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In this review we assess the state of knowledge for the coralline algae of the
Mediterranean Sea, a group of calcareous seaweeds imperfectly known and considered
highly vulnerable to long-term climate change. Corallines have occurred in the
Mediterranean area for ∼140 My and are well-represented in the subsequent fossil
record; for some species currently common the fossil documentation dates back to
the Oligocene, with a major role in the sedimentary record of some areas. Some
Mediterranean corallines are key ecosystem engineers that produce or consolidate
biogenic habitats (e.g., coralligenous concretions, Lithophyllum byssoides rims, rims of
articulated corallines, maerl/rhodolith beds). Although bioconstructions built by corallines
exist virtually in every sea, in the Mediterranean they reach a particularly high spatial
and bathymetric extent (coralligenous concretions alone are estimated to exceed 2,700
km2 in surface). Overall, composition, dynamics and responses to human disturbances
of coralline-dominated communities have been well-studied; except for a few species,
however, the biology of Mediterranean corallines is poorly known. In terms of diversity,
60 species of corallines are currently reported from the Mediterranean. This number,
however, is based on morphological assessments and recent studies incorporating
molecular data suggest that the correct estimate is probably much higher. The responses
of Mediterranean corallines to climate change have been the subject of several recent
studies that documented their tolerance/sensitivity to elevated temperatures and pCO2.
These investigations have focused on a few species and should be extended to
a wider taxonomic set. Phylogeography, genomics, transcriptomics, and associated
microbiomes are fields in which the information for Mediterranean corallines is very
limited. We suggest that future work on Mediterranean corallines should be based on a
multidisciplinary perspective combining different approaches, and that it should consist of
large-scale efforts by scientists based both in western and eastern Mediterranean areas.
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INTRODUCTION

The Mediterranean is the largest (2,969,000 km2) and deepest
(average 1,460m, maximum 5,267m) enclosed sea on Earth (Coll
et al., 2010). Although it represents only 0.82% in surface area and
0.32% in volume of the world oceans (Bianchi andMorri, 2000), it
is a well-known hotspot of marine biodiversity, with not<20,000
species recorded (Pascual et al., 2017). Such diversity originates
from its complex paleoceanographic history and changes in
its paleogeographic configurations (particularly through the
Cenozoic) and from the current diversity of oceanographic
conditions among different regions of the basin (Bianchi and
Morri, 2000). The events that characterized the geological history
of the Mediterranean in the last 15 My produced a high number
of endemic species (which led Bianchi and Morri, 2000 to define
the Mediterranean “a factory designed to produce endemics”).

The Mediterranean, however, is also highly impacted and
threatened. Climaticmodels predict that theMediterranean basin
will be one of the regions most affected by the ongoing warming
trend and by an increase in extreme events (Lejeusne et al.,
2010; Galli et al., 2017). These predictions are supported by
climatological data: the average maximum summer seawater
temperature has risen by 1◦C in 20 years in some areas of the
western Mediterranean (Marbà and Duarte, 2010) and a 0.4◦C
warming per decade since 1986 was reported for the entire
Mediterranean Sea by Sakalli (2017). Seasonal and depth-related
warming trends were documented by Nykjaer (2009) and Coma
et al. (2009), respectively. Studies that measured and modeled pH
changes since preindustrial times in the Mediterranean (Hassoun
et al., 2015; Goyet et al., 2016) provided evidence of acidification
related to excessive increase of atmospheric CO2. The mean
surface pH has decreased by ∼0.002 units per year from 1994
to 2006 in the northwestern Mediterranean (Howes et al., 2015;
Kapsenberg et al., 2017) and by 0.004 units at the Strait of
Gibraltar (Flecha et al., 2015). These trends are projected to
continue throughout the twenty-first century.

The impact of climate change on Mediterranean marine
biota is expected to be strong, because it will interact with
anthropogenic disturbances operating at local scales (e.g.,
chemical pollution, eutrophication, increase in sediment load,
habitat degradation caused by trawling). Mediterranean coastal
ecosystems have been exploited by humans for millennia,
and have been therefore altered in many ways. Nowadays
Mediterranean shores are heavily urbanized and support a
high population density; impacts of human activities are
proportionally stronger in the Mediterranean than in any other
sea of the world (Coll et al., 2010). Habitat loss, degradation and
pollution, overexploitation of marine resources and invasions of
alien species are the main drivers of change, which in future
decades will overlap and interact with climate-related changes.

Coralline algae have existed in the Mediterranean (or in the
area corresponding to the present Mediterranean) for ∼140
My (Chatalov et al., 2015) and are ubiquitous on modern
Mediterranean rocky shores. They are key components in some
of the most common Mediterranean benthic communities,
such as coralligenous concretions (Figure 1A), Lithophyllum
byssoides rims (Figure 1B), maerl/rhodolith beds (Figure 1C),

barrens formed at sites subjected to heavy grazing (Figure 1D),
rims of Ellisolandia elongata and other articulated corallines
(Figure 1E), and the epiphytic assemblage of the seagrass
Posidonia oceanica (Figure 1F). In these communities coralline
species often play a key role as ecosystem engineers: the
accumulation of their calcareous thalli produces bioconstructions
that modify the tridimensional structure of the substratum
and profoundly influence ecosystem functioning (Bressan et al.,
2009; Ingrosso et al., 2018). Mediterranean bioconstructions
built by corallines are known as major repositories of
biodiversity (e.g., coralligenous communities host not <1,700
animal and algal species; Ballesteros, 2006) and carbonate-
producing ecosystems (Cebrián et al., 2000; El Haikali et al.,
2004; Canals and Ballesteros, 2007; Bracchi and Basso, 2012).
Furthermore, although bioconstructions formed by corallines
exist in every sea, in the Mediterranean they reach a
particularly high spatial and bathymetric extent (coralligenous
concretions alone are estimated to exceed 2,700 km2 in surface;
Martin et al., 2014). There is evidence that some of these
bioconstructions are undergoing substantial degradation and
that the corallines that produce them are suffering a loss
of vitality (Laborel et al., 1993; Blanfuné, 2016); in general,
observations of bleaching and necroses in Mediterranean
corallines have become increasingly common in recent years
(Hereu and Kersting, 2016; Basso et al., 2018; Quéré et al.,
2019; Figure 2).

The need of a deep understanding of the biology of
Mediterranean corallines is therefore more important than ever.
Mediterranean corallines have a long history of study and in
the last few decades have attracted great interest from marine
biologists. Despite of this, many aspects of their biology are
still poorly or insufficiently known. It is also noteworthy that
detailed information is available for relatively few species (mainly
those shown in Figure 3). It is thus timely to summarize the
state of knowledge for these seaweeds and highlight gaps on
which future research should concentrate, which we aim to
do in this review. This review focuses strictly on the biology
of coralline species and does not deal with Mediterranean
communities/habitats built or dominated by corallines, for
which detailed summaries are already available (coralligenous
communities: Ballesteros, 2006; rhodolith beds: Basso et al.,
2017; Bracchi et al., 2019a; Lithophyllum byssoides rims: Laborel,
1987; Bressan et al., 2009; Verlaque, 2010; Ellisolandia elongata
rims: Laborel, 1987; Ballesteros, 1988; Bressan et al., 2009;
epiphytic community of Posidonia oceanica: Piazzi et al.,
2015).

HISTORICAL SUMMARY

Being unusual among algae, corallines have long intrigued
scientists. If detailed observations were provided in the
eighteenth century, corallines were often studied together
with other calcified organisms currently classified among
animals. Calcareous algae in the Mediterranean were first
described more than two centuries ago, and some species
of the genus Corallina with distribution encompassing the
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FIGURE 1 | Examples of coralline-dominated habitats in the Mediterranean. (A) A coralligenous community (Islas Columbretes, Spain); copyright: Enric Ballesteros
(kike@ceab.csic.es). (B) A Lithophyllum byssoides rim (Cala Litizia, Scandola Nature Reserve, Corsica, France); copyright: Marc Verlaque (marc.verlaque@
mio.osupytheas.fr). (C) Detail of a maerl bed (Islas Columbretes, Spain); copyright: Enric Ballesteros (kike@ceab.csic.es). (D) A barren ground dominated by
encrusting corallines on a bottom heavily grazed by sea urchins (Alboran Island, Spain); copyright: Enric Ballesteros (kike@ceab.csic.es). (E) An intertidal rim of
articulated corallines (Passetto di Ancona, Italy). (F) Detail of a leaf of the seagrass Posidonia oceanica covered by epiphytic encrusting corallines (Ischia Island, Italy);
copyright: Maria Cristina Gambi (gambimc@gmail.com). All pictures were provided by the copyright owners and reproduced with their permission.

FIGURE 2 | Examples of necroses in Mediterranean corallines. (A) Lithophyllum cabiochae, close-up view of a specimen largely bleached. (B) Encrusting corallines
showing incipient bleaching at the edges (Piscinetta del Passetto, Ancona, Italy).
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FIGURE 3 | Examples of Mediterranean corallines that have been subject of many studies. (A) Lithophyllum stictiforme, bioconstructor species of coralligenous
concretions (reported in many studies as Lithophyllum cabiochae); copyright: Carlo Cerrano (c.cerrano@univpm.it). (B) Lithophyllum byssoides forms biogenic rims
(”trottoirs”) in the intertidal zone; copyright: Sara Kaleb (sara.kaleb@gmail.com). (C) Articulated corallines (usually identified as Ellisolandia elongata) are common in the
Mediterranean low intertidal and shallow subtidal zones. (D) Pneophyllum fragile, a common epiphyte on the leaves of the seagrass Posidonia oceanica; copyright:
Maria Cristina Gambi (gambimc@gmail.com). All pictures were provided by the copyright owners and reproduced with their permission.

Mediterranean were among the first seaweeds described
with Latin binomials in the Linnaean system (Linnaeus,
1758). Many species that are common in the Mediterranean
were described in the late eighteenth and early nineteenth
centuries (Ellis, 1768; Ellis and Solander, 1786; Esper,
1796; de Lamarck, 1801; Bory de Saint-Vincent, 1832). The
subsequent work carried out until the 70s−80s of the twentieth
century consisted mainly of paleontological studies, floristic
inventories, traditional taxonomy based on morphology, and
descriptive distributional and ecological studies (Bressan,
1974; Bressan and Babbini, 1995, and references therein).
Most ecological studies had in fact a general perspective and
concerned coralline-dominated habitats (mainly coralligenous
concretions and Lithophyllum byssoides rims), rather than
coralline biology itself.

A critical review of the literature concerning Mediterranean
corallines (results summarized in Figure 4; the list of references
used is reported in the File SM1) shows that in the last decades
paleontological record, taxonomy and phylogenetic diversity,
responses to climate change and physiology are the main
aspects on which research has focused. So, in this review
we discuss primarily the state of knowledge in these fields.
Remarkably, phylogeography, genomics, transcriptomics, study
of associated microbial communities and mineralization are
fields in which the information for Mediterranean corallines is
still very limited.

GEOLOGICAL HISTORY OF THE
MEDITERRANEAN AND
PALEONTOLOGICAL RECORD OF
MEDITERRANEAN CORALLINES

The present-day configuration of the Mediterranean Sea is
the result of a complex geological history. The evolutionary
history of Mediterranean corallines has taken place in a
changing environment with long-term but major changes in
paleogeography, climate and oceanography since the early Lower
Cretaceous, for about 140 My. The paleogeographic evolution
of the Mediterranean is part of the progressive closing and
partitioning of the Tethys, the ancient circumtropical ocean, due
to the convergence of Southern Hemisphere crustal plates with
the northern ones (Scotese, 2014a; Figure 5). The global trends
of ocean temperatures during such a long period show an initial
rise up to the mid-Cretaceous climate maximum (some 95 Mya)
and, since then, temperature has been declining with frequent
and sometimes large reversals (Zachos et al., 2001; Friedrich et al.,
2012; O’Brien et al., 2017).

A critical review of hundreds of publications on fossil
corallines shows that 359 species have been reported in
Cretaceous to Pleistocene deposits in different regions of the
Mediterranean (File SM2, list of references in File SM6). These
can be attributed to the orders Sporolithales (80 species,
File SM3), Hapalidiales (159 species, File SM4), and Corallinales
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FIGURE 4 | Summary of the literature for Mediterranean corallines based on a critical bibliographic review and subdivided in research fields. (A) Overall information.
(B) Information for the period 1990-present. The list of references used for the preparation of the figure (and details about the criteria used for the compilation of the
list) is presented in the File SM1.

FIGURE 5 | Paleogeographical sketches of the Mediterranean region at three time intervals in the last 140 My. Brown areas: emergent land; white areas: ocean/seas.
Black lines: present-day shorelines for geographic reference. Position of Equator (0◦) and parallel 30◦ N at each time. (A,B) The northward movement of Southern
Hemisphere crustal plates converging with the Eurasian plates, progressively narrowed and divided the circumtropical Tethys Ocean (modified from Barrier et al.,
2018). (C) By the Middle Miocene, the Mediterranean Sea became isolated from the Indo-Pacific and remained connected to the open ocean only at its western end
(modified from Rögl, 1998). Location of the first records of Spolithales (red star), Hapalidiales (green square), and Corallinales (blue circle).

(120 species, File SM5). The oldest known fossil corallines
attributable to extant orders occur in the Lower Cretaceous
(Valanginian, 137 Mya) in northern Greece. They are scarce
specimens of Sporolithon that lived on a carbonate platform
surrounding an island at the northern margin of the Tethys
(Chatalov et al., 2015; Figure 5A). For millions of years, the only

recorded corallines are rare encrusting Sporolithon associated
to coral reefs (Conrad and Masse, 1989; Arias et al., 1995;
Tomás et al., 2007; Bucur, 2008; Woelkerling et al., 2014). In
the late Barremian-Aptian (126–113 Mya), the Sporolithales
became more frequent and diverse with several extinct genera
(Agardhiellopsis, Kymalithon, Paraphyllum) (Moussavian, 1993).
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In this time interval, there are also poorly contrasted reports
of Hapalidiales (Lithothamnion) at the southern margin of the
Tethys (Algeria, Lemoine, 1939) and Corallinales (Lithoporella
and Corallinoideae) in the marine passage that corresponds
to the present-day Pyrenees (Poignant, 1968; Lemoine, 1970).
In the Albian (113–100 Mya), the morpho-species diversity of
Sporolithales increases and locally they are common components
of carbonate rocks (Lemoine, 1970; Moussavian, 1993; Bucur,
1994; Rosales, 1995; Lopez-Horgue et al., 2009). Reports of
Hapalidiales (as Lithothamnion and Melobesia) are scarce and
inconclusive (Lemoine, 1970; Poignant, 1981). Few scattered
records might correspond to geniculate Corallinoideae (Maslov,
1956; Lemoine, 1970). For most of the Upper Cretaceous
(Cenomanian-Campanian, 100–72Mya) coralline algae continue
to be generally scarce components of carbonate platforms. The
relatively few records scattered all over the region indicate
an increase in Sporolithales (mainly of Sporolithon) with
the appearance of a new genus in this order, Hemiphyllum,
now extinct. Reports of Hapalidiales, both Lithothamnion and
Mesophyllum (Lemoine, 1970; Poignant, 1981), are poorly
illustrated and remain doubtful. Within Corallinales, the
first occurrence in the region of reliable representatives of
Neogoniolithoideae sensu Rösler et al. (2016) is recorded
(Spongites as Lithophyllum, Bucur and Baltres, 2002). In the
Maastrichtian (72–66 Mya), the last stage of the Cretaceous, the
number of Hapalidiales increases (Poignant, 1978, 1981). The
oldest-known Hydrolithoideae (Karpathia, Bassi et al., 2005 and
references therein) also appear in this time interval, together with
a few more Corallinales (Rösler et al., 2017).

The Tethys narrowed during the Cretaceous in its western
end with the progressive convergence of African and European
plates, but in the Paleocene (66–56 Mya) an uninterrupted
marine connection continued to exist at low latitudes around
the globe. The partial emergence of the Pyrenees and large
areas of western Europe reduced the passages from the Tethys
to the Atlantic. Two-thirds of the coralline species disappeared
during the Cretaceous mass extinction (Aguirre et al., 2000a,b),
but the number of recognized morpho-species recovered and
substantially increased during the Paleocene (Aguirre et al.,
2000a,b, 2007). This recovery was mainly due to the increase in
Hapalidiales (Lithothamnion, Mesophyllum, and Phymatolithon)
and Corallinales, whilst the Sporolithales started a decrease
that continued throughout the Cenozoic with minor reversals.
All genera of Sporolithales other than Sporolithon recorded in
Cretaceous rocks disappeared before the Paleocene. Corallines
from this epoch occur in coral-bearing carbonates, either in
situ in shallow-water paleoenvironments (e.g., Moussavian, 1993;
Aguirre et al., 2007) or re-deposited in deeper settings (Stockar,
2000).

As a marked reversal of the general global cooling trend
initiated in the mid-Cretaceous, during the Early and Middle
Eocene epochs (56–38 Mya) global temperatures were higher
than in older and younger Cenozoic times (Zachos et al., 2001,
2008; Anagnostou et al., 2016). During this warm interval, large
coral reefs disappeared from low latitudes (Scheibner and Speijer,
2008; Kiessling, 2010; Perrin and Kiessling, 2010). The global
sea level was several tens of meters higher than in the modern

ocean (Miller et al., 2011), favoring the development of extensive
carbonate platforms dominated by larger benthic foraminifers
and algae (Nebelsick et al., 2005; Scheibner and Speijer, 2008;
Norris et al., 2013). The emergence of the antecedent reliefs of
the Alpine mountain belts (Alps, Carpatian mountains) as many
small islands caused a complex paleogeography of the northern
margin of the Tethys, which extended north of the modern Black
and Caspian seas (Scotese, 2014b; Figure 5B). Coralline algae
occurred in rhodolith beds and in bioclastic facies in platform
deposits or in deep-water, re-worked sediments (e.g., Aroldi and
Bucur, 2002; Nebelsick et al., 2005). Numbers of reported species
and relative proportions of coralline orders did not change
throughout this interval (Aguirre et al., 2000a).

