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1. INTRODUCTION 

Many animal species display highly complex behavioral repertoires that adjust 

harmoniously to their ecological niche. These patterns have been crafted by 

countless evolution episodes of natural selection. Slow adaptations allow animals 

to be highly successful in their stable, well-known environment. Humans also 

display behaviors acquired through slow evolutionary adaptations, in addition to 

slow trial and error learning. However, our species excels in novel scenarios, 

which pose challenges that require rapid adaptations. Humans, crucially, can 

make use of a powerful resource in such circumstances: instructions make 

situational key elements explicit and allow their communication among equals 

and through generations (Cole, Laurent, & Stocco, 2013). The ability to act 

according to instructions establishes a sharp distinction among us and other apes 

and constitutes a key aspect of our flexible adaptation to changing environments. 

Consequently, understanding how this complex behavior is implemented in the 

brain is of high relevance for Cognitive Neuroscience. The present thesis is 

composed by three studies that employed functional Magnetic Resonance 

Imaging (fMRI) and Electroencephalographic (EEG) recordings to investigate the 

neural processes that sustain our capacity to implement tasks at the first try by 

using verbal instructions. 

In the first investigation, we described how novel complex verbal instructions 

engage distinct neural networks with different temporal profiles. Instruction 

following relies on cognitive control, which refers to the set of high-level 

processes that allow goal-oriented behavior when automatic routines do not lead 

to the desired outcome (Norman & Shallice, 1986). Neuroimaging techniques, 

especially functional magnetic resonance imaging (fMRI), have been key for 
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uncovering the brain regions related to control processes. During the last 

decades, the increasing sophistication of both experimental design (Petersen & 

Dubis, 2012) and analysis techniques (Dosenbach et al., 2007) have led to the 

identification of two networks of frontal and parietal regions which implement 

control by acting at different, transient and sustained, timescales (Dosenbach et 

al., 2007). Nonetheless, despite the relevance of flexibility and novelty as core 

attributes of controlled processing (Norman & Shallice, 1986), the majority of 

experimental settings employed are quite rigid and involve the repetitive 

implementation of a few simple rules. This had left unaddressed the relevance of 

the two control networks in novel and variable scenarios. Consequently, one of 

the goals of this work was to extend this dual framework to flexible instructed 

behavior, studying its sustained and transient profiles of activations.  

In the second and third studies, we employed fMRI and EEG recordings, together 

with novel pattern analyses, to investigate the neural representation of the 

multidimensional content of novel instructions. Further conceptualizations of 

control have highlighted the existence of two differentiated modes of control. On 

the one hand, proactive control acts in anticipation, preparing our system for 

upcoming demands. On the other hand, reactive mechanisms act in an online 

fashion during performance, enabling quick adjustments upon the appearance of 

unexpected changes, conflicting information or errors. Although both processes 

operate in a coordinated fashion during demanding situations, proactive ones are 

of special relevance in novel instructed behavior (Cole, Patrick, & Braver, 2018). 

In this sense, proactive control generates mental models (representations) of the 

upcoming task, containing information about target stimuli, relevant responses, 

and rules linking both, together with expected outcomes. These high-level 
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representations, also known as task-sets (Sakai, 2008), ultimately orchestrate 

our actions by biasing the processing in relevant perceptual and motor systems 

(Miller & Cohen, 2001). Crucially, the implementation of instructions requires 

their translation into effective task sets. However, the flexible neural mechanisms 

allowing task-set reconfiguration in complex, multidimensional novel contexts 

are uncertain (Brass, Liefooghe, Braem, & De Houwer, 2017; Cole, Laurent, et al., 

2013). A second aim of this work was assessing these processes. In doing so, we 

focused on the nature of novel task representations, addressing how their 

constituent dimensions organize neural activity, and the temporal dynamics of 

the underlying mechanisms.  

In the pages that follow, we provide a general overview of the theoretical 

background scaffolding the research presented in the thesis. We start by briefly 

describing the main current perspectives about neural implementation of 

cognitive control. Then, we discuss the emerging studies addressing novel 

instructed behavior, emphasizing its proactive component and its 

correspondence with general control models. In addition, we highlight the 

relevance of motivation on these proactive control processes. 

1.1. Two brain networks supporting cognitive control  

In the last two decades, multiple attempts have been made to understand the 

brain underpinnings of cognitive control. One of the main and most robust 

findings so far is the existence of a wide fronto-parietal network that is 

consistently recruited by many demanding task contexts: conflict resolution, task 

switching, error processing, problem solving, fluid intelligence tasks, and so on 

(Dosenbach et al., 2006; Duncan, 2010; Fedorenko, Duncan, & Kanwisher, 2013). 

This network, named as Multiple Demand (MDN, Duncan, 2010), includes the 
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dorsolateral prefrontal cortex (DLPFC), specifically, the inferior frontal gyrus 

(IFG), sulcus (IFS) and junction (IFJ), the rostrolateral prefrontal cortex 

(RLPFC), the dorsal anterior cingulate cortex (dACC), the intraparietal sulcus 

(IPS) and pre-supplementary motor area (preSMA).  

Despite the frequent coactivation of these areas, it seems biologically implausible 

that all the nodes within the MDN perform the same computations. Further 

research collapsing across multiple datasets (Dosenbach et al., 2006) and also 

assessing communication dynamics among areas (Dosenbach et al., 2007), 

differentiated two components within the MDN (Dosenbach, Fair, Cohen, 

Schlaggar, & Petersen, 2008). On the one hand, a network anchored at the dACC, 

the frontal operculum and the RLPFC (the cingulo-opercular network, or CON) 

displays anticipatory (i.e., cue-locked) and sustained activations, consistent with 

the preparatory reconfiguration of task-sets and their maintenance, respectively. 

On the other hand, a network composed mainly by the DLPFC and the IPS (the 

fronto-parietal network, or FPN), shows transients activations especially during 

conflict and error processing, and thus, is potentially more related to reactive 

adjustments of behavior.  

While this is an appealing and straightforward scenario, inconsistent evidence 

has also been found. For example, different subsections of the LPFC the IPS, both 

part of the reactive component, have been linked to anticipatory task setting 

(Sakai, 2008). Other studies have assigned to the CON a more general role in 

salience detection (Seeley et al., 2007) or tonic alertness (Sadaghiani & 

D’Esposito, 2015). Thus, it seems that these regions show functional patterns not 

always consistent with the Dual-Network Model of Control (Dosenbach et al., 



7 
 

2008). In Chapter 3, we include a detailed review of this topic, together with 

potential interpretations of the contradictions found in the literature.  

1.2. Proactive neural processes during novel instructed-behavior.  

Multiple behavioral studies show that instructed-behavior relies on proactive 

control to a higher extent than on reactive control (Cole, Braver, & Meiran, 2017; 

Cole et al., 2018; Meiran, Pereg, Kessler, Cole, & Braver, 2015). To explore the 

brain regions supporting this proactive preparation, recent studies have analyzed 

brain activation patterns during instruction encoding and preparation. For this, 

the studies analyze the time interval between the instruction and the target, and 

frequently compare novel rules against practiced ones (Cole, Laurent, et al., 

2013).  

Congruent with the expectations based on behavioral findings, novel instructions 

engage MDN areas to a higher extent than practiced rules (Cole, Bagic, Kass, & 

Schneider, 2010; Hartstra, Waszak, & Brass, 2012; Ruge & Wolfensteller, 2010). 

These activations are mostly constrained within the FPN, involving different 

portions of the LPFC and the IPS (Demanet et al., 2016; González-García, Arco, 

Palenciano, Ramírez, & Ruz, 2017; Hartstra, Kühn, Verguts, & Brass, 2011; 

Hartstra et al., 2012; Ruge & Wolfensteller, 2010). Importantly, it is the intention 

to implement the instruction which triggers the involvement of these regions 

(Demanet et al., 2016; González-García et al., 2017; Muhle-Karbe, Duncan, De 

Baene, Mitchell, & Brass, 2017). This supports their proactive functional role over 

other processes, such as maintaining verbal content in working memory.  

The peaks of encoding-locked activations across studies seem to follow a rostro-

caudal gradient. Most abstract and complex instructions engage more anterior 
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portions of the LPFC up to the RLPFC (Cole et al., 2010), whereas more concrete 

rules shift the activity toward posterior prefrontal locations (Hartstra et al., 

2012). Sensorio-motor preparation, on the other hand, engages the IPS (Hartstra 

et al., 2011, 2012). This dissociation among frontal and parietal cortices has also 

been shown in practiced task contexts (Brass, Cramon, Yves, & Abstract, 2004; 

De Baene & Brass, 2014; Muhle-Karbe, Andres, & Brass, 2014). More broadly, 

these results resonate with general models about brain organization, which 

postulate a similar abstraction gradient regarding the information being 

processed in the frontal lobe (Koechlin, Ody, & Kouneiher, 2003). Overall, it 

seems plausible that novel task preparation is a distributed process involving 

mainly FPN nodes, each contributing at different abstraction levels. It is 

important to note, finally, the disagreement between these findings and the 

predictions from the dual framework exposed before (Dosenbach et al., 2007), 

which would also assign a central role to CON regions in sustained and proactive 

preparation in novel contexts. 

Anticipatory activity is not limited to control-related regions: it has also been 

found in lower level, perceptual and motor regions. That is the case of primary 

and premotor cortices, primary and secondary somatosensory cortex, or 

perceptual regions as the fusiform gyrus (e.g.: Cole et al., 2010; Hartstra et al., 

2011; Hartstra, Waszak, & Brass, 2012). Notably, these preactivations happen in 

the absence of actual stimuli or specific motor preparation or execution. These 

findings could be interpreted from proposals conceptualizing cognition as 

continuous loops among perceptual and action-related neural systems (Fuster, 

2004). Thus, iterative communication among the above-mentioned FPN nodes 

and perceptual and motor cortices during preparation could have, as a result, a 
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sharpening of these areas tuning to the incoming targets and required responses, 

a mechanism that could be crucial for the flexible and quick implementation of 

novel instructions.  

The role of sustained control activations in the context of novel instructed tasks 

is not well understood nowadays. This could be caused, at least in part, by the 

difficulties inherent to the extraction of simultaneous sustained (block) and 

transient (event-related) brain signals. This endeavor requires the employment 

of hybrid or mixed designs (Petersen & Dubis, 2012), which are complex 

paradigms that mix block and event-related ingredients (Visscher et al., 2003). 

Currently, there is only one published experiment that studied sustained 

activations during novel instructed behavior (Dumontheil, Thompson, & Duncan, 

2011). Intriguingly, this study found sustained activations in a mixture of FPN 

and CON nodes, involving the right IFS and left RLPFC, and again, regions not 

directly related to cognitive control, such as the dorsal PFC (outside de MDN) and 

the medial occipital cortex. This puzzling evidence, which also coincides with 

findings outside instructed behavior, highlights the necessity to expand 

Dosenbach and colleagues’ framework (2007, 2008) to complex and novel task 

performance.  

Overall, while the studies addressing the neural basis of novel instructed behavior 

have grown in the last decade, there is still a considerable gap between the 

findings obtained so far and broader cognitive control models such as the one 

proposed by Dosenbach and colleagues (Dosenbach et al., 2008), or Braver 

(Braver, 2012). This could be caused by the different nature of the processes 

involved in novel and practiced rule following, or also by differences at the 

methodological level. To shed some light upon this issue, we carried out Study 1 
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(Chapter 4), which was designed to test the dual model of control in the context 

of novel instruction following.  

1.3. Exploring Novel task representation: Content and structure. 

The first efforts to study instruction following were highly informative about the 

brain regions underlying this behavior. Nonetheless, the specific computations 

performed by each area remained poorly understood. For example, what is the 

interpretation of the increased activity in the LPFC during instruction encoding? 

Does it reveal the representation of specific task parameters? Or is it due to more 

general processes needed for implementing stimulus-response associations? 

(Bourguignon, Braem, Hartstra, De Houwer, & Brass, 2018). This indeterminacy 

is partly due to the activation-based perspective adopted by previous studies, in 

which brain signals are averaged across neighbor spatial locations (or voxels), 

and the difference between the mean activation across experimental conditions 

is used to extract conclusions. This univariate approach treats regions as a whole 

to decide whether or not they are involved in a contrast of interest. As a 

consequence, functional differences not as broadly distributed are lost. Also, and 

more importantly, it easily leads to situations (as in the example above) where the 

same pattern of activation can be linked to equally probable roles. In this sense, 

univariate strategies limit the scope of our understanding of instructed behavior.  

Recent analysis techniques from machine learning and computational sciences 

have pushed a shift towards an information-based framework (Haxby, Connolly, 

& Guntupalli, 2014; Kriegeskorte, Goebel, & Bandettini, 2006), which exploits the 

distributed activity patterns across voxels, instead of averaging them. This 

perspective expands the empirical questions that can be addressed, as it provides 

a window into the finer-grained representations encoded in these patterns. 
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Hence, multivariate approaches are of high relevance for addressing the 

representational nature of novel task-sets.  

The most popular technique in the literature is Multivoxel Pattern Analysis 

(MVPA; Haxby et al., 2014), where classifiers are trained to distinguish the 

patterns of activity of two or more conditions. Later, these trained classifiers are 

tested with novel data. If the prediction is performed above chance levels, it is 

inferred that information about the conditions is readable from these patterns 

and thus represented in a certain area. This analysis approach has been used to 

explore whether, and where in the brain, relevant novel task information is 

represented during instruction encoding (Bourguignon et al., 2018; González-

García et al., 2017; Muhle-Karbe et al., 2017), which would indicate the presence 

of specific preparatory mechanisms. Indeed, the instructed target category can be 

decoded from multiple MDN areas during the initial encoding stage and 

throughout the preparation interval, before stimulus presentation (González-

García et al., 2017; Muhle-Karbe et al., 2017). Importantly, a recent study showed 

that when the instructions were only memorized, the information in control areas 

faded across the preparation interval, ruling out that successful instruction 

decoding was based on linguistic or semantic rule representations held in 

working memory (Muhle-Karbe et al., 2017). Moreover, the quality of the 

representation, quantified by the classifier’s precision, is robustly correlated with 

behavioral performance, with higher correct rates and faster responses associated 

with higher classifications accuracies (Cole, Ito, & Braver, 2016; González-García 

et al., 2017; Muhle-Karbe et al., 2017). All the evidence, thus, converges in that 

these fronto-parietal regions are activating a control task-set proactively to guide 

behavior at the first attempt with an instruction.  
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The results so far point toward the unequal participation of MDN nodes in task-

set representation. Among all, the IFS and middle frontal gyrus (MFG; 

Bourguignon et al., 2018) seem to be key regions for this function. These areas 

are the one showing novel instruction encoding most consistently across different 

studies, representing the relevant target category and also the logical rules linking 

stimulus and motor responses (Cole, Etzel, Zacks, Schneider, & Braver, 2011; Cole 

et al., 2016). These findings converge and further characterize anticipatory 

activations, and coincide as well with results showing practiced rule encoding in 

the IFS/MFG across multiple datasets (Waskom, Kumaran, Gordon, Rissman, & 

Wagner, 2014; A. Woolgar, Hampshire, Thompson, & Duncan, 2011; Alexandra 

Woolgar, Jackson, & Duncan, 2016). They also fit with classic theoretical models 

such as the Guided Activation Theory (Miller & Cohen, 2001) which conceptualize 

the LPFC as the source of top-down bias scaffolding goal-directed behavior. This 

all leads to the question about the nature of representational architecture that 

allows such malleable and quick task-set reconfigurations. 

Some attempts have been made at exploring the organizational principles that 

govern LPFC novel rule representation. Again, novel analysis approaches have 

helped to enlighten this issue. Using cross-classification, a technique based on 

MVPA which assesses if information coding is generalizable across different 

experimental conditions, Cole and colleagues (2011) found that novel instructions 

were represented in the LPFC reusing some of the same neural representations 

(i.e., multivoxel activation patterns) employed for practiced rules. This points to 

the presence of compositionality in LPFC, by which simple rule components are 

combined to generate novel task representations (Cole, Laurent, et al., 2013). In 

line with this result, compositional coding has also been found in this brain area 
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in other contexts (Pischedda, Görgen, Haynes, & Reverberi, 2017; Reverberi, 

Gorgen, & Haynes, 2012; Reverberi, Görgen, & Haynes, 2012). 

Another crucial approach to study the information represented in brain patterns 

is Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008), a 

technique developed to characterize the geometry of the encoding spaces. RSA 

focuses on the relationships among multiple conditions or stimuli, quantifying 

with correlations how similar their corresponding activity patterns are. The pair-

wise array of similarities constitutes an estimation of the representational space, 

which abstracts from specific patterns and focuses on their representational 

organization. Returning to the issue of compositionality described above, Cole, 

Reynolds, et al. (2013) combined RSA with functional connectivity data, and 

found that the patterns of communication of the FPN with other brain networks 

(visual, motor, dorsal and ventral attention, default mode) were highly structured 

by novel task parameters. Specifically, the connectivity patterns established 

during novel instruction execution resulted from a combination of the patterns 

corresponding to the individual semantic, motor and logical rules composing the 

task at hand. This finding does not only support the compositional coding 

account, but it also emphasizes the distributed nature of task sets. Nonetheless, 

both studies (Cole et al., 2011; Cole, Reynolds, et al., 2013) anchored the analyses 

at the implementation stage, where the corresponding logical operations were 

performed on the targets, leading to motor execution. In addition, these studies 

did not track the specific informational patterns of each novel instruction, leaving 

the representational codes of the areas involved rather unexplained.  

Motivated by this scenario, we aimed to explore the encoding organization 

according to different dimensional axes for novel instructions during the 
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encoding phase, to ensure that proactive-related representations were being 

captured. Study 2 (Chapter 5) and 3 (Chapter 6) were carried out to fulfill this 

goal.  

1.4. Cognitive control – motivation interplay. 

For many decades, theoretical models have treated cognitive control as a function 

isolated from affective and motivational factors. Nonetheless, the experimental 

settings employed in the laboratory contrast with our daily life, where control 

adjustments operate on environments loaded with value (Botvinick & Braver, 

2015; Pessoa, 2017). In this sense, motivation mobilizes and energizes our 

behavior towards desired outcomes, prioritizing certain goals among others. 

Congruently, the classical observation is that the expectation of reward improves 

our performance in a wide variety of task contexts (Botvinick & Braver, 2015).  

Initial proposals conceptualized these improvements as a general modulation, 

similar to an arousal boost. However, further research showed specific effects of 

motivation upon task processing, improving the efficiency of cognitive control 

mechanisms (Pessoa, 2009). Several results indicate that incentives boost both 

proactive and reactive mechanisms, for example, reducing switching costs 

(Kleinsorge & Rinkenauer, 2012; Shen & Chun, 2011) and increasing anticipatory 

brain activations (Engelmann, Damaraju, Padmala, & Pessoa, 2009; Krebs, 

Boehler, Roberts, Song, & Woldorff, 2012), or decreasing behavioral and neural 

conflict effects (Padmala & Pessoa, 2011). Nonetheless, a mechanistic explanation 

about how the motivational value is incorporated in control adjustments is still 

lacking. The current consensus leans towards a proactive-focused account (Chiew 

& Braver, 2016; Jimura, Locke, & Braver, 2010; Rowe, Eckstein, Braver, & Owen, 
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2008), by which the expectation of reward critically participates in goal selection 

and its maintenance.  

The impact of motivation upon proactive preparation could take place, however, 

at different levels. Some results suggest that it plays a role during task-set 

representation, with reward expectation increasing the quality of the 

representational encoding in MDN areas, especially in the LPFC (Etzel, Cole, 

Zacks, Kay, & Braver, 2016). Moreover, in this study, the tuning of fronto-parietal 

representations was tightly linked to the performance improvement exerted by 

motivation, supporting the behavioral relevance of this finding. This also 

coincides with evidence showing that regions from the FP network, specifically 

the inferior parietal lobe, encode rules-reward associations (Wisniewski, 

Reverberi, Tusche, & Haynes, 2015). Overall, it is plausible that motivational 

values operate on control-related regions optimizing task-set reconfiguration. 

