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Background: Chronic cutaneous wounds represent a major issue in medical care and are often

prone to infections.

Purpose: The aim of this study was the design of a clay mineral-drug nanocomposite based

on montmorillonite and norfloxacin (NF, antimicrobial drug) as a powder for cutaneous

application, to enhance wound healing in infected skin lesions.

Methods: The nanocomposite has been prepared by means of an intercalation solution

procedure. Adsorption isotherm, solid-state characterization of the nanocomposite, drug

loading capacity and its release have been performed. Moreover, cytocompatibility, in vitro

fibroblast proliferation and antimicrobial activity against Pseudomonas aeruginosa and

Staphylococcus aureus were assessed.

Results: The clay drug adsorption isotherm demonstrates that the mechanism of NF inter-

calation into montmorillonite galleries is the adsorption as one single process, due to the

charge–charge interaction between protonated NF and negatively charged montmorillonite

edges in the interlayer space. Nanocomposite is biocompatible and it is characterized by

antimicrobial activity greater than the free drug: this is due to its nanostructure and controlled

drug release properties.

Conclusion: Considering the results obtained, NF–montmorillonite nanocomposite seems

a promising tool to treat infected skin lesions or skin wounds prone to infection, as chronic

ulcers (diabetic foot, venous leg ulcers) and burns.

Keywords: montmorillonite, norfloxacin, nanocomposite, solid state characterization,

wound healing

Introduction
Wound repair is a complex and tightly regulated physiological process: different

cell types, including immune cells, are involved. Wound healing includes home-

ostasis stage (clotting and immune activation), inflammation (recruitment of neu-

trophilis and macrophages, production of cytokine and growth factor), proliferation

phase, tissue neoformation (reepithelialization, angiogenensis and granulation) and

subsequent remodeling of neoformed-tissue.1 Considering the crucial barrier role of

the skin, nonhealing wounds (such as venous leg ulcers, diabetic foot ulcers, arterial

insufficiency and pressure ulcers) and burns impose substantial morbidity and

mortality, deeply affecting the quality of life with high economic burden2

Severe cutaneous wounds represent a major issue in medical care, with approxi-

mately 300 million chronic and 100 million traumatic wound patients worldwide.

Moreover, chronic wounds affect roughly 37 million of patients globally. Only in

the USA in 2017,3 the skin wounds led to an estimated direct health care cost of
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$ 75 billion and an indirect cost of $ 11 billion. The

population aging is likely to dramatically increase the

incidence of chronic wounds due to the rising prevalence

of type 2 diabetes, peripheral vascular disease and meta-

bolic syndrome. In addition, surgery, more common in the

elder population, could cause risk of wound complication

especially in patients affected by diabetes.

While acute wounds generally heal without significant

interventions, chronic wounds are challenging and are

characterized by an intrinsic inability to heal.

The presence of microbial contamination occurring at

wound bed significantly and deeply alter the normal recov-

ery phases, leading to a possible impairment of the healing

path and finally to nonhealing wounds. Moreover, among

skin wounds, burns require special attention because they

are often prone to infections and to abnormal scarring.1

The employment of antimicrobial agents, particularly

antibiotics, in the treatment of nonhealing wounds is parti-

cularly controversial due to the possible rising of resistance.

However, the nanoparticle-based approach, creating anti-

microbial nanotherapeutics, seems a valid option to elim-

inate bacterial infections, avoiding antimicrobial resistance.

In fact, it is reported that nanomaterials interact with bac-

teria and microorganisms uponmultiple interactions such as

electrostatic attraction, hydrophobic and Van der Waals

forces through surface interactions. Moreover, the physico-

chemical properties of nanomaterials allow multiple path-

ways to interact with microorganisms, and this makes them

promising candidates to achieve enhanced therapeutic effi-

cacy against multidrug-resistant infections4 In literature,

different therapeutic approaches based on nanostructures

and several types of nanomaterials (including electrospun

nanofibers, hydrogel, showed improved antibacterial

properties) are reported.5–9 These systems are generally

polymer-based and prepared with high energy and sophis-

ticated processes.

