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Abstract

We derive the conditions for matching high-energy renormalizable Quantum Field Theories onto low-
energy nonrenormalizable ones by means of the FDR approach described in [1]. Our procedure works 
order-by-order in the loop expansion and avoids the addition of higher dimensional interactions into the non-
renormalizable Lagrangian. To illustrate our strategy, we match the high-energy fermion-loop corrections 
computed in the complete electroweak theory onto the nonrenormalizable four-fermion Fermi model. As a 
result, the Fermi Lagrangian can be used without modifications to reproduce, at arbitrary loop orders and 
energies, the exact electroweak interactions between two massless fermion lines induced by one-fermion-
loop resummed gauge boson propagators.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Renormalizable Quantum Field Theories (QFT) are the commonly used language to describe 
high-energy interactions in particle physics. They are considered as fundamental theories, in the 
sense that predictions can be obtained, at any desired perturbative order and scale, by consistently 
reabsorbing the ultraviolet (UV) infinities appearing in the intermediate stages of the calculation 
in the set {pi}, i = 1 ÷ m, of the free parameters of the Lagrangian
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L(p1, . . . , pm). (1)

On the other hand, nonrenormalizable QFTs belong to a larger class of theories, namely the 
effective QFTs (EFT), and are extensively employed in cases when the fundamental renormal-
izable model is unknown, or not easily calculable. The problem of computing high-energy loop 
corrections in EFTs is usually dealt with by using the seminal Weinberg’s approach [2], in which 
higher dimensional operators Oi , compatible with the symmetries of the theory, are added to the 
lowest order Lagrangian L to reabsorb the UV infinities which remain after fixing the parameters 
of the model,

L → L+
∑

i

CiOi := L+LHD.

By doing so order-by-order in the loop expansion, EFTs can be treated as ordinary renormalizable 
QFTs at the price of introducing a large set of Wilson coefficients Ci (possibly, an infinite one) 
to be fixed by experiment. Of course, not all the Ci are relevant at the energy scale under study. 
As a matter of fact, if N is the number of independent kinematic invariants sn, one organizes the 
EFT as a perturbative expansion in the ratios

λn = sn/M
2
n, n = 1 ÷ N, (2)

where the Mn are mass scales parameterizing the range of validity of the effective description 
[3,4]. In this way, physical predictions can be obtained, order-by-order in the λn, in terms of a 
finite set of measurements.

In [1] a different way to include high-energy loop corrections in nonrenormalizable QFTs is 
presented based on FDR [5]. In FDR UV divergences are eliminated by way of a redefinition of 
the loop integration that does not rely on an order-by-order renormalization. Hence, UV finite 
quantities are directly computed without adding LHD to L. The price of this is the appearance of 
an arbitrary renormalization scale μR. In the case of renormalizable models, the dependence on 
μR disappears from physical predictions OTH,�−loop,

dOTH,�−loop
(
p̃1(μR), . . . , p̃m(μR),μR

)
dμR

= 0, (3)

when they are expressed in terms of the set of parameters {p̃i(μR)} fixed by m experiments OEXP
i

determined up to the same perturbative order � one is working,

p̃i(μR) := p
TH,�−loop
i (OEXP

1 , . . . ,OEXP
m ,μR), i = 1 ÷ m. (4)

On the contrary, (3) is not fulfilled, in general, by nonrenormalizable QFTs. However, in the 
procedure of [1] μR is an adjustable parameter rather than a UV cutoff,1 so that an additional 
measurement OEXP

m+1 can be used to fix it by imposing

OTH,�−loop
m+1

(
p̃1(μ

′
R), . . . , p̃m(μ′

R),μ′
R

) =OEXP
m+1. (5)

After this is done, observables different from those used to determine the model,

OTH,�−loop
i

(
p̃1(μ

′
R), . . . , p̃m(μ′

R),μ′
R

)
, i > m + 1, (6)

1 This means that, at any fixed value of μR , the nonrenormalizable Lagrangian L describes a legitimate effective 
theory, even without adding LHD to it.
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can be predicted and tested experimentally. If in a given range of energy

OTH,�−loop
i

(
p̃1(μ

′
R
), . . . , p̃m(μ′

R
),μ′

R

) =OEXP
i (7)

for a large class of observables i > m + 1, the nonrenormalizable QFT can be used as a plausible 
effective model.