In the Late Eocene (38–34 Mya) global temperatures and
sea level progressively decreased (Zachos et al., 2001; Miller
et al., 2011). In addition to rhodolith beds (and maerl) and
bioclastic facies, coralline algae of this age occurred associated
with corals in shallowwater carbonates (Bassi, 1998; Rasser, 2000;
Nebelsick et al., 2005; Barattolo et al., 2007) at both margins
of the Tethys in the Mediterranean region. The number of
reportedmorpho-species of Hapalidiales and Corallinales slightly
increased, whereas Sporolithales resumed their diversity decline
after a long interval of stability.

The most dramatic global cooling of the Cenozoic era
took place at the Eocene–Oligocene transition (at 34 Mya).
Development of Antartic ice sheets and onset of glaciation
marked the beginning of the modern icehouse world (Zachos
et al., 2001). A significant sea-level drop was coeval of these
processes. The continued rising of Alpine belts led to the
separation of the Paratethys, a large marine body extending
to the north of the Alps, from the Rhône Basin over eastern
Europe to the east of the modern Caspian Sea (Popov et al.,
2004). Since the Oligocene (34–23 Mya) the Paratethys was an
individual paleobiogeographic province with connections to the
Tethys/Mediterranean Sea during most of its paleogeographic
evolution (Harzhauser and Piller, 2007). The marine connections
remained continuous from the present-day Indo-Pacific to the
North Atlantic oceans (Rögl, 1998).

In themajority of localities, Oligocene corallines occur in coral
reef deposits or in laterally associated sediments as rhodoliths,
coralline debris, or as crusts directly growing on the soft sea floor
(Fravega et al., 1987; Brandano, 2017). Occasionally, rhodoliths
and algal debris have also contributed as important carbonate
producers in late Oligocene homoclinal carbonate ramps in
the western Tethys (Bover-Arnal et al., 2017). They also occur
in deep-water, re-deposited carbonates (Rasser and Nebelsick,
2003). Most reports of Oligocene coralline algae derive from
the northern margin of the Western Tethys, especially from the
Piedmont and Ligurian basins, and the circumalpine area (north-
eastern Italy, northern Slovenia, Austria and southern Bavaria)
(Nebelsick et al., 2005). Hundreds of species of Oligocene
corallines were described in these areas in the last century
(Airoldi, 1932; Conti, 1950; Mastrorilli, 1968; Fravega et al.,
1987; further references in Braga et al., 2010). Long species lists
were also reported from the Balkan and Carpatian mountains
(Lemoine, 1977; Bucur et al., 1989). Oligocene corallines were
also described from Algeria at the southern margin of the
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Western Tethys (Lemoine, 1939) and from ancient islands in
the Tethys, such as Maltese Islands (Brandano, 2017), Salento
Peninsula, southern Italy (Bosellini and Russo, 1992), and the
Malaguide Complex in southern Spain (Braga and Bassi, 2011).
Titanoderma pustulatum occurred in the early Oligocene from
NW Iran (Basso et al., 2019), an area connecting the Indian
Ocean and the Tethys before its final closure in the middle
Miocene. This new finding places the oldest record of the
Titanoderma/Lithophyllum pustulatum group in this area rather
than in the late Oligocene from the Central Pacific as previously
recorded (Bassi et al., 2009). Reported diversity of morpho-
species of Corallinales and Hapalidiales continued the rise
initiated in the late Eocene. By contrast, the number of species
of Sporolithon decreased (Aguirre et al., 2000a).

Continued convergence of African and European plates
and emergence of Alpine mountain belts led to significant
palaeoceanographic changes during the Miocene (23–5.3 Mya).
The long-lasting circum-tropical ocean was partitioned by land
masses, changing the global geography and major current
patterns. The connections of the Mediterranean to the Indian
Ocean were interrupted in the middle Miocene (at about 14 Mya,
Rögl, 1998) by the emergence of the Middle East reliefs. The
Paratethys was strongly isolated during the late Miocene and
its European sub-basins became continental (Rögl, 1998; Popov
et al., 2004; Harzhauser and Piller, 2007). At the western end
of the Mediterranean, uplift of the Betic-Rifean reliefs gradually
closed the seaways to the Atlantic Ocean. The connections
were temporarily interrupted during the Messinian Salinity
Crisis at about 5.5 Mya (Hsü et al., 1977). The opening of
the Gibraltar Straits established the present-day configuration
of Mediterranean Sea as a partially isolated, evaporitic water
body, which needs inflow from the Atlantic Ocean to maintain
its level (Mariotti et al., 2002). A global warm phase, the
Mid-Miocene Climatic Optimum (about 15 Mya), took place
after a brief glaciation interval in the earliest Miocene. Since
that phase, the Earth’s climate has been cooling with reversals
(Zachos et al., 2001). The Northern Hemisphere ice-sheets
started growing in the late Miocene. During the Miocene, global
sea-level fluctuations of 50–60m on the million-year scale and
superimposed oscillations controlled by orbital obliquity (41,000
year cycles) did not show a marked ascending or descending
trend (Miller et al., 2011).

Rhodolith beds were widespread in Miocene platform
carbonate and siliciclastic deposits in the Mediterranean and
Paratethys (Halfar and Mutti, 2005; Braga, 2017). They were
most common in carbonate ramps together with small coral
buildups, and locally they occurred in reef-rimmed shelf deposits
(Hrabovský et al., 2016; Braga, 2017). Coralline biostromes
(coralligène de plateau) were reported in the Maltese Islands
(Bosence and Pedley, 1982). Rhodoliths and coralline debris also
occur as deep re-deposited sediments (Bassi et al., 2017).

The number of fossil non-geniculate coralline species reported
in the literature reached its maximum in the early Miocene
and then decreased with small reversals (Aguirre et al.,
2000a). Some available modern accounts based on comparable
diagnostic characters seem to confirm a morphospecies richness
reduction throughout the Miocene. While Checconi (2006)

describes 35 species in the early Miocene (Burdigalian) of
the Southern Apennines (Italy), only 21 morphospecies were
found in the late Miocene (Messinian) reefs in Salento and
Sorbas Basin together (Braga et al., 2009). The reduction is
even more marked within some genera, such as Spongites,
encompassing 13 species during the Burdigalian (Checconi,
2006) and only 5 during the Messinian in southern Italy (Braga
et al., 2009). Lithophyllum (and Lithophyllum gr. pustulatum
–Titanoderma, Bassi et al., 2009) is first recorded in the
Mediterranean region in the early Miocene from SE France
(Burdigalian; Coletti et al., 2018a). In the Miocene, for the first
time in the evolutionary history of corallines, Mediterranean
assemblages differ from their pantropical counterparts at the
genus level (Braga et al., 2010). Spongites, Neogoniolithon,
and Lithophyllum are the main components in shallow-water
Miocene Mediterranean paleoenvironments, including coral
reefs. Porolithon, Hydrolithon gr. boergesenii, and Aethesolithon
J.H. Johnson, which occur with those genera in coral reefs
in low latitudes, are absent in the Mediterranean basins. This
biogeographical differentiation was probably due to the isolation
of the Mediterranean from the Indian Ocean, complete by the
middle Miocene (Rögl, 1998; Figure 5C). Although coral reefs
persisted in the Mediterranean until the latest Miocene, after its
eastern closure the coral diversity decreased (Bosellini and Perrin,
2008). The strong decline of species number of Sporolithon, a
genus of tropical affinity, after the middle Miocene, might also
be due to the isolation from the Indian Ocean (Braga and Bassi,
2007).

The general configuration of the modern Mediterranean was
established in the Pliocene (5.3–2.6 Mya). Paleogeography within
the basin, however, changed substantially due to the uplift of
modern reliefs, with a progressive reduction of the areas invaded
by the sea. Global temperatures continued the decrease initiated
in the middleMiocene (Zachos et al., 2001) and sea level followed
a falling trend modulated by oscillations with amplitude of
several tens of meters (Miller et al., 2011).

Rhodolith beds are scarcer than in Miocene rocks but have
been reported in southern Spain (Aguirre, 1998; Aguirre and
Jiménez, 1998; Aguirre et al., 2012) and northern Italy (Vannucci
et al., 1996; Checconi et al., 2007). Corallines also occur in
vermetid reefs in early Pliocene deposits of northeastern Spain
(Aguirre et al., 2014). Here, Spongites fruticulosus is the main
coralline, differently frommodernMediterranean vermetid reefs,
in which Neogoniolithon brassica-florida is the dominant species
(Boudouresque, 2004; Langar et al., 2011). The Pliocene coralline
morphospecies in the few published accounts are similar to those
of the present-day Mediterranean. More than 90% of the 19–20
species identified in early Pliocene in southern Spain (Aguirre
et al., 2012) and 88% of the 8 reported in the late Pliocene
of Tuscany (Italy) (Checconi et al., 2007) are living in the
Mediterranean and Lusitanian provinces.

Except in areas with intense recent uplift such as Sicily, the
Quaternary (last 2.6 My) shorelines of the Mediterranean at
high sea levels were close to the present-day situation. The few
Pleistocene andHolocene inventories suggest thatMediterranean
Quaternary corallines were not different from the modern ones.
They occurred in build-ups (coralligène de plateau) (Nalin et al.,
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2006; Coletti et al., 2018b; Bracchi et al., 2019b), in rhodolith beds,
and in rhodoliths and debris dispersed in siliciclastic deposits
(Di Geronimo, 1998; Coletti et al., 2018b). The dramatic global
climatic and sea level changes that took place repeatedly during
the Pleistocene (e.g., Rohling et al., 2014) did not substantially
affect coralline assemblages in the Mediterranean, although a few
species might have migrated into the Mediterranean from the
North Atlantic in the colder periods (Di Geronimo, 1998).

FLORISTIC DIVERSITY

Due to the long history of taxonomic studies, it is not surprising
that a plethora of names (both species and intraspecific taxa) has
accumulated for Mediterranean corallines. The nomenclatural
history of these algae is very complicated and would be
impossible to summarize in a concise form. A comprehensive
summary of the names available and information about their
taxonomic validity can be found in the account of Cormaci
et al. (2017) and in AlgaeBase (Guiry and Guiry, 2019). Here
we follow primarily the taxonomy of Cormaci et al. (2017).
These authors reported for the Mediterranean 57 species; with
the addition of Lithophyllum yessoense (recorded by Verlaque,
2001), Pneophyllum cetinanensis (freshwater species described
by Žuljević et al., 2016) and Lithophyllum nitorum (recorded by
Peña et al., 2018), the Mediterranean coralline flora as currently
known consists of 60 species (Table 1). The genus Lithophyllum
is the species-richest (16 species), followed by Mesophyllum (6
species), and Amphiroa, Jania, and Lithothamnion (5 species
each). Twenty-seven species were originally described based on
Mediterraneanmaterial (see type localities inTable 1). For details
of morphology and habitat for each species, see Irvine and
Chamberlain (1994), Bressan and Babbini (2003), and Cormaci
et al. (2017).

MOLECULAR STUDIES OF
MEDITERRANEAN CORALLINES

Taxonomy, Phylogeny, and Geographical
Distribution
There are well-founded reasons to believe that the current
estimate of 60 species is an underestimation of the real species
number. The taxonomy of Mediterranean corallines so far has
been based almost entirely on morphological data. Species
circumscriptions have been based on gross morphology and
morpho-anatomical characters observed in light and electron
microscopy (Hamel and Lemoine, 1953; Huvé, 1962; Bressan,
1974; Bressan et al., 1977; Boudouresque and Verlaque, 1978;
Woelkerling, 1983, 1985; Woelkerling et al., 1985; Athanasiadis,
1989, 1995, 1997, 1999a,b; Basso, 1995; Bressan and Babbini,
1995; Basso et al., 1996, 2004, 2011; Furnari et al., 1996;
Chamberlain, 1997; Cabioch and Mendoza, 1998, 2003; Bressan
and Cabioch, 2004; Basso and Rodondi, 2006; Athanasiadis and
Neto, 2010; Kaleb et al., 2011, 2012; Cormaci et al., 2017).

In recent decades, DNA sequence data have become a
widespread tool in coralline taxonomy and have plaid an
increasingly important role in species circumscriptions. After

the first studies published around the end of the last century
(Bailey and Chapman, 1996, 1998), the last decade has seen an
exponential increase of DNA-based phylogenetic and taxonomic
studies. Investigations of molecular-assisted alpha taxonomy
(MAAT) have now become the normality in coralline taxonomy
and systematics. This approach uses molecular markers to assign
collections to genetic groups followed by detailed morphological
observations (Hind et al., 2014). Such new information has
revolutionized our understanding of coralline diversity and
evolution (Nelson et al., 2015) and has drawn a new scenario
in which some points are now well-established. First, coralline
algae are characterized by high levels of cryptic diversity. The
genetic diversity of these organisms unraveled by DNA sequence
data is much higher than indicated by morpho-anatomical data,
both in geniculate and non-geniculate species. Cryptic diversity
has been shown to abound in marine macroalgae (De Clerck
et al., 2013; Verbruggen, 2014); although corallines have a
morpho-anatomical structure that offers more characters for
species discrimination compared to other red seaweeds, they
are perhaps the group of rhodophytes in which this situation is
most pervasive (Pezzolesi et al., 2019). Second, many morpho-
anatomical features traditionally used to identify corallines are
not reliable for identification purposes. Therefore, a taxonomy
based entirely or mostly on these characters (as it is the
case for the Mediterranean) is likely to be misleading, with
substantial risk of misidentifications and underestimation of
species numbers (e.g., for the genus Lithophyllum Hernandez-
Kantun et al. (2016) estimated a species diversity likely two to
four times greater than currently estimated in each geographic
region). Third, special care must be used in the application of
species names. When cryptic diversity is demonstrated and a
morphospecies turns to represent a complex of cryptic species,
it may be very difficult to decide to which cryptic species
the Linnaean binomial is correctly assigned. This may create
great confusion when different cryptic species have different
geographical distributions. Considering this problem, in absence
of molecular data the practice of identifying specimens from a
certain geographical region with names of species described from
widely separated regions should be abandoned (Pezzolesi et al.,
2019).

The first study presenting molecular data for Mediterranean
corallines was published by Walker et al. (2009). These authors
presented cox1 and SSU rRNA sequences for 2 samples
of Corallina ferreyrae (as Corallina elongata) from northern
Greece in their taxonomic study of European articulated
corallines. At present, there are in GenBank 1153 sequences
obtained from Mediterranean corallines, which were produced
in 18 different studies (among which De Jode et al., 2019
provided the largest contribution, 812 sequences; Table S1).
These sequences were generated by PCR amplification and
Sanger sequencing of selected markers. The plastid gene of
the photosystem II protein D1 (psbA), the mitochondrial
COI-5P fragment of the cytochrome c oxydase I gene, the
mitochondrial cox2,3 spacer, and the nuclear genes of the small
subunit (SSU) and large subunit (LSU) of the ribosomal RNA
have been the main markers used (Table S1). To date, the
transcriptomic data presented by De Jode et al. (2019) are the
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TABLE 1 | Species of coralline algae reported for the Mediterranean Sea and currently regarded as taxonomically valid.

Species Synonyms frequently used

in the mediterranean

literature

Habit Type locality Known distribution in the

mediterranean

Important references

Amphiroa beauvoisii
J.V. Lamouroux

Geniculate Portugal Widespread. SP, FR, IT, MA, CR,
TK, CY, SY, IL, TU, AG, MO

Cormaci et al., 2017

Amphiroa cryptarthrodia
Zanardini

Geniculate Trieste (Italy), Istria and
Dalmatia (Croatia)

Reported as widespread, but in
need of reassessment due to
previous confusion with A. rubra.
SP, FR, IT, MA, SL, CR, AL, GR,
TK, CY, SY, LE, IL, LI, TU, AG, MO

Rosas-Alquicira et al., 2010;
Cormaci et al., 2017

Amphiroa fragilissima
(Linnaeus) J. V. Lamouroux

Geniculate “In Indiis”
(probably Jamaica)

Poorly-known species, reported
only from some areas in the
western and central
Mediterranean. SP, FR, IT, AG

Cormaci et al., 2017

Amphiroa rigida
J.V. Lamouroux

Geniculate Mediterranean Sea Widespread. SP, FR, IT, MA, CR,
AL, GR, TK, CY, SY, LE, IL, EG,
LI, TU, AG, MO

Cormaci et al., 2017

Amphiroa rubra
(Philippi) Woelkerling

Geniculate Sicily Rarely recorded. IT, TK. Cormaci et al., 2017

Boreolithon vanheurckii
(Chalon) A.S. Harvey et
Woelkerling

Melobesia vanheurckii
(Heydrich) De Toni

Encrusting St. Brelade, Jersey,
Channels Islands, U.K.

