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Abstract We have revisited the computations of the flavor
violating leptonic decays of the τ and μ leptons into three
lighter charged leptons in the Standard Model with massive
neutrinos. We were driven by a claimed unnaturally large
branching ratio predicted for the τ− → μ−�+�− (� = μ, e)
decays (Pham, Eur Phys J C 8:513 1999), which was at odds
with the corresponding predictions for the μ− → e−e−e+
processes (Petcov, Sov J Nucl Phys 25:340 1977). In con-
trast with the prediction in [17], our results are strongly sup-
pressed and in good agreement with the approximation made
in Ref. [15], where masses and momenta of the external par-
ticles were neglected in order to deal with the loop inte-
grals. However -as a result of keeping external momenta and
masses in the computation of the dominant penguin and box
diagrams- we even find slightly smaller branching fractions.
Therefore, we confirm that any future observation of such
processes would be an unambiguous manifestation of new
physics beyond the Standard Model.

1 Introduction

Lepton flavor violating (LFV) processes are forbidden in the
standard model (SM) [1–3] with massless neutrinos. How-
ever, the experimental evidence of neutrino oscillations [4–
6] claims for an extended model with neutrino mass terms.
For massive neutrinos, the mass matrix will be nondiago-
nal in the interaction (weak) basis, as occurs in the quark
sector [7,8], and the mixing of three light neutrinos could
be described through the 3 × 3 unitary Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix [9–11]. In such a sce-
nario, charged LFV transitions could arise, for instance, from
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one loop diagrams involving a couple of W�ν� vertices with
different flavor neutrinos each. However, it turns out natural
having a strong suppression for this class of processes owing
to a GIM-like mechanism [12], just as it has been reported for
the μ− → e−γ decay, with a prediction at an unobservably
low rate: BR(μ− → e−γ ) ∼ O(10−55) [13–15], which is
far away from the capacity of any current or foreseen exper-
imental facility.

By way of contrast, the prediction for the τ− → μ−�+�−
(� = μ, e) decays given by Ref. [17] claims that the GIM
cancellation for these processes is much milder and a value of
BR(τ− → μ−�+�−) ≥ 10−14 is reported. An updated eval-
uation using the amplitude derived in Ref. [17], employing
the latest global fit results for neutrino mixing [18–21] yields
a branching fraction ∼ 4×10−16 for the three muon channel.
Both values are still far away from the PDG upper bounds,
1.5 × 10−8 (for � = e) and 2.1 × 10−8 (� = μ) at 90%
confidence level.1 Similarly, we verified that using the values
reported in Refs. [18–21] for the neutrino mixing parameters,
Pham’s result [17] would predict a μ− → e−e+e− branch-
ing ratio of ∼ 2 × 10−21, larger than Petcov’s prediction
[15] (∼ 10−53 evaluated with updated neutrino masses and
mixing parameters, see Table 1) by at least some thirty orders
of magnitude. Again, the current upper limit on this decay
channel (1 × 10−12 at 90% C.L. [18]) is still far from testing
Pham’s result [17]. This author claims that this unexpectedly
large estimation is due to the presence of a logarithmic diver-
gent term depending on the neutrino mass, which comes from
a one-loop diagram that involves two neutrino propagators
(diag. (d) in our Fig. 1).

1 More stringent bounds of 1.1 × 10−8 and 1.2 × 10−8, respectively,
can be obtained by combining results of different experiments according
to the HFLAV group [22]. Belle-II shall be able to set limits on the
τ− → μ−μ+μ− decay at the level of 3 × 10−10 with their full data
set (50 ab−1) [24].
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Certainly, considering the effects or processes that arise
from quantum corrections could involve divergent loop inte-
grals. However, in any renormalizable theory, the possible
divergences must vanish order by order (in the loop or effec-
tive field theory expansion) to be able to define (finite) observ-
ables. In fact, in a Quantum Field Theory the divergences
can be classified into two types: ultraviolet (UV) and infrared
divergences (IR). The former (UV) appear in the high-energy
regime and they can be healed redefining the theory param-
eters, whereas the latter (IR) occur in the low-energy regime
and can be classified in soft and collinear divergences, which
cancel however in properly defined (IR-safe) observables
[25,26]. We show that the seeming logarithmic divergent
behavior of the LFV amplitude reported in Ref. [17] is
not present, as the vanishing momentum transfer approx-
imation considered in that paper lies outside the physical
region. Consequently, the rates of L− → �−�′−�′+ decays
in the SM extended with massive neutrinos are extremely
suppressed, in agreement with Ref. [15]. It is worth noting
that, as neutrino oscillations, the LFV amplitudes must van-
ish in the limit of degenerate neutrinos. Moreover, accord-
ing to the KLN theorem [25,26], the amplitude for mass-
less neutrinos can go to zero, but it is impossible that it
presents an IR divergence. This requirement is satisfied by
the result of Ref. [15], but it is not the case in Ref. [17]
which behaves as

∑
j UL jU∗

�j log(mν/mW ) for very small
neutrino masses. Our result, as it will be shown below, sat-
isfies the expected agreement with the previous consistency
remarks.

In Sects. 2 and 3 we discuss in detail our computation of
these processes and compare it to those in Refs. [15] and
[17], showing explicitly why the approximation in the lat-
ter is unreliable, and reproducing the results of [15] when
masses and momenta of the external particles are neglected
at the amplitude level. In Sect. 4 we analyze the (quite good)
numerical accuracy of this latter approximation. Finally, we
state our conclusions in Sect. 5. Several appendices complete
technical details of our calculation.

2 Z-Penguin contribution emission from internal
neutrino line

The L− → �−�′−�′+ decays can be induced through the dia-
grams depicted in Fig. 1. Since the main purpose of this work
is to falsify the existence of the logarithmic divergent term
claimed in Ref. [17], we first concentrate on the amplitude
of the diagram (d). We have, however, verified the corre-
sponding expressions for the loop integrals in Ref. [15] for
the particular process μ− → e−e−e+, when masses and
momenta of external leptons are neglected in the computa-
tions. Particularly, in Ref. [15] it is shown that the corre-
sponding branching ratio is completely dominated by those

diagrams with two neutrino propagators, i.e. (d) and (e) in
Fig. 1, which contribute comparably.

In our analysis, we keep employing the convention used
by Ref. [17], in order to denote the masses and momenta (see
Fig. 1) of the external leptons, that is M and P (m and p)
stand for the mass and momentum of the L− (�−) lepton,
respectively. In this way, the amplitude of the diagram (d)
can be written as

Md ∼ i

m2
Z

lλL� × l�′�′λ, (1)

where l�′�′λ = −ig/(2cW )ū p1γλ(g�′
v − g�′

a γ5)vp2
2 is inde-

pendent of the loop integration, whereas the effective ZL�

transition is given as follows:

lλL� =
(−ig

4cW

) ( −ig

2
√

2

)2 3∑

j=1

U∗
�jUL j ū pΓ

λ
j uP , (2)

where Uim are entries of the PMNS mixing matrix. In the
Feynman-’t Hooft gauge, we have

Γ λ
j =

∫
d4k

(2π)4

Nλ

[
(p + k)2 − m2

j

] [
(P + k)2 − m2

j

] [
k2 − m2

W

] , (3)

with

Nλ = γρ(1 − γ5)i
[
(/p + /k) + m j

]
γ λ(1 − γ5)i

[
( /P + /k) + m j

]

×γσ (1 − γ5)(−igρσ ). (4)

After making the loop integration using dimensional regu-
larization in order to deal with the (logarithmic) UV diver-
gences, the Lorentz structure for the Γ λ

j factor can be written
as follows,

Γ λ
j = Faγ

λ(1 − γ5) + Fbγ
λ(1 + γ5)

+Fc(P + p)λ(1 + γ5) + Fd(P + p)λ(1 − γ5)

+Feq
λ(1 + γ5) + Ff q

λ(1 − γ5), (5)

where in general Fk = Fk(q2,m2
j ) (k = a, b..., f ) are func-

tions given in terms of the momentum transferq2 = (P−p)2,
and the neutrino mass squared (of course Fk functions will
also depend on the mass of the W gauge boson and external
masses, but these have well-defined values).

At this point, it is worth to note that in the approximation
where the momenta of the external particles are neglected in
Eq. (3), such as it is done in Ref. [15] for the μ → 3e decay,
the computation is simplified considerably, as the only pos-
sible contribution is given by the F0

a function, where we are
using a superscript 0 in order to distinguish this approxima-
tion. In this simple case, the F0

a function will not depend

2 g is the SU (2)L coupling and cW (sW ) is short for the cosine(sine)
of the weak mixing angle θW . In the SM, g�′

v = −1/2 + 2s2
W and

g�′
a = −1/2.