Recently, the studies focused on nanocomposites based

on clay minerals and drugs and/or biopolymers evidence

the capability of these to interact with biological structures

and open opportunities for tissue engineering and in parti-

cular for wound healing. Nanocomposites are prepared

with simple procedures (spontaneous absorption of organic

moieties into/onto clay following the mixture of the com-

ponents in solution) easy to scale up. Moreover, the var-

ious characteristics of clay minerals in terms of the

composition may offer a range of possibilities to develop

systems able to facilitate both antimicrobial activity of

loaded antibacterial drugs, mainly due to the capability to

decrease water activity10–12 and cell adhesion, prolifera-

tion and neotissue formation.13,14

Given this premise, the aim of this study is to design

and develop nanocomposite based on montmorillonite

(VHS, clay mineral) and norfloxacin (NF, antimicrobial

drug) as a powder for cutaneous application intended for

the treatment of infected wounds to enhance their healing.

NF is a synthetic antibacterial fluoroquinolone, active

against a broad spectrum of Gram-positive and Gram-

negative aerobic bacteria. Its mechanism of action consists

in the inhibition of DNA gyrase enzyme causing an interrup-

tion of deoxyribonucleic acid synthesis.15 In the literature, it

is proposed as a prophylactic drug in wound healing, some-

times as a component of scaffolds and wound dressings.15–18

A NF-montmorillonite nanocomposite was prepared by

means of intercalation technique in order to obtain

a powder characterized by means of adsorption isotherm

and solid-state, drug loading capacity and release and

antimicrobial properties.16–22

Materials and methods
Materials
NF (Sigma Aldrich-Merck, Italy) and a pharmaceutical

grade montmorillonite (VHS) (Veegum® HS, Vanderbilt,

USA) were used. VHS was dried in oven (approximately

40°C) for at least 48 hrs prior to be used.

Methods
Clay-drug adsorption isotherm

The intercalation solution technique has been chosen as the

methodology to study the adsorption of NF onto VHS.

Firstly, a fixed amount of clay mineral (100 mg) were

dispersed into 5 mL of a glacial acetic acid:water (1:1) to

achieve the dissolution of NF (initial concentrations of drug

(C0) ranging from 5·10−5 to 1·10−2 M). These dispersions

were protected from light, stirred (150 rpm) in

a thermostatic bath (25°C ±1°C) for 24 hrs and subse-

quently centrifuged (9000 rpm, 45 mins) in order to separate

the solid phase containing the nanocomposite (VHS-NF).

At this point, the equilibrium concentration of NF in the

supernatant (Ce) was determined at 273 nm by UV spectro-

scopy (UV-Vis spectrophotometer Lambda 25, Perkin

Elmer, Italy). It was assumed that the difference between

C0 and Ce corresponded to the amount of NF adsorbed onto

VHS and the amount of drug retained per gram of clay was

calculated. The obtained results were mathematically fitted

(TableCurve 2D, Systat Software Inc., UK) to obtain the
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monolayer adsorption capacity of the clay and the adsorp-

tion rate constant, according to a mechanist model able to

describe the adsorption of drug molecules onto solid inor-

ganic surfaces.13–25

Solid state characterization

X-ray powder diffraction (XRPD) analysis was carried out

using a diffractometer (X’Pert Pro model, Malven

Panalytical) equipped with a solid-state detector

(X’Celerator) and a spinning sample holder. The diffracto-

gram patterns were recorded using random oriented

mounts with CuKα radiation, operating at 45 kV and 40

mA, in the range 4–60 º2θ.
Fourier-transform infrared spectroscopy (FT-IR) spectra

of the powdery samples were obtained with a JASCO 6,200

apparatus equipped with a Ge ATR. All analyses were per-

formed from 400 to 4,000 cm−1 with a resolution of 2 cm−1,

and results processed with Spectra Manager v2 software.

Thermogravimetric analysis (TGA) (mod. TGA-50H,

Shimadzu) was performed using a vertical oven and

a precision of 0.001 mg. Approximately 40 mg of each

sample were weighted in aluminum sample pans. The

experiments were performed in 30–950°C range, atmo-

spheric air and a heating rate of 10°C/min. Additionally,

differential scanning calorimetry (DSC) analyses were

done in a Mettler Toledo and using aluminum crucibles.

The temperature range was defined between 30ºC and

400ºC at a heating rate of 10ºC/min. All the analyses

were done in atmospheric air.

