
Received July 26, 2019, accepted August 1, 2019, date of publication August 5, 2019, date of current version August 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933261

Experimental Study on 164 Algorithms Available
in Software Tools for Solving Standard
Non-Linear Regression Problems
MARÍA JOSÉ GACTO1, JOSE MANUEL SOTO-HIDALGO 2, (Member, IEEE),
JESÚS ALCALÁ-FDEZ 3, (Member, IEEE), AND
RAFAEL ALCALÁ3, (Member, IEEE)
1Department of Computer Science, University of Jaén, 23071 Jaén, Spain
2Department of Electronics and Computer Engineering, University of Córdoba, 14071 Córdoba, Spain
3Department of Computer Science and Artificial Intelligence, University of Granada, E-18071 Granada, Spain

Corresponding author: Jose Manuel Soto-Hidalgo (jmsoto@uco.es)

This work was supported in part by the University of Córdoba under the project PPG2019-UCOSOCIAL-03, and in part by the Spanish
Ministry of Science, Innovation and Universities under Grant TIN2015- 68454-R and Grant TIN2017-89517-P.

ABSTRACT In the specialized literature, researchers can find a large number of proposals for solving
regression problems that come from different research areas. However, researchers tend to use only proposals
from the area in which they are experts. This paper analyses the performance of a large number of the
available regression algorithms from some of the most known and widely used software tools in order to help
non-expert users from other areas to properly solve their own regression problems and to help specialized
researchers developing well-founded future proposals by properly comparing and identifying algorithms that
will enable them to focus on significant further developments. To sum up, we have analyzed 164 algorithms
that come from 14 main different families available in 6 software tools (Neural Networks, Support Vector
Machines, Regression Trees, Rule-Based Methods, Stacking, Random Forests, Model trees, Generalized
Linear Models, Nearest Neighbor methods, Partial Least Squares and Principal Component Regression,
Multivariate Adaptive Regression Splines, Bagging, Boosting, and other methods) over 52 datasets. A new
measure has also been proposed to show the goodness of each algorithm with respect to the others. Finally,
a statistical analysis by non-parametric tests has been carried out over all the algorithms and on the best
30 algorithms, both with and without bagging. Results show that the algorithms from Random Forest, Model
Tree and Support Vector Machine families get the best positions in the rankings obtained by the statistical
tests when bagging is not considered. In addition, the use of bagging techniques significantly improves the
performance of the algorithms without excessive increase in computational times.

INDEX TERMS Data mining, supervised learning, regression algorithms, experimental study.

I. INTRODUCTION
Regression is one of the most classic statistical techniques for
predictive data mining [1]. Regression consists in designing
a model from available training data that allows to predict
the value of a continuous output variable from new given
values of a set of input variables. Nowadays, a large number
of proposals have been published for solving regression prob-
lems, such as financial forecasting [2], marketing [3] or drup
response modeling [4] among others.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jing Bi.

In the specialized literature, researchers can find propos-
als that come from different areas of research. When new
approaches are published in any of these areas, researchers
usually tend to use the same category of algorithms histori-
cally applied in the area of research in which they are experts,
probably due to their partial knowledge about the available
algorithms. In addition, this problem is made worse because
of only a few number of researchers make the software and/or
source code associated with their proposals public and some-
times authors provide vague or even ambiguous descriptions
in the specialized literature. This issue, along with the high
complexity of some proposals, makes the widespread use of

108916 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4412-5449
https://orcid.org/0000-0002-6190-3575


M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

these algorithms difficult. With the aim of tackling with these
drawbacks, a great effort has been made by the data mining
research community and a large number of regression algo-
rithms have been included in well-known and used software
tools, such as Matlab [5], R [6] and Weka [7], [8], among
others.

The main objective of this paper is to analyze the perfor-
mance of a large number of regression algorithms in order to
help both non-expert users and specialized researchers. In this
sense, non-expert users from other areas could properly solve
their own regression problems and specialized researchers
could develop well-founded future proposals by properly
comparing and identifying algorithms that will enable them
to focus on significant further developments. To accom-
plish this, we have analyzed 164 regression algorithms that
come from 14 different families (Neural Networks, Support
Vector Machines, Regression Trees, Rule-Based Methods,
Stacking, Random Forests, Model trees, Generalized Linear
Models, Nearest Neighbor methods, Partial Least Squares
and Principal Component Regression, Multivariate Adaptive
Regression Splines, Bagging, Boosting, and Other Methods)
and that are available in the software tools Java Statistical
Analysis Tool (JSAT) [9], KEEL [10], Matlab [5], R [6],
Scikit-learn [11] andWeka [7], [8]. Moreover, a newmeasure
has also been presented to assess the goodness of an algorithm
with respect to the rest of analyzed algorithms in each dataset.

Notice that, it is intended to drive on algorithms that are
correctly implemented and publicly available (so that we
consider reference algorithms such as those included in the
mentioned software tools). These algorithms have already
been tested by many users, or even by the authors them-
selves, and corrected by experts in the case of presenting
problems, understanding therefore that their implementations
are reliable. Also, it is not intended to cover Big Data prob-
lems or problems with strong hardware requirements, which
are not usually available to all users, but standard regression
problems that even without such requirements are still dif-
ficult to solve. Of course, there are more recent algorithms
in the specialized literature [12]–[14], but they are still not
included in the said software tools, so that for non-expert
users (without programming abilities) it is somehow difficult
to implement and apply them. Even though we recommend
their consideration when it is possible, we will focus here
only on those available in the mentioned software tools.
The underlying idea is therefore, to be able to guide on the
algorithms available in some of the most well-known and
used software tools, so that any non-specialized researcher,
student, company, etc., that needs to use these algorithms
could know which algorithms can be used and what could be
expected from their application. Likewise, we would also like
to ease further well-founded comparisons and studies from
the specialized research community.

In order to assess the performance of these algorithms,
an experimental study collecting 52 real-world datasets,
with a number of variables within the interval [2, 60] and
a number of examples within the interval [43, 45730] has

been performed. Moreover, a new absolute metric together
with different quality categories (based on this metric
domain) are proposed in this contribution for assessing
the regression algorithms goodness over different datasets.
We have also developed a double study. Firstly, we have stud-
ied the performance of all the algorithms over the 52 datasets.
Secondly, we have compared the performance of the 30 best
algorithms including bagging application, and the 30 best
algorithms without considering bagging in order to analyze
the influence of bagging on those algorithms for which
the software tools allow us to apply it. In both studies,
we have used some non-parametric statistical tests for mul-
tiple comparison [15], [16] over the average performance
values obtained on the 52 datasets. Additionally, we analyze
the variety of data and the different algorithms’ behavior
related with the curse of dimensionality, as well as the tuning
of the algorithmic parameters by nested cross-fold validation
when using the ‘‘train’’ function from caret in R, in order
to provide some further insights on the behavior of the most
promising approaches.

Please, take it into account that we do not try to discard
any algorithm based on the results obtained but only to find
possible potentialities. A model explaining well a certain
situation may fail in another situation. The ‘‘No Free Lunch’’
theorem states that ‘‘there is no one model that works best for
every problem’’ [17]. And of course, this is still true after our
particular study.

Finally, a web page associated with this paper
(i.e., http://www4.ujaen.es/~mgacto/regression/study/http://
www4.ujaen.es/∼mgacto/regression/study/), which contains
complementary material to this study, has been also devel-
oped. It includes, the datasets collected and used in this
study (the 5-fold cross-validation partitions) together with the
generated results (errors and times) per algorithm and dataset
(164 × 52), which can be found in a downloadable spread-
sheet. Furthermore, it also includes the complete results by
types of datasets on the 164 algorithms for the curse of
dimensionality study. These public materials will ease further
well-founded comparisons and studies from the specialized
research community.

This paper is organized as follows. The next section
describes the set-up of the experimental study considered
in this paper and proposes a new absolute metric and qual-
ity categories for assessing regression algorithms goodness
over different datasets. Section III analyzes and discusses
the obtained results. Finally, in Section IV we draw some
conclusions.

II. EXPERIMENTAL SETUP
Several experiments have been performed to evaluate the
performance of the analyzed algorithms. In the following,
we firstly show the datasets used in the experimental study;
second, we introduce a new quality measure proposed for
these kinds of studies; third, we present the widely known
and used software tools including the public regression algo-
rithms analyzed in this contribution; fourth, we introduce a

VOLUME 7, 2019 108917



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 1. Datasets used for the experimental study.

brief description of the studied algorithms and their configu-
rations; and finally we describe the statistical analysis that is
performed in this study.

A. DATASETS
The experiments have been carried out over 52 real-world
datasets available in the well-known public repositories, with
a number of variables within the interval [2, 60] and a number
of examples within the interval [43, 45730]. These datasets
have been downloaded from the following repositories:
https://archive.ics.uci.edu/ml/datasets.html?format=&task=
reg&att=&area=&numAtt=&numIns=&type=&sort=name
Up&view=tableUCI Machine Learning Repository [18],
http://sci2s.ugr.es/keel/category.php?cat=regKEEL-dataset
[19], http://www.cs.waikato.ac.nz/ml/Weka/datasets.
htmlDataset Collections of Weka [7], [8], http://www.cs.
toronto.edu/~delve/data/datasets.htmlDelve Datasets [20],
[21], http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.
htmlLuis Torgo Repository [22], and http://ww2.amstat.org/
publications/jse/jse_data_archive.htmJournal of Statistics
Education Data Archive [23].

We have included all the available standard regression
datasets from these repositories. To the best of our knowledge
no study has been performed previously on this quantity of
standard regression datasets since it is quite difficult to find
them public (with 28 being the highest number previously
considered in a particular comparison from our knowledge to
the date [24]). Table 1 summarizes the main characteristics of
the datasets, whereName is the short name, Var is the number
of input variables, and Examples is the number of examples.

In all the experiments, we adopted a 5-fold cross-validation
model, i.e., we randomly split the dataset into 5 folds, each
containing 20% of the examples of the dataset, where four
folds have been used for training and one for testing. These
datasets and their 5-fold crosvalidation partitions are avail-
able in the complementary material web page associated to
this paper (http://www4.ujaen.es/~mgacto/regression/study/

http://www4.ujaen.es/∼mgacto/regression/study/). Finally,
for each of the five partitions, we executed three trials of the
algorithms (same 3 different seeds for all), of course, only
when they are non deterministic approaches.

B. QUALITY MEASURES CONSIDERED: RegM PROPOSAL
To evaluate each algorithm we have used the well-known
Mean Square Error (MSE):

MSE =
1
N

N∑
l=1

(alg(x l)− yl)2, (1)

where N is the number of examples of the dataset,
alg(x l) is the output obtained from the model generated by
the algorithm when the l-th example is considered and yl is
the known desired output.

In regression problems, the average MSEs obtained by an
algorithm may not represent its real performance magnitude
when it is compared to any other algorithm, since the domain
of the output variable is different for each dataset. Therefore,
MSE is a non absolute value depending on the range of each
dataset outputs (estimated continuous values). MSE normal-
ization could be a solution but it is very difficult to know the
minimum and maximum possible MSE values on each given
dataset. However, from the results in this paper we will have
not only good estimations of the minimum and maximum
possible MSE, but also a distribution with 164 values per
dataset becoming a well-supported sample representation on
what we could expect from regression algorithms.

Based on this distribution for each of the addressed
datasets, we have also proposed a new absolute measure
(RegM ) in order to identify a comparable average goodness
value of the results obtained by an algorithm on different
datasets (as in classification, where we can easily compute the
average correct classification percentage, from 0 to 100%).
In order to address this problem, we could properly identify
the median point over 164 MSE values as the MSE expected
for a normal (on or over 50% of the studied algorithms), or at

108918 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

FIGURE 1. Normalization interval, performance categories, associated
symbols and labels, and RegM domains for dataset d .

least reasonably, well-performing algorithm (i.e., not partic-
ularly good or bad). We will fix this median value as the
50% performance scoring (in a range from 0 to 100%).