123



Eur. Phys. J. C (2019) 79 :84 Page 3 of 16 84

νjL−(P )
W

−(p)

Z, γ

+(p2)

(p1)

L−(P ) νj

Z, γ

+(p2)

(p1)

−(p)

W

νj
L−(P )

Z, γ

+(p2)

(p1)

−(p)
W

(a) (b) (c)

L−(P ) −(p)

Z(q)

W

+(p2)

(p1)

νj

−(p)L−(P )

(p1) +(p2)

WW

νj

νi

(d) (e)

Fig. 1 Feynman diagrams for the L− → �−�′−�′+ decays in the pres-
ence of lepton mixing (i.e., non-vanishing neutrino masses). In ‘renor-
malizable’ Rξ gauges, similar diagrams need to be added, which are
obtained replacing the W gauge bosons by the respective would-be
Goldstone bosons. Notice that diagram d only involves the Z gauge
boson, whereas the a, b and c diagrams can also be mediated by the

photon. Additionally, when � = �′ similar contributions (exchanging
p ↔ p1) to the amplitudes of diagrams a–e must be subtracted in order
to antisymmetrize the amplitude. On the other hand, when � 	= �′, since
the vertices of the neutral bosons γ and Z with a pair of fermions are
flavor-conserving, only a similar e box diagram must be added inter-
changing �(p) ↔ �′(p1)

on q2 and is given in terms of the Feynman parameters as
follows

F0
a

(
m2

j

)
= 1

2π2

∫ 1

0
dx

∫ 1−x

0

[
2 + log

(
D0

j/μ
2
)]

dy, (6)

where D0
j (m

2
j ) = (1 − x)m2

j + xm2
W . Whereas in terms of

PaVe functions it is given by

F0
a

(
m2

j

)
= − 1

8π2
(
m2

j − m2
W

)
2

[
2m2

j

(
m2

j − 2m2
W

)

×B0

(
0,m2

j ,m
2
j

)
+ 2m4

W B0

(
0,m2

W ,m2
W

)

+ 4m2
jm

2
W − 3m4

j − m4
W

]
. (7)

Now, one analytical expression for the F0
a function can be

obtained in a straightforward way either integrating over the
Feynman parameters in Eq. (6) or using the definition of the
B0(0,m2,m2) scalar function in Eq. (7). In such a way that
after making an expansion around m2

j = 0 we obtained

F0
a = 1

2π2

⎡

⎣
m2

j

m2
W

log

(
m2

W

m2
j

)

− m2
j

2m2
W

+ 1

2
log

(
m2

W

μ2

)

+ 1

4
+ ϑ

(
m2

j

m2
W

)2
⎤

⎦ . (8)

From Eq. (8) it becomes clear that, in this approxima-
tion, the amplitude will be proportional to the neutrino mass
squared, where the dominant contribution, due to the big gap

between the neutrino and W boson mass scales, comes from

the first term as it involves a relative factor log

(
m2

W
m2

j

)

com-

pared to the second one,3 whereas the terms independent of
neutrino masses will vanish by the GIM-like mechanism.

Therefore, the structure of the matrix element for the con-
tribution of the diagram (d) in Fig. 1 in the approximation
where masses and momenta of the external particles are
neglected is given by

M 0
d = −i

G2
Fm

2
WβF0

a

4
ū pγλ(1 − γ5)uP × ū p1γ

λ(1 − γ5)vp2

+iG2
Fm

2
W s2

WβF0
a
ū pγλ(1 − γ5)u(P) × ū p1γ

λvp2 , (9)

where we have defined

βF0
a

=
∑

j

UL jU
∗
�j F

0
a

(
m2

j

)
. (10)

We verified that Eq. (9) reproduces the result reported in
Ref. [15] considering only the first term in Eq. (8) and the
simple case of two families.

Returning to the general case (non-zero masses and
momenta of the external particles), we also have obtained
the Fk functions using both Feynman parametrization (we
will denote the corresponding expressions by FFk ) and
the Passarino–Veltman (PaVe) technique (denoted by FPVk )
[27,28], employing FeynCalc [29]. In particular, we agree

3 A similar relative suppression operates for the diagrams in Fig. 1a–c
with respect to the diagrams in Fig. 1d, e.
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with the expressions previously reported in Ref. [17] in terms
of the Feynman parameters,4 namely the FFk functions can
be written as

FFk

(
q2,m2

j

)
= 1

2π2

∫ 1

0
dx

∫ 1−x

0
fk

(
q2,m2

j

)
dy, (11)

where

fa = 2 + log
(
Dj (q

2)/μ2
)

+ (q2 − m2)x(y − 1) + M2x(x + y) + q2y(y − 1)

Dj
,

(12)

fb = mMx

Dj
, (13)

fc = −Mx(x + y)

Dj
, (14)

fd = −mx(1 − y)

Dj
, (15)

fe = Mx(2 − 3y − x) − 2My(y − 1)

Dj
, (16)

f f = xm(y − 1) + 2my(y − 1)

Dj
, (17)

and Dj is defined as

Dj

(
q2,m2

j

)
= −(x − 1)m2

j − m2xy + xm2
W

+M2x(x + y − 1) − q2y(1 − x − y).

(18)

We have omitted in fa the term associated with the UV
divergence since it is independent of m j and vanishes owing
to the GIM-like mechanism.

On the other hand, the Fk functions in terms of the PaVe
scalar functions are given as follows

FPVk

(
q2,m2

j

)
= 1

2π2

NFk

DFk
, (19)

with

DFa = 2DFb = −2λ
(
m2, M2, q2

)
, (20)

DFc = DFe = M

2
D2

Fa DFd = DFf = m

2
D2

Fa , (21)

NFk = ξk1 B0

(
m2,m2

j ,m
2
W

)
+ ξk2 B0

(
M2,m2

j ,m
2
W

)

+ξk3 B0

(
q2,m2

j ,m
2
j

)
+ ξk4 B0

(
0,m2

j ,m
2
W

)

+ξk5C0

(
m2, M2, q2,m2

j ,m
2
W ,m2

j

)
+ ξk0 , (22)

4 We have found some irrelevant differences in the numerators of the
fd and f f functions, as can be seen comparing Eqs. (15) and (17) with
the corresponding expressions in Ref. [17].

where λ is the Kallen function λ(x, y, z) = x2 + y2 + z2 −
2(xy + xz + yz), and the ξk factors can be found in the
“Appendix A”.5

Unlike the approximation made in Ref. [15], the pres-
ence of masses and momenta of the external particles in the
computation hinders the way for the derivation of analytical
expressions for the integrals in Eqs. (11) or (19).6 Neverthe-
less, we have done a numerical cross-check between both
expressions, where we have employed the Looptools pack-
age [30,31] for the evaluation of the PaVe functions and a
numerical Mathematica [32] routine for the evaluation of the
parametric integrals (see Fig. 2). We have found an excel-
lent agreement between these two expressions for values
of q2 < 4m2

j , which are, however, outside of the physical

domain for the considered decays, since q2
min = 4m2

�′ 
 m2
j .

In this way, owing to the simplified integrals, we verified that
a better precision is found in terms of PaVe functions than
using Feynman parameters. This feature is illustrated, as an
example, for the particular case of the Zτμ transition in Fig. 2
for the (dominant, as we will show) Fa factor.

At this point, we want to stress that we disagree with the
approximation done in Ref. [17] in order to estimate the rele-
vant dependence on the neutrino mass of the Fk functions. We
highlight that we are studying a process where the momentum
transfer q2 must be non-vanishing and in principle is much
larger than the neutrino squared mass,m2

j , which comes from
the loop computation. Therefore, using an expansion around
q2 = 0 in order to simplify the integration over the Feyn-
man parameters keeping the terms proportional to m2

j in the
denominators of Eqs. (12–17), as it is done in Ref. [17], mod-
ifies substantially the behavior of the original functions in the
interesting physical region for the neutrino masses and, as a
consequence, it gives rise to an incorrect infrared logarithmi-
cally divergent behavior of the Fk functions when m j goes
to zero, without any possible cure. In particular, the depen-
dence on the momentum transfer, q2, plays a crucial role in
the behavior of the Fk functions. In this respect, we point out
the presence of a small imaginary part in the Fa function,
which emerges for the physical values 4m2

j < q2.

