mF (1) = =mF (i1),

witnessing that F2(1) = =mF (i1) = ±1.
We claim that

(3.1) F2 = F2(1)F1.

Indeed, if ker(F2)⊆ker(F1), then for each x∈A we have x−F2(1)F2(x)1∈
ker(F2) ⊆ ker(F1), and thus F1(x) = F2(1)F2(x). If F2(1) = 1, then
F2 = F1, and hence property (3) above implies that F = F1 is C-linear.
If F2(1)=−1, then F2 =−F1, and then property (3) implies that F = F1

is conjugate linear.
If ker(F2) * ker(F1), then we can thus find an element x0 in A such

that F1(x0) = 1 and F2(x0) = 0.
Let h : C → C denote the entire function given by h(λ) = ei

π
2 λ − 1.

Having in mind that F1 and G2 are multiplicative, we deduce from the
spectral mapping theorem and (3) that

F (ei
π
2 x0)− 1 = F (ei

π
2 x0 − 1) = F (h(x0))

= <e(F (h(x0))) + i=m(F (h(x0)))

= <e(F1(h(x0))) + i=m(F2(h(x0)))

= <e(F1(h(x0))) + i=m(F2(1)G2(h(x0)))

= <e(h(F1(x0))) + i=m(F2(1)h(G2(x0)))

= <e(h(1)) + i=m(F2(1)h(0)) = −1,

and consequently F (ei
π
2 x0) = 0. On the other hand, it follows from our

hypothesis and the spectral mapping theorem that

0 = F (ei
π
2 x0) ∈ Tσ(ei

π
2 x0) = T ei

π
2 σ(x0) ⊆ T eC,

which is impossible.
In the general case, the hypothesis imply that F (1) ∈ Tσ(1) = T.

The mapping G = F (1)F : A→ C is real linear, unital, and satisfies

G(x) = F (1)F (x) ∈ F (1)Tσ(x) = Tσ(x).

It follows from the previous case that G (and hence F ) is complex linear
or conjugate linear.

Lemma 3.3 provides a tool to replace [33, Lemma 2.1] in the Kowalski–
S lodkowski theorem.

Before dealing with the proof of Proposition 3.2 we introduce some ter-

minology. Let Q =
∞∏
j=1

[−2−j , 2j ] ⊆ `1 denote the Hilbert cube equipped
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with the metric given by `1. On each interval [−2−j , 2j ] we consider
the normalized Lebesgue measure. Let µ denote the natural product
measure on Q. Following [33, 37], we shall say that a subset Z of a
separable Banach space X is a zero set if for every affine continuous
mapping j : Q → X with linearly dense image we have µ(j−1(Z)) = 0.

Following the notation in [37, §4], we shall say that a Lipschitz map-
ping F from the Hilbert cube Q into a locally convex space X is real
differentiable at the point p ∈ Q if for every a ∈ Q the derivative

F ′a(p) = lim
R3t→0

F (p+ ta)− F (p)

t

exists and the mapping (DF )p : Q̃ → X, (DF )p(a) = F ′a(p) is real lin-

ear, where Q̃ denotes the linear span of Q in `1. The mapping (DF )p
is called the real differential of F at p. It is known that if the real dif-
ferential (DF )p exists for some p in Q, then it is continuous. Similarly
a Lipschitz mapping F : X → C admits a real differential at a point x

in X if for every a ∈ X the derivative F ′a(x) = lim
R3t→0

F (x+ta)−F (x)
t exists

and the mapping (DF )x : X → C, (DF )x(a) = F ′a(x) is real linear and
continuous.

The next result has been borrowed from [33], where it is stated with-
out an explicit proof, and it is attributed to P. Mankiewicz [37].

Theorem 3.4 ([33, Theorem 2.3] and [37, Theorem 4.4 and proof of
Theorem 4.5]). If F : X → C is a Lipschitz mapping defined on a sepa-
rable Fréchet space, then F admits real differentials except for some zero
set.