This could initiate a cascade of events culminating in the sharpening of reactive 

control adjustments and, in general, improved task processing.  

The evidence to date, although compelling, is limited to constrained experimental 

settings where participants alternate among few rules, which have been overly 

practiced. Motivation-control interactions in more complex and novel task 

contexts are, consequently, unknown. Because of this, we incorporated economic 

incentives in Studies 2-3, and addressed the influence of the motivational state 

on prospective novel task encoding, both in the spatial and temporal domains.  

  



16 
 

  



17 
 

Chapter 2:  

AIMS AND HYPOTHESES 



18 
 

  



19 
 

2. AIMS AND HYPOTHESES 

In the introduction, we stressed the core role of control processes on the guidance 

of behavior in novel task context. Nonetheless, the majority of the research 

exploring how control is implemented in the human brain is based on simple 

repetitive paradigms. While some pioneering neuroimaging studies are now 

addressing novel instructed performance, it is uncertain how the content of the 

control-related variables that compose the instructions scaffolds their neural 

representation. Taking into account the importance of instruction following for 

our adaptability to changing environments, a better knowledge of its neural 

underpinning is key for human neuroscience. Our goal in this thesis was to 

advance the understanding of the neural implementation of the control processes 

supporting novel instructed behavior. As a preliminary step, we reviewed the 

broader literature of control processes in the brain. This was followed by three 

neuroimaging studies, employing fMRI and EEG. In the first one, we studied the 

transient and sustained processes supporting novel instructed behavior. 

Afterwards, we focused on novel task-set representation during proactive 

preparation. In this regard, we tried to answer three questions: (1) the role of 

relevant task parameters in organizing these representations; (2) the temporal 

dynamics underlying these flexible coding schemes; and (3) the effect of 

motivation upon their representational structure. In what follows, we detail each 

core aims of this work.  

2.1. Neural mechanisms of cognitive control – Review 1. 

As a starting point of this thesis, we carried out an in-depth review addressing the 

implementation of control mechanisms in the human brain. This review provided 

a wide perspective, key for devising the experimental studies of the thesis. We 
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structured the existing evidence around Braver’s (2012) model, distinguishing 

between proactive and reactive processes. Important, we connected this 

framework with the Dual-Network Model by Dosenbach and colleagues (2008). 

Although both are based on the temporal nature of control, Braver’s approach 

focuses on the anticipatory or online nature of these mechanisms, whereas the 

Dual-Network Model puts the emphasis on their transient or sustained profiles. 

Hence, the two frameworks only overlap partially. In the review, we aimed at 

clarifying both perspectives and contrasting them with the studies conducted in 

the field. This work is included in Chapter 3.  

2.2. Transient and Sustained Control Mechanisms Supporting 

Novel Instructed Behavior – Study 1. 

Our first fMRI study assessed the transient and sustained involvement of the 

fronto-parietal and cingulo-opercular networks (Dosenbach et al., 2008, 2006) 

in novel instructed tasks. By doing so, we increased the understanding of 

instructed behavior, and further characterized the influential Dual-Network 

Model (Dosenbach et al., 2008), which had only been tested in rigid and practiced 

settings. We used a paradigm where different verbal instructions were encoded 

and later implemented on unique sets of stimuli (González-García et al., 2017). 

We manipulated the amount of experience with the instructions to compare novel 

and practiced ones, which were equivalent otherwise. Following a mixed-design 

(Petersen & Dubis, 2012), we combined events with blocks to extract phasic and 

tonics activations. This was possible thanks to analysis techniques based on the 

combination of FIR and HRF modeling of the Blood Oxygen Level Dependent 

(BOLD) signal (Visscher et al., 2003).  
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As novelty entails demands for cognitive control (Norman & Shallice, 1986), we 

expected higher recruitment of both sustained and transient activations for new 

than practiced instructions. However, the higher load of instructed-behavior on 

the proactive component led us to hypothesize stronger effects at both timescales 

in the CON. The publication of this study is included in Chapter 4.  

2.3. Representational organization of novel task sets during their 

proactive encoding – Study 2.  

Next, we studied how novel task-sets are encoded in the neural patterns of 

proactive activity. Previous research shows that the content of instruction, 

reflected on target stimulus category, is represented with anticipation in 

frontoparietal regions (e.g. González-García et al., 2017). Nonetheless, the 

underlying organization of more complex information guiding instruction 

encoding is unknown. Thus, in our second fMRI study, we explored the role of 

relevant task parameters in structuring preparatory activations. We generated 

instructions by manipulating dimension integration requirements, response set 

complexity and target category. Using RSA (Kriegeskorte et al., 2008), we 

estimated the representational space in each location of the brain (Kriegeskorte 

et al., 2006) and compared it against models based on each of the manipulations. 

This approach uncovered which brain regions changed their pattern of activation 

according to each of these task parameters.  

We expected to find distinct encoding structures across brain regions. 

Specifically, we anticipated that the dimension integration requirements, which 

was the most abstract parameter manipulated, organized task sets in LPFC. On 

the other hand, we expected response set complexity to have an effect on the IPS. 

Finally, we hypothesized that target category would affect the representational 
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space in prefrontal as well as in perceptual cortices. This study can be found in 

Chapter 5.  

2.4. Temporal dynamics underlying different structures for novel 

task anticipatory coding – Study 3.  

We also aimed to characterize the temporal unfolding of the different encoding 

structures found in Study 2. While recent research stressed the dynamic nature 

of task-sets during their preparation, no studies have been conducted in the 

context of novel tasks. Moreover, the employment of fMRI in Study 2 did not 

allow the extraction of fine-grained temporal information. In Study 3 we acquired 

high-density EEG data while participants followed the paradigm used in the 

previous study. We also replicated the analysis employed before, to allow the 

comparison among fMRI and EEG results. Crucially, we applied these techniques 

in a time-resolved fashion.  

Due to the novelty of the topic, experimental approach and analyses followed, 

establishing clear hypotheses was risky. However, in general terms, we expected 

dimension integration requirements and task category to have earlier effects on 

task structure than response set complexity. This would be in line with previous 

proposals of two differentiated stages during preparation: a first one, linked to 

abstract goal setting, and a second, more concrete one, associated with stimulus-

response link updating. The study is described in detail in its corresponding 

section.  
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2.5. Proactive control-motivation interplay in novelty contexts – 

Studies 2 and 3. 

 An additional goal of Studies 2 and 3 was to investigate if and how motivation 

changes representational spaces to improve behavioral performance. Previous 

literature shows that proactive control presents an intricate relationship with 

motivation (Chiew & Braver, 2016; Pessoa, 2009). Recent investigations suggest 

that one of these interactive mechanisms improves the fidelity of task 

representations when monetary rewards are expected (Etzel et al., 2016; Hall-

McMaster, Muhle-Karbe, Myers, & Stokes, 2019). Whether this effect also affects 

novel, variable rule encoding was, however, unknown. We concurrently explored 

the modulation exerted by rewards on the encoding structure of complex 

instructions, employing fMRI in Study 2 and EEG in Study 3.  

Initially, we held two alternative hypotheses, stemming from previous research. 

First, we expected that reward would polarize the representational structures of 

the relevant instruction content, making task parameters more efficient at 

organizing proactive activations. Alternatively, reward could just increase the 

overall distinguishability of instructions representations. However, against our 

initial hypotheses Study 2 showed that motivation increased task set similarity. 

Thus, in Study 3 we hypothesized that we would replicate this effect, using a 

different neuroimaging method.  
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Abstract 

Understanding the neural basis of cognitive control is a central issue in cognitive 

neuroscience, given its core importance for the flexibility that characterizes 

human behaviour. This review integrates the main findings in the field, 

underscoring the role of fronto-parietal regions in both proactive (representing 

tasks in anticipation to prepare the system for action) and reactive (detecting and 

resolving conflicts in processing) control. In addition, we review the dynamics of 

interaction between these areas and other brain regions in the range of slow 

frequencies. Finally, we highlight central ques- tions in the field that have yet to 

be answered. 
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Our adaptation to different and ever-changing environments responds largely to 

an ability to guide our behaviour according to goals, especially in novel situations 

or those that trigger significant but ineffective action plans (Norman & Shallice, 

1986). Underlying this ability are cognitive control processes (or control 

processes from here onwards), which comprise the mechanisms that articulate 

human executive functions. Psychology and cognitive neuroscience seek to 

describe and explain them, as well as to understand their neural bases. 

The question of how the brain supports control has been studied at different 

levels of analysis ranging from the most microscopic level, which explores the 

operation of neural assemblies, to macroscopic neural networks and their 

dynamics. Diverse evidence suggests that cognitive functions such as control are 

implemented in sets of regions, or networks, where each area carries out specific 

computations (Posner & Petersen, 1990). The development of neuroima- ging 

techniques (such as functional magnetic resonance imaging) and sophisti- cated 

analysis strategies (e.g., multi-voxel pattern analysis), together with the study of 

the dynamics of interaction between regions (employing electro or 

magnetoencephalography) have advanced our knowledge in this field. 

However, consensus on the definition and scientific taxonomy of cognitive 

control is elusive. For instance, its partial overlap with the construct of attention 

reflects these difficulties. While some theoretical models conceptualize control as 

one of three attentional functions (Posner & Petersen, 1990), others associate this 

construct with brain regions that maintain task goals and bias activity in relevant 

information processing areas, where the selection associated with attention takes 

place (Desimone & Duncan, 1995). Other theoretical frameworks on cognitive 

control propose a more complex picture by adding a temporal dimension. In this 
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line, Braver (2012) proposed the existence of two control modes: proactive, 

underlying preparatory adjustments that occur prior to a demanding situation; 

and reactive, related to the resolution of demands as they arise. In the current 

article, we review the key findings of these models. First we provide a description 

of the control networks in the human brain, and then we detail the structures 

involved in its proactive and reactive operations together with their underlying 

dynamics. 

3.1. Brain networks of control. 

In 1990, Posner and Petersen published a seminal review of early studies on the 

anatomical basis of control processes in the human brain. This review not only 

laid the theoretical basis for subsequent studies of attention and control, but 

made a key proposal of the network underlying control in the brain, the Anterior 

Attentional System or Executive Control Network. This network presented attri- 

butes associated with controlled processing according to classical theoretical 

models (e.g., capacity limits or access of information to consciousness; Norman 

& Shallice, 1986). Thus, this network was initially associated with focal attention 

(characterized by target detection), as opposed to the Posterior Attention 

Network, related to the spatial orienting of attention. 

Posner and Petersen (1990) located control processes in two structures: the 

anterior cingulate and prefrontal cortices (ACC and PFC respectively, shown in 

Table 3.1, along with the acronyms for other brain regions mentioned throughout 

the text). Further research has extended the number of regions involved and 

clarified their roles, describing the control signals they process. One of the most 

significant contributions is the proposal by Dosenbach et al. (Dosenbach, Fair, 

Cohen, Schlaggar, & Petersen, 2008), which distinguishes two networks of 
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executive control. First, a fronto-parietal network is associated with fast, phasic 

processes of adjustment such as the start of tasks and the commission of errors. 

Second, a cingulo-opercular network would be at the base of slow or tonic control, 

keeping the task goals and rules active over prolonged time periods. In addition 

to describing the key role of other regions in control, this proposal emphasizes 

the importance of temporal dynamics (phasic vs. tonic) in the func- tions 

implemented by each system. It also allows the prediction of how these two 

systems interact with each other and with incoming stimuli: both exert a top-

down influence on processing, but their connections with the cerebellum also 

allow continuous bottom-up access to information, as well as interaction between 

the two networks. 

Tabla 3.1. Índice de las siglas en inglés empleadas para designar las distintas regiones cerebrales. 

Siglas Región cerebral 

ACC Corteza del cíngulo anterior 

aI/fO Ínsula anterior / Opérculo frontal 

aPFC Corteza prefrontal anterior 

dACC Corteza del cíngulo anterior dorsal 

IFJ Unión frontal inferior 

IFS Surco frontal inferior 

IPS Surco intraparietal 

LPFC Corteza prefrontal lateral 

PFC Corteza prefrontal 

preSMA Área motora presuplementaria 

RLPFC Corteza prefrontal rostrolateral 

VLPFC Corteza prefrontal ventrolateral 

vmPFC Corteza prefrontal ventormedial 

   

The role of a fronto-parietal network in control processes together with regions 

such as the insula and ACC has also been described by other models such as the 
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Multiple Demand Network (MDN), proposed by Duncan (2010). This theory 

defines the computations underlying control, emphasizing its role in the 

assembly of subtasks through structured mental programmes (Duncan, 2010). In 

this sense, the control network fulfils three main objectives: (1) it represents the 

specific content of the current cognitive goal; (2) it quickly reorganizes resources 

accor- ding to changes in mental status; and (3) it separates successive subtasks 

in a distinctive fashion. Although in Duncan’s model the dissociation at a neural 

level of proactive and reactive control is not as straightforward as Dosenbach 

suggests, the involvement of the set of areas that compose the MDN in contexts 

of high cognitive demand is clear (see Figure 3.1). Specific regions include the 

inferior frontal sulcus (IFS), the rostrolateral prefrontal cortex (RLPFC), the 

anterior insula/frontal operculum (aI/fO), the ACC, the pre-supplementary 

motor area (pre-SMA) and the intraparietal sulcus (IPS). In addition, these areas 

are also active during tests of fluid intelligence. 

 

Figure 3.1. Multiple Demand Network (Duncan, 2010; in imaging.mrc-cbu.cam.ac.uk/ima- 

ging/MDsystem). The anterior cingulate cortex (ACC), rostrolateral prefrontal cortex (RLPFC) and the 

anterior insula/frontal operculum (aI/fO) comprise the cingulo-opercular system, and the intraparietal 

sulcus (IPS), and the inferior frontal sulcus (IFS) are part of the fronto-parietal network (orange and green 

asterisks, respectively; Dosenbach et al., 2008). 
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Data from the study of the brain at rest (in the absence of a task) also support the 

view that the areas mentioned above do indeed comprise a functional net- work. 

In this sense, Fox et al. (2005) proposed a Task-Positive Network. This network 

presents extensive overlap with the MDN and shows synchrony in the activity 

fluctuations of its nodes at rest, which indexes functional communica- tion. On 

the other hand, recent studies support its subdivision into the two components 

(fronto-parietal and cingulo-opercular) proposed by Dosenbach. Crittenden, 

Mitchell, and Duncan (2016) showed that functional connectivity is greater 

within each subcomponent of the network than among them, and also that the 

information encoded in each region differs depending on the system to which it 

belongs. 

Finally, it is important to highlight the significance of other structures beyond the 

MDN. For example, the Default Mode Network (DMN; Raichle et al., 2001), 

anchored in the ventromedial prefrontal cortex (vmPFC) and the precuneus, is 

frequently deactivated during cognitive tasks. This DMN has been associated with 

functions that differ from external control processes, such as mind-wandering. 

However, its active role, along with the hippocampus, has recently been evi- 

denced when large changes in cognitive context are required (Crittenden, 

Mitchell, & Duncan, 2015). On the other hand, the continuous interaction 

between the basal ganglia and the PFC appears to underlie the acquisition of 

complex goal- directed behaviours (Buschman & Miller, 2014). Similarly, some 

of the models already mentioned highlight the role of areas such as the thalamus 

or the cere- bellum (e.g., Dosenbach et al., 2008). 

In short, the evidence obtained so far agrees on the importance of a number of 

structures in cognitive control. Once identified, unravelling their function is 
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crucial. To this end, in the following paragraphs we describe the current literature 

on this matter, beginning with processes related to the proactive control of 

behaviour. 

3.2. Proactive control in the brain 

Humans can prepare in advance by applying control in a proactive manner. To 

do this, we encode the relevant aspects of the task in advance and maintain them 

in an active state (Sakai, 2008). In terms of processes, this relates to the 

representa- tion of an abstract and global task set and the activation of the specific 

rules that compose it (Rubinstein, Meyer, & Evans, 2001). In addition, motor 

preparation and inhibition of irrelevant responses also take place. All this relates 

to the selective activation of perceptual and motor processes, which improves 

subse- quent performance (Miller & Cohen, 2001). 

The study of this phenomenon employs paradigms that specify certain aspects of 

the behaviour that will be demanded; one of the best-known examples is using 

cues to instruct the task to be performed on a subsequent stimulus (e.g., Monsell, 

2003). The time interval often introduced between cue and target stimulus allows 

participants to prepare in advance. The brain activity generated by the cue and 

maintained throughout the interval allows us to study the role of different regions 

in proactive control. 

Prefrontal cortex and the representation of the task set. 

The PFC is crucial to the anticipatory representation of task sets, that is, the 

mental models of the task that include the relevant stimuli and responses, the 

rules that bind them, and the consequences of executing the actions (Sakai, 
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2008). This complex representation biases the activation in other structures 

related to more modular task-relevant computations (Miller & Cohen, 2001). 

Specifically, the lateral prefrontal cortex (LPFC) frequently shows activity related 

to the coding and maintenance of rules (e.g., Brass & von Cramon, 2004), which 

can be decoded before implementation (Reverberi, Gorgen, & Haynes, 2012). 

Importantly, the accuracy of this decoding correlates with perfor- mance, and it 

is modified by factors such as motivation (Etzel, Cole, Zacks, Kay, & Braver, 

2016). All this indicates that these processes are of a preparatory nature and exert 

a clear impact on behaviour. 

As we move rostrally in the PFC towards the anterior prefrontal cortex (aPFC), 

the representations become more abstract, and strategies and intentions are also 

encoded (Haynes et al., 2007). Both the lateral and the medial portions of the 

aPFC have been related to these processes, although the latter (not part of control 

networks such as the MDN) has recently accumulated the most evidence in this 

regard (e.g., Landsiedel & Gilbert, 2015). However, the lateral portion of the aPFC 

participates as well (Momennejad & Haynes, 2013), and also plays an important 

role in coordinating the activation of LPFC regions during preparation (Sakai & 

Passingham, 2006). In short, these data as a whole can be interpreted in terms of 

a gradient along the rostro-caudal axis in the PFC (Figure 3.2): anterior regions 

represent more abstract content and exercise control over posterior areas (e.g., 

Koechlin, Ody, & Kouneiher, 2003). 
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Figure 3.2. Possible interpretation of the proactive control processes in terms of a rostro- caudal gradient 

of abstraction (Koechlin et al., 2003). The gradient moves from the left (more specific, in red) to the right 

(more abstract, in white), indicating both the underlying representations and the associated brain regions. 

IPS: Intraparietal sulcus; LPFC: Lateral prefrontal cortex; aPFC: Anterior prefrontal cortex. 

It is also important to emphasize the role of a functionally distinguishable area in 

the caudal part of the PFC: the inferior frontal junction (IFJ). Several meta- 

analyses indicate that it is responsible for updating the task set when demands 

change (e.g., Brass, Derrfuss, Forstmann, & von Cramon, 2005), which is a 

central aspect of cognitive flexibility. 

Role of parietal cortex during preparation 

The intraparietal sulcus (IPS) is frequently involved in proactive control. Its role 

in sensorimotor integration has fostered its association with the representation 

of specific rules linking stimuli and responses (Brass & von Cramon, 2004). If we 

extend the rostro-caudal gradient to the parietal cortex, the IPS would specify the 

more abstract task set represented in anterior regions of the frontal cortex (see 
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Figure 3.2). In support of this idea, the disruption of the IPS with transcranial 

magnetic stimulation specifically affects the reconfiguration of action rules 

(Muhle-Karbe, Andres, & Brass, 2014). 

However, the proactive role of the parietal cortex is not yet clear. Its involvement 

in task-cueing experiments is often very similar to that of the LPFC, which makes 

it difficult to dissociate both areas (Crone, Wendelken, Donohue, & Bunge, 2006). 

There is also evidence that the key to prepare for highly complex tasks is precisely 

the synergy between these two regions (that is, the operation of the frontoparietal 

network as a unit; Cole et al., 2013). On the other hand, other results show that 

in certain situations the IPS is the only region that encodes the task set, even when 

this includes rather abstract contextual information (Wisniewski, Reverberi, 

Momennejad, Kahnt, & Haynes, 2015). All this points to the need to refine 

experimental designs and to interpret with caution the data obtained from this 

region. 

