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Abstract
The identification of cellular life in the rock record is problematic, since microbial 
life forms, and particularly bacteria, lack sufficient morphologic complexity to be ef-
fectively distinguished from certain abiogenic features in rocks. Examples include 
organic pore-fillings, hydrocarbon-containing fluid inclusions, organic coatings on 
exfoliated crystals and biomimetic mineral aggregates (biomorphs). This has led to 
the interpretation and re-interpretation of individual microstructures in the rock re-
cord. The morphologic description of entire populations of microstructures, how-
ever, may provide support for distinguishing between preserved micro-organisms 
and abiogenic objects. Here, we present a statistical approach based on quantita-
tive morphological description of populations of microstructures. Images of modern 
microbial populations were compared to images of two relevant types of abiogenic 
microstructures: interstitial spaces and silica–carbonate biomorphs. For the popula-
tions of these three systems, the size, circularity, and solidity of individual particles 
were calculated. Subsequently, the mean/SD, skewness, and kurtosis of the statisti-
cal distributions of these parameters were established. This allowed the qualitative 
and quantitative comparison of distributions in these three systems. In addition, the 
fractal dimension and lacunarity of the populations were determined. In total, 11 
parameters, independent of absolute size or shape, were used to characterize each 
population of microstructures. Using discriminant analysis with parameter subsets, 
it was found that size and shape distributions are typically sufficient to discriminate 
populations of biologic and abiogenic microstructures. Analysis of ancient, yet unam-
biguously biologic, samples (1.0 Ga Angmaat Formation, Baffin Island, Canada) sug-
gests that taphonomic effects can alter morphometric characteristics and complicate 
image analysis; therefore, a wider range of microfossil assemblages should be studied 
in the future before automated analyses can be developed. In general, however, it is 
clear from our results that there is great potential for morphometric descriptions of 
populations in the context of life recognition in rocks, either on Earth or on extrater-
restrial bodies.
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1  | INTRODUC TION

The use of morphology as a tool for identification of microfossils, 
especially in the most ancient records, has been fraught with diffi-
culties. Early life forms lacked sufficient morphologic complexity to 
be easily distinguished from abiogenic structures, such as pore-fill-
ings, interstitial spaces between crystals, air bubbles, and fluid in-
clusions. Furthermore, certain abiotic self-organized structures, 
including silica–carbonate biomorphs (Carnerup, 2007; García-Ruiz 
et al., 2003; Rouillard, García-Ruiz, Gong, & Zuilen, 2018), chemi-
cal gardens (McMahon, 1916), carbon–sulfur biomorphs (Cosmidis 
& Templeton, 2016), or manganese oxide biomorphs (Muscente, 
Czaja, Tuggle, Winkler, & Xiao, 2018) also have the potential to cre-
ate a variety of shapes, including spheroids, framboids, helicoids, 
or filaments that resemble individual cells or clusters of cells. The 
shapes adopted by microbial cells and colonies are therefore not 
unique to living systems. Besides, the interpretation of ancient sam-
ples must consider that post-depositional geologic processes, that 
could have introduced secondary abiogenic structures, may affect 
the morphology of fossilized life. As a consequence, the identifica-
tion of ancient microfossils oftentimes remains controversial. The 
most well-known controversy concerns the occurrence of filamen-
tous microstructures in the 3.5 Ga Apex Chert. Interpreted initially 
as filamentous micro-organisms (Schopf, 1993; Schopf, Kitajima, 
Spicuzza, Kudryavtsev, & Valley, 2018; Schopf & Kudryavtsev, 
2009, 2012; Schopf, Kudryavtsev, Agresti, Wdowiak, & Czaja, 
2002; Schopf, Kudryavtsev, Sugitani, & Walter, 2010) preserved in 
sedimentary chert, these structures have been subsequently rein-
terpreted as infilling in the microporous structure of recrystallized 
silica (Brasier et al., 2002, 2005, 2011), as exfoliated mica crystals 
(Wacey, Saunders, Kong, Brasier, & Brasier, 2015) in a hydrothermal 
chert vein, and have been compared to silica–carbonate biomorphs 
known to precipitate within silica-rich, alkaline media (García-Ruiz 
et al., 2003).

In order to answer these difficulties, specific criteria have been 
proposed to assess the biologic origin of potential microfossils in 
rocks (Brasier & Wacey, 2012; Buick, 1990; Schopf, 1983; Vago et 
al., 2017). These biogenicity criteria require that (a) microstruc-
tures occur in a sedimentary rock of constrained age, (b) are hollow 
and contain a mineral filling, (c) include traces of altered organics, 
(d) display a biologic-like shape, and (e) occur spatially associated 
with similar specimens reflecting a biologic population. In recent 
years, the evaluation of biogenicity criteria has been greatly im-
proved with the high-resolution, in situ chemical and structural 
characterization of potential microfossils and of their mineral ma-
trix (Baghekema et al., 2017; Brasier, Antcliffe, Saunders, & Wacey, 
2015; Delarue et al., 2016, 2018; Fadel, Lepot, Busigny, Addad, & 
Troadec, 2017; Guo, Peng, Czaja, Chen, & Ta, 2018; House, Oehler, 
Sugitani, & Mimura, 2013; Javaux, Knoll, & Walter, 2004; Kempe et 
al., 2005; Lepot et al., 2017; Pang et al., 2013; Schopf et al., 2018, 
2002; Schopf & Kudryavtsev, 2009; Wacey, Kilburn, Saunders, Cliff, 
& Brasier, 2011; Wacey et al., 2012, 2015; Williford et al., 2013). 
This characterization also facilitated the determination of the 

indigenous character of a carbonaceous microfossil, enabling the 
exclusion of modern organic contaminants and modern endoliths.

We extend here the morphologic approach to entire popula-
tions of microstructures. This will specifically bring more light and 
precision to one of the aforementioned criteria of biogenicity: the 
association of individual structures representing a biologic popula-
tion. A critical question to address is whether populations of abio-
genic structures such as interstitial spaces and biomorphic mineral 
aggregates can be quantitatively distinguished from populations of 
micro-organisms. If it can be shown that this is possible, preliminary 
tests of biogenicity can be made without the use of complex and 
expensive in situ analytical techniques.

One possible approach to discriminate between different 
types of populations of microstructures is by using artificial in-
telligence. Automated classification has been made possible with 
the use of multivariate analyses and has improved with the de-
velopment of machine learning (Bishop, 2006; Domingos, 2012; 
McLachlan, 2004; Pedregosa et al., 2011; Robert, 2014; Snoek, 
Larochelle, & Adams, 2012). This technique has been applied in a 
variety of fields, including igneous petrology (facies recognition; 
Młynarczuk, Górszczyk, & Ślipek, 2013), entomology (taxon rec-
ognition; MacLeod, Benfield, & Culverhouse, 2010), palynology 
(taxon recognition; Holt, Allen, Hodgson, Marsland, & Flenley, 
2011), and forensic science (face and fingerprint recognition; 
Etemad & Chellappa, 1997; Farina, Kovacs-Vajna, & Leone, 1999). 
In theory, using an assemblage of example images for biogenic 
and biomimicking populations, machine learning could be used to 
empirically distinguish populations of micro-organisms from abio-
genic populations. However, machine learning approaches usually 
necessitate a large number of images, which may be difficult to 
obtain for the populations of relevance here. Additionally, many 
machine learning algorithms make it difficult to discretely identify 
the decisive criteria that distinguish the systems.

Another approach constitutes the quantitative description of the 
morphology (or morphometry) of entire populations of microstruc-
tures. The shapes and sizes of individual biological structures may 
be mimicked by abiogenic processes, but the controls exerted by 
biology on the morphology, and therefore the variation of, and cor-
relation between, morphology-describing parameters could consti-
tute more robust criteria for biogenicity. Morphometry has evolved 
considerably over the last decades, in large part because of the rapid 
increase in computing power. Softwares for image analysis are now 
used routinely to extract size or shape-describing features of objects 
(Adams & Otárola-Castillo, 2013; Adams, Rohlf, & Slice, 2004; Doube 
et al., 2010; Ferreira et al., 2014; Papadopulos et al., 2007; Rappaz 
et al., 2005), and such measurements have been applied to different 
fields: neurosciences (Bora, Fornito, Pantelis, & Yücel, 2012; Ferreira 
et al., 2014; Rajkowska et al., 1999), phanerozoic micropaleontology, 
food microstructure (Aguilera, 2005), medicine (Karakas & Kavaklı, 
2005), and basin topography (Srinivasa Vittala, Govindaiah, & Honne 
Gowda, 2004), among others. Parameters such as size distributions 
have been examined for decades in the context of Precambrian life 
(Barghoorn & Tyler, 1965; Butterfield & Chandler, 1992; Knoll & 
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Barghoorn, 1977; Köhler & Heubeck, 2019; Schopf & Barghoorn, 
1967; Schopf et al., 2010; Sugitani et al., 2007, 2010; Sugitani, 
Mimura, Nagaoka, Lepot, & Takeuchi, 2013; Wacey et al., 2011). 
Very recently, a study of the morphologic variation in two specific 
populations of organic microstructures from the 3.4 Ga Strelley Pool 
formation was conducted, indicating significant differences between 
populations and the existence of distinct sub-populations, with po-
tential important paleoecological implications (Sugitani et al., 2018).