Since we have also the best and worst MSEs, we could
now define intervals for normalization. However, while con-
sidering from median MSE to best MSE seems appropriate
(these values are determined by well-performing algorithms),
considering from median to worst MSE could be some-
how as throwing the dice, since any algorithm performing
bad could obtain unexpectedly high errors. In this sense,
we have defined as appropriate interval for normalization
twice the difference between the best MSE and the median
MSE obtained for the dataset. It is, we fix the measurable
loss of performance as equal to the possible improvement.
See Figure 1 top for a graphical representation of this interval
definition. Taking it into account, this interval is defined as:

Interval = (MSEdMedian −MSE
d
Best ) ∗ 2 (2)

where MSEdBest is the best MSE obtained by the analyzed
algorithms in the dataset d , MSEdMedian is the median of the
MSEs obtained by the analyzed set of algorithms in the
dataset d (concretely, in this study, 164 algorithms). Thus,
the new measure RegM for the algorithm alg is defined as:

RegMd
alg = max(0, 1−

MSEdalg −MSE
d
Best

Interval
) (3)

RegMalg =
100
NDat

NDat∑
d=1

RegMd
alg (4)

where MSEdalg is the MSE obtained by the algorithm alg in
the dataset d , and NDat is the number of datasets (52 datasets
in this study).

This measure takes values in the interval [0, 100],
where we define four qualitative categories with values in
[75, 100] representing algorithms with a very good perfor-
mance, values in [50, 75) representing algorithms with a good
performance, values in [0, 50) representing algorithms with
a moderate performance, and values bellow 0 representing a
not good performance. Figure 1 shows the definition of the
performance categories and their interpretation (symbols and
labels) together with the associatedRegM value domains for a

given dataset d . From this study, these domains could be taken
as reference values for each of the 52 datasets, thus making
easier testing a new proposal.

C. SOFTWARE USED FOR THE EXPERIMENTS
In this paper we have considered 6 public software tools
including the analyzed algorithms in the experimental study.
A brief description of these software tools can be found in the
following:
Java Statistical Analysis Tool (JSAT) [9] is a ‘‘library for
quickly getting started with Machine Learning problems’’
written in Java. The library has no external dependencies, and
almost all of the algorithms are independently implemented
using an Object-Oriented framework. JSAT is suitable for
small and medium size problems and it is made available for
use under the GPL 3. JSAT. Version 0.0.9 has been employed.
Knowledge Extraction based on Evolutionary Learning
(KEEL) [10] is a ‘‘Java software tool that can be used
for a large number of different knowledge data discovery
tasks. KEEL provides a simple GUI based on data flows to
design experiments with different datasets and computational
intelligence algorithms (paying special attention to evolu-
tionary algorithms). It contains a wide variety of classical
knowledge extraction algorithms, preprocessing techniques,
computational intelligence based learning algorithms, hybrid
models, statistical methodologies for contrasting experiments
and so forth’’. KEEL is open source for use under the GPL 3.
We have used the current KEEL version with date of
creation 2018-04-09.
MATLAB (MATrix LABoratory) [5] is a commercial multi-
paradigm numerical computing environment developed by
MathWorks. This environment allows ‘‘matrix manipula-
tions, functions and data plotting, implementation of algo-
rithms (including machine learning methods’’. In the paper,
we have used the version R2016a. Moreover, we have
used several toolboxes implemented by Gints Jekabsons.
The toolbox codes are open source regression software
for Matlab/Octave and are licensed under the GNU GPL
license. These toolboxes are: ARESLab [25] version 1.13.0,
M5PrimeLab [26] version 1.7.0, and PRIM [27] version 2.2.
Scikit-learn [11] is a library for Machine Learning in
Python. ‘‘It features a rich number of supervised and
unsupervised learning algorithms and builds on NumPy,
SciPy, and matplotlib’’. Sciki-learn is open source software
issued under BSD 3 license. We have used Scikit-learn
version 0.18.1 included in Anaconda 3-4.3.1 (Python
distribution 3.6).
R [6] is a ‘‘free software environment for statistical com-
puting and graphics. It compiles and runs on a wide variety
of UNIX platforms, Windows and MacOS’’. Many useful
R functions come in packages and free libraries of code
written by the R’s active users community. The software can
redistribute it and/or modify it under the terms of the GNU
GPL as published by the Free Software Foundation. It is
available on the web page https://cran.r-project.org/. We have
considered the R version 3.5. Moreover, when it is possible

VOLUME 7, 2019 108919



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

we use the train function from caret package in R to set
up a grid of tuning parameters for regression routines, to fit
each model and calculate a resampling based performance
measure. This allows learning which is the best parameter
for the algorithm, for example, to set the correct value for
k parameter in the k-Nearest Neighbors (kNN) method.
Weka [7], [8] is a data mining software tool ‘‘including a
collection of machine learning algorithms for data mining
tasks’’ developed by University of Waikato. ‘‘The algorithms
can either be applied directly to a dataset or called from your
own Java code. Weka contains tools for data pre-processing,
classification, regression, clustering, association rules, and
visualization’’. It is also well-suited for developing new
machine learning schemes. Weka is open source software
issued under the GNU General Public License. We have used
Weka version 3.9.1.

D. ALGORITHMS AND PARAMETERS CONSIDERED
IN THE EXPERIMENTS
In the experiments, 164 algorithms for regression problems
available in the software tools JSAT, KEEL, Matlab, R,
Scikit-learn, and Weka have been used. Notice that although
a few additional algorithms are available in these tools, they
have not been included in the experiments since they were
not able to run in all the considered datasets due to scalability
problems.

These 164 algorithms (actually different ones or some
particular implementations of the same ones) have been
grouped into 14 families by unifying the own tools catego-
rization: Neural Networks (NNET): 21 algorithms; Support
Vector Machines (SVM): 16 algorithm; Regression Trees
(RT): 17 algorithms; Rule-basedMethods (RL): 9 algorithms;
Stacking (STA): 2 algorithms; Random Forests (RF):
10 algorithms; Model Trees (MT): 8 algorithms; General-
ized Linear Models (GLM): 29 algorithms; Nearest Neigh-
bor methods (NN): 7 algorithms; Partial Least Squares and
Principal Component Regression (PLSR): 4 algorithms;Mul-
tivariate Adaptive Regression Splines (MARS): 4 algorithms;
Bagging (BAG): 18 algorithms; Boosting (BST): 5 algo-
rithms; and Other Methods (OM): 14 algorithms. In order to
facilitate the analysis, we have used the same terminology
used by the authors in [28], where a similar study was per-
formed for classification techniques.

A brief description of these algorithms is as follows
(sorted by category and alphabetically). Each algorithm has
been identified by its name in the software tool in which
it is available followed by the short form of the software
tool. For example, JSAT:J; Weka:W; KEEL:K; Matlab:M;
Scikit-learn:P; R:R; R using caret with implicit use of the
caret Train function):T.

In relation with parameters, the standard ones recom-
mended by authors (those included in each tool as recom-
mended parameters by default), except in R for those that
are tuneable with train have been considered. In some cases,
for different implementations of the same algorithm any of
the parameters proposed in each software tool by default are

different. In these cases, we have determined the best param-
eter value experimentally, and set it the same for all the cases.
For example, the number of total trees in the Random Forest
based algorithms is not 500 by default in all the software
tools but only in some of them. Setting up all of them to
500 improved their results systematically, without significant
improvements over this value, so that for fair comparison
with the different software tools we fix it to 500 for all the
cases. It was the same for the bagging application, where in
some cases 25 bags are recommended and for some others 50.
We fixed it to 50 without significant changes over this value.

Moreover, as we previously said, when it is possible we
use the train function from caret package in R to set up
a grid of tuning parameters for regression routines, to fit
each model and calculate a resampling based performance
measure. It involves a nested cross-fold validation, where
only training data is used for inner cross-fold validation and
selection of the best parameters, and test data is lately used
on the final application of these selected parameters. This is
applicable to some methods that are external to caret. In these
cases, we have included both versions, without algorithmic
parameter tuning (as they are recommended in their own
packages) and with algorithmic parameter tuning by train
(in order to also check this possibility). However, it must be
said that the use of the train function imposes high computa-
tional restrictions due to the cost timing required in tuning
the parameters slowing down the overall operation of the
algorithm, so that in some cases it is impossible performing
this type of parameter tuning since the computational time
needed goes beyond the wise (see Sections III-D and III-F,
where a computational time analysis and the effects of the
tuning of algorithmic parameters are briefly studied).

Therefore, even though using this type of automatic nested
cross-fold validation could be a non biasedway to perform for
the best algorithmic parameters selection (not by hand trial
and error, where you could check the test error), in the ana-
lyzed software tools it is only directly available for a reduced
set of algorithms (in order to ease non-expert users, to whom
this contributions is particularly focused, who are not usually
able to implement the corresponding scripts or to modify
the available implementations). Moreover, the much higher
computational cost on 164×52×5 (algorithms, datasets and
folds... even seeds for non-deterministic methods) makes it
impossible to apply for the whole study, i.e., the application
of 42,640 nested cross-fold validations over different combi-
nations of algorithmic parameters.

On the other hand, from the brief study on the train param-
eter tuning in section III-F, we can see as it is only reporting
slight improvements in general and that even sometimes the
test errors (generalization ability) worsen significantly. It is
the problemwhen we are prohibited to check test errors while
tuning or developing a method in a given single problem, that
we do not know whether it is overfitting or not.

All these reasons are why for these type of studies, standard
parameters are even recommended [15], [16]. In our case,
we are applying the standard ones, which also represents

108920 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

the real situation when non-expert users need to apply data
mining techniques to the problems they face in their respec-
tive areas, in order to show a general (of course non perfect)
estimation on how they perform, which is one of the main
objectives of this contribution.

1) NEURAL NETWORKS (NNET): 21 ALGORITHMS
1) avNNet-T from the caret package, creates a committee

of multi-layer perceptrons (MLPs) from the nnet pack-
age (the number of MLPs is given by parameter repeat)
trained with different randomweight initializations. The
tunable parameters are the #hidden neurons (size) in {1,
3, 5} and the weight decay (values {0, 0.1, 10−4}).
This low number of hidden neurons is to reduce the
computational cost of the ensemble.

2) BackPropagationNet-J is an implementation of a feed
forward neural network trained by back propagation.
NNets are powerful classifiers and regressors, but can
suffer from slow training time and overfitting.

3) elm-M is a extreme learning machine [29] imple-
mented in Matlab using the code freely available in
the elm Web (http://www3.ntu.edu.sg/home/egbhuang/
elm_codes.html), using sigmoidal function for activa-
tion functions and 20 as the value for #hidden neurons.

4) elmNN-R [29], [30] trains of a generic single hidden-
layer feed forward neural network using ELM algo-
rithm, from the elmNN package.

5) EnsembleR-K [31] is an ensemble neural network for
regression problems. The method employs an ensemble
construction based on the use of nonlinear projections
to achieve both accuracy and diversity of individual
regressors. It also uses the philosophy of boosting for
difficult instances.

6) iRProp+-K [32] is a regression model by means of
product unit neural networks or multilayer perceptrons
trained with the iRProp+ algorithm.

7) MLP-BP-K [33] is an MLP for regression prob-
lems, with back-propagation as learning technique. The
networks apply a sigmoid function as an activation
function.

8) mlp-R creates a MLP and learns it with backpropaga-
tion, by using the RSNNS package.

9) MLPRegressor-P produces an MLP regressor which
optimizes the squared-loss using stochastic gradient-
based proposed by Kingma [34].

10) mlpWeightDecay-T trainsMLP networks using caret to
access the RSNNS package with #hidden neurons and
the weight decay parameter tuning.

11) MultilayerPerceptron-W is an MLP network with sig-
moid hidden neurons, unthresholded linear output neu-
rons, learning rate 0.3, momentum 0.2, 500 training
epochs, and #hidden neurons equal to (#inputs)/2.

12) newff-M creates a feed-forward backpropagation
network implemented in Matlab with hidden neu-
rons 3:3:30. Matlab v. 7.9.0.529 (R2009b) with Neural
Network Toolbox v. 6.0.3

13) NNEP-K [33] consists of obtaining the neural network
architecture and simultaneously estimating the weights
of the model coefficients with an algorithm of evolution-
ary computation.

14) nnet-R [35] fits single-hidden-layer neural network pos-
sibly with skip-layer connections using nnet package,
considering 10 as the number of hidden layer.

15) nnet-T uses caret as interface to function nnet in
the nnet package, training an MLP network. The
tunable parameters are the #hidden neurons (size)
with 1:2:9 and the weight decay values {0,0.1,0.01,
0.001,0.0001}.

16) pcaNNet-T trains the MLP using caret and the nnet
package, and running principal component analysis
(PCA) previously on the data set. The tunable param-
eters are the size with 1:2:9 and weight decay val-
ues{0,0.1,0.01,0.001,0.0001}.

17) rbf-R creates a radial basis function (RBF) network in
the RSNNS package considering default values. The
number of hidden neurons takes values 5 or 3 (for
smaller datasets) depending on the datasets.