Rarely recorded. SP, IT Irvine and Chamberlain,
1994

Choreonema thuretii
(Bornet) Schmitz

Filamentous
endophytic

Pointe de
Querqueville, France

Widespread, more common in the
western and central
Mediterranean than in the
eastern. SP, FR, IT, MA, SL, CR,
AL, GR, TK, CY, AG, MO

Hamel and Lemoine, 1953;
Irvine and Chamberlain,
1994

Corallina ferreyrae E. Y.
Dawson, Acleto et Foldvik

Corallina caespitosa Walker,
Brodie et L.M. Irvine

Geniculate Pucusana, Peru All records as C. caespitosa.
Rarely reported, but probably
much more common than the
current records suggest. SP, FR,
IT, GR

Walker et al., 2009; Pardo
et al., 2015; Williamson
et al., 2015; Bustamante
et al., 2019

Corallina officinalis Linnaeus Geniculate “Hab. O. Eur.”
(European seas)

Widespread. SP, FR, IT, MA, SL,
CR, AL, GR, TK, CY, SY, IL, EG,
LI, TU, AG, MO

Brodie et al., 2013; Pardo
et al., 2015; Williamson
et al., 2015

Ellisolandia elongata
(J. Ellis et Solander) K. Hind
et G.W. Saunders

Corallina elongata J. Ellis et
Solander; Corallina
mediterranea
Areschoug

Geniculate Cornwall, U.K. Widespread. SP, FR, IT, MA, CR,
AL, GR, TK, CY, SY, LE, IL, EG,
LI, TU, AG, MO

Irvine and Chamberlain,
1994; Brodie et al., 2013;
Pardo et al., 2015

Harveylithon rupestre
A. Rösler, Perfectti, V. Peña
et J. Braga

Hydrolithon rupestre
(Foslie) Penrose

Encrusting Ocean Beach, Phillip
Island, Victoria, Australia

In the Mediterranean known only
from Vis Island, Croatia.
Considered an introduction from
tropical regions of the southern
hemisphere

Wolf et al., 2015

Hydrolithon boreale
(Foslie) Y.M. Chamberlain

Fosliella farinosa var.
solmsiana (Falkenberg)
W.R. Taylor

Encrusting Roundstone, Co.
Galway, Ireland

Reported mostly from the western
and central Mediterranean, rarely
from the eastern. SP, FR, IT, CR,
GR, TU

Irvine and Chamberlain,
1994

Hydrolithon cruciatum
(Bressan) Y.M. Chamberlain

Fosliella cruciata Bressan Encrusting Gulf of Trieste,
Adriatic Sea

Reported mostly from the western
and central Mediterranean, rarely
from the eastern. SP, FR, IT, MA,
SL, GR, CY

Irvine and Chamberlain,
1994; Bressan and Babbini,
2003

Hydrolithon farinosum (J.V.
Lamouroux) Penrose et Y.M.
Chamberlain

Fosliella farinosa (J.V.
Lamouroux) M. Howe

Encrusting Mediterranean Sea Widespread. SP, FR, IT, MA, SL,
CR, AL, GR, TK, CY, SY, LE, IL,
EG, LI, TU, AG, MO

Irvine and Chamberlain,
1994; Cormaci et al., 2017

Jania adhaerens
J.V. Lamouroux

Geniculate Mediterrranean Sea Widespread. SP, FR, IT, GR, CY,
IL, EG, TU, AG, MO

Cormaci et al., 2017

Jania longifurca Zanardini ex
Zanardini

Geniculate Harbor of Zadar, Croatia Widespread. SP, FR, IT, MA, CR,
GR, TK, CY, SY, IL, EG, LI, TU,
AG, MO

Cormaci et al., 2017

(Continued)
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TABLE 1 | Continued

Species Synonyms frequently used

in the mediterranean

literature

Habit Type locality Known distribution in the

mediterranean

Important references

Jania rubens
(Linnaeus) J.V. Lamouroux

Geniculate “In Oceano Europaeo”
(European seas)

Widespread. SP, FR, IT, MA, SL,
CR, AL, GR, TK, CY, SY, LE, IL,
EG, LI, TU, AG, MO

Irvine and Chamberlain,
1994; Cormaci et al., 2017

Jania squamata
(Linnaeus) J.H. Kim, Guiry et
H.G. Choi

Haliptilon squamatum
(Linnaeus) H.W. Johansen,
L.M. Irvine et A. Webster

Geniculate “In O. Europaeo”
(European seas)

Widely reported but many records
in need of reassessment, due to
possible confusion with Corallina
officinalis and Elisolandia
elongata. FR, IT, GR, TK, CY, TU

Irvine and Chamberlain,
1994; Cormaci et al., 2017

Jania virgata
(Zanardini) Montagne

Corallina granifera J. Ellis et
Solander;
Haliptilon virgatum (Zanardini)
Garbary et H.W. Johansen

Geniculate Not designated in the
protologue, but the
original material was
collected from the
Adriatic Sea

Widespread. SP, FR, IT, MA, SL,
CR, AL, GR, TK, SY, LE, IL, EG,
LI, TU, AG, MO

Bressan and Babbini, 2003;
Cormaci et al., 2017

Lithophyllum byssoides
(Lamarck) Foslie

Lithophyllum lichenoides
Philippi; Goniolithon
byssoides (Lamarck) Foslie

Encrusting. Effectively unknown (“La
Manche”; see Pezzolesi
et al., 2017)

Common in the western and
central Mediterranean, rare in the
eastern Mediterranean. SP, FR, IT,
MA, CR, AL, GR, TK, IL, EG, TU,
AG, MO

Chamberlain, 1997;
Verlaque, 2010; Pezzolesi
et al., 2017

Lithophyllum corallinae (P.L.
et H.M. Crouan) Heydrich

Titanoderma corallinae (P.L. et
H.M. Crouan) Woelkerling,
Y.M. Chamberlain et P.C. Silva

Encrusting. Banc du Chateau and
Baie de La Ninon,
Brest, France

Widespread. SP, FR, IT, SL, CR,
GR, TK, CY, LI, TU

Irvine and Chamberlain,
1994

Lithophyllum cystoseirae
(Hauck) Heydrich

Titanoderma cystoseirae
(Hauck) Woelkerling, Y.M.
Chamberlain et P.C. Silva

Encrusting Adriatic Sea Widespread. SP, FR, IT, MA, SL,
CR, GR, TK, CY, IL, LI, TU, AG,
MO

Bressan and Babbini, 2003;
Cormaci et al., 2017

Lithophyllum decussatum
(J. Ellis et Solander) Philippi

Encrusting Coast of Portugal Rare, known only from the
western and central
Mediterranean. SP, FR, IT, LI, MO.

Cormaci et al., 2017

Lithophyllum dentatum
(Kützing) Foslie

Encrusting, or
unattached
forming
rhodoliths

Naples, Italy Common in the western and
central Mediterranean, rare in the
eastern Mediterranean. SP, FR, IT,
MA, CR, AL, GR, TU, AG, MO

Woelkerling, 1985; Bressan
and Babbini, 2003

Lithophyllum hibernicum
Foslie

Encrusting Fahy Bay, Ballynakill
Harbor, Co.
Galway, Ireland

Presence in the Mediterranean
demonstrated by DNA sequence
data. Currently documented for
SP and FR, but probably more
widely distributed

Hernandez-Kantun et al.,
2015a

Lithophyllum incrustans
Philippi

Encrusting, or
unattached
forming
rhodoliths

Sicily Widespread, but many records
should be reassessed based on
DNA sequence data. SP, FR, IT,
MA, SL, CR, AL, GR, TK, SY, LE,
EG, LI, TU, AG, MO

Hernandez-Kantun et al.,
2015a

Lithophyllum nitorum Encrusting Port Erin Harbor, Isle of
Man, U.K.

Presence in the Mediterranean
demonstrated by DNA sequence
data. Currently documented for
SP, but probably more widely
distributed

Irvine and Chamberlain,
1994; Peña et al., 2018

Lithophyllum orbiculatum
(Foslie) Foslie

Encrusting Kristiansund, Norway Uncommon, reported mostly from
the western and central
Mediterranean, rarely from the
eastern. SP, FR, IT, GR, TK, AG,
TU

Irvine and Chamberlain,
1994

Lithophyllum papillosum
(Zanardini ex Hauck) Foslie

Dermatolithon papillosum
(Zanardini ex Hauck) Foslie;
Goniolithon papillosum
(Zanardini ex Hauck) Foslie

Encrusting West coast of Susak
Island, Croatia

Reported mostly from the western
and central Mediterranean, rarely
from the eastern. SP, FR, IT, CR,
GR, TK, AG, MO

Cormaci et al., 2017

(Continued)
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TABLE 1 | Continued

Species Synonyms frequently used

in the mediterranean

literature

Habit Type locality Known distribution in the

mediterranean

Important references

Lithophyllum pustulatum
(J.V. Lamouroux) Foslie

Dermatolithon pustulatum
(J.V. Lamouroux) Foslie;
Titanoderma pustulatum (J.V.
Lamouroux) Nägeli

Encrusting France Widespread. SP, FR, IT, MA, SL,
CR, GR, TK, CY, SY, LE, EG, LI,
TU, AG, MO

Irvine and Chamberlain,
1994; Cormaci et al., 2017

Lithophyllum racemus
(Lamarck) Foslie

Unattached,
forming
rhodoliths/maërl

Capri, Gulf of Naples, Italy Reported mostly from the central
Mediterranean. SP, FR, IT, MA,
SL, CR, AL, GR, LI, TU, AG

Basso et al., 1996; Cormaci
et al., 2017

Lithophyllum stictiforme
(Areschoug) Hauck

Pseudolithophyllum
expansum (Philippi) Me.
Lemoine; Pseudolithophyllum
cabiochae Boudouresque et
Verlaque;
Lithophyllum cabiochae
(Boudouresque et Verlaque)
Athanasiadis;
Lithophyllum frondosum
(Dufour) Furnari, Cormaci
et Alongi

Encrusting Mediterranean Sea Widespread. SP, FR, IT, MA, SL,
CR, AL, GR, TK, SY, IL, EG, LI,
TU, AG, MO

Athanasiadis, 1999a

Lithophyllum trochanter
(Bory) Huvé ex Woelkerling

Titanoderma trochanter (Bory)
Benhissoune, Boudouresque,
Perret-Boudouresque
et Verlaque

Encrusting Greece Warmer parts of the
Mediterranean. Most common in
the eastern Mediterranean,
probably absent in the western;
records from France and Algeria
probably refer to L. woelkerlingii.
FR, IT, CR, AL, GR, CY, SY, IL, LI

Bressan and Cabioch,
2004; Cormaci et al., 2017

Lithophyllum woelkerlingii
Alongi, Cormaci et Furnari

Titanoderma ramosissimum
(Heydrich) Bressan et Cabioch

Encrusting Algeria SP, FR, AG. Distribution in need of
reassessment due to the previous
confusion with L. trochanter

Bressan and Cabioch,
2004; Cormaci et al., 2017

Lithophyllum yessoense
Foslie

Encrusting Yoichi, Shiribeshi
Province,
Hokkaido, Japan

FR. Known only from the Thau
Lagoon, where it was introduced
with Asian oysters and is now
well-established

Verlaque, 2001

Lithothamnion corallioides
(P.L. et H.M. Crouan) P.L. et
H.M. Crouan

Unattached,
forming
rhodoliths/maërl

Rade de Brest, France Widespread. SP, FR, IT, MA, CR,
GR, CY, LI, TU

Irvine and Chamberlain,
1994

Lithothamnion crispatum
Hauck

Encrusting, or
unattached
forming
rhodoliths/maërl

Rovinj, Croatia Widespread, in general more
common in the western and
central Mediterranean than in the
eastern. SP, FR, IT, CR, GR, TK,
LI, AG

Basso et al., 2011; Cormaci
et al., 2017

Lithothamnion minervae
Basso

Unattached,
forming
rhodoliths/maërl

Pontian Islands, Italy. Central Mediterranean; FR, IT,
MA. Possibly underrecorded due
to the deep subtidal habitat

Basso, 1995; Basso et al.,
2004; Cormaci et al., 2017

Lithothamnion sonderi
Hauck

Encrusting Helgoland, Germany Not common in the
Mediterranean, but reported with
wide distribution. SP, FR, IT, GR,
IL, TU

Irvine and Chamberlain,
1994

Lithothamnion valens
Foslie

Unattached,
forming
rhodoliths/maërl

Probably Adriatic Sea, see
Woelkerling et al. (2005)

Western and central
Mediterranean; SP, FR, IT, CR,
TU. Possibly underrecorded due
to the deep subtidal habitat

Basso, 1995, Woelkerling
et al., 2005

Melobesia membranacea
(Esper) J.V. Lamouroux

Epilithon membranaceum
(Esper) Heydrich

Encrusting West coast of France Widespread. SP, FR, IT, SL, CR,
GR, TK, CY, SY, IL, TU, AG, MO

Chamberlain, 1985; Irvine
and Chamberlain, 1994

Mesophyllum expansum
(Philippi) Cabioch et
Mendoza

Encrusting Sicily SP, FR, IT, GR. Records of this
species for other countries require
reassessment; most are probably
incorrect and should be referred
to Lithophyllum stictiforme

Athanasiadis and Neto,
2010; Peña et al., 2015a

(Continued)
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TABLE 1 | Continued

Species Synonyms frequently used

in the mediterranean

literature

Habit Type locality Known distribution in the

mediterranean

Important references

Mesophyllum lichenoides (J.
Ellis) M.me Lemoine

Encrusting,
occasionally
unattached

Cornwall, U.K. Reported as widespread, but all
Mediterranean records of this
species need reassessment
based on DNA sequence data.
SP, FR, IT, CR, AL, GR, TK, CY,
LE, LI, TU, AG, MO

Irvine and Chamberlain,
1994; Peña et al., 2015a

Mesophyllum macedonis
Athanasiadis

Encrusting Pigeon Cave, Sithonia
Peninsula, Greece

Known only from the type locality.
GR

Athanasiadis, 1999b

Mesophyllum macroblastum
(Foslie) W.H. Adey

Encrusting Gulf of Naples, Italy Western and central
Mediterranean. SP, FR, IT

Kaleb et al., 2011; Peña
et al., 2015a

Mesophyllum philippii
(Foslie) W.H. Adey

Lithothamnion philippii Foslie Encrusting, or
unattached
forming
rhodoliths/maërl

Banyuls-sur-Mer, France Reported mostly from the western
and central Mediterranean, rarely
from the eastern. SP, FR, IT, CR,
GR, CY, LI, AG, MO

Cormaci et al., 2017

Mesophyllum sphaericum V.
Peña, Bárbara, W.H. Adey,
Riosmena-Rodríguez et
Choi

Unattached,
forming
rhodoliths/maërl;
occasionally
encrusting

Benencia Island, Ria de
Arousa, Galicia, Spain

SP, IT. Presence in the
Mediterranean demonstrated
using DNA sequence data;
distribution probably much wider
than currently known

Peña et al., 2015a

Neogoniolithon
brassica-florida
(Harvey) Setchell et R.L.
Mason

Neogoniolithon mamillosum
(Hauck) Setchell et Mason
nom. illeg., is a species widely
cited in the Mediterranean
literature, for which the
distinction from N.
brassica-florida is unclear.
Cormaci et al. (2017) consider
it a species of uncertain
identity, in need of
taxonomic reassessment

Encrusting, or
unattached
forming
rhodoliths/maërl

Algoa Bay, Cape Province,
South Africa.

Widely recorded, but
Mediterranean records of this
species in need of reassessment
based on DNA sequence data.
SP, FR, IT, CR, AL, GR, TK, CY,
SY, LE, IL, TU, AG, MO

Bressan and Babbini, 2003;
Cormaci et al., 2017

Phymatolithon calcareum
(Pallas) W.H. Adey et D.L.
McKibbin ex Woelkerling
et L.M. Irvine

Unattached,
forming
rhodoliths/maërl;
occasionally
encrusting

Falmouth Harbor,
Cornwall, U.K.

Widespread. SP, FR, IT, MA, CR,
GR, LE, IL, LI, TU, AG, MO

Irvine and Chamberlain,
1994; Wolf et al., 2016

Phymatolithon lamii
(M.me Lemoine) Y.M.
Chamberlain

Encrusting Pointe de Cancaval,
Rance, France

Reported in the Mediterranean
only from the Gulf of Trieste
(northern Adriatic Sea). IT

Irvine and Chamberlain,
1994; Kaleb et al., 2012

Phymatolithon lenormandii
(Areschoug) W.H. Adey

Lithothamnion lenormandii
(Areschoug) Foslie

Encrusting Arromanches-le-Bains,
Calvados, France

Widespread. SP, FR, IT, MA, SL,
CR, GR, TK, SY, LE, EG, LI, AG,
MO

Irvine and Chamberlain,
1994; Cormaci et al., 2017

Phymatolithon lusitanicum
V. Peña

Unattached,
forming
rhodoliths/maërl

Con de Pego, Ria de Vigo,
Galicia, Spain

This recently described species is
known from the Alboran Sea and
the Balearic Islands, but its
distribution in the Mediterranean
is probably wider. SP

Peña et al., 2015b

Pneophyllum cetinanensis
Kaleb, Žuljević, et V. Peña

Encrusting River Cetina, Croatia Freshwater species, known only
from the type locality. CR

Žuljević et al., 2016

Pneophyllum confervicola
(Kützing) Y.M. Chamberlain

Encrusting Trieste, Italy Widespread. SP, FR, IT, SL, CR,
GR, TK, TU

Irvine and Chamberlain,
1994

Pneophyllum coronatum
(Rosanoff) Penrose

Pneophyllum caulerpae
(Foslie) P.L. Jones
et Woelkerling

Encrusting Port Phillip Bay,
Victoria, Australia

Western and central
Mediterranean. SP, FR, IT, MA, LI,
TU, AG

Irvine and Chamberlain,
1994;
Cormaci et al., 2017

Pneophyllum fragile
Kützing

Fosliella lejolisii (Rosanoff)
M. Howe

Encrusting Mediterranean Sea Widespread. SP, FR, IT, MA, SL,
CR, GR, TK, CY, SY, LE, TU, AG,
MO

Irvine and Chamberlain,
1994; Cormaci et al., 2017

(Continued)
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TABLE 1 | Continued

Species Synonyms frequently used

in the mediterranean

literature

Habit Type locality Known distribution in the

mediterranean

Important references

Pneophyllum zonale (P.
Crouan et H. Crouan) Y.M.
Chamberlain

Fosliella zonalis (P. Crouan et
H. Crouan) J. Feldmann;
Melobesia zonalis P. Crouan
et H. Crouan) Foslie

Encrusting Rade de Camaret,
Brest, France

Species of uncertain taxonomic
identity. SP, FR, IT, MAL, GR, TU

Feldmann, 1939; Cormaci
et al., 2017

Spongites fruticulosus
Kützing

Encrusting, or
unattached
forming
rhodoliths/maërl

Mediterranean Sea Widespread. SP, FR, IT, SL, CR,
GR, TK, CY, LI, TU, AG, MO

Woelkerling, 1985; Basso
and Rodondi, 2006; Rösler
et al., 2016

Sporolithon ptychoides
Heydrich

Encrusting,
occasionally
unattached

Sinai Peninsula, Egypt Western and central
Mediterranean. SP, FR, IT, MA

Cormaci et al., 2017;
Richards et al., 2017

Tenarea tortuosa (Esper)
M.me Lemoine

Lithophyllum tortuosum
(Esper) Foslie

Encrusting Mediterranean Sea Central and eastern
Mediterranean. Records of this
species from the western
Mediterranean are most probably
misidentifications of Lithophyllum
byssoides. IT, CR, AL, GR, TK,
CY, SY, LE

Woelkerling et al., 1985;
Bressan and Babbini, 2003;
Cormaci et al., 2017

For details of basionyms and taxonomic synonymies see Cormaci et al. (2017) and Guiry and Guiry (2019). Codes for countries: SP, Spain; FR, France; IT, Italy; MA, Malta; SL, Slovenia;
CR, Croatia; AL, Albania; GR, Greece; TK, Turkey; CY, Cyprus; SY, Syria; LE, Lebanon; IL, Israel; EG, Egypt; LI, Libya; TU, Tunisia; AG, Algeria; MO, Morocco. Distribution information
based on Bressan and Babbini (2003) and Guiry and Guiry (2019, and references therein). Herein we define western Mediterranean as the part of the basin extending from the Strait of
Gibraltar to the western coasts of Corsica and Sardinia; eastern Mediterranean the part extending from the line Cape Matapan (Greece)-Benghazi (Libya) to the Levant States (Syria,
Lebanon, Israel); and central Mediterranean the part comprised between western and eastern Mediterranean.

only molecular data other than Sanger sequences produced from
Mediterranean corallines.

