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The solution of the scattering problem based on the Lippmann-Schwinger equation requires in many 
cases a discretization of the spectrum in the continuum which does not respect the unitary equivalence 
of the S-matrix on the finite grid. We present a new prescription for the calculation of phase shifts based 
on the shift that is produced in the spectrum of a Chebyshev-angle variable. This is analogous to the 
energy shift that is produced in the energy levels of a scattering process in a box, when an interaction is 
introduced. Our formulation holds for any momentum grid and preserves the unitary equivalence of the 
scattering problem on the finite momentum grid. We illustrate this procedure numerically considering 
the non-relativistic NN case for 1 S0 and 3 S1 channels. Our spectral shift formula provides much more 
accurate results than the previous ones and turns out to be at least as competitive as the standard 
procedures for calculating phase shifts.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Scattering experiments provide usually the most direct phe-
nomenological approach to constrain the corresponding dynamics 
in hadronic systems. The standard procedure is to determine the 
scattering observables, which in the case of rotationally invari-
ant interactions reduces to the determination of phase-shifts via 
a partial wave analysis. The usefulness of the Hamiltonian method 
becomes more evident when dealing with the few-body problem, 
where one expects to determine bound states and resonances of 
multihadron systems in terms of corresponding potentials. In prac-
tice the calculation of phase shifts requires in general solving a 
scattering integral equation, such as the Lippmann-Schwinger (LS) 
equation [1] in the non relativistic case where for any given poten-
tial V the corresponding S-matrix and hence the phase shifts are 
determined. While this is a valid perspective for theories where 
the interaction is known ab initio, ambiguities arise when one tries 
to infer the potential from scattering information, as it is usually 
the case in nuclear and hadronic physics. In fact, under an uni-
tary transformation of the Hamiltonian, the corresponding phase-
shifts remain invariant. This generates a whole equivalence class 
of Hamiltonians which are actually compatible with the known 
scattering information. The notion of equivalent Hamiltonians was 
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introduced by Ekstein in 1960 [2] (see also [3] and [4] for an early 
review and [5,6] for implications at the relativistic level). This is 
similar to the equivalence under change of variables in quantum 
field theory [7,8].

Only in few cases, however, can one provide an analytical so-
lution of the scattering problem, so that one employs often a nu-
merical method which implies a discretization procedure [9,10]. 
In the present work we will be concerned with the discretiza-
tion in momentum space, since it has been widely used in the 
past and is the only practicable method for non-local interactions 
which have been and are commonplace in low and intermediate 
energy hadronic physics. This requires the introduction of a mo-
mentum or energy grid, which has a similar effect to introducing 
radial boundary conditions [11,12], but is in fact a more general 
scheme [13] (see [14–17] for a modern perspective). The inter-
est for this kind of methods for the LS equation started with the 
work of Haftel and Tabakin [18] where actually the interest was 
more in providing a method to solve the Bethe-Goldstone equa-
tion, which is genuinely non-local, even if the original interaction 
is local. The computation of elastic-scattering phase shifts via ana-
lytic continuation of Fredholm determinants, which are isospectral, 
constructed using an square integrable basis was introduced in 
Ref. [19] (for a review see e.g. [20] and references therein). A rel-
evant question is the choice of the particular grid (see e.g. [21]
for consideration of adaptive mesh). We will take Gauss-Chebyshev 
grid whose energy eigenvalue problem corresponds to diagonaliz-
ing in a Laguerre basis [22]. We refer to [23] for a comprehensive 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and self-contained exposition on Chebyshev methods within the 
present context. To avoid confusion, ours corresponds to a radial
one-dimensional momentum grid and not to a three-dimensional 
momentum grid proposed by the so-called KKR method [24,25] in 
solid state physics [26] and also called the Lüscher formula in the 
relativistic case because of more recent popularity within lattice-
QCD calculations [27,28].

While the physics of a finite momentum grid is that of the 
bound states, the continuum limit provides a clear distinction be-
tween bound and scattering states. Actually, in a finite momentum 
grid important properties such as the intertwining properties of 
the Moller wave operators do not hold [29]. Moreover, the mo-
mentum grid solution of the LS equation is not invariant under 
unitary transformations on the finite grid (see for instance [15,17]). 
The question, of course, is that since one expects that with a suffi-
ciently fine grid the continuum limit will be recovered the number 
of grid points may be unnecessarily large.