Measurements of zeta potential (ζ) of both the clay and

the nanocomposite were performed in an aqueous solution

with a concentration 0.05% w/V by using a Zetasizer Nano

ZS90 apparatus (Malvern Panalytical, USA).

High-Resolution Transmission Electron Microscopy

was performed by means of a FEI Titan G2 60–300 ultra-

high-resolution transmission electron microscope coupled

with analytical electron microscopy (AEM) performed

with a SUPER-X silicon-drift windowless energy-

dispersive X-ray spectroscopy detector. AEM spectra

were saved in mode scanning transmission electron micro-

scopy with a high-angle annular dark field detector. X-ray

chemical element maps were also collected. The samples

were directly deposited onto copper grids (300 mesh

coated by farmvar/carbon film, Agar Scientific).

Drug release

NF released from nanocomposite and NF-free drug disso-

lution were assessed by means of HPLC-UV/DAD

(PerkinElmer Series 200) apparatus using as stationary

phase Zorbax Esclipse XDB-C8 column (4.6 mm × 150

mm, silica particle size 5 μm) at 25°C, as mobile phase

7:15:78 (% v/v) acetonitrile/methanol/citric acid (0.4 M),

fluxed at 1 mL/min (time of analysis 15 mins). The quan-

tification was assessed at 275 nm, as maximum

absorption wavelength.21 The method was linear in the

range of 200–1 μg/mL with R2 higher than 0.995.

An exact amount of nanocomposite or free drug was

dispersed in 3 mL of saline solution (NaCl 0.9% w/v). At

prefixed times, 500 µL of dissolution medium was collected

and the total volume replaced. Each sample was filtered (HA

0.22 μm, Millipore) before HPLC analysis.

Antibacterial activity measurements

The antimicrobial activity of nanocomposite compared to

NF as a free drug was evaluated against the bacteria strains

Staphylococcus aureus ATCC 6538 and Pseudomonas aer-

uginosa ATCC 15442. In particular, killing time was deter-

mined as the exposure time required to kill a standardized

microbial inoculum.26 Bacteria used for killing time eva-

luation were grown overnight in Tryptone Soya Broth

(Oxoid; Basingstoke) at 37°C. The bacteria cultures were

centrifuged at 2,000 rpm for 20 mins to separate cells from

broth and then suspended in PBS (pH 7.3). The suspension

was diluted to adjust the number of cells to 1×107–1×108

CFU/ml.

An exact amount of nanocomposite VHS-NF or NF

was added to the microorganism suspensions to obtain 5

μg/mL NF concentrations.

For each microorganism, a suspension was prepared in

PBS without drug and used as control. Bacterial suspen-

sions were incubated at 37°C. Viable microbial counts

were evaluated after contact for 0, 5 and 24 hrs with the

samples and microorganism suspensions grown in the

same conditions and used as control.

The bacterial colonies were enumerated in Tryptone

Soya Agar (Oxoid; Basingstoke) after incubation at 37°C

for 24 hrs.

The microbiocidal effect value was calculated for each

test organisms and contact times according to the follow-

ing equation27

ME ¼ logNc�logNd

where Nc is the number of CFU of the control microbial

suspension and Nd is the number of CFU of the microbial

suspension in presence of drug.
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In vitro biocompatibility: fibroblasts

Biocompatibility (cytotoxicity) was evaluated using fibro-

blasts (normal human dermal fibroblasts, from juvenile

foreskin from 2 to 5 passages, PromoCell, WVR, Italy).

Fibroblasts were grown in DMEM (Lonza, I), 10% v/v

(FBS (EuroClone, Italy) and penicillin/streptomycin solution

(pen/strep, 100 UI/100 μm/mL, Sigma Aldrich-Merck, Italy)

VHS (1.2 mg/mL), NF (0.1 mg/mL) and VHS-NF

(VHS: 1.2 mg/mL and NF 0.1 mg/mL) were suspended/

solubilized in cell culture medium and put in contact with

the cells in suspension just after cell seeding in 96-well

plate at seeding density of 35,000 cells/well. Fibroblasts

were grown for 2 days. Fibroblast growth on tissue culture

plastic was considered as standard growth (control).