To the best of our knowledge, there is no general survey of the 
potential of statistical morphometrics for life recognition. One of the 
most important outcomes of morphometric studies is the construc-
tion of morphospaces–theoretical spaces in which axes represent 
continuous morphology-describing parameters. As far as we know, 
morphospaces haves been used in paleontology for individuals of a 
specific biologic group. For instance, in the seminal work conducted 
on ammonoid shells by Raup, 1967, an individual is represented by a 
point. It has been found that, in any morphospace, the regions oc-
cupied by individuals from a specific biologic group are restricted 
by developmental and adaptive constraints. In this study, we extend 
the concept of morphospace to the population level; that is, popula-
tions are represented by a single point in these “population” morpho-
spaces. We make the hypothesis that the occupancy of population 
morphospaces by microbial communities depends on individual-scale 
processes (development, adaptation) but also on population-scale 
processes (ecologic relationships, environmental forcings). In this 
study, we critically test whether populations of specific abiogenic 
objects show fundamentally different morphometric characteristics 
in comparison with populations of modern micro-organisms (sin-
gle-strain and multiple-strain communities). Two different types of 
abiogenic objects were chosen: interstitial spaces between clasts in 
sedimentary rocks and silica–carbonate biomorphs. The importance 
of silica–carbonate biomorphs for micropaleontology has been put 
forward in previous studies (García-Ruiz, Carnerup, Christy, Welham, 
& Hyde, 2002; García-Ruiz et al., 2003; Rouillard et al., 2018). They 
display a wide range of life-like morphologies; during the Archean, 
they may have been formed—and preserved—in the same hydrother-
mal environments where life emerged and first evolved. As a conse-
quence, they represent a material of choice for the current study. 
Interstitial spaces, especially those in spherulitic or botryoidal chert 
fabrics, display a continuum of shapes that may also be mistaken for 
degraded microfossils (Brasier et al., 2002, 2005). In this proof of 
concept study, and for practical reasons, the system of clastic inter-
stitial spaces was chosen. They are genetically different from inter-
stitial spaces in spherulitic or botryoidal chert fabrics, but they have 
important morphologic similarities. These three systems—interstitial 
spaces, biomorphic mineral aggregates, and microbial cells–are com-
pared using the statistical distributions of size and shape-describing 
parameters (circularity, solidity), and pattern-describing parameters 
(fractal dimension and lacunarity). In addition, correlation studies 
and multivariate analyses are conducted in order to maximize dis-
crimination between the three systems. The method devised is then 
tested on well-preserved, silicified microfossil assemblages from the 
1.0 Ga old Angmaat Formation (Bylot group, Baffin Island, Canada). 

Based on this test, the limits and potential applications of statistical 
morphometry are discussed.

2  | MATERIAL S AND METHODS

2.1 | Description of the images used

Three populations of microstructure are compared in the context of 
this study: (a) interstitial spaces, (b) silica–carbonate biomorphs, and (c) 
microbial populations. This study was performed using representative 
images for each system (presented in full in Figures S1–S6). Examples 
of images from the different systems are shown in Figures 1‒3.

2.1.1 | System 1: Interstitial spaces in clastic 
sedimentary fabrics

This system is represented by eight images taken on five different sam-
ples of sandstone and one sample of limestone (Figures S1 and S2).

The first three sandstones contain ferruginous cement within 
interstitial pore space, the opacity of which allows ready identifica-
tion of pore space under plane-polarized light. The first sandstone 
(Figure 1a; Figure S1A) consists of a fine- to medium-grained de-
trital sediment composed of angular quartz, together with mica. 
Micaceous grains are commonly deformed by compaction of quartz. 
The second sandstone (Figure 1b, Figures S1C and S2C,D) consists of 
a medium-grained detrital sediment composed of subangular quartz 
and feldspar. The third sandstone (Figure S2E) corresponds to a me-
dium- to coarse-grained detrital sediment composed of angular to 
subangular quartz, feldspar, and mica mineral grains, as well as lithic 
fragments composed of volcanic rock and glass.

The next two sandstone samples add additional complexity. 
The fourth sandstone (Figure S2A) consists of a medium- to coarse-
grained detrital sediment composed of angular to subangular quartz 
and feldspar mineral grains, detrital calcite, with macrocrystalline 
calcite cement filling most of the interstitial spaces between the 
grains. In plane-polarized light, the presence of calcite as both detri-
tal grains and as interstitial cement complicates the distinction be-
tween the grains and the initial porosity. Similarly, the last sandstone 
(Figure S1B) consists of a medium-grained clastic sediment mainly 
composed of subangular quartz, feldspar, and mica mineral grains, 
a variety of lithic fragments, and (rare) bioclasts consisting of echi-
noderm and bryozoan skeletal fragments. Bioclasts are broken and 
abraded and do not retain their primary biologic shape. A macrocrys-
talline calcite cement fills most of the interstitial spaces between the 
grains. Here again, in plane-polarized light, a number of clasts appear 
very similar to the cemented pores, which complicates the distinc-
tion between the grains and the initial porosity. These two samples 
were also used to investigate the robustness of the method regard-
ing segmentation quality (see Sections 2.2 and 4.2.2).

Finally, a single limestone sample (Figure S2B) was analyzed. This 
sample consists of an oolitic and pelletal grainstone, associated with 
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scarce gastropod bioclasts. The bioclasts are strongly abraded and 
rounded, and do not retain their initial biologic shape. A sparitic ce-
ment fills the interstitial spaces between the grains, and fractures 
within clasts are filled with a similar calcitic cement. In plane-polar-
ized light, the clasts typically appear darker than the cemented pores 
and fractures, which are easily identifiable.

2.1.2 | System 2: Silica–carbonate biomorphs

This system is represented by 11 images of silica–carbonate bio-
morphs grown in gel and in solution (Figures S3 and S4). Here, 

silica–carbonate biomorphs were grown using laboratory chemicals. 
However, it has recently been demonstrated that they can grow in 
modern natural spring waters (García-Ruiz, Nakouzi, Kotopoulou, 
Tamborrino, & Steinbock, 2017).

In silica gel, silica–carbonate biomorphs form over a few days to 
several weeks, upon diffusion of a concentrated barium solution (solu-
tions of [Ba] = 0.5 and 1 M here) through an alkaline silica gel in the 
presence of carbonate ions (Melero-García, Santisteban-Bailón, & 
García-Ruiz, 2009). They display a crystallization gradient along the 
direction of diffusion. A total of 10 images of gel-grown biomorphs, 
which were synthetized in the context of a previous study (Rouillard et 
al., 2018), were used here (Figure 2; Figures S3 and S4A,B,D,E). Images 
were taken with an optical microscope using plane-polarized light, at 
different distances from the diffusion boundary, therefore represent-
ing different regimes of growth (Melero-García et al., 2009).

In a silica-rich alkaline solution, silica–carbonate biomorphs 
form within a few hours upon addition of barium (a [Ba] = 10 mM 
was used here) and carbonate (being supplied by diffusion of atmo-
spheric CO2). Solution-grown biomorphs are represented by one 
image (Figure S4C), synthetized in the context of a previous study 
(Rouillard et al., 2018). The image was taken with an optical micro-
scope using plane-polarized light.

2.1.3 | System 3: Microbial communities

This system is represented by 10 images of a single strain of cyano-
bacteria and of a natural microbial community (Figure S5 and S6).

Single-strain bacteria culture: One image was taken on a culture 
of coccoid cyanobacteria grown in the laboratory (Figure 3a; Figure 
S5E). This culture consists of a strain of Synechocystis sp. from the 
Pasteur Cyanobacteria Collection (PCC6803) grown with standard 
BG-11 medium to a stationary growth phase. The image was taken 
using an optical microscope with contrast enhanced using differen-
tial interference contrast (DIC) optics.

Stromatolite-dwelling composite microbial communities: nine 
images (Figure 3b; Figures S5A–D and S6) were taken in the con-
text of an earlier study (Gérard et al., 2013) on natural mat-form-
ing microbial communities dwelling in carbonate stromatolites in 
the alkaline crater lake of Alchichica (Cuenca Oriental, Mexico). 
Fragments of microbial mats were retrieved and imaged using 
a Confocal Laser Scanning Microscope (Olympus FluoView 
FV1000) with excitation wavelengths of 405, 488, and 543 nm; 
the fluorescence image was collected at wavelengths between 
425–475, 500–530, and 560–660 nm. No staining was used; the 
colors in the images represent the autofluorescence of photosyn-
thetic micro-organisms. The images used for the present study 
contain predominantly unicellular cyanobacteria (pleurocapsales, 
Pleurocapsa sp.), filamentous cyanobacteria (Oscillatoriaceae, 
Leptolyngbya sp.), and potentially some diatoms. During this treat-
ment, the microbial mat underwent little structural deformation, 
and the images are considered a close morphological match to the 
natural community.

