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Infrasound is an increasingly popular tool for volcano monitoring, providing insights of the
unrest by detecting and characterizing acoustic waves produced by volcanic processes,
such as explosions, degassing, rockfalls, and lahars. Efficient event detection from large
infrasound databases gathered in volcanic settings relies on the availability of robust and
automated workflows. While numerous triggering algorithms for event detection have
been proposed in the past, they mostly focus on applications to seismological data.
Analyses of acoustic infrasound for signal detection is often performed manually or by
application of the traditional short-term average/long-term average (STA/LTA) algorithms,
which have shown limitations when applied in volcanic environments, or more generally
to signals with poor signal-to-noise ratios. Here, we present a new algorithm specifically
designed for automated detection of volcanic explosions from acoustic infrasound data
streams. The algorithm is based on the characterization of the shape of the explosion
signals, their duration, and frequency content. The algorithm combines noise reduction
techniques with automatic feature extraction in order to allow confident detection of
signals affected by non-stationary noise. We have benchmarked the performances of the
new detector by comparison with both the STA/LTA algorithm and human analysts, with
encouraging results. In this manuscript, we present our algorithm and make its software
implementation available to other potential users. This algorithm has potential to either be
implemented in near real-timemonitoring workflows or to catalog pre-existing databases.

Keywords: volcanic infrasound explosions, automatic detection, signal processing, characteristic function,

sub-band processing

1. INTRODUCTION

Seismic and acoustic signals are key in monitoring and characterizing volcanic unrest. Recent
technological advances in sensor development, data transmission, and archival protocols have
made the collection of large amounts of geophysical data commonplace at active volcanoes and
other monitoring environments. The sheer amount of data recorded makes their manual analysis
a challenging, frequently unfeasible, task. The implementation of automated tools to address this
challenge is, thus, vital for effective monitoring operations.

Automatic event detection and classification work-flows applied to seismic data include an
initial segmentation stage, commonly via the application of short-term average/long-term average
(STA/LTA) algorithms in order to parse the continuous seismograms into individual earthquake
waveforms with varied characteristics and sources (Allen., 1982). In more advanced processing
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work-flows, this is followed by automatic classification of
the signals by different methods, including Neural Networks
(Scarpetta et al., 2005), pattern recognition (e.g., Curilem
et al., 2014), Hidden Markov Models (Ibáñez et al., 2009),
Support Vector Machines (Giacco et al., 2009), or statistical
properties (Bueno et al., 2019). A wealth of new algorithms are
constantly published in the literature in order to improve the
efficiency of automatic detection and classification procedures for
different types of signals, including those associated with tectonic
earthquakes (Di Stefano et al., 2006; Álvarez et al., 2013; Bhatti
et al., 2016), low-frequency volcano-seismic events (Frank and
Shapiro, 2014), avalanches (Marchetti et al., 2015), and debris
flows (Schimmel and Hübl, 2016). Collectively, these algorithms
represent an important toolbox for the creation of high-quality
research databases.

Volcano infrasound is becoming increasingly popular as a
monitoring tool (Johnson and Ripepe, 2011; Fee et al., 2013);
among other applications, acoustic data are frequently used
for detection and characterization of explosive volcanic activity
(e.g., Garcés et al., 1999; Johnson et al., 2004; Vergniolle and
Ripepe, 2008; Caplan-Auerbach et al., 2010; Fee and Matoza,
2013; Lamb et al., 2015; De Angelis et al., 2019). Volcanic
explosions are commonly recorded by infrasound microphones
in the 0.01–20 Hz frequency band as signals characterized by
impulsive onsets followed by codas with variable duration, from
few seconds to several minutes. Due to the increasing amount of
acoustic infrasound data routinely collected on active volcanoes,
the development of tools for automated signal detection is
crucial for efficient monitoring. Here, we introduce an adaptative
infrasound detector based on time- and frequency-domain
characterization of volcanic explosion signals. We take advantage
of advanced signal processing techniques, in combination with a-
priori knowledge of recorded explosions, to implement a robust
infrasound detector based on adaptive multi-band processing.
The datasets selected for this study are obtained from two
previous monitoring campaigns at Santiaguito (Lamb et al.,
2019) and Mount Etna (Diaz-Moreno et al., 2019) volcanoes.
On Mount Etna volcano, Diaz-Moreno et al. (2019) studied
an inversion modeling workflow to derive infrasound acoustic
sources and estimate rate and volume of erupted materials.
On Santiaguito volcano, Lamb et al. (2019) provides a seismic
and infrasound analysis of three eruptive phases in a multi-
parametric monitoring framework, associating infrasound and
seismic signals. Hence, the sheer volume of recorded explosions
at both volcanoes makes an ideal ground for testing the VINEDA
algorithm, as the geological properties are already known.