In this work we study under which conditions a known renormalizable theory can be matched 
onto a low-energy nonrenormalizable effective model by means of the FDR approach. In this 
case, the matching condition (5) is replaced by2

B
�−loop
m+1 (λ,α,μ′

R) = A
�−loop
m+1 (λ,α), (8)

where Bm+1 and Am+1 are amplitudes computed up to the �th order in the coupling constant 
α within the nonrenormalizable and renormalizable QFT, respectively, and λ stands for all the 
N ratios in (2). In particular, we derive the conditions to be obeyed by the coefficients of the 
perturbative expansion of equation (8) for ensuring the independence of μ′

R
from kinematics. In 

addition, we conjecture that, when such a μ′
R

exists, additional independent amplitudes can be 
matched at λ �= 0,

B
�−loop
i (λ,α,μ′

R) = A
�−loop
i (λ,α), i > m + 1, (9)

if they coincide at λ = 0,

B
�−loop
i (0, α,μ′

R
) = A

�−loop
i (0, α), i > m + 1. (10)

At the present stage of our investigation we cannot prove this in general. However, it holds true 
when the Ai are resummed one-fermion-loop amplitudes computed in the full electroweak the-
ory and the Bi are calculated in the four-fermion Fermi model. In such a case, if μ′

R
is fixed once 

for all as in (8), the Fermi theory reproduces, at any loop order, all the exact amplitudes describ-
ing any process involving fermion-loop mediated interactions between two massless fermions 
at arbitrary energy scales. This demonstrates that realistic low-energy nonrenormalizable QFTs 
exist that can be consistently uplifted to higher energies by FDR without modifying their La-
grangian, at least under special classes of loop corrections. Conversely, if nonrenormalizable and 
renormalizable amplitudes can be matched with a μ′

R
independent of kinematics, the coefficients 

of their expansions necessarily obey the same conditions which ensure the validity of (8).
The structure of the paper is as follows. In section 2 we recall the essential principles of 

FDR. The conditions for the matching in (8) are derived in section 3. Section 4 describes the 
one-fermion-loop matching of the high-energy electroweak corrections onto the Fermi model. 
Finally, the last section includes a comparison between our procedure and a customary EFT 
approach.

2. FDR integration and loop functions

Here we sketch out the basic axioms of FDR with the help of a simple one-dimensional 
example. The interested reader can find more details in the relevant literature [5–10].

2 Here and in the following, amplitudes used to fix μR are denoted by the subscript m + 1, while the label i > m + 1
refers to processes different from those employed to determine the Lagrangian’s parameters and the renormalization 
scale.
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Let’s assume one needs to define the UV divergent integral

I = lim
�→∞

�∫
0

dx
x

x + P
, (11)

where P stands for a physical energy scale. FDR identifies the UV divergent pieces in terms of 
integrands independent of P , dubbed FDR vacua, and rewrites

x

x + P
= 1 − P

x
+ P 2

x(x + P)
. (12)

Thus, the first term in the r.h.s. of (12) is the vacuum responsible for the linear UV divergence, 
while 1/x generates the ln� behavior. By definition, the linearly divergent contribution is sub-
tracted from (11) over the full integration domain [0, �], while the logarithmic divergence over 
the interval [μR, �] only. The arbitrary separation scale μR �= 0 is needed to keep a-dimensional 
and finite the arguments of the logarithms appearing in the subtracted and finite parts. Thus,

IFDR := I − lim
�→∞

⎛
⎝ �∫

0

dx −
�∫

μR

dx
P

x

⎞
⎠ = P ln

P

μR

. (13)

The advantage of this definition is twofold. Firstly, the UV cutoff � is traded for μR , which is 
interpreted as the renormalization scale. Secondly, other than logarithmic UV divergences do 
not contribute. The explicit appearance of μR in the interval of integration makes the use of (13)
inconvenient in practical calculations. An equivalent definition is obtained by adding an auxiliary 
unphysical scale μ to x, x → x̄ := x + μ,3 and introducing an integral operator 

∫ ∞
0 [dx] which 

annihilates the FDR vacua before integration. Hence,

IFDR =
∞∫

0

[dx] x̄

x̄ + P
:= lim

μ→0

∞∫
0

dx
P 2

x̄(x̄ + P)

∣∣∣∣∣∣
μ=μR

,

where μ → 0 is an asymptotic limit.
This strategy can be extended to more dimensions and to rational integrands depending on 

any number of variables, as those appearing in �-loop integrals I �
FDR. They are polynomials of 

degree � in lnμ2
R

, [8]

I �
FDR =

�∑
k=0

ckL
k
R
, LR := ln(μ2

R
). (14)

For instance, at one loop one has∫
[d4q] 1

(q̄2 − m2)(q̄2 + p2 + 2q · p − m2
1)

= I 1
FDR(p

2,m2,m2
1) = −iπ2

1∫
0

dy ln
χ

μ2
R

, (15a)

3 This replacement must be performed in both numerators and denominators of the integrated functions.



R. Pittau / Nuclear Physics B 950 (2020) 114835 5
∫
[d4q] qα

(q̄2 − m2)(q̄2 + p2 + 2q · p − m2
1)

= iπ2pα

1∫
0

dyy ln
χ

μ2
R

, (15b)

∫
[d4q] qαqβ

(q̄2 − m2)(q̄2 + p2 + 2q · p − m2
1)

= iπ2

2
gαβ

1∫
0

dyχ

(
1 − ln

χ

μ2
R

)
+O(pαpβ), (15c)

with q̄2 := q2 − μ2 and χ := m2y + m2
1(1 − y) − p2y(1 − y). Finally, it is important to realize 

that internal consistency requires μR to be independent of kinematics and identical in all loop 
functions. This guarantees correct cancellations when combining integrals.4