The presupplementary motor area 

The presupplementary motor area (pre-SMA) has been associated, in this 

context, with two different functions. On the one hand, it may support unspecific 

pre- paratory processes: for example, when two consecutive signals are presented 

before the stimulus, the pre-SMA activates to encode them both, regardless of 

whether they indicate the same or different tasks (Brass & von Cramon, 2004). 

On the other hand, it has also been involved in the inhibition of responses or 

previously relevant contingencies (Crone et al., 2006). However, it is also possible 

to decode specific aspects of the task set using multivoxel activity patterns from 

this area (Crittenden et al., 2016). Hence, it is possible that, as occurs with the 

parietal cortex, this region performs various preparatory processes, depending on 



37 
 

the characteristics of the situation. Its precise role in each situation could be 

determined by the abstract representations of context that orchestrate the 

networks involved in the task and the dynamics of their interactions (see below). 

The cingulo-opercular network: a comprehensive system for proactive control. 

The network comprising the anterior cingulate and insula/frontal operculum 

(ACC and aI/fO, respectively) shows, in addition to transient responses to cues 

and errors, activity sustained over prolonged periods of time (Dosenbach et al., 

2008). This could underlie the maintenance of task sets that endure over time, 

thus freeing demands of reactive control. 

However, there is no clear evidence that these regions encode the task to be 

performed at these slower time scales. Although they represent the rules to 

implement in a transient manner, a more discernible pattern is found in fronto- 

parietal areas (Crittenden et al., 2016). This may indicate that the role of cingulo- 

opercular regions in proactive control is more general: sustained activity may 

establish a ‘control mode’, in terms of a highly abstract strategy common to 

demanding tasks. However, there is conflicting evidence. For example, a recent 

meta-analysis suggests that the functional pattern of this network is 

indistinguish- able from that associated with the fronto-parietal network 

(Anderson, Kinnison, & Pessoa, 2013). Hence, characterizing the information 

implemented by the cingulo- opercular system is one of the key questions in the 

current research scenario of proactive control. 

3.3. Reactive control in the brain 

As introduced above, control mechanisms not only prepare the system in 

advance, but also make adjustments adaptively during the execution of the task. 
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This happens when we are faced with events that generate conflict in information 

processing, usually by the simultaneous activation of incompatible action tenden- 

cies (Botvinick, Braver, Barch, Carter, & Cohen, 2001). These reactive processes 

have been studied using paradigms of interference, such as the Stroop (Stroop, 

1935) or Flanker (Eriksen & Eriksen, 1974) tasks. In these types of paradigms, 

irrelevant dimensions of stimuli are associated with preponderant or automatic 

responses that can be incongruent and interfere with proper actions. 

Thus, reactive control involves two mechanisms, one for conflict detection and 

another one for conflict resolution (Botvinick et al., 2001). In addition, the task 

set that guides preparatory processes should also be active during task execution. 

Nonetheless, we will focus on the mechanisms of conflict detection and resolu- 

tion, as they are the hallmark of reactive control. 

Conflict detection. 

Regarding the first of these processes, multiple sources of evidence agree on the 

relevance of the ACC, especially its dorsal portion (dACC), as a region key for 

conflict detection (e.g. Botvinick et al., 2001; Shenhav, Botvinick, & Cohen, 2013). 

However, there have been different perspectives about the specific com- 

putations or mechanisms underlying this region. 

One proposal was that the ACC is responsible for processing errors (Holroyd & 

Coles, 2002). This hypothesis was supported by the electroencephalographic 

potential termed Error Related Negativity (ERN), which has been located in the 

ACC and appears at the commission of errors. Subsequently, it was proposed that 

the ACC may not exactly detect errors per se, but rather estimate their probability 

of occurrence (Brown & Braver, 2005). 
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One of the theories with the largest impact on the field was proposed by Botvinick 

et al. (2001). This model, originating from simulations of classical tasks of 

interference, suggested that the dACC implements a mechanism for monitoring 

conflict. This brain region would be involved in situations where different sources 

of information interfere with each other. That is the case when there is 

competition between an automatic but irrelevant response and another relevant 

but less prominent one, or when the response is indeterminate and different 

alternatives compete to be selected (e.g., verb generation; Barch, Braver, Sabb, & 

Noll, 2000). In addition, and linking with previous ERN studies, a third source of 

conflict would be the commission of errors, normally produced by the co-

activation of the correct and incorrect responses. 

More recently, Shenhav et al., 2013 have proposed a new perspective on the 

dACC, reinterpreting its role in terms of a decision-making structure that seeks 

to optimize the implementation of control. In this sense, this area would carry out 

cost-benefit analyses, computing the Expected Value of Control (EVC), an index 

that would guide the decision of how much control to implement and in what 

direction. The dACC still has an important monitoring role in this model because 

to calculate the EVC, it must register information about the current state of the 

person and the consequences of implementing control, anticipating potential 

rewards and the costs inherent to carrying out that control. The dACC would 

receive information from the insula and ventromedial regions and the 

orbitofrontal cortex and thus serve as a centre for integrating control and 

motivation. Once the EVC has been computed, this structure would play its 

central role in the speci- fication of the control that needs to be implemented, 

seeking to maximize rewards and minimize costs. 
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Finally, Heilbronner and Hayden (2016) have offered an integrative view, 

according to which the dACC would be responsible for registering variables of 

different nature to generate action control signals. Thus, the probability of error, 

the occurrence of conflict and the value of outcomes would all be relevant to the 

task and thus would be used in the phasic implementation of control. 

Conflict resolution. 

Many of the models presented in the previous sections assign a central role to the 

LPFC in resolving the conflict detected by the dACC. More recently, it has been 

suggested that a set of fronto-parietal structures coincident with the MDN mod- 

ulate different aspects of information processing to provide the adjustments 

needed to optimize task performance. Hence, depending on the demands of 

context these areas participate in proactive control as described in previous 

sections, or they operate online, in a reactive manner, to resolve conflict (Marini, 

Demeter, Roberts, Chelazzi, & Woldorff, 2016). 

As an example, the dorsal portion of the LPFC is crucial for reactive control as it 

facilitates the perceptual processing of relevant stimuli that conflict with other 

more automatic ones (Egner & Hirsch, 2005). The ventrolateral prefrontal cortex 

(VLPFC) also participates by inhibiting responses that are in competition with 

the relevant alternative to the task, acting in collaboration with other regions of 

the MDN such as the anterior insula or the pre-SMA (Levy & Wagner, 2011). 

Similarly, the dorsal and ventral portions of the parietal cortex also participate in 

conflict resolution by inhibiting the processing of distracting stimuli that generate 

interference (Marini et al., 2016). 
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Finally, a more global mechanism at the base of reactive control of behaviour lies 

in the flexibility with which the fronto-parietal regions represent the key aspects 

of the task (rules, stimuli and relevant responses). The encoding of this 

information varies dynamically and adjusts to unexpected changes in demands. 

This principle, termed adaptive coding, has been observed along the entire MDN 

(Woolgar, Jackson, & Duncan, 2016). 

3.4. Dynamics of cognitive control. 

The previous sections have reviewed the brain structures associated with control 

and the computations underlying their activity. In recent years, research on the 

dynamics of these processes has also advanced significantly. Results in this field 

show that the synchronization and the coupling in different frequency ranges 

between control networks representing relevant targets, and more modular 

regions which process relevant information, are core neural computations in 

cognitive control (Fries, 2015). While local neural assembly computations would 

be mainly measured by synchronicity in the range of high or rapid frequencies, 

long range interactions between distant regions, related to cognitive control, use 

slower frequencies that encompass larger neural groups (Fries, 2015). Part of the 

litera- ture on cognitive control highlights the importance of coupling mediated 

by activity in the beta band (Bressler & Richter, 2015), and other results also point 

to the importance of theta and alpha (e.g., Capilla, Schoffelen, Paterson, Thut, & 

Gross, 2014). 

The dynamics related to goal implementation have been studied in different 

animal species using different recording techniques and paradigms of various 

kinds. Buschman and Miller (2007), for example, showed neural synchrony 

between the PFC and the IPS, with influence of opposite directionality and 
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different ranges of frequencies, depending on whether behaviour was guided 

externally by the salient features of the stimuli or internally by the goals set by 

the individual. Related studies suggest that these types of interactions depend in 

part on mechanisms of synchrony generated in thalamic nuclei, such as the 

pulvinar (Saalmann, Pinsk, Wang, Li, & Kastner, 2012). 

In another study of task-switching, where individuals had to alternate between 

rules of colour or orientation of stimuli, Buschman et al. (Buschman, Denovellis, 

Diogo, Bullock, & Miller, 2012) described the forma- tion of neural ensembles in 

prefrontal regions that selectively synchronized their firing in the beta frequency 

band according to the rule implemented. At the same time, the neural assembly 

representing the non-relevant rule increased its synchrony in the alpha range, 

associated with the deselection of irrelevant information. Recently, in the same 

line, Voytek et al. (2015) used a task in which participants implemented rules of 

increasing abstraction. In addition to involving regions more anterior in the 

prefrontal cortex, rule abstraction increased phase encoding in the theta range, 

and it also increased local populations synchronized in gamma, which was 

predictive of trial-by-trial differences in reaction time. These mechanisms are 

similar to others proposed in related research areas, such as, for example, 

sustained attention (Clayton, Yeung, & Kadosh, 2015). 

3.5. Final remarks. 

Throughout this review, we have discussed how a set of brain regions, acting 

jointly, implements proactive and reactive control on behaviour. The distinction 

between the two types of control is not related to the exclusive recruitment of one 

or another set of areas. On the contrary, this corresponds to a possible organizing 

principle of brain function, wherein the temporal profile of activations contextua- 
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lizes the computations carried out by a brain region to solve specific demands. 

This is a considerable advantage as it allows a functional specialization that 

depends on temporal dynamics, and not on the anatomical structure of the brain, 

which is ultimately limited (Braver, 2012). 

This theoretical framework has large explanatory power and has an extensive 

body of evidence supporting it. When this research is taken together with data on 

brain dynamics, we obtain a comprehensive and detailed perspective of the 

neural implementation of cognitive control. The first source of information 

explains how representations that guide behaviour are established, and how they 

adapt to changes in demands. On the other hand, dynamics data offer a closer 

view of the mechanisms by which they exert a bias on the neural systems that act 

as an interface with the environment (interacting in different frequency bands). 

In short, both perspectives are complementary and allow us to resolve the 

questions posed by classic control models (Miller & Cohen, 2001). 

However, there are several aspects that require further research. One of them 

refers to the anatomical specificity of the data collected to date. Despite multiple 

attempts to establish a comprehensive parcellation of the human brain, inconsis- 

tencies in labelling and delimitation of specific brain regions still prevail, making 

it difficult to compare results from considerably different studies. Fortunately, 

recent efforts are advancing the field in this direction (Glasser et al., 2016). 

Parallel to this problem, the multiplicity of tasks employed (especially those used 

to measure a single variable, but with different manipulations) can lead to 

confusion between the conclusions drawn. Therefore, we must explain the 

function of each region more specifically when describing their role (and avoid 

simply labelling it). This is particularly relevant when there is overlap between 
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the functions assigned to an area: a more detailed description would assess 

whether we are in fact dealing with different processes, or if instead the area in 

question implements a more general computation that is evidenced in different 

experimental situations. In this regard, the continuous sophistication of 

paradigms and analysis techniques promises to shed light on the matter. 

On the other hand, studies conducted so far have tried to answer, broadly, two 

questions: where and how is control implemented. This leaves a third, also 

central, issue unresolved: why is control implemented in this way and not 

another. Recent research using simulations and computational models has 

suggested that repre- sentations of control are a reflection of the structure of the 

problems we have had to face during phylogenetic evolution (Botvinick & Cohen, 

2014), thus offering an explanation as a phenomenon occurring during the 

evolution of the brain as a biological system. 

 Finally, research on cognitive control would benefit from its integration with 

other theories of brain function. Such is the case of predictive coding (Friston, 

2005). According to this theory, perception is not a passive phenomenon, guided 

by bottom-up information that accesses the system, but emerges from bottom-up 

and top-down cycles. From this perspective then, we should investigate whether 

proactive control mechanisms are involved in perceptual processes. This is an 

unexplored area which raises intriguing questions in the field. 

In short, the study of the brain basis of cognitive control is a highly productive 

field, but we still have a long way to go. Undoubtedly, research in the coming years 

accompanied by technological innovations will answer many of these issues, 

which are of great interest to neuroscience and cognitive psychology. 
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Abstract 

The success of humans in novel environments is partially supported by our ability 

to implement new task procedures via instructions. This complex skill has been 

associated with the activity of control-related brain areas. Current models link 

fronto-parietal and a cingulo-opercular networks with transient and sustained 

modes of cognitive control, based on observations during repetitive task settings 

or rest (Dosenbach et al. 2008). The current study extends this dual model to 

novel instructed tasks. We employed a mixed design and an instruction-following 

task to extract phasic and tonic brain signals associated with the encoding and 

implementation of novel verbal rules. We also performed a representation 

similarity analysis to capture consistency in task-set encoding within trial epochs. 

Our findings show that both networks are involved while following novel 

instructions: transiently, during the implementation of the instruction, and in a 

sustained fashion, across novel trials blocks. Moreover, the multivariate results 

showed that task representations in the cingulo-opercular network were more 

stable than in the fronto-parietal one. Our data extend the dual model of cognitive 

control to novel demanding situations, highlighting the high flexibility of control-

related regions in adopting different temporal profiles.  
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4.1. Introduction 

Following verbal instructions could seem, at first glance, a trivial aspect of human 

behavior, perhaps due to the easiness that we often experiment when following 

commands in our daily life. However, in continuously changing environments, 

the ability to use instructions to guide actions is essential for fit performance. In 

fact, this skill defines a crucial distinction between us and non-human apes: using 

language to share task procedures freed us from slow trial-and-error learning 

(Cole et al. 2013). Despite the biological relevance of this complex, flexible skill, 

some important aspects of its underlying neural architecture remain unknown. 

In the present study, we employed functional magnetic resonance imaging 

(fMRI) and both univariate and multivariate approaches to describe the transient 

and sustained control processes that allow us to follow novel verbal instructions.  

The transformation of an instruction into effective behavior involves different 

processes. First, rules are semantically encoded, and proactive control processes 

(Meiran 1996; Braver 2012) are deployed to build a representation of the task (the 

so-called task-set; Sakai 2008). This set can be activated in advance (Meiran 

2010; Ruge et al. 2013), biasing task-relevant processing in sensorimotor regions 

(e.g. Sakai and Passingham 2003; Sakai and Passingham 2006; Ekman et al. 

2012; González-García et al. 2016; González-García et al. 2017) and thus, allowing 

us to prepare. Once the task context has been instantiated, task-sets must be 

implemented (Stocco et al. 2012), and reactive control processes become crucial 

(Cole et al. 2017), as they allow the inhibition of previously relevant action plans 

and the selection of target stimuli among possible distractors (Botvinick et al. 

2001; Braver 2012). These proactive and reactive neural mechanisms, necessary 

for successful task encoding and implementation, have received considerable 
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attention in the broader literature of cognitive control (e.g. Braver 2012; 

Palenciano et al. 2017). 

Traditionally, the experimental approaches employed to study cognitive control 

use rather repetitive paradigms, which trigger proactive task-set reconfiguration 

with alternations between few rules (e.g., task switching; Monsell 2003) and/or 

reactive adjustments via conflict (e.g., the Stroop task; Stroop 1935). The evidence 

so far shows the involvement of a set of frontal and parietal areas during the 

execution of a wide spectrum of effortful, controlled tasks (Duncan 2010), 

including novel task execution (e.g., González-García et al. 2017). Due to the tight 

functional coupling of these regions (Fox et al. 2005; Seeley et al. 2007; Cole and 

Schneider 2007), they are often considered a unitary control brain network 

(namely, the Multiple Demand Network or MDN; Duncan 2010; Fedorenko et al. 

2013). However, recent advances in experimental design and data analysis have 

led to its subdivision into at least two components -the cingulo-opercular and the 

fronto-parietal networks (CON and FPN, respectively)-, which seem to act at 

different, complementary time scales (Dosenbach et al. 2006; Dosenbach et al. 

2008). The CON is comprised by regions that show both preparatory (cue-

related) and sustained (across multiple trials) activations (Dosenbach et al. 

2006), and has been associated with the proactive activation and maintenance of 

task-sets (Dosenbach et al. 2007). Conversely, FPN regions present mainly 

transient, cue and error-locked activity (Dosenbach et al. 2006) and their role has 

been described in terms of phasic, reactive adjustment of behavior (Dosenbach et 

al. 2007).  

Support for this dual distinction comes not only from the analysis of sustained 

and transient neural signals while participants perform different tasks 
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(Dosenbach et al. 2006), but it has also been confirmed when analyzing the 

information encoded in multivoxel activity patterns in those regions (Crittenden 

et al. 2016) and in functional connectivity data (both in resting state and on task; 

Dosenbach et al. 2007; Crittenden et al. 2016). Nevertheless, it has also been 

evidenced that such dual functioning, and specially the sustained involvement of 

the CON, is absent in certain task contexts (for example, when stimuli contain 

enough perceptual information to guide the response; Dubis et al. 2016). Last, 

crucially to the current study, it remains unknown whether there is a differential 

involvement of the two systems during goal-directed behavior in contexts of 

novelty. As novel tasks entail higher control demands than practiced ones 

(Norman and Shallice 1986), it is expected that they would be associated with a 

greater recruitment of maintained and transient processes mediated by CON and 

FPN, which could highlight their distinction.  

Research in recent years has explored the brain regions underlying the encoding 

and implementation of instructions, and the specific roles carried out by each one 

(Brass et al. 2017). The findings so far support the involvement of the two main 

nodes of the FPN, the inferior frontal (IFS) and the intraparietal sulcus (IPS; e.g. 

Ruge and Wolfensteller 2010; Dumontheil et al. 2011; Muhle-Karbe et al. 2017), 

as expected from Dosenbach and colleagues’ model. The lateral prefrontal cortex 

(LPFC) in general, and the IFS in particular, have been linked to the encoding of 

new instructions (Hartstra et al. 2011; Demanet et al. 2016), showing higher 

activity in novel compared to practiced contexts (Cole et al. 2010; Ruge and 

Wolfensteller 2010). This region may be in charge, specifically, of the formation 

of novel stimulus-response mappings (when comparing against the formation of 

stimulus-stimulus associations; Hartstra et al. 2012). This supports its 
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involvement in proactive processes related to the creation of novel task-sets, and 

not in the mere declarative maintenance of instructions in working memory 

(Hartstra et al. 2012; Brass et al. 2017). The IPS has shown, generally, a similar 

pattern (Ruge and Wolfensteller 2010; Dumontheil et al. 2011), although there is 

also evidence of a less abstract, sensorimotor representation in this region 

(Hartstra et al. 2012; Muhle-Karbe et al. 2014; González-García et al. 2017). 

Importantly, the functional coupling of the IFS and IPS with other brain regions 

contains fine-grained information about the content of novel instructions (Cole, 

Reynolds, et al. 2013). These distributed mechanisms of task-set representation 

also add evidence for the joint activation of fronto-parietal regions as a coherent 

functional system.  

On the other hand, the CON network consists of the dorsal anterior cingulate 

(dACC), the anterior insula/frontal operculum area (aI/fO) and the anterior 

prefrontal cortex (aPFC). In contrast to the FPN, evidence of its involvement 

during instructed behavior is scarce. The dACC has been associated, in this 

context, with the reactive inhibition of irrelevant actions that interfere with the 

proper response (Botvinick et al. 2001; Brass et al. 2009). However, existing 

evidence does not yield strong support for a role of the dACC or the aI/fO in the 

encoding and/or maintenance of new instructed rules. The aPFC, in contrast, has 

been highlighted as a key region in the construction of novel task-sets, but only 

when rules are complex or abstract (Cole et al. 2010). Thus, the CON has not 

shown, as a system, a consistent behavior as the one predicted from the dual 

model framework.  