Of the 18 studies, only 8 focused totally or mainly on
Mediterranean taxa: Hernandez-Kantun et al. (2015a), Peña
et al. (2015a), Wolf et al. (2015, 2016), Žuljević et al. (2016),
Pezzolesi et al. (2017, 2019), and De Jode et al. (2019). Five
of these (Peña et al., 2015a; Žuljević et al., 2016; Pezzolesi
et al., 2017, 2019; De Jode et al., 2019) provided most of the
DNA sequence data available (Table S1) and have particularly
contributed to our current understanding of the genetic diversity
of Mediterranean corallines.

The integrative study of Peña et al. (2015a) on the
genus Mesophyllum, based on molecular (COI-5P, psbA)
and morphological data redefined the distribution of four
species in Atlantic Europe and the Mediterranean. M.
expansum, M. macroblastum, and M. sphaericum were
detected in the Mediterranean. The results suggested that
M. expansum is a major contributor to bioconstruction
of coralligenous concretions and occurs also in the
Atlantic Iberian Peninsula and Macaronesia. This species
was found from the intertidal to −50m, with a positive
correlation between depth and the maximum sea surface
temperature, suggesting that this species may mitigate future
consequences of global warming by changes in depth profile.
By contrast, M. macroblastum appears to be restricted to
the Mediterranean. Two Mesophyllum species reported
in the Mediterranean literature (M. lichenoides and M.
alternans) were not recorded and their presence in the
Mediterranean requires confirmation based on molecular data.
The Atlantic Iberian M. sphaericum was first reported in the

Mediterranean, under two different growth-forms (rhodolith
and crustose).

The study of Pezzolesi et al. (2017) on the intertidal
bioconstructor Lithophyllum byssoides was the first
phylogeographic investigation of a Mediterranean coralline.
Using psbA and cox2,3 sequences, these authors unraveled a high
haplotypic diversity and detected 7 lineages, whose geographical
distribution did not follow the main biogeographical boundaries
recognized in the central Mediterranean. For several lineages the
distribution was restricted to one or few sites. The results also
showed a clear genetic differentiation between Mediterranean
and Atlantic Lithophyllum byssoides, suggesting a likely
separation at species level (which could not be confirmed due to
insufficient data from the Atlantic).

The two recent studies of Pezzolesi et al. (2019) and De
Jode et al. (2019) unraveled a striking case of cryptic diversity:
the Lithophyllum stictiforme complex. Lithophyllum stictiforme
and Lithophyllum cabiochiae have been long known as common
species in the Mediterranean subtidal, where they are major
contributors to the formation of coralligenous concretions
(Athanasiadis, 1999a; see also Boudouresque and Verlaque, 1978;
Furnari et al., 1996). Whereas some authors have separated
these species, others (Cormaci et al., 2017; Guiry and Guiry,
2019) consider L. cabiochiae and L. stictiforme conspecific.
Pezzolesi et al. (2019), sequencing three markers (cox2,3, psbA,
rbcL) in samples collected from many sites in the western and
central Mediterranean, concluded that Lithophyllum stictiforme
represents a complex of at minimum 13 cryptic species. De Jode
et al. (2019), combining Sanger sequencing (COI, psbA, LSU)
and transcriptomics, reached very similar conclusions, showing
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that on the French coasts specimens with the L. stictiforme/L.
cabiochiae morphology represent a complex of 8 cryptic species.
De Jode et al. (2019) demonstrated also the reproductive isolation
of these species and documented differences in their depth range.
Both Pezzolesi et al. (2019) and De Jode et al. (2019) noted that
for several cryptic species the geographical distribution appears
restricted to one particular area or site.

Pezzolesi et al. (2017, 2019) interpreted the patterns observed
for L. byssoides and the L. stictiforme complex as consequences
of past hydrogeological and climatic events, in combination
with modern oceanographic features. The fossil documentation
suggests that these algae have existed in the Mediterranean,
respectively, since the Messinian (7.3–5.3 Mya, Braga and
Aguirre, 2001; Braga et al., 2009) and the late Langhian
(14.5 Mya, Hrabovský et al., 2016). Spatial fragmentation of
populations that took place during the Messinian Salinity Crisis
(5.96–5.33 Mya) may have stimulated genetic differentiation,
and, in the case of the Lithophyllum stictiforme complex,
allopatric speciation. Subsequent climatic events such as the
Quaternary glaciations (2.6 Mya to present), which also altered
the Mediterranean coastline and partially separated different
sectors, probably further contributed to shape the current
distribution of these algae.

The relevance of past climatic events in the diversification
of Mediterranean corallines is highlighted by a discovery
of particular interest made in recent years, i.e., the first
known freshwater coralline alga: Pneophyllum cetinaensis,
endemic to the Cetina River, Croatia (Žuljević et al.,
2016). This species, which is fully adapted to freshwater
conditions, descends from an ancestor that was preadapted
to changes in water salinity produced in landlocking events
such as the last glaciation (120,000–20,000 years ago). In
addition, molecular data obtained in this study exclude
a close phylogenetic relationship between the freshwater
P. cetinaensis and other Mediterranean and Atlantic
Pneophyllum species.

Among other studies, Hernandez-Kantun et al. (2015a)
reassessed the taxonomic identity of the generytype species
Lithophyllum incrustans using a partial rbcL sequence obtained
from the lectotype specimen (epizoic on a sea snail shell,
collected in Sicily). The results re-defined the distribution of L.
incrustans and highlighted that this is mainly a subtidal species.
The presence in the Mediterranean of Lithophyllum hibernicum
was also demonstrated. Additional data were provided by
Bittner et al. (2011), who sequenced 9 unidentified samples
of Mediterranean corallines in their phylogenetic assessment
of the order Corallinales (psbA and, in part, COI-5P). Rösler
et al. (2016) published 21 new sequences for Mediterranean
collections, including one for a specimen therein designated
as epitype of Spongites fruticulosus. Additional data produced
new records for the Mediterranean flora: Harveylithon rupestre
(as Hydrolithon rupestre, Wolf et al., 2015); Phymatolithon
lusitanicum (Peña et al., 2015b); the attached encrusting form of
the maerl-forming Phymatolithon calcareum (Wolf et al., 2016);
and Lithophyllum nitorum (Peña et al., 2018). Finally, some
sequences of Mediterranean fossil corallines were published by
Hughey et al. (2008).

Molecular Data and Application of
Taxonomic Names in Mediterranean
Corallines
In situations where cryptic diversity is discovered, the only
definitive solution for a correct application of Linnaean names
is to obtain sequences from the type specimen, the only one to
which a species name is unambiguously attached. In this way,
the type specimen can be linked to one of the lineages recovered
in molecular phylogenies, and the species name will therefore
be attached to that lineage. Fortunately, in the case of coralline
algae this approach has generally worked. In air-dried coralline
specimens, DNA is preserved in a form that is often adequate to
obtain partial sequences for one or more markers (either by high-
throughput sequencing methods or by nested PCR performed
with adequate equipment). Sequences of sufficient quality have
been produced from many type specimens, allowing an accurate
assessment of many species (e.g., Adey et al., 2015; Hernandez-
Kantun et al., 2015a, 2016; Hind et al., 2016; Richards et al.,
2017, 2018; Gabrielson et al., 2018; Peña et al., 2018). Conversely,
for some species to obtain sequences from type specimens is
impossible (either because the type material is in very limited
amount, or because it is formol-preserved). In these cases, a
different specimen should be sequenced and used as molecular
reference for the species. Such specimen should be collected at the
type locality, and the details of its morphology and habitat should
be in agreement with the protologue of the original description.
If the nature of the original type is ambiguous, this specimen
can be designated as epitype following the article 9.9 of the ICN
(Turland et al., 2018).

For corallines occurring in the Mediterranean, an assessment
based on sequences generated from type specimens has been
made for 11 species. Sequences were obtained from holotypes,
lectotypes, or isotypes for Corallina ferreyrae (Bustamante
et al., 2019; previously reported in the Mediterranean as
Corallina caespitosa, Walker et al., 2009), Lithophyllum incrustans
(Hernandez-Kantun et al., 2015a), Lithophyllum nitorum (Peña
et al., 2018), Lithophyllum stictiforme (Pezzolesi et al., 2019),
Mesophyllum sphaericum (Peña et al., 2011), Phymatolithon
lusitanicum (Peña et al., 2015b), and Pneophyllum cetinanensis
(Žuljević et al., 2016). For Spongites fruticulosus, Rösler et al.
(2016) generated SSU, LSU, COI, and 23S sequences from
the epitype specimen. For Corallina officinalis and Ellisolandia
elongata, Brodie et al. (2013) designated epitype specimens,
from which they obtained cox1 and rbcL sequences. Finally,
Hernandez-Kantun et al. (2015b) produced SSU and psbA
sequences from the neotype of Phymatolithon calcareum
(designated by Woelkerling and Irvine, 1986).

PRESENT-DAY DISTRIBUTION AND
BIOGEOGRAPHY

Our knowledge of the distribution of Mediterranean corallines
is largely based on records derived from morpho-anatomical
identifications (see Bressan and Babbini-Benussi, 1996, for
a synthesis of the information available until the late 90s
of the last century). Six species were recorded in recent

Frontiers in Marine Science | www.frontiersin.org 14 November 2019 | Volume 6 | Article 723

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rindi et al. State of Knowledge of Mediterranean Corallines

years based on molecular data: Corallina ferreyrae, reported
as the heterotypic synonym C. caespitosa (Walker et al.,
2009), Harveylithon rupestre (Wolf et al., 2015), Lithophyllum
hibernicum (Hernandez-Kantun et al., 2015a), Lithophyllum
nitorum (Peña et al., 2018),Mesophyllum sphaericum (Peña et al.,
2015a), and Phymatolithon lusitanicum (Peña et al., 2015b).

Based on the present knowledge, 7 species are Mediterranean
endemics (Amphiroa rubra, Lithophyllum trochanter, L.
woelkerlingii, Lithothamnion minervae, L. valens, Mesophyllum
macedonis, Pneophyllum cetinaensis) (Table 1). In terms of
distribution, it is possible to recognize three main groups. Some
species are clearly widespread throughout the Mediterranean,
having been recorded in all regions of the basin. This group
includes 27–28 species, which usually also occur on Atlantic
European coasts and in Macaronesia; examples are Ellisolandia
elongata, Hydrolithon farinosum, Jania rubens, Lithophyllum
incrustans, and Pneophyllum fragile. A smaller number of species
(16–17) occurs only in the western and central Mediterranean, or
is much more common there than in the eastern Mediterranean.
Examples are Choreonema thuretii, Mesophyllum macroblastum,
Lithophyllum byssoides, L. dentatum, and Lithothamnion valens.
Finally, two species (Lithophyllum trochanter and Tenarea
tortuosa) are clearly associated with the warmer parts of the basin
and reliable records refer mostly to the eastern Mediterranean.
At present, two species are considered introduced. Lithophyllum
yessoense was recorded by Verlaque (2001) from the Lagune de
Thau (Hérault, France), a well-known hotspot of introduction
of alien species; the species was probably introduced from
the North Pacific by transfer of Asian oysters. Harveylithon
rupestre was recorded by Wolf et al. (2015) from Vis Island
(Croatia) (as Hydrolithon rupestre). These authors believed that
the species was probably introduced in the area by shellfish
aquaculture activities.

It can be expected, however, that future studies incorporating
molecular data will lead to geographical reassessments for many
species. The main change that we expect is an increase in
the number of endemic species. This expectation is based
on theoretical grounds (the hydrogeological history of the
Mediterranean in the last 15 My and the high number of
endemics in many animal groups) and on the results of some
recent studies. For the Lithophyllum stictiforme complex, De Jode
et al. (2019) and Pezzolesi et al. (2019) discovered numerous
cryptic species for which the present known distribution
is restricted to the Mediterranean. Although some of these
species surely will be shown to occur in neighboring Atlantic
regions, we feel that almost certainly several others will turn
to be real Mediterranean endemics. Lithophyllum byssoides
is another candidate for Mediterranean endemicity: Pezzolesi
et al. (2017) showed that Mediterranean samples of this species
are genetically distinct from Atlantic samples to an extent
that may justify separation at species level. If future studies
incorporating additional extra-Mediterranean samples confirm
this separation, the Mediterranean population will have to be
considered an endemic species. The same situation applies to
Mesophyllum macroblastum: Peña et al. (2015a) noted that extra-
European specimens identified with this name were resolved
in molecular analyses as different species from Mediterranean

specimens (which can be considered the real M. macroblastum:
the type locality is the Gulf of Naples, Italy); thus, the
occurrence of this species out of the Mediterranean has to be
definitively demonstrated yet. Pardo et al. (2015), in a taxonomic
investigation focusing on Corallina and Ellisolandia of the
Atlantic Iberian Peninsula, discovered a species of Corallina with
distribution encompassing Atlantic and Mediterranean shores
(for which they did not provide a formal description and named
it Corallina sp.2). Pardo et al. (2015) remarked that Atlantic and
Mediterranean forms of this species showed clear morphological
differences and had different COI-5P haplotypes. It cannot be
discounted that future studies will lead to separation at species
level between the two forms; in that case, theMediterranean form
would probably be an endemic Mediterranean. Based on these
examples we suggest that, for all species originally described from
the Mediterranean, the distribution should be reassessed using
DNA sequence data produced from the whole geographic range.

REPRODUCTIVE BIOLOGY

The life histories of Mediterranean corallines have not been
investigated in detail using culture studies. Evidence based
on observation of field-collected material suggests that these
algae have the triphasic life history typical of later-divergent
florideophytes, with one haploid generation reproducing
sexually (the gametophyte) and two diploid generations
reproducing asexually by spores (the carposporophyte and the
tetrasporophyte) (Graham et al., 2018).

Nearly all information available on the reproductive biology of
Mediterranean coralline is based on observation of reproductive
specimens in the field and in the laboratory. The only
information based on molecular evidence has been provided by
De Jode et al. (2019). Analyzing their multilocus genotypes for
clonality, these authors documented sexual reproduction in the
Lithophyllum stictiforme/cabiochiae complex and demonstrated
sexual isolation among the 8 cryptic species occurring on
French shores. This is to date the only study providing robust
support for the biological species concept in a taxon of
Mediterranean corallines.

In general, observations of reproductive specimens/structures
in Mediterranean corallines are not infrequent. Bressan
and Babbini (2003) provided general information about the
reproductive periods for many species (i.e., reported the months
in which a species is reproductive); however, they did not
specify the source of this information and if they referred to
sexual or asexual phases. Most observations of reproduction
available in the literature have been published as records of
reproductive specimens in field investigations, reporting the
reproductive structures observed (spermatangia, carposporangia,
tetrasporangia, bisporangia; or sexual vs. asexual conceptacles)
(Feldmann, 1939; Cecere et al., 1996; Cormaci et al., 1997, 2000;
Catra et al., 2006; Falace et al., 2011).

Most records are based on observations made in a limited
timespan. Investigations over extended periods are more useful
to define temporal patterns and understand the environmental
factors influencing reproduction, but unfortunately are less
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frequent. Vatova (1948) summarized the reports of fertility
available for the seaweeds of the area of Rovinj (Croatia). Gómez-
Garreta et al. (1982) studied for 2 years the phenology of the
most common seaweeds, including several coralline species, in
four benthic communities in the Balearic Islands. Soto andConde
(1989) made similar observations over a 5 years period at several
sites in southeastern Spain. Overall, inconsistent patterns were
found in these studies, i.e., different reproductive periods were
reported for the same species in the different areas considered.
A common aspect, however, is that reproductive specimens
were more frequently recorded in articulated species (Amphiroa
spp., Jania spp., Ellisolandia elongata) than in encrusting species
(possibly because observation of conceptacles in encrusting
forms is generally more difficult, especially in the field). Another
common feature (remarked by Soto and Conde, 1989) is that
asexual structures were much more frequent than sexual (i.e.,
sporangial conceptacles were more frequently observed than
gametangial conceptacles). This has been reported in many field
studies of red seaweeds, even Mediterranean (Rindi and Cinelli,
2000) and is considered related to the presumed low rate of
fertilization due to absence of flagellate gametes in red algae.