At prefixed end point, cell growth was assessed by

means of MTT test. Briefly, the medium was removed

and 50 µL of MTT solution (Sigma Aldrich, Italy) at

2.5 mg/mL concentration in Hank’s Buffered Salt

Solution pH 7.4 was added to cover each scaffold for

3 hrs. Subsequently, MTT solution was removed from

each well, and the substrates were washed with 200 µL

of PBS. After the removal of PBS, 100 µL of DMSO was

put in each well, and the absorbance was assayed at 570

nm by means of an ELISA plate reader (Imark Absorbance

Reader, Biorad, Italy), with a reference wavelength of 690

nm. Cell viability was expressed as optical density (OD).

Statistical analysis

Statistical differences were evaluated by means of Mann-

Whitney (Wilcoxon) W test (Statgraphics Centurion XV,

Statistical Graphics Corporation, MD, USA). Differences

were considered significant at p<0.05, and each significant

p-value is reported in the captions.

Results and discussion
Clay-drug adsorption isotherm
Equilibrium adsorption isotherm is shown in Figure 1,

where experimental points are plotted as ns (moles of NF

retained per gram of VHS) vs Ce (mol/l). The kinetic

model used to fit the adsorption data is expressed by

Equation (1) (Table 1), which describes drug adsorption

as one single process. Montmorillonite is a phyllosilicate

based on two tetrahedral sheets of silica sandwiching

a central octahedral sheet of alumina spaced out interlayer

spaces (galleries). On this basis, protonated NF molecules

interact to the active sites of VHS located at edges and

within interlayer space of montmorillonite, thus forming

a drug monolayer onto the clay mineral interlayer

surface.28 Figure 1 shows that the obtained theoretical

curve satisfactorily described the experimental points, as

confirmed by the calculated correlation coefficient

(R2>0.99, Table 1). Additionally, the relatively high

value of kinetic equilibrium constant (k) (Table 1) can be

ascribed to great stability of the resultant VHS-NF system.

Solid-state characterizations
X-ray diffractogram patterns of the nanohybrid and pristine

components are plotted in Figure 2. VHS diffractogram

shows reflections ascribable to a highly pure homoionic

Na montmorillonite, as previously described.16,24,29,30

In particular, VHS shows d001 basal reflection at 7.5º 2θ
which indicates an interlayer space of 12 Å according to

Bragg’s law. These results are consistent with the

literature.24,31 Diffractogram of VHS-NF also shows typical

reflections of montmorillonite with the exception of the basal

reflection d001, which shifts to lower 2θ values (5,94º 2θ) in
comparison with the pristine clay mineral. The correspond-

ing interlayer space is expanded (≅15 Å), indicating the

presence of NF molecules adsorbed into clay mineral struc-

ture. Moreover, this new basal reflection turns to be sharper

and more intense in comparison with VHS basal reflection,

Figure 1 Equilibrium adsorption isotherm of NF and VHS (mean values ± s.d.; n=3).

Abbreviations: NF, norfloxacin; VHS, montmorillonite.

Table 1 Fitting equation and parameters for the adsorption of

NF onto VHS

Equation (1)* R2 nsm k

ns ¼ ksm
kþ1

0.9959 0.0007±0.00002 130.4±0.43

Notes: *Ns: mol of NF per gram of VHS (mol/g); nsm: monolayer retention capacity

(mol/g); C: equilibrium concentration (mol/l); k: kinetic equilibrium constant (mean

values ± s.d.; n=3).

Abbreviations: NF: norfloxacin; VHS: montmorillonite.
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which is an indicator of a highly ordered VHS-NF nanohy-

brid structure. Diffractogram of NF has been found to be

a combination of both anhydrous and sesquihydrate forms

(Figure 2).32–34 Nonetheless, any of these reflections are

observed in VHS-NF diffraction pattern, indicating the

absence of crystalline drug on the nanohybrid surface. The

XRPD analysis suggests that the nanocomposite is charac-

terized by NF intercalation into the VHS galleries.

Figure 3 reports the FTIR spectra of VHS-NF in com-

parison to NF and VHS. The infrared spectrum of NF

shows typical bands of a hydrated form of NF. In particu-

lar, the broad bands between 3,600 and 3,250 cm−1 belong

to hydration water stretching (O-H stretching vibration, at

about 3404 cm−1) together with N-H vibrations of the

piperazine ring. The vibration of methyl group, methylene

of ethyl side chain and piperazine groups determine multi-

ple and more defined bands in 3,070–2,500 cm−1.