3. The conditions for matching two amplitudes

Our aim is determining the renormalization scale μ′
R in (8). The all-order expansions of Am+1

and Bm+1 read

Am+1(λ,α) = K(α) + K(α)

∞∑
j=1

A
{mj }
0j λ{mj } + K(α)

∞∑
i,j=1

A
{mj }
ij αiλ{mj }, (16a)

Bm+1(λ,α,μR) = K(α) + K(α)

∞∑
i,j=1
0≤k≤i

B
{mj }
ijk αiλ{mj }Lk

R
, (16b)

where K(α) is defined by the constraint

Bm+1(0, α,μR) = Am+1(0, α) = K(α), (17)

which states that the amplitudes computed in the exact theory and the effective model coincide 
when λ → 0. A

{mj }
0j , A

{mj }
ij , B

{mj }
ijk are perturbative coefficients, in which i refers to the α expan-

sion, whereas j denotes the power degree of the products of λn multiplying the coefficients. The 
notation

{mj } := (mj1,mj2, . . . ,mjN)

symbolizes an assignment of integer numbers mjn ≥ 0 fulfilling

N∑
n=1

mjn = j, (18)

4 For example, the UV finite combination I1
FDR(p2

1, m2, m2
1) − I1

FDR(p2
2, m2, m2

1) is equal to the right result,

∫
d4q

2q · (p2 − p1) + p2
2 − p2

1

(q2 − m2)((q + p1)2 − m2
1)((q + p2)2 − m2

1)
,

only if μ2
R in (15a) takes the same constant value in both I1

FDR(p2, m2, m2) and I1
FDR(p2, m2, m2).
1 1 2 1
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and a sum over all possible assignments is understood when contracting with5

λ{mj } :=
N∏

n=1

λ
mjn
n . (19)

The coefficients in (16) may involve functions of sn singular at λ = 0, such as ln sn or sn− 1
2 ,6 but 

(17) requires

A
{mj }
0j λ{mj } → 0, A

{mj }
ij λ{mj } → 0, B

{mj }
ijk λ{mj } → 0

when λ → 0. Furthermore, Bm+1 in (16b) depends on λ only through loop corrections, unlike 
Am+1. Typically, the second term in the r.h.s. of (16a) is generated by Taylor expanding the 
tree-level propagators 1/(sn − M2

n) of the exact theory, that are absent in the effective model, 
whose natural expansion parameters are, instead, dimensionful couplings of the type αa/(M2

n)b

with a, b > 0. Note also that the dependence upon μR is driven by (14).
Solutions to (8) are found by replacing its two sides by (16a) computed with (i ≤ �, j ≤ �)

and (16b) truncated at (i ≤ � + 1, j ≤ �, k ≥ i − �), and allowing LR in (16b) to mix different 
perturbative orders,

LR =
�−1∑

i=−1

Xiα
i. (20)

Equating the powers of α and λ{mj } gives a system of equations to be fulfilled by the unknown 
coefficients Xi . We are interested in constant solutions,

L′
R

:= ln
(
μ′

R

2) =
�−1∑

i=−1

X′
iα

i, (21)

in which the X′
i are independent of both the λn and the sn contained in A

{mj }
0j , A

{mj }
ij , B

{mj }
ijk . 

This requirement determines the conditions to be fulfilled by the coefficients of the two series in 
(16) to be compatible with the FDR treatment of the loop integrals outlined in section 2. In what 
follows, we discuss the first two perturbative orders and delineate the structure of the general 
�-loop case.

When � = 1, LR = X−1/α + X0 and the system reads⎧⎨
⎩

A
{m1}
01 − B

{m1}
111 X−1 − B

{m1}
212 X2−1 = 0,

A
{m1}
11 − B

{m1}
110 − B

{m1}
111 X0 − B

{m1}
211 X−1 − 2B

{m1}
212 X−1X0 = 0, ∀{m1}.

(22)

If N = 1, only one assignment is possible, {m1} = (1), and a solution compatible with (22) can 
always be found for nonexceptional values of the coefficients,

X̂2−1B
(1)
212 + X̂−1B

(1)
111 − A

(1)
01 = 0,

X̂0 = A
(1)
11 − B

(1)
110 − B

(1)
211X̂−1

B
(1)
111 + 2B

(1)
211X̂−1

. (23)

5 For instance, if N = 2, A{m2}
02 λ{m2} = A

(2,0)
02 λ2

1 + A
(0,2)
02 λ2

2 + A
(1,1)
02 λ1λ2.