In this letter we provide a method which is in fact rather ac-
curate for a coarse grid, preserves phase-equivalence and in fact is 
more accurate than the standard numerical solution of the scatter-
ing problem based on the (phase-inequivalent) LS equation.

While the problem we address is fairly general, for illustration 
purposes we consider the toy model separable Gaussian potential 
discussed previously [30,31] which provides a reasonable descrip-
tion of the N N system in the 1 S0 and 3 S1 partial-wave channels at 
low-momenta, and supports none or one (deuteron) bound state, 
respectively. The extension to coupled channels (including tensor 
forces) or resonant and relativistic systems such as ππ or π N
scattering requires some modifications and will be discussed else-
where (See [32] for preliminary results).

2. Scattering on a finite momentum grid

As already mentioned, scattering occurs in the continuum but 
numerical approximation schemes discretize it by a finite momen-
tum grid. We review here some well known aspects of both for-
mulations in order to fix our notation.

2.1. Continuum formulation

Quite generally we will consider non-relativistic scattering of 
two particles with masses m1 and m2 where H = H0 + V , H0 =
p2/2μ and μ = m1m2/(m1 + m2) [33]. Along the paper we will 
work in units h̄ = c = 2μ = 1 so that the free energy is given by 
E = p2. We will assume that the potential is rotationally invariant 
so that the total Hilbert space can be decomposed as H = ⊕∞

l=0Hl

and work on the partial wave basis |p, l, ml〉 1 which is assumed 
to fulfill the completeness relation in the Hilbert subspace Hl

1 = 2

π

∞∫
0

q2dq|q〉〈q| . (1)

Thus, the action of the Hamiltonian on a given state in momentum 
space is given by

Hψl(p) = p2ψl(p) + 2

π

∞∫
0

q2dqVl(p,q)ψl(q) , (2)

where Vl(p′, p) are the matrix elements and the corresponding 
Schrödinger equation in momentum space reads,

1 To ease the notation we will drop the angular momentum quantum number l
and the third componend ml = −l, . . . , l in what follows.
Hψ(p) = Eψ(p) , (3)

E = k2 ≥ 0 and a bound-state with (negative) eigenvalue P 2
α =

−Bα corresponds to a pole in the scattering amplitude at imag-
inary momentum Pα = iγ .

In the continuum the S-matrix is defined as a boundary value 
problem for E ≥ 0

S(E + iε) = 1 − 2π iδ(E − H0)T (E + iε) , (4)

where we have introduced the T -matrix which satisfies the scat-
tering equation in operator form,

T (E) = V + V G0(E)T (E) = V (1 − G0(E)V )−1 , (5)

where in the second equality we write the exact result. Other 
(complex) energy values are defined by analytical continuation. 
This operator satisfies the reflection property T (E + iε)† = T (E −
iε) if V = V † in Eq. (5) and hence the unitarity condition, S(E +
iε)S(E + iε)† = 1, follows also from V = V † in Eq. (4). From its 
definition [S, H0] = 0, and the phase-shift is defined in terms of 
the eigenvalues of the S-matrix, so that S(E)ϕα(E) = e2iδα(E)ϕα(E)

with H0ϕα(E) = Eϕα(E), where 〈ϕα(E)|ϕβ(E ′)〉 = δαβδ(E − E ′). 
The equivalence under unitary transformations U follows from 
the previous equations; if [U , H0] = 0 then H → U HU † implies 
V → U V U † then T → U T U † and hence S → U SU †, so that δα re-
mains invariant. For a rotational invariant interaction, [S, 
L] = 0, 
so that the LS equation at the partial waves level for E = k2/(2μ)

reads

Tl(p′, p) = Vl(p′, p) + 2

π

∞∫
0

q2dq
Vl(p′,q)

k2 − q2 + iε
Tl(q, p) , (6)

and introducing the reaction matrix via T = R − iπδ(E − H0) one 
has

Rl(p′, p) = Vl(p′, p) + 2

π
−
∞∫

0

q2dq
Vl(p′,q)

k2 − q2
Rl(q, p) , (7)

so that

Rl(p, p) = − tan δl(p)

p
. (8)