A shoulder at 2,500 cm−1 is attributable to hydrogen

bonded O–H groups, and this also confirms the hydrate

state of NF. Band detected at 1,728 cm−1 belongs to the

C=O stretch of the carboxylic acid.32,35,36 The first and

intense band in the fingerprint region belongs to NF qui-

nolone ring vibration located between 1,600 and

1,650 cm−1.32 The vibrations of C=C of the aromatic

ring are also located in this area (1,400–1,600 cm−1).

Moreover, the band at 1,030 cm−1 is attributable to

C-F vibration.35 Regarding VHS, vibrational band at

3,622 cm−1 belongs to octahedral layer-OH groups (Al-

OH-Al, Al-OH-Mg and Mg-OH-Mg vibrations) typical of

clay minerals. Moreover, the broad band around

3,400 cm−1 are due to the stretching of OH from hydration

H2O molecules located in the interlayer space of VHS.

Moreover, H2O molecules coordinated to the VHS

exchangeable cations create a band al 1,632 cm−1. The

most intense band of the VHS spectrum, located at

985 cm−1, is due to Si-O-Si in-plane vibration for layered

silicates. Out-of-plane Si-O-Si stretching is responsible for

the shoulder appearing at 1,100 cm−1. On the other hand,

the overlapped band at 914 cm−1 is related to Si-O-Al

stretching mode, while bending vibration of Si-O-Al

occurs at 512 cm−1.24,29,30,37

Vibrational bands of the octahedral Al-OH-Al, Al-OH-

Mg and Mg-OH-Mg are also present in the VHS-NF. The

adsorption of NF in the VHS interlayer space produces

a displacement of the hydrated exchangeable cations, thus

reducing the intensity of the H2O band around 3,400 cm−1.35

Moreover, the presence of the drug in the nanohybrid can be

identified by its typical vibrational bands located between

1,760 and 1,200 cm−1, all of them coinciding with the NF

spectrum. Particularly, the band at 1,702 cm−1 belongs to

C=O of the carboxylic acid of NF. From 1,200 cm−1 onwards,

the intense vibrations of the clay mineral obscure the NF

bands in the same region. Nonetheless, the bands in

3,070–2,500 cm−1 range, which correspond to N-H and

CH2 of the drug, are not visible in the VHS-NF spectrum.

This disappearance can be related to the stiffening of the

corresponding functional group due to the position of

adsorbed NF molecules in the interlayer space of VHS.

The TGA analysis of NF showed total drug decomposi-

tion before 630°C (Figure 4 – high panel). The first weight

loss gradually occurs in the temperature range from 30°C to

196°C, with an inflection point at 100°C. This step is due to

Figure 2 XRPD diffraction patterns of NF, VHS and VHS-NF.

Abbreviations: NF, norfloxacin; VHS, montmorillonite; VHS-NF, montmorillonite/

norfloxacin nanocomposite.

Figure 3 FT-IR spectra of NF, VHS and VHS-NF.

Abbreviations: NF, norfloxacin; VHS, montmorillonite; VHS-NF: montmorillonite/

norfloxacin nanocomposite.
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the evaporation of water and corresponds to the first

endothermic event of the corresponding DSC curve (Figure

4 – low panel). Nonetheless, the presence of an inflection

point could be related to different types of crystallization

water. In fact, different hydrated forms of NF have been

reported in literature, such as dihydrate and sesquihydrate,

among others.38 In particular, water evaporation of NF dihy-

drate form is described as a two different step process

although this is not visible in DSC profile and on the contrary

it is evident in TGA profile.38 These results are related to the

presence of both dihydrate and sesquihydrate forms (as con-

firmed by XRPD diffraction peaks) having overlapped steps

of H2O molecule evaporation in DSC. The sharp and intense

endothermic peak located at 227°C (T onset 218°C) corre-

sponds to NF melting point, confirmed by the absence of

weight loss in the TGA curve of NF. Decomposition of the

drug starts at 300°C according to TGA profile and three

overlapped steps (inflection point at ~370°C and ~500°C)

are attributable to the loss of different functional groups of

the NF molecule (6C2H2+3NO+HF+1/2H2)
38 and/or

gaseous products.39 Parallelly DSC thermogram (low

panel) shows an exothermic event at 370 °C, and this is in

coincidence of the first inflection point of the TGA corre-

sponding to NF decomposition.