The result and a brief comment for its proof have been included here to
avoid misleadings. All the arguments are explicitly in [37, Theorem 4.4
and proof of Theorem 4.5]. Clearly, C is a Gelfand–Fréchet space in
the terminology of the just quoted paper (see [37, Theorem 2.5]). Let
{an : n ∈ N} be an arbitrary bounded, linearly independent and linearly
dense subset of X. Given ε > 0, we set Qε := (1 + ε)Q, and we define a
mapping F0 : Qε → X given by

F0(p) :=

∞∑
k=1

αkak, where p = (αn) ∈ Qε.

As observed by Mankiewicz, the mapping F0 satisfies the first order
Lipschitz condition, that is, for every continuous pseudo norm Q(·) on X
there exists a continuous pseudo norm P (·) on `1 such that for every
p1, p2 ∈ Qε we have

Q(F0(p1)− F0(p2)) ≤ P (p1 − p2).
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Furthermore, the composition F ◦ F0 : Qε → C is a Lipschitz mapping
from Qε into C. Theorem 4.4 in [37] assures that F ◦ F0 admits real
differentials except for µ-almost all p in Q, that is, (D(F ◦ F0))p exists
for all p ∈ Q\Z0, where Z0 ⊂ Qε with µ(Z0) = 0. It is explicitly shown
in [37, pp. 25 and 26] that F admits a real differential at every point
in F0(Q\Z0), that is, the real differential (DF )F0(p) : X → C exists and
it is a continuous real linear mapping for every p0 ∈ Q\Z0.

Proof of Proposition 3.2: Since ∆ is homogeneous, we can easily see that
∆(0) = 0.

As in the proof of [33, Theorem 1.2], we shall assume first that A is
separable.

Under the hypothesis of our proposition, given x, y in A, we have
∆(x)−∆(y) ∈ Tσ(x− y) and hence

|∆(x)−∆(y)| ≤ ‖x− y‖,
which guarantees that ∆ is a Lipschitz map. Theorem 3.4 (see also [33,
Theorem 2.3]) assures that ∆ admits real differentials except for some
zero set.

Suppose that ∆ admits a real differential at a point a. The differential
(D∆)a : A→ C is a real linear mapping defined by

(D∆)a(x) = lim
r→0

∆(a+ rx)−∆(a)

r
.

By assumptions, ∆(a+rx)−∆(a)
r ∈ Tσ(rx)

r = Tσ(x), and thus

(D∆)a(x) ∈ Tσ(x).

Lemma 3.3 proves that (D∆)a is complex linear or conjugate linear.
Let a be an element in A such that ∆ admits a real differential at a

and ∆(a) 6= 0. In this case, by the homogeneity of ∆ we have

(D∆)a(ia) = lim
r→0

∆(a+ ira)−∆(a)

r

= lim
r→0

(1 + ir)∆(a)−∆(a)

r
= i∆(a),

and

(D∆)a(a) = lim
r→0

∆(a+ ra)−∆(a)

r
= ∆(a) 6= 0,

and consequently (D∆)a is complex linear. We have proven:

(3.2) ∆(a) 6= 0 and ∃(D∆)a ⇒ (D∆)a is complex linear.

Suppose now that ∆(a) = 0 and ∆ admits a real differential at a. We
shall prove that (D∆)a is complex linear.
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We first show that (D∆)a(1) 6= 0. Since ∆ is homogeneous and
∆(a) = 0, we also have ∆(αa) = 0 for every α ∈ C. Indeed, by assump-
tions, given r ∈ R\{0}, the element

∆

(
1

r
a+ 1

)
= ∆

(
1

r
a+ 1

)
−∆

(
1

r
a

)
∈ Tσ(1) = T,

and thus

(D∆)a(1) = lim
r→0

∆(a+ r1)−∆(a)

r
= lim
r→0

∆(a+ r1)

r

= lim
r→0

∆

(
1

r
a+ 1

)
∈ T,

which proves the desired statement.
Let U := {c ∈ A : ∆(c) 6= 0}. Since ∆ is a Lipschitz function and the

set U is open, it follows from (3.2) that (D∆)c is complex linear for every
point c ∈ U such that ∆ admits a real differential at c. Applying [33,
Lemma 2.4] we conclude that ∆ is holomorphic on U , more precisely,
for each c ∈ U and b ∈ A there exists ρ = ρ(c, b) > 0, depending on c
and b, such that c + λb ∈ U , for every |λ| < ρ, and fc,b(λ) = ∆(c + λb)
is holomorphic on {λ ∈ C : |λ| < ρ}.