2.2. Discrete formulation

The previous equations can be solved numerically by restrict-
ing the Hilbert space Hl to a finite N-dimensional space Hl,N . On 
a N-dimensional momentum grid, p1 < · · · < pN , by implementing 
a high-momentum ultraviolet (UV) cutoff, pmax = 
, and an in-
frared (IR) momentum cutoff pmin = �p [34]. The integration rule 
becomes


∫
�p

dpf (p) →
N∑

n=1

wn f (pn) , (9)

and the completeness relation in discretized momentum space 
reads

1 = 2

π

N∑
n=1

wn p2
n|pn〉〈pn| . (10)

For instance, the eigenvalue problem on the grid may be formu-
lated as
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Hϕα(p) = P 2
αϕα(p) , (11)

where the matrix representation of the Hamiltonian reads

Hnm = p2
nδn,m + 2

π
wn p2

n Vnm , (12)

where Hnm = H(pm, pm) and Vnm = V (pm, pm) have been defined.
In practice we will use the Gauss-Chebyshev quadrature method 

taking the corresponding grid points [35,36], which after re-scaling 
to the interval [0, 
] read,

pn = 
 sin2 (φn/2) , (13)

φn = π

N
(n − 1/2) , (14)

wn = 


2
sinφn�φn , (15)

�φn = π

N
, (16)

where we have introduced the Chebyshev angle, φn , which will play 
a crucial role in our considerations below. From these definitions 
we have

pmin = p1 = 
 sin2
( π

4N

)
, (17)

pmax = pN = 
 sin2
[ π

2N
(N − 1/2)

]
. (18)

As it is well known, this grid choice guarantees an exact result for 
polynomials in p to order M ≤ N , i.e.


∫
�p

dp
P M(p)√

2 − p2

=
N∑

n=1

wn
P M(pn)√

2 − p2

n

. (19)

Taking matrix elements on the momentum grid of the LS equation 
in operator form we get

Tnm(p) = Vnm + 2

π

N∑
k=1

wk
p2

k

p2 − p2
k + iε

Vnk Tk,m(p) , (20)

where p2 is the scattering energy. The on-shell limit is obtained 
by taking p = pl on the grid. As usual we switch to the reaction 
matrix which on the grid yields the equation for the half-on-shell 
amplitude

Rnm(pm) = Vnm + 2

π

∑
k �=m

wk
p2

k

p2
m − p2

k

Vnk Rk,m(pm) , (21)

where the excluded sum embodies the principal value prescription 
of the continuum version in the limit ε → 0. This equation can be 
solved by inversion for any grid point pn and thus we may obtain 
the phase-shifts

− tan δLS(pn)

pn
= Rnn(pn) , (22)

where the supper-script LS denotes that these phase-shifts are ob-
tained from the solution of the LS equation on the grid. Of course, 
the limit N → ∞ should be understood in the end. As mentioned, 
one drawback of the LS formulation is the fact that if we undertake 
a unitary transformation on the grid, Unm of the Hamiltonian, the 
Tnm(p) in Eq. (20) still transforms as its continuum counterpart 
(for any ε) but the phase-shifts given by Eq. (22) do not remain 
invariant due to the principal value prescription.2 Hence the LS 
phase-shifts are not isospectral.

3. Spectral shifts: the transition from the discrete to the 
continuum

In the previous section we have described how the scattering 
equations can be solved by discretizing the spectrum, thus violat-
ing the isospectrality of the phase-shifts. In this section we discuss 
three alternative spectral shifts: the momentum shift, the energy 
shift and the Chebyshev-angle shift which enjoy the isospectrality 
of the phases.

3.1. Momentum-shift prescription: scattering in a spherical box

The momentum-shift prescription proposed by Fukuda and 
Newton long ago [11,12] is the simplest and assumes that the 
scattering process takes place in configuration space in a large 
spherical box of radius R . For a potential with a finite range a the 
reduced wave function ul(r) has the following asymptotic behavior 
for R ≥ r 
 a

ul(r) ∼ sin

(
pr − lπ

2
+ δl(p)

)
, (23)

and must vanish for r = R , so that ul(R) = 0, which implies that

pR − lπ

2
+ δl(p) = nπ . (24)