TGA thermogram of VHS (Figure 4 – high panel)

shows a first slight weight loss of 2% (w/w), which corre-

sponds to a small amount of hydration water. Moreover,

a typical clay mineral dehydroxylation step40 is present

with an onset at about 600°C and an offset at 720°C,

accounting 3% (w/w) weight loss. From 800°C onwards,

there is no signal that could be related to VHS impurity

decomposition (such as quartz, mullite, corderite,

cristobalite),40 to confirm its high purity. DSC thermogram

of VHS confirms its stability in the temperature range

evaluated (Figure 4 – low panel).

VHS-NF nanocomposite shows TGA thermogram

characterized by overlapped events (Figure 4 – high

panel). In particular, it is evident that water loss is fol-

lowed by the decomposition of NF and dehydroxylation of

clay. Considering that NF fully decomposes before 630ºC,

the difference in weight loss between VHS and VHS-NF

reveals that VHS-NF is characterized by 16% (w/w) NF

loading. Moreover, NF is present in an amorphous state in

VHS-NF since melting event is not evident in VHS-NF

DSC thermogram (Figure 4 – low panel) while the actual

NF loading can be justified by the exothermic phenom-

enon observable at 300–345°C.

A 0.05% w/v VHS aqueous suspension is character-

ized by zeta potential of −43.5±0.9 mV, thus confirming

the negative net charge of the clay. A 0.05% w/v VHS-

NF nanocomposite aqueous suspension shows a zeta

potential of −15.9±0.3 mV. VHS and NF probably inter-

act via electrostatic bonds partially shielding the nega-

tive charges located into VHS galleries. The dissolution

of NF in acetic acid during the nanocomposite prepara-

tion causes the protonation of its nitrogen atom in the

piperazine ring. In this condition, NF in solution, posi-

tively charged, can interact with the negatively charges

in the interlayer space of VHS, normally compensated

by exchangeable cations increasing the zeta potential.

Similar results were reported for clay–cationic moieties

interaction products.39,40

High-resolution TEM microphotographs of VHS sam-

ple (Figure 5A) show the typical layered morphology of

montmorillonite. The EDX analysis performed in the

marked zone (red square) confirms the nature of VHS,

thanks to the presence of Si, Al and O, together with Mg

and Fe and the typical exchangeable cations (Na, K and Ca).

Figure 4 Thermal analysis (TGA – high panel curves and DSC – low panel curves)

of NF, VHS and VHS-NF samples.

Abbreviations: NF, norfloxacin; VHS, montmorillonite; VHS-NF, montmorillonite/

norfloxacin nanocomposite.

García-Villén et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:145056

http://www.dovepress.com
http://www.dovepress.com


NF (Figure 5B) microphotographs confirm NF crystal-

linity and agree with XRDP results. Moreover, the EDX

analysis evidences the presence of C, O and N (typical of

organic compounds) and that of F peculiar of NF

molecule.

VHS-NF nanocomposite (Figure 5C) shows a morphol-

ogy similar to that of VHS. The NF crystals are not detectable

in this sample, in agreement with XRPD results (no peak of

NF diffraction in VHS-NF sample, Figure 2) although the NF

presence in nanocomposite is confirmed by means of the

EDX analysis. The elemental composition evidences the

characteristic components of montmorillonite (Si, Al, Mg)

and those of organic compounds (C, N, O); moreover, F is

also detectable as NF indicator. Additionally, EDX maps

(Figure 5D) corroborate not only the presence of VHS and

NF in nanocomposite but also the homogeneous distribution

of NF into montmorillonite, confirming the presence of NF

monolayer adsorbed onto the interlayer spaces, as resulted

from adsorption studies.

Drug release
Figure 6 reports the NF release profiles (%) evaluated for NF

and VHS-NF nanocomposite. The dissolution of NF from

free drug is very rapid and reaches 80% within the first hour

and the plateau value in 2 hrs at 100% of NF release.

VHS-NF shows a significantly lower NF release profile

and the whole dose is released in 48 hrs evidencing

a controlled release. Considering the application (skin lesions),

the capability of the system to control drug release should

decrease the number of applications over time. This is an

important aspect to allow the healing of lesion since the

frequent medical treatment could impair the granulation tissue

and new tissue formation. Moreover, the slower release profile

of NF could allow to control microbial growth over time.
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Antimicrobial properties
Figure 7 reports microbiocidal effect vs time profiles of

NF released from NF and VHS-NF against a)

Pseudomonas aeruginosa and b) Staphylococcus aureus.

