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Abstract: This work contributes to the knowledge of colloidal and thermal properties of some
important primary-originated kaolin deposits from Bolivar State, Venezuela, and their possible use as
semisolid formulations in medicinal muds for topical applications. Eight selected high purity kaolin
samples were characterized. Rheological and thermal properties were correlated to physico-chemical
characteristics of the clay suspensions (pH, Ca2+, and Mg2+ cation desorption and surface charge).
Most of the studied kaolin pastes showed adequate viscosities, acceptable skin safe pH, and good
thermal properties for pelotherapeutic uses. Three of the studied samples, in particular, showed very
high kaolinite purities (>92% kaolinite), elevated viscosities (>1 Pa·s), and good thermal and pH
performances for topical application.
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1. Introduction

Clay minerals have been widely used to develop products and functionalities in a large variety of
areas, including materials, pharmaceuticals, food sciences, and biotechnology. Mixtures of clays and
mineral waters are used in health mud therapies, either for thermotherapeutic or cosmetic purposes,
and constitute the basis of most of the muds used in healing and spa centers. The ever-increasing use of
clay minerals in pelotherapeutic applications is due to the versatility and peculiarity of their physical
and chemical properties and the suitability of their colloidal and thermal behaviors [1–15]. Pioneer
studies [16,17] indicated that rheology is mainly controlled by the morphology and aggregation state
of solid particles, as well as the nature and strength of the predominant interparticle electrostatic
forces (i.e., as predicted by zeta potential measurements), which are fundamental parameters to
qualify the properties of clayey dispersions, such as spreading qualities, adhesion to skin and removal
capacities [16,18–22], and these are affected by pH, concentration, and relative dimensions of solids [23].
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On the other hand, clay thermal behaviors (cooling kinetics and heat capacity) are directly responsible
for their therapeutic effect [3,5,24–26].

Kaolinite is the main clay mineral of the kaolin group, and it has attracted great interest in
pharmaceutics and therapy fields based on their properties [27]. Technologically, the optimal water
content for the formulation of consistent and adequate adhesive kaolinite pastes is a 1:1 (w/w) solid/liquid
ratio of the prepared aqueous dispersions [28]. In addition to the influence of water content and solid
fraction composition in the quality and healing activity of the thermotherapeutic muds, Awad et al. [29]
proved that the thermal efficiency and performance of therapeutic kaolin pastes (heat retention capacity
and prolonged release) are controlled by the granulometric properties of kaolin powder (i.e., including
the particle size, grading, surface area, and particle textural packing), and the degree of structural
order-disorder and crystallite size of the kaolinite. As the appropriate uniformity grading and particle
fineness of the kaolin powder were found to be controlled by the mineral’s structural characteristics,
the later ones correlate directly with its composition and chemical variability [30].

Concerning economically viable Venezuelan kaolin resources, Hernández et al. [31] characterized
their compositional, structural, and textural characteristics in order to evaluate their suitability as
health care components. On the basis of these results, the aim of the present work is to determine the
colloidal and thermal properties of representative high-grade Venezuelan kaolin samples to evaluate
their possible use as semisolid formulations in medicinal peloids.

2. Materials and Methods

2.1. Materials and Paste Formulation

Eight representative high-grade kaolin samples (collected from different primary kaolin deposits
on the Guayana shield, in Bolivar State, Venezuela), namely VE1, VE2, VE3, VE4, VE5, VE6, VE9,
and VE12, were selected for the present study. Their geological context and mineralogical compositions
were described in Hernández et al. [31]. Each sample was dried, pulverized, and sieved to obtain
particle aggregates below 125 µm. Kaolinite pastes 1:1 (w/w) were prepared with purified water
(at 25 ◦C ambient temperature) using a vortex mixer and then kept moist in a refrigerator prior to the
targeted characterizations.