F I G U R E  1   Examples of interstitial space images used in this 
study (full list of images shown in Figures S1 and S2). The images 
are mosaics reconstituted from several individual images taken 
with an optical microscope in plane-polarized mode. (a) Mosaic 
image taken on a medium-grained sandstone containing quartz 
clasts and minor intercalated mica flakes, with a dark ferruginous 
cement. (b) Mosaic image taken on a medium-grained sandstone 
containing subangular quartz and feldspar clasts, with a dark 
ferruginous cement. The corresponding binarized images, obtained 
by treatment and segmentation, are shown below

(a) (b)
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2.1.4 | Test case: Proterozoic 
Microfossil assemblage

A well-preserved microfossil assemblage from the 1.0 Ga Angmaat 
Formation (Baffin Island, Canada) was used here as a test. The 
Angmaat Formation represents deposition in a peritidal, episodi-
cally restricted microbial flat with diverse, well-documented fossil 
microbial mats preserved in early diagenetic chert. Communities 
commonly contain both filamentous and coccoidal microfossils 

(Hofmann & Jackson, 1991; Kah & Knoll, 1996; Kah, Sherman, 
Narbonne, Knoll, & Kaufman, 1999; Knoll, Worndle, & Kah, 2013; 
Manning-Berg, Wood, Williford, Czaja, & Kah, 2019). The thin sec-
tions used in the context of this study contain an assemblage of coc-
coidal taxa (Eogloeocapsa sp, Myxococcoides sp., Eoentophysalis sp., 
Gloeodiniopsis sp. and Polybessurus sp.). Two specific microfossil-rich 
areas were imaged in these thin sections (image mosaics are shown 
in Figure 4a and Figure S7). In order to test the effect of taphonomic 
variability (Manning-Berg et al., 2019), a smaller, well-preserved 

F I G U R E  2   Examples of biomorph 
images used in this study (full list of 
images shown in Figures S3 and S4). 
Silica-witherite biomorphs shown here 
were grown by diffusion in gels (method 
described in detail in Melero-García et 
al., 2009). (b) is taken further away from 
the diffusion source than (a). Images 
were taken using an optical microscope 
in plane-polarized mode; a stack of ~30 
images taken along the depth were 
processed to reconstruct these images. 
The corresponding binarized images, 
obtained by treatment and segmentation, 
are shown below

F I G U R E  3   Examples of images of 
microbial populations/communities 
used in this study (full list of images 
shown in Figures S5 and S6). (a) Single-
strain Synechocystis sp. population 
grown in laboratory and imaged during 
the stationary phase. (b) Stromatolite-
dwelling microbial community from 
Alchichica crater Lake (Mexico; Gérard et 
al., 2013). (a) Was taken using an optical 
microscope with differential interference 
contrast optics, and (b) was taken using 
a Confocal Microscope. Colors in (b) are 
due to the natural autofluorescence of the 
bacteria (photosynthetic pigments). The 
corresponding binarized images, obtained 
by treatment and segmentation, are 
shown below
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area of the mosaic shown in Figure 4a was also used in the study 
(Figure 4b).

2.2 | Image analysis

All images were treated individually using ImageJ (Abramoff, 
Magalhaes, & Ram, 2004; Collins, 2007). The images were binarized 
to separate the populations of microstructures of interest (i.e., inter-
stitial spaces, silica–carbonate biomorphs, and micro-organisms) from 
their surroundings. For all images, except those corresponding to the 
two sandstone samples where the cement is difficult to distinguish, 
the binarization was obtained using the threshold algorithm (the type 
of threshold was set to “default”) of ImageJ. For the images of the 
two sandstone samples where the interstitial cement is difficult to dis-
tinguish from some clasts, the “Trainable Weka Segmentation” plugin 
was used (Arganda-Carreras et al., 2017). The quality of segmenta-
tion for all images in the three systems was substantially improved 
by applying a size threshold. “Holes” in the particles, which would af-
fect subsequent morphologic measurements, were then removed by 
artificial filling. Examples of source images with their corresponding 
treated binarized images are shown for interstitial spaces (Figure 1), 

silica–carbonate biomorphs (Figure 2), micro-organisms (Figure 3), as 
well as for the test case on microfossils (Figure 4). A complete dis-
play of all source images and their corresponding binarized images are 
shown in Figures S1–S6, S8. In the following, microstructures in a bi-
narized image are defined as particles, and all the particles present in 
one image are defined as a population.

2.2.1 | Characterization of particles in populations

For every particle in an image, the normalized area A (in square pix-
els) and simple shape descriptors—circularity, C, and solidity, S (di-
mensionless)—were measured. Circularity is defined as:

where P (in pixels) is the circumference of the particle. This descriptor 
ranges from 0 to 1, with decreasing values corresponding to increas-
ingly elongated particles (circularity values of example particles are 
shown in Figure 5a). Solidity is defined as:

(1)C=4�A∕P2

(2)
S=

A

�

F I G U R E  4   (a) Mosaic of a microfossil-
rich area in a thin section realized on a 
chert sample from the 1.0 Ga Angmaat 
Formation (Baffin Island, Canada). 
The mosaic was taken using an optical 
microscope in plane-polarized mode. 
The red rectangle indicates the region 
corresponding to (b). Another mosaic is 
shown in Figure S7. (b) Close-up view of 
the region outlined in (a). Note the strong 
degradation of the assemblage in some 
areas, in which individual microfossils 
are difficult to segment or even not 
recognizable anymore. The corresponding 
binarized images T2 and T2-sub, obtained 
by treatment and segmentation, are 
shown on the right of (a) (T2) and below 
(b) (T2-sub)
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where α is the area (in square pixels) within the convex hull of the 
particle. The convex hull of a particle is defined by the ensemble of 
straight segments joining the outermost points of the particle (convex 
hulls of example particles are drawn in brown on Figure 5b). Solidity 
ranges therefore from 0 to 1, with higher values representing more 
convex particles (see Figure 5b). Measurements of circularity and so-
lidity of particles in digital images have been used in various contexts, 
for example, for quantifying the changes of shape of a fungal strain 
(Aspergillus niger) associated with changes in osmolality in their envi-
ronment (Wucherpfennig, Hestler, & Krull, 2011), or to characterize 
the plasticity of cellular nuclei favoring cellular migration in biological 
tissues (Booth-Gauthier et al., 2013).

2.2.2 | Characterization of populations

In order to describe the overall geometry of populations in the bi-
nary images, the parameters of fractal dimension and lacunarity 
were calculated. A plugin developed for ImageJ (FracLac - Karperien, 
A., FracLac for ImageJ) was employed.

Generally, the fractal dimension (D, dimensionless) relates 
detail (N, which may be defined differently depending on the 
context) with scale (�, representing a length), by the following 
relationship:

(3)N∝�−D

F I G U R E  5   Illustration of the key 
morphologic descriptors used in this 
paper. (a, b) Circularity and solidity values 
of some example particles. The particles 
are ordered with decreasing circularity 
or solidity values from left to right. 
The convex hulls (ensemble of straight 
segments joining the outermost points of 
the particle) of each particle are drawn in 
brown in (b). The solidity values decrease 
when white areas inside the convex hulls 
are more important. Note that, the two 
parameters describing different aspects 
of the shape, the order from left to 
right is not exactly the same in (a) and 
(b). (c) Explanation of the measurement 
of fractal dimension by box-counting 
method on an example pattern. Grids of 
boxes with different sizes (ɛ1, ɛ2, and ɛ3) 
are overlaid on the pattern. The size of 
boxes represents scale in this method. 
The number of boxes containing black 
pixels (green) in the different grids is given 
as N1, N2, and N3, and represents the 
amount of detail in this method. A rough 
estimate of the fractal dimension is first 
given by a ratio of logs. A better estimate 
of the fractal dimension is then found 
using a power-law regression of N versus 
ɛ. (d) Lacunarity values of some example 
patterns. The lacunarity value increases 
when the overall heterogeneity of the 
pattern increases
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with ∝ denoting a proportionality relationship. For 2D objects, D ranges 
between 1 (fractal dimension of a line) and 2 (fractal dimension of a 
homogeneous surface). D is commonly estimated via the box-counting 
method (see Figure 5c for an example of application of this method). 
In this method, a grid is positioned on the image. The length of box 
sides in the grid (in pixels) represents the scale, ɛ, while the amount of 
detail N at scale ɛ is estimated by the number of boxes in the grid con-
taining foreground pixels (black pixels here; see green boxes in Figure 
5c). This process is repeated several times with different ɛ values. If N2 
and N1 are the amount of detail for two different scales �2 and �1, one 
can make a rough estimate of the fractal dimension according to the 
following formula:

An example application of Equation (4) is given in Figure 5c. For 
more couples of values 

(

�i,Ni

)

, the change of N with ɛ is fitted by 
a power-law regression to obtain a higher quality measurement of 
fractal dimension D (Figure 5c). The fractal dimension for each image 
in the three systems was calculated using the box-counting method 
in FracLac.

Lacunarity quantifies the heterogeneity and the importance 
of “gaps” in a binary image (see Figure 5d to see how these fea-
tures relate to the value of lacunarity in example patterns). Using a 
box-counting method similar to the one used for fractal dimension, 
the lacunarity λ at a given scale ɛ can be estimated by

where � (�) and � (�) represent respectively the standard deviation and 
the average of the pixel count in the boxes of a grid (with boxes of 
side length ɛ). For the images of the three systems, a general lacunar-
ity value L was calculated as an average of the λ values found with 
different ɛ. The lacunarity value of a homogeneous image is 0, since 
� (�) is equal to 0. There is theoretically no upper limit for the value 
of lacunarity. For the measure of both D and L, grids of 12 different ε 
(ranging from 1 pixel to 45% of the image size, with a fixed increment) 
were used.

2.3 | Statistical analysis

2.3.1 | Description of statistical distributions

Individual distributions were represented graphically as bar his-
tograms. In order to facilitate the comparison between them, the 
width of the bins is the same in each histogram.

For a parameter X observed in a population of G particles, with a 
mean µ(X) and a standard deviation σ(X), the shape of the distribu-
tion can be described quantitatively (independently of its graphical 
representation) by three parameters:

The mean divided by standard deviation (Mean/SD), which 
describes the relative width of the distribution (compare Figure 
S9A,B):

skewness, which describes the asymmetry of the distribution (compare 
Figure S9C,D):

and Kurtosis, which describes the importance of tails in the distribu-
tion (compare Figure S9E,F):

These three parameters were used to quantify the shapes of the 
distributions of size, circularity, and solidity in all populations.

2.3.2 | Assessment of sampling bias

The qualitative and quantitative descriptions of statistic distribu-
tions are subject to error resulting from imperfect sampling of the 
populations. In order to assess the biases resulting from insufficient 
sampling, a study of the effect of sampling size was conducted on 
several test distributions. Size distributions were plotted as bar his-
tograms and characterized quantitatively for different sample sizes. 
The results are shown in Figure S10 and indicate that the shape of 
an example distribution (Figure S10A) becomes more variable and 
potentially less representative of the original population when the 
sample size decreases (Figure S10B). The relative error made on 
the descriptors of the tested distributions (Mean/SD, Skewness, 
Kurtosis) increases exponentially when the sample size decreases 
(Figure S10C). Although their absolute values may vary, for all dis-
tributions tested, the relative errors made on the values of Kurtosis 
are consistently higher than the relative errors made on the values 
of skewness and mean/SD. For the current study, large populations 
were therefore selected when available (median size of populations: 
456; range: 87–1,310).