2. DETECTION OF INFRASOUND
EXPLOSIONS

2.1. Algorithm Description
Detection of volcanic explosions in infrasound data streams is an
important and challenging task. The algorithm detailed here, the
Volcanic INfrasound ExplosionsDetectorAlgorithm (VINEDA),
parses raw acoustic data streams, x(n) into a normalized
characteristic function (CF) within a given frequency range

[flow,fhigh]; the frequency band is chosen to include themajority of
energy transported by explosion infrasound. Explosion temporal
boundaries are defined by the abrupt onset arrival and return
to background amplitude, with expected average durations
given by D = {Dmin . . .Dmax}, with Dmin and Dmax the
minimum and maximum expected duration of infrasound
explosions, respectively. The number of duration bands used
in the discriminant analysis is defined as Ndb. Background
amplitude is defined as characteristic low-amplitude stationary
signals (i.e., wind, noise, or lack of infrasound activity). The data
processing pipeline is illustrated in Figure 1, key parameters for
the algorithm are given in Algorithm 1, and Figure 2 shows the
outputs of each step of the workflow using infrasound recorded
of an explosion at Santiaguito volcano, Guatemala.

As the first step, an anti-aliasing Finite Impulse Response
(FIR) low-pass filter is applied with a corner frequency fhigh,
corresponding to the highest frequency component of interest
in the explosion signal investigated. This stage eliminates
noise outside the frequency band of interest for explosions,
eases computational load and reduces signal complexity, while
preserving important signal onset information. The sampling
frequency, fs, is usually much higher than fhigh (typical values
for fs and fhigh are of the order of 100 Hz and below 5
Hz, respectively); this allows, in the second processing step,
downsampling of the input signal, x(n), by a factor of R = fs/fs′,
being fs′ = 2 · fhigh. Downsampling is performed by a poly-
phase anti-aliasing filter to compensate for potential delays due
to re-sampling computations.

An adaptive de-trending filter is then applied to remove
noise that could affect the lower frequency range of infrasound
explosions, such as from wind or long-period instrument drift.
Detrending is implemented as a zero-phase high-pass FIR filter.
The order of this filter is given by the maximum duration of
the explosion (Dmax), whereas the cutoff frequency is fixed at
flow Hz. This filter also helps to mitigate the influence of low
frequency noise, such as microbaroms, which is often located at
very low frequency bands (i.e. [0.1–0.5] Hz) (Landès et al., 2012)
A median filter is further applied to remove spikes in the signal,
such as those associated with instrument or data transmission
noise. This filter reduces extreme values and smooths the input
signal (Figure 2B).

Since explosions are characterized by sharp onsets, a multi-
band filter stage has been specifically designed to provide no
edge delay (Álvarez et al., 2013). The design of the filter bank
(number of bands, central frequencies and bandwidths) depends
on the frequency content of the explosions to be detected.
Figure 2E depicts an instance of the impulse response of the FIR
filters designed. The center frequencies are uniformly distributed
within the frequency band of the explosion signal [flow, fhigh],
according to:

fck = flow + (k− 1) ·
(fhigh − flow)

Nfb

+
1

2
·
(fhigh − flow)

Nfb
with k = 1, . . . ,Nfb (1)

where Nfb is the number of sub-bands of the filter bank.
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FIGURE 1 | VINEDA Algorithm block diagram. (A) The signal is decimated and filtered in order to suppress noise and avoid spike distortions. (B) Successive steps
focus on the detection of infrasound explosions onset, using specialized designed filters and a discriminant detector based on a priori knowledge of the infrasonic
explosions. The computed characteristic function CF contains the detected explosions.

Algorithm 1 VINEDA parameters definition.

Input:

x: Trace containing the infrasound waveform in data samples.
fs: Sampling frequency of the infrasound waveform (Hz).
flow: Lower frequency content of the explosions to be detected
(Hz).
fhigh: Upper frequency content of the explosions to be detected
(Hz).
Nfb: Number of sub-bands used in the filter bank.
Dmin: Minimum duration of the explosions to be detected (s).
Dmax: Maximum duration of the explosions to be detected (s).
Ndb: Number of duration bands used in the discriminant
analysis.
β : Penalty factor for non-impulsive onsets.
Output:

CF: Characteristic function containing the detected explosions.
fs′ : Sampling frequency of the characteristic function (Hz).