18) rbfDDA-R [36] creates incrementally from the scratch
a RBF network with dynamic decay adjustment (DDA),
in the RSNNS package.

19) RBFNet-J produces a RBF neural network which uses
K-means to select the RBF centers. Using a number of
clusters (or hidden neurons) equal to 25.

20) RBFNR-K [36] builds a RBF neural network composed
of one hidden layer and one output layer. This hidden
layer contains neurons, each one being activated when
the input to the network falls close to a point that is
considered the center of that neuron. The final result of
the network is provided by the neurons of the output
layer that perform a weighted sum using the outputs
coming from hidden neurons.

21) RBFRegressor-W implements a normalized gaussian
RBF network. It uses the k-means clustering algorithm
to provide the basis functions.

2) SUPPORT VECTOR MACHINES (SVM): 16 ALGORITHMS
22) DCD-J implements Dual Coordinate Descent (DCD)

[37], [38] training algorithms for a Linear L1 or
L2 SVM for binary classification and regression (in our
case, we use the default L1), without the shrinkage
optimization.

23) DCDs-J creates a linear SVM trained by DCD.
24) EPSILON-SVR-K builds regression models by means

of EPSILON-SVM [39] in libSVM [40] library.
25) fitrsvm-M fits an SVM regression model on a low-

through moderate-dimensional predictor data set.
26) ksvmEpsilon-R uses the function ksvm [41] in the

kernlab package with epsilon regression.
27) ksvmNu-R uses the function ksvm [41] (kernlab pack-

age) with Nu regression.
28) LibLINEAR-R [42] creates Linear predictive models

estimation based on the LIBLINEAR C/C++ Library

VOLUME 7, 2019 108921



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

in the LibLinear package, with type 11. We have been
testing with three values for type parameter:
• 11 L2-regularized L2-loss support vector regression
(primal)

• 12 L2-regularized L2-loss support vector regression
(dual)

• 13 L2-regularized L1-loss support vector regression
(dual)

The best result was obtained by type 11 that we finally
use in this contribution.

29) LinearSVR-P is a scalable linear SVM for regression
implemented using liblinear [40].

30) NuSVR-K creates regression model by means of
NU-SVM [39] based on libSVM [40] library.

31) NuSVR-P is an SVM for regression implemented with
libsvmwith a parameter to control the number of support
vectors.

32) SMOreg-W [43] is an SVM for regression. The
parameters are learned using RegSMOImproved with
C=1 and polynomial kernel. RegSMOImproved learns
SVM using Sequential Minimal Optimization (SMO)
with adaption of the stopping criterion.

33) svm-R creates an SVM with the kernel used in training
and predicting by radial basis, using the library Lib-
SVM [40] in the e1071 package.

34) svmLinear-R [40] uses the function SVM (e1071 pack-
age) with linear kernel.

35) svmPoly-R [40] uses the e1071 package to create a
SVM with polynomial kernels.

36) svmSigmoid-R [40] trains an SVMwith sigmoid kernel
in e1071 package.

37) SVR-P implements an epsilon-support vector regression
based on libsvm [40] library.

3) REGRESSION TREES (RT): 17 ALGORITHMS
38) ctree-T uses the function ctree [44], [45] in the party

package, which creates conditional inference trees by
recursive partitioning for continuous, censored, ordered,
nominal and multivariate response variables in a condi-
tional inference framework. The threshold in the asso-
ciation measure is given by the parameter mincriterion,
tuned with the values 0.1:0.11:0.99 (10 values).

39) ctree2-T uses the function ctree tuning the maximum
tree depth with values up to 10.

40) DecisionStump-W is a one-node regression tree which
develops classification or regression based on just one
input using entropy.

41) DecisionTree-J is a generic implementation, allowing
the ability tomimic the behavior ofmany tree algorithms
such as C4.5 [46] (for classification) and CART [47]
(regression).

42) DecisionTreeReg-P [47], [48] is a simple decision tree
regressor. It creates a model that predicts the value of a
target variable by learning simple decision rules inferred
from the data features.

43) ExtraTreesReg-P [49] implements a meta estimator
that fits a number of randomized regression trees (extra-
trees) on various sub-samples of the dataset and uses
averaging to improve the predictive accuracy and control
over-fitting. Consider 500 as the number of default trees
in the forest previous to the final meta estimator.

44) fitrtree-M [47], [50], [51] fits a binary regression deci-
sion tree.

45) quantregForest-R [52] infers conditional quantile
functions from data based on previously obtained
quantile regression forests. Included in quantregForest
package.

46) RandomSubSpace-W [53] trains multiple REPTrees
regressors selecting random subsets of inputs (random
subspaces) to obtain a decision tree based classifier.
Each REPTree is learnt using information gain/variance
and error-based pruning with backfitting. Each subspace
includes the 50% of the inputs. The minimum variance
for splitting is 0.001, with at least 2 patterns per leaf.

47) RandomTree-J is a regression tree that chooses a ran-
dom subset of features at each iteration to consider.

48) RandomTree-W is a non-pruned tree where each leaf
tests log2(#inputs+1) randomly chosen inputs, with at
least 2 instances per leaf, unlimited tree depth and with-
out backfitting.

49) REPTree-W learns a fast pruned regression tree using
information variance and Reduced Error Pruning (REP).
It uses at least 2 training patterns per leaf, 3 folds for
reduced error pruning and unbounded tree depth. The
minimum proportion of the variance on all the data for
splitting is 0.001.

50) rpart-R [47] implements CARTmethod using the func-
tion rpart in the rpart package, which develops recursive
partitioning.

51) rpart-T uses the same previous function tuning the com-
plexity parameter (threshold on the accuracy increasing
achieved by a tentative split in order to be accepted) with
6 values from 0.1 to 0.11.

52) rpart1SE-T trains CART using caret and the rpart pack-
age with no tuning parameters.

53) rpart2-T uses the function rpart by tuning the tree depth
with values up to 10.

54) tree-R [35], [47] grows a tree by binary recursive parti-
tioning using the response in the specified formula and
choosing splits from the terms of the right-hand-side.

4) RULE-BASED METHODS (RL): 9 ALGORITHMS
55) ConjunctiveRule-W uses a single rulewhose antecedent

is theANDof several antecedents andwhose consequent
is the mean for a numeric value. If the test instance is
not covered by this rule, then it’s predicted using the
value of the data not covered by the rule in the training
data. This learner selects an antecedent by computing
the information gain of each antecedent and prunes the
generated rule using REP.

108922 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

56) DecisionTable-W [54] is a simple decision table major-
ity regressor which uses BestFirst as search method.

57) GFS-GPG-K [55] is a fuzzy learning based on genetic
programming grammar operators.

58) GFS-GSP-K [56] implements a symbolic fuzzy learn-
ing based on genetic programming grammar operators
and simulated annealing.

59) GFS-SAP-Sym-K [56] is a symbolic fuzzy-valued data
learning based on genetic programming grammar oper-
ators and simulated annealing.

60) GFS-SP-K [55] produces fuzzy rule learning grammar-
GP based operators and simulated annealing-based
algorithm.

61) PRIM-M implements the Patient Rule Induction
Method (PRIM) [57] included in the PRIM toolbox [27].
This method is for finding ‘‘interesting’’ regions (bump
hunting) in high-dimensional data. The regions are
described by hyper-rectangles (boxes) containing simple
decision rules.

62) WM-K [58] implements the fuzzy rule learning Wang-
Mendel algorithm for generating fuzzy rules by learning
from examples.

63) ZeroR-W predicts the mean for all the test patterns.
Obviously, this regressor gives low accuracies, but it
serves to give a lower limit on the accuracy.

5) STACKING (STA): 2 ALGORITHMS
64) Stacking-J is a stacking ensemble [59]. Stacking learns

several base classifiers and a top level classifier learns to
predict the target based on the outputs of all the ensemble
models. A linear model is used, which translates to
learning a weighted vote of the regressor outputs.

65) Stacking-W is a stacking ensemble [59] using ZeroR as
meta and base regressors.

6) RANDOM FORESTS (RF): 10 ALGORITHMS
66) cforest-R is a version of random forest and bagging

ensemble of conditional inference trees (ctrees) aggre-
gated by averaging observation weights extracted from
each ctree. The parameter mtry takes the value 1 with
500 trees. It uses the caret package to access the party
package (no algorithmic parameter tuning is performed).

67) RandomForest-J [60] creates a collection of random
trees with 500 trees.

68) randomForest-R creates a random forest [60] ensemble
using the randomForest function in the randomForest
package, with parameters ntree = 500 (number of trees
in the forest) and mtry=#inputs.

69) RandomForest-W implements a forest of RandomTree
base classifiers with 500 trees (except in 2dplanes and
casp datasets with 300 trees since the method causes
memory problems), the number of randomly chosen
attributes as log2(#inputs)+1 and unlimited depth trees.

70) RandomForestRegressor-P implements a RF algo-
rithm for regression problem with 500 trees.

71) ranger-R is a fast implementation of RF [60] or recur-
sive partitioning, particularly suited for high dimen-
sional data, with 500 trees. It is included in the package
ranger.

72) Rborist-R is a rapid decision tree construction and eval-
uation, with 500 trees, provided by Rborist package.
The method includes accelerated implementation of the
random forest algorithm and it is tuned for multicore and
GPU hardware.

73) rf-T creates a random forest using the caret interface to
the function randomForest in the randomForest package,
with ntree = 500 and tuning the parameter mtry with
values 2:3:8.

74) rfsrc-R is the random forests for survival, regression and
classification, with 500 trees, included in randomForest-
SRC package.

75) RRF-R [61], [62] implements regularized random forest
algorithm, with 500 trees, included in the package RRF.
It is based on the randomForest R package.

7) MODEL TREES (MT): 8 ALGORITHMS
76) Cubist-R is a rule-based model that is an extension of

the classic Quinland’s M5 model tree [63]. A tree is
grown where the terminal leaves contain linear regres-
sion models.

77) M5-K implements M5 model tree.
78) M5P-R [64] implements M5 prime model tree using

M5P function in the package RWeka.
79) M5P-W builds the M5 prime tree regression method.
80) M5Prime-M is the M5 prime regression method. This

method is included in M5PrimeLab [26] toolbox.
81) M5Rules-K implements M5 model rules.
82) M5Rules-R creates a M5 model rules using M5Rules

function in the package RWeka.
83) M5Rules-W builds the same M5 model rules.

8) GENERALIZED LINEAR MODELS (GLM) : 29 ALGORITHMS
84) bam-mgcv-R [65], [66] is a version of generalized addi-

tive models for very large datasets included in mgcv
package.

85) BayesianRidge-P builds a bayesian ridge regression
model to optimize the regularization parameters.

86) ElasticNet-P is a linear regression model trained with
L1 and L2 prior as regularizer. It is useful when there are
multiple features which are correlated with one another.

87) fitrlinear-lsr-M [38] implements linear regression
model to high-dimensional data and uses least-squares
regression method as learner.

88) fitrlinear-svm-M [37], [38], [67] fits linear regres-
sion models to high-dimensional data. The method
includes regularized support vector machines (SVM)
and minimizes the objective function using techniques
that reduce computing time (e.g., stochastic gradient
descent).

89) fitlm-M creates a simple linear regression model.

VOLUME 7, 2019 108923



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

90) fitlm-Robust-M produces a linear robust regression
model to reduce outlier effects.

91) gam-R is used to fit generalized additive models [68],
[69], specified by giving a symbolic description of the
additive predictor and a description of the error dis-
tribution. It uses the backfitting algorithm to combine
different smoothing or fitting methods. The model is
included in gam package.

92) gam-mgcv-R [70], [71] fits generalized additive models
with integrated smoothness estimation in mgcv package.

93) glm-R [72] uses the function glm in the stats package
with gaussian family.

94) glmnet-R trains a GLM via penalized maximum
likelihood, with Lasso or elasticnet regularization
parameter [73] (using glmnet function in the glmnet
package).

95) glmStepAIC-R performs generalized linear regression
with stepwise selection by Akaike information crite-
rion [74] using the function stepAIC in the MASS pack-
age, which es executed by train from caret (no algorith-
mic parameter tuning is performed).

96) HuberRegressor-P [75], [76] is a linear regression
model that is robust to outliers.

97) lars-R fits Least Angle Regression (LARS) [77] and is
included in the package lars. With the ‘‘lasso’’ option,
it computes the complete lasso solution simultaneously
for all values of the shrinkage parameter in the same
computational cost as a least squares fit.