The differential support for the participation of the two networks in novel 

instructed behavior could be due to different reasons. On the one hand, the nature 
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of the behaviors explored could weight on transient mechanisms (FPN) to a 

higher extent than on sustained ones (CON), which besides of being more 

resource consuming (Braver 2012), develop in a time scale that may not be 

optimal in this context. In other words, the activity maintained in CON areas 

could be maximally beneficial when the relevant rules are stable in time (as in 

classic control paradigms), but not if quick task-set reconfigurations take place in 

a trial-by-trial fashion. In accordance with this idea, it has been proposed that 

reactive mechanisms are key to potentiate flexibility in novel instruction 

following (Cole et al. 2017). On the other hand, the evidence to date is scarce in 

contexts where novel instructions are embedded in designs aimed at isolating 

both control modes, which by definition act at different temporal scales.  

When employing fMRI mixed designs (Petersen and Dubis 2012), the 

combination of events and blocks  allows for the disambiguation of transient and 

sustained neural signals. To date, only one instructions study has been carried 

out using mixed designs (Dumontheil et al. 2011), and it employed complex 

practiced commands. These authors manipulated task-set complexity and 

studied transient activations linked to the encoding and implementation of 

instructions, while the sustained activations were analyzed only during 

implementation. Surprisingly, only two regions were involved in their sustained 

results: the IFS and the aPFC. Thus, the equal involvement of regions from both 

networks leaves open the role of the CON in instructed task execution and more 

importantly, whether this pattern applies to novel contexts.  

We aimed to conduct an experiment which specifically tested the involvement of 

the dual control system proposed by Dosenbach and colleagues (Dosenbach et al. 

2006; Dosenbach et al. 2008) during novel, instructed behavior. To do so, we 
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adapted an instruction-following paradigm (González-García et al. 2017) to an 

fMRI mixed design, manipulating the experience with the instructions (novel vs. 

practiced) in different blocks of trials. This allowed comparing novelty-related 

activity patterns (i.e., sustained and phasic activations) against a control 

practiced condition. Furthermore, we aimed to better characterize the sustained 

activation profile associated with the CON. As the standard univariate analyses 

employed in previous studies did not help to clarify the information held by these 

networks, other plausible hypotheses in addition to proactive control 

involvement have been proposed (e.g., tonic attention maintenance; Coste and 

Kleinschmidt 2016). To address this issue, we employed recent multivariate 

techniques (Haynes and Rees 2006), an approach that has been shown to be 

highly informative. For example, using a combination of Multi-Voxel Pattern 

Analysis (MVPA) and Representational Similarity Analysis (RSA; Kriegeskorte et 

al. 2008), Qiao and colleagues (Qiao et al. 2017) were able to characterize how 

FPN areas adaptively change the task-set being represented, and how this process 

deals with interference from previous relevant rules. The dual-network model 

would predict a better maintenance through time of task-sets in CON, 

complementing the quick adjustment of the information encoded across the FPN. 

Thus, we employed RSA to assess whether the spatially distributed task 

representations were more consistent over time in CON than in FPN areas.  

4.2. Methods and materials 

Participants 

37 students from the University of Granada, all right-handed and with normal or 

corrected-to-normal vision were recruited for the experiment (20 women, mean 

age = 21.13, SD = 2.47). All of them signed a consent form approved by the Ethics 
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Committee of the University of Granada and received payment (20 to 25€, 

according to their performance) or course credits in exchange for their 

participation. Two participants were excluded from the final sample due to excess 

of head movement (> 3 mm). Sample size was selected according to 

recommendations for mixed designs (Petersen and Dubis 2012). 

Apparatus and stimuli  

We used a total of 120 verbal instructions similar to those employed by González-

García and colleagues (González-García et al. 2017). They were all composed by a 

condition and the two responses associated with the condition being true or false 

(e.g.: “If there are four happy faces, press L. If not, press A”). Half of the 

instructions referred to faces (their gender -female, male-, emotional expression 

-happy, sad-, or both), whereas the remaining referred to letters (their type -

vowel, consonant-, color -blue, red-, or both). The instruction could also specify 

the quantity of specific stimuli, their size, or the spatial contiguity between them. 

Finally, the motor responses indicated a left or right index button press (“press 

A” or “press L”, respectively). Face and letter sets were equivalent in terms of 

these parameters. We conducted a pilot behavioral study to ensure that the 

difficulty was equivalent across the whole set. Then, to shorten task duration for 

the fMRI protocol, we built up six 100-instructions lists from the pool (again, 

equating face and letter-related elements) and assigned them to the participants, 

so each individual instruction was presented with the same frequency across our 

sample. 

For each instruction, we built two grids of target stimuli: one fulfilling the 

condition specified (match) and the other one not (mismatch). They all consisted 

of unique combinations of 4 faces and 4 letters, which were drawn from a pool of 
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16 pictures: 8 face images (2 men and 2 women, 2 with happy expression and 2 

sad, each in two different sizes -big/small-) from the Karolinska Directed 

Emotional Faces set (Lundqvist et al. 1998) and 8 letter images (2 consonants 

and 2 vowels, 2 in red color and 2 in blue, each in two different sizes -large/small-

). Grids from face and letter instruction sets were built in parallel (establishing an 

equivalence between gender-letter type and emotion-color). Across the whole 

sample of participants, all instruction-stimuli (matching and mismatching grids) 

and instruction-response combinations (press A if true, press L if false; or the 

opposite) were employed. 

The task was created with E-Prime 2.0 (Psychology Software Tools, Pittsburgh, 

PA). Inside the scanner, it was projected onto a screen visible through a mirror 

located on the head coil.  

Procedure 

Participants performed a task in which they implemented novel and practiced 

verbal instructions referring to letters or faces, inside the fMRI scanner. The 

timing of the whole task was adapted to match the TR of the EPI sequence (2.21s), 

anchoring each event to the beginning of a scan acquisition, due to requirements 

of the FIR analyses conducted (see fMRI analysis section). Each trial (Fig. 4.1) 

started with the presentation of a verbal instruction (25.75o; encoding phase) 

during 2.21s (i.e., one TR), followed by a jittered interval with a fixation cross 

(2.21-8.84s, mean =5.525s). The grid of stimuli (21o) then appeared for 2.21s, 

where participants had to respond (implementation phase) using button boxes 

compatible with the scanner environment. The following trial began after a 

second jittered delay (with the same characteristics as the previous one).  
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We were interested in two variables: the experience that the participants had with 

the trials (new vs. practiced) and the category of stimuli that the instructions 

referred to (faces vs. letters), having four possible conditions: Faces/New, 

Letters/New, Faces/Practiced, Letters/Practiced. As we employed a mixed fMRI 

design for our task, we manipulated those variables between blocks, for a total of 

16 blocks (4 of each condition), with ten trials each. All blocks began with a cue 

indicating the experience and category condition (2.21s) followed by a jittered 

interval (2.21-8.84s, mean = 5.525s), after which the first trial began. Blocks 

lasted 154.7s, and were followed and preceded by pause periods of 66.3s (also 

indicated by pause cues of 2.21s). Importantly, pause duration was chosen to be 

long enough to ensure a robust baseline for block-related activity. The task was 

split into four runs, each composed of four blocks, one per condition. We carefully 

counterbalanced the order of blocks, ensuring that all of them were preceded and 

followed by the others the same number of times. Runs lasted 17.05 minutes, and 

the whole task 67.3 minutes. 

 

Figure 4.1: Mixed-design behavioral paradigm. 
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Participants came to the laboratory approximately 24 hours before the fMRI 

session, and performed 10 repetitions of two blocks of ten instruction-grid 

pairings each (i.e., Faces/Practiced and Letter/Practiced blocks), which 

conformed the practiced instructions. Feedback was administered after each trial 

in this practice session, and learning was assessed in a pre-scanner test, with a 

requirement of at least 85% correct responses to continue the experiment. Across 

participants, all materials were equally employed in new and practiced 

conditions. 

FMRI: acquisition and analysis. 

MRI data was collected using a 3-Tesla Siemens Trio scanner at the Mind, Brain, 

and Behavior Research Center (CIMCYC, University of Granada, Spain). We used 

a T2*-weighted Echo Planar Imaging (EPI) sequence (TR = 2210ms, TE = 23ms, 

flip angle = 70º) to obtain the functional volumes. These consisted of 40 slices, 

obtained in descending order, with 2.3mm of thickness (gap = 20%, voxel size = 

3mm2). The 4 runs consisted of 468 volumes each. We also acquired a high-

resolution anatomical T1-weighted image (192 slices of 1mm, TR = 2500ms, TE 

= 3.69ms, flip angle = 7º, voxel size = 1mm3). Participants spent approximately 

90 minutes inside the MRI scanner. 

We used SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to 

preprocess and analyze the data. The first four volumes of each run were excluded 

to allow for stabilization of the signal. The remaining images were spatially 

realigned, time-corrected and normalized to the MNI space (transformation 

matrices were estimated from EPI images, and applied to them in the same step). 

Finally, they were smoothed using an 8mm FWHM Gaussian kernel. We built our 

experimental task on the basis of a mixed design (Petersen and Dubis 2012). 
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Therefore, for each subject, we created a GLM including, simultaneously, events 

(separately, encoding and execution phases) and block regressors for each of the 

four conditions, to perform the main univariate analysis of this data. Events were 

modeled using a Finite Impulse Response (FIR) basis set (9 stick functions, 

encompassing 19.89s -9 TRs- following the onset of the events), while blocks were 

convolved with the canonical hemodynamic response (HRF) function (Visscher 

et al. 2003). We also modeled the pause periods (HRF convolved) and the 

block/pauses starting cues (FIR modeled), and included the errors (boxcar 

functions with same duration as the full trials, convolved with the HRF) and six 

movement parameters as nuisance regressors. A 756s high pass filter was set, 

taking into account block duration and the maximum time elapsed between 

events of the same condition.  

At the within-subject level of analysis, we conducted t-tests comparing event 

regressors against the implicit baseline, time bin by time bin, separately for each 

condition. T-tests were also conducted to contrast blocks with pause periods 

(both collapsing across conditions, and separately), and also to compare between 

blocks of different conditions. At the group level, separate analyses were carried 

out for the sustained and transient components, in both cases correcting for 

multiple comparisons using a P < 0.05 FWE cluster-wise criterion (from an initial 

uncorrected P < .001). In the first case, we used one sample t-tests with the 

subjects’ block contrast images obtained from the first level analyses. For the 

transient activity, we included the statistical maps obtained from the event 

contrasts into two ANOVA (encoding and implementation), performed as a full 

factorial design in SPM12 (Hartstra et al. 2011; Hartstra et al. 2012) and including 

Experience (novel, practiced), stimulus Category (faces, letters) and Time (9 time 
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bins) as factors. This SPM design was chosen because it facilitates contrast 

specification, especially in complex models such as the one employed here. 

Nonetheless, all results were replicated with a repeated measures ANOVA also 

including a Subject factor, following an SPM flexible factorial model (Glascher 

and Gitelman 2008). We assessed main effects of experience and category, and 

their interaction with time bin. In the interaction of experience with time bin 

during the implementation stage, significant clusters were too big and extended 

over several different areas, so we adopted a stricter cluster forming threshold 

(uncorrected P < 0.001) to obtain smaller, anatomically more constrain clusters. 

Finally, to establish the directionality of these effects, we extracted the beta values 

of the significant clusters and compared the estimated hemodynamic response 

across conditions, both plotting the data, and performing post-hoc pairwise 

comparisons (Bonferroni corrected) with the SPSS software (SPSS 20.0 for 

Windows, SPSS, Armonk, NY).  

We additionally performed non-parametric inference (based on 10.000 

permutations and cluster-forming threshold of P < .001) on sustained activity 

data, using the software SnPM (http://www.sph.umich.edu/ni-stat/SnPM). We 

could not follow this strategy with the transient activity analysis, as the repeated-

measures ANOVA design was too complex to implement with the software 

available. Nonetheless, it is noteworthy that the block non-parametric results 

successfully replicated the output from the parametric approach. 

To further characterize these findings, we carried out three additional analyses. 

First, we performed a conjunction test (Nichols et al. 2005) to assess the overlap 

between areas showing sustained and transient (encoding and implementation) 

activity. To do so, we thresholded (P < .05 FWE cluster-wise criterion) the 
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statistical maps obtained from the following contrasts of interest: (1) t-test of 

novel vs. practiced blocks, (2) main effect of Experience during the encoding of 

instructions; (3) and interaction of Experience*Time during the implementation 

stage. These three statistical maps were post-hoc selected based on the findings 

obtained from the analyses described above and our hypothesis regarding the 

roles of the CON and the FPN. These images, after being binarized, were used to 

assess the intersection of the contrasts. As a result, we obtained voxels 

significantly activated in all three situations simultaneously. 

Next, we evaluated the congruency of our results with the proposal of Dosenbach 

and colleagues (Dosenbach et al. 2008) of two subnetworks for cognitive control. 

Specifically, we assessed the extent of overlap of the regions showing sustained 

and transient activations in our experiment with the CON and the FPN, 

respectively (Dosenbach et al. 2008). For this, we built spherical 10mm radius 

ROIs centered on the nodes of the CON (dACC [0, 31, 24], aPFC [-21, 43, -10; 21, 

43, -10], aI/fO [-35, 18, 3; 35, 18, 3]), and FPN (IFS [-41, 23, 29; 41, 23, 29], IPS 

[-37, -56, 41; 37, -56, 41]), as published in Fedorenko and cols. (Fedorenko et al. 

2013). ROI definition, including sphere size selection, was conducted following 

the parameters in the study of Dumontheil and colleagues (Dumontheil et al. 

2011), in order to facilitate comparisons. The network templates were then 

overlaid against the thresholded statistical maps that we obtained in our results 

(using the same contrast images as in the conjunction analysis), after which we 

assessed which ROIs were present in each map and the percentage of voxels of 

each subnetwork involved in the different contrasts (Woolgar et al. 2016). It is 

important to note, however, the descriptive nature of our approach, as it did not 

involve the computation of inference statistics. This was due to the complexity of 



61 
 

the mixed design analysis (which did not allow to obtain equivalent homogeneous 

statistics from both event and block-related signals). Nevertheless, the chosen 

procedure provided an informative comparison of the dual model (Dosenbach et 

al. 2008) and the sustained and transient activations estimated in our study.  

Finally, we conducted a multivariate analysis to study the fine-grained distributed 

representation of instructions and their consistency along trial epochs (i.e., from 

the encoding to implementation stages). Specifically, we aimed to test differences 

in representation persistence between the two networks, and how novelty 

modulated this effect. To that end, we entered the non-normalized and 

unsmoothed functional images into a GLM similar to the specified above, with 

the exception that blocks were not defined and event regressors were convolved 

with the HRF. This modeling approach was selected because at this point there 

was no risk of misattributing the signal from transient and sustained 

components, and more importantly, because it provided a single parameter 

image for each event condition (instead of nine). The beta coefficient maps 

extracted (32 in total, corresponding to the encoding and implementation phases 

of each condition and run) were used to build a 32x32 Representational 

Dissimilarity Matrix (RDM; using The Decoding Toolbox; Hebart et al. 2014) for 

each FPN and CON ROI (as defined above), which had previously been inverse-

normalized and coregistered to the participants' native space. In the RDMs, each 

column and row corresponded to a different regressor, and each celli,j to the 

distance (computed as 1 - Pearson correlation) between the multivariate activity 

pattern associated with regressors i and j. Pearson correlation values were first 

normalized using Fisher’s z-transformation. We focused on the quadrant of the 

RDMs capturing the dissimilarities between encoding and implementation of 
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instructions, in which the diagonal represented distances within different stages 

of same condition trials, and the off-diagonal represented values of different 

condition trials (Fig. 4.2). We computed the average difference between off and 

on-diagonal values for each ROI (González-García et al. 2018), as an index of 

representational consistency along time. Concretely, this index showed how 

similar the patterns of activations at the implementation and encoding stages of 

same condition were, in comparison with different condition trials. An index of 0 

means that the information encoded in multivariate patterns was independent 

between encoding and implementation, while higher values reflect greater 

correspondence between the information encoded in both phases. We first 

checked that the index was significantly above 0 across regions using one-sample 

t-tests. As the aim of this analysis was to assess whether the consistency index 

varied between the FPN and the CON, we averaged the values of ROIs pertaining 

to each system and performed a paired t-test between them. Even when our main 

hypothesis-driven approach for this analysis was to group the regions into two 

segregated control networks (Crittenden et al. 2016), we also wanted to explore 

differences that could arise among areas of the same component -as there is no 

reason to assume that they all perform identical computations. To assess this 

possibility, we conducted a repeated-measures ANOVA within each network, with 

ROI as factor, which was later qualified with planned comparisons, Bonferroni-

corrected. Finally, we obtained the consistency indexes separately for novel and 

practiced trials, and explored this effect with a repeated-measures ANOVA with 

Network and Experience as factors.  
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Figure 4.2: Representational Similarity Analysis. (A) First, a representational dissimilarity matrix (RDM) 

was built using the data of each cingulo-opercular and fronto-parietal region of interest. Each cell of the 

matrix indicates the dissimilarity between the representation of each pair of trial conditions at encoding and 

implementation stages. (B) The left lower quadrant was selected in each RDM. Within this quadrant, the 

diagonal (cells in blue) show dissimilarities between the encoding and the implementation of same-condition 

trials, and the off-diagonal values (cells in orange) refer to different-condition trials. Those values were 

averaged separately and subtracted to compute the persistence index employed in the analysis.  

4.3. Results 

Behavior 

We analyzed the behavioral performance during the scanning session using two-

way repeated-measures ANOVAs, with Experience (new vs. practiced) and 

Category (faces vs. letters) as factors. We found a significant effect of Experience 

in accuracy (F1,34 = 51.12, P < .001, p
2 = .601), with better performance for 

practiced (M = 94.7%, SD = 5.3) than for novel trials (M = 88.7%, SD = 6.8). The 

effect of Category was also significant (F1,34 = 5.31, P < .027, p
2 = .135), with 

better performance for faces (M = 92.6%, SD = 6.0) than for letters (M = 90.9%; 
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SD = 7.4%). Finally, RT data from this session replicated the significant main 

effect of Experience (F1,34 = 290.48, P < .001, p
2 = .895), and also showed a 

significant interaction between Experience and Category (F1,34 = 32.56, P < .001, 

p
2 = .489), with faster responses to faces (M = 747.0ms, SD = 196.7ms) than 

letters (M = 783.6ms, SD = 188.7ms) in practiced trials, and the opposite pattern 

in novel ones (Faces: M = 1047.7ms, SD = 183.7ms; Letters: M = 982.7ms; SD = 

172.1ms). Finally, we performed two additional ANOVAs on accuracy and RT data 

including Run as a factor, to rule out possible fatigue effects on our behavioral 

measures. Neither the main effect of Run (accuracy: F3,102 = 1.99, P < .120, p
2 = 

.055; RT: F3,102 = 2.11, P < .104, p
2 = .058) nor its interaction with Experience or 

Category were significant (Fs < 1.02, Ps > .100). This was further confirmed with 

a Bayesian repeated-measure ANOVA, in which both the main effect of Run and 

its interactions showed a BF10 < .3, strongly supporting a null effect of this 

variable and, thus, confirming that participants’ performance was stable across 

the whole task.  

fMRI  

We first conducted a univariate analysis to assess sustained and transient 

activity, with the goal of exploring the effect of the experience with the task (new 

vs. practiced). As specified before, we also carried out a multivariate analysis, 

focused on the within-trial time scale, to study the consistency of multivoxel 

representation along phases of the task (encoding and implementation). 

Univariate analysis 

 Transient activity 
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Event-locked activations were estimated using a set of FIR functions, obtaining 

nine parameters per regressor defined at the within-subject level. Then, they were 

entered into two separate ANOVAs: one to capture phasic activations associated 

with the encoding of instructions, and the other for their implementation. In 

both, we assessed the main effect of Experience, and its interaction with Time. 