Once the multi-bank filter is applied, signal envelopes are
computed within each sub-band; the envelope, ek(n

′), for each
sub-band is estimated as:

ek(n
′) =

√

sk(n′)2 + ŝk(n′)2 with k = 1, . . .Nfb (2)

where ŝk(n
′) is the Hilbert Transform of sk(n

′) (Bracewell, 1999).
All the sub-band envelopes are then added to obtain the signal
e(n′). This global envelope allows characterizing how energy is
delivered at the explosion onset (i.e., an abrupt rise followed by a
slow decay). Figure 2C shows the detected envelope e(n′) of the

explosion. The abrupt onset is detected, and the smooth decay
is preserved.

The next step in the detection algorithm is the application
of a discriminant filter to the signal e(n′) in order to compute
a characteristic function, CF(n′), and detect explosion onsets
(Figure 2D). The impulse response h(n′) of the proposed
discriminant filter is shown in Figure 2F; this filter is designed
to enhance signals with a sharp rise and gradual decay, such
as infrasound explosions, with a duration in the order of D.
Thus, the discriminant detector mitigates the effect of non-
stationary noises while finding the best match of infrasonic
signals (Álvarez et al., 2013). A penalty factor for non-impulsive
onsets, β , is added to increase the robustness of the filter
with respect to background noise. The value of β controls the
impulsivity of the signal we are going to detect, and it should
be selected on the basis of the expected onset. Larger β values
are required to detect very impulsive onsets with respect to
background noise.

In the final stage of the detection workflow, the characteristic
function, CF(n′), is normalized following a non-linear
companding method to emphasize onset arrivals without
loosing amplitude information (Rabiner and Gold, 1975). The
peak of CF(n′) corresponds to the onset of the detected explosion
event (Figure 2D).

The sequence of filtering stages is summarized in
Figures 2A–D. Note that the spike present in the raw signal x(n)
at ∼18 s is suppressed during processing and the long-period
trend is removed while the onset of the explosion signal is
preserved. The CF(n′) for the original explosion waveform is
shown in Figure 2D. The amplitude of the CF is proportional
to the sharpness of the original explosion onset. Notice that the
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FIGURE 2 | Output example for all intermediate steps of the VINEDA workflow. (A) The original infrasound signal of an explosion at Santiaguito volcano, Guatemala,
x(n). (B) The signal y(n′) is the output after decimation, detrending and median filtering stages. (C) The signal e(n′) represents the output of the no edge delay filter
bank. (D) A characteristic function CF (n′) is obtained from the signal, which can be used to perform the automatic detection. (E) Example of the impulse response of
the bandpass filters. (F) Impulse response for the proposed discriminant detector (Álvarez et al., 2013).

discriminant detector has suppressed background noise, thus
highlighting the explosion onset.

Finally, VINEDA is designed to be used with any single-
station recordings. However, the flexibility of VINEDA allows its
configuration in a parallel framework to work in a multi-station
setting. Once the signals have been detected, derived CFs can be
merged or interfaced with physical propagation models to locate
the events of interest.

2.2. Multi-Station Application Example on
Etna Volcano
VINEDA is a highly flexible algorithm that can be applied
to network data to enhance detection of infrasound signals
associated with volcanic explosions. Here, we demonstrate an
application to network data recorded at Mt. Etna volcano by
three infrasound sensors, during June 2017, with a frequency
content between [1.0–3.0] Hz and maximum duration of
Dmax = 5.0 s (Diaz-Moreno et al., 2019). Each sensor is
independently processed, as we aim to investigate how VINEDA

detects infrasound explosions from stations installed at different
locations from the volcanic vent.

Figure 3 shows the CFs along with signal envelopes (e1(n′),
e2(n′), e3(n′)) for each of the input signals (x1(n), x2(n), x3(n)).
Note that, generally, the proposed pre-processing steps yield
robust envelopes, as noise and long-period trends have been
filtered out, and the no-edge delay filter along with the envelope
detector characterize explosion onsets. However, when stations
are closer to the vent, the recorded explosions are less attenuated
with larger amplitudes and more obvious onsets (ET01, ET04,
and ET10 located at 1.0, 1.3, and 6 km from the vent, respectively;
Diaz-Moreno et al., 2019). While closer stations exhibit larger
CFs as observed for CF1(n′) and CF2(n′), the detector is still able
to observe a signal at the farthest station, CF3(n′). The results
presented in Figure 3 highlight the capabilities of VINEDA
to suppress much of the noise and still being able to detect
attenuated explosions at greater distances. The robustness of the
algorithm to perform multi-station detection permits a direct
embedding with atmospheric propagation models to compute
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FIGURE 3 | Application example on a multi-station configuration at Etna volcano in three different stations (ET01, ET04, and ET10 located at 1.0, 1.3, and 6 km from
the vent, respectively; Diaz-Moreno et al., 2019). Even if attenuated, the detector can recognize explosions at distant stations. When deployed on a single station, CF3
could be considered as a false positive. However, when complemented with other CFs and propagation models, the number of false positives could be
further reduced.

travel times based on VINEDA detections, thus reducing false
positives and easing the location of infrasound sources.