2.3.3 | Parametric correlations between populations

The linear correlation coefficient r between two parameters X and 
Y, measured on a population of G points, can be calculated accord-
ing to

(4)D=−
log

(

N1∕N2

)

log
(

�1∕�2
)

(5)� (�)=
� (�)

� (�)
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The significance of the correlation p (or probability that the two 
parameters are not correlated) varies with the number of points G 
and can be calculated with a two-tailed t test according to

The shape of the statistic distribution of each of the three 
parameters size, circularity, and solidity was described using the 
three parameters mean/SD, skewness, and kurtosis. Together 
they constitute nine parameters describing the distributions in 
each population. Combined with the two parameters of fractal 
dimension and lacunarity, a total of 11 parameters are obtained 
that characterize each population. Linear correlation coefficients 
r and their associated significances p were calculated between all 
the couples of these parameters for each system and are given in 
Tables S1, S2, and S3.

2.3.4 | Discrimination of populations—
comparison of different sets of parameters

Multivariate analysis allows the exploration of the combined data 
from several describing variables (Bishop, Fienberg, & Holland, 
2007). Discriminant analysis is a type of multivariate analysis that 
finds the best linear combinations of variables to maximize the vari-
ance between different groups and minimize the variance inside 
groups. For example, discriminant analysis allows the projection of 
data on a 2-dimensional slice of the multivariate space for which 
the groups are optimally separated. Discriminant analysis was used 
here to maximize the variance between the three different sys-
tems: interstitial spaces, silica–carbonate biomorphs, and microbial 
communities.

Discriminant analyses were performed on populations from the 
three systems using a variety of parameter sets, that included pa-
rameters describing: (a) the distribution of size, (b) the distribution of 
sizes and general geometric features (fractal dimension, lacunarity), 
(c) the distributions of shapes (circularity and solidity), (d) the distri-
butions of sizes and shapes, and (e) the combined distributions of 
sizes, shapes, and general geometric features.

Subsequently, a training analysis was conducted to compare the 
efficiency of the different sets of parameters to discriminate be-
tween systems. The total collection of populations from the three 
systems (size N' = 33) was divided randomly into a training group 
(size 5 < t < 32) and a test group (size N' − t). The training group was 
used to run a discriminant analysis. Using the results of this discrim-
inant analysis, a linear classifier assigned each member of the test 
group to one of the three systems. The efficiency of discrimination 
is quantified by the rate of correct classification (�) achieved by the 
linear classifier, computed as:

with n(c) being the number of test populations attributed correctly to 
their system of origin and n(c) + n(u) the total number of test popula-
tions. This process was repeated 1,000 times for a given size of the 
training group. The efficiency of the analysis was assessed by the mean 
rate of correct classification over these 1,000 repetitions. The differ-
ent sets of parameters were compared by looking at the evolution of 
this rate as the size of the training group increased.

3  | RESULTS

3.1 | Characterization of particles in populations

3.1.1 | Size distribution

The size distributions of all populations from the three systems are 
shown in Figure S11 (in red, interstitial spaces; in blue, silica–car-
bonate biomorphs; in green, microbial communities). Distributions 
are plotted as bar histograms, with bins of constant width to facili-
tate comparison between populations. Representative examples are 
shown in Figure 6. The parameters describing the size distributions 
for each population are given in Table 1.

System 1: Interstitial spaces
All populations of interstitial spaces show a similar size distribution: a 
frequency that decreases monotonically with size, comparable to an 
exponential or lognormal law (Figure 6a; Figure S11, red histograms). 
The relative width of the distributions varies quite significantly (av-
erage Mean/SD of 0.73, ranging from 0.29 to 1.08; Table 1). Each 
distribution is strongly positively skewed (average skewness of 8.01, 
ranging from 2.97 to 20.40; Table 1), and display high to very high 
positive kurtosis values (average of 119.38, ranging from 12.74 to 
520.26; Table 1).

System 2: Silica–carbonate biomorphs
The shapes of the size distributions in the silica–carbonate bio-
morph populations show only small to moderate variations 
(Figure 6b,c; Figure S11, blue histograms). Their mean/SD ranges 
from 2.10 to 4.07, with an average of 3.02 (Table 1). They are 
positively skewed (average skewness of 0.74, ranging from 0.05 
to 1.26—Table 1) and display low to negative kurtosis values (mean 
kurtosis 1.00, ranging from −0.08 to 2.50—Table 1). Most popu-
lations show a simple, unimodal distribution. However, three of 
the smaller populations display particularly high numbers of parti-
cles at the smallest size ranges (Figure 6c; Figure S11b9,b10,b11). 
This could be due to the insufficient sampling in these populations 
(Figure S11B).

System 3: Microbial communities
The microbial communities display a wide variety of size distribu-
tions. The culture of a single non-colonial cyanobacteria strain 
(Synechocystis sp., Figure 6d) displays a narrow, slightly positively 
skewed unimodal distribution (mean/SD of 6.30, skewness of 0.72, 
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X,Y
)
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kurtosis of 0.32—Table 1). In contrast, the natural rock-dwelling 
microbial communities display various shapes of size distributions 
including unimodal, monotonically decreasing, or multimodal distri-
butions (Figure 6e,f; Figure S11, green histograms). Consequently, 
the values of mean/SD, skewness, and kurtosis vary significantly be-
tween these populations (average Mean/SD of 2.61, ranging from 
1.45 to 4.00; average skewness of 2.05, ranging from 1.14 to 2.99; 
average kurtosis of 7.85, ranging from 2.63 to 18.21—Table 1).

3.1.2 | Relationship between size and shape

Circularity—C—and Solidity—S—(Figure 5a,b) are used here to char-
acterize the variation in particle shape in the populations. For all the 
studied populations, C and S are plotted against normalized area in 
Figures S12 and S13, and plots for representative populations are 
compared in Figure 7. The parameters describing the circularity and 
solidity distributions for each population are given in Table 1.

System 1: Interstitial spaces
In the system of interstitial spaces, the solidity values decrease with 
size, converging from a range of 0.6–0.9 at smaller sizes to a range 
of 0.4–0.6 at larger sizes (Figure 7a, red triangles; Figure S12). The 
circularity values also decrease markedly with size, converging from 
a range of 0.2–0.8 at smaller sizes to a range of 0.1–0.3 at larger sizes 
(Figure 7b, red triangles; Figure S13). Based on these plots, large 
pores are more concave and elongated than small pores.

System 2: Silica–carbonate biomorphs
For silica–carbonate biomorphs, although the ranges of solidity val-
ues vary between populations (0.8–0.9 to 0.4–0.9 depending on the 
population), the upper values of solidity remain high over the entire 
range of sizes (Figure 7a, blue diamonds; Figure S12). Conversely, 
the upper values of circularity steadily decrease with size—from ~1 
to ~0.7 when the relative area increases from 0 to 1.5 (Figure 7b, 
blue diamonds; Figure S13—especially observable on the larger 
populations).

System 3: Microbial communities
In images of bacterial communities, the circularity/size plots vary 
significantly between populations (Figure S13), with large ranges of 
circularity (0.2–1.0). The ranges of solidity are somewhat narrower, 
ranging from 0.7 to 1.0 (Figure S12). Noticeably, in all these popu-
lations, a subpopulation (or the entire population) displays solidity 
and circularity values independent of size (Figure 7a,b, green circles; 
Figures S12 and S13), with upper values of circularity and solidity 
staying at 0.9–1.0 for normalized areas increasing from 0 to 1.0–1.5.

3.2 | Characterization of populations

3.2.1 | Fractal dimension and lacunarity

The results of fractal dimension and lacunarity measurements 
by box-counting method, describing the overall geometry of the 

F I G U R E  6   Representative distributions of sizes plotted as bar histograms in the three studied systems. The vertical axes represent 
frequency and the horizontal axes represent size. The sizes are measured as proportional to a radius and normalized to the mean of each 
distribution. The scale on the x-axis is the same for all populations. In order to facilitate the comparison between histograms, the width 
of the bins is the same for all studied populations. Red: interstitial spaces populations. Blue: Biomorph populations. Green: Microbial 
populations
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different populations from the three systems, are given in Table 1 
and are represented in Figure 8a. Microbial communities have a wide 
range of fractal dimensions (1.2–1.7) and lacunarity (0.3–1.1). In 
contrast, populations of interstitial spaces and silica–carbonate 
biomorphs have a narrower range of fractal dimensions (1.4–1.7 
for biomorphs, 1.7–1.8 for interstitial spaces) and lacunarity values 
(0.2–0.6 for biomorphs, 0.2–0.5 for interstitial spaces—apart from 
one outlier population). Microbial communities and silica–carbonate 
biomorph populations exhibit a similar negative correlation between 
the two parameters.