During the encoding of instructions (Table 4.1, Fig. 4.3), the main effect of 

Experience was significant bilaterally in the dorsolateral prefrontal cortex 

(DLPFC) -including the IFS-, and aPFC. To explore the directionality of this 

result, we extracted the beta estimates for each conditions and time bin (averaged 

across participants). Intriguingly, the hemodynamic response (HDR) was more 

pronounced for practiced compared to novel instructions in both DLPFC clusters 

(see Fig. 4.3). In the aPFC, beta values were also higher in the practiced condition, 

but in that case the HDR did not resemble the typical curve (see Fig. 4.3), but 

showed a deactivation, less pronounced for practiced rules. 

In contrast, a wide array of brain areas was differently activated in novel and 

practiced trials during the implementation of instructions (Table 4.1), as assessed 

by the interaction of Experience with Time (Fig. 4.4). As clusters were very large, 

we used a stricter statistical threshold to explore smaller, anatomically more 

accurate clusters (uncorrected cluster-defining threshold of P < .0001; this 

threshold was also employed to display the results in Fig. 4.4 and Table 4.1). In 

contrast to the encoding stage, almost all regions showed a higher HDR for novel 

than for practiced instructions, including the IFS, the inferior frontal junction 

(IFJ), the IPL and the aI/fO (Fig. 4.4). On the other hand, the bilateral 

supramarginal and superior temporal gyrus were more active in practiced trials. 
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Figure 4.3: Results from the encoding stage ANOVA. Yellow clusters show regions where the main effect 

of Experience was significant. Insets show the hemodynamic response (beta values extraction) for novel 

(blue) and practiced (green) trials. Asterisks indicate that the conditions differed significantly (P < 0.05, 

Bonferroni corrected) in the corresponding time bin.  

 

Figure 4.4: Results from the implementation stage ANOVA. Violet clusters show regions where the 

interaction of Experience and Time was significant. Insets show the hemodynamic response (beta values 

extraction) for novel (blue) and practiced (green) trials. Asterisks indicate that the conditions differed 

significantly (P < 0.05, Bonferroni corrected) in the corresponding time bin. 
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Table 4.1: Transient activity results.  

Label ANOVA term Direction Peak coordinate Z value k 

Encoding phase      

Left aPFC Main effect P > N -36, 44, 8 5.44 155 

Left DLPFC Main effect P > N -51, 20, 39 5.38 95 

Right aPFC Main effect P > N 39, 47, 2 5.13 134 

Right DLPFC Main effect P > N 48, 29, 29 4.64 91 

Cerebellum (lobule VI) Interaction N > P -33, -43, -22 4.14 60 

Implementation phase      

Left LPFC Interaction N > P -45, 8, 29 7.61 430 

Right LPFC Interaction N > P 54, 26, 26 7.12 295 

SMA/preSMA Interaction N > P -3, 17, 53 6.86 177 

Right SPL Interaction N > P 30, -55, 47 6.46 538 

Left SPL/IPL Interaction N > P -24, -70, 44 6.11 516 

Right Fusiform gyrus Interaction N > P 48, -58, -13 5.86 225 

Right aI/fO Interaction N > P 33, 23, -4 5.75 112 

Left aI/fO Interaction N > P -33, 23, -4 5.55 79 

Left Caudate Interaction P > N -21, 8, 26 5.43 57 

Left SMG/STG Interaction P > N -54, -37, 23 5.39 394 

Left BG / posterior insula Interaction N > P -33, -19, -1 5.35 104 

Left fusiform gyrus Interaction N > P -39, -46, -22 5.12 110 

Right SMG/STG Interaction P > N 60, -34, 32 5.08 178 

Right BG / posterior insula Interaction -  30, -19, 5 4.89 113 

Right MTG Interaction - 48, -34, -10 4.73 48 

Left MTG Interaction - -48, -22, -4 4.68 27 

Bilateral Caudate Main effect N > P 3, 8, -4 4.47 106 

Right fusiform / PHG Main effect N > P 27, -31, -22 4.11 75 
 

Note: The ANOVA terms refer to the main effect of Experience and the interaction of Experience with Time 

(see Methods sections). The direction indicates whether the activity was higher in novel (N) or in practiced 

(P) conditions, while hyphens designate regions with no clear directionality (because the significant 

interaction term is driven not by heightened activation but by different timing of the response). 

Abbreviations stand for anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex (DLPFC), lateral 

prefrontal cortex (LPFC), supplementary motor area (SMA), presupplementary motor area (preSMA), 

superior parietal lobe (SPL), inferior parietal lobe (IPL), anterior insula/frontal operculum (aI/fO), 

supramarginal gyrus (SMG), superior temporal gyrus (STG), basal ganglia (BG), middle temporal gyrus 

(MTG), parahipocampal gyrus (PHG).  

Sustained activity. 

We first aimed to detect areas showing sustained activity through long task blocks 

in comparison with rest, collapsing across all conditions. We did not observe any 

significant results in this analysis, nor when we did compare just practiced blocks 
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against baseline. On the other hand, sustained activity in novel blocks (vs. 

baseline) was found in the right aI/fO and bilaterally in the inferior parietal lobe 

(IPL), aPFC and DLPFC- also involving the IFS (Fig. 4.5A and Table 4.2). DLPFC 

and IPL were also significant when novel blocks were contrasted against practiced 

ones (Fig. 4.5B), providing support for their role for sustained control in new 

situations. Conversely, practiced blocks elicited higher sustained activity than 

novel ones in the ventromedial prefrontal cortex (vmPFC). 

 

Figure 4.5: Sustained activity results. (A) Areas found in the t-test of Novel blocks against baseline. (B) 

Results from the contrast of novel versus practiced blocks. Clusters in blue show higher sustained activation 

in novel compared to practiced blocks, while the reverse is shown in green. 

 

Conjunction analysis. 

Results from our previous analyses suggested an overlap between regions with 

stronger sustained activity during novel blocks, and those with larger transient 

activity for the encoding of practiced instructions, and the implementation of 

novel ones. To quantify this observation, we performed an ad-hoc conjunction 

analysis with the corresponding three statistical maps obtained at the subject 

level (see fMRI analysis section). This test allowed us to confirm that one region, 

the left IFS, was involved across the three situations (Fig. 4.6). 
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Figure 4.6: Results from the conjunction analysis. In red are voxels surviving to the conjunction test of (1) 

transient activity locked to practiced instructions encoding; (2) transient activity locked to novel instructions 

implementation and (3) sustained activity maintained through novel blocks. Peak coordinates: [-48, 20, 32], k 

= 63.  

 

Table 4.2. Sustained activity results.  

Label Block labels Peak 

coordinate 

Z value k 

right IPL Novel > Baseline 45, -52, 41 6.03 340 

left IPL Novel > Baseline -42, -58, 47 5.27 330 

left MTG Novel > Baseline -54, -31, -10 5.48 122 

left aPFC/DLPFC Novel > Baseline -39, 47, 5 4.85 182 

right aPFC/DLPFC Novel > Baseline 39 53 -4 4.65 507 

bilateral 

SMA/preSMA 

Novel > Baseline -9 17 53 4.59 213 

right IFG/MTG Novel > Baseline 57, -25, -19 4.49 136 

right Cingulate gyrus Novel > Baseline 9, -28, 26 4.18 262 

left DLPFC/VLPFC Novel > Practiced -51, 20, 38 5.46 234 

right aPFC Novel > Practiced 39, 50, 5 4.37 142 

right IFJ Novel > Practiced 30, 11, 35 4.27 81 

left IPL Novel > Practiced -36, -61, 41 4.26 155 

right IPL Novel > Practiced 48, -49, 44 4.2 134 

left aPFC Novel > Practiced -45, 44, 14 4.16 143 

bilateral vmPFC Practiced > Novel 6, 47, -19 4.37 234 
 

Note: Abbreviations stand for inferior parietal lobe (IPL), medial temporal gyrus (MTG), anterior prefrontal 

cortex (aPFC), dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), presupplementary 

motor area (preSMA), inferior frontal gyrus (IFG), middle frontal gyrus (MFG), lateral prefrontal cortex 

(LFPC), ventrolateral prefrontal cortex (VLPFC), inferior frontal junction (IFJ) and ventromedial prefrontal 

cortex (vmPFC). 
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Network comparison. 

We also assessed the extent to which our principal sustained and transient results 

replicated previous findings regarding the involvement of two differentiable 

networks for cognitive control (Table 4.3): the CO and FP networks. Contrary to 

the framework put forward by Dosenbach and colleagues (Dosenbach et al. 

2008), only the right aI/fO showed sustained activity throughout novel blocks, 

which just constituted 3.18% of the voxels of the CON template. Moreover, areas 

included in the FPN (bilateral IPS and the right IFS, involving a 42.92% of voxels 

of this network) were also present in the sustained activity maps.  

At a transient time scale, the right aPFC, from the CON (4.69% of voxels), and the 

bilateral IFS and left IPS, from the FPN (18.61% of voxels), were involved during 

encoding of practiced instructions. During the implementation of novel ones, all 

ROIs of the FPN coincided with active clusters (although in an extent of just the 

16.77% of the voxels), but were also accompanied by bilateral aI/fO from the CON 

(being, in this case, a 27.40% of CON voxels). Overall, the picture emerging from 

these comparisons is a mixture of CON and FPN involvement across both 

temporal modes of functioning.  
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Table 4.3. Transient and sustained signals at cingulo-opercular and fronto-parietal regions.  

Region 
Transient: encoding 

(practiced > novel) 

Transient: implementation 

(novel > practiced) 

Sustained 

(novel > practiced) 

Cingulo-Opercular Network 

dACC - - - 

left aPFC - - - 

right aPFC X - - 

left aI/fO - X - 

right aI/fO - X X 

Fronto-Parietal Network 

left IFS X X -  

right IFS X X X 

left IPS X X X 

right IPS -  X X 
 

Note: Crosses indicate the existence of overlap between the regions of interest of CO and FP networks 

(Dumontheil et al. 2011; Fedorenko et al. 2013) and results obtained for contrasts in the current whole-brain 

analysis. Abbreviations stand for dorsal anterior cingulate cortex (dACC), anterior prefrontal cortex (aPFC), 

anterior insula/frontal operculum (aI/fO), inferior frontal sulcus (IFS) and intraparietal sulcus (IPS). 

 

Representational similarity analysis 

In addition to the temporal profiles (transient vs. sustained) described above, 

differences between the CON and FPN may arise at a shorter time scale, within 

trial epochs. We explored this using RSA focused on the CON and FPN ROIs. We 

computed a consistency index associated with the maintenance of multivoxel 

representation of instructions from encoding to implementation stages (Qiao et 

al. 2017; see Fig. 4.2), in which larger values indicated a higher consistency along 

time (see fMRI analysis section). As expected, in all the regions examined, this 

index was significantly above 0 (all Ps < .001 in one-sample t-tests) showing a 

correspondence between the information represented during novel instruction 

encoding and implementation. However, due to the temporal proximity of the 

source signal (consecutive events) this result could merely reflect the sluggish 

nature of BOLD response, although the jittered interval added between the 
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encoding and the implementation should prevent or minimize this problem. In 

any case, this potential confound does not affect our analysis as we only focused 

in the relative differences in the index between both networks. 

We first collapsed across novel and practiced trials, and observed that the CON’s 

consistency index was higher than the FPN’s one (T34 = 9.34, P < .001), suggesting 

more persistent task-set representations in the former network. We then 

explored variations within ROIs of both subnetworks, with two additional 

repeated-measures ANOVAs. In both systems, the effect of ROI was significant 

(CON: F4,136 = 91.84, P < .001, p
2 = .730; FPN: F3,102 = 30.64, P < .001, p

2 = .474) 

and planned comparisons showed that the differences were statistically 

significant between each pair of regions, except when they involved left and right 

portions of the same area. Within the CO subnetwork, the region showing the 

highest consistency over time was the bilateral aPFC (left: M = 1.028, SD = .207; 

right: M = 1.017, SD = .219), followed by the dACC (M = .850, SD = .207) and, 

finally, the aI/fO (left: M = .669, SD = .204; right: M = .672, SD = .171). On the 

other hand, the bilateral IFS (left: M = .821, SD = .231; right: M = .776, SD = .187) 

showed larger consistency than the IPS (left: M = .623, SD = .177; right: M = .583, 

SD = .151) in the FPN. 

Finally, to assess whether this pattern was modulated by instruction novelty, we 

conducted an ANOVA with this variable and Network as factors. As expected, the 

main effect of Network was significant (F1,34 = 52.28, P < .001, p
2 = .606), and 

importantly, so was the main effect of experience with the task (F1,34 = 12.60, P = 

.001, p
2 = .270). Specifically, practiced instructions showed a higher consistency 

index than novel ones (novel: M = 0.745, SD = .195; practiced: M = 0.836, SD = 

.191), indicating that the experience facilitated a more efficient task-set 
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maintenance within trials. The interaction term with Network was not significant, 

which suggests that the increase in similarity along the trial epochs with practice 

did not differ across CON and FPN regions. 

4.4. Discussion 

In this study we investigated which brain networks underpin instruction 

following, and their fit within the dual control model (Dosenbach et al. 2006; 

Dosenbach et al. 2007; Dosenbach et al. 2008). To do so, we adapted a mixed 

design to a paradigm in which different novel and practiced instructions had to 

be encoded and implemented, and extracted the underlying transient and 

sustained brain signals. Our hypothesis was that novel instructions would recruit 

the CON and the FPN to a higher extent than practiced ones: the former 

proactively -transiently during instruction encoding, and in a sustained fashion 

across trials-, and the latter reactively -linked to the implementation stage-. Our 

results showed that the transient involvement of different regions varied 

depending on practice and the information stage (encoding vs. implementation) 

of instructions. Moreover, regions from both FPN and CON were involved both 

in the sustained maintenance of activity during novel blocks and during transient 

rule implementation. Multivariate patterns of activation in both networks 

showed a consistent differentiation between CON and FPN in how the 

information was maintained across the encoding and implementation stages, as 

the former network seems to hold instruction representations more consistently 

along time, an effect that increases with practice.  

The analysis of transient activations by means of FIR models allowed to study 

how novelty influenced the regions engaged in a phasic mode during complex 

verbal instruction processing. In line with previous research (Ruge and 
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Wolfensteller 2010; Dumontheil et al. 2011; Muhle-Karbe et al. 2017) we found 

that the IFS and the IPS, the main nodes of the FPN, were relevant at this time 

scale. Phasic activity was also found in the CON, concretely, in the aI/fO. In this 

sense, the whole pattern of regions presenting transient activity fits with our 

predictions based on Dosenbach’s model (Dosenbach et al. 2006). However, to 

better understand these findings, it is important to consider the two different 

processes that unfold along the trial epoch. We studied the encoding of 

instructions, more related with proactive preparation, and the subsequent 

implementation phase, where rules were applied to concrete stimuli, closely 

linked to reactive adjustments. During the initial encoding, no regions were 

transiently more active for novel than for practiced instructions. Conversely, the 

bilateral IFS was more active for practiced instructions than for novel ones. Later 

on, during the implementation, the IFS was again recruited, together with the 

IPS, the aI/fO and the preSMA. Importantly, here these regions showed larger 

activity for novel than practiced instructions, replicating previous findings (Ruge 

and Wolfensteller 2010; González-García et al. 2017).  

The increased recruitment of the IFS in practiced compared novel instructions 

encoding may seem at odds with previous literature and our own predictions. 

Nonetheless, this finding may reflect the difficulty of fully preparing novel 

complex instructions during the encoding stage -in opposition with overly 

practiced ones, which could automatically retrieve the proceduralized task-set 

during this initial stage. In agreement with this, it has been previously proposed 

that novel rule preparation culminates when they are first implemented in 

behavior (Brass et al. 2009; Cole et al. 2013), an effect that may have been 

potentiated by the increased complexity and abstraction of our instructions in 



75 
 

comparison with those used in previous research (e.g. Cole et al. 2010; Ruge and 

Wolfensteller 2010). As a result, the IFS activity may mediate practiced task-sets 

instauration and, as such, underlie a better proactive preparation in this 

condition. This is supported by the fact that this region has a relevant role in the 

preparation to implement instructions, in comparison with mere memorization 

demands (Demanet et al. 2016; Muhle-Karbe et al. 2017; Bourguignon et al. 

2018).  

Importantly, our conjunction results confirmed that the same left IFS cluster was 

present during the encoding of practiced instructions and the implementation of 

novel ones. Hence this region may underpin a preparatory process that can take 

place at different moments: earlier when the instruction is known (practiced) and 

its pragmatic representation can be retrieved, and later (i.e., when the stimuli are 

available) when we face a novel task, and this representation must be created 

from scratch. Nonetheless, which specific computations the IFS implements 

during this process is an open question. Different proposals have been made in 

the literature: binding of relevant stimuli and response parameters (Hartstra et 

al. 2012), mediating the transformation of semantic information into a 

pragmatic, action-oriented task representation (Ruge and Wolfensteller 2010), or 

maintaining the task-set in an active mode (Demanet et al. 2016), making it 

available for other lower-level regions. However, whereas novel instructions 

preparation seems to require the deployment of these three processes, practiced 

ones do not, as they do not need to be rebuilt but rather retrieved and updated. 

In light of our findings, therefore, task-set maintenance seems to be the most 

suitable common role underlying this region in both novel and practiced 

conditions. This is further supported by studies recording single and multiunit 



76 
 

activity in monkeys' LPFC (e.g., Freedman et al. 2001), which reveal the role of 

this area in the maintenance of different task-relevant information during delay 

periods. 

Another remarkable set of results in the current study is the involvement of other 

regions during instruction implementation, such as the IPS and the preSMA. As 

implementation seems to rely to a high extent on reactive mechanisms, these 

regions may be implementing online control adjustments upon target 

presentation in novel trials, compensating for the less efficient proactive 

preparation during the encoding stage. From this perspective, the whole pattern 

of transient activations could be interpreted in terms of an interplay between 

proactive and reactive processes, which would depend on the novelty of the 

instructions that govern behavior. This interpretation fits with the balanced 

nature of proactive and reactive control modes: situations that weight proactive 

mechanisms to a higher extent trigger less reactive control, and vice-versa 

(Braver 2012). Nonetheless, it is also important to note that the temporal profile 

of activation of these brain areas is highly flexible. Whereas they have been linked 

to reactive functions (e.g., the preSMA seems to mediate the inhibition of 

irrelevant stimulus-response mappings in this context; Brass et al. 2009), 

patterns of activation consistent with proactive preparation have also been 

observed, such as increases of activity during encoding and preparation intervals 

(e.g. Hartstra et al. 2011; Dumontheil et al. 2011; Hartstra et al. 2012; Muhle-

Karbe et al. 2014; Muhle-Karbe et al. 2017). 

An additional core goal of our study was to extract sustained, block-wise 

activations to investigate whether a stable pattern of activation was maintained 

in CON and FPN areas during the execution of novel, demanding tasks, as it has 
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been shown previously in more repetitive experimental settings (Dosenbach et al. 