6 For example, if the λn → 0 asymptotic expansion of the loop functions produces a 
√

λn, it is rewritten as 
√

λn =
λn

(
Mnsn

− 1
2

)
in (16).
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If, in addition, this solution is such that

∂X̂i

∂sn
= 0 ∀n, i = −1,0, (24)

then

X′
i = X̂i, i = −1,0. (25)

With N invariants, there are N possible assignments,

{m1} = (1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1),

so that (22) is a system of 2N equations and two unknowns, that admits solutions only if relations 
exist among the coefficients. In practice, one determines X̂−1 and X̂0 for a particular assignment 
and checks whether this solution obeys (22) ∀{m1}. After that, one also verifies the validity of 
(24). Thus, (22) and (24) give 4N conditions. If they are all obeyed, the matching

B
1−loop
m+1 (λ,α,μ′

R
) = A

1−loop
m+1 (λ,α) (26)

is realized by inserting (25) in (21) with � = 1.
If � = 2, LR = X−1/α + X0 + X1α, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
{mj }
0j − B

{mj }
1j1 X−1 − B

{mj }
2j2 X2−1

−B
{mj }
3j3 X3−1 = 0,

A
{mj }
1j − B

{mj }
1j0 − B

{mj }
1j1 X0 − B

{mj }
2j1 X−1

−2B
{mj }
2j2 X−1X0 − B

{mj }
3j2 X2−1

−3B
{mj }
3j3 X2−1X0 = 0,

A
{mj }
2j − B

{mj }
2j0 − B

{mj }
1j1 X1 − B

{mj }
2j1 X0

−B
{mj }
2j2 (X2

0 + 2X−1X1)

−B
{mj }
3j1 X−1 − 2B

{mj }
3j2 X−1X0

−3B
{mj }
3j3 (X−1X

2
0 + X2−1X1) = 0,

(27a)

∀{mj }, with j = 1 ÷ 2. (27b)

Values of X̂−1, X̂0 and X̂1 fulfilling (27a) can in general be found for a particular assignment. 
Subsequently, one checks if

∂X̂i

∂sn
= 0 ∀n, i = −1 ÷ 1, (28)

and whether this very same solution holds for all the remaining assignments of (27b). Therefore, 
(27) and (28) give the conditions for the matching

B
2−loop
m+1 (λ,α,μ′

R
) = A

2−loop
m+1 (λ,α). (29)

If they are met, (29) is obeyed by setting � = 2 and X′ = X̂i in (21).
i
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At � loops and fixed assignment, X̂−1 is a solution of an algebraic equation of degree (� + 1). 
Once X̂−1 is known, the rest of the system is linear and triangular, so that the remaining coeffi-
cients X̂i , i = 0 ÷ (� − 1), can be easily determined. After that, one checks the validity of this 
solution for all the other assignments. If, in addition,

∂X̂i

∂sn
= 0 ∀n, i = −1 ÷ (� − 1), (30)

the matching is achieved by choosing X′
i = X̂i in (21).

4. An effective model for the high-energy electroweak fermion loops

When the constraints derived in the previous section are fulfilled, the result predicted by Am+1
is reproduced, order by order in α and λ, by the effective nonrenormalizable amplitude Bm+1. 
This allows one to determine μ′

R
from (8) and use it in further amplitudes Bi computed within the 

effective model. If, after fixing the Lagrangian’s parameters as in (4), the Bi obey (10), we argue 
that they can be matched as in (9). Here we prove this in the case of the electroweak Fermi model 
when the coupling constant expansion is in terms of resummed one-fermion-loop corrections. In 
section 4.1 we detail the nonrenormalizable and renormalizable theories to be matched and the 
radiative corrections involved. The fitting procedure of (4) is discussed in section 4.2 and the 
matching implied by (8) and (9) is the subject of section 4.3.

4.1. The models and the loop corrections

Our renormalizable theory is defined by the fermionic sector of the electroweak standard 
model interaction Lagrangian, namely

LSM
INT = LQED

INT +LZW
INT, (31)

with

LQED
INT = −gsθAα

∑
f

Qf f̄j γ
αfj (32)

and

LZW
INT = − g

2cθ

Zα

∑
f

f̄j γ
α(vf + af γ5)fj

− g

2
√

2
W+

α

∑
f

2I3f + 1

2
f̄j γ

α(1 − γ5)f
′
j

− g

2
√

2
W−

α

∑
f

1 − 2I3f

2
f̄j γ

α(1 − γ5)f
′
j . (33)

The photon and the massive gauge boson fields are denoted by Aα , Zα and W±
α , respectively. 

The spinor associated with a fermion f with color j is denoted by fj , with the convention that 
j = 1 ÷ 3 for quarks and j = 1 for leptons. The sum runs over all fermions and f ′ is the isospin 
partner of f in the limit of diagonal CKM quark-mixing matrix. The vector and axial couplings 
are
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vf = I3f − 2s2
θ Qf , af = −I3f , (34)

where I3f is the third isospin component, Qf the electric charge and sθ (cθ ) is the sine (cosine) 
of the weak mixing angle. The Feynman gauge is used, hence the gauge boson propagators read

P
αβ
A (p2) = −igαβ 1

p2 , P
αβ
W (p2) = −igαβ 1

p2 − M2 ,

P
αβ
Z (p2) = −igαβ 1

p2 − M2/c2
θ

. (35)