98) Lars-P performs LARS [77] algorithm for high-
dimensional data.

99) Lasso-P is a linear model that estimates sparse coeffi-
cients. It is useful in some contexts due to its tendency to
prefer solutions with fewer parameter values, effectively
reducing the number of variables upon which the given
solution is dependent.

100) LassoLars-P is a lasso model implemented using the
LARS algorithm.

101) LinearRegression-P produces an ordinary least squares
linear regression.

102) LinearRegression-R builds suitable linear regression
models, using the Akaike criterion for model selection.
It is included in RWeka package.

103) LinearRegression-W learns a simple linear regression
model. It picks the attribute that results in the lowest
squared error.

104) lm-R [78], [79] is used to fit linear models in stats
package.

105) nnls-R trains an algorithm for non-negative least
squares executed from caret with no tuning of algorith-
mic parameters.

106) PassiveAggressive-J is a version of the passive aggres-
sive algorithm [80] for regression. It is a type of online
algorithm that performs the minimal update necessary to
correct for a mistake.

107) PassiveAggressiveRegressor-P is a passive-aggressive
regressor algorithm [80] for large-scale learning.

108) randomGLM-R is a random generalized linear model
predictor included in the randomGLM package.

109) SGDRegressor-P is a linear model fitted by minimizing
a regularized empirical loss with stochastic gradient
descent.

110) SimpleLinearRegression-W implements a simple lin-
ear regression model.

111) stepwiseglm-M [72], [81], [82] creates generalized lin-
ear regression model by stepwise regression.

112) TheilSenRegressor-Ps [83] implements a robust
multivariate regression model. The algorithm uses a
generalization of the median in multiple dimensions and
it is robust to multivariate outliers.

9) NEAREST NEIGHBOR METHODS (NN): 7 ALGORITHMS
113) IBk-W [84] is a k-Nearest Neighbors regressor

with linear neighbor search and euclidean dis-
tance, considering 7 as the number of nearest
neighbors.

114) IB1-W is a simple 1-NN regressor.
115) kknn-R uses the function kknn in the kknn package

considering 7 as the number of neighbors.
116) knn-T trains function knn in the caret package with

12 number of neighbors in the range 3:2:25.
117) KMeans-P is k-means clustering method. Consider 8 as

the number of centroids.
118) KNeighborsRegressor-P implements regression algo-

rithm based on k-nearest neighbors. Considering 5 as the
number of neighbors by default.

119) NearestNeighbour-J is a nearest neighbor algorithm
with 7 as the number of neighbors.

10) PARTIAL LEAST SQUARES AND PRINCIPAL COMPONENT
REGRESSION (PLSR): 4 ALGORITHMS
120) kernelpls-R [85] performs partial least squares regres-

sion with the function plsr (in the pls package) and
method=kernelpls.

121) pcr-R performs principal components regression using
pls package.

122) pls-R uses the function mvr in the pls package to per-
form partial least squares regression, which es executed
by train from caret (no algorithmic parameter tuning is
performed).

123) simpls-R considers the same function plsr using the
SIMPLS [86] method in the pls package.

11) MULTIVARIATE ADAPTIVE REGRESSION SPLINES
(MARS): 4 ALGORITHMS
124) earth-R builds MARS [87], [88], in earth package.
125) gcvEarth-R uses the function earth in the earth package.

It builds an additive MARS model without interaction
terms using the fast MARS [48] method.

126) mars-M is the MARS method included in the
ARESLab [25] toolbox.

127) mars-Rfits aMARS [87]model using the functionmars
in the mda package.

108924 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

12) BAGGING (BAG): 18 ALGORITHMS
It is one of the cases where some of the software tools
use a different number of bags, it is 10, 20 or 50. In [89],
the authors tested with different number of bags indicating
that 50 or 25 bags were necessary or sufficient to obtain good
results within reasonable execution times. In our experiments,
50 bags have been used for all the methods.

In the case of the ensemble based methods (RF based ones
among others) it makes no sense the bagging application
(for example method ExtraTreeReg-P). We tried it over a
good amount of datasets and it did not significantly improved
the results but it greatly increased the execution time. It is
the case as said among others, when bagging is applied to
randomForest-R, thus making its computational time cost
extremely high without signficant improvement. Thereforre,
such contributions have not been considered as cases of
study.
128) bagEarth-R is a bagging ensemble of MARS method

included in the earth package with 50 bagging iterations.
129) bagEarthGCV-R is a bagged MARS method from the

earth package, using gCV pruning with 50 bagging
iterations.

130) bagging-DecisionStump-W uses DecisionStump base
regressor with 50 bagging iterations.

131) bagging-DecisionTable-W uses DecisionTable with
BestFirst and forward search, leave-one-out validation
and RMSE asmeasure used to evaluate the performance,
with 50 bagging iterations.

132) bagging-DecisionTree-J is an ensemble technique for
reducing variance that uses DecisionTree base regres-
sors with 50 bagging iterations.

133) bagging-DecisionTree-P is an ensemblemeta-estimator
that fits decision tree base regressors each on random
subsets of the original dataset and then aggregate their
individual predictions (the number of estimators in the
ensemble is 50) to form a final prediction.

134) bagging-IBk-W uses IBk base classifiers, which
develop kNN regressor tuning K using cross-validation
with linear neighbor search and Euclidean distance, with
50 bagging iterations.

135) bagging-MultilayerPerceptron-W is a bagging with
50 iterations using the same configuration as the single
MultilayerPerceptron-w method.

136) bagging-M5P-R uses M5P base regressor with 50 bag-
ging iterations.

137) bagging-M5P-W applies bagging with 50 iterations to
the same M5P base regressor.

138) bagging-M5Rules-R uses M5Rules base regressor with
50 bagging iterations.

139) bagging-M5Rules-W builds a bagging with 50 itera-
tions using M5Rules method as base regressor.

140) bagging-RandomTree-J is a bagging ensemble that
uses RandomDecisionTree base regressor with 50 bag-
ging iterations.

141) bagging-RandomTree-W applies bagging with Ran-
domTree base regressor without backfitting, with

unlimited tree depth, considering [log2(#inputs)+ 1] as
the number of random inputs, and 2 as the number of
instances per leaf, with 50 bagging iterations.

142) bagging-REPTree-W uses REPTree with 2 instances
per leaf, minimum class variance 0.001, 3-fold for
reduced error pruning and unlimited tree depth, with
50 bagging iterations.

143) bagging-Rpart-R [89] is a bagging ensemble with
50 bagging iterations of decision trees (rpart method)
using the function bagging (in the ipred package).

144) treebag-R trains a bagging ensemble of linear dis-
criminant analysis with option bagControl=ldaBag and
50 bagging iterations.

145) treeBagger-M creates a bag of regression trees with
50 trees. TreeBagger grows the decision trees in the
ensemble using bootstrap samples of the data. Also,
the method selects a random subset of predictors to use
at each decision split as in the random forest algorithm.

13) BOOSTING (BST): 5 ALGORITHMS
146) bstls-R uses a gradient boosting for optimizing loss

functions with component wise linear models as base
learners, with the function bst (from the bst package),
learner=ls and number of boosting iterations equals 50.

147) bsttree-R fits a boosting for regression using the tree
regression models, with the function bst (from the bst
package), learner=tree and the same number of iterations
of the bstls method.

148) glmboost-R is the gradient boosting for optimizing arbi-
trary loss functions where component-wise linear mod-
els are utilized as base-learners. It is included in mboost
package and uses 100 as number of boosting iterations.

149) fitensembleBst-M is a regression tree ensemble using
LSBoost and 100 learning cycles. LSBoost is the gra-
dient boosting strategy applied for least squares from
Friedman [90].

150) GradientBoostingRegressor-P is a Gradient Boosting
for regression. It builds an additive model in a forward
stage-wise fashion; it allows for the optimization of
arbitrary differentiable loss functions. In each stage a
regression tree is fit on the negative gradient of the given
loss function. It uses 100 as the number of boosting
stages to perform.

14) OTHER METHODS (OM): 14 ALGORITHMS
151) AdditiveRegression-W [91] is a method that helps to

improve the performance of the regression where each
iteration adjusts a model to the residuals left by the
regressor on the previous iteration. The prediction is
obtained by adding the predictions of each regressor.
This, avoids overfitting but increases the learning time.

152) AttributeSelectedClassifier-W uses M5P trees to clas-
sify patterns reduced by attribute selection. The CfsSub-
setEval method [92] selects the best group of attributes
weighting their individual predictive ability and their
degree of redundancy, preferring groups with high

VOLUME 7, 2019 108925



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

correlation within outputs. The BestFirst forward search
method is used, stopping the search when five non-
improving nodes are found.

153) foba-R is a greedy variable selection for ridge regression
using a forward greedy, backward greedy and the Adap-
tive Forward-Backward Greedy (FoBa) [93] methods.
This method is included in foba package.

154) KernelRLS-J [94] implements Kernel Recursive Least
Squares (RLS) for online regression learning. This is a
kernelization of the RLS algorithm, and it uses projec-
tion for bounded learning.

155) KStar-W [95] is an instance-based regressor which uses
entropy based similarity to assign a test instance to the
output of its nearest training instances.

156) LWL-J [96] is a Local Weighted Learning (LWL) that
builds a local model for every query, and uses that local
model to make predictions.

157) LWL-W [97] is an ensemble of Decision-Stump base
regressors. Each training instance is weighted with a
linear weighting kernel, using the Euclidean distance for
a linear search of the nearest neighbor.

158) MultiScheme-W selects a regressor among several
ZeroR regressors using cross validation on the training
set.

159) ppr-R builds a projection pursuit regression model [98].
It is included in stats library.

160) RandomCommittee-W is an ensemble of Ran-
domTrees (each one built using a different seed) whose
output is the average of the base regressor outputs.

161) relaxo-R builds relaxed lasso solutions [99] included in
the relaxo package.

162) Ridge-P performs linear least squares with l2 regular-
ization. The model solves a regression model where the
loss function is the linear least squares function and
regularization is given by the l2-norm.

163) RidgeRegression-J creates a simple batch implementa-
tion of ridge regression.

164) spikeslab-R fits a rescaled spike and slab model [100],
[101] using a continuous bimodal prior in the spikeslab
package. A generalized elastic net estimator is used
for variable selection and estimation. It can be used
for prediction and variable selection in low and high-
dimensional linear regression models.

E. STATISTICAL ANALYSIS
In order to assess whether significant differences exist among
the results, we have adopted statistical analysis [15], [16],
concretely non-parametric tests. According to the recommen-
dations made in [15] and [16], a set of simple, safe and robust
non-parametric tests for statistical comparisons of regres-
sors has been considered. We have employed the Friedman’s
test [102] in order to rank the studied algorithms and to find
out whether at least a significant difference exists among any
of the mean values. And then, we have proceed with the post-
hoc Holm’s test [103] in order to find the concrete pairwise
comparisons which produce differences.

Notice that the Holm’s test have only been applied to the
results obtained by the best 30 algorithms Friedman’s ranking
since the total number of algorithms is too high to compute
this test. A detailed description of these tests and explana-
tions of the use of non-parametric tests for data mining and
Computational Intelligence can be found at the Website at
http://sci2s.ugr.es/sicidm/.

III. RESULTS AND DISCUSSION
In order to evaluate the performance of the analyzed algo-
rithms, several analyzed have been performed in this paper,
which are organized in this section as follows:
• In Subsection III-A, we present the rankings and average
RegM results and we analyze the performance of the
164 algorithms studied.

• In Subsection III-B, we analyze the best 30 algorithms
in rankwithout considering the algorithms that make use
of bagging.

• In Subsection III-C, we analyze the best 30 algorithms
in rank by considering the algorithms that make use of
bagging.

• In Subsection III-D, we analyze the scalability of the
studied algorithms.

• In Subsection III-E, we analyze the variety of data and
the different algorithms’ behavior related with the curse
of dimensionality.

• In Subsection III-F, we analyze the tuning of the algo-
rithmic parameters by ‘‘train’’.

• In Subsection III-G, we analyze the results obtained
grouped by algorithm family.