Having in mind that ∆(a) = 0, it follows from the hypothesis that

∆(a+ α1) = ∆(a+ α1)−∆(a) ∈ Tσ(α1) = αT,

and thus ∆(a+α1) 6= 0, for all α ∈ C\{0}, equivalently, a+α1 ∈ U , for
all α ∈ C\{0}.

We consider the continuous function f : C → C, f(λ) = ∆(a + λ1).
We shall prove that f is holomorphic in C\{0}. Namely, fix λ0 ∈ C\{0}.
Since c = a + λ01 ∈ U , it follows from the above paragraph with b = 1
that there exists ρ > 0 such that c + λb ∈ U , for every |λ| < ρ, and
fc,b(λ) = ∆(c + λb) = ∆(a + λ01 + λ1) = f(λ0 + λ) is holomorphic on
{λ ∈ C : |λ| < ρ}, witnessing that f is holomorphic at λ0.

Since f is continuous on C and holomorphic in C\{0} it must be an

entire function. In particular there exists f ′(0) = lim
h∈C, h→0

f(h)−f(0)
h , and

(D∆)a(1)= lim
r→0

∆(a+ r1)−∆(a)

r
= lim
r∈R, r→0

f(r)− f(0)

r
= f ′(0)

= lim
r∈R,r→0

f(ir)− f(0)

ir
= lim
r→0

∆(a+ ir1)−∆(a)

ir
=

1

i
(D∆)a(i1).

Since (D∆)a(1) 6=0, (D∆)a(i1) = i(D∆)a(1), and (D∆)a must be com-
plex linear or conjugate linear, we conclude that (D∆)a is complex linear.
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We have shown that (D∆)a is complex linear for all point a ∈ A at
which ∆ admits a real differential.

We can therefore apply [33, Lemma 2.4] (with U = A) to conclude
that for each a, b ∈ A the mapping ϕ : C → C, ϕ(λ) := ∆(λa + b)
is entire with ϕ(λ) − ϕ(µ) ∈ Tσ((λ − µ)a), and thus |ϕ(λ) − ϕ(µ)| ≤
‖a‖|λ − µ|. The mapping g : C → C, g(λ) = ϕ(λ) − ϕ(0) is entire and
satisfies |g(λ)| ≤ ‖a‖|λ| for every λ ∈ C. It follows from the so-called
generalized Liouville’s theorem that g is a polynomial of degree at most 1
(compare [5, Theorem 1.3.4 and its proof]). Therefore ϕ must be affine,
and consequently,

(3.3) ∆(λa+ b) = ϕ(λ) = λ(∆(a+ b)−∆(b)) + ∆(b),

for every a, b ∈ A, λ ∈ C. In the case b = 0 we get ∆(λa) = λ∆(a),
and given c, d ∈ A, by replacing in (3.3) a, b, and λ with c−d

2 , d, and 2,
respectively, we have

2∆

(
c+ d

2

)
= ∆(c) + ∆(d).

So, ∆ is linear and the rest follows from Proposition 2.2.
When A is not separable, we can restrict ∆ to the subalgebra gen-

erated by any two elements which is always separable, and then the
conclusion follows from the arguments above.

Finally, since ∆: A → C is linear, ∆(0) = 0 and ∆(a) ∈ Tσ(a) for
every a in A, the final statement is a consequence of Proposition 2.2.

We can now deal with 2-local isometries between Lip(E) spaces.