As we mentioned before, the q2 minimum in the L− →
�−�′−�′+ decay is given by 4m2

�′ , which is much larger than
the neutrinos masses. This, together with the difficulties in
obtaining analytical expressions directly for the Fk functions

5 The cancellation of the UV divergences for the Fm functions in terms
of the PaVe functions occurs again by the GIM mechanism. This can be
verified easily owing to the fact that the sums over the coefficients of the
different scalar B0 functions, which contain an isolated divergent term,

are independent of m j . That is
∑4

i=1
ξai

DPVa
= − 1

2 , and
∑4

i=1
ξli

DPVl
= 0

for (l = b, c, d, e, f ).
6 The analytical expressions of the first integrals over the y param-
eter in Eqs. (12–17) can be derived from the formulas reported in
“Appendix B”.
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Fig. 2 Numerical evaluation of the Fa function for the effective Zτμ

vertex as a function of the neutrino mass, taking the minimal value of
q2 = 4m2

μ for the particular τ− → μ−μ−μ+ channel. Black dashed
line stands for the numerical evaluation of the Fa function in terms of the
Feynman parameters depicted by FFa (Eq. (11)), whereas the red line
corresponds to the evaluation in terms of the PaVe functions represented
by FPVa (Eq. (19)). We have found some numerical instabilities for the
evaluation of the FFa function in the region 0.01 GeV < m j < 0.1
GeV. On the other hand, better precision is achieved in the evaluation of
the FPVa function with the help of the Looptools package. In order to
perform a comparison with the approximation done in Ref. [15], we also
show the complete F0

a given by the Eqs. (6) or (7) (purple dotdashed
line)

suggests employing some numerical approximation to deal
with the problem. Because of this, we approximate the Fk
functions in the physical region for the neutrinos masses by
fitting the curves for the real and imaginary parts of the Fk
functions evaluated in terms of the PaVe function7 We have
found a reasonably good fit of the form

Fk = 1

2π2u

(

Qk + m2
j

m2
W

Rk

)

, (23)

where u = 1 for k = a, b and u = M for k = c, d, e, f
and the respective values for the Qk = QRk + i QRI and
Rk = RRk + i RRI factors of all considered channels are
given in “Appendix D”.

From Eq. (23), it turns clear that the Qk factors will not
contribute owing to the GIM-like mechanism, whereas the
relevant contributions are given by the Rk factors. Then,
according to our numerical results, we find that the relevant
factors of the Fb, Fc and Fd functions are suppressed with
respect to the Fa factor. On the other hand, despite the respec-
tive factors of Fe and Ff functions are larger than those of the
Fa function, when the momentum transfer becomes smaller
and smaller their helicity suppression makes them negligible.

7 Our fits for the Fk functions are taken with the precision of the Loop-
tools package considering a neutrino mass varying from 10−15 GeV
to the benchmark point mμ (me), for a fixed value of q2 = 4m2

μ

(q2 = 4m2
e ) for the Zτμ (Zτe and Zμe) vertices.

Therefore, we will concentrate on the contribution of the Fa
function.

Furthermore, in order to check our results, we have made
an expansion for the PaVe functions involved in Eq. (22), fol-
lowing the same strategy that Cheng and Li for the μ → eγ
decay [13], that is: expanding the loop integrals aroundm2

j =
0 (more details on our expansions are given in “Appendix E”).
It must be noted that, since neutrino masses are the small-
est energy scale in the problem, this is the expansion that is
most efficient for the considered decays. Using the Package-
X program [35], we could rewrite the FPVa contribution as
follows:

FPVa

(
q2,m2

j

)
= 1

2π2

[

Qa + m2
j

m2
W

Ra + ϑ

(
m4

j

m4
W

)]

,

(24)

where

Qa = −λ
(
m2, M2, q2

)−1
[

fQa1
C0

(
m2, M2, q2, 0,m2

W , 0
)

+ fQa2
log

(
m2
W

m2
W − m2

)

+ fQa3
log

(
m2
W

m2
W − M2

)

+ fQa4
log

(
m2
W

q2

)

+ fQa5

]

− 1

2
Δ, (25)

Ra = −m2
W λ

(
m2, M2, q2

)−1
[

fRa1
C0

(
m2, M2, q2, 0,m2

W , 0
)

+ fRa2
log

(
m2
W

m2
W − m2

)

+ fRa3
log

(
m2
W

m2
W − M2

)

+ fRa4
log

(
m2
W

q2

)

+ fRa5

]

, (26)

in which Δ = 1
ε − γE + log(4π), and the fQ and fR fac-

tors can be found in the “Appendix E”. We verified that our
numerical fits for the Zτμ and Zτe vertex are in a very good
agreement with Eq. (26), whereas a deviation is found for
the Zμe vertex, as can be seen in Table 9. We consider the
results obtained from Eq. (26) for the effective vertices as
our reference ones.

In this way, we can approximate the amplitude for the
diagram (d) according to Eq. (9) replacing F0

a by

Fa ≈ 1

2π2

m2
j

m2
W

Ra . (27)

The penguin contributions to the branching ratios of the
L− → �−�′−�′+ decays are smaller by around one (two)
orders of magnitude for the μ (τ ) decays when one keeps
external momenta and masses than when they are neglected.
We will see in Sect. 4 a similar difference in the full result.
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3 Contributions of the box diagrams

Now, in order to make a complete comparison with the
approximation done in Ref. [15] we have also obtained the
amplitude for the box diagram (e) in Fig. 1. Note that unlike
the penguin diagram (d), which involves two neutrino propa-
gators of the same mass state, the box diagram (e) can involve
two neutrino propagators with different mass states. Thus, in
full generality, the amplitude can be written as follows:

Me =
( −ig

2
√

2

)4 ∑

i, j

UL jU
∗
l jU�′iU

∗
�′i Tσσ ′ I σσ ′

, (28)

where we defined

Tσσ ′ = 4 ū pγμγσ γν(1 − γ5)uP × ū p1γ
νγσ ′γ μ(1 − γ5)vp2 ,

(29)

and the relevant loop integral is given by (see Fig. 1e)

I σσ ′ =
∫

d4k

(2π)4

(P + k)σ (k + p1)
σ ′

DB
, (30)

with

DB =
(
k2 − m2

W

) [
(p1 + p2 + k)2 − m2

W

] [
(P + k)2 − m2

j

]

×
[
(k + p1)

2 − m2
i

]
. (31)

Since we have written the Eq. (30) in terms of the momenta
P , p1 and p2, the integral must take the form

I σσ ′ = i
(
gσσ ′

Ha + Pσ Pσ ′
Hb + Pσ pσ ′

1 Hc + Pσ pσ ′
2 Hd

+ pσ
1 P

σ ′
He + pσ

1 pσ ′
1 H f + pσ

1 pσ ′
2 Hg + pσ

2 P
σ ′
Hh

+ pσ
2 pσ ′

1 Hi + pσ
2 pσ ′

2 Hj

)
. (32)

The Hk factors depend upon the kinematic variables s12 =
(p1 + p2)

2 = q2 and s13 = (p1 + p)2, in addition of mi and
m j .

Anew, in the approximation where momenta of the exter-
nal particles are neglected in Eq. (30), the only contribution is
given by the H0

a function, which will not depend either on s12

or s13. In such a case, we obtained the following simplified
expression

H0
a (m2

j ,m
2
i ) = 1

16π2

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0

−1

2M2
F0

dz,

(33)

where

M2
F0

= m2
W (x + y) − m2

j (x + y − 1) + (m2
i − m2

j )z. (34)

Whereas, in terms of PaVe functions, H0
a reads

H0
a

(
m2

j ,m
2
i

)

= 1

16π2

⎛

⎝
m4

j

4
(
m2

j − m2
i

) (
m2

j − m2
W

)
2
B0

(
0,m2

j ,m
2
j

)

+ m4
i

4
(
m2

i − m2
j

) (
m2

i − m2
W

)
2
B0

(
0,m2

i ,m
2
i

)

+
2m2

i m
2
jm

2
W − m4

W

(
m2

i + m2
j

)

4
(
m2

i − m2
W

)
2
(
m2

j − m2
W

)2 B0

(
0,m2

W ,m2
W

)

+ m2
W

4
(
m2

i − m2
W

) (
m2

W − m2
j

)

⎞

⎠ . (35)

In the same way as for the F0
a form factor, an analyt-

ical expression for H0
a can be obtained easily from either

Eqs. (33) or (35). This time, making a double Taylor expan-
sion, first around m2

i = 0 and then around m2
j = 0, we

obtained that

H0
a

(
m2

j ,m
2
i

)
= 1

64π2m4
W

[
(
m2

i + m2
j

)
(

log

(
m2

W

m2
j

)

− 1

)

+ m2
i m

2
j

m2
W

(

2 log

(
m2

W

m2
j

)

− 1

)

+ −m2
W + ϑ

(
m4

i

m2
W

)

ϑ

(
m4

j

m2
W

)]

. (36)

Using that Tσσ ′gσσ ′ = 16ū pγλ(1 − γ5)uP × ū p1γ
λ(1 −

γ5)vp2 , the amplitude -in this approximation- is given by

M 0
e = i8G2

Fm
4
WβH0

a
ū pγλ(1 − γ5)uP × ū p1γ

λ(1 − γ5)vp2 ,

(37)

with

βH0
a

=
∑

j,i

UL jU
∗
�jU�′iU

∗
�′i H

0
a

(
m2

i ,m
2
j

)
. (38)

Again, we verified that taking into account the first term in
Eq. (36) and considering only two families, Eq. (37) repro-
duces the expression reported in Ref. [15] for the amplitude of
the box diagram 1 (e) in the μ → 3e decay. Furthermore, our
results are consistent with the previous expressions reported
in Ref. [23] for the box contribution associated with the effec-
tive K+ → π+ν�ν̄� decay in the quark sector, where the
approximation of taking masses and momenta of the exter-
nal particles equal to zero is excellent, owing to the presence
of the heavy top quark inside the loop.