A. ANALYSIS OF THE 164 ALGORITHMS AVAILABLE IN
THE STUDIED SOFTWARE TOOLS
Several executions have been carried out on different datasets
in order to analyze the performance of the 164 algorithms (see
Subsections III-A, II-D and III-G). Tables 2, 3 and 4 sum up
the average RegM results obtained by each algorithm (sorted
by rankings) where Rank represents the Friedman’s ranking
for the averaged error (MSE) obtained over the test data;
RegM represents the values obtained for the new measure
proposed in this paper (see Subsection II-B); Win is the
number of datasets in which the algorithm obtains the best
MSE over the test data; represents the number of datasets
in which the algorithm has obtained a value in [75, 100] for
the measure RegM ; F represents the number of datasets in
which the algorithm has obtained a value in [50, 75) for the
measure RegM ; F represents the number of datasets in which
the algorithm has obtained a value in [0, 50) for the measure
RegM ; and t represents the number of datasets in which the
algorithm would obtain a value bellow 0 for RegM . Finally,
AvTime is the average computational cost in seconds.

All these values have been computed over the particu-
lar MSE results which can be found in a downloadable
spreadsheet at the web page associated with this paper
(i.e., http://www4.ujaen.es/ mgacto/regression/study/http://
www4.ujaen.es/∼mgacto/regression/study/). It includes the

108926 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 2. Results obtained by the studied methods. (I/III).

generated results (errors and times) per algorithm and dataset
(164 × 52).

The following facts can be highlighted from the results
presented in the Tables 2, 3 and 4:
• The bagging methodology have been applied to several
algorithms belonging to different families (MT, MARS,
NNET, RT, among others). From the results shown
in the tables; it can be drawn that applying bag-
ging to simple algorithms allows obtaining quite
improved results with a reasonable computational cost.

Individual regression methods tend to overfit but
bootstrap-aggregated (bagged) regression combine the
results from many regressors, reducing the effects of
overfitting and improving the accuracy. Nevertheless,
we can still find some bagging based algorithms remain-
ing in the last ranking positions. The best one is
bagging-M5P-R, with the best RegM value (85.52)
and with zero results within the moderate/bad result
interval zones, represented by F and t, respectively.
There is also another algorithm with zero results within

VOLUME 7, 2019 108927



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 3. Results obtained by the studied methods. (II/III).

the moderate/bad zones, i.e., bagging-REPTree-W
(82.65 RegM). In this sense, both of them could be con-
sidered as quite robust algorithms without any registered
bad result.

• The algorithms obtaining the best values for the Fried-
man ranking and the new measure RegM are the algo-
rithms M5 and M5Rules available in the software tools
R and Weka and making use of 50 bagging itera-
tions (Bagging-M5P-R). Notice that both of them are
algorithms that belong to the MT family to which

50 bagging iterations have been applied. Close to the
results obtained by these algorithms we can also find
several algorithms of the RF family.

• Analyzing the values obtained for the RegM measure-
ment, we can see how these values present a coher-
ent correlation with the values for Friedman’s ranking,
decreasing the value of the measurement as the ranking
value increases.

• Finally, from our point of view and taking into account
the RegM distribution of results into the four quality

108928 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 4. Results obtained by the studied methods. (III/III).

intervals, we recommend as highly promising those
whose RegM average values is around and over 60.
Moreover, as a particular singularity, we can find
the elm-M algorithm, which gets the best results
in 12 datasets and very bad results (according to RegM)
in 35 datasets, by which it is ranked within the last algo-
rithms. Therefore, we think elm-M is also a promising
one to consider for tackling real problems.

In the following subsections, we perform statistical analy-
sis on the 30 best algorithms according to Friedman’s ranking,
with and without bagging.

B. ANALYSIS OF THE BEST 30 ALGORITHMS WITHOUT
BAGGING CONSIDERATION
We have only analyzed the 30 best algorithms according
to Friedman’s ranking without considering the BAG family
algorithms in order to study the algorithms without this addi-
tional methodology. Table 5 shows the 30 best algorithms
according to the Friedman’s ranking (recalculated for only
these 30 algorithms) and the adjusted p-value (APVHolm)
obtained by the Holm’s test when we compare the best
ranking algorithm (ExtraTreesReg − P) with the remaining
algorithms. As a summary: 7 RFs, 6MTs, 4MARSs, 3 SVMs,

VOLUME 7, 2019 108929



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 5. The best 30 algorithms without bagging (including recalculated Friedman’s test and Holm’s Adjusted P-Value).

3 OMs, 2 RTs, 2BSTs, 1 GLM, 1 NNET and 1 NN. Notice
that no algorithms from the RL, STA, and PLSR families
have been included among the 30 best algorithms. Taking into
account the results shown in Table 5 we can highlight:
• The equality hypothesis to the first one is not rejected
for the remaining first 18 algorithms with a significance
level of 0.05. Among them, we can find algorithms from
7 different families (7 algorithms from RF, 6 from MT,
1 from RT, 1 from BST, 2 from SVM, 1 from MARS
and 1 from OM) but most of them belong to the RF and
MT families, which shows the potential of tree based
algorithms. SVMs also appears twice, which shows a
significantly good performance taking into account that
there are 146 algorithms without bagging.

• The best Friedman’s ranking is obtained by the sin-
gle tree-based algorithm ExtraTreesReg− P. Moreover,
we can see how the following 4 top-ranked algorithms
belong to the RF family, which are ensemble algorithms
with multiples trees in the forest (500 trees in this study).

• Finally, single-based MT family algorithm also seen to
compete with RF ones. It is quite interesting since they
are quite simpler and therefore they should be easier to
understand/interpret. It also shows potentiality in order
to be considered as base algorithms for bagging or new
RF proposals.

C. ANALYSIS OF THE BEST 30 ALGORITHMS WITH
BAGGING
We have only focused the 30 best algorithms of the 164 algo-
rithms analyzed in this study according to Friedman’s ranking
(see Table 2). It makes it able testing the equality hypoth-
esis (first ranked as reference) according to Holm’s test
when we compare the results obtained by all the algorithms
including bagging. Notice that we have not applied bag-
ging to the ensemble algorithms (RF family and ExtraTrees
Reg-P) because these algorithms already perform an inter-
nal bagging-like process (see Section II-D - Bagging, for
extended explanation).

Table 6 shows the results obtained by Friedman’s test
recalculated for these 30 algorithms (this type of table

was described in the previous subsection). As a summary:
11 BAGs,7 RFs, 6 MTs, 2 SVMs, 1 RT, 1BST, 1 MARS and
1 OM. Notice that the best Friedman’s ranking is obtained
by M5P, but in this case with its implementation available in
Weka. In addition, this implementation also got the best value
for the measure RegM (see Table 2). Analyzing the results
presented in Table 6, we can highlight the following facts:
• The bagging methodology allows to improve consider-
ably the precision of the algorithms, being 11 of the best
30 algorithms from BAG family (from a total of 18 BAG
algorithms).

• Holm’s test with bagging-M5P-W as reference algo-
rithm rejects the equality hypothesis with a significance
level of 0.05 with the last 10 algorithms in the table,
which include several implementations of the M5 algo-
rithm. It should be noted that the implementation of M5
without bagging available in Weka is not even among
Friedman’s top 30 ranking algorithms. This shows how
the use of bagging can significantly improve the algo-
rithm’s performance without a high computational cost
(see Tables 2, 3 and 4).

• The remaining algorithms (those with p-values
over 0.05) are distributed in families as follows:
8 algorithms from BAG, 7 from RF family (from total
of 10 RF algorithms), 2 from MT and 1 from BST.
Even when there are no SVM, MARS or OM in the not
rejected set of algorithms, we should take into account
that there are no implemented versions on these algo-
rithms in combination with bagging. It depicts on open
framework for including these types of combinations as
a part of the studied software tools.

D. ANALYSIS OF SCALABILITY
In this section, we include an analysis of the computational
cost of the first ranked algorithms and the average times by
families. Figure 2 shows the graph of the time in seconds of
the best 30 algorithms sorted by their rankings. The meth-
ods using the ‘‘train’’ function from caret to tune algorithm
parameters need significant extra time to obtain the results,
thus slowing down the overall operation of the algorithms.

108930 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 6. The best 30 algorithms with bagging (including recalculated Friedman’s test and Holm’s Adjusted P-Value).

FIGURE 2. Average computational cost of the 30 best ranked algorithms.

In this figure, we can see how the algorithms from BAG
family (12 among the 30 best) have a reasonable time except
Bagging-M5Rules-R, bagging-MultilayerPerceptron-W and
bagEarthGCV-R algorithms. The algorithms of the RF family
are slower except for those versions specifically designed to
be fast, such as ranger-R and Rborist-R methods, the Weka
versions and the python versions. In general, the algorithms
implemented in python are quite fast.

The average times from each family are displayed
in Figure 3. In this figure, we have excluded algorithms
executed with ‘‘train’’ (-T) since the way to execute the algo-
rithms looking for an adjustment of the parameters penalize
the own family times. This figure shows that RL, NNET and
OM families are quite slow. The algorithms from the BAG
family are not the fastest ones but they are quite competitive
in average times and they get pretty good precision results.
The best results in time, with an acceptable and very compet-
itive precision, are the algorithms of the MT family (as we
saw in the previous section, they obtain acceptable results
even equivalent to the best algorithm). Therefore, applying

FIGURE 3. Average time for each family.

bagging to MT methods allows not only obtaining good
results but also good run times.

E. ANALYSIS ON THE CURSE OF DIMENSIONALITY
In this paper we have considered a wide variety of data -
particularly relative to number of attributes and number of

VOLUME 7, 2019 108931



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

examples. This section helps to analyze some algorithms
in different situations, as for datasets with a large number
of attributes compared to other methods, datasets with a
small number of attributes, or the combined effect depending
on the number of examples. In order to do so, we have
divided the datasets into two different groups depending on
their dimensionality (i.e., number of attributes). The first one
includes the datasets with the higher dimensionality, High
Dimensional (HD) group with only >= 9 variables. The sec-
ond one includes the datasets with the lower dimensional-
ity, Low Dimensional (LD) group with only < 9 variables.
Thus, we can compute all the measures again separately by
group (Friedman’s ranking, RegM , and number of results in
the quality intervals) in order to check differences with the
general results and to contrast both groups.

On the other hand, there are some data complexity
measures that were proposed or used in the classification
framework where most of them were proposed based on
the existence of classes. Even though, some of them can
be directly used for regression. That is the case when in
discussions on curse of dimensionality, the number of pat-
terns is compared to the number of variables, which seems
more interesting than considering number of patterns only.
In [104], [105], the authors introduced a very simple index,
denoted T2, defined as the average number of patterns per
variable. This measure also represents an interesting charac-
teristic for the datasets in the regression framework. In this
section, we also apply this measure as in the previous case for
analyzing the dimensionality. Thus, we have again divided
the datasets in a group with High T2 (HT2) values (good
distributions with T2 >= 250) and a groupwith LowT2 (LT2)
values (bad distributions with T2 < 250).

The complete results in the four groups (HD, LD, HT2 and
LT2) sorted by ranking on the 164 algorithms are available in
the complementarymaterial web page associated to this paper
(http://www4.ujaen.es/~mgacto/regression/study/http://
www4.ujaen.es/∼mgacto/regression/study/). For the sake of
simplicity and due to it is not possible to show and analyze
all the 164 algorithms in the mentioned four groups in the
manuscript, we show and analyze here only the best 20 algo-
rithms for each group.

Table 7 shows these results, where PosHD is the position
sorted by Friedman’s ranking obtained on the HD group of
datasets (only >= 9 variables), PosLD is the position sorted
by ranking obtained on the LD group of datasets (only <
9 variables), PosGlobal is the position sorted by ranking
obtained when all datasets are considered and the remaining
columns where previously explained in Section III-A for
Tables 2, 3 and 4. Analogously, Table 8 contains the same
columns but for the corresponding division on T2, High
HT2 group of datasets (only T2 >= 250) and LT2 group of
datasets (only T2 < 250), respectively.

From the results shown in these tables we can highlight the
following facts:
• There is a group of algorithms, the bagging of the M5P
versions, that reach a good behaviour in both the HD

and the LD groups of datasets, also obtaining the same
behaviour in T2. They rank the best positions in all the
considered datasets. Notwithstanding, this aspect was
shown in Table 2 where their RegM average scorings
are quite high but, most importantly, their individual
RegM results are mainly located in the very good and
good quality ranges, represented by and F, respec-
tively. For this reason, the use of these algorithms as
a first approximation on a given real problem could
be considered as a starting recommendation for non-
expert users whenever there are no special restrictions
such as interpretability, real time computing, etc. And
then, if it is possible (depending on their programming
abilities and data mining knowledge) to try to improve
the obtained results with more recent techniques.