Theorem 3.5. Let E and F be metric spaces, and let us assume that the
set Iso((Lip(E), ‖ · ‖s), (Lip(F ), ‖ · ‖s)) is canonical. Then every weak-2-
local Iso((Lip(E), ‖ · ‖s), (Lip(F ), ‖ · ‖s))-map ∆ from Lip(E) to Lip(F )
is a linear map. Furthermore, the same conclusion holds when the
norm ‖ · ‖s is replaced by the norm ‖ · ‖L.

Proof: Let ∆: Lip(E)→ Lip(F ) be a weak-2-local isometry with respect
to the norm ‖ · ‖s. It is known that ∆ is 1-homogeneous (i.e., ∆(αf) =
α∆(f), for all α ∈ C and all f ∈ Lip(E)), and ∆(0) = 0 (compare [12,
Lemma 2.1]). We fix now an element s ∈ F , and we consider the mapping
∆s = δs ◦ ∆: Lip(E) → C. Since, by hypothesis, given f, g ∈ Lip(E),
there exist τf,g,s ∈ T and a surjective isometry ϕf,g,s : F → E such that

δs∆(f) = δs(τf,g,sf ◦ ϕf,g,s), and δs∆(g) = δs(τf,g,sg ◦ ϕf,g,s),
and then

∆s(f)−∆s(g) = τf,g,s(f(ϕf,g,s(s))− g(ϕf,g,s(s))) ∈ Tσ(f − g).



258 L. Li, A. M. Peralta, L. Wang, Y.-S. Wang

Since (Lip(E), ‖ · ‖s) is a unital complex Banach algebra, we are thus in
conditions to apply Proposition 3.2 to conclude that ∆s is a linear map.
The linearity of ∆ follows from the arbitrariness of s.

For the last statement, the space (Lip(E), ‖ · ‖L) is not formally a
complex Banach algebra. However, by the arguments given above, for
each weak-2-local isometry ∆: (Lip(E), ‖ · ‖L) → (Lip(F ), ‖ · ‖L) and
each s ∈ F , we have

δs ◦∆(f)− δs ◦∆(g) ∈ T(f − g)(E) = Tσ(Lip(E),‖·‖s)(f − g),

for all f, g ∈ Lip(E). Since the spaces and algebras underlying (Lip(E),
‖ · ‖L) and (Lip(E), ‖ · ‖s) coincide, we apply the conclusion in the first
paragraph to the proof.

Remark 3.6. If in Theorem 3.5 the hypothesis

Iso((Lip(E), ‖ · ‖), (Lip(F ), ‖ · ‖)) being canonical

(where ‖ · ‖ stands for ‖ · ‖s or for ‖ · ‖L), is replaced by the weaker
assumption that every element in Iso((Lip(E), ‖ · ‖), (Lip(F ), ‖ · ‖)) is of
the form

T (f)(s) = τ(s) f(ϕ(s)), ∀f ∈ Lip(E), ∀s ∈ F,
where τ is a unimodular function in Lip(F ) and ϕ : F → E is a surjective
isometry, then the conclusion of Theorem 3.5 remains valid.

It should be noted here that, under the hypothesis of the previous
theorem (i.e., the set Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L)) is canonical),
we can also prove a variant of [28, Theorem 2.1] in the setting of 2-local
isometries from Lip(E) to Lip(F ).

Corollary 3.7. Let E and F be compact metric spaces, and let us as-
sume that the set Iso((Lip(E), ‖ ·‖L), (Lip(F ), ‖ ·‖L)) is canonical. Then
every 2-local Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L))-map ∆ from Lip(E)
to Lip(F ) is a linear isometric map and there exist a closed subset F0 ⊂
F , a Lipschitz map ϕ : F0 → E with L(ϕ) ≤ max{1,diam(E)}, and
τ ∈ T such that

∆(f)(s) = τ f(ϕ(s)), ∀f ∈ Lip(E), ∀s ∈ F0.