123



Eur. Phys. J. C (2019) 79 :84 Page 7 of 16 84

In the general case, we also obtained the Hk (k =
a, b, ..., j) functions in terms of both Feynman parameters
integrals, HFk , and PaVe functions, HPVk . This time, the Hk

functions will depend on the squared masses of two different
neutrinos, m2

j and m2
i , and on two independent phase space

variables s12 and s13. Using Feynman parametrization these
functions read

HFk (s12, s13,m
2
i ,m

2
j )

= 1

16π2

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
hkdz , (39)

where

ha = − 1

2M2
F

, (40)

hb = z(z − 1)

M4
F

, (41)

hc = − (z − 1)(x + z)

M4
F

, (42)

hd = y(z − 1)

M4
F

, (43)

he = − z(x + z − 1)

M4
F

, (44)

h f = (x + z − 1)(x + z)

M4
F

, (45)

hg = − y(x + z − 1)

M4
F

, (46)

hh = yz

M4
F

, (47)

hi = − y(x + z)

M4
F

, (48)

h j = y2

M4
F

. (49)

In the previous expressions, the denominator function is
given by

M2
F =−m2

j (x + y − 1) + m2
�′(x + y − 1)(x + y)

+m2
W (x + y)

−s12xy + z2
(

2m2
�′ + m2 + M2 − s12 − s13

)

+z
[
m2

i − m2
j + (x + y)

(
3m2

�′ − s12 − s13

)
− 2m2

�′

+ m2(x − 1) + M2(y − 1) + s12 + s13

]
. (50)

Expressions are rather lengthy in terms of the PaVe func-
tions so that here we only present the expression for the dom-
inant Ha function, which can be written as

HPVa (s12, s13,m
2
j ,m

2
i ) = 1

16π2

NHa

DHa

, (51)

with

DHa = 4
(
m4m2

�′ − m2[M2(2m2
�′ − s12

) + s12
(
m2

�′ + s13
)]

+M4m2
�′ − M2s12

(
m2

�′ + s13
)

+s12
( − 2s13m

2
�′ + m4

�′ + s13
(
s12 + s13

)))
, (52)

and

NHa = χk1C0

(

m2, M2, s12,m
2
W ,m2

i ,m
2
W

)

+χk2C0

(

m2
�′,m2

�′ , s12,m
2
W ,m2

j ,m
2
W

)

+χk3C0

(

M2,m2
�′ ,m2 + M2

+2m2
�′ − s12 − s13,m

2
i ,m

2
W ,m2

j

)

+χk4C0

(

m2,m2
�′ ,m2 + M2

+2m2
�′ − s12 − s13,m

2
i ,m

2
W ,m2

j

)

+χk5 D0

(

m2, M2,m2
�′ ,m2

�′ , s12,m
2

+M2 + 2m2
�′ − s12

−s13,m
2
W ,m2

i ,m
2
W ,m2

j

)

. (53)

where χk factors are reported in “Appendix A”.
As far as the general case is concerned, we can see that

although there are additional contributions associated with
the Hk functions, with k = b, c, d, . . . j ; they are expected
to be suppressed, as they correspond to higher-dimensional
operators, with respect to the Ha function associated with a
(V−A)×(V−A) operator. Therefore, we will concentrate on
the Ha function in order to estimate the box diagram contribu-
tion. We also have done a numerical cross-check between the
expressions for the Ha function given in terms of the Feyn-
man parameters Eq. (39) and the PaVe functions Eq. (51),
as can be seen in Fig. 3. In this case, it turns very compli-
cated and far away of the purpose of this work to obtain an
analytical expression for the Ha function in Eq. (53) making
an expansion for the respective scalar PaVe functions, owing
to the number of propagators involved and the dependence
on two different neutrino masses. However, we can expect
a good approximation through our numerical results, as it
happens with the penguin contribution.

Thus, we estimate the relevant dependence on the neutrino
mass for the Ha function fitting the curve for the real and
imaginary parts of the Ha function evaluated in terms of the
PaVe functions considering fixed values for the mi , s12, and

123



84 Page 8 of 16 Eur. Phys. J. C (2019) 79 :84

Re Ha
0

Re HPVa

Re HFa

10 6 .001 1 103 106 109

2.45 10 7

2.448 10 7

2.446 10 7

2.444 10 7

m j eV

mij
2 10 3 eV2, s12 108 eV2, s13 109 eV2

Fig. 3 Numerical evaluation of the Ha function versus the neutrino
mass. We are considering that Δm2

i j = 10−3 eV2 and the values of

s12 = 108 eV2 and s13 = 109 eV2 associated with a representative
point in the physical phase space for the particular τ− → μ−μ−μ+
channel. In analogous way to the Fig. 2, black dashed line stands for
the numerical evaluation of the Ha function in terms of the Feynman
parameters depicted by HFa (Eq. (39)), whereas the red line corresponds
to the evaluation in terms of the PaVe functions represented by HPVa
(Eq. (51)). Numerical instabilities for the evaluation of the HFa func-
tion around 0.001 GeV < m j < 1 GeV are found. A better precision
is achieved for the evaluation of the FPVa function with the help of the
Looptools package. In order to perform a comparison with the approx-
imation done in Ref. [15], we also show the complete H0

a given by the
Eqs. (33) or (35) (purple dotdashed line)

s13 parameters.8 We obtained a good fit of the form

Ha = 1

16π2

(

QHa + m2
j

m4
W

RHa

)

, (54)

where RHa ≈ 1.5 + i0.007, for all different τ → �−�′−�′+
channels, whereas RHa ≈ 1.5, for the μ− → e−e−e+ chan-
nel. These numbers were obtained considering that Δm2

i j =
10−3 eV2, and representative values for s12 and s13 within
the corresponding phase space.

4 Numerical results

In order to evaluate the branching fractions for the L− →
�−�′−�′+ decays we consider the results of the previous sec-
tions and the state of the art best-fit values of the three neu-
trino oscillation parameters [18–21]. Without loss of gen-
erality, we assume the CP-conserving scenario, and we
use the values reported in Table 1.9 The kinematics for the
L− → �−�′−�′+ decays can be found in “Appendix C”.

8 Our fits for the Ha function are taken considering an interval for the
neutrino mass varying from 10−15 to 10 GeV.
9 These numbers correspond to the normal hierarchy (m1 < m2 < m3);
different (though very similar) values are reported for the inverted hier-
archy (m3 < m1 < m2). Changing hierarchy is immaterial for our

Table 1 Values used for the evaluation of the branching fractions. We
also assume a value of m2

1 = (0.06)2 eV2

Parameter Value

sin2
12 0.307 (13)

sin2
23 0.51 (4)

sin2
13 0.0210 (11)

Δm2
32 2.45(5) × 10−3 eV2

Δm2
21 7.53(18) × 10−5 eV2

Table 2 Branching ratios for the L− → �−�′−�′+ decays (neglect-
ing the penguin contributions), which are obtained using the current
knowledge of the PMNS matrix. Our results are obtained taking into
account only the contribution from the dominant Ha function. The last
column values correspond to the approximation where external masses
and momenta are neglected [15]. Our results are smaller than those by
three orders of magnitude, approximately

Decay channel Our result Ref. [15]

μ− → e−e+e− 2.1 × 10−56 2.6 × 10−53

τ− → e−e+e− 3.6 × 10−57 4.5 × 10−54

τ− → μ−μ+μ− 7.6 × 10−56 9.7 × 10−53

τ− → e−μ+μ− 1.7 × 10−57 2.2 × 10−54

τ− → μ−e+e− 4.0 × 10−56 5.0 × 10−53

Table 3 Branching ratios including all contributions (interferences are
not neglected), which are obtained using the current knowledge of the
PMNS matrix. Our results are obtained taking into account only the
contribution from the dominant Ha function. The last column values
correspond to the approximation where external masses and momenta
are neglected [15]. Our results are smaller than those by around one
(two) orders of magnitude for the μ (τ ) decays

Decay channel Our result Ref. [15]

μ− → e−e+e− 7.4 × 10−55 8.5 × 10−54

τ− → e−e+e− 3.2 × 10−56 1.4 × 10−54

τ− → μ−μ+μ− 6.4 × 10−55 3.2 × 10−53

τ− → e−μ+μ− 2.1 × 10−56 9.4 × 10−55

τ− → μ−e+e− 5.2 × 10−55 2.1 × 10−53

We will first make a partial evaluation neglecting the pen-
guin contributions (only box diagrams are considered), which
yields the values in Table 2.