In a finite momentum grid of N points the equation yields N
eigenfunctions, and thus Eq. (24) holds for every pn . In absence 
of interactions, δl = 0, and one has

pn R − lπ

2
= nπ , (25)

with n = 1, . . . , N , and �pn ≡ pn+1 − pn = π
R is the separation of 

the grid points. Representing now the distorted momentum by Pn , 
and using Eq. (25) to replace nπ + lπ/2, one can write

Pn R + δl(Pn) = pn R , (26)

which, using that �pn = π/R becomes

δ(Pn) = −π
Pn − pn

�pn
= −π

�Pn

�pn
. (27)

This is the momentum-shift formula which strictly speaking holds 
for an uniformly distributed momentum grid. This is equivalent to 
a trapezoidal rule quadrature which is generally a poor integration 
method. In Section 4 we will consider Eq. (27) for the Chebyshev 
grid quadrature method, namely

δMS(Pn) = −π
Pn − pn

wn
. (28)

3.2. Scattering in an energy-equidistant discretized spectrum

An alternative approach was proposed simultaneously de De-
Witt [13]. Let us present DeWitt’s argument in a slightly different 
way so that our points can be easily formulated. For the sake of 
clarity and the benefit of the reader we try to be pedagogical here 
since we found some parts hard to follow. Let us consider the 
eigenvalue problems

2 This has been explicitly shown within the context of the similarity renormaliza-
tion group [15,17].
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Hψn = Enψn , (29)

H0ψ
(0)
n = E(0)

n ψ
(0)
n , (30)

with H = H0 + V . Our notation is such that En → E(0)
n when V →

0, and as according to the Landau-von Neumann theorem, there is 
no crossing between non-degenerate levels [37].

The cumulative number associated to the discretized Hamilto-
nian H reads

N(E) =
∑

n

θ(E − En) = Trθ(E − H) , (31)

where we have introduced the trace TrA = ∑
n〈ψn|A|ψn〉. For a 

discrete spectrum this function represents a staircase, with unit 
jumps at any eigenenergy, En . In order to proceed further it is im-
portant to separate the states into positive and negative energy 
states. In the continuum limit the negative energy states will be-
come bound states whereas the positive energy states will become 
scattering states. Starting from the free Hamiltonian where all en-
ergies are positive, E(0)

n > 0, with a gradually increasing attractive 
interaction some energy levels may drive into the negative en-
ergy spectrum. From a variational point of view the discretized 
energy provides an upper bound of the true spectrum, since the 
discretization procedure may be viewed as a restriction on the 
physical Hilbert space, E N

n ≥ E∞
n and thus the net effect of the fi-

nite grid is repulsive. In what follows we will assume that the grid 
is fine enough so that no positive energy level will cross zero.

The step function in Eq. (31) can be regularized as proposed 
in Ref. [38,39], namely introducing a small imaginary energy iε →
i0+ , as follows

1

π
Im log(−x + iε) = 1

2
+ 1

π
tan−1(x/ε)

→ θ(x) , (32)

where for a general complex number z = ρeiθ with −π ≤ θ ≤ π

we define the logarithm

log z = logρ + iθ , (33)

where the branch cut runs along the negative real axis. Deriving 
with respect to x we also get

1

π
Im

1

x − iε
= 1

π

ε

x2 + ε2

→ δ(x) , (34)

where it is important in what follows to keep a finite ε and to take 
the continuum limit N → ∞ with �en ≡ E(0)

n+1 − E(0)
n → 0.

Then we have, the regularized cumulative number

N(E − iε) = 1

π

N∑
n=1

Im log(En − E + iε) (35)

= 1

π
Im Tr log(H − E + iε) (36)

= 1

π
Im log Det(H − E + iε) , (37)

where the identity log DetA = Tr log A has been used. Using a sim-
ilar equation for H0 and its corresponding cumulative number N0

we get for the difference,

�N(E − iε) ≡ N(E − iε) − N0(E − iε)

= 1

π
Im log Det [(H − E + iε)

×(H0 − E + iε)−1]
= 1

π
Im log Det [1 − G0(E − iε)V ]

= 1

π
Im log Det [1 − V G0(E − iε)] , (38)

where G0(E − iε) = (E − iε − H0)
−1 is the resolvent of the free 

Hamiltonian and the cyclic property of the trace can be used to 
allocate V to the left or to the right of G0. The discontinuity of 
this function is defined as