2.2. pH Measurement

The pH of the aqueous suspensions of kaolin was measured under mechanical agitation using a
Crison pH-meter Basic 20+ equipped with a semisolid sensor (5053 T) calibrated by standard solutions
at pH 4, 7, and 9. The pH tolerance ranges between 2 and 11. Three replicates were carried out for each
measurement and results averaged (±0.1 standard deviation).

2.3. Apparent Viscosity Measurement

Rheological analysis was carried out by a computerized controlled rate viscometer (RotoVisco 1;
HAAKE RheoWin software, Thermo Scientific HAAKE, Waltham, MA, USA) as a triple measure of
apparent viscosity (η in Pa·s) at a controlled temperature (25 ◦C) after a rest time of 90 s in the shear
rate range 10–800 s−1. Before treatment, samples were sonicated for 3 min using Power Sonic 405
ultrasonic equipment (Hwashin, Tech Co. Ltd., Gangnam-gu, Seoul, Korea). Four replicates were
performed for each sample.

2.4. Zeta Potential Measurement

Zeta potential measurements were performed using an electrophoretic light scattering (ELS)
Zetasizer Naso-Z™ (Malvern Instruments, Malvern, UK). The measurements were taken through a
downward ramp from pH 3 to pH 9. The resultant suspensions (10 mg of powder sonicated in 100 mL
of deionized water) were introduced into folded 1 mL capacity capillary zeta potential cells (DTS1061,
Malvern Instruments). Measurements were taken at a temperature of 25 ± 0.1 ◦C, and three replicates
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were obtained for each sample. The zeta potentials and iso-electric points at each corresponding pH
condition were performed using Smoluchowski’s equation [32].

2.5. Desorbed Cation Measurements

Experimental cation desorption was performed following the same method described in
Sánchez-Espejo [15]. The aqueous supernatant phases were separated from the solid mud by
centrifugation and filtration through a membrane filter with a 0.05 µm pore size. Ca2+ and Mg2+

cations in the filtrates were then analyzed by means of ICP-OES technique.

2.6. Thermal Measurements

Specific heat was determined by means of a differential scanning calorimetry (DSC) technique using
a Shimatzu® DSC-50 Calorimeter (Shimadzu Corporation, Nakagyo Ward, Kyoto, Japan). Samples
were introduced in a closed 50 mL cylindrical Teflon container and heated at constant temperature
(70 ◦C) and immersed in a thermostatic bath (Edelstahl Rostfrei®) at 35 ◦C. The temperature was
measured every 30 s by a Dual Thermometer LT Lutron TM-906A until the temperatures of the kaolin
paste sample and the thermostatic bath were equal. Cooling curves were optimized following the
procedure described by Sánchez-Espejo et al. [15], where cooling kinetics were calculated following
Cara et al. [3]. Experimental cooling data were fitted using Newton’s Law, describing the thermal
exchange between two bodies in contact at different temperatures:

(T − Tmin) = (Tmax − Tmin) e−Kt (1)

where, Tmin was the room temperature (25 ◦C), Tmax was the initial temperature (50 ◦C), t was the time
in minutes, and K was the constant that depends on the material and apparatus, given by:

K =
P
C

=
P

mCp
(2)

where, P is the instrumental constant of the apparatus, C the heat capacity of the heated material, m the
heated mass, and Cp the specific heat. Experimental thermal parameters of the studied samples were
then obtained using the aforementioned equations.

3. Results and Discussion

3.1. Mineralogy

Table 1 summarizes the mineral composition and Hinckley Index (HI) of the studied samples,
determined by X-ray diffraction and chemical analysis [31]. Samples essentially consisted of kaolinite,
with contents ranging from 73% to 99%, with an average of 88.3%. Other detected minerals included
quartz, gibbsite, hematite, anatase, rutile, and mica as impurities. According to the HI, kaolinite in all
samples had a basically ordered structure (HI > 0.7). Contents of trace elements in the global kaolin
deposits were attributed to their substitutions in the crystal structures of the associated titanium oxides
and iron oxy-hydroxide minerals. Hence, the Pb and As (ppm) contents can be easily reduced to safe
limits by removal of these impurities following reported kaolin purification methods [27].
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Table 1. Kaolinite contents, degree of structural order-disorder (HI), mineral impurities, iron oxide
contents, and desorbed cations in the formulated kaolin samples.