Our final results, where the dominant penguin and box
contributions are considered, are collected in Table 3, where
they are compared to those obtained using Petcov’s results
[15] with updated input. Our predictions are even smaller
than Petcov’s updated results, as a consequence of keeping

Footnote 9 continued
numerical evaluations. We have verified that results are not sensitive to
the lightest neutrino mass value, but only to the mass squared differ-
ences.
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external masses and momenta in our computations (Tables
4, 5, 6, 7, 8).

These extremely suppressed branching ratios for lepton
flavor violating L− → �−�′−�′+ decays due to massive light
neutrinos are found at similar rates in the case of LFV Z [33]
and Higgs boson decays [34].

5 Conclusions

We have revisited the L− → �−�′−�′+ decays in the SM
with massive neutrinos. We obtained expressions in terms
of both Feynman parameters and scalar Passarino-Veltman
functions for the relevant loop integrals of the (dominant)
diagrams that involve two neutrino propagators considering
non-vanishing masses and momenta of the external particles.
Opposed to the previous calculation reported in Ref. [17], we
found that all the different amplitudes for these processes are
strongly suppressed (as they are proportional to the neutrino
mass squared). In the particular case of the penguin contri-
bution with two neutrino propagators, we highlight that it is
crucial saving the dependence on the momentum transfer in
the Feynman integrals in order to evaluate the amplitude in
the physical region for the neutrino masses. This fact avoids
the incorrect logarithmic divergent behavior in the amplitude
claimed in Ref. [17]. As far as the box contribution is con-
cerned, we found that the dominant term comes from Ha

function that is associated with a (V-A)×(V-A) operator, and
it is in good agreement with the approximation done in Ref.
[15].

Current and forthcoming experiments were approaching
the limits predicted by Ref. [17] on the SM prediction for
the lepton flavor violating τ− → μ−�+�− (� = μ, e)
decays due to non-zero neutrino masses. This prediction was
at odds with Ref. [15] corresponding computation for the
μ− → e−e+e− decays predicting an extremely suppressed,
unmeasurable branching ratio (as in L− → �−γ processes).
The most important result of our analysis is the confirmation
(in agreement with Ref. [15]) that any future observation of
L− → �−�′−�′+ decays would imply the existence of New
Physics.

Acknowledgements The authors are indebted to Swagato Banerjee
and Simon Eidelman for pointing us the interest of this calculation. We
are thankful to Serguey Petcov for fruitful discussions. Finally, we also
acknowledge support from Conacyt through projects FOINS-296-2016
(Fronteras de la Ciencia), and 236394 and 250628 (Ciencia Básica).

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: All data underlying
the results are available as part of the article and no additional source
data are required.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

A One-loop PaVe scalar functions

In this appendix we collect the
{
ξi j

}
i=a,..., f ; j=0,..,5

factors
entering our results in Eq. (22):

ξa0 = DFa , (55)

ξa1 = −m2
(
m2

j − m2
W + M2 + q2

)
+

(
M2 − q2

)

×
(
m2

j − m2
W + 2M2 − 2q2

)
− m4, (56)

ξa2 = −q2
(
m2

j + 4m2 − m2
W + M2

)
+

(
m2 − M2

)

×
(
m2

j + 2m2 − m2
W + M2

)
+ 2q4, (57)

ξa3 = q2
(

2m2
j + 3m2 − 2m2

W + 3M2 − 3q2
)

, (58)

ξa4 = 0, (59)

ξa5 = −2q2
(
m2

(
2m2

j − 2m2
W + M2 − 2q2

)

+
(
m2

j − m2
W + M2 − q2

)
2 + m4

)
. (60)

ξb0 = ξb4 = 0, (61)

ξb1 = −mM
(
m2 − M2 + q2

)
, (62)

ξb2 = mM
(
m2 − M2 − q2

)
, (63)

ξb3 = 2mMq2, (64)

ξb5 = −mMq2
(

2m2
j + m2 − 2m2

W + M2 − q2
)

. (65)

ξc0 = M2( − m6 + m4(3M2 + q2) + m2( − 3M4

+2M2q2 + q4) + (
M2 − q2)3)

, (66)

ξc1 = M2( − m4(m2
j − m2

W + 4M2 + 6q2)

+m2(2M2(m2
j − m2

W − 4q2)

+q2( − 10m2
j + 10m2

W + 3q2) + 5M4)

−(
M2 − q2)2(

m2
j − m2

W + 2M2 − 2q2) + m6), (67)

ξc2 = −q4(m2(3m2
j − 3m2

W + 7M2)

+2M2(3m2
j − 3m2

W + 2M2))

−(
m2 − 2M2)(m2 − M2)2(

m2
j − m2

W + M2)

+q2(m4(3m2
j − 3m2

W + 5M2)

+2m2M2(m2
j − m2

W + 2M2)

−M4( − 3m2
j + 3m2

W + M2)) + q6(m2
j − m2

W + 3M2), (68)

ξc3 = M2q2(m2(6m2
j − 6m2

W + 4M2 + 4q2)

−(
M2 − q2)(6m2

j − 6m2
W + 5M2 − 5q2) + m4), (69)

ξc4 = (
m2

j − m2
W

)(
(m − M)2 − q2)

×(
m2 − M2 − q2)((m + M)2 − q2), (70)

ξc5 = −2M2(m6m2
j + m4(M2(2q2 − 3m2

j

)

+q2(m2
j − 2m2

W + q2)) + m2(M4(3m2
j − q2)
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+q2(q2(m2
j − 2m2

W

)

+3
(
m2

j − m2
W

)2 − 2q4) + M2q2(3q2 − 2m2
W

))

−(
M2 − q2)(M4(m2

j + q2)

+2M2q2(m2
j − 2m2

W − q2) + q2( − 3q2m2
j

+3
(
m2

j − m2
W

)2 + 4q2m2
W + q4))). (71)

ξd0 = m2(m6 − 3m4(M2 + q2)

+m2(3M4 + 2M2q2 + 3q4)

−(
M2 − q2)2(

M2 + q2)), (72)

ξd1 = −m6( − 2m2
j + 2m2

W + 5M2 + q2)

+m4(M2( − 5m2
j + 5m2

W + 4q2)

+q2(3m2
j − 3m2

W − 4q2) + 4M4)

−m2(M2 − q2)( − 4M2(m2
j − m2

W + q2)

+3q2( − 2m2
j + 2m2

W + q2) + M4)

−(
M2 − q2)3(

m2
j − m2

W

) + 2m8, (73)

ξd2 = m2(q4( − m2
j − 6m2 + m2

W + 3M2)

−(
m2 − M2)2(

m2
j + 2m2 − m2

W − M2)

+2q2(m2(m2
j − m2

W − 4M2)

+M2( − 5m2
j + 5m2

W − 3M2) + 3m4) + 2q6), (74)

ξd3 = m2q2(2q2(3m2
j + 5m2 − 3m2

W + 2M2)

−(
m2 − M2)(6m2

j + 5m2 − 6m2
W + M2) − 5q4), (75)

ξd4 = (
m2

j − m2
W

)( − (
(m − M)2 − q2))

×(
(m + M)2 − q2)(m2 − M2 + q2), (76)

ξd5 = 2m2(m6(m2
j + q2) + m4(M2(q2 − 3m2

j

)

+q2(m2
j − 4m2

W − 3q2)) + m2(M4(3m2
j − 2q2)

+q2( − 5q2m2
j + 3

(
m2

j − m2
W

)2 + 8q2m2
W + 3q4)

+M2q2(2m2
W − 3q2)) − M6m2

j

−M4q2(m2
j − 2m2

W + q2)

+M2q2( − q2(m2
j − 2m2

W

) − 3
(
m2

j − m2
W

)2 + 2q4)

+q4(3m2
j

(
2m2

W + q2)

−3m4
j − (

m2
W + q2)(3m2

W + q2))). (77)

ξe0 = −M2(3m6 − m4(5M2 + 7q2) + m2(M4

−6M2q2 + 5q4) + (
M2 − q2)3)

, (78)

ξe1 = M2(m4( − 11m2
j + 11m2

W + 2q2)

+m2(2M2(5m2
j − 5m2

W − 4q2)

+q2( − 2m2
j + 2m2

W + 5q2)

+3M4) + (
M2 − q2)2(

m2
j − m2

W

+2M2 − 2q2) − 5m6), (79)

ξe2 = m6( − m2
j + m2

W + 3M2)

+m4(M2(6m2
j − 6m2

W − 7q2)

+3q2(m2
j − m2

W

) + 2M4)

+m2(M4(3m2
j − 3m2

W + 4q2)

+M2q2( − 2m2
j + 2m2

W + 5q2)

+3q4(m2
W − m2

j

) − M6)

−(
M2 − q2)(M4(8m2

j − 8m2
W − 3q2)

−M2q2(3m2
j − 3m2

W + q2) + q4(m2
j − m2

W

) + 4M6), (80)

ξe3 = M2( − 2q4(m2
j + 5m2 − m2

W + 2M2)

+q2(5m2 − M2)(2m2
j + m2 − 2m2

W + M2)