3. DATA EXPERIMENTATION AND
RESULTS

We applied the VINEDA algorithm to infrasound data from
low-intensity Strombolian explosions recorded at Mt. Etna
volcano during an experiment in the summer of 2017 (Diaz-
Moreno et al., 2019). Additionally, the generalization capabilities
of the algorithm across different volcanic settings are tested
with infrasound data from Santiaguito (Lamb et al., 2019). A
traditional STA/LTA algorithm is compared with VINEDA in
order to assess its detection performance and robustness. In
addition, 2 days of continuous data from both volcanoes were
also manually evaluated by a group of 6 experts. For every

waveform of a detected event, each individual expert checks the
presence/absence of an event and assign a quality factor Q. Faced
with the question “Is this an explosion?”, experts chose one of
three quality assessments: “strongly agree” (Q= 1), “agree” (Q=

2), and “undecided” (Q = 3). Figure 4 depicts three infrasound
signals with different quality factors, as reviewed by experts.
Notice that signal to noise ratio (SNR) along is the highest for Q1,
where the explosion is clearly visible. For lower quality values,
the segmented explosion is almost masked with background
fluctuations. All our experiments were performed on a 64 bit
computer with an i7-8700k CPU (3.70 GHz) processor, 16 GB
RAM, and Ubuntu 16.04. On this machine, VINEDA takes and
average of 0.72 s (over 10 runs) to process 1 day of infrasound
data of both volcanoes.

The Receiver Operating Characteristic (ROC) curve is an
excellent graphical technique to visualize the trade-off between
the sensitivity and the specificity of any detection system, for a
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particular decision threshold (Fawcett, 2006). The sensitivity is a
metric to evaluate the goodness of a model to detect true events
and according to the common definition from Signal Detection
Theory, the sensitivity can be calculated as:

sensitivity =
TP

FN + TP

where infrasound explosions are successfully detected (making a
true positive, TP), mistakenly ignored (making a false negative,
FN), and vice versa: other events or noise can be mistakenly
detected as explosions (making a false positive, FP).

FIGURE 4 | Infrasound signals from Etna 2017 experiment, as presented to
the experts during the annotation process. The assigned quality factors
(Q1,Q2,Q3) is also shown. Notice that the highest quality of Q1 implies the
best signal to noise ratio, with the explosion clearly distinguishable. For Q2, the
event is detected by VINEDA, despite lower amplitude values. For Q3,
atmospheric disturbances affect the infrasound signal, and even if the
explosion is detected, a multi-station analysis would help to decrease
false positives.

The specificity measures the proportion of actual negatives
that are correctly identified as such. Since VINEDA is a detector
(it detects infrasound explosions in an input signal in which
an event could be found at any time) but not a classifier, the
specificity of the detector is expressed as the rate of false positives
per hour (FP/h).

Figure 5 illustrates the ROC curves of detection for Etna
(left) and Santiaguito (right) volcanoes performed by VINEDA
algorithm (red) when compared to STA/LTA algorithm (blue),
and two quality criteria Q ≤ 2 and Q ≤ 3 as assessed by human
analysts. For Santiaguito volcano, explosions were characterized
by a duration of 4 s, with a frequency content in the range of
[1.0–3.0] Hz. Mount Etna explosions were characterized by an
average duration of 2 s, and a frequency content in the range
of [1.0–3.0] Hz. In both settings the parameters β and Nfb were
fixed to 3. Note that, from Equation (1), a Nfb = 3 yields
a set of central frequencies that covers the range of infrasonic
explosions for both volcanoes. The definition of the frequency
band [flow, fhigh] is essential to guarantee correct segmentation
boundaries. For Etna and Santiaguito volcano with given band
of 1.0–3.0 Hz., the computed frequencies for the multi-band
analysis are fc = [1.33, 2.00, 2.67] (see Equation 1), encompassing
the range of frequencies of interest for all explosive activity
analyzed. Similarly, a value of β = 3 helps to select events with
sharp onsets mitigating the influence of the background noise.
Given the mathematical design of the discriminant filter, larger
values of β fit sharp onsets whilst decreasing the computed CF
function for smaller (or attenuated) explosions. The vector range
of durations D is defined, for both volcanoes and a delta time-
step of 1 s, between Dmin = 2.0 and Dmax = 5.0 s. In practice,
the selected parameters suffice for the range of frequencies in
infrasonic explosions for these volcanoes, but this definition is
highly flexible and is left to the analyst on a per-case basis.