Proof: Let ∆: Lip(E) → Lip(F ) be a 2-local isometry. Since ∆ is
a weak-2-local isometry, we deduce from Theorem 3.5 that ∆ is lin-
ear. ∆ being a 2-local isometry implies that ∆ is a linear isometry.
Namely, given f, g ∈ Lip(E) there exists a surjective linear isometry
Tf,g : Lip(E) → Lip(F ) such that ∆(f) = Tf,g(f) and ∆(g) = Tf,g(g).
Therefore we have ‖∆(f)−∆(g)‖ = ‖Tf,g(f)−Tf,g(g)‖ = ‖f−g‖, which
shows that ∆ is a linear isometry.
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The hypotheses also show that ∆(1E) = τ1E is a constant unimodular
function. The desired conclusion follows from Theorem 2.4 in [27] and
the facts that Iso((Lip(E), ‖ · ‖L), (Lip(F ), ‖ · ‖L)) is canonical, and ∆ is
a local isometry.

We can also obtain some other interesting consequences derived from
Theorem 3.5. The following corollaries complement the conclusions
in [28].

Corollary 3.8. Let K be a compact metric space. Then every 2-local
isometry ∆: (Lip(K), ‖ · ‖s)→ (Lip(K), ‖ · ‖s) is a surjective isometry.

Proof: By Theorem 3.5 every 2-local isometry ∆: (Lip(K), ‖ · ‖s) →
(Lip(K), ‖ · ‖s) is a linear local isometry, and thus ∆ is a local linear
isometry. Now, applying Theorem 2.3 in [26] we derive that ∆ is a
surjective linear isometry.

Corollary 3.9. Let K be a compact metric space. Suppose K is con-
nected with diameter at most 1 (or satisfies certain separation property
to guarantee that Iso(Lip(K), ‖ · ‖L) is canonical). Then every 2-local
isometry ∆: (Lip(K), ‖ · ‖L)→ (Lip(K), ‖ · ‖L) is a surjective isometry.

Proof: Let ∆: (Lip(K), ‖ · ‖L)→ (Lip(K), ‖ · ‖L) be a 2-local isometry.
Theorem 3.5 implies that ∆ is linear. Therefore, ∆ is a linear isometry.

Although Theorem 2.3 in [26] is only stated for the norm ‖ · ‖s, the
rest of our arguments owe too much to the original proof by Jiménez-
Vargas, Morales Campoy, and Villegas-Vallecillos in [26], we include a
brief argument for completeness reasons.

Since ∆ is a linear 2-local isometry and Iso(Lip(K), ‖·‖L) is canonical,
we conclude that ∆(1) = τ1 ∈ T is a constant function.

By Theorem 2.5 there exist a unimodular τ ∈ Lip(K) and an algebra
homomorphism ψ : Lip(K)→ Lip(K) such that

∆(f) = τ ψ(f), ∀f ∈ Lip(K).

For each s ∈ K, the mapping δs ◦ ψ : Lip(K) → C is a non-zero
multiplicative functional. In fact, τ1 = ∆(1) = τ ψ(1), and hence
1 = |τ1| = |τ(s)ψ(1)(s)| = |ψ(1)(s)|, for all s in K.

Since non-zero multiplicative linear functionals on (Lip(K), ‖ · ‖L)
and on (Lip(K), ‖ · ‖s) are evaluation maps at a (unique) point in K
(see [45, Theorem 4.3.6]), then there exists a unique ϕ(s) ∈ K such that
δs ◦ ψ = δϕ(s). We have thus defined a function ϕ : K → K satisfying

δs ◦ ψ(f) = δϕ(s)(f), ∀f ∈ Lip(E).
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Following the ideas in [26, p. 199] we prove that ϕ is injective. Namely,
suppose that ϕ(x) = ϕ(y), and let us take h ∈ Lip(K) such that
h−1({0}) = {ϕ(x)}. By the assumptions, there exist τh ∈ T and a
surjective isometry ϕh : K → K such that