+2
(
m2 − M2)2(2m2

j + m2 − 2m2
W + M2) + 3q6), (81)

ξe4 = (
m2

j − m2
W

)(
(m − M)2 − q2)

×(
m2 + 3M2 − q2)((m + M)2 − q2), (82)

ξe5 = −2M2(m6m2
j + m4(M2(2q2 − 3m2

j

)

+q2(m2
j − 2m2

W + q2)) + m2(M4(3m2
j − q2)

+q2(q2(m2
j − 2m2

W

)

+3
(
m2

j − m2
W

)2 − 2q4) + M2q2(3q2 − 2m2
W

))

−(
M2 − q2)(M4(m2

j + q2)

+2M2q2(m2
j − 2m2

W − q2)

+q2( − 3q2m2
j + 3

(
m2

j − m2
W

)2 + 4q2m2
W + q4))). (83)

ξ f0 = −m2( − m6 − m4(M2 − 3q2)

+m2(5M4 + 6M2q2 − 3q4)

−(
M2 − q2)2(3M2 − q2)), (84)

ξ f1 = m6(8m2
j − 8m2

W + M2 − 7q2)

+m4(M2( − 3m2
j + 3m2

W − 4q2)

+q2( − 11m2
j + 11m2

W + 2q2) − 2M4)

−m2(M2 − q2)(M2(6m2
j − 6m2

W − 4q2)

+q2(4m2
j − 4m2

W + q2) + 3M4)

+(
M2 − q2)3(

m2
j − m2

W

) + 4m8, (85)

ξ f2 = m2(m4( − m2
j + m2

W − 3M2 + 6q2)

+2m2(M2( − 5m2
j + 5m2

W + 4q2)

+q2(m2
j − m2

W − 3q2))

+M4(11m2
j − 11m2

W − 2q2)

+M2q2(2m2
j − 2m2

W − 5q2)

+q4( − m2
j + m2

W + 2q2) − 2m6 + 5M6), (86)

ξ f3 = m2(2q4(m2
j + 2m2 − m2

W + 5M2)

+q2(m2 − 5M2)(2m2
j + m2 − 2m2

W + M2)

−2
(
m2 − M2)2(2m2

j + m2 − 2m2
W + M2) − 3q6), (87)

ξ f4 = (
m2

j − m2
W

)( − (
(m − M)2 − q2))

×(
3m2 + M2 − q2)((m + M)2 − q2), (88)

ξ f5 = 2m2(q6(m2
j + 3m2 − 2m2

W + 4M2)

+(m − M)2(m + M)2(m2(3m2
j − 2m2

W + 2M2)

+M2(5m2
j − 2m2

W

)

+2
(
m2

j − m2
W

)2) − q4( − 2m2
W

(
m2

j + m2 + 4M2)

−m2m2
j + 3M2m2

j + m4
j + 3m4 + 5m2M2 + m4

W + 5M4)

+q2( − m4(5m2
j − 2m2

W + M2)

+m2( − (
m2

j − m2
W

)2 − 6M2m2
W + 2M4)
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+M2( − M2(3m2
j + 4m2

W

)

+5
(
m2

j − m2
W

)2 + 2M4) + m6) − q8). (89)

As far as the χk factors entering the HPVa functions in
Eq. (53), they are given as follows

χk1 = m2(s12
(
m2

i + 2m2
j − 3m2

�′ − 3m2
W

+2s12 + s13
) + 2M2(m2

j − m2
�′ − m2

W

))

+M2s12
(
m2

i + 2m2
j − 3m2

�′ − 3m2
W + 2s12

+s13
) − s12

(
m2

i

( − 2m2
�′ + s12 + 2s13

)

+s12m
2
j + 2m2

�′
(
m2

W − s12
)

−(
s12 + s13

)(
2m2

W − s12
))

+m4( − m2
j + m2

�′ + m2
W − s12

)

+M4( − m2
j + m2

�′ + m2
W − s12

)
, (90)

χk2 = −s12
( − 4m2

i m
2
�′ + s12m

2
i

−m2(m2
j − 3m2

�′ − m2
W + s12

) − M2

×(
m2

j − 3m2
�′ − m2

W + s12
) − 2m2

jm
2
�′

+s12m
2
j + 2s13m

2
j − 4s12m

2
�′ − 2s13m

2
�′

+6m2
�′m2

W + 2m4
�′ − 2s12m

2
W − 2s13m

2
W

+s2
12 + s12s13

)
, (91)

χk3 = −m2(m2
i

(
s12 − 2m2

�′
)

+M2(m2
j + m2

�′ − m2
W − s12

)

+s13
(
m2

j − m2
�′ − m2

W + 2s12
)

−m2
jm

2
�′ + 2s12m

2
j − 4s12m

2
�′ + 3m2

�′m2
W

+m4
�′ − 3s12m

2
W + 2s2

12

) − M2(2m2
i m

2
�′

+m2
j

(
m2

�′ + s12 − s13
)

+s13
(
m2

�′ + m2
W + s12

) − 3m2
�′m2

W − m4
�′

−s12m
2
W + s2

12

) + s12
(
m2

i

( − 3m2
�′ + s12 + s13

)

+m2
j

( − m2
�′ + s12 + s13

) + (
2m2

�′ − s12 − s13
)

×(
m2

�′ + 2m2
W − s12 − s13

))

+m4(m2
j − m2

�′ − m2
W + s12

) + 2M4m2
�′ , (92)

χk4 = −m2(2m2
i m

2
�′ + M2(m2

j + m2
�′ − m2

W − s12
)

+s13
( − m2

j + m2
�′ + m2

W + s12
) + m2

jm
2
�′

+s12m
2
j − 3m2

�′m2
W − m4

�′ − s12m
2
W + s2

12

)

+M2(m2
i

(
2m2

�′ − s12
) + m2

j

(
m2

�′ − 2s12 − s13
)

+s13
(
m2

�′ + m2
W − 2s12

) + 4s12m
2
�′ − 3m2

�′m2
W

−m4
�′ + 3s12m

2
W − 2s2

12

) + s12
(
m2

i

( − 3m2
�′

+s12 + s13
)

+m2
j

( − m2
�′ + s12 + s13

) + (
2m2

�′ − s12 − s13
)

×(
m2

�′ + 2m2
W − s12 − s13

))

+M4(m2
j − m2

�′ − m2
W + s12

) + 2m4m2
�′ , (93)

χk5 = 2m2(s12
(
m2

i

(
m2

j − 3m2
�′ − m2

W + s12
)

+m2
j

( − 3m2
�′ − 3m2

W + 2s12 + s13
)

+m4
j − 3s12m

2
�′ − s13m

2
�′

+4m2
�′m2

W + 2m4
�′ − 3s12m

2
W − 3s13m

2
W

+2m4
W + s2

12 + s12s13
) + M2( − 2m2

j

(
m2

�′ + m2
W

)

+m4
j + 2s12

(
m2

�′ + m2
W

) + (
m2

�′ − m2
W

)2 − s2
12

))

+2M2s12
(
m2

i

(
m2

j − 3m2
�′ − m2

W + s12
)

+m2
j

( − 3m2
�′ − 3m2

W + 2s12 + s13
) + m4

j

−3s12m
2
�′ − s13m

2
�′ + 4m2

�′m2
W

+2m4
�′ − 3s12m

2
W − 3s13m

2
W

+2m4
W + s2

12 + s12s13
) − s12

(
2m2

i

(
m2

j

×( − 2m2
�′ + s12 + 2s13

) + m2
�′

×(
6m2

W − 4s12 − 2s13
) + 2m4

�′

−(
s12 + s13

)(
2m2

W − s12
)) + m4

i

(
s12 − 4m2

�′
)

+2m2
j

(
2m2

�′
(
m2

W − s12
) − (

s12

+s13
)(

2m2
W − s12

)) + s12m
4
j

−(
2m2

�′ − s12 − s13
)(
m2

�′

×(
4m2

W − 2s12
) − 4

(
s12 + s13

)
m2

W + 4m4
W

+s12
(
s12 + s13

)))

+m4( − (
m2

j − (
m�′ − mW

)2 + s12
))

×(
m2

j − (
m�′ + mW

)2 + s12
)

−M4(m2
j − (

m�′ − mW
)2 + s12

)

×(
m2

j − (
m�′ + mW

)2 + s12
)
. (94)

B Some useful integrals

As we mentioned in the text, analytical expressions for the
double integrals in Eqs. (12–17) are not easy to obtain. How-
ever, the first integrals over the y-Feynman parameter can be
derived from the following expressions

∫ 1−x

0

dy

D j
= − 2

Λ
(T+ − T−) , (95)

∫ 1−x

0

ydy

D j
= (T+ − T−)

q2Λ

(
x(M2 − m2)

+q2(x − 1)
) + (θm − θM )

2q2 , (96)
∫ 1−x

0

y2dy

D j
= (T− − T+)