All streams were sampled at fs =100 Hz. The detection
thresholds (thr) varied between 0 and 240. STA/LTA is a simple
and effective method to detect transient events that defines a
characteristic function for detection as the ratio between the STA
and the LTA (the absolute values of the seismogram averaged
over short and long windows, respectively). In such way, the LTA
tracks the background seismic noise, while the STA/LTA ratio
increases when there is a sudden increase in signal amplitude

FIGURE 5 | ROC curve for ETNA (A) and Santiaguito (B) volcanoes comparing VINEDA and STA/LTA algorithms for different quality assessments of the experts (thr =
thresholds).
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FIGURE 6 | Values of the characteristic function in the VINEDA algorithm for Etna (A) and Santiaguito (B) volcanoes, for the events manually assessed by the experts
with the three different quality criterion considered: “strongly agree” (Q = 1), “agree” (Q = 2), and “undecided” (Q = 3). N indicates the total number of detected
explosions by the algorithm with the assigned quality factor.

(Allen., 1982). Using the infrasound data gathered at Santiaguito
and Mount Etna, STA/LTA was applied to the band of interest
([1.0–3.0] Hz for both volcanoes), with short and long windows
of 1 and 10 s, respectively.

The area under the ROC curve could provide an idea of the
benefits of any particular algorithm. For an algorithm with a
good performance, the area under this curve would be maximum
since the ideal detection threshold would be the one providing a
result closest to Sensitivity= 1 and FP/h= 0. Figure 5 shows that
VINEDA detector outperforms STA/LTA for both volcanoes. The
performance including events in which experts are “sure” (Q ≤ 2)
is better than that for “not sure” events (Q ≤ 3) in all cases.
The improvement in sensitivity and rate of false positives per
hour for VINEDA compared to STA/LTA in all cases is associated
to the specific processing of infrasound explosion signals that
the algorithm VINEDA carries out. The maximum value of the
CF function depends on the quality of the explosion signal.
Figure 6 shows the real value of the CF against the quality factor
assigned by the experts, in combination with the total number of
detected explosions (N). We observe that higher values on the CF
function are obtained for events with better quality. These events
would be detected using high values of the detection threshold,
while keeping the number of detected explosions low. This is
in line with the design of the algorithm, as restrictive detection
thresholds will only retrieve very distinctive explosions with
abrupt onsets, discarding the rest. By contrast, for less demanding
thresholds, the number of detected explosions increases but the
maximum value of the CF decreases. This behavior is expected,
and should be taken into account to set the detection threshold
depending on the particular needs or application.

The ever-increasing availability of infrasonic data requires
the development of mathematical routines that can be used
to detect events of geophysical interest. We have presented
VINEDA; a generic and scalable multi-step algorithm designed
to detect infrasound explosions. Our experimental evaluation
with data from two volcanoes, Santiaguito and Etna, suggest
that VINEDA improves performance over STA/LTA approaches.
For both volcanoes, the refinement of the detector shown
in the ROC curve, jointly with the value of the estimated

CF function, confirms the capabilities of VINEDA to surpass
STA/LTA. The discriminant detector helps to filter out non-
stationary noises and acts as a penalty to temporally longer
infrasound events, such as rockfalls, avalanches, or degassing.
Further, the quality of detections is strengthened by VINEDA’s
capabilities to function in a multi-station setting. We suggest
that the procedure described here can be used to annotate high-
quality data from sequential infrasound streams for further post-
processing, including the training of advanced machine learning
models, picking algorithms or geo-statistical modeling.

4. CONCLUSIONS

Acoustic infrasound provides unique insights on the dynamics
of erupting volcanoes. The detection and characterization of
explosions from large streams of continuous, multi-channel,
infrasound data is a challenging task. In this manuscript,
we have introduced VINEDA, an infrasound detector which
makes extensive use of signal processing techniques in order
to characterize continuous volcano acoustic records and extract
explosion signals. This algorithm stands as a middle point
between the complete knowledge of the target signal beforehand,
and incomplete knowledge of the explosions on the recorded
infrasonic-stream as some prior knowledge of signal features
suffice for VINEDA to detect target signals. VINEDA is
suitable for deployment within volcano monitoring systems and
offers a trade-off between quality and quantity of detections.
We suggest that real-time implementations of algorithms like
VINEDA are crucial to improve existing infrasound datasets
and ultimately, increase our ability to monitor unrest at
active volcanoes.
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