Additional information on reproductive phenology has
been reported separately for few species (usually ecologically
important). For Lithophyllum byssoides, the reproduction
of tetrasporophytes has been reported in March-July at
Marseilles and in February-December in the Balearic Islands;
the reproduction of gametophytes only in autumn (October)
(Verlaque, 2010, based on Huvé, 1956a,b; Gómez-Garreta, 1981;
Chamberlain, 1997). The main period of recruitment for this
species appears to be the autumn (Verlaque, 2010, according to
Huvé, 1954, 1970).

The most detailed studies of reproduction in Mediterranean
corallines focused on forms of coralligenous habitats (Garrabou
and Ballesteros, 2000; Rodriguez-Prieto, 2016). Garrabou and
Ballesteros (2000) studied populations of Lithophyllum and
Mesophyllum (identified as L. frondosum and M. alternans,
respectively) in a coralligenous community in Catalonia for 2
years. By photographic sampling, they estimated the percentage
of reproductive specimens throughout the study period (by
observation of mature conceptacles in their images). They
found no seasonal trends in Mesophyllum, for which ∼25%
of the specimens had mature conceptacles in each sampling
date. Conversely, in Lithophyllum the percentage of thalli with
mature conceptacles was significantly higher in early autumn
in both years. Based on these differences and differences in
growth patterns, Garrabou and Ballesteros (2000) remarked the
ecological differences between the two species, concluding that
Mesophyllum has a more opportunistic life strategy, whereas
Lithophyllum has a more conservative strategy. Rodriguez-
Prieto (2016) carried out experiments in controlled conditions
(temperature, daylength and photon irradiance) on Lithophyllum
stictiforme from Catalonia. She concluded that an irradiance
of 20 µmol photons m−2 s−1 combined with 10–12◦C and a
8:16 h light:dark regime was the most favorable condition for
the species. In culture, the conceptacles matured in conditions
simulating late summer-early autumn, in agreement with the
behavior of field specimens. Rodriguez-Prieto (2016) noted that,

in culture, maturation and release of reproductive cells are rare
events, since no development of new conceptacles was observed
after the release of reproductive cells.

Information on reproduction by vegetative propagules or
thallus fragmentation in Mediterranean corallines is very
limited. Coppejans (1978) documented multicellular vegetative
propagules in Hydrolithon farinosum (as Fosliella farinosa) from
Corsica, describing their development and release (previously
reported only by Solms-Laubach, 1881). Additional records
of these structures in the same species were provided by
Cormaci and Furnari (1988). Thallus fragmentation is frequent
in maerl/rhodolith-forming species, especially branched species
with thin branches such as Lithothamnion corallioides and
Phymatolithon calcareum (Bosence, 1976; Peña et al., 2014). It can
be expected that this type of reproduction plays an important role
in Mediterranean rhodolith beds, but there are no experimental
studies or genetic data that allow generalizations about its relative
contribution compared to reproduction by spores.

No direct information is available about the dispersal of
Mediterranean corallines. Some indirect information can be
inferred from the genomic data of De Jode et al. (2019)
for the most common cryptic species of the Lithophyllum
stictiforme/cabiochiae complex of the French shores. These
authors detected genetic differences at population level that
suggested limited gene flow (and, indirectly, limited dispersal)
even at distances of a few km. Conversely, no significant genetic
differentiation was found between populations occurring in
two different depth ranges (24–31m and 37–46m), suggesting
that depth is not a barrier to dispersal. These conclusions are
consistent with theoretical prediction of a generally limited
dispersal in coralline algae. As for all other rhodophytes, the
principal mean of dispersal is represented by non-flagellate
spores (bispores, carpospores, and tetraspores). These are small-
sized cells with very limited active movement, which are able
to settle only on hard substrata and remain viable for relatively
short periods (Guiry, 1990; Pickett-Heaps et al., 2001). Although
the magnitude of water flow greatly influences their dispersal
(Norton, 1992), it is generally believed that they do not disperse
over long distances. It is likely that long-distance dispersal may
take place in small-sized species (Hydrolithon spp., Pneophyllum
spp.,Melobesia membranacea) that grow as epiphytes on drifting
leaves of Posidonia oceanica or larger seaweeds. This theoretical
prediction, however, needs to be corroborated by population
genetic data.

MICROBIOMES OF MEDITERRANEAN
CORALLINES

Marine macroalgae host a wide range of microbial organisms,
among which bacteria are typically the dominant group.
Bacterial communities associated with seaweeds establish strict
biochemical interactions with their algal hosts and differ
significantly from those found in the surrounding seawater
(Brodie et al., 2016). Epiphytic bacterial communities have been
reported as essential for normal morphological development
of the algal host, and bacteria with antifouling properties are
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thought to protect chemically undefended macroalgae from
detrimental, secondary colonization by other epibionts (Egan
et al., 2012). In the case of some tropical corallines associated with
coral reefs, the microbiome also facilitates the larval settlement of
multiple species of corals (Sneed et al., 2015).

Studies concerning the microbiomes of corallines highlighted
a great diversity of these assemblages (Cavalcanti et al.,
2014; Sneed et al., 2015; Brodie et al., 2016) and suggested
that the associated bacterial communities contribute to
biomineralization and host fitness (Cavalcanti et al., 2014).
Microbiomes are therefore likely to play an important role in the
responses of corallines to long-term climatic changes. Studies
focusing on microbial communities, however, have mostly
concerned encrusting tropical species associated with coral reefs
(Porolithon spp., Hydrolithon spp., Neogoniolithon spp.). Limited
information is available for temperate species and, to date,
only the studies of Ismail-Ben Ali et al. (2012) and Quéré et al.
(2019) considered the microbiomes of Mediterranean corallines.
Ismail-Ben Ali et al. (2012), in a study with pharmacological
focus, isolated 19 bacterial strains from the surface of Jania
rubens. Their results revealed that the main bacterial groups
were Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes
and Firmicutes, and that 36% of the isolates produced antibiotics
effective against Gram + and Gram – bacteria and the
yeast Candida albicans. Quéré et al. (2019), compared the
microbiome of Neogoniolithon brassica-florida affected by
white-band syndrome with that of healthy specimens; they
could not identify a potential causative agent of the disease,
but characterized several opportunistic bacteria colonizing
diseased tissues.

BIOCHEMISTRY AND PHYSIOLOGY

Research on Mediterranean corallines in these fields is relatively
recent. Excluding work focusing on responses to climate change
and ocean acidification, biochemical and physiological research
has considered very few species, mainly articulate. For easiness
of sampling due to its intertidal/shallow subtidal habitat,
Ellisolandia elongata has been a favored target for this type
of investigations.

Early work on this species examined photosynthetic
performances (Häder et al., 1996, 1997), synthesis of chlorophylls
and phycobiliproteins in response to light composition (López-
Figueroa et al., 1989; López-Figueroa and Niell, 1990) and effects
of red and blue light on the N-metabolism (Figueroa, 1993).
Estimates of productivity and calcification rates were provided
by El Haikali et al. (2004) for French populations. Overall, these
studies depicted Ellisolandia elongata as a versatile species,
capable to regulate its pigment content and metabolism based on
quantity and quality of the light irradiation available. It should
be noted, however, that these studies were performed before the
description of Corallina caespitosa (Walker et al., 2009), a species
morphologically similar to Ellisolandia elongata (now considered
a synonym of C. ferreyrae, Bustamante et al., 2019). So, the
taxonomic identity of the material used in these studies should
be reassessed (especially for Häder et al., 1997: these authors

distinguished two morphotypes, sun- and shade-adapted, which
might represent different species).

More recent studies investigated populations of Ellisolandia
elongata from the Alboran Sea, highlighting several metabolic
features that make this alga well-adapted to withstand the
environmental stresses typical of its interidal habitat (Celis-
Plá et al., 2014; Figueroa et al., 2014a; Korbee et al., 2014;
Parages et al., 2014; Stengel et al., 2014). This alga is able to
improve its photoprotective capacity by regulating its content in
mycosporine-like aminoacids (MAAs, compounds well-known
for their photoprotective role in numerous algae) in response
to environmental conditions (Celis-Plá et al., 2014; Korbee
et al., 2014). Stengel et al. (2014) demonstrated a reduction in
the effective photosystem II quantum efficiency in the central
hours of the day, and showed that the highest phycocyanin
content occurred in the evening; Parages et al. (2014) performed
proteomic studies on the same samples and concluded that
mitogen-activated protein kinase (MAPK)-like proteins are
involved in the response of this species to environmental stress.
Figueroa et al. (2014b) argued that the species is resistant to UVB-
radiation thanks to the high reflectance of its calcareous thallus.

Jania rubens has been another common subject for
biochemical work. Biochemical data for samples identified
with this name were provided in several studies performed
mainly by northern African investigators. These examined the
content of chemical contaminants in environmental monitoring
(Al-Masri et al., 2003; Abdallah and Abdallah, 2008; Olgunoglu
and Polat, 2008; Hernández et al., 2011; Laib and Legouchi,
2012), biological activities of algal extracts (Abd-Elnaby, 2010;
Khairy and El-Sheikh, 2015) and biochemical composition in
relation to nutritional value (Polat and Ozogul, 2009, 2013) or for
biodiesel production (El Maghraby and Fakhry, 2015; Soliman
et al., 2018).

RESPONSES OF MEDITERRANEAN
CORALLINES TO CLIMATE CHANGE AND
OCEAN ACIDIFICATION

Approaches Used in the Study of the
Responses of Coralline Algae to Climate
Change and Acidification
Coralline algae are sensitive to changes in temperature and
CO2 conditions and identified as being among the most
vulnerable organisms to ocean acidification, because of the
solubility of their high-magnesium (high-Mg) calcite skeleton
(McCoy and Kamenos, 2015; Martin and Hall-Spencer, 2017).
The responses of Mediterranean corallines to climate change
and ocean acidification have been the subject of several studies
that documented their tolerance or sensitivity to elevated
temperatures and CO2. The effects of elevated CO2 on
Mediterranean coralline algae were studied on single species
(Martin and Gattuso, 2009; Martin et al., 2013a,b), in association
with a small group of taxa (Asnaghi et al., 2013) and at the
community scale (Porzio et al., 2011; Kroeker et al., 2012; Cox
et al., 2015, 2017a,b; Marchini et al., 2019). These investigations
have focused on a few species, mainly restricted to the group
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of (non-geniculate) crustose coralline algae (CCA), including
epiphytic (on seagrass leaves) and engineering (coralligenous
bio-constructors) species. Their response to ocean acidification
and/or warming was studied through a variety of different
approaches, including laboratory and field experiments, in situ
observations in natural volcanic CO2 vent sites, and in situ
manipulations using a Free Ocean Carbon dioxide Enrichment
(FOCE) system. This variety of approaches provides critical
insights in the effects of climate-related stressors on corallines
isolated from their surrounding environment and in more
complex ecosystems or naturally variable environments.

Impacts of Current Warming on the Health
and Survival of Mediterranean Coralline
Algae
Although some corallines can adapt to their local environment
and acclimatize to a novel thermal regime, as recently suggested
for some tropical species able to cope with thermal stress
(Siboni et al., 2015), Mediterranean corallines appear particularly
sensitive to warming. Several observations have been reported
in different localities of the northwestern Mediterranean after
summer seasons characterized by positive thermal anomalies.
CCA mortality was reported at down to 30m depth in late
summer 1999, when seawater temperature was higher than
normal by 2–4◦C (Cerrano et al., 2000). In the laboratory, long
exposure to elevated temperature (25◦C) during summer was the
cause of increased frequency of tissue necroses and mortality in
Lithophyllum stictiforme (as L. cabiochae, Martin and Gattuso,
2009). Diseases of corallines described as white band syndrome
or white patch disease (Figure 2) have recently been reported
associated with high seawater temperature in the northwestern
Mediterranean (Hereu and Kersting, 2016). These diseases
affected the encrusting Lithophyllum incrustans, Mesophyllum
alternans, and Neogoniolithon sp., and the geniculate Ellisolandia
elongata, Jania rubens and Amphiroa rigida at shallow depths.
The emergence of these thermo-dependent diseases is one of
the most serious threats to Mediterranean coralline-dominated
communities in the context of climate change.

Physiological Response of Mediterranean
Coralline Algae to Climate Change and
Ocean Acidification
Temperature directly affects enzymatic processes and is a
dominant factor in determining physiological rates in corallines
(Lüning, 1990). Rising temperature, within the range of
temperature experienced in natural habitats, is beneficial
for coralline algae with an increase in photosynthetic and
calcification rates (Martin et al., 2006, 2013a), but increased
temperature above these levels is detrimental. For example,
a +3◦C increase in seawater temperature was beneficial to
calcification in Lithophyllum stictiforme (as L. cabiochae) in
winter, when temperature is lowest, but a+3◦C above maximum
summer temperature caused increased frequency of necroses
and mortality, and subsequent net calcification drop and further
dissolution (Martin and Gattuso, 2009).

Effects of thermal stress were studied by Nannini et al. (2015)
in populations of Ellisolandia elongata from western Italy and
by Guy-Haim et al. (2016) in populations from Israel. Nannini
et al. (2015) compared growth and calcification in field specimens
with specimens cultured at different temperatures. They reported
that thallus extension was higher in culture than in the field;
the carbonate mass in the field was higher than in cultured
material after 2 and 4months, but decreased after 6months. Guy-
Haim et al. (2016) measured primary production, respiration and
calcification of Ellisolandia elongata in the temperature range 15–
35◦C. In the population examined, the alga consists of the typical
frondose form at temperatures <23◦C; above this temperature,
it switches to a reduced crustose form with short erect axes,
but photosynthesis and calcification occur optimally in the
interval 15–31◦C. Above 31◦C there is a metabolic breakdown,
with bleaching and tissue necrosis. The authors argued that
in the eastern Mediterranean, with continued warming, the
species will experience a westward range contraction with
phenological shifts, performance, and reproduction declines,
population decreases and possible local extinctions.

Decreasing pH in the sea surface will cause major shifts
in seawater chemistry over the course of this century, with
changes in the relative proportion of the three forms of
dissolved inorganic carbon (DIC) species (HCO−

3 , CO
2−
3 , and

CO2). These changes are likely to affect photosynthesis and
calcification, since these physiological processes use DIC as
substrate. Increase in CO2 may be beneficial for photosynthesis
in some primary producers but the decrease in pH and CO2−

3
may be detrimental for the precipitation of CaCO3 in calcifiers
(Koch et al., 2013). Most of the studies on coralline algae
showed that calcification is negatively affected under elevated
pCO2 (Martin and Hall-Spencer, 2017) and that this effect
is exacerbated by warming (Anthony et al., 2008). However,
some work shows a significant pCO2 effect on calcification only
when this is combined with an increase in temperature (Martin
and Gattuso, 2009). The physiological response of coralline
algae to increased pCO2 is variable among species (Martin
and Hall-Spencer, 2017) and very few studies have focused
on Mediterranean species. For Lithophyllum stictiforme (as L.
cabiochae) Martin and Gattuso (2009) and Martin et al. (2013a)
provided evidence of the ability to maintain or even enhance rate
of calcification at near future levels of pCO2 (700 ppm). Such
response may be related to the ability of this species to maintain
an elevated pH at the site of calcification, despite reduced external
pH that would favor CaCO3 precipitation (Cornwall et al.,
2017).

The combination of ocean warming and acidification
may cause a much greater effect on corallines. In healthy
specimens of L. stictiforme, sensitivity of photosynthesis and
calcification to high temperature increased in summer when
combined with elevated pCO2 (Martin et al., 2013a). In the
geniculate Ellisolandia elongata, such combined changes
in pH and temperature can impair algal growth (Marchini
et al., 2019). The combined effects of ocean warming and
acidification can also make corallines more sensitive to other
environmental stressors as shown by Fine et al. (2017), who
studied thermal tolerance and resilience to low pH, high
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light intensity and desiccation in Neogoniolithon brassica-
florida, an encrusting species acting as consolidator of
vermetid reefs. This species resulted sensitive to increased
light intensity, particularly in conditions of elevated temperature
and low pH, with substantial decrease in photosynthetic
performances; calcification was significantly impaired at
lower pH. The authors concluded that this species is likely
to lose its role of reef consolidator in future, mutated
climatic conditions.

Effects of Climate Change and Ocean
Acidification on the Mineralogy of
Mediterranean Coralline Algae
Different forms of biogenic CaCO3 have different solubilities
in seawater (aragonite > calcite). In calcite, the replacement of
some Ca2+ by Mg2+ increases solubility. High-Mg calcite (>8–
12 mol% MgCO3) is the most soluble CaCO3 form (Morse et al.,
2007) and coralline algae skeletons composed of 8–29 mol%
MgCO3 (Kamenos et al., 2013) are considered highly susceptible
to dissolution in the context of ocean acidification. However,
potential resilience of coralline algae may occur through changes
in skeletal mineralogy, either by producing calcite with lower Mg
content (Agegian, 1985; Egilsdottir et al., 2013) or by favoring
accumulation of carbonate forms with lower solubility such as
dolomite (Diaz-Pulido et al., 2014). However, recent studies on
Mg incorporation in the skeleton of Mediterranean coralline
algae found no pCO2 effect. Acidification did not drive any
significant change in the Mg content of Lithophyllum stictiforme
grown experimentally at 700 ppm (Nash et al., 2016). Similarly,
no pCO2 effect was found on the Mg carbonate composition
of Posidonia oceanica coralline epiphytes exposed to a decrease
of 0.3 pH unit by using a FOCE system (Cox et al., 2017b).
Kamenos et al. (2016) also found that CCA recruited on tiles
had similar Mg content in ambient and low pH (7.8) sites in
CO2 vents off Ischia Island (Italy). This lack of a pCO2 effect
is consistent with findings suggesting that skeletal mineralogy
may be under biological control (Nash et al., 2015). The
high total alkalinity of Mediterranean waters (Palmiéri et al.,
2015) may also have a potential role in buffering the effect of
ocean acidification.