• Despite including feature selection as part of the learn-
ing process itself, the base algorithms of these combina-
tions (versions of M5P) suffer more in the LD than in
the HD, so it seems that bagging behavior is improved
in small problems, where maybe overlearning occurs,
without affecting its behavior in the HD too much. This
aspect is even more prominent when we focus on T2,
where the base versions do not appear in the top 20 in the
LT2 group (datasets with low data density), showing that
bagging really solves the problem of low data density
(tendency to overlearning). As a conclusion or recom-
mendation, these base algorithms are also good alterna-
tives for solving problems with high T2 values, which
allow obtaining simpler models (just one tree, or even a
set of rules). Anyway, they also maintain their individual
RegM results, even in the LT2 group, mainly located in
the very good and good quality ranges, represented by
and F, respectively.

• The family of RF algorithms seems to behave in a con-
trary way than M5P versions. Focusing on T2, it seems
to be that, although they work well in both types of
problems, they are generally better in problems with
poor data density/distribution than with good ones. They
also provide a better behavior in the HD than LD, and
vice versa, depending on the RF version, so they are
actually more dependent on the distribution of data than
on the dimensionality itself (although logically they are
related).

F. TUNING OF THE ALGORITHMIC PARAMETERS
BY ‘‘TRAIN’’
As we explained before, the setting/tuning of algorithmic
parameters is an important aspect on which we had to take
a decision based on the reasons discussed in Section II-D.
Even though it is not the objective in this contribution,
because of the reasons previously stated, in this section we
show the performance of those algorithms for which ‘‘train’’
(from Caret in R) has been applied on recommended nested
cross-fold validation for tuning some of their most relevant
algorithmic parameters (based on Caret recommendations).
Of course, it is not a taxative demonstration on how the

108932 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 7. The best 20 algorithms for the HD datasets and for LD datasets (including recalculated performance metrics, where more than 10 position
differences are boldfaced).

parametric tuning influences the all the algorithms in general,
but it could represent a glimpse whether repetitive trends can
be found on some different algorithms. Moreover, it could
lead to some recommendations when users/researchers per-
form parametric tuning in real applications/problems they
need to solve (especially when they are non-expert users).

In Table 9, we show the average results obtained by the
available methods with fixed standard parameters (without
parametric tuning) and their recommended versions with
parametric tuning. It includes the same columns that where
previously explained in Section III-A for Tables 2, 3 and 4, but
also their obtained global positions in these tables (positions
from 1 to 164).

Taking into account the values of the different metrics
shown in Table 9, we can stress the following facts:
• The highest differences in algorithm positions with
respect to their tuned versions are found for random
Forest-R and its tuned version rf-T (positions 6 to 22,
respectively); for mlp-R and mlpWeightDecay-T (posi-
tions 158 to 146, respectively); and for rpart-R and
rpart2-T (positions 88 to 96, respectively). Contrary to
the expected, two of them (those with the best ranking

positions) are even obtaining worse results (of course,
in their test errors). Checking the RegM intervals, we can
observe that some datasets are changing their quality
classification moving to a worse category, showing the
overfitting effects on some datasets/problems. However,
even in these cases, they are not highly relevant changes
over a total of 164 algorithms.

• The remaining changes look not so relevant, by chang-
ing no more than four positions and only getting slight
improvements in general. Moreover the frequency in the
RegM quality intervals is quite similar, involving only
small changes in the shown distributions.

• In general, it seems that significant changes on perfor-
mance could depend more on the design of the algo-
rithms itself than on the subsequent tuning of their
parameters.

Finally, we recommend for non-expert users the use of
standard parameters in principle, unless they have previous
knowledge on the corresponding parameters effects, so that
some alternative combinations could be explored. In princi-
ple, without expert knowledge, probably not so high improve-
ments and taking into account the high risk of overfitting,

VOLUME 7, 2019 108933



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

TABLE 8. The best 20 algorithms for the HT2 datasets and for LT2 datasets (including recalculated performance metrics, where more than 10 position
differences are boldfaced).

TABLE 9. Available methods with standard parameters (without parametric tuning, boldfaced) and their recommended versions with parametric tuning.

it would be better trying on different types of algorithms than
adjusting and adjusting on only one or two of them. But in any
case, in order to provide a good assessment/estimation of the
real system error, please avoid checking the test errors before
fixing all the tentative combinations of parameters. And once
they are fixed then compute the test errors without repeating
the process (since, maintaining the test data hidden for all

the learning process is the only way to properly estimate the
generalization ability of the models obtained).

It should be the same for expert users, which are sup-
posed to be able to also apply a nested cross-fold validation
(and/or even consider some fixed combinations of parame-
ters). Again, it should be always fixed and performed before
checking the test errors, without repeating the process if test

108934 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

FIGURE 4. a) Friedman’s rank average and range for the regressors by family; b) Friedman’s average and range for only the 3 best ranked
regressors by family.

errors are not as good as the expected, in order to avoid
possible overfitting on the final real system application.

G. DISCUSSION BY ALGORITHM FAMILY
In this section, we discuss the results by regressor family (see
Tables 2, 3 and 4). Figures 4.a) and 4.b) show respectively: the
minimum, maximum and average ranking values by family
considering all the algorithms (even those with extremely bad
results) and the same by only considering the 3 best ranked
algorithms by family (since we think that those most com-
petitive ones could represent better each family potentiality).
From now on, wewill follow the order in Figure 4.b) to briefly
analyze the algorithm families.

We can find the most accurate family in BAG. Checking
Figure 4.a) we can see it gets almost the best average, while its
best algorithm gets the first ranking position. When checking
Figure 4.b) we can infer that BAG global average, see also
Figure 4.a), is affected by a few bad algorithms butmost of the
BAG family are in the best ranking positions. In fact, the best
regressor is bagging-M5P-R (ensemble technique for reduc-
ing variance that uses M5 base regressors with 50 bags in R).
Followed by bagging-M5P-W (bagging of M5 model tree in
Weka), bagging-M5Rules-W (bagging of M5 model rules in
Weka), bagging-M5Rules-R (bagging of M5 model tree
in R) and bagging-MultilayerPerceptron-W (bagging ofMLP
networks in Weka) with ranks about 19.17-26.16. These five
first best algorithms belong to the BAG family. Bagging could
be considered as a meta family or additive family, since it
is applied over existent implementations of the remaining
families, so that it also depends on the base algorithms from
the other families.

The following family of regressors is RF. The best
three ones from this family are randomForest-R (RF in
R), RandomForest-W (RF in Weka) and RRF-R (Regu-
larized RF in R) with ranks about 27.27-28.22. Among
the 10 best ranked algorithms we can find several algo-
rithms from the RF family, all of them with a fairly good
ranking. RF are ensemble algorithms that perform an inter-
nal bagging-like process. This is one of the main rea-
sons for them to be highly competitive with respect to the
BAG family.

Two of the best ranked families that are not directly based
on ensembles are MT and SVM. MT-based regressors work
relatively well, beingM5-R (M5method in R) still equivalent
to the best ranked method (see Table 6). The following
methods from the MT family are M5Rules-R, M5Rules-W,
cubist-R (advanced version of M5 method in R), M5-K and
M5Rules-K, i.e., different versions of the classic M5. In fact,
it should be noted that the method with the best ranking
from the total of 164 algorithms is a bagging of the old
and classic M5 algorithm. The SVM family is also quite
competitive being the best method svm-R which is a simple
implementation of a SVM using the library LibSVM [40].
Many of the methods from the SVM family are based on
this library. They were not able to be used in combination
with bagging in their current implementations at the studied
software tools, which seems a potential open framework for
the data mining software developers.

The methods from the MARS family obtain quite accept-
able results, being mars-M the one with the best performance.
MARS methods get results over the median value (i.e., very
good and goodF categories) in almost all the datasets, and
only in a small percentage of datasets the results outweigh the
median.

OM family includes very different algorithms and the rank-
ings are not too good on global average but acceptable on
the 3 best ranked average. ppr-R method (pursuit regression
model in R) achieves good results (42.53 ranks) among the
OM family and it is within the 30 best algorithms. The next
method of the family is RandomCommittee-Wwith a ranking
very close to ppr-R.

RT family presents intermediate results in general.
ExtraTreesReg-P is the algorithm with the best ranking of
the RT family with a rank value of 28.57. ExtraTreesReg-P
is the algorithm with the best ranking of the RT family,
surprisingly getting the best ranked position when bagging
is not considered. The remaining algorithms of the RT family
have a quite superior ranking, higher than 58. The second best
algorithm of the family is ctree-T followed by REPTree-W.
Both, REPTree-W and ExtraTreesReg-P, are quite fast.

Next, we are going to analyze the results of the
group of intermediate-low ranked families. GradientBoosting

VOLUME 7, 2019 108935



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

Regressor-P regressor (Gradient Boosting in Python) is the
first algorithm of the BST family, the rest of the algorithms
of this family are glmboost-R and bsttree-R but they have a
worse ranking higher than 75. The family of GLM is the one
with the higher number of algorithms 29, being the best one
the stepwiseglm-M method. In this family, there are a great
variety of methods: generalized linear models, least angle
regression, passive aggressive algorithm, etc.

The algorithms of the NNET family are quite competitive
even though they present some overfitting. They obtain very
good results in some datasets (those that does not suffers from
overfitting) whereas in other datasets (those that suffer from
overfitting) they obtain results above the acceptable values.
It can be said that depending on the problem these algorithms
may be the best or the worst option. An example is the elm-M
algorithm, which gets the best results in 12 datasets and very
bad results in 35 datasets. RBFRegressor-W is the best ranked
method from the NNET family with an acceptable ranking
of 47.39.

Finally, the NN methods are classic methods, being most
of them applicable to both regression and classification prob-
lems. They are quite fast in general (there is no learning
stage) but their results are not excessively good. The best
algorithm is the knn-T with k tuning by Caret ‘‘train’’. The
RL methods does not obtained the best results, achieving the
classical method DecisionTable-W the best results compared
to evolutionary fuzzy rule learning (GFS-SP-K, GFS-GSP-K
and GFS-SAP-Sym-K). However, these methods were partic-
ularly designed with explainability/interpretability purposes,
so that they mainly try to obtain clear and simple mod-
els (when it is possible). M5Rules versions can also be
considered as a part of the RL family. The PLSR fam-
ily seems not too competitive at all. The pls-T method
archives the best ranking value with a high rank (91.33).
The STA family is the last one, probably motivated because
of only two algorithms of this family have been included
(this family is underrepresented in the studied software
tools).

IV. CONCLUSIONS
In this paper, we have performed an experimental study
with 164 algorithms for regression problems that come from
14 different families (BAG, RF, MT, BST, RT, SVM, MARS,
OM, GLM, NNET, NN, PLSR, RL, and STA) that are avail-
able in several software tools (JSAT, KEEL, Matlab, R,
Scikit-learn, and Weka) over 52 datasets. A statistical study
with non-parametric tests has been carried out on all the algo-
rithms and on the best 30 algorithms including the algorithms
of the BAG family andwithout them.Moreover, the newmea-
sure RegM based onMSE has also been proposed to show the
performance of an algorithm with respect to an interval of the
MSE, which allows us to represent when an algorithm has a
suitable performance. The objective of this study is to analyze
the performance of a large number of regression algorithms to
help non-expert users from other areas to properly solve their
own regression problems and to help specialized researchers

developing well-founded future proposals by properly
comparing and identifying algorithms that will enable them
to focus on significant further developments. In this context,
a key aspect is related with the parameter setting. We have
highlighted the importance of this aspect and detailed why for
this type of studies, the standard parameters recommended
by the authors are considered despite that the variety of
datasets. Notice that, applying the standard parameters, a real
situation when non-expert users need to apply data min-
ing techniques to the problem they face in their areas is
represented.

The results obtained over the 52 datasets collected show
how the implementation of the M5 algorithm combined with
bagging, which is available in the software tools R andWeka,
obtains the best Friedman’s ranking and the best value for
the measure RegM when we analyze the 164 algorithms.
On the other hand, the implementation of the ensemble-
based algorithms ExtraTreesReg available in Scikit-learn and
Random Forest available in R,Weka and Scikit-learn, present
the best performance when we only analyze the best 30 algo-
rithms according to Friedman’s ranking without considering
the algorithms of the BAG family. Notice that the ensemble
algorithms perform an internal bagging-like process. This
highlights the potential of tree-based methods to solve regres-
sion problems.