2006). In accordance with our expectations, blocks of new instructions were 

associated with a larger sustained recruitment of frontal and parietal regions, 

when comparing against both pause periods and practiced blocks. Nonetheless, 

the regions involved were more consistent with the main nodes of the FPN: the 

bilateral IFS and the IPS. Only the right aI/fO region and part of the aPFC, from 

the CON, showed sustained activation in novel blocks. Accordingly, when we 

explicitly tested the percentage of overlapping voxels between two networks and 

our results, we found higher coherence with the FPN. Our results aid to qualify 

the dual model of control, showing that sustained activation patterns are not the 

exclusive fingerprint of CON regions. In contexts of novelty, when higher 

flexibility is needed, nodes of the FPN are also recruited at this timescale, while 

sustained activity is restricted to certain nodes of the CON. This result may seem 

at odds with previous evidence. However, the nature of the behavior analyzed in 

our research departs considerably from the one captured by most of previous 

mixed-designed studies (Dosenbach et al. 2006), as our experiment required the 

continuous building and updating of novel complex task-sets. It has been argued 

that the sustained activation across the CON underlies the maintenance of 

relevant rules as long as they are needed (Dosenbach et al. 2008). While this 

mechanism may be efficient when the task remains the same, it may not be 

beneficial in long blocks where rules change in a trial-by-trial fashion. Here, the 

FPN may implement sustained control processes independent of the specific 

task-set adopted on each trial. Due to the role of this network in establishing the 

widest and most flexible pattern of connectivity with other brain regions (Cole et 

al. 2013), one possibility is that sustained activity across FPN regions implements 

some kind of tonic state of high efficiency in information routing between 
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domain-specific regions. This view is supported by two different sources of 

evidence. First, task-dependent variability in the sustained engagement of CON 

has been previously reported, as in the case of perceptually driven tasks (Dubis et 

al. 2016). Second, sustained activity in lateral prefrontal and parietal cortices has 

also been found in studies which also relied on task-set updating: during blocks 

in which task switching was required (Marini et al. 2016), and while executing 

distinct instructions (Dumontheil et al. 2011). Overall, our findings highlight that 

both control networks, especially FPN areas, display a rather general ability to 

switch between phasic and tonic temporal modes depending on the nature of the 

tasks to be accomplished.  

The result of our conjunction test, in which we identified common clusters at both 

phasic and tonic timescales, gains again relevance at this point. The same left IFS 

cluster involved transiently during the encoding of practiced instructions and the 

implementation of novel ones, which we propose underlie the maintenance of 

instructed task-sets, is also recruited in a sustained fashion through novel blocks. 

The relationship between the functions carried out at the two timescales is not 

straightforward; nonetheless, it is unlikely that they coincide, as this may result 

in an unnecessary redundancy across both timescales. It could well be the case 

that this and other regions perform distinct computations depending on temporal 

parameters, as previous neuroimaging data show that the LPFC, in general, can 

adopt different temporal dynamics (Jimura et al. 2010; Braver 2012). Results of 

the current investigation indicate that a demanding and rich task environment 

can recruit both temporal modes of functioning of this area, and moreover, that 

this profile is sensitive to the novelty of the situation. On the one hand, this 

evidence highlights the flexible nature of this brain region. On the other hand, 
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such results could reflect an organizational principle by which different cognitive 

computations are multiplexed in distinct temporal dynamics within brain areas.  

Finally, we also explored multivoxel activity patterns in both networks’ nodes, 

obtaining results consistent with the classic dual network model (Dosenbach et 

al. 2008). Areas within the CON represented task-sets more consistently over 

trial epochs, i.e., from encoding to implementation stages. This result strongly 

supports the proposal that these regions are in charge of maintaining information 

in a sustained, proactive fashion even in the absence of maintained univariate 

activation. Moreover, we found that this effect was affected by the experience with 

the trial: when the instructions were practiced, the consistency of the 

representation was higher, suggesting a possible mechanism by which the task 

representation gains in fidelity as it is repeatedly used. Interestingly, a recent 

study showed that task rule representation is more stable across the pre-target 

epoch when the instruction must be memorized in comparison with novel to-be-

implemented ones (Muhle-Karbe et al. 2017). Overall, these results agree with the 

idea that novel trials require the semantic information of the instruction to be 

transformed into an action-related representation, a process that needs time to 

unfold and evolves up to target presentation. Moreover, this could explain why 

less reactive adjustments may be deployed when practiced instructions are 

translated into actions, as our results of transient activity during the 

implementation show.  

Further research is needed to connect the scarce findings provided from this and 

other mixed design studies, and the broader cognitive control literature. For 

example, a recent study showed, employing MVPA, that task-sets were better 

encoded (i.e., decoded with higher accuracy) in FPN than in CON regions 
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(Crittenden et al. 2016). These findings are not incompatible with ours, as we 

used RSA and our analysis was focused in the transference of rule representation 

between two temporal time points -and not in classification accuracies at concrete 

time points of the task. Nonetheless, due to the decision of using a mixed design 

to extract transient and sustained activations, our experiment was not optimized 

for performing MVPA on our data. Previous research (González-García et al. 

2017) has shown that regions consistent with both CON and FPN encode the 

relevant stimuli category of the instructions, before its implementation. Future 

studies will help to characterize, from this approach, which information is 

contained in transient and sustained activation patterns -and whether this is 

segregated between the two control networks. Finally, it is important to highlight 

that the extent of novelty entailed by each instruction was limited, given that the 

global task structure remained the same throughout the experiment. To study 

control mechanisms acting in novel contexts, we generated a large amount of 

trials including unique task rules and complex and also unique target 

combinations (Cole et al. 2010; Hartstra et al. 2011; González-García et al. 2017). 

However, target categories (faces and letters) and motor responses (employing 

the two index fingers) remained the same across the whole task. While fixing 

these parameters allowed us to exert experimental control, the complexity of 

novel situations that humans face daily is far richer and more variable. Future 

studies should aim for increasingly more ecological paradigms, where the general 

task structure also varies in a trial-wise fashion.  

4.5. Conclusions 

The current study provides insights about the dual network perspective of 

cognitive control, expanding this model to novel complex task contexts. Crucially, 
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results indicate that even when the two networks are functionally differentiated, 

both seem act at both tonic and phasic timescales during novel instruction 

processing. Furthermore, the division between proactive and reactive control 

does not seem to be mapped in a straightforward way into these two networks. 

Future studies must be conducted to further detail their contributions. 

Specifically, the computations and information held at the sustained time scale 

remain unknown, as also their relationship with mechanisms that develop at a 

faster, transient scale. The expansion of multivariate decoding techniques could 

help to better disentangle between the computational roles of both neural 

networks.  
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Abstract  

Recent multivariate analyses of brain data have boosted our understanding of the 

organizational principles that shape neural coding. However, most of this 

progress has focused on perceptual visual regions (Connolly et al., 2012), whereas 

far less is known about the organization of more abstract, action-oriented 

representations. In this study, we focused on humans’ remarkable ability to turn 

novel instructions into actions. While previous research shows that instruction 

encoding is tightly linked to proactive activations in fronto-parietal brain regions, 

little is known about the structure that orchestrates such anticipatory 

representation. We collected fMRI data while participants (both males and 

females) followed novel complex verbal rules that varied across control-related 

variables (integrating within/across stimuli dimensions, response complexity, 

target category) and reward expectations. Using Representational Similarity 

Analysis (Kriegeskorte et al., 2008) we explored where in the brain these 

variables explained the organization of novel task encoding, and whether 

motivation modulated these representational spaces. Instruction representations 

in the lateral prefrontal cortex were structured by the three control-related 

variables, while intraparietal sulcus encoded response complexity and the 

fusiform gyrus and precuneus organized its activity according to the relevant 

stimulus category. Reward exerted a general effect, increasing the 

representational similarity among different instructions, which was robustly 

correlated with behavioral improvements. Overall, our results highlight the 

flexibility of proactive task encoding, governed by distinct representational 

organizations in specific brain regions. They also stress the variability of 
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motivation-control interactions, which appear to be highly dependent on task 

attributes such as complexity or novelty.  

Significance Statement 

In comparison with other primates, humans display a remarkable success in 

novel task contexts thanks to our ability to transform instructions into effective 

actions. This skill is associated with proactive task-set reconfigurations in fronto-

parietal cortices. It remains yet unknown, however, how the brain encodes in 

anticipation the flexible, rich repertoire of novel tasks that we can achieve. Here 

we explored cognitive control and motivation-related variables that might 

orchestrate the representational space for novel instructions. Our results showed 

that different dimensions become relevant for task prospective encoding 

depending on the brain region, and that the lateral prefrontal cortex 

simultaneously organized task representations following different control-

related variables. Motivation exerted a general modulation upon this process, 

diminishing rather than increasing distances among instruction representations.   
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5.1. Introduction  

Humans quickly learn from instructions which elements are relevant in a context 

and their respective appropriate actions. These parameters are encoded 

proactively in our brain in an action-based code (Brass, Liefooghe, Braem, & De 

Houwer, 2017; Cole, Braver, & Meiran, 2017), preparing our perceptual and 

motor systems in advance (Cole, Laurent, & Stocco, 2013) and facilitating success 

in novel environments. Instructed behavior is thus critical to avoid less effective 

and slow trial-and-error learning, and also enables the social transmission of task 

procedures. There is scarce knowledge, however, about how the informational 

and motivational content of novel instructions organizes neural activity in a 

proactive manner.  

Behavioral results support the role of proactive control (Braver, 2012) on 

instructed action (e.g.  Liefooghe, Wenke, & De Houwer, 2012; see also Cole, 

Patrick, & Braver, 2018; Duncan et al., 2008; Luria, 1966). Recently, 

neuroimaging studies have revealed a link between novel instruction preparation 

and the fronto-parietal (FP) network (e.g. Cole, Bagic, Kass, & Schneider, 2010; 

Hartstra, Kühn, Verguts, & Brass, 2011; Palenciano, González-García, Arco, & 

Ruz, 2019). The middle (MFG) and inferior (IFG) frontal gyri, and the inferior 

frontal sulcus (IFS), together with the intraparietal sulcus (IPS), encode novel 

instruction content both in multivoxel activity patterns (Bourguignon, Braem, 

Hartstra, De Houwer, & Brass, 2018; González-García, Arco, Palenciano, 

Ramírez, & Ruz, 2017; Muhle-Karbe, Duncan, De Baene, Mitchell, & Brass, 2017) 

and distributed functional connectivity (Cole, Laurent, et al., 2013). Crucially, the 

fidelity of information encoding is linked to the intention to implement the 

instruction (versus mere memorization demands; Bourguignon et al., 2018; 
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Muhle-Karbe et al., 2017) and it is also closely related to the efficiency of behavior 

(Cole, Ito, & Braver, 2016; González-García et al., 2017). Nonetheless, while 

current studies have mainly focused on decoding the upcoming target category 

(González-García et al., 2017; Muhle-Karbe et al., 2017), the wider organizational 

structure that shapes anticipatory task representation remains unknown. To 

study the relevant dimensions organizing novel instruction encoding, we selected 

three variables known to be relevant for proactive control.  

Task preparation consists of a two-step process (Rubinstein et al., 2001), 

composed first by an abstract goal reconfiguration and second by the activation 

of specific stimulus-response contingencies (De Baene & Brass, 2014; Muhle-

Karbe, Andres, & Brass, 2014). Our study exploited these two phases. First, in 

relation to the high-level task goal setting, we manipulated the integration of 

information within or across feature dimensions of stimuli (Rigotti et al., 2013), 

a variable traditionally linked to task complexity and top-down attention (e.g. 

Treisman & Gelade, 1980). Second, the stimulus-response reconfiguration 

process was manipulated by the response set complexity, requiring single or 

sequential motor responses. Moreover, to explore stimuli-specific preparatory 

mechanisms previously documented (e.g. González-García, Mas-Herrero, de 

Diego-Balaguer, & Ruz, 2016; Sakai & Passingham, 2003, 2006), we also 

manipulated the relevant target category.  

Finally, cognitive control and motivation maintain an intricate relationship 

during task preparation (Pessoa, 2009, 2017). Reward expectation boosts cue-

locked activity across the FP network (Parro, Dixon, & Christoff, 2017), and it has 

been recently linked to stronger anticipatory rule encoding (Etzel, Cole, Zacks, 

Kay, & Braver, 2016). Nonetheless, contradictory findings have also been found 
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(Wisniewski, Forstmann, & Brass, 2018), and a comprehensive characterization 

of this interaction in complex, novel scenarios is still pending. Consequently, we 

included economic incentives in our paradigm and assessed the nature of their 

effect on instruction preparation. By varying these four variables (dimension 

integration, response-set complexity, target category, and reward), we built a set 

of novel, verbal instructions that were followed by healthy participants while 

functional magnetic imaging (fMRI) data were collected. Using Representation 

Similarity Analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008), we assessed 

the extent to which each of our control-related variables organized instruction 

encoding, as well as the effect of motivation upon this organization.  

5.2. Materials and methods  

Participants  

Thirty-six students from the University of Granada completed the experimental 

paradigm inside an MRI scanner (16 women, mean age = 22.97 years, SD = 3.32 

years). All of them were right-handed, with normal or corrected-to-normal vision, 

and native Spanish speakers. In exchange for their participation, they received 

between 20 and 40€, depending on their performance on the rewarded trials (see 

below). They all signed a consent form approved by the Ethics Committee of the 

University of Granada. Four participants were later excluded due to excess of 

head movement (> 3mm) or poor performance (<70% of correct responses).  

Apparatus, stimuli, and procedure 

For the experiment, we built a set of 192 different novel verbal instructions. Each 

instruction referred to two independent conditions about faces or food items that 

could be met or not by the upcoming grids, and their associated responses (e.g.: 
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“If there are two women and an additional sad person, press A; if not, press L”). 

The conditions in the instructions referred to several dimensions of the stimuli: 

gender (woman, man), race (black, white), emotion (happy, sad) and size (big, 

small) of faces, or kind (fruit, vegetable), color (green, yellow), form (round, 

elongated) and size (big, small) of food items.  

Instructions were created by manipulating in an orthogonal manner (1) the 

Integration of stimuli dimensions (within vs. across dimensions), (2) the 

Response set required (single vs. sequential) and (3) the Category of the 

relevant stimuli that they referred to (faces vs. food). For example, the instruction 

“If there is a woman and there is a man, press A; if not, press L” involves within-

dimension integration (i.e., gender), requires a single response (a left –“A”– or a 

right –“L”– index button press) and is face-related. On the other hand, “If there 

is a fruit and a small food item, press AL; if not, press LA” requires across-

dimension integration (the type of food and its size), demands a sequence of two 

button presses to respond and is food-related. Instructions referred to either 2, 3 

or 4 stimuli of the target grid. Equivalent trials were created for the different 

levels of these three variables.  

In addition, we included Motivation as another variable: half of the instructions 

were associated with the possibility of receiving an economic reward if responses 

were fast and accurate while the other half were non-rewarded. To do so, we split 

our 192 instructions into two equivalent sets in terms of the manipulations of the 

other independent variables, and also regarding the specific attributes specified 

(e.g., the same number of instructions referring to happy faces in both groups). 

We counterbalanced across participants the assignment of these two halves to the 

rewarded and non-rewarded conditions. The reward status of each trial was 
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indicated by a cue consisting on either a plus (+) or a cross (x) sign, in either 

silhouette or filled in black. We counterbalanced across participants whether they 

should attend to the shape (plus vs. cross) or the appearance (contour vs. filled 

sign) to obtain the reward information. This way, each participant had two 

different cues indicating each motivation condition, preventing a one-to-one 

mapping between reward expectation and visual cue identity, which otherwise 

could generate spurious confounds in further analysis.  

For each instruction, we created two grids of stimuli, one that fulfilled the 

conditions instructed, and another one that did not. We counterbalanced them so 

that individual participants saw only one of the two instruction-grid pairings. All 

grids were unique combinations of images of 4 faces and 4 food items, which were 

pseudo-randomly selected from a pool of 32 pictures, composed by 16 faces 

pictures (8 different identities, half of them women and half men, half with happy 

expression and half with sad ones, half white and half black, appearing each of 

them in large and small sizes), extracted from the NimStim database (Tottenham 

et al., 2009), and 16 food pictures (8 different items, half of them vegetables and 

half fruits, half in green color and half in yellow, half with a round shape and half 

elongated, appearing each of them in large and small sizes) obtained from 

available sources on the internet (all of them with Creative Commons license). 

Upon target presentation, the responses required were always one or two 

sequential button presses, performed with the left (“A”) and/or right (“L”) index. 

The sequence of trial events is depicted in Figure 5.1. Each trial started with a 

jittered fixation point (0.5o), with a duration that ranged from 4500 to 7500ms, 

in steps of 500ms (mean = 5750ms). Then, a reward cue was presented (1.5  o; 

2000ms), followed by the instruction (25.75o; 2500ms). Next a second jittered 
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fixation appeared (with the same characteristics as the previous one), and the 

target grid (21o) was presented for 2500ms, where participants were required to 

respond. Afterward, a feedback symbol was presented (1.65 o; 500ms), indicating 

whether the participant had 

earned money in that trial 

(with a Euro symbol), 

whether the response was 

correct but no money was 

achieved (tick symbol) or 

whether the response was 

incorrect (cross symbol).  

Before being scanned, participants completed a behavioral practice session. They 

received indications about how to perform the task, as well as details on how 

rewards would be administered, emphasizing that both accurate and fast 

responses were needed to accumulate money for a maximum of 40€. Specifically, 

they were informed that they would receive 20€ for their time and that the rest 

of the compensation would depend on their performance on rewarded trials: the 

initial extra increases would be easier to earn while approaching the upper limit 

of the payment would require a higher accuracy rate. Then, they performed a 

simple discrimination task with the different reward cues, and after that, they 

practiced the instruction-following task, completing one block of 32 trials. 

Practice instructions were drawn from a separate set (which was equivalent in all 

the parameters specified above) and were not employed in the MRI experiment, 

to maintain trial novelty. Participants repeated the practice block as many times 

as needed to obtain an accuracy rate above 75% (on average, participants 

Figure 5.1: Sequence of events in a single trial. 
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performed the practice block 1.75 times). Once this phase was completed, the 

experimental paradigm was performed inside the scanner. This was composed by 

the full 192 instructions set, presented in six different runs (32 trials each). All 

runs included an equal number of face and food-related, single and sequential 

responses, within and across-dimension integration and rewarded and non-

rewarded instructions. Overall, participants spent 90 minutes approximately inside 

the MRI scanner.  

Experimental Design and behavioral statistical analysis 

Our task was built following a 4-way factorial design, in which the following 

within-subjects independent variables were orthogonally manipulated: (1) 

Dimension integration; (2) Response set complexity; (3) Target category and (4) 

Reward.  

We conducted an a priori power analysis to compute sample size. Using the 

PANGEA software (https://jakewestfall.shinyapps.io/pangea/), we calculated 

the minimum number of participants to detect a behavioral two-way interaction 

term (i.e., between reward and any other proactive control-related variable), 

assuming a medium effect size (Cohen’s d = .3).  

We used IBM SPSS Statistics v20 software to analyze accuracy and reaction time 

data. We conducted two repeated-measures ANOVAs, specifying four factors 

corresponding to our independent variables. To explore significant interaction 

terms, we carried out further post hoc tests, using a Bonferroni correction for 

multiple comparisons.  

 

 

https://jakewestfall.shinyapps.io/pangea/
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fMRI preprocessing 

MRI data were acquired using a 3-Tesla Siemens Trio scanner located at the 

Mind, Brain, and Behavior Research Center (CIMCYC, University of Granada, 

Spain). Functional images were collected employing a T2* Echo Planar Imaging 

(EPI) sequence (TR = 2210ms, TE = 23ms, flip angle = 70º). Each volume 

consisted of 40 slices, obtained in descending order, with 2.3mm of thickness 

(gap = 20%, voxel size = 3mm3). A total of 1716 volumes were obtained, in 6 runs 

of 286 volumes each. We also acquired a high-resolution anatomical T1-weighted 

image (192 slices of 1mm, TR = 2500ms, TE = 3.69ms, flip angle = 7º, voxel size 

= 1mm3).  

The functional images were preprocessed and analyzed with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), with the exception of 

single-trial parameter estimation (see RSA section), which was conducted on 

AFNI. After discarding the first four volumes of each run to allow for stabilization 

of the signal, the images were spatially realigned and slice-time corrected. Then, 

the participants’ structural T1 image, which had been coregistered with the EPI 

volumes, was segmented to obtain the transformation matrices needed to 

normalize the functional images to the MNI space. Finally, they were smoothed 

with an 8mm FWHM Gaussian kernel. The full preprocessing pipeline was 

completed before conducting the univariate analysis, while only realigned and 

slice-timing corrected images were employed for the multivariate tests (see next 

section). In the latter, normalization and smoothing were performed after the 

individual-level analysis, following the same strategy as above.  
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fMRI statistical analysis 

Control univariate analysis 

We first conducted a univariate standard GLM, modelling each of the sixteen 

combinations of our variables (for example: within-dimension 

integration/simple response required/faces-related/ rewarded) and specifying 

two regressors per trial: one for the encoding phase (from the reward cue until 

the end of the instruction), and another for the implementation stage 

(encompassing the target grid presentation and until the end of the feedback cue). 