The Mg content in coralline algae is also known to
vary as function of seawater temperature (Kamenos et al.,
2008; Ragazzola et al., 2019). This has been confirmed
in Mediterranean Lithophyllum stictiforme, for which the
mineralogy is primarily controlled by temperature as shown
experimentally with an increase of Mg incorporation of 1 mol%
MgCO3 for an increase of 3◦C (Nash et al., 2016). The high
vulnerability of Mediterranean CCA skeleton to dissolution was
already shown by Martin et al. (2008) and Cox et al. (2015)
near and below pHT 7.7. Under experimental conditions of
elevated temperature (+3◦C) and elevated pCO2 (700 ppm), the
percentage of death for Mediterranean Lithophyllum stictiforme
was 2- to 3-fold higher and was accompanied by a rate of
dissolution of dead algal thalli 2- to 4- times higher (Martin and
Gattuso, 2009), suggesting that net dissolution is likely to exceed
net calcification in L. stictiforme by the end of this century.

Effects of Climate Change and Ocean
Acidification on Early Life Stages of
Mediterranean Coralline Algae
Early life stages of corallines are particularly vulnerable to ocean
acidification. The first studies were conducted on tropical species
and showed that recruitment was drastically reduced under
elevated pCO2 (Agegian, 1985; Kuffner et al., 2008).

In the Mediterranean, several studies were performed in CO2
vents of Ischia (Italy), where pH decreases naturally along a
gradient from ambient (pHT 8.1) to very low pH (<7), in a
range greater than expected under future climate scenarios. At
these sites, the decrease in coralline cover with decreasing pH
may be due to changes in physiological and competitive ability
of these algae, but also to lowered reproduction (Porzio et al.,
2011) or lowered recruitment (Kroeker et al., 2012). Decreased
reproductive capacity has been reported for some coralline
species. Cumani et al. (2010) showed in an artificial culture
that CCA spore production and growth are inhibited by ocean
acidification with an increase in the mortality of germination
disks. Reduction in reproductive structures was also observed
in the geniculate Jania rubens at pH 7.8 in CO2 vents of Ischia
(Porzio et al., 2011). Since these vents are open systems, the
negative effects due to the lower capacity of reproduction may
be masked in these sites due to the import of spores and zygotes
from external or control nearby sites. In the CO2 vents of
Ischia, the recruitment of CCA appears to be inhibited at low
pH. Changes in the succession of algae with a replacement of
corallines by fleshy seaweeds were observed on settlement tiles at
low pH (Porzio et al., 2011, 2013; Kroeker et al., 2012). The lowest
pH (pHT < 7.2) caused failure in coralline algal recruitment
but the genera Hydrolithon and Corallina were still recruited
under medium pH (pHT 7.8; Porzio et al., 2013), suggesting
that some species of corallines may be able to persist at pH
levels expected for the end of this century. However, the high
pH variability observed in the medium pH sites means that
pH rises to/close to current pH levels regularly and may lead
to an underestimation of the impact of acidification, as these
sites are not remaining constantly under low pH conditions
(Porzio et al., 2013). In the same area, Kamenos et al. (2016)
observed that the largest individuals of CCA recruited on tiles
maintained growth and were of similar size in low (7.8) and
ambient (8.0–8.1) pH zones. The ability of some thalli to continue
growing in lower pH suggests acclimation/adaptation to low
pH conditions and ability to provide recruits for populations
adapted to survive in lower pH environment in the future.
Through in situ pH manipulation using a FOCE system in
a Posidonia oceanica meadow, Cox et al. (2017a) also found
that early stages of CCA are sensitive to decreased pH, with
lower coverage of CCA on recruitment tiles placed in a pH-
manipulated enclosure (−0.3 pH unit offset) compared to an
un-manipulated enclosure (ambient pH). Although previous
studies suggested post-settlement competition between fleshy
and calcareous algae (Porzio et al., 2011; Kroeker et al., 2012;
Kamenos et al., 2016), Cox et al. (2017a) suggested that losses of
CCA were driven by taxa sensitivity, because the other taxa were
also reduced by the lower pH conditions and there was still bare
space available for colonization.
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Field Assessment of the Impacts of Ocean
Acidification on Mediterranean Coralline
Algae
The responses of coralline algae to acidification can be altered
by biotic (e.g., competition for space and resource or herbivory)
and abiotic (e.g., irradiance or nutrient supply) interactions.
Although most investigations on corallines were conducted
in the laboratory with single taxa or relatively small groups
of taxa isolated from the surroundings, some studies in the
Mediterranean used whole ecosystem approaches (CO2 vents
or FOCE system) that allow to consider these interactions.
These studies focused mostly on the epiphytic CCA in seagrass
meadows. In situ observations near CO2 vents reported clear
reductions or losses of corallines where the pH is naturally lower
(Hall-Spencer et al., 2008; Martin et al., 2008; Porzio et al.,
2011; Kroeker et al., 2012; Baggini et al., 2014; Donnarumma
et al., 2014). In the CO2 vents of Ischia, Martin et al. (2008)
showed a complete disappearance of epiphytic CCA on Posidonia
oceanica at an average pHT of 7.7, consistent with pH expected
for the end of this century, but with large temporal pH variations
from <7 to >8.1. Vent systems are not perfect predictors of
future ocean ecology, due to the high pH variability in space and
time that makes difficult to identify threshold or tipping points
(Hall-Spencer et al., 2008; Kerrison et al., 2011). Recently, some
studies reached conclusions in contrast with previous findings
on ocean acidification projections. Cox et al. (2017b) found
no pH effect on epiphytic CCA on Posidonia oceanica exposed
to a decrease of −0.3 pH unit in a pH-manipulated enclosure
using a FOCE system. Additional insights into community-level
effects of warming and ocean acidification are beginning to
emerge from longer-term multispecies laboratory experiments
(Hale et al., 2011; Legrand et al., 2017). Similarly, Asnaghi
et al. (2013) demonstrated that grazing activity exacerbated the
effects of pCO2 on corallines with higher weight loss in the
geniculate Ellisolandia elongata under elevated pCO2 in the
presence of urchins. It is clear that the impact of global changes
on corallines will depend on the combined influence of direct
environmental effects on individual species and indirect effects
mediated by changes in interspecific interactions (Harley et al.,
2012). Long-term multispecies experiments combining warming
and ocean acidification appear essential to improve our future
understanding of Mediterranean coralline algae.

CONCLUSIONS AND DIRECTIONS FOR
FUTURE WORK

The present summary shows that there are still substantial
gaps in our knowledge of Mediterranean corallines, despite of
the large amount of information available for some coralline-
dominated habitats (particularly coralligenous). Giving the
ecological importance of these algae and their sensitivity to
climate change, the body of information available should be now
substantially expanded.

As general recommendation, we suggest that future work on
Mediterranean corallines should be based on a multidisciplinary
perspective combining different approaches. So far, work on

these algae has consisted mostly of separate efforts/projects,
carried out by researchers working in different fields and
interested in different aspects. The integration of different
approaches will be essential, in particular, to address major
large-scale and long-term issues, such as the responses of
individual species and populations to future, mutated climatic
scenarios. We also note that most of the information currently
available for Mediterranean corallines has been produced by
scientists based in a relatively small number of countries
(mainly France, Italy and Spain). As consequence, the body
of information available for the western Mediterranean is
currently much larger than for the eastern Mediterranean. This
represents a major limit for the interpretation of general patterns,
especially for coralline species with distribution extending to
the whole Mediterranean. Within a same species, populations
from the western Mediterranean (especially northwestern) and
from the eastern Mediterranean are presumably characterized
by different ecophysiological traits and therefore are likely to
respond differently to future climatic changes. Therefore, we
suggest that future research on basic aspects of the biology of
Mediterranean corallines should involve many scientists with
different backgrounds, based in several countries, both in the
western and eastern Mediterranean.

More specifically, there are some tasks that we identify as
prioritary for each of the main fields of investigation:

1) Further paleontological investigations, focusing on
identification of morpho-anatomical species groups with
paleoecological and/or paleobiogeographical meanings, study
of the evolution of Mediterranean coralline assemblages in
the context of important paleogeographic changes, and how
global environmental parameters such as sea-level, ocean
acidification, and global temperature affected in the past the
evolution of Mediterranean species.

2) An accurate taxonomic reassessment of the Mediterranean
coralline flora based on a modern combination of molecular,
morphoanatomical and ecological data. This is also a critical
requirement for an accurate biogeographic reassessment.
Taxa surrounded by taxonomic uncertainty or for which
molecular data are lacking should receive priority; among
these, we suggest:

- Neogoniolithon, a genus for which the only species
N. brassica-florida is currently recognized in the
Mediterranean, but in which species circumscription
is unclear (Kato et al., 2013).

- Members of Sporolithales, for which there are no molecular
data from Mediterranean collections.

- Maerl/rhodolith-forming species for which no sequences
are available (Lithothamnion minervae, L. valens), or for
which conspecifity with Atlantic counterparts should be
verified (Lithothamnion corallioides).

- Lithophyllum of intertidal and shallow subtidal zones; these
algae in the Mediterranean have been usually identified
as L. incrustans, but the data of Hernandez-Kantun
et al. (2015a) highlighted that this is mainly a subtidal
species, suggesting that the identity of intertidal specimens
requires reassessment.
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- Lithophyllum trochanter and L. woelkerlingii, two species
separated by Bressan and Cabioch (2004) based on
subtle characters.

3) Studies of reproductive biology combining observations in
the field and experiments in the laboratory with molecular
and biochemical studies aiming to elucidate the mechanisms
triggering fertility and release of reproductive cells.

4) Transcriptomic studies and characterization of associated
microbiomes, starting from species important as
bioconstructors or habitat-formers (Lithophyllum stictiforme,
L. byssoides, Ellisolandia elongata). Investigations of this type
are necessary for a deep understanding of the molecular
and biochemical processes determining responses to
environmental disturbances, and for early detection of stress
in populations of ecologically important species.

5) Extending studies on the effects of climate change and
acidification to a wider set of species, and expanding
them to long-term experimental investigations. We suggest
that Mesophyllum species contributing to coralligenous
concretions, maerl/rhodolith-forming species (Lithophyllum
racemus, Lithothamnion corallioides, L. minervae, L. valens,
Phymatolithon calcareum) and bioconstructor species of the
intertidal/shallow subtidal zone (Lithophyllum byssoides, L.
trochanter) are natural candidates for such studies. New
studies focusing on the main aspects (physiology, mineralogy,
vitality of early life stages) in which Mediterranean corallines
may be affected by climate change and ocean acidification will
represent valuable contributions.

6) Basic studies on mineralization. The complete lack of
information forMediterranean species is striking, considering
the importance of this aspect for growth, carbonate formation,
and bioconstruction activity of these algae.

7) Accurate phylogeographic studies based on high-resolution
genetic methods, such as microsatellites, Single Nucleotide
Polymorphisms (SNPs) or sequencing of Restriction Site
Associated DNA markers (RAD), starting from ecologically
significant species (Lithophyllum stictiforme, L. byssoides,
Mesophyllum expansum, Ellisolandia elongata, Lithothamnion
corallioides). Data of this type are essential to draw effective
conservation measures for marine species. It is striking
that in general studies of this type are in great shortage
for Mediterranean seaweeds (ironically, from this point of
view some introduced taxa have been so far the best-
studied seaweeds in the Mediterranean). This is even more
surprising considering that, in contrast, the amount of similar
studies concerning Mediterranean fishes and invertebrates is
ponderous (see Patarnello et al., 2007; Pascual et al., 2017).

We remark that these tasks can be best tackled by integrating the
work in each specific field with other types of data/approaches.
The integration of basic ecological, physiological and
biochemical work with genomics, taxonomy and molecular
phylogeny will be especially important to predict both changes
in distribution and abundance of individual coralline species,
and shifts in the structure of Mediterranean ecosystems built
or dominated by corallines. This will be mandatory when the
corallines studied turn to be complexes of cryptic species that
differ in ecological and physiological traits, as recently stressed

by De Jode et al. (2019). In general, cryptic diversity in corallines
is an aspect that in the future will require much more attention
from Mediterranean marine biologists. Neglecting it might
lead to erroneous interpretations of the results of studies in
many different fields. At ecosystem level, changes in diversity of
coralline assemblages, if undetected due to the cryptic nature of
the species involved, may lead to shifts in ecosystem structure
and functioning (Hind et al., 2019).

Even for this reason, we recommend that all future studies
on Mediterranean corallines (of any type, not just taxonomic)
should base their identifications on DNA sequence data
and take care to deposit voucher specimens in herbaria or
other permanent collections. This will give the possibility to
verify the correctness of the identifications, which will be a
critically important requirement for comparison of the results of
different studies.

AUTHOR CONTRIBUTIONS

FR led the conceptual design of the paper, contributed to the
writing of the sections Introduction, Historical Summary,
Floristic Diversity, Molecular Studies of Mediterranean
Corallines, Present-Day Distribution and Biogeography,
Reproductive Biology, Microbiomes of Mediterranean
Corallines, Biochemistry and Physiology, and Conclusions
and Directions for Future Work, assembled the first version
of the manuscript, and prepared the Table 1, the Figures 1,
2, and 3, and the File SM1. JA and JB wrote the section
Geological History of the Mediterranean and Paleontological
Record of Mediterranean Corallines, and prepared the Figure 5
and the Files SM2 – SM6. SM wrote the section Responses
of Mediterranean Corallines to Climate Change and Ocean
Acidification. VP, LG, and AC contributed to the writing of the
sections Introduction, Historical Summary, Floristic Diversity,
Molecular Studies of Mediterranean Corallines, Present-Day
Distribution and Biogeography, and Conclusions and Directions
for Future Work. AC prepared the Figure 4. VP prepared
the Table S1.

ACKNOWLEDGMENTS

We are grateful to Enric Ballesteros, Marc Verlaque, Carlo
Cerrano, Maria Cristina Gambi, and Sara Kaleb for kindly
allowing use of pictures. The ideas presented in this article
are partially based on results produced in a P.R.I.N. 2010–
2011 project (Coastal bioconstructions: structure, function and
management), for which FR acknowledges financial support from
the Italian Ministry for Education, Universities and Research.
VP acknowledges support from the Universidade da Coruña
(Programa Campus Industrial de Ferrol).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2019.00723/full#supplementary-material

Table S1 | Detail of DNA sequence data obtained from Mediterranean corallines.

Frontiers in Marine Science | www.frontiersin.org 21 November 2019 | Volume 6 | Article 723

https://www.frontiersin.org/articles/10.3389/fmars.2019.00723/full#supplementary-material
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rindi et al. State of Knowledge of Mediterranean Corallines

File SM1 | List of references used for the compilation of the bibliographic
summary of Mediterranean corallines.

File SM2 | List of fossil corallines reported from the Mediterranean area.

File SM3 | Records of fossil Sporolithales reported for the Mediterranean area.

File SM4 | Records of fossil Hapalidiales reported for the Mediterranean area.

File SM5 | Records of fossil Corallinales reported for the Mediterranean area.

File SM6 | List of references for supplementary files SM2, SM3, SM4,
and SM5.

REFERENCES

Abdallah, M. A. M., and Abdallah, A. M. A. (2008). Biomonitoring study of heavy
metals in biota and sediments in the South Eastern coast of Mediterranean Sea,
Egypt. Environ. Monitor. Assess. 146, 139–145. doi: 10.1007/s10661-007-0066-8

Abd-Elnaby, H. (2010). Bacteria-algae interactions in Abu-Qir marine ecosystem
and some applied aspects of algal extracts. J. Appl. Sci. Res. 6, 345–357.

Adey, W. H., Hernandez-Kantun, J. J., Johnson, G., and Gabrielson, P. W. (2015).
DNA sequencing, anatomy, and calcification patterns support a monophyletic,
subarctic, carbonate reef-forming Clathromorphum (Hapalidiaceae,
Corallinales, Rhodophyta). J. Phycol. 51, 189–203. doi: 10.1111/jpy.12266

Agegian, C. R. (1985). The biogeochemical ecology of porolithon gardineri (Foslie)

(Ph.D. thesis). University of Hawaii, Honolulu, Hawaii.
Aguirre, J. (1998). El Plioceno marino del SE de la Península Ibérica

(provincia de Almería). Síntesis estratigráfica, sedimentaria, bioestratigráfica y
paleogeográfica. Rev. Soc. Geol. España 11, 297–315.

Aguirre, J., Baceta, J. I., and Braga, J. C. (2007). Recovery of primary marine
producers after the Cretaceous-Tertiary mass extinction: paleocene calcareous
red algae from the Iberian Peninsula. Palaeogeog. Palaeoclimatol. Palaeoecol.
249, 393–411. doi: 10.1016/j.palaeo.2007.02.009

Aguirre, J., Belaústegui, Z., Domènech, R., Gibert, J. M., and deMartinell, J. (2014).
Snapshot of a lower pliocene dendropoma reef from sant onofre (Baix Ebre
Basin, Tarragona, NE Spain). Palaeogeog. Palaeoclimatol. Palaeoecol. 395, 9–20.
doi: 10.1016/j.palaeo.2013.12.011

Aguirre, J., Braga, J. C., Martín, J. M., and Betzler, C. (2012). Palaeoenvironmental
and stratigraphic significance of Pliocene rhodolith beds and coralline algal
bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas 34,
115–136. doi: 10.5252/g2012n1a7

Aguirre, J., and Jiménez, A. P. (1998). Analogues of present-day Cladocora

caespitosa coral banks; sedimentary setting, dwelling community, and
taphonomy (late Pliocene, W Mediterranean). Coral Reefs 17, 203–213.
doi: 10.1007/s003380050119

Aguirre, J., Riding, R., and Braga, J. C. (2000a). Diversity of coralline red
algae: origination and extinction patterns from the early cretaceous
to the pleistocene. Paleobiology 26, 651–667. doi: 10.1666/0094-
8373(2000)026<0651:DOCRAO>2.0.CO;2

Aguirre, J., Riding, R., and Braga, J. C. (2000b). Late Cretaceous incident
light reduction: evidence from benthic algae. Lethaia 33, 205–213.
doi: 10.1080/00241160025100062

Airoldi, M. (1932). Contributo allo studio delle corallinacee del terziario italiano.
1. Le Corallinacee dell’Oligocene Ligure-Piemontese. Palaeontogr. Ital., Mem.