Samples Kaolinite
(%) HI

Associated Mineral
Impurities Fe2O3 (%)

Desorbed Cations (mg/L)

Ca2+ Mg2+

VE1 75 1.2 Gibbsite (20%), Fe–Ti oxide
minerals (4%), quartz (1%) 1.79 29.8 8.59

VE2 92 0.7 Gibbsite (4%), Fe–Ti oxide
minerals (3%), quartz (1%) 0.70 70.57 75.08

VE3 94 1.3 Gibbsite (5%), anatase (1%) 0.34 26.33 46.92

VE4 99 1.2 Gibbsite (1%). 0.37 0.77 -

VE5 88 1.4 Mica (5%), quartz (6%),
anatase (1%) 0.37 - -

VE6 92 1.4 Gibbsite (5%), Fe–Ti oxide
minerals (2%), quartz (1%) 2.06 4.61 -

VE9 94 0.9 Quartz (4%), Fe–Ti oxide
minerals (2%) 0.81 - -

VE12 73 0.9
Gibbsite (13%), quartz (3%),

zircon (2%),
Fe–Ti oxide minerals (9%).

7.76 155.80 47.08

3.2. Rheology

Table 2 summarizes the apparent viscosity of the studied water-based kaolin pastes, calculated at a
shear value of 250 s−1, at 25 ◦C, which is representative of the stress produced by skin spreading during
applications [33]. The aqueous dispersions of kaolin showed typical non-Newtonian viscoplastic
flow curves with variable behavior. VE9 showed the highest average apparent viscosity (3.96 Pa·s),
while VE1, VE3, VE4, and VE6 also showed high apparent viscosity (>1 Pa·s). Possibly as a result of
the significant iron oxide contents (7.76%), the dispersions formulated with VE12 showed negligible
apparent viscosity (0.03 Pa·s), which would prevent the permanence of the product during application.
In general, the viscosities measured in these Venezuelan kaolins are high in comparison to other
kaolins [34–37]. Studies on other types of clay used for pelotherapy (bentonites) showed viscosities
higher than 1 Pa·s [38,39]. Thus, the higher values of viscosity in the kaolin suspensions would facilitate
management and permanence on the application area of the skin, whereas lower values tend to have
inadequate consistency [2,10,40]. Therefore, dispersions formulated with VE6 and VE9 had the best
potential to form clay pastes with rheological behavior adequate for treatments.

Table 2. Viscosity (at 250 s−1, 25 ◦C), pH values, and the median size (D50) of the studied
kaolin dispersions.

Samples Flow Character Viscosity (Pa·s) ± S.D. (n = 4) Suspension pH ± S.D. (n = 3) D50 (µm)

VE1 Pseudoplastic 1.82 ± 0.10 4.30 ± 0.01 1.05
VE2 Dilatant 0.70 ± 0.05 4.50 ± 0.02 1.12
VE3 Dilatant 1.13 ± 0.30 4.40 ± 0.07 1.24
VE4 Dilatant 1.44 ± 0.20 4.52 ± 0.09 1.55
VE5 Dilatant 0.32 ± 0.10 4.50 ± 0.04 2.29
VE6 Dilatant 2.98 ± 0.20 4.70 ± 0.05 5.1
VE9 Pseudoplastic 3.96 ± 0.20 5.90 ± 0.12 1.81
VE12 Dilatant 0.03 ± 0.10 3.86 ± 0.89 1.83