Results analyzed by families show that the algorithms from
RF, MT and SVM get the best positions in the rankings
obtained by the statistical tests when bagging is not consid-
ered. Finally, from the results obtained in the analyses with
and without bagging we can see how the use of bagging can
significantly improve the algorithm’s performance without a
high computational cost in general, so that BAG becomes the
most accurate family.

REFERENCES
[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.

San Mateo, CA, USA: Morgan Kaufmann, 2006.
[2] V. Ravi, D. Pradeepkumar, and K. Deb, ‘‘Financial time series prediction

using hybrids of chaos theory, multi-layer perceptron and multi-objective
evolutionary algorithms,’’ Swarm Evol. Comput., vol. 36, pp. 136–149,
Oct. 2017.

[3] Q. Madera, O. Castillo, M. García-Valdez, and A. Mancilla, ‘‘A method
based on interactive evolutionary computation and fuzzy logic for increas-
ing the effectiveness of advertising campaigns,’’ Inf. Sci., vol. 414,
pp. 175–186, Nov. 2017.

[4] R. Rahman, S. R. Dhruba, S. Ghosh, and R. Pal, ‘‘Functional random
forest with applications in dose-response predictions,’’ Sci. Rep., vol. 9,
Feb. 2019, Art. no. 1628.

[5] MathWorks. (2018). MATLAB Relase 2018b. [Online]. Available:
https://www.mathworks.com/products/matlab.html

[6] R Core Team. (2018). R: A Language and Environment for Statistical
Computing. [Online]. Available: http://www.R-project.org

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update,’’ ACM
SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009. [Online].
Available: http://www.cs.waikato.ac.nz/ml/weka/

[8] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 4th ed. San Francisco, CA,
USA: Morgan Kaufmann, 2016.

[9] E. Raff, ‘‘JSAT: Java statistical analysis tool, a library for machine
learning,’’ J. Mach. Learn. Res., vol. 18, no. 23, pp. 1–5, 2017. [Online].
Available: https://github.com/EdwardRaff/JSAT

108936 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

[10] I. Triguero, S. González, J. M. Moyano, S. García, J. Alcalá-Fdez,
J. Luengo, A. Fernández, M. del Jesús, L. Sánchez, and F. Herrera,
‘‘KEEL 3.0: An open source software for multi-stage analysis in data
mining,’’ Int. J. Comput. Intell. Syst., vol. 10, pp. 1238–1249, Sep. 2017.
[Online]. Available: http://www.keel.es

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011. [Online]. Available:
http://scikit-learn.org/stable/

[12] W. Dong and M. Zhou, ‘‘A supervised learning and control method to
improve particle swarm optimization algorithms,’’ IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 47, no. 7, pp. 1135–1148, Jul. 2017.

[13] J. C. Gámez, D. García, A. González, and R. Pérez, ‘‘An approximation
to solve regression problems with a genetic fuzzy rule ordinal algorithm,’’
Appl. Soft Comput., vol. 78, pp. 13–28, May 2019.

[14] J. Cardoso-Silva, G. Papadatos, L. G. Papageorgiou, and S. Tsoka, ‘‘Opti-
mal piecewise linear regression algorithm for QSAR modelling,’’ Mol.
Informat., vol. 38, no. 3, 2019, Art. no. 1800028.

[15] J. Demšar, ‘‘Statistical comparisons of classifiers over multiple data sets,’’
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[16] S. García, A. Fernández, J. Luengo, and F. Herrera, ‘‘Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,’’ Inf. Sci., vol. 180, no. 10, pp. 2044–2064, 2010.

[17] D. H. Wolpert, ‘‘The lack of a priori distinctions between learning
algorithms,’’ Neural Comput., vol. 8, no. 7, pp. 1341–1390, 1996.
doi: 10.1162/neco.1996.8.7.1341.

[18] D. Dua and C. Graff. (2017). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[19] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez,
and F. Herrera, ‘‘KEEL data-mining software tool: Data set reposi-
tory, integration of algorithms and experimental analysis framework,’’
J. Multiple-Valued Logic Soft Comput., vol. 17, pp. 255–287, Jan. 2010.

[20] Delve Datasets(Collections of Data for Developing, Evaluating, and
Comparing Learning Methods). [Online]. Available: http://www.cs.
toronto.edu/~delve/data/datasets.html

[21] U. Akujuobi and X. Zhang, ‘‘Delve: A dataset-driven scholarly search
and analysis system,’’ SIGKDD Explor. Newsl., vol. 19, no. 2, pp. 36–46,
Nov. 2017. doi: 10.1145/3166054.3166059.

[22] L. Torgo. Luís Torgo Repository. Accessed: Jul. 2019. [Online]. Avail-
able: http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

[23] Journal of Statistics Education Data Archive. Accessed: Jul. 2019.
[Online]. Available: http://jse.amstat.org/jse_data_archive.htm

[24] R. Alcalá, M. J. Gacto, and F. Herrera, ‘‘A fast and scalable multiobjective
genetic fuzzy system for linguistic fuzzy modeling in high-dimensional
regression problems,’’ IEEE Trans. Fuzzy Syst., vol. 19, no. 4,
pp. 666–681, Aug. 2011.

[25] G. Jekabsons. (2016).ARESLab: Adaptive Regression Splines Toolbox for
MATLAB/Octave. [Online]. Available: http://www.cs.rtu.lv/jekabsons/

[26] G. Jekabsons. (2016). M5PrimeLab: M5’ Regression Tree, Model Tree,
and Tree Ensemble Toolbox for MATLAB/Octave. [Online]. Available:
http://www.cs.rtu.lv/jekabsons/

[27] G. Jekabsons. (2015). Bump Hunting Using Patient Rule Induc-
tion Method for MATLAB/Octave. [Online]. Available: http://www.cs.
rtu.lv/jekabsons/

[28] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, ‘‘Do we
need hundreds of classifiers to solve real world classification problems?’’
J. Mach. Learn. Res., vol. 15, pp. 3133–3181, 2014.

[29] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, ‘‘Extreme learning
machine for regression and multiclass classification,’’ IEEE Trans. Syst.
Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

[30] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:
Theory and applications,’’ Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[31] N. García-Pedrajas, C. García-Osorio, and C. Fyfe, ‘‘Nonlinear boosting
projections for ensemble construction,’’ J. Mach. Learn. Res., vol. 7,
pp. 1–33, Jan. 2007.

[32] C. Igel and M. Hüsken, ‘‘Empirical evaluation of the improved Rprop
learning algorithms,’’ Neurocomputing, vol. 50, pp. 105–123, Jan. 2003.

[33] R. Rojas and J. Feldman, Neural Networks: A Systematic Introduction.
Berlin, Germany: Springer-Verlag, 1996.

[34] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
CoRR, vol. abs/1412.6980, pp. 1–15, Dec. 2014.

[35] B. D. Ripley,Neural Networks for Pattern Recognition. Cambridge, U.K.:
Cambridge Univ. Press, 1996.

[36] M. R. Berthold and J. Diamond, ‘‘Boosting the performance of RBF
networks with dynamic decay adjustment,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds.,
1995, pp. 521–528.

[37] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
‘‘A dual coordinate descent method for large-scale linear SVM,’’ in Proc.
ACM Int. Conf. Mach. Learn. (ICML), 2008, pp. 408–415.

[38] C.-H. Ho and C.-J. Lin, ‘‘Large-scale linear support vector regression,’’
J. Mach. Learn. Res., vol. 13, pp. 3323–3348, Nov. 2012.

[39] R.-E. Fan, P.-H. Chen, and C.-J. Lin, ‘‘Working set selection using second
order informationfor training support vector machines,’’ J. Mach. Learn.
Res., vol. 6, pp. 1889–1918, Dec. 2005.

[40] C.-C. Chang and C.-J. Lin. (2008). LIBSVM—A Library for Sup-
port Vector Machines. [Online]. Available: http://www.csie.ntu.edu.
tw/~cjlin/libsvm

[41] J. C. Platt, ‘‘Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods,’’ in Advances in Large Mar-
gin Classifiers, A. J. Smola, P. L. Bartlett, B. Scholkopf, and D. Schuur-
mans, Eds. Cambridge, MA, USA: MIT Press, 2000, pp. 61–74.

[42] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, ‘‘LIB-
LINEAR: A library for large linear classification,’’ J. Mach. Learn. Res.,
vol. 9, pp. 1871–1874, Jun. 2008.

[43] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,
‘‘Improvements to the SMO algorithm for SVM regression,’’ IEEE Trans.
Neural Netw., vol. 11, no. 5, pp. 1188–1193, Sep. 2000.

[44] T. Hothorn, K. Hornik, M. A. van deWiel, and A. Zeileis, ‘‘A lego system
for conditional inference,’’ Amer. Stat., vol. 60, no. 3, pp. 257–263, 2006.

[45] T. Hothorn, K. Hornik, and A. Zeileis, ‘‘Unbiased recursive partitioning:
A conditional inference framework,’’ J. Comput. Graph. Statist., vol. 15,
no. 3, pp. 651–674, Sep. 2006.

[46] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA,
USA: Morgan Kaufmann, 1993.

[47] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, Classification and
Regression Trees. London, U.K.: Chapman & Hall, 1984.

[48] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Berlin, Germany: Springer, 2009.

[49] P. Geurts, D. Ernst, and L. Wehenkel, ‘‘Extremely randomized trees,’’
Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[50] W.-Y. Loh and Y.-S. Shih, ‘‘Split selection methods for classification
trees,’’ Statist. Sinica, vol. 7, no. 4, pp. 815–840, 1997.

[51] W.-Y. Loh, ‘‘Regression tress with unbiased variable selection and inter-
action detection,’’ Statist. Sinica, vol. 12, pp. 361–386, Apr. 2002.

[52] N. Meinshausen, ‘‘Quantile regression forests,’’ J. Mach. Learn. Res.,
vol. 7, pp. 983–999, Jun. 2006.

[53] T. K. Ho, ‘‘The random subspace method for constructing decision
forests,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8,
pp. 832–844, Aug. 1998.

[54] R. Kohavi, ‘‘The power of decision tables,’’ in Proc. Eur. Conf. Mach.
Learn. (ECML), N. Lavrac and S. Wrobel, Eds. Berlin, Germany:
Springer, 1995, pp. 174–189.

[55] L. Sánchez, I. Couso, and J. Corrales, ‘‘Combining GP operators with SA
search to evolve fuzzy rule based classifiers,’’ Inf. Sci., vol. 136, nos. 1–4,
pp. 175–191, 2001.

[56] L. Sánchez and I. Couso, ‘‘Fuzzy random variables-based model-
ing with GA-P algorithms,’’ in Information, Uncertainty and Fusion,
B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, Eds. Boston, MA,
USA: Springer, 2000, pp. 245–256.

[57] J. H. Friedman and N. I. Fisher, ‘‘Bump hunting in high-dimensional
data,’’ Statist. Comput., vol. 9, no. 2, pp. 123–143, 1999.

[58] L.-X. Wang and J. M. Mendel, ‘‘Generating fuzzy rules by learning
from examples,’’ IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6,
pp. 1414–1427, Nov. 1992.

[59] D. H. Wolpert, ‘‘Stacked generalization,’’ Neural Netw., vol. 5, no. 2,
pp. 241–259, 1992.

[60] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[61] H. Deng and G. Runger, ‘‘Gene selection with guided regularized random
forest,’’ Pattern Recognit., vol. 46, no. 12, pp. 3483–3489, 2013.

[62] H.Deng andG. Runger, ‘‘Feature selection via regularized trees,’’ inProc.
Int. Joint Conf. Neural Netw. (IJCNN), 2012, pp. 1–8.

VOLUME 7, 2019 108937

http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://dx.doi.org/10.1145/3166054.3166059


M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

[63] R. J. Quinlan, ‘‘Combining instance-based and model-based learning,’’ in
Proc. Int. Conf. Mach. Learn. (ICML), 1993, pp. 236–243.

[64] R. J. Quinlan, ‘‘Learning with continuous classes,’’ in Proc. Austral. Joint
Conf. Artif. Intell. (AI), 1992, pp. 343–348.

[65] S. N. Wood, Y. Goude, and S. Shaw, ‘‘Generalized additive models
for large data sets,’’ J. Roy. Stat. Soc. C, Appl. Statist., vol. 64, no. 1,
pp. 139–155, 2015.

[66] S. N. Wood, Z. Li, G. Shaddick, and N. H. Augustin, ‘‘Generalized
additive models for gigadata: Modeling the U.K. black smoke network
daily data,’’ J. Amer. Stat. Assoc., vol. 112, no. 519, pp. 1199–1210,
2017.