Our effective nonrenormalizable interaction Lagrangian reads

LEFF
INT = LQED

INT +LFERMI , (36)

with

LFERMI = − g2

8M2 J †
cαJ α

c − g2

8M2 JnαJ α
n , (37)

where the charged and neutral currents are given by

Jα
c =

∑
f

2I3f + 1

2
f̄j γ

α(1 − γ5)f
′
j ,

J α
n =

∑
f

f̄j γ
α(vf + af γ5)fj . (38)

In (37) the four-fermion coupling between currents is written in a form which reproduces the 
tree-level low-energy result obtained with LSM

INT when using P αβ
W,Z(0). Massive gauge boson prop-

agators are absent in the effective theory, while the photon propagator is as in (35).
The main objects entering our calculation are the truncated one-fermion-loop contributions 

depicted in Fig. 1. Fermion masses are neglected, when possible, except in the case of the top 
quark, for which the leading m2

t contribution is also included. The pαpβ parts are omitted, be-
cause they do not contribute on-shell. An FDR computation of the form factors requires the 
integrals in (15). The result is

�Z(p2) = −p2

π2

(
1 − 2s2

θ + 8

3
s4
θ

)(
LR − L + 5

3

)
+ 3m2

t

8π2

(
LR − lnm2

t

)
,

�W(p2) = −p2

π2

(
LR − L + 5

3

)
+ 3m2

t

8π2

(
LR − lnm2

t + 1

2

)
,

A(p2) = − 2

3π2

(
LR − L + 5

3

)
,

A(0) = − 2

3π2 (LR − K2) ,

ZA(p2) = − 1

π2

(
1

4
− 2

3
s2
θ

)(
LR − L + 5

3

)
= AZ(p2),

ZA(0) = −s2
θ A(0) − 1

4π2 (LR − K1)

= AZ(0), (39)
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Fig. 1. The parts of the truncated one-fermion-loop diagrams proportional to the metric tensor. The dots in the vertices 
denote that the external propagators are not included.

with L := ln(−p2 − iε). Furthermore

K1 := 1

2
+ lnm2

e + lnm2
μ + lnm2

τ

12
+ lnm2

u + lnm2
c + lnm2

t

6

+ lnm2
d + lnm2

s + lnm2
b

12
,

K2 := 1

2
+ lnm2

e + lnm2
μ + lnm2

τ

8
+ lnm2

u + lnm2
c + lnm2

t

6

+ lnm2
d + lnm2

s + lnm2
b

24
, (40)

where the light quark masses have to be considered as effective parameters adjusted to fit the 
dispersion integral defining the hadronic contribution to the vacuum polarization.

4.2. Fixing the free parameters of the models

Both Lagrangians in (31) and (36) depend on the set of bare parameters {g2, M2, s2
θ }, which 

need to be fixed by experiment. As input data we choose the fine structure constant αEM , measured 
in the Thomson limit of the Compton scattering, the muon decay constant GF , extracted from 
the muon lifetime, and the ratio Reν between the total e−νμ and e−ν̄μ elastic cross sections at 
zero momentum transfer. In the following, we determine and solve the fitting equations [11,12]
linking {αEM, GF , Reν} to {g2, M2, s2} in both renormalizable and nonrenormalizable models.
θ
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In the renormalizable theory one constructs the fermion-loop dressed propagators,

D
αβ
V (p2) = −igαβ�V (p2), V = W,Z,A,ZA,AZ, (41)

by Dyson resumming to all orders the self-energy contributions of Fig. 1. The result reads

�W(p2) = 1

g2

1

PW(p2)
,

�Z(p2) = 1

g2

1

PZ(p2)

1

Z(p2)
,

p2�A(p2) = 1

PA(p2)Z(p2)
,

�ZA(p2) = g2 sθ

cθ

ZA(p2)

PA(p2)
�Z(p2) = �AZ(p2), (42)

with

PW(p2) = p2

g2 − M2

g2 − �W(p2)

4
,

PZ(p2) = p2

g2 − M2

g2c2
θ

− �Z(p2)

4c2
θ

,

PA(p2) = 1 − g2s2
θ A(p2),

Z(p2) = 1 − p2g2 s2
θ

c2
θ

2
ZA(p2)

PA(p2)PZ(p2)
. (43)

Using the propagators in (41) to compute the Thomson scattering, the muon lifetime and Reν , 
gives the fitting equations

4παEM = g2s2
θ

1 − g2s2
θ A(0)

, (44a)

GF√
2

= g2

8
[
M2 + g2

4 �W(0)
] , (44b)

Reν = 16S4 − 12S2 + 3

16S4 − 4S2 + 1
, (44c)

where

S2 := s2
θ

{
1 − g2ZA(0)

1 − g2s2
θ A(0)

}
.

In the case of the nonrenormalizable model, it is easy to prove that

Theorem 1. Computing {αEM, GF , Reν} in terms of {g2, M2, s2
θ } produces the same fitting equa-

tions (44) of the renormalizable theory.