All regressors were convolved with the canonical hemodynamic response 

function. We also added error trials and six motion parameters as nuisance 

regressors, and a high-pass filter of 128s to avoid low-frequency noise.  

The rationale of this analysis was to check the effect of motivation during the 

encoding of novel instructions with the aim of ensuring that our manipulation 

successfully generated typical reward-related patterns of activation (Parro et al., 

2017). This was done by performing t-tests at the individual (first) level, 

contrasting rewarded versus non-rewarded encoding regressors, and carrying 

these statistical maps to a group one-sample t-test. The result was cluster-wise 

FWE-corrected for multiple comparison at P < .05 (from an initial threshold of P 

< .001 and k = 10). With this approach, we obtained one large cluster that 

extended across multiple brain regions. To obtain smaller, anatomically coherent 

clusters, we employed a stricter threshold (uncorrected cluster-forming threshold 

of P < .0001, with the corresponding FWE correction at P < .05), as done 

previously (e.g. Dumontheil et al., 2011; Palenciano et al., 2019). 
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Representational Similarity Analyses  

We conducted a series of multivariate RSAs, following a two-step approach. First, 

we analyzed whole-brain data, using a searchlight approach, to find regions 

encoding novel instructions according to each of our three control-related 

variables. Second, we used the significant areas as Regions Of Interest (ROIs) and 

focused on them to explore the effect of reward on their representational 

geometry.  

Whole-brain model-based RSA. We first studied whether the representational 

structure of novel instructions was explained by three variables related to 

cognitive control preparation: dimension integration, response set complexity 

and target category. Importantly, we specifically wanted to explore this during 

the initial encoding stage, where proactive task-set reconfiguration takes place. 

To do so, we first obtained trial-by-trial estimations of our signal, following a 

Least-Square-Sum approach (LSS; Turner, 2010) to ensure the smallest possible 

collinearity among regressors (Arco, González-García, Díaz-Gutiérrez, Ramírez, 

& Ruz, 2018). We generated and estimated one separate model per trial, in which 

we defined: (1) a regressor isolating the encoding phase of the individual trial of 

interest; (2) a second regressor containing the rest of trials (encoding phase) of 

the same condition; (3) thirty-one additional regressors encompassing the rest of 

conditions at the encoding and implementation phases (as in the GLM specified 

above), and (4) nuisance regressors (movement, errors). To do so, we employed 

AFNI’s function 3dLSS 

(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dLSS.html). Once the 

trial-wise parameter images were obtained, the rest of the RSA was performed 

with The Decoding Toolbox (Hebart, Görgen, & Haynes, 2014).  
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In our analysis, we compared three theoretical models of representational 

organization (one per preparation-related independent variable) with the 

empirical one, built from spatially distributed activity patterns. To do so, we 

employed a spherical searchlight (radius: 4 voxels) and applied it to the whole 

brain (Kriegeskorte, Goebel, & Bandettini, 2006). First, we built three theoretical 

representational dissimilarity matrices (RDM, Fig. 5.2.a), which captured the 

expected dissimilarity (represented with 0s and 1s) between pairs of trials, 

according to the corresponding variables of interest. For example, in the Category 

RDM, dissimilarity is expected to be minimal within pairs of trials that refer 

either to faces or to food, while maximal between pairs of trials referring to 

different target categories. Then, in each iteration of the searchlight, we generated 

a neural RDM, using a measure of distance based on Pearson correlation. 

Specifically, we extracted the corresponding single-trial beta values of the voxels 

involved, correlated each pair of the trials’ activity patterns, and subtracted that 

value from 1. Afterwards, this neural RDM was Spearman-correlated with the 

theoretical ones (Fig. 5.2.c), and the coefficients were normalized with Fisher’s z 

transformation and assigned to the central voxel of the searchlight sphere. 

Importantly, both theoretical and neural matrices were built trial-wise (i.e., not 

averaging within conditions), and thus, were fully symmetrical with a diagonal of 

0s. Consequently, only the lower triangle of the matrices, excluding the diagonal, 

was included in the correlation to avoid inflated positive results (Ritchie, Bracci, 

& Op de Beeck, 2017). After iterating the searchlight across the whole brain, we 

obtained three maps per participant representing how well the representational 

geometry in different regions matched the one expected by each of our three 

theoretical models.   
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Statistical significance was assessed non-parametrically via permutation testing, 

as proposed by Stelzer, Chen, & Turner (Stelzer, Chen, & Turner, 2013). We first 

performed 100 permutations at the individual level, where trial labels were 

randomly shifted and the whole analysis was repeated. Then, at the group level, 

we resampled 50,000 times one of the permuted maps of each subject and 

averaged them. The resulting bootstrapped group maps were used to build a 

voxel-wise null distribution of correlation values, which was used to extract the 

correlation coefficient coinciding with a probability of 0.001 of the right-tailed 

area of the distribution (i.e., linked to a p <= .001) of each individual voxel. The 

group map of the results was then thresholded using these values. From the 

bootstrapped maps we also built a null distribution of cluster sizes (Stelzer, Chen, 

& Turner, 2013), which determined the probability of each cluster extent under 

the null distribution. We used this to assign the corresponding P value to the 

surviving clusters of the group results map, and FWE-corrected (P < .05) them to 

control for multiple comparisons.  
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Figure 5.2: Main analysis procedure. (a) Theoretical Representational Dissimilarity Matrices (RDMs) 
employed in the Representational Similarity Analysis (RSA). Within/Across-D. stands for within-dimension 
and across-dimension integration, while Single/Sequential R. stands for single response and sequential 
response. (b)  RDMs capturing differences in instruction length (number of letters) and reaction time, 
included in a multiple regression analysis together with matrices shown in (a) to control for the effect of 
these two variables. (c) Following a searchlight approach, we extracted the neural RDM at each brain location 
and compared it – via Spearman correlation – with our three theoretical RDMs. As a result, we obtained 
three whole-brain correlation maps, one per model. (d) To assess the effect of motivation, for each region 
significant in (c) we extracted the neural RDMs from rewarded (R+) and non-rewarded (NR) trials. To study 
potential interactions of reward expectation and the corresponding model variable (Hypothesis 1), we 
averaged the dissimilarity values among same-condition and different-condition trials and tested if the 
subtraction among these two values was higher in the rewarded condition (using Wilcoxon signed-rank test). 
We also checked for a general increase in dissimilarities associated to reward (Hypothesis 2). Note: All 
matrices in the figure were simplified for visualization purposes by averaging cells within conditions. The 
matrices shown in (b) were further averaged across the sample. In (d), matrices display only one task variable 
(collapsing between the remaining two) to highlight the analysis logic. In all the analyses, however, trial-wise 
and single subject matrices were employed. 
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We performed a further conjunction test to find areas sharing the three 

representational organizational schemes. To do so, we thresholded (P < .05, FWE 

corrected) and binarized the three maps from the previous step, and obtained the 

overlapping voxels (Nichols, Brett, Andersson, Wager, & Poline, 2005). 

Importantly, the RSA results could be influenced by other variables statistically 

related to our manipulations (Popov, Ostarek, & Tenison, 2018), such as 

instructions’ length and speed of responses, which differed slightly between 

conditions. To examine their influence on the results, we performed an additional 

multiple regression analysis taking both variables into account. We built two 

different RDMs (see Fig. 5.2.b) in which each cell contained the absolute 

difference in the number of letters (instruction’s length RDM) or reaction time 

(response speed RDM), respectively, between specific pairs of instructions. We 

then used them as regressors together with the three proactive control-related 

RDMs, predicting the neural pattern of dissimilarities in each iteration of a 

searchlight. The regressors were built vectorizing the lower triangle of the RDM, 

excluding the diagonal values. It is important to note that there were small but 

still significant correlations among some of the regressors included in the 

analysis. Specifically, dimension integration correlated with instruction length 

and RT, and target category did so with instruction length. To assess the impact 

of these correlations on the regression estimation, we computed Variance 

Inflation Factors (Mumford, Poline, & Poldrack, 2015), an index of the regressors’ 

collinearity. For our five models, and in all the participants, VIF were always 

below 1.1 (being 5 a typical cutoff above which the estimation would be 

compromised; Mumford et al., 2015). Thus, even despite the relationship among 

variables, the results of our main analyses are still meaningful. The corresponding 
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beta weight maps obtained showed the regions where the effect of our variables 

of interest remained significant even when instruction’s length and response 

speed were included.   

Finally, even when the distance measure employed to build the neural RDMs (i.e., 

Pearson correlation) is insensitive to differences in mean signal intensity between 

conditions, differences in signal variance could be affecting it (Walther et al., 

2016). For that reason, these analyses as well as the reward-related tests (see 

below), were repeated after a z-normalization of the multivoxel activity patterns, 

ensuring equal mean (0) and standard deviation (1) across all pairs of trials. The 

results thus obtained did not differ from the initial non-normalized ones, so we 

do not report them here.  

ROI-based RSA. The previous analysis identified brain areas encoding 

instructions according to each one of three proactive control variables, separately. 

We next ran ROI analyses to further explore the role of the three variables for task 

coding in these regions. Specifically, we estimated the extent to which each of the 

manipulated control variables explained the neural organization in the ROIs 

identified in the previous analysis. We followed a Leave-One-Subject-Out (LOSO) 

cross-validation procedure (Esterman, Tamber-Rosenau, Chiu, & Yantis, 2010), 

using the searchlight maps obtained before. First, we identified regions sensitive 

to each of the three models for each participant, running a group level t-test with 

the corresponding maps from the rest of the sample, i.e., excluding their own 

data. Significant clusters showing consistency across all LOSO iterations were 

selected as ROIs, and inverse normalized to the participants’ native space. In a 

second step, we estimated the ROIs RDMs and correlated them with the three 

models RDMs. Importantly, thanks to the LOSO procedure we avoided circularity 



102 
 

in the analysis, as independent data was employed to select the ROIs and to 

compute de correlations with the models. The correlation coefficients (for each 

participant, one per ROI and model) were then introduced in a repeated 

measures ANOVA, with ROI and Model as factors, and the interaction term was 

examined to detect heterogeneity in task encoding organization across regions 

(Reverberi, Gorgen, & Haynes, 2012). Interactions were further characterized by 

one sample t-tests, in order to determine which models had an effect on the 

different regions studied. Whenever the normality assumption was not met 

(assessed with the Saphiro-Wilk test), we employed Wilcoxon signed-rank tests 

instead. All P values were Bonferroni-corrected for multiple comparisons, 

adjusting them to the number of ROIs explored.   

Additionally, we aimed to extrapolate our findings to regions consistently found 

in the literature during both practiced (e.g. Woolgar, Hampshire, Thompson, & 

Duncan, 2011) and novel (e.g. González-García et al., 2017) task preparation, and 

in general, when demanding cognitive processing is deployed (Duncan, 2010). 

This set of brain areas belong to the Multiple Demand Network (MDN; Duncan, 

2010), which includes the bilateral RLPFC, MFG, IFS, anterior insula/frontal 

operculum (aIfO) area, IPS, anterior cingulate cortex (ACC) and pre-

supplementary area (preSMA). To assess the organization of novel task encoding 

across this MDN, we employed functionally derived masks of its nodes (from 

Fedorenko, Duncan, & Kanwisher, 2013; template available at 

http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem), inverse normalized 

them to the participants' native space, and followed the same ROI-approach as 

above, extracting each ROI RDM and correlating it with the models' matrices. 

Again, correlation coefficients were entered into a repeated measures ANOVA 
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with ROI and Model as factors, interactions were examined, and finally, a series 

of one-sample t-tests (or Wilcoxon signed-rank test when normality was violated) 

were conducted.  

Analysis of reward-related effects on RSA results. A final goal of our study was 

to assess whether the representational space of novel instructions was affected by 

motivation. Our initial hypothesis was that reward would polarize the 

representational geometry, enhancing the effect of our control-related variables 

at structuring rule encoding. In other words, and taking as an example the target 

category variable, we assessed whether reward expectations would increase the 

distance between representations of instructions referring to different stimulus 

categories (in extension to the other variables, indicated as different-condition 

dissimilarity), while decreasing the distance among those referring to same 

target category (same-condition dissimilarity). Our second, alternative 

hypothesis was that reward would exert a general effect, globally increasing the 

distances among instruction representations, independently of the other 

variables manipulated. In this sense, we expected that both different and same-

condition dissimilarity would be increased in rewarded trials, in comparison with 

non-rewarded ones. The two possibilities would be compatible with previous 

findings showing that reward expectancy enhances rule decodability (Etzel et al., 

2016). 

To test these two hypotheses, we run ROI analyses (Fig. 5.2.d) for each of our 

control-related variables, focusing on the regions that resulted statistically 

significant in the main RSA. To do so, at the individual level and for each variable, 

we first ran a searchlight and generated four whole-brain maps containing 

dissimilarity values among: (1) same-condition rewarded trials; (2) different-
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conditions rewarded trials; (3) same-condition non-rewarded trials; and (4) 

different-conditions non-rewarded trials. These values were the result of 

averaging and normalizing (with the Fisher transformation) the pertinent cells of 

the neural RDM (see Fig. 5.2.d for an example) in each searchlight iteration. The 

maps thus obtained were normalized to the MNI space, so we could extract 

participants’ mean dissimilarities for each of our ROIs using MarsBar (Brett, 

Anton, Valabregue, & Poline, 2002). After that, and for each ROI and variable, we 

conducted two Wilcoxon signed-rank tests (Nili et al., 2014). First, to assess our 

main hypothesis, we tested whether (DifferentCond.Rewarded - SameCond.Rewarded) 

> (DifferentCond.NonRewarded - SameCond.NonRewarded). To explore the second 

possible hypothesis, we collapsed across same and different conditions, and 

tested if (DifferentCond.Rewarded + SameCond.Rewarded)/2 - 

(DifferentCond.NonRewarded + SameCond.NonRewarded)/2 was greater than 0 (Fig 

5.2.c). In both analyses, we corrected for multiple comparisons (number of ROIs 

being tested) with an FWE threshold of P < .05. 

Last, to investigate the relevance for behavior of the effect of motivation on 

representational structure, we correlated this effect with behavioral data. 

Specifically, for each participant, we computed the average decrease in 

dissimilarity and in the inverse efficiency scores (IES; Townsend & Ashby, 1978) 

linked to rewarded trials (in comparison with non-rewarded ones). The IES was 

employed in this analysis to take into account, simultaneously, improvements in 

accuracy and response speed. As we performed as many correlations as ROIs 

assessed in this analysis, we again controlled for multiple comparisons with an 

FWE threshold of P < .05. 
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Additionally, to explore the possibility of motivation exerting an effect during the 

subsequent implementation of instructions, we also ran the analyses detailed 

above with beta images obtained from this stage.  

 MVPA-based assessment of reward effects.  

Finally, to further connect our results with previous findings, we performed 

multivoxel pattern analysis (MVPA) to explore the effect of reward on decoding 

precisions (Etzel et al., 2016). We decoded the two conditions of each of our three 

control-related variables, training three binary classifiers: one for distinguishing 

between within versus across-dimension integration instructions, other for single 

versus sequential response requirements, and the last one for faces and food-

related trials. This was done separately for rewarded and non-rewarded trials. 

Again, we used non-normalized and unsmoothed trial-wise beta images from the 

encoding stage. As we aimed to detect any region with reward-related increases 

in task decodability, we performed the MVPA in a whole brain fashion, using 

searchlight (instead of biasing the results using ROIs resulting from the RSA). In 

each searchlight iteration, we followed a leave one-run-out cross-validation 

approach, training a linear support-vector machine classifier (C=1; Pereira, 

Mitchell, & Botvinick, 2009) with five of our six runs, and testing it with the 

remaining one, in an iterative fashion. Then, for each of our variables, we 

subtracted the accuracy map obtained from non-rewarded trials to the map from 

rewarded ones, and then normalized and smoothed these images, to conduct an 

above zero one-sample t-test at the group level. This way, we assessed the benefits 

in classification precision associated with reward. 
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5.3. Results 

Behavioral results 

We analyzed RT and accuracy data separately, conducting two repeated measures 

ANOVA with four factors, corresponding to the four variables manipulated: 

dimension integration (within vs. across), response set complexity (single vs. 

sequential), category (faces vs. food items) and motivation (rewarded vs. non-

rewarded). Importantly, the main effect of motivation was statistically significant 

on both accuracy (F1, 31 = 4.97, P < .05, p
2 = .14) and RT (F1, 31 = 6.52, P < .05, p

2 

= .17) data, with more accurate (rewarded: M = 0.85, SD = 0.11; non-rewarded: 

M = 0.83, SD = 0.12) and faster (rewarded: M = 1.16, SD = 0.21; non-rewarded: 

M = 1.20, SD = 0.20) responses on the rewarded condition (see Fig. 5.3). This 

indicates that participants made use of reward cues and the economic incentives 

had the expected effect on behavior, improving its efficiency. 

In addition, accuracy data showed a main effect of dimension integration (F1, 31 = 

9.24, P < .05, p
2 = .23), with better performance when within-dimension 

integration was required (within dimension: M = .86, SD = 0.13; across 

dimensions: M = .83, SD = 0.12), and a significant three-way interaction of 

category, response set complexity and dimension integration (F1, 31 = 4.46, P = 

.043, p
2 = .13). Even despite the lack of hypothesis regarding an interaction at 

this level, we performed post hoc pair-wise comparisons, which revealed that the 

interaction was driven by less robust (P > .05) differences among within and 

across-dimensions trials that required a single response and was food-related 

(while, in the rest of combinations of independent variables, this difference was 

significant).  
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Figure 5.3: Behavioral data. Violin plots showing correct responses (a) and Reaction Time (b) data for 

each condition, in rewarded and non-rewarded trials. 

On the other hand, RT results also showed a main effect of dimension integration 

(F1, 31 = 61.81, P < .001, p
2 = .67) in the same direction as above (within-

dimension: M = 1.12, SD = 0.17; across-dimensions: M = 1.24, SD = 0.2), and a 

main effect of category (F1, 31 = 74.89, P < .001, p
2 = .71), with faster responses to 

food-related instructions (faces: M = 1.23, SD = 0.21; food items: M = 1.14, SD = 

0.19). Neither the effect of response set complexity (accuracy: F1, 31 = 0.31, P = 

.579, p
2 = .01; reaction time: F1, 31 = 0.21, P = .653, p

2 = .01) nor any other 

ANOVA term resulted significant in the behavioral measures (main effect of 
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Category on accuracy: F1, 31 = 3.23, P = .082, p
2 = .094; all interactions terms, 

except the ones stated above, P > .100). 

Univariate results: reward-related activations during instruction encoding. 

We first assessed mean activity during novel instruction encoding, comparing 

rewarded against non-rewarded trials. To do so, we performed a univariate GLM, 

defining regressors for each combination of variables (e.g.: within-dimension 

integration, single response, face-related rewarded trials), separately for the 

encoding and the implementation stages. A group level t-test showed that, in 

accordance with our expectations and previous literature (Parro et al., 2017), the 

basal ganglia and fronto-parietal cortices were more active for rewarded than 

non-rewarded instruction encoding. We observed peaks of activation (see Fig. 

5.4) in the bilateral inferior frontal junction (IFJ), premotor and supplementary 

motor areas (left: [-33, 5, 26], z = 5.07, k = 489; right: [33, 2, 59], z = 4.79, k = 

572), cingulate cortex ([-9, 5, 32], z = 5.48, k = 20), bilateral IPS extending into 

the precuneus (left:[-18, -64, 35], z = 4.77, k = 357; right: [33, -52, 53], z = 4.36, 

k = 324), the accumbens, ventral portion of the caudate and thalamus ([12, -22, 

20], z = 5.13, k = 1176), inferior temporal gyrus ([48, -58, -13], z = 4.48, k = 52), 

occipital cortex ([30, -61, -25], z = 5, k = 1364) and midbrain ([0, -31, -4], z = 5.19, 

k = 255). Thus, regions involved in reward processing (Haber & Knutson, 2009), 

as well as in cognitive control paradigms with monetary incentive manipulations 

(e.g. Engelmann, 2009), were engaged by our task, indicating the success of the 

reward manipulation. 
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Figure 5.4: Regions showing greater activity during the encoding of rewarded compared to non-rewarded 

instructions. Abbreviations stand for Nucleus Accumbens (N. Acc), inferior frontal junction (IFJ), premotor 

cortex (PMC), supplementary motor cortex (SMA), pre-supplementary motor cortex (preSMA) and 

intraparietal sulcus (IPS). 