∆(h)(s) = τh h(ϕh(s)), ∀s ∈ K.
Consequently,

τh h(ϕh(x)) = ∆(h)(x) = τ(x)ψ(h)(x) = τ(x)h(ϕ(x)) = 0,

and

τh h(ϕh(y)) = ∆(h)(y) = τ(y)ψ(h)(y) = τ(y)h(ϕ(y)) = 0,

which guarantees that ϕh(x) = ϕ(x) = ϕh(y), and thus x = y.
We shall next check, following [26, proof of Theorem 2.3], that ϕ is

an isometry. Let us take x 6= y in K, and k ∈ Lip(K) defined by k(z) :=
d(z,ϕ(x))

d(z,ϕ(x))+d(z,ϕ(y)) . Clearly, k−1({0}) = {ϕ(x)} and k−1({1}) = {ϕ(y)}.
By hypothesis, there exist τk ∈ T and a surjective isometry ϕk : K → K
such that

τk k(ϕk(x)) = ∆(k)(x) = τ(x)ψ(k)(x) = τ(x) k(ϕ(x)) = 0,

and

τk k(ϕk(y)) = ∆(k)(y) = τ(y)ψ(k)(y) = τ(y) k(ϕ(y)) = τ(y).

We deduce from the properties of k that ϕk(x) = ϕ(x) and ϕk(y) = ϕ(y).
Since ϕk is an isometry we get d(ϕ(x), ϕ(x)) = d(ϕk(x), ϕk(y)) = d(x, y)
as desired.

Finally, since ϕ : K → K is an isometry on a compact metric space,
Lemma 2.1 in [26] implies that ϕ is surjective. Therefore the identity

∆(f)(s) = τ(s)ψ(f)(s) = τ(s) f(ϕ(s))

holds for all f ∈ Lip(K) and all s ∈ K. In particular, T 3 τ1 = ∆(1) = τ
is a constant function.

Back to the setting of uniform algebras, we can now combine our
spherical variant of the Kowalski–S lodkowski theorem (see Proposi-
tion 3.2) with [17, Corollary 2.3.16] to study weak-2-local isometries.

Theorem 3.10. Let A be a uniform algebra, let Q be a compact Haus-
dorff space, and suppose that B is a norm closed subalgebra of C(Q)
containing the constant functions. Then every weak-2-local isometry (re-
spectively, every weak-2-local (algebraic) isomorphism) ∆: A → B is a
linear map.

Proof: Let ∆: A → B be a weak-2-local isometry. We have already
commented that ∆ is homogeneous (see [12, Lemma 2.1]). If we fix an
arbitrary s ∈ Q, the mapping δs ◦ ∆: A → C satisfies the hypothesis
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of Proposition 3.2. Indeed, since ∆ is a weak-2-local isometry, given
a, b ∈ A, by [17, Corollary 2.3.16], there exists an algebra isomorphism
πa,b,s : A→ B and a unimodular ha,b,s ∈ B such that

δs ◦∆(a) = ha,b,s(s)πa,b,s(a)(s), and δs ◦∆(b) = ha,b,s(s)πa,b,s(b)(s).

Therefore

δs ◦∆(a)− δs ◦∆(b) = ha,b,s(s)πa,b,s(a− b)(s) ∈ Tσ(a− b),
as desired. Proposition 3.2 assures that δs ◦∆ is linear. Therefore ∆ is
linear by the arbitrariness of s.

The statement concerning isomorphisms is a clear consequence of the
fact that every isomorphism between A and B is an isometry.

Since 2-local isomorphisms and 2-local isometries between uniform
algebras are a weak-2-local isometries, Theorem 3.10 provides a positive
answer to Problems 1.1 and 1.2.

Corollary 3.11. Let A and B be uniform algebras. Then every 2-local
isometry (respectively, every 2-local (algebraic) isomorphism) ∆: A→ B
is a linear map.

Furthermore, if every local isometry (respectively, every 2-local (alge-
braic) isomorphism) from A into B is a surjective isometry (respectively,
an isomorphism), then every 2-local isometry (respectively, every 2-local
isomorphism) ∆: A→ B is a surjective linear isometry (respectively, an
isomorphism).
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