Disc�N ≡ �N(E − iε) − �N(E + iε) . (39)

Direct application of the eigenvalues yields,

Disc�N = − 2

π

∑
n

{
tan−1

[
En − E

ε

]
− tan−1

[
E(0)

n − E

ε

]}
(40)

In order to carry out the sum we use the trigonometric identity,

tan−1(x) − tan−1(y) = tan−1
[

x − y

1 + xy

]
, (41)

so that we get

Disc�N = 2

π

∑
n

tan−1

[
(E(0)

n − En)/ε

1 + (E(0)
n − E)(En − E)/ε2

]
. (42)

In this formula the continuum limit �e → 0 has to be taken before
the limit ε → 0. In the limit �e/ε � 1 we change the summation 
into an integral, 

∑
n → ∫

dn. One crucial aspect in DeWitt’s formu-
lation is the explicit use of a uniform energy spectrum, so that one 
takes E(0)

n = n�e and thus En = n�e + �En where �En is the en-
ergy shift. Clearly, in the continuum limit �e → 0 the energy shift 
vanishes �En , but the ratio �En/�e remains finite. Defining the 
change of variables t = n�e/ε , in the limit �En/ε → 0, one gets, 
after shifting the integration variable,

Disc�N = − 2

π

ε

�e

∞∫
−∞

dt tan−1
[

�E/ε

1 + t2 + t�E/ε

]
(43)

→ − 2

π

ε

�e

∞∫
−∞

dt

[
�E/ε

1 + t2

]
(44)

= −2π
�E

�e
. (45)

In order to connect this sum with scattering information we take 
into account Eq. (38) and note that the r.h.s of Eq. (4) can then be 
written as

(1 − G0(E − iε)V )(1 − G0(E + iε)V )−1

= 1 − [G0(E − iε) − G0(E + iε)]V (1 − G0(E + iε)V )−1

= 1 − 2π iδ(E − H0)T (E + iε) = S(E + iε) , (46)

so that using G0(E − iε) − G0(E + iε) = 2π iδ(E − H0) we get

Disc�N = Im log DetS(E + iε) = 2δ(E) , (47)

where we have used that the S-matrix is energy diagonal in the 
continuum, i.e. S(E)ϕα(E ′) = 0 for E ′ �= E . Merging this result and 
the previous Eq. (45) we finally get

δ(E) = −π
�E

, (48)

�e
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where the energy dependence is in the energy shift. We stress that 
this formula holds for an equidistant energy grid, which would cor-
respond to a trapezoidal rule in energy. If we write it in terms 
of momentum variables for the purpose of applying the Gauss-
Chebyshev grid defined by Eqs. (13)-(16) we get

δES
n = −π

P 2
n − p2

n

2wn pn
. (49)

3.3. Chebyshev-shift

In order to profit from both the use of the Gauss-Chebyshev 
grid and the previous DeWitt’s formula, we introduce the angle φ
given by

p = 


2
(1 − cosφ) , 0 ≤ φ ≤ π , (50)

so that the Gauss-Chebyshev grid provides an equidistant angle. 
Thus, if we use φ as the independent variable we may apply De-
Witt’s argument mutatis mutandis for a cumulative number N(φ). 
Using the analogy between the energy levels of scattering states in 
a box and the discretization given by a finite grid, and observing 
that the equidistance happens in the argument of the cosine func-
tion, we prescribe the following formula based on the shift of such 
an angle, and write:

δn = −π
�n − φn

�φn
= −π

��n

�φn
, (51)

where φn = π
N

(
n − 1

2

)
, dφn = π

N , and the “distorted” angles �n are 
calculated from Eqs. (13)-(16) replacing pn by Pn . Thus,

δ�S
n = 2N




[√
pn(
 − Pn) − √

Pn(
 − pn)
]

. (52)

This is the main result of this paper.
One might think that using a similar change of variables in 

the LS equation might alter its convergence properties, since dis-
cretization and reparametrization are generally non commutative 
operations. Note however that, from Eq. (13) one has

dp = 


2
sinφdφ . (53)

On the Chebyshev grid one has dpn = wn if dφn = π/N , so that 
this change of variables does not modify the original discretized 
equation in momentum space.