Λq4

(
2q2(x − 1)m2

j

+x2 (
m2 − M2)2 − 2q2x

(
m2(x − 1) + m2

W

)

+q4(x − 1)2)

− (θm − θM )

2q4

(
x

(
M2 − m2) + q2(x − 1)

) + 1 − x

q2 , (97)
∫ 1−x

0
ln(Dj )dy = Λ(T− − T+)

q2

+ (θm − θM )
(
x

(
M2 − m2

) + q2(x − 1)
)

2q2

−(x − 1)
(
log

(
x

(
m2(x − 1) + m2

W

)

−(x − 1)m2
j

)
− 2

)
, (98)

where we have defined the functions
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Λ =
√

−4q2(x − 1)m2
j + 2q2x

(
m2(x − 1) + 2m2

W + M2(x − 1)
) − x2

(
m2 − M2

)2 + q4
(−(x − 1)2

)
, (99)

T+ = tan−1

(
x

(
M2 − m2

) + q2(x − 1)

Λ

)

,

T− = tan−1

(
x

(
M2 − m2

) − q2(x − 1)

Λ

)

, (100)

θM = log
(
(x − 1)m2

j − x
(
m2

W + M2(x − 1)
))

,

θm = log
(
(x − 1)m2

j − x
(
m2

W + m2(x − 1)
))

. (101)

C Kinematics for the L−(P, M) → �−( p,m)

�′−( p1,m�′)�′+( p2,m�′) decays

Because of the necessity of anti-symmetrizing the amplitude
when � = �′, the total contribution for the sum of the penguin
and box diagrams, in this case, is given by

M�=�′ = iG2
Fm

2
W

(

−βFa

4
+ 8m2

WβHa

)

ū(p)γλ(1 − γ5)u(P)

×ū(p1)γ
λ(1 − γ5)v(p2) − (p ↔ p1)

+iG2
Fm

2
W s2

WβFa ū(p)γλ(1 − γ5)u(P)

×ū(p1)γ
λv(p2) − (p ↔ p1). (102)

On the other hand, when � 	= �′, there is only one penguin
diagram since the vertex of a neutral Z boson with a pair of
fermions is flavor-conserving. Besides, we have to add the
box diagram interchanging �−(p) ↔ �′−(p1). Therefore, we
have

M� 	=�′ = iG2
Fm

2
W

(

−βFa

4
+ 8m2

WβHa

)

×ū(p)γλ(1 − γ5)u(P)

×ū(p1)γ
λ(1 − γ5)v(p2)

+iG2
Fm

2
W s2

WβFa ū(p)γλ(1 − γ5)u(P) × ū(p1)γ
λv(p2)

+8iG2
Fm

4
W β̂Ha ū(p1)γλ(1 − γ5)u(P)

×ū(p)γ λ(1 − γ5)v(p2), (103)

where βHa has been defined in the main text and

β̂Ha =
∑

j,i

UL jU
∗
�iU�′ jU

∗
�′i Ha(m

2
i ,m

2
j ). (104)

In Petcov’s approximation, taking only the dominant term
and since the contribution of the penguin and box diagrams
have opposite sign, the dominant terms are given by the sec-

ond terms in Eqs. (102) and (103), respectively. Therefore,
|M 2| is given by

|M 2| = G4
Fs

4
W

4π4

⎛

⎝
∑

j

UL jU
∗
l jm

2
j log

(
m2

W

m2
j

)⎞

⎠

2

Ts, (105)

where

Ts = −16
(
−4s13m

2
�′ + 2m4

�′ − s12

(
m2 + M2 − 2s13

)

+2
(
m2 − s13

) (
M2 − s13

)
+ s2

12

)
(106)

for � 	= �′, and

Ts = −16
( − s13

(
5m2 + M2) + s2

13

+2
(
9m4 − 2s13

(
4m2 + M2)

+s12
( − 3m2 − M2 + s13

) + 5m2M2

+s2
12 + 2s2

13

))
(107)

when � = �′ (m = m�′ ).
The unpolarized differential decay width for the L−(P) →

�−(p)�′−(p1)�
′+(p2) decays is given by

Γ = 1/N

4(4π)3M3

∫

|M |2ds12ds13, (108)

where N is the number of identical particles in the final state
and s12 = (p1 + p2)

2 = q2 and s13 = (p1 + p)2. The
corresponding integration limits are given by

s±
13 = 1

2
(M2 + m2 − s12) + m2

�′

±
√

λ
(
M2, s12,m2

)
λ

(
s12,m2

�′ ,m2
�′
)

2s12
, (109)

and

4m2
�′ ≤ s12 ≤ (M − m)2. (110)
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D Fits for Zτμ, Zτ e and Zμe effective vertices

The numerical values for the Qk and Rk factors involved in
of our fits for the Zτμ, Zτe and Zμe effective vertices are
given as follows (see Tables 4, 5, 6, 7, 8):

Table 4 Values for the QRk (QIk ) and RRk (RIk ) coefficients of the Zτμ vertex for q2 = 4m2
μ

Zτμ (q2 = 4m2
μ) QRk RRk QIk RIk

a 4.63706 11.5451 −7.14896 × 10−6 3.4098

b 1.38093 × 10−5 −3.31777 × 10−4 9.85094 × 10−11 −6.76208 × 10−5

c −1.49047 × 10−5 3.62348 × 10−3 −7.884 × 10−10 5.4035 × 10−4

d −9.20638 × 10−6 1.2469 × 10−4 −4.9267 × 10−11 3.38191 × 10−5

e 2.04592 × 10−3 191.959 4.69628 × 10−4 −126.096

f −1.26365 × 10−5 −11.8554 −2.95163 × 10−5 8.05527

Table 5 Same as Table 4 but considering q2 = 4m2
e

Zτμ (q2 = 4m2
e) QRk RRk QIk RIk

a 4.63709 22.2936 −1.6966 × 10−10 3.40516

b 1.3809 × 10−5 −6.24913 × 10−4 2.31697 × 10−15 −6.71321 × 10−5

c −1.49044 × 10−4 −3.92512 × 10−2 −1.89825 × 10−14 6.2734 × 10−4

d −9.20617 × 10−6 −0.191951 −1.0909 × 10−15 2.6232 × 10−5

e 3.63186 × 10−3 8.17424 × 106 4.74754 × 10−4 −5.3963 × 106

f −2.2432 × 10−4 −504,881 −2.93231 × 10−5 333,301

Table 6 Values for the QRk (QIk ) and RRk (RIk ) coefficients of the Zτe vertex for q2 = 4m2
μ

Zτe (q2 = 4m2
μ) QRk RRk QIk RIk

a 4.63706 11.5451 −7.14896 × 10−6 3.4098

b 6.72054 × 10−8 −1.61465 × 10−6 4.79412 × 10−13 −3.29087 × 10−7

c −1.49047 × 10−4 3.61659 × 10−3 −7.88464 × 10−10 5.4042 × 10−4

d −3.86832 × 10−8 −5.66645 × 10−3 −2.39753 × 10−13 1.64583 × 10−7

e 2.04592 × 10−3 191.962 4.69628 × 10−4 −126.095

f −6.09267 × 10−7 −5.92939 × 10−2 −1.43646 × 10−7 3.920023 × 10−2

Table 7 Same as Table 6 but considering q2 = 4m2
e

Zτe (q2 = 4m2
e) QRk RRk QIk RIk

a 4.63709 22.2262 −1.6966 × 10−10 3.40516

b 6.72036 × 10−8 −3.05754 × 10−4 1.12759 × 10−17 −3.26709 × 10−7

c −1.49043 × 10−4 −.107576 −1.89741 × 10−14 6.26186 × 10−4

d −4.95278 × 10−8 19.097 −5.68205 × 10−18 1.64383 × 10−7

e 3.63189 × 10−3 8.17296 × 106 4.74754 × 10−4 −5.3963 × 106

f −1.08821 × 10−6 −2468.32 −1.42705 × 10−7 1622.06
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Table 8 Values for the QRk (QIk ) and RRk (RIk ) coefficients of the Zμe vertex for q2 = 4m2
μ

Zμe (q2 = 4m2
e) QRk RRk QIk RIk

a 4.63701 31.6578 −1.55723 × 10−10 1.15008

b 4.15019 × 10−9 −1.01036 × 10−7 7.02341 × 10−19 −2.03165 × 10−8

c −5.6794 × 10−7 −2.40973 −1.60743 × 10−13 2.42044 × 10−3

d −9.81338 × 10−8 2359.07 −1.54223 × 10−16 −2.54211 × 10−6

e 1.37244 × 10−5 32441.2 1.78855 × 10−6 −20427.4

f −8.46878 × 10−8 −2024.81 −8.70909 × 10−9 99.6226

E Expansion of the PaVe functions around m2
j = 0

The scalar PaVe functions involved in Eq. (22) are defined
as follows

B0

(
p2,m2

j ,m
2
W

)
= (iπ2)−1

×
∫

dnk
(
k2 − m2

j

) [
(k + p)2 − m2

W

] , (111)

B0

(
q2,m2

j ,m
2
j

)
= (iπ2)−1

∫
dnk

(
k2 − m2

j

) [
(k + q)2 − m2

j

] ,

(112)

B0

(
0,m2

j ,m
2
W

)
= (iπ2)−1

∫
dnk

(
k2 − m2

j

) (
k2 − m2

W

) , (113)

C0

(
p2, P2, q2,m2

j ,m
2
W ,m2

j

)
= (iπ2)−1

×
∫

dnk
(
k2 − m2

W

) [
(k+ p)2 − m2

j

] [
(k+P)2 − m2

j

] , (114)

where p2 = m2, P2 = M2 and q2 = (P − p)2 = m2 +
M2 − 2P · p.