3.2.2 | Parametric correlations between populations

Three dimensionless parameters that describe the shape of distri-
butions (mean/SD, skewness, and kurtosis) were determined for 
size distributions, but also for circularity and solidity distributions. 
Every population can consequently be described by these nine pa-
rameters, and by fractal dimension and lacunarity (11 parameters in 
total—Table 1). The three systems may be distinguished by distinct 
ranges for some of these parameters (e.g., in Figure 8b,c). For ex-
ample, the different populations of interstitial spaces display a large 

TA B L E  1   Morphologic descriptors of the different populations

System N R MSD C MSD S MSD R skew. C skew. S skew. R kurt. C kurt. S kurt. D L

I 574 0,98 1,97 5,11 3,05 0,48 −0,53 15,27 −0,19 −0,30 1,79 0,44

I 818 0,74 1,76 4,85 4,70 0,79 −0,16 30,31 0,34 −0,53 1,82 0,22

I 946 1,10 2,21 5,84 4,10 0,24 −0,46 24,41 −0,64 −0,29 1,80 0,43

I 398 0,90 2,23 5,73 3,00 0,34 −0,89 10,65 −0,50 0,60 1,73 0,84

I 139 1,65 2,10 5,18 2,28 0,53 −0,51 6,51 0,09 0,03 1,62 0,46

I 259 2,33 1,98 5,32 2,12 0,84 −0,17 5,89 0,32 −0,32 1,68 0,79

I 1,334 1,14 2,05 4,79 4,84 0,36 −0,53 44,52 −0,35 −0,26 1,77 0,31

I 999 0,89 2,08 4,73 6,17 0,33 −0,55 54,96 −0,40 −0,35 1,80 0,31

I 134 0,29 1,83 5,17 9,89 0,53 −0,59 105,83 −0,27 −0,05 1,83 0,24

I 959 0,82 1,98 5,09 4,48 0,49 −0,53 27,39 −0,10 −0,21 1,71 0,42

I 649 0,69 1,83 4,94 6,45 0,61 −0,37 60,65 −0,02 −0,35 1,70 0,41

B 1,202 2,95 3,99 11,74 1,26 −0,67 −1,45 2,50 −0,10 2,59 1,69 0,27

B 1,306 2,89 4,07 13,15 1,11 −0,69 −1,23 1,56 −0,19 1,78 1,71 0,26

B 1,169 2,95 4,87 16,83 0,83 −1,06 −1,53 0,62 0,56 2,64 1,69 0,27

B 173 3,76 4,34 14,40 0,16 −1,06 −2,22 −0,08 0,85 6,19 1,52 0,38

B 356 2,10 1,97 4,10 0,71 0,53 −0,35 1,09 −0,62 −0,81 1,48 0,51

B 333 2,47 1,83 4,28 0,73 0,66 −0,47 0,99 −0,66 −0,45 1,53 0,37

B 819 3,51 4,42 12,75 0,92 −0,61 −1,16 0,46 −0,13 1,46 1,64 0,28

B 122 4,07 3,79 12,00 0,82 −0,42 −0,65 0,39 0,29 0,16 1,44 0,42

B 1,215 3,05 5,19 17,25 0,98 −1,03 −1,57 0,91 0,81 3,12 1,69 0,26

B 192 3,06 3,60 12,85 0,59 −0,61 −1,83 2,38 0,38 5,77 1,52 0,39

B 133 2,48 3,11 10,26 0,05 −0,67 −1,73 0,21 −0,77 3,00 1,47 0,57

M 127 3,09 2,44 6,97 1,14 −0,61 −1,57 2,63 −1,19 2,35 1,20 0,99

M 188 2,49 2,32 5,02 2,34 −0,32 −1,24 7,43 −1,16 0,80 1,31 1,09

M 170 2,34 2,21 5,14 2,17 −0,05 −0,94 6,04 −1,11 0,22 1,49 0,67

M 130 2,94 2,54 6,77 1,69 −0,13 −0,87 4,10 −1,06 0,40 1,56 0,55

M 237 1,62 2,75 6,45 2,72 −0,43 −1,44 14,94 −0,62 2,10 1,69 0,45

M 153 1,45 2,39 5,27 2,99 −0,49 −1,58 18,21 −1,05 2,45 1,51 0,68

M 87 2,35 3,54 8,38 2,44 −1,18 −2,75 9,33 1,16 9,69 1,39 0,63

M 430 4,00 3,19 7,24 1,37 −0,81 −1,92 3,84 −0,24 3,88 1,49 0,67

M 229 3,18 4,01 9,88 1,62 −1,20 −2,65 4,14 1,02 8,16 1,39 0,76

M(PCC) 483 6,30 3,94 18,96 0,72 −1,15 −2,81 0,32 0,22 9,96 1,63 0,29

Note: Each row in the table represents a single population. System: system of origin of the population (I: interstitial spaces, B: biomorphs, M: 
microbes) – Nota Bene: M(PCC) designates the cultured population of Synechocystis sp. All the descriptors are adimensional. N: number of particles 
in the population. MSD: Mean/SD of statistic distributions. skew.: skewness of statistic distributions. kurt: kurtosis of statistic distributions. R: 
distribution of sizes (equivalent radius) in the population. C: distribution of circularities in the population. S: distribution of solidities in the population. 
D: fractal dimension. L: lacunarity.
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range of kurtosis values for their size distributions (12.74–520.26), 
whereas silica–carbonate biomorph populations display a much 
narrower range (−0.08 to 2.50)—Figure 8c. Conversely, the differ-
ent populations of biomorphs have very different values of kurtosis 
for their solidity distributions (−0.81 to 6.19), whereas the different 
populations of interstitial spaces display a much narrower range of 
values (−0.65 to 0.10)—Figure 8c. In each system considered sepa-
rately, the correlation coefficients between these 11 parameters 
were calculated for every couple of parameters and are given in 
Tables S1, S2, and S3. The correlation coefficients (r) are shown in 
the lower left part of these tables, and the associated probabilities 
of non-correlation (p) are shown in the upper right part of these 
tables. Some pairwise correlations point out critical differences dis-
tinguishing the microbial communities from the two other systems. 
Examples of such differences are plotted in Figure 8d–f. The skew-
ness of the size distributions in microbial communities is negatively 
correlated to the mean/SD (Figure 8d, green—r = −.89, p = .0006). 

On the contrary, silica–carbonate biomorph populations do not dis-
play a correlation between the mean/SD and the skewness of their 
size distributions (Figure 8d, blue – r = .02, p = .95). It is also ob-
served that the kurtosis of the circularity distributions in microbial 
populations is negatively correlated to the skewness of this distri-
bution (Figure 8e, green—r = −.89, p = .0005) and to the skewness 
of the solidity distribution (Figure 8f, green—r = −.90, p = .0004), 
whereas opposite correlations are observed for populations of in-
terstitial spaces (Figure 8e,f, red—respectively r = .97, p = 1E-6, and 
r = .83, p = .002).

3.2.3 | Discrimination of populations—
comparison of different sets of parameters

A quantitative study using discriminant analysis was made to test if 
populations from the three systems could be efficiently differenti-
ated. This was done for the following five sets of parameters:

Set 1: Mean/SD, skewness and kurtosis of the size distributions 
(three parameters).

Set 2: Mean/SD, skewness and kurtosis of the size distributions, 
fractal dimension, lacunarity (five parameters).

Set 3: Mean/SD, skewness and kurtosis of the circularity and so-
lidity distributions (six parameters).

Set 4: Mean/SD, skewness and kurtosis of the size, circularity and 
solidity distributions (nine parameters).

Set 5: Mean/SD, skewness and kurtosis of the size, circular-
ity and solidity distributions, fractal dimension and lacunarity (11 
parameters).

Results of discriminant analyses performed with all the popu-
lations and with the five different sets are shown in Figure 9a–e. 
As mentioned earlier, the axes on the 2D plots represent the linear 
combinations of all considered parameters that maximize the vari-
ance between the three systems (on a 2D plane). The efficiency of 
discrimination as a function of the number of considered populations 
is plotted on Figure 9f (the curves obtained for the different sets of 
parameters are also shown on distinct plots in Figure S14).

The results of the discriminant analyses run with the different 
sets of parameters are as follows:

1. A discriminant analysis run with Set 1 on all populations shows 
the microbial populations very close from the two other systems 
(Figure 9a). When the number of populations considered in the 
discriminant analyses increases, the rate of correct classification 
reaches a plateau for a small number of populations (about 
12 populations), then raises slowly above 20 populations to 
reach ~80% of correct classification (Figure 9f, hollow circles).

2. A discriminant analysis run with Set 2 on all populations shows 
that the three systems are contiguous, with a slight overlap be-
tween the microbial populations and silica–carbonate biomorph 
populations (Figure 9b). When the number of populations con-
sidered in the discriminant analyses increases, the rate of correct 
classification increases faster than for the other sets up to ~15 

F I G U R E  7   Comparison of the relationship between area 
(normalized to the mean of the distribution) and shape in the three 
systems. (a) Solidity of three example populations (derived from 
the different systems) as function of their area. (b) Circularity 
in the same populations as function of their area. Red triangles: 
interstitial spaces in an oolitic limestone. Blue diamonds: biomorphs 
grown in gel. Green circles: bacteria in a fragment of mat from Lake 
Alchichica, Cuenca Oriental, Mexico
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populations, and levels off then to reach 85% (Figure 9f, light gray 
pentagons).

3. A discriminant analysis run with Set 3 on all populations shows 
again that the biomorph populations overlap with microbial 

populations (Figure 9c). When the number of populations con-
sidered in the discriminant analyses increases, the rate of correct 
classification follows a trend very close to that observed for Set 2 
(Figure 9f, gray stars).