3.4. Bound state modifications

The occurrence of a bound state modifies the formulas in the 
case of the energy shift, since direct application of the differences 
violates the well known Levinson’s theorem [40], which in the con-
tinuum becomes

δl(0) − δl(∞) = nlπ , (54)

with nl the number of bound states. In the discrete case, there ap-
pears a discrete momentum scale which requires some re-ordering 
of the states [15,17]. In the case of the energy shift it becomes

δES(pn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−π
P 2

n+1−p2
n

2wn pn
if n < nBS

−π
P̄ 2

nBS
−p2

n

2wn pn
if n = nBS

−π
P 2

n−p2
n if n > nBS

(55)
2wn pn
where P̄ 2
nBS

= (P 2
nBS+1 + P 2

nBS−1)/2. Note that in this prescription 
only the eigenvalues P 2

n corresponding to momenta pn < pnBS are 
shifted one position to the left. The cases for the p-shift and 
φ−shift are similar.

4. Numerical results

We come to our numerical results and analyze how the scatter-
ing phase-shifts obtained from the energy-shift, momentum shift 
and φ-shift formulas compare with the results obtained from the 
standard method based on the LS equation. Along the text, we may 
use the abbreviations p-shift, E-shift, and φ-shift in order to refer 
to the momentum-shift, energy-shift and angle-shift prescriptions 
given by Eq. (28), (49) and (52), respectively.

We will see that the φ-shift method prescription is the best 
and the only one that reproduces almost exactly solution calcu-
lated in the continuum, even for a coarse grid. In fact, as we shall 
show in our numerical study, the method gives reliable predictions 
even for a grid with a very small number of points. The generaliza-
tion to any momentum grid amounts to finding the variable that 
is uniformly distributed along the momentum grid.

4.1. Separable models

In our numerical comparisons we use a separable model poten-
tial with the structure

vl(p′, p) = Cl gl(p′)gl(p) , (56)

where Cl is positive or negative for repulsive and attractive interac-
tions respectively. For this form of potential the LS equation, Eq. (6)
is solved by the ansatz Tl(p′, p, E) = gl(p′)gl(p)Tl(E), which in-
serted in Eqs. (7)-(8) yields

p cot δl(p) = − 1

Vl(p, p)

⎡
⎣1 − 2

π
−
∞∫

0

dq q2 Vl(q,q)

p2 − q2

⎤
⎦ . (57)

In practice we take the toy Gaussian potential gα(p) = e−p2/L2
α

proposed in [15,17] for N N scattering in the 1 S0 and 3 S1 channels, 
where Cα and Lα are given by (C1 S0

, L1 S0
) = (−1.92 fm, 1.20 fm−1)

and (C3 S1
, L3 S1

) = (−2.30 fm, 1.55 fm−1) and describe N N scatter-
ing at small momenta. Taking these values, we may then proceed 
to check the phase-shift determined by the p-, E- and φ-shift for-
mulas, which only generates them on grid points.

4.2. Dependence on the momentum grid and comparison with the 
standard method

In this section we study numerically how our φ-shift results, 
calculated in a finite momentum grid, differ from the exact solution 
in the continuum (green, smooth line in all figures) and confront 
these results with the standard method based on the LS equation.

Fig. 1 shows the phase shifts obtained by solving the LS equa-
tion, Eq. (22) (in orange), and by the φ-shift prescription Eq. (52)
(blue dots). Both of them are compared with the numerical fit 
(smooth, green line) which represents the exact solution. Each col-
umn of Fig. 1 corresponds to the same calculation, but using a 
different number of grid points, N =10, 20, 50, respectively. It is 
impressive how the φ-shift formula reproduces exactly the exact 
solution in all cases, even in the grid with least points, N =10. 
Conversely, we observe how the LS method converges to the con-
tinuum as the number of points increases and a comparatively 
larger number of grid points is required to reproduce the exact so-
lution. The LS results are worse in the case of the 1 S0 wave, where 
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Fig. 1. Comparison of results using our φ-shift prescription (blue dots) with the numerical fit (green, smooth line) and with the result obtained solving the LS equation 
(orange). Each column corresponds to the same calculation using a grid of N =10, 20, and 50 points, respectively.