The rheological behavior of kaolin suspensions is governed by size, morphology, aggregation,
and surface charge in the clay mineral particles [16,17]. Favorable rheological behaviors are expected
with a combination of coarse, medium, and fine grains because interferences are minimized due to the
reduction of the free space between the rotation spheres of bigger particles [41]. The studied kaolins
exhibited highly variable granulometric D50 and D90 values (from approximately 1 to 5 µm and 4 to
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52 µm, respectively, [31]). Moreover, samples VE1, VE3, VE4, VE6, and VE9, with > 1 Paviscosities,
present at least two groups with different kaolinite particle sizes [31]. On the other hand, the presence
of specific impurities modified the resultant viscosity. VE12, with the highest amount of impurities
(Table 1), exhibited the lowest viscosity values (Table 2). The presence of mica reduced the viscosity in
VE5, whereas the presence of gibbsite [42] increased the viscosities and produced shear thickening
flows in those samples with noticeable amounts of this mineral.

3.3. pH

Table 2 also summarizes the pH values of the studied kaolins dispersed in purified water.
The samples were acid in character, with pH ranges from 3.86 to 5.97. The pure Fe–Ti oxide minerals
and gibbsite were stable at pH > 5, while they could be dissociated under pH < 5 conditions.
However, the highest Ca2+ content (155.80 mg/L) found in sample VE12, with its variable mineralogical
composition, probably had the most influence on the ionic strength of the kaolin primary colloidal
solutions and hence on the measured aqueous dispersions, which could maintain stabilities of the
associated gibbsite and Fe–Ti oxide mineral phases till pH ≈ 4. The pH values of the dispersions
prepared with samples VE2, VE3, VE5, VE6, and VE9 could permit topical application in terms of the
pH tolerability range of the human skin (4.5–6). Specifically, the pH of VE6 was closer to the most
healthy human skin pH (approximately 4.7), which is favorable to skin microflora [43] and prevents
the growth of pathogenic bacteria [44]. It has been reported that Al(OH)3 (gibbsite) is insoluble at
pH 5 to 8, but the dissolution of Al increases under more acid conditions [45]. However, clinical
trials showed that the aluminum compounds, as used in cosmetic products, are dermatologically safe,
as they have no toxic effects and do not irritate the skin [46,47]. Moreover, the acidic character of the
studied kaolin-based pastes can be optimized with pharmaceutical pH buffer mediators.

3.4. Zeta Potential

Figure 1 shows the zeta potential (ZP) of the studied kaolins at their corresponding pH values.
The measured ZP profiles were mainly steady and oscillated slightly around –5 mV within the pH
3–9 range. ZP values were negative due to the permanent negative charges on the kaolinite particle
surfaces, and the highest variability of zeta potential was observed at pH 5–7. A slightly decreasing
trend in ZP can be observed with increasing pH in most of the samples, probably due to the increase of
hydroxyl groups caused by the hydrolysis of water molecules. According to Williams and Williams [32],
the increase in acidity causes the zeta potential to become less negative and even reach positive
values at low pH. The resulting ZP values are noticeably low when compared with other studied
kaolins [48–51]. This behavior could be related to the natural acidity of the studied kaolin aqueous
suspensions, to the tendency of these kaolin samples to flocculate, and to the high viscosities measured
in the samples. In fact, some authors have demonstrated a relation between zeta potential and the
rheological properties of different mud-packs [52]. On the other hand, the presence of gibbsite normally
implies positive surface charges in the pH range between 4 and 11 [53], and possibly affecting the
magnitude of the zeta potential negativity.

Only sample VE3 showed an iso-electric point (IEP) value at pH ≈ 6, while no IEPs were observed
in the other samples studied (Figure 1). The IEP of kaolinite suspensions has been reported at different
pH [52,54,55]. Yukselen and Kaya [56] also found showed a wide range of IEP for kaolinites, from
absence to pH 6, and explained this variability as a result of kaolin composition.

Kaolinite commonly exhibits pH-dependent zeta potential due to the positively charged aluminol
surface of the octahedral sheet and the edge surface sites. However, in some reported cases, it may
show a largely pH-independent surface charge, suggesting cation substitution in the clay structure
when exchangeable Al3+ releases under acidic conditions. This structural cation substitution leads to
strong acid sites, where the surface charge is balanced by positive cations (Ca2+, Mg2+, K+, and Na+)
as counterions, thus explaining the slightly stable zeta potential in the 3–9 pH range [57] (Figure 1).
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Figure 1. Zeta potentials of the studied kaolin samples with the corresponding pH, at 25 ◦C.