F I G U R E  8   Plots of pairs of population-describing parameters allowing to discriminate the different systems. (a) Fractal dimension plotted 
against Lacunarity in all images from the three systems. (b) Mean/SD of the circularity distributions plotted against the skewness of the 
size distributions in all populations from the three systems. (c) Kurtosis of the solidity distributions plotted against the kurtosis of the size 
distributions. (d) Mean/SD of the size distributions plotted against the skewness of the size distributions. (e) Skewness of the circularity 
distributions plotted against the kurtosis of the circularity distributions. (f) Skewness of the solidity distributions plotted against the kurtosis 
of the circularity distributions. Red triangles: interstitial spaces populations. Blue diamonds: biomorph populations. Green circles: Microbial 
communities. Correlation coefficients (Linear r of Pearson) and associated probabilities of non-correlation (p) are given for all pairs of 
parameters in Table S1
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F I G U R E  9   Comparison of the efficiency of the discrimination achieved by different sets of parameters. The axes correspond to linear 
combinations of all parameters in the considered set that allow to maximize the variance between the different systems in a 2D-space (Axis 
2 vs. Axis 1). Discriminant analyses were run with all populations from the three systems. The following combinations of parameters (sets) 
are shown. (a) Set 1: Mean/SD, skewness and kurtosis of size distribution. (b) Set 2: Mean/SD, skewness and kurtosis of size distribution, 
fractal dimension and lacunarity. (c) Set 3: Mean/SD, skewness and kurtosis of circularity and solidity distributions. (d) Set 4: Mean/SD, 
skewness and kurtosis of size, circularity and solidity distributions. (e) Set 5: Mean/SD, skewness and kurtosis of size, circularity and solidity 
distributions, fractal dimension and lacunarity. Red triangles: Interstitial spaces population. Blue diamonds: Biomorph populations. Green 
circles: Microbial populations. (f) Evolution of the rate of correct classification of populations to the three systems with the number of 
populations in the training group, using the different sets of parameters previously described. Error bars represent 2 SD obtained on 1,000 
iterations for a single size of training group. Hollow circles: Classification with discriminant analyses using the parameters of Set 1. Light gray 
pentagons: Classification with discriminant analyses using Set 2. Gray stars: Classification with discriminant analyses using Set 3. Dark gray 
diamonds: Classification with discriminant analyses using Set 4. Black triangles: Classification with discriminant analyses using Set 5



     |  15ROUILLARD et AL.

4. A discriminant analysis run with Set 4 on all populations separates 
the three systems (Figure 9d). The rate of correct classification 
increases steadily up to 19–20 populations considered in the 
analyses, with ~85% of correct classification (Figure 9f, dark gray 
diamonds). The curve is then leveling off, reaching 90% of correct 
classification with 31 populations in the discriminant analysis.

5. A discriminant analysis run with Set 5 on all populations separates 
the three systems even more efficiently than Set 4 (Figure 9e). When 
the number of populations considered in the discriminant analyses 
increases, the rate of correct classification follows a trend almost 
identical to that identified on Set 4 (Figure 9f, black triangles).

3.3 | Test case: microfossil populations from the 
1.0 Ga Angmaat Formation

3.3.1 | Size distribution

In the three images from the Angmaat Formation, distributions show 
a monotonically decreasing size trend (Figure 10b; Figure S15) simi-
lar to the size distributions of interstitial spaces, but somewhat nar-
rower (Mean/SD ranging between 1.01 and 1.48).

3.3.2 | Relationship between size and shape

Similar to silica–carbonate biomorphs and micro-organisms, solidi-
ties are high (0.6–1.0) and independent of particle size (Figure 10a, 
black squares and hollow stars; Figure S15). The evolution of circu-
larities with size is, overall, similar to that observed for interstitial 
spaces (Figure S15). However, similar to observations of modern 
microbial communities, circularity values remain high at small sizes 
(below 0.5 in normalized area).

3.3.3 | Parametric correlations between populations

On diagrams plotting population-describing parameters, parameters 
describing size distributions appear unable to attribute fossil microbial 
assemblages of the Angmaat Formation to one of the three systems 
(e.g., see skewness of size distributions in Figure 10d). However, the pa-
rameters describing shape distributions show clearly that populations 
of the Angmaat Formation can be split into two groups. The two large 
mosaics T1 and T2 have circularity and solidity distributions similar to in-
terstitial spaces and may even show the same correlations (Figure 10e). 
T2-sub, which represents only a part of T2, has circularity and solidity 
distributions similar to microbial communities (Figure 10d,e).

3.3.4 | Discrimination of populations

In discriminant analyses, microfossil assemblages of the Angmaat 
Formation are not systematically attributed to one of the three 

systems (Figure S15J–L). For example, in a discriminant analysis 
using the Set 5 of parameters (size and shape distributions, plus frac-
tal dimension and lacunarity—Figure S15L), the three populations 
(T1, T2, and T2-sub) plot between the three systems.

4  | DISCUSSION

4.1 | Discrimination—from individuals to entire 
populations

4.1.1 | Size distribution

In the system of interstitial space populations, all parameter meas-
urements display a monotonously decreasing distribution within 
the population (Figure 6a; Figure S11). These results are compara-
ble to the lognormal or power-law distributions found in previous 
measurements of interstitial spaces in clastic sedimentary rocks 
(Crisp & Williams, 1971; Curtis, Sondergeld, Ambrose, & Rai, 2012; 
Diamond, 1970; Fusseis et al., 2012; Kuila & Prasad, 2013; Loucks, 
Reed, Ruppel, & Jarvie, 2009). It is also consistent with results ob-
tained in a study on hydrodynamic modeling of the pore structure 
of sandstones (Ioannidis & Chatzis, 1993). Since a broad variety of 
sandstones, as well as one limestone, was selected for this study, it 
can be inferred that the nature of their clasts or their packing char-
acteristics do not significantly affect the overall shape of the size 
distributions.

In the system of silica–carbonate biomorphs, a unimodal, positively 
skewed size distribution is typically observed (Figure 6b; Figure S11), 
confirming the results of a previous study of Rouillard et al. (2018). 
Size distributions of crystals grown experimentally or observed in na-
ture can be explained and modeled by specific regimes of nucleation 
and growth (Eberl, Drits, & Srodon, 1998; Kile, Eberl, Hoch, & Reddy, 
2000). According to these studies, the size distributions observed 
here for biomorphs correspond to a nucleation with decaying rate fol-
lowed by surface-controlled growth. The decaying rate of nucleation 
is consistent with the gel environment used here for growing silica–
carbonate biomorphs; the diffusion of barium is slow in this medium 
and their supply is limited (Eberl et al., 1998; Kile et al., 2000). The sur-
face-controlled growth is also consistent with previous measurements 
that the growth rate of silica–carbonate biomorphs varies linearly with 
time (Zhang, 2015). However, silica–carbonate biomorphs are aggre-
gates rather than single crystals, and the pH—and therefore saturation 
state of the growth medium—oscillates locally during biomorph growth 
(Montalti et al., 2017). As a consequence, silica–carbonate biomorph 
size distributions are not readily described by the same processes 
which explain the growth of single crystals. Overall, the size distribu-
tion of biomorphs is consistently distinct from the size distribution of 
interstitial spaces.

In the system of micro-organism populations, the single-strain, 
non-colonial population displays a unimodal size distribution 
clearly distinct from that of interstitial spaces populations and 
narrower than that of silica–carbonate biomorph populations 
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(Figure 6d; Figure S11m10; line PCC in Table 1). This kind of distri-
bution has been reported and modeled in previous studies (Harvey 
& Marr, 1966; Katz et al., 2003; Koch, 1966; Uysal, 2001). On the 

other hand, the size of colonial, filamentous strains is not only 
controlled by the growth of individual bacteria, but also by the 
number of cellular divisions; the resulting size distributions may 

F I G U R E  1 0   Application of the analytic protocol to microfossil assemblages from the Angmaat formation (1.0 Ga, Baffin Island, Canada). 
(a) Evolution of the solidity of the particles with their size in T2 (cf. Figure 4a; black squares in Figure 10a) and in a subset of T2, T2-sub (cf. 
Figure 4b; hollow stars in Figure 10a) compared to a microbial community. (b) Size distribution in T2. (c, d, e) Comparison of the Angmaat 
populations with the three different systems in some plots of pairs of population-describing parameters shown in Figure 8. The two large 
images (T1 and T2, Figure 4a; Figures S7 and S8) are shown as hollow squares, the subset of T2 (Figure 4b) is shown as a hollow star. (c) 
Fractal dimension plotted against lacunarity. (d) Mean/SD of the circularity distribution plotted against the skewness of the size distribution. 
A close-up view of the area outlined by the black dotted frame is shown in the upper right part of the plot. (e) Skewness of the circularity 
distribution plotted against the kurtosis of the circularity distribution. (f) Location of the Angmaat populations on the morphospace obtained 
with a discriminant analysis run on all populations from the three systems using the set 3 (descriptors of solidity and circularity distributions)
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resemble that of interstitial spaces (Figure 6e; Figure S11m2,m3). 
Natural microbial communities are often composed of different 
colonial and non-colonial strains, each with a different size distri-
bution. Depending on the nature of the strains and their relative 
abundances, these communities exhibit therefore more complex 
and various size distributions. Given this complexity of natural 
microbial communities, a distinction from the two other systems 
can potentially be made using their multimodal size distribution 
(Figure 6f; Figure S11m1,m4,m7,m8). This approach does not work, 
however, if the different strains constituting the community have 
similar sizes; in these cases, the multimodal character of the dis-
tribution may remain undetected. For example, the distribution 
shown in Figure S11m6, which resembles a unimodal biomorph 
distribution, was measured on a complex community and proba-
bly hides an underlying multimodal distribution. Overall, single, 
non-colonial strains of micro-organisms and many complex com-
munities can be distinguished from abiogenic populations by qual-
itative comparison of their size distribution. Nevertheless, in some 
complex communities, multimodal distribution is difficult to prove 
and may only be confidently detected with highly resolved his-
tograms (obtained on large populations). Size distributions should 
therefore be used with caution for studies on biogenicity. Prior 
hypotheses about the type of population (e.g., colonial or not) 
should be made before their interpretation. One potential solution 
to overcome these issues may be to look at the variability of size 
distributions within a sample (see further, Section 4.1.4).