Proof. When resumming to all orders the interactions mediated by the fermion loops, one arrives 
at results which have the same form of transitions induced by the dressed propagators of (42)
computed at p2 = 0. Since the observables used as input data only involve zero momentum 
transfer, the equations (44) are also valid in the nonrenormalizable theory. �
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Fig. 2. The diagram mediating fermion-loop induced interactions between charged currents in the nonrenormalizable 
theory.

Fig. 3. The amplitude describing the muon decay in the nonrenormalizable theory. The interaction of Fig. 2 is evaluated 
at p2 = 0 and resummed to all orders.

As an example, the diagram relevant in the case of charged currents is given in Fig. 2. That 
modifies the muon decay amplitude as depicted in Fig. 3. One computes

AEFF
W (0) = − i�

8

g2

M2

1

1 + g2

4M2 �W(0)
= i�

8
g2�W(0),

(45)

where � is the result of the contraction of the two charged currents � := γα(1 −γ5) ⊗γ α(1 −γ5), 
in which the symbol ⊗ understands multiplication by the relevant external spinors. Using (45) to 
define the combination g2/M2 leads to (44b).

Finally, to solve the fitting equations we first introduce the tree-level solution to (44c), namely 
ŝθ such that

Reν = 16ŝ4
θ − 12ŝ2

θ + 3

16ŝ4
θ − 4ŝ2

θ + 1
. (46)

Radiative corrections do not change Reν when S2 = ŝ2
θ , that gives

s2
θ = ŝ2

θ

F1

F2
, (47a)

g2 = 4παEM

ŝ2
θ F1

, (47b)

M2 = M̂2

F1

(
1 − √

2GF �W(0)
)

, (47c)

with

M̂2 : = παEM√
2GF ŝ2

θ

, F1 := 1 − αEM

πŝ2
θ

(LR − K1) ,

F2 : = 1 − 8αEM

3π
(LR − K2) . (48)

4.3. Matching the exact theory onto the nonrenormalizable model

The high-energy fermion-loop corrections computed with LSM
INT are matched onto LEFF

INT by com-
paring amplitudes induced by charged currents of virtuality p2. In the renormalizable theory one 
has
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ASM

W(p2) = i�

8
g2�W(p2)

= i�

8

{
p2

g2 − M2

g2 − �W(p2)

4

}−1

, (49)

while resumming the interaction as in Fig. 3, but with p2 �= 0, gives

AEFF
W (p2,LR) = i�

8

{
−M2

g2 − �W(p2)

4

}−1

. (50)

Equations (49) and (50) differ by the term p2/g2, so that inserting the solution (47) produces a 
result independent of LR for ASM

W , whilst AEFF
W still depends on LR ,

ASM

W(p2)

K(αEM)
=

{
1 − p2

M̂2
− αEM

πŝ2
θ M̂2

p2 (K1 − L + 5/3)

}−1

, (51)

AEFF
W (p2,LR)

K(αEM)
=

{
1 − αEM

πŝ2
θ M̂2

p2 (LR − L + 5/3)

}−1

(52)

K(αEM) = − i�

2

παEM

ŝ2
θ M̂2

.

At fixed �, the amplitudes in (51) and (52) are the right and left sides of the matching equation (8)
needed to determine μ′

R
. For instance, the conditions ensuring the validity of (29) can be verified 

by expanding up to the second order in λ = p2/M̂2,

ASM

W(p2)

K(α)
= 1 + λ

(
1 + α

πŝ2
θ

(K1 − L + 5/3)

)

+ λ2

(
1 + α

πŝ2
θ

(K1 − L + 5/3)

)2

+O(λ3),

AEFF
W (p2,LR)

K(α)
= 1 + αλ

πŝ2
θ

(LR − L + 5/3) + α2λ2

π2ŝ4
θ

(LR − L + 5/3)2 +O(λ3), (53)

where α = αEM . From (53) one reads off the nonzero coefficients7

A
(1)
01 = 1, A

(2)
02 = 1, A

(1)
11 = 5/3 − L + K1

πŝ2
θ

,

A
(2)
12 = 2A

(1)
11 , A

(2)
22 =

(
A

(1)
11

)2
, B

(1)
110 = 5/3 − L

πŝ2
θ

,

B
(2)
220 =

(
B

(1)
110

)2
, B

(1)
111 = 1

πŝ2
θ

, B
(2)
221 = 2

πŝ2
θ

B
(1)
110,

B
(2)
222 =

(
B

(1)
111

)2
,

(54)

and the solution X′−1 = πŝ2
θ , X′

0 = K1, X′
1 = 0, namely

7 Since N = 1, {mj } = (j).
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Fig. 4. The four sub-amplitudes in (57) induced by the fermion-loop dressed propagators of (41). The external fermions 
are massless, so that diagrams involving the exchange of neutral scalars are absent.

L′
R

= πŝ2
θ

αEM

+ K1, (55)

fulfills, for any value of j , all conditions stated by (27a) and (28). As a matter of fact, LR = L′
R

solves (8) to all orders. In fact, this is the value for which the resummed amplitudes of (51)
and (52) coincide. Hence, choosing the renormalization scale as in (55) reproduces the effect of 
interchanging a one-fermion-loop dressed W boson of arbitrary virtuality p2.