3.5. Desorbed Cations

Table 1 shows the contents of the kaolinite-adsorbed Ca2+ and Mg2+ ions released in the supernatant
aqueous phases. According to Yukselen and Kaya [56], the ZP of kaolinite becomes less negative
with increasing Ca2+ and Mg2+ concentrations in the dispersion system. Samples VE12 and VE2,
which exhibited the highest values of desorbed cations, also showed the highest ZP of most of the pH
values analyzed.

Normally, kaolinite does not show interlayer cation exchange. However, during primary
crystallization under natural acidic conditions, strong acid sites on the edge, and broken-bond surfaces
arose due to structural cation substitution, accompanied by alteration of the net proton surface charge
density, leading to an increase in the affinity of cation adsorption (Ca2+ and Mg2+) onto the kaolinite
surfaces [57,58].

We were able to correlate the calculated crystallinity of kaolinite in the studied samples with the
amounts of desorbed Ca2+ and Mg2+ in those samples with measurable cations (Figure 2). This is
probably because disordered kaolinites and those with lower HI values have more layer stacking
defects and broken edges across the basal surfaces, which can provide additional sites for the adsorption
of the divalent Ca2+ and Mg2+ cations [30,52,55].
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Figure 2. Calcium + magnesium concentrations versus Hinckley Index of the studied kaolinite samples.

3.6. Thermal Characteristics

Table 3 summarized the kinetic cooling parameters of the studied paste samples, including both
theoretical and experimental specific heat values (Cp), the heat retention time required to reach 32 ◦C
(t32) and the mud temperature after 20 min (T20

◦C), corresponding to the typical minimum application
time of mud-packs, calculated by linear regression of Equation (1) (R2 = 0.9999 in all cases). Specific
heat ranged from 2.42 to 3.00 J/K·g. In general, all samples showed specific heat values similar to
those of some common clays evaluated for pelotherapy uses [40,59]. According to Awad et al. [29],
the differences between theoretically calculated Cp values and the experimental values are normally
attributed to small differences in the compositional variability at a fixed water content (50%) used in all
the formulated pastes. In Egyptian sedimentary kaolins, they also found that the specific heat and the
heat retention time of kaolin pastes were mainly controlled by the powder granulometric properties.
The specific heat capacity (Cp) and heat retention time (t32) of those kaolin pastes were correlated
negatively with kaolinite crystallite size, which in turn was a function of both the degree of kaolinite
order-disorder and its chemical variability [30]. In the Venezuelan kaolin pastes examined here, on the
contrary, the degree of kaolinite order-disorder (calculated as HI) was found to correlate positively
with the experimental specific heat values of the kaolin paste samples (Figure 3), and, therefore, the
heterogeneous microtextural characteristics and the non-uniformity of the particle grading found in
these kaolins produced a closed packing arrangement, which must be the predominant effective factor
in their thermal behavior.

Table 3. Kinetic cooling parameters of the studied kaolin paste samples (Theor.: theoretical; Exp.:
experimental).

Sample Cp (J/K·g) t32
◦C (min) T20 min (◦C)

Theor. Exp. Theor. Exp. Theor. Exp.

VE1 2.49 2.64 25.4 24.3 34.2 34.1
VE2 2.55 2.42 24.1 23.6 33.7 33.7
VE3 2.55 2.75 24.1 23.7 33.7 33.7
VE4 2.56 2.61 23.5 23.0 33.4 33.4
VE5 2.55 2.97 27.4 25.9 34.8 34.8
VE6 2.54 3.00 26.5 26.1 34.7 34.7
VE9 2.55 2.62 27.0 26.2 34.8 34.8

VE12 2.47 2.78 27.0 26.1 35.0 35.0
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