4.1.2 | Relationship between size and shape

In the system of interstitial space populations, a clear trend is seen 
in the relationship between size and shape. The solidity (Figure 7a) 
and circularity (Figure 7b) of interstitial spaces appear to decrease 
with their size. In other words, their shapes become more complex as 
their size increases. We make the hypothesis that this phenomenon 
is due to the constraining of the shape of interstitial spaces by their 
surrounding mineral matrix.

In the system of silica–carbonate biomorphs (gel-grown popu-
lations and solution-grown population), the solidity appears to be 
nearly independent of size (Figure 7a), while circularity decreases 
with size (Figure 7b). This decrease in circularity with size is less pro-
nounced than that observed for interstitial spaces.

In the system of microbial communities, by contrast, it appears 
that solidity (Figure 7a) and circularity (Figure 7b) are indepen-
dent of size. This may be ascribed to the presence of non-colo-
nial strains. Indeed, the shape of an individual cell is regulated 
through complex intracellular mechanisms (Ausmees, Kuhn, & 
Jacobs-Wagner, 2003; Ingber, 2003; Jones, Carballido-López, & 
Errington, 2001; Pinho, Kjos, & Veening, 2013). The relationship 
between size and shape, as quantified here by circularity and solid-
ity (Figure 7; Figures S12 and S13), has in most cases enabled a dis-
tinction between the three systems. This relationship represents 
therefore an interesting criterion for discriminating non-colonial 

biologic populations from certain abiogenic systems such as in-
terstitial spaces and silica–carbonate biomorphic crystal aggre-
gates. This relationship is not systematically verified, however, in 
communities that are strongly dominated by colonial strains. For 
these strains, the relationship between shape and size depends 
first on the modalities of association of cells in the colony. For 
example, filamentous colonies display more elongated and sinuous 
shapes when they increase in size; they display therefore similar 
trends as interstitial spaces. In contrast, some colonies may actu-
ally preserve their shape during growth, such as colonies with no 
preferential orientation during cellular divisions, which preserve 
spheroidal shapes (e.g., colonial chlorophyceae Sphaerocystis sp.—
Tsarenko, 2006).

4.1.3 | Fractal dimension and lacunarity

The three systems appear to occupy different areas on the D–L 
plot (Figure 8a). In particular, the populations of silica–carbonate 
biomorphs and interstitial spaces display distinct couples of D and 
L values. In contrast, half of the images of microbial populations 
display low values of fractal dimension (1.2–1.4) and high values 
of lacunarity (0.6–1.1), which differ from the two other systems. 
However, the other images of microbial populations have values 
of fractal dimension and lacunarity very close to or overlapping 
with the two abiogenic systems. Fractal dimension and lacunarity 
seem not to be good indicators of biogenicity in this specific study. 
It must also be noted that these two parameters are strongly af-
fected by the density (especially for lacunarity) and the dispersion 
or aggregation (especially for fractal dimension) in populations. As 
a consequence, larger ranges of values would probably be found 
for the different systems if they were represented by popula-
tions from more diverse sources. More studies are needed to es-
tablish whether controls specific to each system exist for these 
parameters.

4.1.4 | Parametric correlations between populations

The shapes of statistic distributions illustrate underlying processes 
independent of the absolute size or shape of particles in the popula-
tions (see Section 4.1.1 for the example of size distributions). The 
statistic distributions in microbial populations display large ranges 
of values for mean/SD, skewness, and kurtosis; these values are 
close to those found in silica–carbonate biomorph populations, but 
often differ markedly from those found in interstitial space popula-
tions (Figure 8b,c). Furthermore, the variability of the shape of the 
distributions appears to be constrained. For example, the mean/SD 
and skewness of size distributions in microbial populations are cor-
related (Figure 8d): size distributions of microbial populations cannot 
display any kind of shape (i.e., microbial communities do not occupy 
the space indiscriminately on Figure 8d, but instead, they are con-
strained on a line). We hypothesize that this is caused by the limited 
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number of strains imaged in this microbial mat. According to this hy-
pothesis, the variability of statistic distributions in the microbial pop-
ulations could be controlled by changes in the relative abundances 
of the different strains. The control on the variability of the shape of 
distributions differs in the two other systems (Figure 8d for size dis-
tributions, Figure 8e for circularity distributions; Tables S1, S2, and 
S3). Interestingly, correlations also appear to exist between different 
types of distributions in the three systems. For example, the shapes 
of the circularity and solidity distributions seem related—although, 
here again, the correlation is not the same for interstitial spaces 
populations and microbial populations (Figure 8f; Tables S1 and S3). 
Overall, the differences in statistic correlations at the system-level 
allow microbial populations to be distinguished from the two abio-
genic systems in our study and constitute a potential biosignature.

4.1.5 | Discrimination of entire populations—
comparison of different sets of parameters

It can be seen in Figure 9f and Figure S14 that the total number of 
parameters used in the discriminant analyses (increasing from set 1 
to set 5) is not the only factor controlling the efficiency of discrimi-
nation. Indeed, the discrimination achieved with set 2 (five param-
eters) is similar, or even slightly higher than the one reached with 
set 3 (six parameters). One explanatory hypothesis is that while Set 
3 uses parameters which describe only one aspect of population 
morphometry, the distributions of shape (solidity and circularity), 
Set 2 uses parameters which describe two rather different aspects: 
the distribution of size and general geometry (fractal dimension and 
lacunarity). Overall, it appears from this study that parameters de-
scribing various aspects of population morphometry should be used 
in order to improve the efficiency of these classification procedures. 
The rate of correct classification reaches high values (around 90%); 
discriminant analyses could therefore be applied in the future to reli-
ably classify populations of microstructures based on their popula-
tion morphology.

4.2 | Relevance of population morphometry for life 
detection studies

4.2.1 | Application to test microfossil assemblages

Size distributions in microfossil assemblages have been used pre-
viously as a biogenicity criterion in micropaleontological studies 
(Barghoorn & Tyler, 1965; Butterfield & Chandler, 1992; Knoll & 
Barghoorn, 1977; Köhler & Heubeck, 2019; Schopf & Barghoorn, 
1967; Schopf et al., 2010; Sugitani et al., 2007, 2010, 2013; Wacey 
et al., 2011). In these studies, the absolute range of sizes and the 
relative width of size distributions (quantified in our study by the 
mean/SD parameter) were particularly discussed. Qualitatively, the 
similarity and continuity of shapes (shape distributions in our study) 
in a population were also proposed as a criterion of biogenicity 

(Brasier & Wacey, 2012; Buick, 1990; Schopf et al., 2010). However, 
as noted by Brasier and Wacey (2012), the morphospaces occupied 
by biological and relevant abiogenic populations have hardly, if ever, 
been compared quantitatively.

The current study is a proof of concept exploring the general 
feasibility and potential of population morphometry. It relies on 
modern, controlled samples, including modern microbial mats. Can 
the results of this study be applied directly to microfossil commu-
nities in the Precambrian rock record? To answer this, the method 
was tested on a well-known Proterozoic microfossil assemblage 
from the 1.0 Ga Angmaat Formation, Bylot Group, Baffin Island, 
Canada. For the different microfossil populations from this forma-
tion that were used in this study, solidity appears to be independent 
of size, a feature shared with non-colonial morphotypes in modern 
microbial communities and biomorphs (compare Figure 10a and 
Figure S15 with Figure 7a). Similarly, for the smaller size ranges, cir-
cularity is independent of size, a feature shared only with modern 
microbial communities here (Compare Figure S15—normalized size 
under 0.5—with Figure 7b). The independence of size and shape in 
microbial communities therefore appears to have the potential of 
being preserved through time by fossilization processes. The large 
mosaics of microfossil populations (T1 and T2) display size and shape 
distributions, however, that are very different from modern commu-
nities—they are close to those of populations of interstitial spaces 
(Figure 10b,d,e, hollow squares). In particular, their size distribution 
does not correspond with the multimodal distribution expected 
for the populations of different types of non-colonial spheroids in 
Angmaat Formation (Figures 4a,b and 10b). This may be due to two 
main problems:

First, in optical microscopy of these natural samples, the con-
trast between the microfossils and their organic-rich matrix is low, 
making them difficult to distinguish automatically. This leads to po-
tential errors during image segmentation. Furthermore, many of the 
microfossils are tightly clumped and are therefore not recognized as 
individual particles during the segmentation. These critical segmen-
tation-related issues undoubtedly have an effect on measured mor-
phometric characteristics.

Second, there are important spatial heterogeneities in the state 
of preservation of the individual microfossils, even in a relatively 
well-preserved rock as the Angmaat Formation (Manning-Berg et 
al., 2019). Individual microfossils may be partially degraded and 
have lost their original morphology. Also, the nature of the microbial 
strains may affect the quality of the preservation of shape. For ex-
ample, only one relatively resistant strain may have been preserved 
within a complex initial community. A primary multimodal statistical 
distribution would then have turned into a unimodal one. It is antic-
ipated that in more strongly altered rocks the shape of cells would 
be even further altered, affecting the original morphometry of the 
fossilized microbial community.

In order to test the contribution of these problems, a zoom-in 
image T2-sub was selected from T2. This image represents a re-
gion that is less heterogeneous in terms of state of degradation and 
has a higher contrast between microfossils and matrix, making the 



     |  19ROUILLARD et AL.

segmentation of higher quality. We note however that microfossils 
are still tightly clumped in this area, preventing in places their recog-
nition as individual particles. For this population, the distributions 
of shapes are very close to those of modern microbial communities 
(Figure 10a,d,e, hollow stars), confirming the potential influence of 
degradational heterogeneities and/or contrasting issues. In con-
trast, the size distribution still differs from the one expected for 
modern microbial communities (Figure S15). It appears that the 
clumping of microfossils affected size distributions more than shape 
distributions.