Paleont. 33, 55–83.
Al-Masri, M. S., Mamish, S., and Budier, Y. (2003). Radionuclides and trace

metals in eastern Mediterranean Sea algae. J. Environ. Riadioactiv. 67, 157–168.
doi: 10.1016/S0265-931X(02)00177-7

Anagnostou, E., John, E., Edgar, K., Foster, G., Ridgwell, A., Inglis, G., et al. (2016).
Changing atmospheric CO2 concentration was the primary driver of early
Cenozoic climate. Nature 533, 380–384. doi: 10.1038/nature17423

Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-
Guldberg, O. (2008). Ocean acidification causes bleaching and productivity
loss in coral reef builders. Proc. Nat. Acad. Sci. U.S. A. 105, 17442–17446.
doi: 10.1073/pnas.0804478105

Arias, C., Masse, J. P., and Vilas,. L. (1995). Hauterivian shallow marine calcareous
biogenic mounds: S. E. Spain. Palaeogeog. Palaeoclimatol. Palaeoecol. 119, 3–17.
doi: 10.1016/0031-0182(95)00056-9

Aroldi, C., and Bucur, I. I. (2002). Palaeogene microfacies in some calcareous
blocks of the Roaia Formation (Wildflysch Nappe – Maramures). Stud. Univ.
Babes-Bolyai Geol. Ep. Issue 1, 13–30.

Asnaghi, V., Chiantore, M., Mangialajo, L., Gazeau, F., Francour, P., Alliouane,
S., et al. (2013). Cascading effects of ocean acidification in a rocky

subtidal community. PLoS ONE 8:e61978. doi: 10.1371/journal.pone.00
61978

Athanasiadis, A. (1989). North Aegean marine algae. III. Structure
and development of the encrusting coralline Titanoderma

cystoseirae (Rhodophyta, Lithophylloideae). Nord. J. Bot. 9, 435–441.
doi: 10.1111/j.1756-1051.1989.tb01023.x

Athanasiadis, A. (1995). Morphology, anatomy and reproduction of the
eastern Mediterranean coralline Tenarea tortuosa and its relationship
to members of the Lithophylloideae and Mastophoroideae (Rhodophyta,
Corallinales). Nord. J. Bot. 15, 655–663. doi: 10.1111/j.1756-1051.1995.tb
02136.x

Athanasiadis, A. (1997). On the typification and taxonomic status of Melobesia

notarisii Dufour (Rhodophyta, Corallinales). Phycologia 36, 410–415.
doi: 10.2216/i0031-8884-36-5-410.1

Athanasiadis, A. (1999a). The taxonomic status of Lithophyllum

stictaeforme (Rhodophyta, Corallinales) and its generic position
in light of phylogenetic considerations. Nord. J. Bot. 19, 735–745.
doi: 10.1111/j.1756-1051.1999.tb00682.x

Athanasiadis, A. (1999b). Mesophyllum macedonis, nov. sp. (Rhodophyta,
Corallinales), a putative Tethyan relic in the North Aegean Sea. Eur. J. Phycol.
34, 239–252. doi: 10.1017/S0967026299002103

Athanasiadis, A., and Neto, A. I. (2010). On the occurrence of Mesophyllum

expansum (Philippi) Cabioch et Mendoza (Melobesioideae, Corallinales,
Rhodophyta) in the Mediterranean Sea, the Canary Isles and the Azores. Bot.
Mar. 53, 333–341. doi: 10.1515/BOT.2010.042

Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., Krasakopoulou, E., and Hall-
Spencer, J. M. (2014). Seasonaility affects macroalgal community response to
increases in pCO2. PLoS ONE 9:e106520. doi: 10.1371/journal.pone.0106520

Bailey, J. C., and Chapman, R. L. (1996). “Evolutionary relationships among
coralline red algae (Corallinaceae, Rhodophyta) determined by 18S rRNA
gene sequence analysis”, in Cytology, Genetics and Molecular Biology of

Algae, eds B. R. Chaudhary and S. B. Agrawal (Amsterdam: SPB Academic
Publishing), 363–376.

Bailey, J. C., and Chapman, R. L. (1998). A phylogenetic study of the Corallinales
(Rhodophyta) based on nuclear small-subunit rRNA gene sequences. J. Phycol.
34, 692–705. doi: 10.1046/j.1529-8817.1998.340692.x

Ballesteros, E. (1988). Composiciòn y estructura de la comunidad de Corallina

elongata Ellis and Solander, 1786, de la Costa Brava (Mediterraneo occidental).
Inv. Pesq. 52, 135–151.

Ballesteros, E. (2006). Mediterranean coralligenous assemblages: a synthesis
of present knowledge. Oceanogr. Mar. Biol. Ann. Rev. 44, 123–195.
doi: 10.1201/9781420006391.ch4

Barattolo, F., Bassi, D., and Romano, R. (2007). Upper Eocene larger foraminiferal–
coralline algal facies from the Klokova Mountain (southern continental
Greece). Facies 53, 361–375. doi: 10.1007/s10347-007-0108-2

Barrier, E., Vrielynck, B., Bergerat, F., Brunet, M.-F., Mosar, J., Poisson, A.,
et al. (2018). Palaeotectonic Maps of the Middle East: Tectono-Sedimentary-

Palinspastic Maps From Late Norian to Pliocene. Commission for the Geological
Map of the World (CGMW / CCGM), Paris, France.

Bassi, D. (1998). Coralline algal facies and their palaeoenvironments in the
Late Eocene of Northern Italy (Calcare di Nago). Facies 39, 179–202.
doi: 10.1007/BF02537016

Bassi, D., Braga, J. C., and Iryu, Y. (2009). Palaeobiogeographic patterns
of a persistent monophyletic ineage: Lithophyllum pustulatum species
group (Corallinaceae, Corallinales, Rhodophyta). Palaeogeogr. Palaeoclimatol.

Palaeoecol. 284, 237–245. doi: 10.1016/j.palaeo.2009.10.003
Bassi, D., Braga, J. C., Zakrevskaya, E., and Radionova, E. P. (2005). Re-

assessment of the type collections of corallinalean genera (Corallinales,
Rhodophyta) described by Maslov (1935–1962). Palaeontology 48, 1–17.
doi: 10.1111/j.1475-4983.2005.00503.x

Frontiers in Marine Science | www.frontiersin.org 22 November 2019 | Volume 6 | Article 723

https://doi.org/10.1007/s10661-007-0066-8
https://doi.org/10.1111/jpy.12266
https://doi.org/10.1016/j.palaeo.2007.02.009
https://doi.org/10.1016/j.palaeo.2013.12.011
https://doi.org/10.5252/g2012n1a7
https://doi.org/10.1007/s003380050119
https://doi.org/10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2
https://doi.org/10.1080/00241160025100062
https://doi.org/10.1016/S0265-931X(02)00177-7
https://doi.org/10.1038/nature17423
https://doi.org/10.1073/pnas.0804478105
https://doi.org/10.1016/0031-0182(95)00056-9
https://doi.org/10.1371/journal.pone.0061978
https://doi.org/10.1111/j.1756-1051.1989.tb01023.x
https://doi.org/10.1111/j.1756-1051.1995.tb02136.x
https://doi.org/10.2216/i0031-8884-36-5-410.1
https://doi.org/10.1111/j.1756-1051.1999.tb00682.x
https://doi.org/10.1017/S0967026299002103
https://doi.org/10.1515/BOT.2010.042
https://doi.org/10.1371/journal.pone.0106520
https://doi.org/10.1046/j.1529-8817.1998.340692.x
https://doi.org/10.1201/9781420006391.ch4
https://doi.org/10.1007/s10347-007-0108-2
https://doi.org/10.1007/BF02537016
https://doi.org/10.1016/j.palaeo.2009.10.003
https://doi.org/10.1111/j.1475-4983.2005.00503.x
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rindi et al. State of Knowledge of Mediterranean Corallines

Bassi, D., Simone, L., and Nebelsik, J. H. (2017). “Re-sedimented
rhodoliths in channelized depositional systems”, in Rhodolith/Maërl

Beds: A Global Perspective, eds. R. Riosmena-Rodríguez, W. Nelson,
and J. Aguirre (Basel: Springer International Publishing), 139–167.
doi: 10.1007/978-3-319-29315-8_6

Basso, D. (1995). Living calcareous algae by a paleontological approach: the genus
Lithothamnion Heydrich nom. cons. from the soft bottoms of the Tyrrhenian
Sea (Mediterranean). Riv. It. Paleont. Strat. 101, 349–366.

Basso, D., Babbini, L., Ramos-Esplá, A. R., and Salomidi, M. (2017).
“Mediterranean rhodolith beds” in Rhodolith/Maërl Beds: a Global Perspective,

eds R. Riosmena-Rodriguez, W. Nelson, and J. Aguirre (Basel: Springer
International Publishing), 281–298. doi: 10.1007/978-3-319-29315-8_11

Basso, D., Caronni, S., Caragnano, A., Hereu, B., Angeletti, L., and Bracchi, V.
(2018). “Evidence of coralline white patch disease in a rhodolith bed of the
Egadi Islands,” inAbstract Book, VI International RhodolithWorkshop (Roscoff),

60.

Basso, D., Coletti, G., Bracchi, V. A., and Yazdi-Moghadam, M. (2019). Lower
oligocene coralline algae of the Uromieh section (Qom Formation, NW
Iran) and the oldest record of Titanoderma pustulatum (Corallinophycidae,
Rhodophyta). Riv. It. Paleontol. Stratig. 125, 197–218.

Basso, D., Fravega, P., and Vannucci, G. (1996). Fossil and living corallinaceans
related to the Mediterranean endemic species Lithophyllum racemus (Lamarck)
Foslie. Facies 35, 257–292. doi: 10.1007/BF02536965

Basso, D., and Rodondi, G. (2006). A Mediterranean population of Spongites
fruticulosus (Rhodophyta, Corallinales), the type species of Spongites, and the
taxonomic status of S. stalactitica and S. racemosa. Phycologia 45, 403–416.
doi: 10.2216/04-93.1

Basso, D., Rodondi, G., and Bressan, G. (2011). A re-description of Lithothamnion

crispatum and the status of Lithothamnion superpositum (Rhodophyta,
Corallinales). Phycologia 50, 144–155. doi: 10.2216/10-20.1

Basso, D., Rodondi, G., and Mari, M. (2004). A comparative study
between Lithothamnion minervae and the type material of Myllepora

fasciculata (Corallinales, Rhodophyta). Phycologia 43, 215–223.
doi: 10.2216/i0031-8884-43-2-215.1

Bianchi, C. N., and Morri, C. (2000). Marine biodiversity of the Mediterranean
Sea: situation, problems and prospects for future research. Mar. Poll. Bull. 40,
367–376. doi: 10.1016/S0025-326X(00)00027-8

Bittner, L., Payri, C., Maneveldt, G., Couloux, A., Cruaud, C., de Reviers, B.,
et al. (2011). Evolutionary history of the Corallinales (Corallinophycidae,
Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes.
Mol. Phylogen. Evol. 61, 697–713. doi: 10.1016/j.ympev.2011.07.019

Blanfuné, A. (2016). Global change in the NW mediterranean sea: the fate of forests

of Cystoseira and Sargassum, Lithophyllum rims and blooms of ostreopsis (Ph.D.
thesis). Université d’Aix-Marseille, Marseilles, France.

Bory de Saint-Vincent, J. B. G. M. (1832). “Notice sur les polypiers de la Gréce,”
in Expédition Scientifique de Morée (Section des Sciences Physiques). Tome
III [1.re Partie, 1.re Section]. Zoologie [pl. LIV - Atlas] (Paris; Strasbourg: F.G.
Levrault, imprimeur-libraire), 204-209,

Bosellini, F. R., and Perrin, C. (2008). Estimating mediterranean oligocene-
miocene sea-surface temperatures: an approach based on coral
taxonomic richness. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 71–88.
doi: 10.1016/j.palaeo.2007.10.028

Bosellini, F. R., and Russo, A. (1992). Stratigraphy and facies of an oligocene
fringing reef (Castro Limestone, Salento Peninsula, Southern Italy). Facies 26,
145–166. doi: 10.1007/BF02539798

Bosence, D.W. J. (1976). Ecological studies on two unattached coralline algae from
western Ireland. Palaeontology 19, 365–395.

Bosence, D. W. J., and Pedley, H. M. (1982), Sedimentology and palaeoecology
of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeog.
Palaeoclimatol. Palaeoecol. 38, 9–43. doi: 10.1016/0031-0182(82)90062-1

Boudouresque, C. F. (2004). Marine biodiversity in the Mediterranean: status
of species, populations and communities. Trav. Sci. Parc Nat. Port-Cros

20, 97–146.
Boudouresque, C. F., and Verlaque, M. (1978). Végétation marine de la Corse

(Méditerranée). Documents pour la flore des algues. Bot. Mar. 21, 265–275.
doi: 10.1515/botm.1978.21.5.265

Bover-Arnal, T., Ferràndez-Cañadell, C., Aguirre, J., Esteban, M., Fernández-
Carmona, J., Albert-Villanueva, E., et al. (2017). Late Chattian platform

carbonates with benthic foraminifera and coralline algae from the SE Iberian
Plate. Palaios 32,61–82. doi: 10.2110/palo.2016.007

Bracchi, V. A., Angeletti, L., Marchese, F., Taviani, M., Cardone, F., Hajdas, I.,
et al. (2019a). A resilient deep-water rhodolith bed off the Egadi Archipelago
(Mediterranean Sea) and its actuopaleontological significance. Alp. Medit.

Quat. 32, 1–20. doi: 10.26382/AMQ.2019.09
Bracchi, V. A., and Basso, D. (2012). The contribution of calcareous algae to the

biogenic carbonates of the continental shelf: Pontian Islands, Tyrrhenian Sea,
Italy. Geodiversitas 34, 61–76. doi: 10.5252/g2012n1a4

Bracchi, V. A., Basso, D., Savini, A., and Corselli, C. (2019b). Algal reefs
(Coralligenous) from glacial stages: origin and nature of a submerged
tabular relief (Hyblean Plateau, Italy). Mar. Geol. 411, 119–132.
doi: 10.1016/j.margeo.2019.02.008

Braga, J. C. (2017). “Neogene rhodoliths in the Mediterranean basins”, in
Rhodolith/Maërl Beds: A Global Perspective, eds R. Riosmena-Rodríguez,
W. Nelson, and J. Aguirre (Basel: Springer Inter. Publ.), 169–193.
doi: 10.1007/978-3-319-29315-8_7

Braga, J. C., and Aguirre, J. (2001). Coralline algal assemblages in upper Neogene
reef and temperate carbonates in Southern Spain. Palaeogeogr. Palaeoclimatol.

Palaeoecol. 175, 27–41. doi: 10.1016/S0031-0182(01)00384-4
Braga, J. C., and Bassi, D. (2007). Neogene history of Sporolithon Heydrich

(Corallinales, Rhodophyta) in the Mediterranean region. Palaeogeogr.

Palaeoclimatol. Palaeoecol. 243, 189–203. doi: 10.1016/j.palaeo.2006.07.014
Braga, J. C., and Bassi, D. (2011). Facies and coralline algae from Oligocene

limestones in the Malaguide Complex (SE Spain). Ann. Naturhist. Mus. Wien

Serie A 113, 291–308.
Braga, J. C., Bassi, D., and Piller, W. (2010). “Palaeoenvironmental significance

of Oligocene-Miocene coralline red algae - a review,” in Carbonate Systems

During the Oligocene-Miocene Climatic Transition, Vol. 42. eds M. Mutti, W.
E. Piller, and C. Betzler (Oxford; Chichester; Hoboken, NJ: IAS Spec. Publ.;
Wiley-Blackwell), 165–182. doi: 10.1002/9781118398364.ch10

Braga, J. C., Vescogni, A., Bosellini, F., and Aguirre, J. (2009). Coralline
algae (Corallinales, Rhodophyta) in western and central Mediterranean
Messinian reefs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 275, 113–128.
doi: 10.1016/j.palaeo.2009.02.022

Brandano, M. (2017). “Oligocene rhodolith beds in the central Mediterranean
area”, in Rhodolith/Maërl Beds: A Global Perspective, eds R. Riosmena-
Rodríguez, W. Nelson, and J. Aguirre (Basel: Springer Inter. Publ.), 195–219.
doi: 10.1007/978-3-319-29315-8_8

Bressan, G. (1974). Rodoficee calcaree dei mari italiani. Boll. Soc. Adr. Sci Nat.
54, 1–132.

Bressan, G., and Babbini, L. (1995). Inventario delle Corallinales del Mar
Mediterraneo: considerazioni tassonomiche. Giorn. Bot. It. 129, 367–390.
doi: 10.1080/11263509509436152

Bressan, G., and Babbini, L. (2003). Corallinales del Mar Mediterraneo: guida alla
determinazione. Biol. Mar. Medit. 10, 1–237.

Bressan, G., and Babbini-Benussi, L. (1996). Phytoceanographical observations on
coralline algae (Corallinales) in the Mediterranean Sea. Rend. Fis. Acc. Lincei 7,
179–207. doi: 10.1007/BF03001802

Bressan, G., and Cabioch, J. (2004). Titanoderma trochanter (Bory) Benhissoune,
Boudouresque, Perret Boudouresque et Verlaque, et Titanoderma

ramosissimum (Heydrich) comb. nov. (Corallinales, Rhodophytes) une
redefinition. Cah. Biol. Mar. 45, 225–242.