If we make an expansion aroundm2
j = 0, for the Eqs. (111,

112, 113, 114) following the same strategy that Cheng and
Li for the μ → eγ decay [13], we have that

B0(p
2,m2

j ,m
2
W ) ≈ B0(p

2, 0,m2
W )

+m2
jC0(0, p2, p2, 0, 0,m2

W ) + ϑ
(
m4

j

)
, (115)

B0(q
2,m2

j ,m
2
j ) ≈ B0(q

2, 0, 0)

+2m2
jC0(0, q2, q2, 0, 0, 0) + ϑ

(
m4

j

)
, (116)

B0(0,m2
j ,m

2
W ) ≈ B0(0, 0,m2

W )

+m2
j
A0(m2

W )

m4
W

+ ϑ
(
m4

j

)
, (117)

C0(p
2, P2, q2,m2

j ,m
2
W ,m2

j ) ≈ C0(p
2, P2, q2, 0,m2

W , 0)

+m2
j

[
D0(p

2, 0, q2, P2, p2, q2,m2
W , 0, 0, 0)

+ D0(p
2, q2, 0, P2, P2, q2,m2

W , 0, 0, 0)
]

+ϑ
(
m4

j

)
. (118)

Now, with the help of the Package-X program, we can
obtain analytical expressions for the next functions

B0(p
2, 0,m2

W ) = Δ +
(
p2 − m2

W

)

p2 log

(
m2

W

m2
W − p2

)

+ log

(
μ2

m2
W

)

+ 2, (119)

B0(q
2, 0, 0) = Δ + log

(

−μ2

q2

)

+ 2, (120)

B0(0, 0,m2
W ) = Δ + log

(
μ2

m2
W

)

+ 1, (121)

C0(0, q2, q2, 0, 0, 0) = −
ΔI + log

(
−μ2

q2

)

q2 , (122)

with ΔI ∼ Δ but associated with an infrared divergence.

C0(0, p2, p2, 0, 0,m2
W ) =

ΔI + log

(
μ2

m2
W

)

m2
W − p2

+
(
m2
W + p2

)

p2
(
m2
W − p2

) log

(
m2
W

m2
W − p2

)

,

(123)
D0(p2, 0, q2, P2, p2, q2,m2

W , 0, 0, 0)

= 1

q2

⎡

⎢
⎢
⎢
⎢
⎣

ΔI + log

(
μ2

m2
W

)

m2
W − p2

+

(
m2
W − P2

)
log

(

−m2
W
q2

)

−m2
W

(
p2 + P2 − q2

) + m4
W + p2P2

−

(
m2
W − P2

)
log

(
m2
W

m2
W −P2

)

−m2
W

(
p2 + P2 − q2

) + m4
W + p2P2

+
log

(
m2
W

m2
W −p2

)
(
−m2

W

(
p2 + P2 − 2q2

)
+ m4

W + p2P2
)

(
m2
W − p2

) (
−m2

W
(
p2 + P2 − q2

) + m4
W + p2P2

)

⎤

⎥
⎥
⎥
⎥
⎦

, (124)
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Table 9 Comparison for the Ra
factor using numerical fits vs
Eq. (26)

Vertex Ra (Numerical Fits) Ra (Eq. 26)

Zτμ (q2
min = 4m2

μ for τ− → μ−μ−μ+) 11.5451+i3.4098 11.3949+i3.14159

Zτμ (q2
min = 4m2

e for τ− → μ−e−e+) 22.2936+i3.40516 22.0456+i3.14159

Zτe (q2
min = 4m2

μ for τ− → e−μ−μ+) 11.5451+i3.4098 11.3976+i3.14159

Zτe (q2
min = 4m2

e for τ− → e−e−e+) 22.2262+i3.40516 22.0483+i3.14159

Zμe (q2
min = 4m2

e for μ− → e−e−e+) 31.6578+i1.15008 22.7478+i3.14159

D0(p2, q2, 0, P2, P2, q2,m2
W , 0, 0, 0)

= 1

q2

⎡

⎢
⎢
⎢
⎢
⎣

ΔI + log

(
μ2

m2
W

)

m2
W − P2

+

(
m2
W − p2

)
log

(

−m2
W
q2

)

−m2
W

(
p2 + P2 − q2

) + m4
W + p2P2

−

(
m2
W − p2

)
log

(
m2
W

m2
W −p2

)

−m2
W

(
p2 + P2 − q2

) + m4
W + p2P2

+
log

(
m2
W

m2
W −P2

)
(
−m2

W

(
p2 + P2 − 2q2

)
+ m4

W + p2P2
)

(
m2
W − P2

) (
−m2

W
(
p2 + P2 − q2

) + m4
W + p2P2

)

⎤

⎥
⎥
⎥
⎥
⎦

. (125)

Replacing Eqs. (115, 116, 117, 118) and subsequently Eqs.
(121, 119, 120, 123, 122, 123 and 125) into (22) we obtain
Eq. (24), with the fQ and fR factors given as follows

fQa1
= −q2

(
−m2 − mM + m2

W − M2 + q2
)

×
(
−m2 + mM + m2

W − M2 + q2
)

, (126)

fQa2
= 1

2m2

(
(−

(
m2 − m2

W

) (
m4 − m2

W

(
m2 − M2 + q2

)

+m2
(
M2 + q2

)
− 2

(
M2 − q2

)2
))

, (127)

fQa3
= 1

2M2

(
−

(
M2 − m2

W

) (
−2m4

+m2
W

(
m2 − M2 − q2

)

+m2
(
M2 + 4q2

)
+ M4 + M2q2 − 2q4

))
, (128)

fQa4
= 1

2

(
q2

(
3

(
m2 + M2 − q2

)
− 2m2

W

))
, (129)

fQa5
= 1

2

(

λ(m2, M2, q2) log

(
μ2

m2
W

)

+iπq2
(

3
(
m2 + M2 − q2

)
− 2m2

W

))
. (130)

fRa1
= 2q2

(
−m2 + m2

W − M2 + q2
)

, (131)

fRa2
= 1

m2α

(
−m8 + 2m6

(
m2

W + q2
)

+m4
(
−2m4

W + M4 − q4
)

+ m2m2
W

(
−2q2m2

W + m4
W − M4 + 4M2q2 − 3q4

)

−m2
W

(
M2 − q2

) (
m2

W − M2 + q2
)

2
)

, (132)

fRa3
= 1

M2α

(

−M4
((

M2 − q2
)2 − m4

)

+m6
W

(
−m2 + M2 + q2

)

+2m4
W

(
m4 − 2m2q2 − M4 − M2q2 + q4

)

+m2
W

(
−m6 − m4

(
M2 − 3q2

)

+m2
(

4M2q2 − 3q4
)

+ 2M6 − 3M2q4 + q6
))

, (133)

fRa4
= 1

α

(
m6 − m4

(
m2

W + M2 + 2q2
)

+m2
(

2M2m2
W + q2

(
q2 − m2

W

)
− M4

)

−M4
(
m2

W + 2q2
)

+M2q2
(
q2 − m2

W

)

+2q2m2
W

(
m2

W + q2
)

+ M6
)

, (134)

fRa5
= 1

α

(
iπ

(
m6 − m4(M2 + 2q2)

+m2(q4 − M4) − m2
W

(
m4 + m2(q2 − 2M2)

+M4 + M2q2 − 2q4)

+2q2m4
W + (

M3 − Mq2)2
))

, (135)

and α = m2
(
M2 − m2

W

) + m2
W

(
m2

W − M2 + q2
)
.

Something remarkable at this point is:
The factor Qa has an ultraviolet divergence Δ, as it can

be seen in Eq. (25), but this divergence is independent of
the neutrino mass. Then this divergence will vanish when
we sum over the three families (GIM-mechanism), as it was
mentioned previously.

Although there are infrared divergences ΔI on the Eqs.
(122, 123, 123, 125), the factor Ra is free of them.
Further, there is no dependence on the renormalization
scale, and these results are in agreement with our numer-
ical fits. Taking into account the imaginary part of the
C0(m2, M2, q2, 0,m2

W , 0) function, it is possible to derive
analytically that the imaginary parts appearing in the last
column of Table 9 are exactly π .
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