Discriminant analyses do not attribute the three studied popu-
lations of the Angmaat Formation to the system of microbial com-
munities (Figure 10f; Figure S15J,K,L). But consistently with the fact 
that T2-sub has circularity and solidity distributions close to micro-
bial communities, a discriminant analysis run with Set 3 parameters 
(only parameters describing distributions of solidity and circularity) 
attributes T2-sub to microbial communities. Overall, these results 
suggest that discriminant analyses only work if sets of parameters 
are chosen that are least likely to be affected by diagenesis. It re-
mains to be determined in future studies how diagenesis, metamor-
phism, and metasomatism precisely affect population morphometry 
of microfossil assemblages.

4.2.2 | Sensitivity to image treatment

Image treatment is a critical step in population morphometry. 
Problems linked to image segmentation can lead to (a) imperfect re-
production of the outlines of the objects, (b) clumping of different 
objects (e.g., when they are overlapping) into a single particle, and/
or (c) erroneous segmentation of objects/areas of the image that 
do not belong to the system of relevance (“contamination”). All of 
these issues lead to a discrepancy between observed objects and 
segmented particles.

The purpose of segmentation is to separate all and only the 
objects of interest from their background. In the current study, 
the quality of segmentation depends mainly on the choice of (a) 
the graylevel threshold and (b) the size threshold. During image 
segmentation, these thresholds are adjusted manually. Optimal 
segmentation is reached when there is a maximal equivalence be-
tween observed objects and segmented particles. The sensitivity 
of segmentation—and subsequently, of morphometric measure-
ments—to threshold adjustment was evaluated for one specific 
image in Figure S16 (segmentation), Figures S17 and S18A,B (mor-
phometric measurements). Figure S16 illustrates that an increase in 
graylevel threshold creates “contaminant” particles and increases 
clumping in the segmented image. Increasing the size threshold 
allows to remove small contaminant particles, but increases the 
risk of removing objects of interest. Subsequent morphometric 
measurements are affected by changes in threshold (an example 
for size distributions is shown in Figure S17). Due to the clump-
ing into large particles and the appearance of small contaminant 
particles, increases in graylevel threshold stretch the distribution 

to lower and higher values (evolution of histograms from left to 
right in Figure S17). The increase in size threshold also modifies 
the shape of the size distribution by removing smaller sized parti-
cles (evolution of histograms from bottom to top on Figure S17).

The comparison between the source image and the segmented 
images in Figure S16 shows that the highest segmentation qual-
ity is obtained for graylevel thresholds of 100 and 150 and a size 
threshold of 500 square pixels. At these values, the sensitivity of 
the segmentation and of morphometric measurements to changes 
in graylevel threshold is small (compare the two central columns 
in Figures S16 and S17; compare values at 100 and 150 in Figure 
S18B,C). However, the segmentation and morphometric measure-
ments appear more sensitive to changes in size threshold (com-
pare lines 1 to 3 in Figures S16 and S17; compare cyan, green, and 
red curves in Figure S18A,B). In general, these observations, and 
in particular the threshold intervals for which morphometric mea-
surements are less sensitive, vary among the images. Sensitivity to 
the threshold choice depends strongly on the source image and on 
the initial contrast between the objects of interest and their back-
ground. The segmentation of microfossil assemblage images, in 
particular, is more sensitive to changes of thresholding than most 
others (see Figure S18C–F). However, in the current study, it must 
be noted that the two images of interstitial spaces for which the 
segmentation was imperfect (see Section 2.1.1) display the same 
morphometric trends as the other images of interstitial spaces 
(Table 1; Figure 8; Figures S1, S2, S11, S12 and S13). This means 
that final morphometric measurements, to a certain extent, are 
robust regarding the quality of segmentation.

The threshold that is eventually chosen is the one which opti-
mizes the equivalence between observed objects and segmented 
particles (Figure S16). In the future, in order to improve the qual-
ity of image segmentation, it will be necessary to use (a) alternative 
imaging techniques, for example, fluorescence-based ones, which 
increase the contrast between the objects of interest and their sur-
roundings, or 3D imaging, which would separate overlapping par-
ticles and (b) use specific image treatment methods, such as local 
thresholding.

4.2.3 | General guidelines and limits of population 
morphometry for life detection

The parameters used in this study to characterize particles or pop-
ulations of particles (size, circularity, solidity, fractal dimension, 
lacunarity) are universally applicable. Several criteria, such as the 
shape of distributions (mean/SD, skewness, kurtosis), or the rela-
tionship between shape and normalized size, are also independent 
of the absolute shapes or sizes. As a result, the approach of this 
study is highly relevant to the Early Life or Extraterrestrial Life 
studies, since those are contexts where the sizes and shapes are 
difficult to predict.

Although the objects considered in this study are three-dimen-
sional, two-dimensional pictures were used. An important part of 
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the structural information is therefore lost: (a) Overlapping par-
ticles are not separated and (b) a single plane does not properly 
describe an anisotropic population. This study, however, is a first 
proof of concept. For practical reasons, 2D-images were used, 
since they are much easier to acquire and to treat than, for exam-
ple, 3D-tomograms. Moreover, micropaleontology data reported 
in literature most often consist of 2D-images. The goal is thus to 
create a rapid tool that can be readily applied to images in litera-
ture, or can be directly applied to any microscope image. In order 
to minimize the issue of particle separation during picture analy-
sis, the pictures in this study were specifically chosen that have 
a small amount of overlapping particles. The issue of anisotropy 
in a population, however, could not easily be solved. The general 
methodology described here will be extended to three-dimen-
sional data in the future.

In order to apply this kind of statistical analysis to a population 
of particles in an image, several conditions must be fulfilled. (a) The 
objects of interest in the image must be discernible from their back-
ground and have clear boundaries. Blurry or poorly contrasted im-
ages may strongly alter the signal of interest during treatment. (b) 
The objects of interest must be discernable from each other. If all the 
objects are clumped together in a large mass, no reliable information 
can be derived. Therefore, individual particles must be recognizable. 
Other types of analysis (e.g., network analysis) must be developed 
for very dense communities such as bundles formed by filamentous 
strains. (c) In order to facilitate interpretation, the considered ob-
jects should all originate from the same system. A mixture of objects 
coming from different systems will obscure the signal and/or lead to 
erroneous interpretations. (d) A sufficient amount of particles must 
be available in the image for statistical analysis. In this study, it was 
found that ~100 particles constitute a lower boundary; below this 
number, the statistic distributions are inaccurate representations of 
the population. (e) For now, spatial heterogeneities should be min-
imal. The influence of the scale of study on statistic morphometry 
was not systematically assessed in the current study and will be the 
object of future research.

The methodology presented here discriminates specific bio-
logic and abiogenic systems: microbial communities of cells, sili-
ca-carbonate biomorphs, and interstitial spaces in clastic fabrics. 
This choice of systems is of course not absolute. The methodology 
presented here could be expanded to other systems. In partic-
ular, it would be of interest to study populations of other types 
of organic and/or mineral biomorphs (carbon–sulfur aggregates, 
manganese oxide precipitates, core-shell aggregates—Cosmidis & 
Templeton, 2016; Liu et al., 2011; Muscente et al., 2018)—or other 
types of interstitial spaces—such as in botryoidal or spherulitic 
chert fabrics (Brasier et al., 2002, 2005). In general, it is critical 
to have geological knowledge of a sample before applying this 
method. The abiogenic and biologic hypotheses must be known 
and defined carefully before statistic approaches can be used 
to discriminate them. Besides, in this study, although samples of 
different nature and origins were chosen (see Section 2.1), only 
a limited amount of images were used to describe every system 

(10/11 images for each system). Therefore, the entire morphomet-
ric range of each system is certainly far from being entirely repre-
sented. For example, microbial communities with a fundamentally 
different composition and/or ecology may present different mor-
phometric characteristics. This imperfection is mainly due to the 
difficulty to access (and treat) a large amount of geologically/bi-
ologically relevant data from various sources. An increase in the 
volume and the diversity of treated images would certainly im-
prove the robustness of an automated discrimination algorithm as 
presented in this study.

5  | CONCLUSION

Morphometric characteristics (size, circularity, solidity, fractal 
dimension, and lacunarity) were determined for example popu-
lations of microstructures of two abiogenic systems (intersti-
tial spaces in clastic rocks, silica-carbonate biomorphs) and one 
biologic system (microbial communities). At the scale of single 
populations, it appears that the relationship between the shape 
of particles (circularity and solidity) and their size allows the con-
sistent distinction of the three systems. At the scale of several 
populations, the shapes of statistic distributions of size, circular-
ity, and solidity, described here by their mean/SD, skewness, and 
kurtosis, show significant differences between the three systems. 
Some correlations between these parameters call for future ex-
ploration. It is found that discriminant analyses realized with the 
distribution descriptors of size and shape efficiently separate the 
three groups of populations in 2D-spaces. Using these discrimi-
nant analyses, populations from these three systems can be clas-
sified automatically with great accuracy. The same morphometric 
characterization was applied to assemblages of microfossils from 
the well-preserved 1.0 Ga Angmaat Formation, Baffin Island, 
Canada. In these assemblages, biologic size and shape distribu-
tions are affected by (spatially heterogeneous) diagenesis and 
by the presence of abiogenic objects such as interstitial spaces. 
However, the relationship between size and shape appears to be 
a biogenic characteristic well preserved in this context. Given the 
wide applicability of the performed measurements and the very 
general nature of the observed trends, statistical morphomet-
ric analyses appear promising for the identification of microbial 
remnants in various contexts; they could complement other ex-
isting lines of evidence (geologic setting, composition, etc.). This 
approach can potentially be applied to identify traces of life on 
other planets, such as Mars. Noticeably, this study extends the 
concept of morphospace (Raup, 1967) to the population level. 
Population- or system-scale morphometry could help in the fu-
ture to get a better understanding of the morphogenetic controls 
specific to microbial life.
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