Now we consider a further amplitude AEFF
Z obtained by contracting two neutral currents. It 

obeys (10) by construction and

Theorem 2. When computed at LR = L′
R

, any effective amplitude involving two massless neutral 
currents reproduces, at any value of p2, the exact all-order result predicted by LSM

INT.

So that, AEFF
Z fulfills (9) at any �.

Proof. Consider the full amplitude

ASM

Z (p2) =
4∑

k=1

ASM

k (p2,LR) (56)

describing the interaction between two massless fermions f1 and f2 in the renormalizable theory. 
A computation of the sub-amplitudes in Fig. 4 gives

ASM

1 (p2,LR) = ig2s2
θ Qf1Qf2�A(p2)γα ⊗ γ α,

ASM

2 (p2,LR) = ig2 1

4c2
θ

�Z(p2)γα(vf1 + af1γ5) ⊗ γ α(vf2 + af2γ5),

ASM

3 (p2,LR) = ig2 sθQf2

2cθ

�ZA(p2)γα(vf1 + af1γ5) ⊗ γ α,

ASM

4 (p2,LR) = ig2 sθQf1

2cθ

�ZA(p2)γα ⊗ γ α(vf2 + af2γ5). (57)

Since LSM
INT is renormalizable, ASM

Z (p2) does not depend on LR. Therefore, one is allowed to 
choose LR = L′

R
in each of the four sub-amplitudes. But this implies F1 = 0 in (48), which means 
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p2/g2 = 0 inside the function PZ(p2) contained in the definition of the dressed propagators 
�A(p2), �Z(p2) and �ZA(p2) in (57). Since this is the only difference between the results 
computed within the nonrenormalizable and renormalizable models, one obtains

AEFF
k (p2,L′

R) = ASM

k (p2,L′
R) ∀k. (58)

Thus,

AEFF
Z (p2,L′

R
) =

4∑
k=1

AEFF
k (p2,L′

R
)

=
4∑

k=1

ASM

k (p2,L′
R) = ASM

Z (p2). � (59)

An interesting consequence is

Corollary 1. In the renormalizable theory of (31) it is possible to rearrange the fermion-loop 
corrections in such a way that all fermions couple to Z and W bosons with the same V-A inter-
action.

Proof. This is again obtained by choosing μR in (57) as in (55), that implies s2
θ = 0 in (47a) and 

vf = −af = I3f in (34). �
To summarize, any exact amplitude, in which two massless fermion lines are connected by a 

one-fermion-loop dressed W , Z or γ propagator of arbitrary virtuality, is reproduced by LEFF
INT if 

the solution in (55) is used for the renormalization scale.
Finally, it should be explicitly noticed that the choice of the interactions included in (36)

is ultimately driven by the requirement that the effective and the exact model coincide, when 
λ → 0, for the class of processes and corrections under study. For example, LEFF

INT is too poor to 
accommodate contributions not induced by fermion loops, e.g. the amplitudes Bi in the l.h.s. of 
(10) would not match the Ai if the latter would involve three-gauge-boson vertices.

5. Comparing with customary calculations

In what follows, we use the model of (36) to compare our treatment with a more standard 
order-by-order renormalization approach based on Dimensional Regularization (DReg). Our for-
mulae are converted to DReg by replacing [13]

LR → LR + 1

εUV

, (60)

where

1

εUV

:= 2

4 − d
− γE − lnπ with d → 4. (61)

Upon this substitution, the effective amplitudes in (52) and (58) develop a dependence on the UV 
cutoff 1/εUV. To cancel it in the Weinberg’s way, one adds to the effective Lagrangian interactions 
induced by higher dimensional operators,
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LHD = −cw

g4

32M4 (∂νJcα)†(∂νJ α
c ) − cz

g4c2
θ

32M4 (∂νJnα)(∂νJ α
n ). (62)

Matching the exact results of (51) and (56) onto a computation performed with LEFF
INT +LHD fixes 

the unknown coefficients,

cw(LR) = cz(LR) = ŝ2
θ

παEM

+ 1

π2

(
K1 − LR − 1

εUV

)
.

Even when choosing μR as in (55) only the finite parts of cw,z are removed,

cw,z(L
′
R
) = − 1

π2εUV

, (63)

hence adding LHD to LEFF
INT is necessary to compensate the UV poles contained in the DReg variant 

of the one-loop functions of (15). Such poles are absent when defining UV divergent integrals 
as in (13). This explains why FDR circumvents the introduction of the counterterm Lagrangian 
LHD, which is instead needed in the standard method.8 It is also interesting to speculate about 
the FDR matching of (55) from the point of view of the sole EFT. In particular, would it be 
possible to guess the “right” value of μR without knowing LSM

INT? Requiring that LEFF
INT describe as 

many processes as possible leads to the universal V-A interaction realized by the value s2
θ = 0

implied by (55), as noted in Corollary 1. More than that, choosing s2
θ = 0 effectively reduces 

from three to two the number of free parameters in (47). In summary, minimality could be used 
as a criterion to fix μR in nonrenormalizable QFTs whose UV completion is unknown. Note that, 
in any standard procedure based on DReg, s2

θ would be a bare parameter containing 1/εUV poles, 
which cannot be compensated by any finite value of μR. Thus, setting s2

θ = 0 directly in (47)
would not be possible.