Fig. 2. Phase shifts calculated using different prescriptions (as specified by a label in the figure) and compared with the exact solution (green, smooth line without markers). 
In each case the phase shifts are represented as a function of the interacting momentum (darker line with round markers), and as a function of the free momentum (lighter 
line with square markers). We have used a grid of N =20 points.
the phase shifts undergo larger changes is a relatively small inter-
val of momentum and thus the number of points describing the 
curve becomes more important.

4.3. Comparison with different spectral-shift prescritpions

In this section we compare the φ-shift prescription with the 
p-shift and E-shift ones. Fig. 2 shows, for both channels, the result-
ing phase shifts obtained from the different formulas, as indicated 
by a label in the corner. All of them are compared with the exact 
solution.

In all cases, we may represent the results as a function of the 
interacting momentum Pn , or as a function of the free momentum 
pn . Every graphic in Fig. 2 shows both curves and Fig. 3 shows a 
selected interval of the 1 S0 channel, where the difference between 
lines is more visible. Here δ(Pn) is represented by a darker line 
with round markers, while δ(pn) is represented by a lighter line 
with square markers. Of course, the phase shifts have the same 
values but are horizontally displaced from each other by the mo-
mentum shift, as it can be observed in the figures. As it turns out, 
the formulation as a function of the interacting momentum lies 
closer to the exact solution in all cases. This appears reasonable if 
one notes that in the case of the p-shift formula, the phase shift 
must be a function of the interacting momentum by construction. 
Although there is nothing in DeWitt’s argument [13] that suggests 
that the distorted momentum should be used as the independent 
variable, we note that in the relativistic case and for very light 
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Fig. 3. Selected interval of the 1 S0 phase shifts depicted in first row of Fig. 2, where the discrepancy between different results is more visible.
masses the E-shift prescription converges to the p-shift one.3 This 
suggests to consider the interacting momentum as the indepen-
dent variable in all cases.

It is remarkable that in the φ-shift case (first column of Figs. 2
and 3, in blue), both lines, the one depicted as a function of pn and 
the one as a function of Pn , precisely overlap the exact solution 
and there is no difference among both criteria. Indeed, one can 
barely see the green line in this case, and the darker blue line is 
totally covered by the lighter-blue line.

The fact that the E-shift or the p-shift prescriptions produce 
worse results than the φ-shift one is reasonable. These prescrip-
tions assume equal-distance separation of energy levels and mo-
mentum levels, respectively, while in our Gauss-Chebyshev grid, 
this separation occurs in the Chebyshev angle. The E-shift and 
p-shift prescriptions appear thus to be a (non exact) but approx-
imate formula. Nevertheless, both of them still turn out to be a 
considerably good approximation, since the quality of the results 
for the studied N = 20 case are by far better than those obtained 
through the standard LS equation.

5. Conclusions

In this letter we have presented a new method which solves 
the scattering problem by diagonalizing the corresponding Hamil-
tonian in a momentum grid. This guarantees that the phase-shifts 
are invariant under unitary transformations on the finite grid, un-
like the usual solutions based on the Lippmann-Schwinger equa-
tion.

We presented and studied the predictive power of the mo-
mentum-shift and energy-shift method for calculating phase shifts. 
We have proposed a new prescription based on an argument that 
holds for almost any momentum grid. The prescription requires to 
find the variable that holds an equidistant space between points 
along the momentum grid. In our case, the chosen grid is a Gauss-
Chebyshev quadrature and the equal spacing occurs in the angle 
φ = π

N (n − 1/2). Having identified this quantity, we follow DeWit-
t’s reasoning [13] and calculate phase-shift from the φ-shift pro-
duced by the interaction. We observe that this prescription yields 
remarkable good results, even for a grid with a small number of 
points. We have observed, furthermore, that, in contrast to what is 
formulated by DeWitt, it is better to consider the phase shifts as a 
function of the distorted momentum – following the momentum-
shift prescription [11] –, instead of as a function of the free mo-
mentum.

Theses result suggest that the new φ-shift method offers a reli-
able tool for numerical calculations of phase shifts in a discretized 
momentum grid which turns out to surpass in precision other con-
ventional formulas. Extensions to coupled channels and relativistic 

3 In order to check this, one can replace the energy by the relativistic formula 
E = √

p2 + m2 in Eq. (48), and take the limit m → ∞.
systems are straightforward and will be analyzed in detail else-
where (see e.g. [41]).
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