[67] L. Xiao, ‘‘Dual averaging methods for regularized stochastic learning
and online optimization,’’ J. Mach. Learn. Res., vol. 11, pp. 2543–2596,
Oct. 2010.

[68] T. Hastie and R. Tibshirani, Generalized Additive Models. London, U.K.:
Chapman & Hall, 1990.

[69] T. Hastie, ‘‘Generalized additive models,’’ in Statistical Models in S,
J. M. Chambers and T. Hastie, Eds. London, U.K.: Chapman & Hall,
1990, ch. 7.

[70] S. N. Wood, ‘‘Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models,’’
J. Roy. Stat. Soc. B, Stat. Methodol., vol. 73, no. 1, pp. 3–36,
2011.

[71] S. Wood, ‘‘Stable and efficient multiple smoothing parameter estimation
for generalized additive models,’’ J. Amer. Stat. Assoc., vol. 99, no. 467,
pp. 673–686, 2004.

[72] A. J. Dobson, An Introduction to Generalized Linear Models, 2nd ed.
London, U.K.: Chapman & Hall, 2001.

[73] J. Friedman, T. Hastie, and R. Tibshirani, ‘‘Regularization paths for gen-
eralized linear models via coordinate descent,’’ J. Statist. Softw., vol. 33,
no. 1, pp. 1–22, 2010.

[74] W. N. Venables and B. D. Ripley, Modern Applied Statistics With S.
Springer, 2002.

[75] P. J. Huber, ‘‘Regression,’’ in Robust Statistics, P. J. Huber, Ed. Hoboken,
NJ, USA: Wiley, 2005, pp. 153–198.

[76] A. B. Owen, ‘‘A robust hybrid of lasso and ridge regression,’’
in Prediction and Discovery (Contemporary Mathematics), vol. 443.
Salt Lake City, UT, USA: American Mathematical Society, 2007,
pp. 59–71.

[77] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, ‘‘Least angle regres-
sion,’’ Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[78] J. M. Chambers, ‘‘Linear models,’’ in Statistical Models in S,
J. M. Chambers and T. J. Hastie, Eds. Belmont, CA, USA: Wadsworth,
1992, ch. 4.

[79] G. N. Wilkinson and C. E. Rogers, ‘‘Symbolic description of factorial
models for analysis of variance,’’ J. Roy. Stat. Soc. C, Appl. Statist.,
vol. 22, no. 3, pp. 392–399, 1973.

[80] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
‘‘Online passive-aggressive algorithms,’’ J. Mach. Learn. Res., vol. 7,
pp. 551–585, Dec. 2006.

[81] D. Collett, Modelling Binary Data, 2nd ed. London, U.K.: Chapman &
Hall, 2002.

[82] P. McCullagh and J. A. Nelder, Generalized Linear Models, 2nd ed.
London, U.K.: Chapman & Hall, 1989.

[83] X. Dang, H. Peng, X. Wang, and H. Zhang, ‘‘Theil-sen estimators in a
multiple linear regression model,’’ Ole Miss Education, Tech. Rep., 2009.

[84] D. W. Aha, D. Kibler, and M. K. Albert, ‘‘Instance-based learning algo-
rithms,’’ Mach. Learn., vol. 6, no. 1, pp. 37–66, 1991.

[85] B. S. Dayal and J. F. MacGregor, ‘‘Improved PLS algorithms,’’
J. Chemom., vol. 11, no. 1, pp. 73–85, Jan. 1997.

[86] S. de Jong, ‘‘SIMPLS: An alternative approach to partial least squares
regression,’’ Chemometrics Intell. Lab. Syst., vol. 18, no. 3, pp. 251–263,
1993.

[87] J. H. Friedman, ‘‘Multivariate adaptive regression splines,’’Annu. Statist.,
vol. 19, no. 1, pp. 1–67, Mar. 1991.

[88] J. H. Friedman, ‘‘Fast MARS,’’ Dept. Statist., Stanford Univ., Stanford,
CA, USA, Tech. Rep. 101, 1993.

[89] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[90] J. H. Friedman, ‘‘Greedy function approximation: A gradient
boosting machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232,
Oct. 2001.

[91] J. H. Friedman, ‘‘Stochastic gradient boosting,’’ Stanford
Univ., Stanford, CA, USA, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167947301000652

[92] M. Hall, ‘‘Correlation-based feature subset selection for machine learn-
ing,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Hamilton,
New Zealand, 1998.

[93] T. Zhang, ‘‘Adaptive forward-backward greedy algorithm for learn-
ing sparse representations,’’ IEEE Trans. Inf. Theory, vol. 57, no. 7,
pp. 4689–4708, Jul. 2011.

[94] Y. Engel, S. Mannor, and R. Meir, ‘‘The kernel recursive least-squares
algorithm,’’ IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[95] J. G. Cleary and L. E. Trigg, ‘‘K∗: An instance-based learner using
an entropic distance measure,’’ in Proc. Int. Conf. Int. Conf. Mach.
Learn. (ICML). San Francisco, CA, USA: Morgan Kaufmann, 1995,
pp. 108–114.

[96] C. Atkeson, A. Moore, and S. Schaal, ‘‘Locally weighted learning,’’ Artif.
Intell. Rev., vol. 11, no. 1, pp. 11–73, Apr. 1997.

[97] E. Frank, M. Hall, and B. Pfahringer, ‘‘Locally weighted Naive Bayes,’’
in Proc. Conf. Uncertainty Artif. Intell. (UAI). San Francisco, CA, USA:
Morgan Kaufmann, 2003, pp. 249–256.

[98] J. H. Friedman and W. Stuetzle, ‘‘Projection pursuit regression,’’ J. Amer.
Statist. Assoc., vol. 76, no. 376, pp. 817–823, Dec. 1981.

[99] N. Meinshausen, ‘‘Relaxed lasso,’’ Comput. Stat. Data Anal., vol. 52,
no. 1, pp. 374–393, 2007.

[100] H. Ishwaran and J. S. Rao, ‘‘Spike and slab variable selection: Frequentist
and Bayesian strategies,’’ Ann. Statist., vol. 33, no. 2, pp. 730–773,
2005.

[101] H. Ishwaran and J. S. Rao, ‘‘Spike and slab gene selection for multigroup
microarray data,’’ J. Amer. Stat. Assoc., vol. 100, no. 471, pp. 764–780,
2005.

[102] M. Friedman, ‘‘The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,’’ J. Amer. Stat. Assoc., vol. 32, no. 200,
pp. 675–701, Dec. 1937.

[103] S. Holm, ‘‘A simple sequentially rejective multiple test procedure,’’ Scan-
din. J. Statist., vol. 6, no. 2, pp. 65–70, 1979.

[104] T. K. Ho andM. Basu, ‘‘Complexitymeasures of supervised classification
problems,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3,
pp. 289–300, Mar. 2002.

[105] M. Basu and T. K. Ho, Eds., Data Complexity in Pattern Recognition
(Advanced Information and Knowledge Processing), vol. 16. London,
U.K.: Springer-Verlag, 2006.

MARÍA JOSÉ GACTO received the M.Sc. degree
in computer science and the Ph.D. degree in com-
puter science from the University of Granada,
Spain, in 1999 and 2010, respectively. She is a
member of the Intelligent Systems and Data Min-
ing ResearchGroup, Department of Computer Sci-
ence, University of Jaén. She has over 40 inter-
national publications. She has worked on several
research projects supported by the Spanish govern-
ment and the European Union. Her research inter-

ests include multi-objective genetic algorithms and genetic fuzzy systems,
particularly the learning/tuning of fuzzy systems for modeling and control
with a good trade-off between accuracy and interpretability.

JOSE MANUEL SOTO-HIDALGO received the
M.S. and Ph.D. degrees in computer science from
the University of Granada, Spain, in 2004 and
2014, respectively. Since 2007, he has been a
member of the Department of Electronics and
Computer Engineering, University of Córdoba,
Spain, where he is currently an Associate Pro-
fessor. He is a member of the ‘‘Software Fuzzy
Systems’’ Task Force (TF-FSS), the IEEE Com-
putational Intelligence Society (CIS), since 2016.

His current research interests include soft-computing applied to image pro-
cessing, data science and development of free software, and data sensors
management tools. He has authored more than 50 papers in international
journals, book chapters, and conferences.

108938 VOLUME 7, 2019



M. J. Gacto et al.: Experimental Study on 164 Algorithms Available in Software Tools

JESÚS ALCALÁ-FDEZ received the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Granada, Spain, in 2002 and 2006,
respectively. He is currently an Associate Profes-
sor with the Department of Computer Science and
Artificial Intelligence, University of Granada, and
he is a member of the Andalusian Research Insti-
tute DaSCI. He has published more than 80 papers
in international journals, book chapters, and con-
ferences, with a H-index of 20 (source: ISI WoK).

His current research interests include association rules, genetic fuzzy sys-
tems, multiobjective evolutionary algorithms, data mining software, data
science, bioinformatics, and big data. He acts as an editorial member of
several international journals. He was the Chair of the Software Fuzzy
Systems Task Force (TF-FSS) and the Fuzzy Systems Technical Committee,
the IEEE Computational Intelligence Society, from 2011 to 2017. He is
currently the Vice-Chair of the TF-FSS.

RAFAEL ALCALÁ received the M.Sc. degree in
computer science and the Ph.D. degree in com-
puter science from the University of Granada,
Spain, in 1998 and 2003, respectively, where he is
currently a Full Professor with the Department of
Computer Science and A.I.

He has published over 100 papers in inter-
national journals, book chapters, and confer-
ences. His current research interests include multi-
objective genetic algorithms and genetic fuzzy sys-

tems, particularly the learning/tuning of fuzzy systems for regression and
control with a good trade-off between accuracy and interpretability, imbal-
anced regression, as well as fuzzy association rules. He currently serves
as a member of the editorial board of the IEEE TRANSACTIONS ON FUZZY

SYSTEMS INTERNATIONAL JOURNAL. He was the President of the FSTC ‘‘Genetic
Fuzzy Systems’’ Task Force at the IEEE Computational Intelligence Society
(2009–2014), and the Vice-President (2014–2018). He was the Program
Co-Chair at GEFS 2010, the Area Co-Chair at the FUZZ-IEEE 2011, and
the General Co-Chair at GEFS 2011 and 2013.

VOLUME 7, 2019 108939


	INTRODUCTION
	EXPERIMENTAL SETUP
	DATASETS
	QUALITY MEASURES CONSIDERED: RegM PROPOSAL
	SOFTWARE USED FOR THE EXPERIMENTS
	ALGORITHMS AND PARAMETERS CONSIDERED IN THE EXPERIMENTS
	NEURAL NETWORKS (NNET): 21 ALGORITHMS
	SUPPORT VECTOR MACHINES (SVM): 16 ALGORITHMS
	 REGRESSION TREES (RT): 17 ALGORITHMS 
	RULE-BASED METHODS (RL): 9 ALGORITHMS
	STACKING (STA): 2 ALGORITHMS
	RANDOM FORESTS (RF): 10 ALGORITHMS
	MODEL TREES (MT): 8 ALGORITHMS
	GENERALIZED LINEAR MODELS (GLM) : 29 ALGORITHMS
	NEAREST NEIGHBOR METHODS (NN): 7 ALGORITHMS
	PARTIAL LEAST SQUARES AND PRINCIPAL COMPONENT REGRESSION (PLSR): 4 ALGORITHMS
	MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS): 4 ALGORITHMS
	BAGGING (BAG): 18 ALGORITHMS
	BOOSTING (BST): 5 ALGORITHMS
	OTHER METHODS (OM): 14 ALGORITHMS

	STATISTICAL ANALYSIS

	RESULTS AND DISCUSSION
	ANALYSIS OF THE 164 ALGORITHMS AVAILABLE IN THE STUDIED SOFTWARE TOOLS
	ANALYSIS OF THE BEST 30 ALGORITHMS WITHOUT BAGGING CONSIDERATION
	ANALYSIS OF THE BEST 30 ALGORITHMS WITH BAGGING
	ANALYSIS OF SCALABILITY
	ANALYSIS ON THE CURSE OF DIMENSIONALITY
	TUNING OF THE ALGORITHMIC PARAMETERS BY ``TRAIN''
	DISCUSSION BY ALGORITHM FAMILY

	CONCLUSIONS
	REFERENCES
	Biographies
	MARÍA JOSÉ GACTO
	JOSE MANUEL SOTO-HIDALGO
	JESÚS ALCALÁ-FDEZ
	RAFAEL ALCALÁ