In the rest of this section we briefly outline the steps towards a possible generalization of our 
approach beyond the simple model of (36). Given the current interest in precise EFT analyses of 
collider data, we directly focus on a phenomenologically relevant problem by studying how new 
physics effects could be parameterized within the FDR framework at the NLO accuracy.9 To be 
definite, we consider the Lagrangian

LNP = L(4)
SM + g2

�2L
(6), (64)

where L(4)
SM is the full standard model bare Lagrangian and g is the SU(2)L coupling constant. 

L(6) contains a set of gauge invariant dimension-six operators, multiplied by Wilson coefficients, 
which we want to determine, and � is the new physics scale, with which all the Mn in (2) are 
identified. The reader should be aware of the fact that a systematic and detailed treatment of 

8 Note that FDR is not equivalent to DReg in which the loop integrals are redefined by dropping 1/εUV terms. For 
instance, [8,14] when � > 1

Finite Part

{∫
ddq

μ
(4−d)
R

(q2 − m2)((q + p)2 − m2
1)

}�

�=
(
I1

FDR(p2,m2,m2
1)

)�
,

with I1
FDR(p2, m2, m2

1) given in (15a). In DReg this mismatch is cured by the 1/εUV pole contained in LHD. Hence, 
setting LHD = 0 would give a wrong DReg result for the resummed propagators of (42).

9 This means including all corrections O(g2), O(λn) and O(g2λn) with respect to the lowest order standard model 
predictions.
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this problem is far beyond our scope. Here we simply want to point out the general qualitative 
differences with respect to more standard approaches.

Equation (64) very much resembles the customary SMEFT [15] dimension-six parameteriza-
tion. However, in our case the operators in L(6) are not necessarily closed under renormalization. 
For instance, they could be a sub-set of the operators of the Warsaw basis [16]. Furthermore, LNP

remains the same at all loop orders (see footnote 1). Before starting the calculation, one needs to 
expand L(6) around the Higgs vacuum expectation value v. This gives rise to powers of v/� that 
modify the relations connecting weak eigenstates to mass eigenstates and alter the gauge fixing 
needed to quantize LNP. An analogous problem is encountered in the SMEFT, and can be solved, 
for instance, as described in [17].10 A difference arises when the v/� terms generate contact 
interactions not present in L(4)

SM . In this case they should be included in the factor K(α) of (17). 
This is due to the fact that the expansion in (16b) is in terms of the λn.

The starting point to determine the Wilson coefficients and � is a set of observables Oi , 
i ≥ m + 1, for which there is an experimental agreement, when all λn → 0, with the theoretical 
predictions obtained with LNP.11 This may require to fit different compositions of the dimension-
six operators in L(6) until this agreement is reached. After this is achieved, one measures one of 
the observables, say Om+1, at small values of the λn and tries to determine X′−1,0 in (21) such that 
the agreement persist also when λn �= 0. Note that, when several λn are involved, this may require 
measuring Om+1 in different phase-space regions. If the λn �= 0 agreement is not reached, one is 
led to reconsider once again the combination of dimension-six operators in L(6). When X′−1 and 
X′

0 can be found, the theory is fixed and our conjecture states that all the other observables Oi , 
i > m + 1, are also reproduced by LNP. If necessary, this can be checked experimentally.

6. Conclusion

We have derived the order-by-order conditions which have to be fulfilled by effective am-
plitudes computed in FDR to reproduce exact high-energy predictions. In our procedure the 
Lagrangian of the effective model is not modified by the inclusion of higher dimensional op-
erators. At the core of our analysis lies an expansion of the renormalization scale μR that mixes 
different perturbative orders.

We have postulated that if there exist classes of amplitudes for which the effective and the 
exact theory coincide at low energies, and if a value of μR can be found, for one of them, that 
matches at higher energies the exact result onto the effective one, all the other effective ampli-
tudes computed at μR reproduce the exact high-energy predictions.

We have proven this explicitly to all loop orders by matching onto the Fermi model elec-
troweak processes induced by the exchange of a one-fermion-loop dressed W , Z or γ propagator 
of arbitrary virtuality. In such a situation our approach is more direct than a standard EFT calcula-
tion, and gives some hints on how to handle nonrenormalizable models when more fundamental 
theories are not known.

We plan to corroborate our conjecture by considering further classes of theories and correc-
tions in future investigations.

10 Alternatively, since our matching conditions only involve physical amplitudes, one can use any gauge expressed in 
terms of the bare fields in L(4)

SM , at the price of correcting the external particle wave functions such that propagators have 
residue one at their poles [18].
11 Adding real corrections might be needed at this stage to define infrared safe quantities.
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