Pseudomonas aeruginosa is a common Gram-negative,

rod-shaped bacterium, facultative anaerobe, of considerable

medical importance. It is recognized as a multidrug-resistant

pathogen for its ubiquity, its intrinsically advanced antibiotic

resistance mechanisms and its association with hospital-

acquired infections such as various sepsis syndromes.

P. aeruginosa is considered opportunistic insofar as serious

infection often occurs during existing diseases or conditions,

most notably traumatic burns.

Staphylococcus aureus is a Gram-positive, round-shaped

bacterium and, as P. aeruginosa, it is a facultative anaerobe. It

is an usual member of the microbiota of the body, frequently

found on the skin, usually acting as a commensal. However, it

can also become an opportunistic pathogen, being a common

cause of skin infections. The onset of S. aureus strains anti-

biotic-resistant (such as methicillin-resistant S. aureus) is

a worldwide emergence in clinical medicine.

NF is reported in the literature as effective against both

P. aeruginosa and S. aureus having a MIC of 2 μg/mL in

both cases.39 However, the microbicidal effect is slightly

higher against P. aeruginosa than that against S. aureus.

The loading of NF in montmorillonite in VHS-NF nano-

composite significantly increases NF microbicidal effect.

The increase of NF potency due to the nanocomposite is

probably due to high surface area to volume ratio, which

increases the contact area with target organisms.40

Figure 6 % of norfloxacin (NF) released from NF and VHS-NF (mean values ± s.d.; n=3).

Abbreviations: NF, norfloxacin; VHS-NF, montmorillonite/norfloxacin nanocomposite.

Figure 7 Microbiocidal effect vs time profiles of norfloxacin (NF) released from NF and VHS-NF against (A) Pseudomonas aeruginosa and (B) Staphylococcus aureus (mean

values ± s.d.; n=3).

Abbreviations: NF, norfloxacin; VHS-NF, montmorillonite/norfloxacin nanocomposite.
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Fibroblast in vitro biocompatibility
Figure 8 reports bioavailability (OD, optical density) eval-

uated for VHS (1.2 mg/mL), NF (0.1 mg/mL) and VHS-

NF (VHS: 1.2 mg/mL and NF 0.1 mg/mL). VHS and NF

are characterized by OD values not significantly different

from the control (growth medium, standard growth condi-

tions). The nanocomposite, VHS-NF, is characterized by

OD significantly lower than that of the control although it

is higher than 80% and this is normally considered as the

lower limit for the cytocompatibility.

VHS, NF and VHS-NF are characterized by no signifi-

cantly different OD to suggest similar behaviour. Anyhow, it

should be considered that the cytocompatibility is assayed to

a 20-fold concentration higher than that considered for anti-

microbial assay. This evidences that nanocomposite does not

impair fibroblast growth also at concentrations higher than

those effective against P. aeruginosa and S. aureus as assessed

in the antimicrobial assay.

Conclusions
NF is loaded into montmorillonite to have a nanocomposite

by means of adsorption mechanism, as one single process. In

particular, protonated NF molecules interact with the active

sites of montmorillonite located at edges and within its

interlayer space, thus forming a drug monolayer onto the

clay mineral interlayer surface. NF in the nanocomposites

is in an amorphous state, and its loading is homogeneous and

causes an expansion of montmorillonite interlayer spaces.

Moreover, the nanocomposite causes a prolonged NF release

over time. The nanocomposite is characterized by good

biocompatibility in vitro toward fibroblasts, and it is able to

increase antimicrobial potency of the free drug against

P. aeruginosa and S. aureus, Gram-negative and Gram-

positive bacteria, respectively, that are often a concurrent

cause of wound chronicization, leading to a possible impair-

ment of the healing path and finally to nonhealing wounds.

NF-montmorillonite nanocomposite demonstrates to

possess suitable properties as a tool to enhance wound

healing in infected wounds: the possibility to use

a flexible dosage, as a powder for cutaneous application,

should also allow easy administration, depending on lesion

dimensions.
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