Bressan, G., Chemello, R., Gravina, M. F., Gambi, M. C., Peirano, A., Cocito,
S., et al. (2009). “Other types of bioconcretions” in Italian habitats - Marine

bioconstructions, eds A. Cosentino, A. La Posta, C. Morandini, and G. Muscio
(Udine: Museo Friulano di Storia Naturale), 89–150.

Bressan, G., Miniati-Radin, D., and Smundin, L. (1977). Ricerche sul genere
Fosliella (Corallinaceae - Rhodophyta): Fosliella cruciata sp.nov. Giorn. Bot. It.
111, 27–44. doi: 10.1080/11263507709426571

Brodie, J., Walker, R. H., Williamson, C., and Irvine, L. M. (2013). Epitypification
and redescription of Corallina officinalis L., the type of the genus, and C.

elongata Ellis et Solander (Corallinales, Rhodophyta). Cryptog. Algol. 34, 49–56.
doi: 10.7872/crya.v34.iss1.2013.49

Brodie, J., Williamson, C., Barker, G. L., Walker, R. H., Briscoe, A., and
Yallop, M. (2016). Characterising the microbiome of Corallina officinalis,
a dominant calcified intertidal red alga. FEMS Microbiol. Ecol. 92:fiw110.
doi: 10.1093/femsec/fiw110

Frontiers in Marine Science | www.frontiersin.org 23 November 2019 | Volume 6 | Article 723

https://doi.org/10.1007/978-3-319-29315-8_6
https://doi.org/10.1007/978-3-319-29315-8_11
https://doi.org/10.1007/BF02536965
https://doi.org/10.2216/04-93.1
https://doi.org/10.2216/10-20.1
https://doi.org/10.2216/i0031-8884-43-2-215.1
https://doi.org/10.1016/S0025-326X(00)00027-8
https://doi.org/10.1016/j.ympev.2011.07.019
https://doi.org/10.1016/j.palaeo.2007.10.028
https://doi.org/10.1007/BF02539798
https://doi.org/10.1016/0031-0182(82)90062-1
https://doi.org/10.1515/botm.1978.21.5.265
https://doi.org/10.2110/palo.2016.007
https://doi.org/10.26382/AMQ.2019.09
https://doi.org/10.5252/g2012n1a4
https://doi.org/10.1016/j.margeo.2019.02.008
https://doi.org/10.1007/978-3-319-29315-8_7
https://doi.org/10.1016/S0031-0182(01)00384-4
https://doi.org/10.1016/j.palaeo.2006.07.014
https://doi.org/10.1002/9781118398364.ch10
https://doi.org/10.1016/j.palaeo.2009.02.022
https://doi.org/10.1007/978-3-319-29315-8_8
https://doi.org/10.1080/11263509509436152
https://doi.org/10.1007/BF03001802
https://doi.org/10.1080/11263507709426571
https://doi.org/10.7872/crya.v34.iss1.2013.49
https://doi.org/10.1093/femsec/fiw110
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rindi et al. State of Knowledge of Mediterranean Corallines

Bucur, I. I. (1994). Algues calcaires de la zone de Resita-Moldova Noua (Carpathes
meridionales, Roumanie). Rev. Paléobiol. 13, 147–209.

Bucur, I. I. (2008). Barremian-Aptian calcareous algae from Romania: an overview.
Boll. Soc. Geol. It. 127, 245–255.

Bucur, I. I., and Baltres, A. (2002). Cenomanian microfossils in the shallow
water limestones from Babadag Basin: biostratigraphic significance. Stud. Univ.
Babes-Bolyai, Geol. 1, 79–95.

Bucur, I. I., Onac, B. P., and Todoran, V. (1989). Algues Calcaires dans les Dépôts
Oligocènes Inférieurs de la Région Purcâret-Mesteacân-Valea Chioarului (NW

du Bassin de Transylvanie). The Oligocene from the Transylvanian Basin
(Petrescu-Iustinian Editions, Univ. Cluj-Napoca, Cluj-Napoca), 141–148.

Bustamante, D. E., Calderon, M. S., and Hughey, J. R. (2019). Conspecifity of the
Peruvian Corallina ferreyrae with C. caespitosa (Corallinaceae, Rhodophyta)
inferred from genomic analysis of the type specimen. Mitochondrial DNA 4,
1285–1286. doi: 10.1080/23802359.2019.1591203

Cabioch, J., and Mendoza, M. L. (1998). Mesophyllum alternans (Foslie) comb.
nov. (Corallinales, Rhodophyta), a mediterraneo-atlantic species, and new
considerations on the Lithothamnion philippii Foslie complex. Phycologia 37,
208–221. doi: 10.2216/i0031-8884-37-3-208.1

Cabioch, J., and Mendoza, M. L. (2003).Mesophyllum expansum (Philippi) comb.
nov. (Corallinales, Rhodophytes), et mise au point sur les Mesophyllum des
mers d’Europe. Cah. Biol. Mar. 44, 257–273.

Canals, M., and Ballesteros, E. (2007). Production of carbonate
particles by phytobenthic communities on the Mallorca-Menorca
shelf, northwestern Mediterranean Sea. Deep Sea Res. 44, 611–629.
doi: 10.1016/S0967-0645(96)00095-1

Catra, M., Alongi, G., Serio, D., Cormaci, M., and Furnari, G. (2006). The
benthic algal flora on rocky substrata of the Egadi islands, a marine protected
archipelago off the western coast of Sicily (Italy, Mediterranean Sea). Nova
Hedwigia 82, 489–538. doi: 10.1127/0029-5035/2006/0082-0489

Cavalcanti, G. S., Gregoracci, G. B., dos Santos, E. O., Silveira, C. B., and Meirelles,
P. M. (2014). Physiologic andmetagenomic attributes of the rhodoliths forming
the largest CaCO3 bed in the South Atlantic Ocean. ISME J. 8, 52–62.
doi: 10.1038/ismej.2013.133

Cebrián, E., Ballesteros, E., and Canals, M. (2000). Shallow rocky
bottom benthic assemblages as calcium carbonate producers in the
Alboran Sea (southwestern Mediterranean). Oceanol. Acta 23, 311–322.
doi: 10.1016/S0399-1784(00)00131-6

Cecere, E., Cormaci, M., Furnari, G., Petrocelli, A., Saracino, O., and Serio, D.
(1996). Benthic algal flora of Cheradi Islands (Gulf of Taranto, Mediterranean
Sea). Nova Hedwigia 62, 191–214.

Celis-Plá, P. S. M., Martínez, B., Quintano, E., García-Sánchez, M., Pedersen,
A., et al. (2014). Short-term ecophysiological and biochemical responses of
Cystoseira tamariscifolia and Ellisolandia elongata to environmental changes.
Aquat. Biol. 22, 227–243. doi: 10.3354/ab00573

Cerrano, C., Bavestrello, G., Bianchi, C. N., Cattaneo-Vietti, R., Bava, S., Morganti,
C., et al. (2000). A catastrophic mass-mortality episode of gorgonians and other
organisms in the Ligurian Sea (NW Mediterranean), summer 1999. Ecol. Lett.
3, 284–293. doi: 10.1046/j.1461-0248.2000.00152.x

Chamberlain, Y. M. (1985). The typification of Melobesia membranacea

(Esper) Lamouroux (Rhodophyta, Corallinaceae). Taxon 34, 673–677.
doi: 10.2307/1222213

Chamberlain, Y. M. (1997). Observations on Lithophyllum lichenoides Philippi
(Rhodophyta, Corallinaceae) and its reproductive structures. Cryptog. Algol.
18, 139–149.

Chatalov, A., Bonev, N., and Ivanova, D. (2015). Depositional characteristics and
constraints on the mid-Valanginian demise of a carbonate platform in the
intra-Tethyan domain, Circum-Rhodope Belt, northern Greece. Cret. Res. 55,
84–115. doi: 10.1016/j.cretres.2015.02.001

Checconi, A. (2006). Le Associazioni ad Alghe Calcaree Corallinacee (Corallinales,

Rhodophyta) delle Successioni Carbonatiche d’acqua Bassa del Miocene

Inferiore-Medio dell’Appennino Meridionale (Formazione di Cusano): analisi

paleoecologica e paleoambientale (Ph.D. thesis). Università degli Studi di
Perugia, Perugia, Italy.

Checconi, A., Bassi, D., Passeri, L., and Rettori, R. (2007). Coralline red algal
assemblage from the Middle Pliocene shallow-water temperate carbonates
of the Monte Cetona (Northern Apennines, Italy). Facies 53, 57–66.
doi: 10.1007/s10347-006-0085-x

Coletti, G., Basso, D., and Corselli, C. (2018a). Coralline algae as depth indicators
in the Sommières Basin (early Miocene, southern France). Geobios 51, 15–30.
doi: 10.1016/j.geobios.2017.12.002

Coletti, G., Bracchi, V. A., Marchese, F., Basso, D., Savini, A., Vertino, A., et al.
(2018b). Quaternary build-ups and rhodalgal carbonates along the Adriatic and
Ionian coasts of the Italian Peninsula: a review. Riv. It. Paleontol. Stratig. 124,
387–406. doi: 10.13130/2039-4942/10269

Coll, M., Piroddi, C., Steenbek, J., Kaschner, K., Lasram, F. B. R., Aguzzi, J., et al.
(2010). The biodiversity of the Mediterraneran Sea: estimates, patterns and
threats. PLoS ONE 5:e11842. doi: 10.1371/journal.pone.0011842

Coma, R., Ribes, M., Serrano, E., Jiménez, E., Salat, J., and Pascual, J.
(2009). Global warming-enhanced stratification and mass mortality events
in the Mediterranean. Proc. Nat. Acad. Sci U.S.A. 106, 6176–6181.
doi: 10.1073/pnas.0805801106

Conrad, M. A., and Masse, J. P. (1989). Les algues calcaires des formations
carbonatées de l’Hauterivien-Barrémien pro partedu Jura vaudois et
neuchâtelois (Suisse).Mém. Soc. Neuchâteloise Sci. Nat. 11, 277–290.

Conti, S. (1950). Alghe Corallinacee fossili. Pubbl. Ist. Geol. Univ. Genova, Quad. 4
ser. A, 1–156.

Coppejans, E. (1978). Sur les propagules de Fosliella farinosa (Lamouroux) Howe
var. farinosa (Rhodophyceae - Cryptonemiales). Bull. Soc. Roy. Bot. Belg.
111, 55–61.

Cormaci, M., and Furnari, G. (1988). Sulla presenza nell’Italia meridionale di
alcune alghe marine bentoniche rare per il Mediterraneo. Giorn. Bot. Ital. 122,
215–226. doi: 10.1080/11263508809429401

Cormaci, M., Furnari, G., and Alongi, G. (2017). Flora marina bentonica del
Mediterraneo: Rhodophyta (Rhodymeniophycidae escluse). Boll. Acc. Gioenia
Sci. Nat. 50, 1–391.

Cormaci, M., Furnari, G., Alongi, M., Catra, M., and Serio, D. (2000). The benthic
algal flora on rocky substrata of the Tremiti Islands (Adriatic Sea). Plant Biosyst.
134, 133–152. doi: 10.1080/11263500012331358404

Cormaci, M., Lanfranco, E., Borg, J. A., Buttigieg, S., Furnari, G., Micallef, S. A.,
et al. (1997). Contribution to the knowledge of benthic marine algae on rocky
substrata of the Maltese Islands (Mediterranean Sea). Bot. Mar. 40, 203–215.
doi: 10.1515/botm.1997.40.1-6.203

Cornwall, C. E., Comeau, S., and McCulloch, M. T. (2017). Coralline algae elevate
pH at the site of calcification under ocean acidification. Glob. Change Biol. 23,
4245–4256. doi: 10.1111/gcb.13673

Cox, T. E., Díaz-Castañeda, V., Martin, S., Alliouane, S., Mahacek, P., Le Fur, A.,
et al. (2017a). Effects of in situ CO2 enrichment on epibiont settlement on
artificial substrata within a Posidonia oceanicameadow. J. Exp. Mar. Biol. Ecol.
497, 197–211. doi: 10.1016/j.jembe.2017.10.003

Cox, T. E., Nash, M., Gazeau, F., Déniel, M., Legrand, E., Alliouane, S.,
et al. (2017b). Effects of in situ CO2 enrichment on Posidonia oceanica

epiphytic community composition and mineralogy. Mar. Biol. 164:103.
doi: 10.1007/s00227-017-3136-7

Cox, T. E., Schenone, S., Delille, J., Díaz-Castañeda, V., Alliouane, S., Gattuso,
J. P., et al. (2015). Effects of ocean acidification on Posidonia oceanica

epiphytic community and shoot productivity. J. Ecol. 103, 1594–1609.
doi: 10.1111/1365-2745.12477

Cumani, F., Bradassi, F., Di Pascoli, A., and Bressan, G. (2010).Marine acidification
effects on reproduction and growth rates of Corallinaceae spores (Rhodophyta),
Rapp. Comm. Int. Mer Medit. 39:735.

De Clerck, O., Guiry, M. D., Leliaert, F., Samyn, Y., and Verbruggen, H.
(2013). Algal taxonomy: a road to nowhere? J. Phycol. 49, 215–225.
doi: 10.1111/jpy.12020

De Jode, A., David, R., Haguenauer, A., Cahill, A., Erga, Z., Guillemain, D., et al.
(2019). From seascape ecology to population genomics and back. Spatial and
ecological differentiation among cryptic species of the red algae Lithophyllum
stictiforme/L. cabiochiae, main bioconstructors of coralligenous habitats. Mol.

Phylogen. Evol. 137, 104–113. doi: 10.1016/j.ympev.2019.04.005
de Lamarck, J. B. (1801). Systeme des Animaux Sans Vertebres. Libraire

Derteville, Paris.
Di Geronimo, R. (1998). Le Corallinales del quaternario dell’Italia meridionale

(sistematica, paleoecologia e paleobiogeografia) (Ph.D. thesis). Università di
Messina, Messina, Italy.

Diaz-Pulido, G., Nash, M. C., Anthony, K. R. N., Bender, D., Opdyke, B. N., Reyes-
Nivia, C., et al. (2014). Greenhouse conditions induce mineralogical changes

Frontiers in Marine Science | www.frontiersin.org 24 November 2019 | Volume 6 | Article 723

https://doi.org/10.1080/23802359.2019.1591203
https://doi.org/10.2216/i0031-8884-37-3-208.1
https://doi.org/10.1016/S0967-0645(96)00095-1
https://doi.org/10.1127/0029-5035/2006/0082-0489
https://doi.org/10.1038/ismej.2013.133
https://doi.org/10.1016/S0399-1784(00)00131-6
https://doi.org/10.3354/ab00573
https://doi.org/10.1046/j.1461-0248.2000.00152.x
https://doi.org/10.2307/1222213
https://doi.org/10.1016/j.cretres.2015.02.001
https://doi.org/10.1007/s10347-006-0085-x
https://doi.org/10.1016/j.geobios.2017.12.002
https://doi.org/10.13130/2039-4942/10269
https://doi.org/10.1371/journal.pone.0011842
https://doi.org/10.1073/pnas.0805801106
https://doi.org/10.1080/11263508809429401
https://doi.org/10.1080/11263500012331358404
https://doi.org/10.1515/botm.1997.40.1-6.203
https://doi.org/10.1111/gcb.13673
https://doi.org/10.1016/j.jembe.2017.10.003
https://doi.org/10.1007/s00227-017-3136-7
https://doi.org/10.1111/1365-2745.12477
https://doi.org/10.1111/jpy.12020
https://doi.org/10.1016/j.ympev.2019.04.005
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rindi et al. State of Knowledge of Mediterranean Corallines

and dolomite accumulation in coralline algae on tropical reefs. Nat. Commun.
5:3310. doi: 10.1038/ncomms4310

Donnarumma, L., Lombardi, C., Cocito, S., and Gambi, M. C. (2014). Settlement
pattern of Posidonia oceanica epibionts along a gradient of ocean acidification:
an approach with mimics.Medit. Mar. Sci. 15, 498–509. doi: 10.12681/mms.677

Egan, S., Harder, T., Burke, C., Steinberg, P., Kjellenberg, S., and Thomas, T. (2012).
The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS

Microbiol. Rev. 37, 462–476. doi: 10.1111/1574-6976.12011
Egilsdottir, H., Noisette, F., Laure, M. L. N., Olafsson, J., and Martin, S.

(2013). Effects of pCO2 on physiology and skeletal mineralogy in a
tidal pool coralline alga, Corallina elongata. Mar. Biol. 160, 2103–2112.
doi: 10.1007/s00227-012-2090-7

El Haikali, B., Bensoussan, N., Romano, J. C., and Bousquet, V. (2004). Estimation
of photosynthesis, and calcification rates of Corallina elongata Ellis et Solander,
1786, by measurements of dissolved oxygen, pH and total alkalinity. Sci. Mar.
68, 45–56. doi: 10.3989/scimar.2004.68n145

El Maghraby, D. M., and Fakhry, E. M. (2015). Lipid content and fatty acid
composition of Mediterranean macro-algae as dynamic factors for biodiesel
production. Oceanologia 57, 86–92. doi: 10.1016/j.oceano.2014.08.001

Ellis, J. (1768). Extract of a letter from John Ellis, Esquire, F.R.S. to Dr. Linnaeus of
Upsala, F.R.S. on the animal nature of the genus of zoophytes, called Corallina.
Phil. Trans. Roy. Soc. London 57, 404–425. doi: 10.1098/rstl.1767.0042

Ellis, J., and Solander, D. (1786). The Natural History of Many Curious and

Uncommon Zoophytes, Collected From Various Parts of the Globe. London:
Benjamin White and Son.

Esper, E. J. C. (1796). Fortsetzungen der Pflanzenthiere in Abbildungen nach der

Natur mit Farben erleuchtet nebst Beschreibungen. Nuremberg: Lieferung 5.
Falace, A., Kaleb, S., Orlando-Bonaca, M., Mavrič, B., and Lipej, L. (2011). First
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