Model-based RSA results: instruction encoding structured by proactive-control 

variables.  

We aimed to identify regions whose organization during task encoding was 

explained by dimension integration, response set complexity and target category. 

With that purpose, we employed an RSA (Kriegeskorte, Mur, & Bandettini, 2008) 

to compare the representational dissimilarity matrices (RDMs) found in neural 

data during the encoding stage with theoretical RDMs corresponding to the three 

proactive control-related variables (see Fig. 5.2). In neural RDMs, each cell 

contained the dissimilarity (1 – Pearson correlation) between the multivariate 

patterns of activation of two trials. In the theoretical RDMs, cells contained 

dissimilarities (1: maximal, 0: minimal) that we would expect if a certain variable 

organized encoding (i.e.: for target category, all faces-related trials would be 

minimally dissimilar, while face and food-related trials would be maximally 
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dissimilar). Using searchlight (Kriegeskorte et al., 2006), we Spearman-

correlated neural and theoretical RDMs across the brain and obtained maps 

showing how well these three variables captured the representational space of 

different areas. The modality of dimension integration (Fig. 5.5.a) only had a 

significant effect on rule encoding at the left MFG and IFG, incurring into the IFS 

([-51, 20, 26], k = 642). Response set complexity (Fig. 5.5.b), on the other 

hand, organized task representations on a wide cluster including the bilateral 

IFG, premotor, supplementary and primary motor cortices, somatosensory area, 

middle temporal gyrus and superior and inferior parietal lobe extending along 

the IPS ([-42, -31, 44], k = 8583) and in the left parahippocampal cortex ([-18, -

40, -1], k = 301). Finally, in the case of the target category RSA (Fig. 5.5.c), 

significant correlations were found in an extensive cluster on the left hemisphere 

covering the IFG incurring into the IFJ, the fusiform gyrus, the temporo-parietal 

junction (TPJ), the inferior and middle temporal gyrus and the precuneus ([-39, 

-67, 17], k = 5581). On the right hemisphere, the analysis was also significant on 

the right middle temporal gyrus and TPJ ([39, -58, 23], k = 442) and the IFG ([42, 

26, 14, k = 295]. Finally, the medial superior frontal gyrus ([-9, 53, 26], k = 377) 

was also involved.  

As instructions’ length and speed of responses varied among some of our 

variables, we performed an additional multiple regression analysis, in which we 

included our three theoretical models, an RDM based on dissimilarities in length, 

and another one based on RT as regressors. Importantly, the multiple regression 

statistical model was examined to detect an excess of collinearity which could 

have impaired the interpretability of these results. We computed the VIF for all 

the regressors and across our whole sample of participants, and all of were under 
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1.1, an index of good estimability of regression weights. The beta maps (one per 

model) obtained after iterating the analysis in a searchlight procedure ensured 

that the variance linked to our RSA models was not misattributed due to 

differences in instruction length or speed of responses. Importantly, the results 

obtained this way were very similar to the ones extracted with the standard 

approach, identifying the same clusters than before.  

 

Figure 5.5: Model-based RSA searchlight results for the three models (a-c) and render image showing the 

overlap among them (d). Note: Identical sections were employed to display the results across models. 

We also conducted a conjunction analysis to assess the overlap among regions 

common to the three organizational schemes. Only the left IFG and IFJ resulted 

significant in this test (Fig. 5.6).  
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Figure 5.6: Conjunction analysis results. 

 LOSO-based ROI analysis: assessing confluence of models within regions.   

The previous analyses left unexplained the extent to which each of the brain areas 

isolated by RDM analyses reflected in their organization the three manipulated 

variables. Furthermore, the conservative correction for multiple comparisons 

used in the searchlight could overshadow this effect elsewhere in the brain. To 

shed some light upon this issue, we employed a more sensitive ROI analysis, 

together with a LOSO approach to avoid double dipping when selecting regions.  

All the clusters identified in the main group results (Fig. 5.5) were consistently 

found across all participants with the LOSO approach, with the exception of the 

medial superior frontal gyrus under the category model, which was absent in four 

subjects and thus not included in the analysis. The correlations of the ROIs’ 

RDMs and the three models’ matrices were analyzed with a repeated measures 

ANOVA, in which we found a significant interaction of ROI and Model (F12, 348 = 

6.050, P < .001, p
2 = .173), evidencing variability in instruction coding structure 

across regions. We then ran one sample t-tests or Wilcoxon signed-rank tests 

(depending on data distribution) to assess model performance in each ROI (see 

Table 5.1). The general pattern obtained replicated the searchlight results: the 
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model which originally identified each specific ROI in the searchlight was the one 

explaining most robustly its encoding activity. Further, in almost all the regions, 

we did not find enough evidence supporting the effect of the remaining variables. 

Converging with the previous analyses, the left IFG identified with the dimension 

integration model was also significantly correlated with response set complexity 

and category. Similarly, the left IFG cluster found in the category RSA was 

correlated with the dimension integration model too. In addition, this confluence 

of models analysis revealed that the response set model was also significant in the 

category-related cluster involving the left fusiform and precuneus (see Table 5.1).   

Table 5.1. Effect of the three models on the LOSO-estimated ROIs. 

Original 
model 

ROI  Model 
tested 

T value 
Z value P value 

Dimension 
integration 

Left IFG Dim. 3.354  .008 

Resp. 3.292  .009 

Cat. 3.635  .004 

Response set 
complexity 

Left IPS Dim. 0.614  1 

Resp. 5.351  < .001 

Cat.  1.975 .163 

Motor 
cortices, left 
LPFC 

Dim. 2.478  .067 

Resp. 3.647  .004 

Cat. 1.166  .886 

Target 
category 

Left 
fusiform 
gyrus and 
precuneus 

Dim. 0.476  1 
Resp. 3.463  .006 

Cat. 5.466 
 < .001 

Left IFG Dim. 2.832  .029 
Resp.  0.699 .242 
Cat. 4.930  < .001 

Right MTG Dim.  -0.144 .557 
Resp.  -1.008 .843 
Cat.  2.859 .002 

Right IFG Dim.  1.275 .101 
Resp.  -0.206 .582 
Cat.  3.085 .001 

Note: P values displayed are Bonferroni-corrected for multiple comparisons. Abbreviations stand for inferior 

frontal gyrus (IFG), intraparietal sulcus (IPS), and middle temporal gyrus (MTG), Dimension integration 

model (Dim.), Response complexity model (Resp.) and Target Category (Cat.). 
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ROI analysis spanning Multiple Demand Network regions.  

Following a similar strategy as above, we also examined task encoding 

organization across the regions comprising the MD network. We extracted each 

MD region’s RDM and correlated it with our three models’ RDM, and then 

entered the correlation coefficients into a repeated measures ANOVA. Again, a 

significant ROI*Model interaction was found (F20, 620 = 2.168, P = .002, p
2 = 

.065). To assess which models significantly structured activations across MD 

ROIs, we conducted one-sample t-tests or Wilcoxon signed-rank tests when data 

were not normally distributed (see Table 5.2).  

Only a subset of MD network regions encoded instructions consistently according 

to any of the proactive control variables, and all of them were located on the left 

hemisphere and in the LPFC and parietal cortex. The findings were, however, 

consistent with the searchlight and ROI-related results presented so far. The 

three variables exerted an effect on different left lateral prefrontal sections: 

dimension integration and response complexity on the IFG; dimension 

integration and target category on the more dorsal MFG; and finally, category on 

the RLPFC. Response complexity was the attribute which most robustly captured 

representational organization in the IPS. 
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Table 5.2. Effect of the three models on the MD network ROIs. 

ROI  Model  
T val 

Z val P 
value 

ACC/preSM
A 

Dim.  0.645 1 

Resp.  1.673 .115 

Cat. -0.026  1 

Left RLPFC Dim.  1.019 .571 
Resp.  0.346 .365 
Cat.  2.665 .023 

Left IFS Dim. 3.644  .005 

Resp. 4.423  < .001 

Cat.  2.328 .058 

Left MFG Dim.  2.739 .014 
Resp.  0.870 .754 
Cat. 4.298  .002 

Left aIfO Dim. 0.667  1 
Resp.  1.206 .228 
Cat.  2.197 .060 

Left IPS Dim. 1.617  .638 
Resp.  2.814 .025 
Cat. 2.639  .071 

Right 
RLPFC 

Dim.  0.365 1 
Resp. 1.460  .849 
Cat. 0.861  1 

Right IFS Dim. 2.220  .186 
Resp.  1.599 .211 
Cat.  -0.626 1 

Right MFG Dim. 2.311  .152 
Resp. 1.294  1 
Cat. 2.042  .273 

Right aIfO Dim. 0.023  1 
Resp.  1.299 .280 
Cat. 1.352  1 

Right IPS Dim.  1.262 .548 
 Resp.  1.842 .330 

Cat.  -0.701 1 

Note: P values displayed are Bonferroni-corrected for multiple comparisons. Abbreviations stand for 

anterior cingulate cortex (ACC), presupplementary motor area (preSMA), rostrolateral prefrontal cortex 

(RLPFC), inferior frontal sulcus (IFS), middle frontal gyrus (MFG), anterior insula/frontal operculum area 

(aIfO), intraparietal sulcus (IPS), Dimension integration model (Dim.), Response complexity model (Resp.) 

and Target Category (Cat.).  

Effects of reward on representational geometry.  

We then explored the effects of motivation in each of the ROIs encoding different 
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attributes of the instructions (Fig. 5.5), assessing two possible mechanisms that 

could underlie the behavioral improvements linked to reward (Fig. 5.2). On the 

one hand, we tested whether reward made our variables more efficient in 

sharpening the representational space (Fig. 5.2.d, Hypothesis 1), In other words, 

and taking as an example the target category variable, we assessed whether 

reward expectations would increase the distance between representations of 

instructions referring to different stimulus categories (in extension to the other 

variables, indicated as different-condition dissimilarity), while decreasing the 

distance among those referring to same target category (same-condition 

dissimilarity). On the other, we tested the alternative possibility that 

dissimilarities would be, in general, greater in the rewarded trials (Fig 5.2.d, 

Hypothesis 2), regardless of the variables manipulated (i.e., regardless of the pair 

of instructions being same or different-condition). This could reflect a 

mechanism for making rule representations more distinguishable among each 

other, and also, it would be compatible with the increase in rule decoding 

accuracy that has been liked to motivation in previous reports (Etzel et al., 2016). 

With that purpose, we extracted, for each region, the average dissimilarity among 

pairs of instructions pertaining to the same and different conditions, separately 

for rewarded and non-rewarded trials. We then used Wilcoxon signed-rank tests 

(Nili et al., 2014) to check whether the difference between different-condition and 

same-condition trials was larger in the rewarded than in the non-rewarded 

condition, and also, whether the mean dissimilarity (collapsing across same and 

different-condition) was increased by motivation.  

In the first case, no reward-related differences were observed for any of the 

instruction-related variables (all Ps >.1). It is important to note, however, that 
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these results (as most of the findings presented in this study) are anchored to the 

instruction’s encoding stage, in which proactive control configuration takes place. 

To explore the possibility that the hypothesized interaction shaped neural 

activations during the later implementation phase (more related to reactive 

control; Braver, 2012; Palenciano, González-García, Arco, & Ruz, 2019), we 

conducted a further test employing beta images from this epoch. However, and 

again, the expected effect was not significant for any of the ROIs examined (all 

Ps >.1).  

When addressing the second hypothesis, surprisingly, we found the opposite 

pattern: reward systematically decreased the dissimilarity values in all the ROIs 

evaluated (all Ps < .05, see Table 5.3). To test the behavioral relevance of this 

finding we correlated, across our participants, the average decrease in 

dissimilarities associated with reward, with the benefit of motivation on 

performance (IES; Townsend & Ashby, 1978). We found that in fact, the decrease 

in representational distances due to reward was significantly correlated with the 

motivation-related improvements in behavioral performance. Furthermore, this 

seemed to be a quite robust effect, being present in all of the ROIs included in the 

analysis (see Table 5.3 for further details).  
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Table 5.3. Effect of reward on dissimilarity values and correlation with behavioral improvement. 

 

 

 

 

 

 

 

 

 

 

Note: The asterisks indicate significance at P < .05 on the Wilcoxon paired-sample signed-rank test (middle 

column) or Pearson correlation coefficient (left column). In the last case, multiple comparisons were 

controlled with an FWE criterion. Abbreviations stand for inferior frontal gyrus (IFG), inferior frontal 

junction (IFJ), primary motor cortex (M1), premotor cortex (PM) supplementary motor area (SMA), 

parahippocampal cortex (PHC), middle temporal gyrus (MTG), temporoparietal junction (TPJ) and superior 

frontal gyrus (SFG).  

MVPA results 

We finally aimed to explore the effect of reward directly on decoding accuracies, 

employing MVPA (Haxby, Connolly, & Guntupalli, 2014), as it has been 

previously reported during rule encoding in a classic, repetitive task-switching 

setting (Etzel et al., 2016). We discriminated between the two conditions of each 

instruction-related variable (i.e., one among faces and food-related trials, other 

for single versus sequential response requirements, and a last one for within 

versus across-dimension integration instructions) separately for rewarded and 

non-rewarded trials. We trained and tested our classifiers across the whole brain 

using searchlight and obtained, as a result, an accuracy map for each motivation 

ROI 
Effect of reward on 
dissimilarity values 

Correlation  
RSA - 

behavior 

Task set complexity   
Left IFG/IFJ Z = -3.005* r = 0.515* 

Response set 
complexity 

  

M1 / PM / SMA 
/ IPS 

Z = -3.712* r = 0.565* 

Left PHC Z = -3.712* r = 0.558* 
Target category   

Left fusiform 
gyrus/ 
precuneus / 
IFG/IFJ 

Z = -3.712* r = 0.543* 

Right MTG/TPJ Z = -4.419* r = 0.495* 
Right IFG Z = -3.712* r = 0.533* 
Medial SFG Z = -2.652* r = 0.482* 
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condition and variable. Nonetheless, while classification was above chance in 

different brain regions for the three variables, we did not detect any differences 

in accuracies between rewarded and non-rewarded trials, as no cluster survived 

at the group-level the t-test assessing above zero differences between the two 

motivation conditions.  

5.4. Discussion 

In the present study, we aimed to characterize the representational space for 

novel instructions during their proactive preparation. We assessed whether 

variables linked to proactive control organized encoding activity patterns and 

whether this structure was affected by reward expectations. Our results portrayed 

a complex landscape, where different organizational principles governed 

instruction encoding in FP cortices and lower-level perceptual and motor areas.  

The left IFG/IFJ reflected the most complex and overarching representational 

structure, with activity patterns structured by dimension integration, response 

complexity and target category. Robust evidence supports the role of the IFJ in 

task-set reconfiguration (Brass, Derrfuss, Forstmann, & Cramon, 2005) in 

practiced (e.g. Woolgar, Hampshire, Thompson, & Duncan, 2011) and novel 

contexts (e.g. González-García et al., 2016; Muhle-Karbe et al., 2017), 

orchestrating neural dynamics during attentional selection (e.g. Baldauf & 

Desimone, 2014). This region seems to be involved in task-set maintenance 

(Sakai, 2008), selecting task-relevant information represented in perceptual 

regions (Cole, Reynolds, et al., 2013; Miller & Cohen, 2001). The current study 

advances our knowledge about the structure underlying how information is 

coded during novel instruction encoding, and stresses the diversity of task 
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parameters that orchestrate task encoding in the IFG/IFJ. Such a complex, 

multidimensional representational space (Rigotti et al., 2013) could be key to 

support the richness and flexibility of human behavior in novel environments. 

This perspective qualifies recent research, based on MVPA, that highlights the 

compositionality characterizing representations held in the IFG (Cole, Laurent, 

et al., 2013; Deraeve, Vassena, & Alexander, 2019; Reverberi, Görgen, & Haynes, 

2012), by which complex tasks are coded by combining their simpler constituent 

elements. 

The IPS also encoded novel rules proactively, but now according to response 

complexity. While this is quite consistent with previous studies linking the 

parietal cortex to action preparation, it is worth noticing the distinction found in 

our data between parietal and prefrontal regions, a finding further confirmed 

with a more sensitive ROI analysis. Dimension integration, the variable 

manipulated to appeal to a higher-level task goal representation, had an effect 

only on LPFC, while the IPS was linked to the more specific response-set 

complexity (De Baene & Brass, 2014; Rubinstein et al., 2001). The frequent 

coativation of IFG/IFJ and IPS in demanding paradigms (Duncan, 2010) had 

complicated the identification of their separate contributions. The differential 

pattern we observed is highly relevant to disentangle their proactive role. 

Interestingly, the emerging picture portraits the IFG/IFJ and the IPS 

collaborating during novel task representation, with the former maintaining 

overarching representations of all relevant variables, and the latter activating the 

relevant stimulus-response contingencies (see also Muhle-Karbe et al., 2014). 

The use of RSA in our paradigm provides a deeper understanding of this process, 

emphasizing that the proposed two-stage preparatory mechanism also guides 
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task-set encoding in FP cortices. In this sense, variables key for abstract goal or 

specific S-R settings become relevant differentially depending on the region.  

Additional medial and lateral frontal cortices also participate in the FP network 

and are frequently recruited during task preparation (Duncan, 2010). 

Consequently, we also examined instruction coding in these MD regions. Our 

findings highlighted other LPFC areas reflecting target category (both the RLPFC 

and MFG) and dimension integration (MFG). The overall pattern of results 

obtained both with whole-brain and with ROI approaches reflects high 

heterogeneity within the FP network in general, and in the LPFC in particular, in 

terms of the attributes structuring task-set representation. In contrast, we did not 

obtain evidence supporting proactive task-set encoding in the ACC/preSMA and 

the aIfO regions. This finding fits with the subdivision of the FP network into two 

differentiated components: one anchored in the LPFC and IPS, and a second one 

composed by the ACC and the aIfO (Dosenbach et al., 2007; Palenciano et al., 

2019). In line with our results, anticipatory task coding has been predominantly 

found in regions from the former rather than in the latter (Crittenden, Mitchell, 

& Duncan, 2016). Ultimately, the variability found within the FP control network 

during proactive novel task setting (Palenciano et al., 2019), with different 

processes and representational formats being combined, could be key to 

maximize flexibility. 

Fronto-parietal cortices were not the sole brain regions encoding novel 

instruction parameters. Activity in fusiform gyri was organized according to 

target category, whereas patterns in somatomotor cortices reflected response 

complexity. While these regions are not associated per se with proactive control, 

their involvement reflects that their representational geometry is tuned in an 
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anticipatory fashion by relevant task parameters conveyed by instructions. It is 

important to stress that all the results discussed were locked to instruction 

encoding, where no target stimuli had been presented, neither any specific motor 

response could have been prepared. These findings suggest that FP areas exert a 

bias in posterior cortices, according to the content of instructions. Supporting 

this, increments of mean activity (Esterman & Yantis, 2010) and target-specific 

information encoding (e.g. Stokes, Thompson, Nobre, & Duncan, 2009) have 

been reported in perceptual and motor regions during preparation. Importantly, 

these changes have been linked to boosts in functional connectivity between the 

FP and posterior cortices (González-García et al., 2016; Sakai & Passingham, 

2006). In direct relation to our findings, a recent study showed that the 

representational organization in regions along the visual pathway is dynamically 

adapted to task demands (Nastase et al., 2017). Our current results add to these 

findings by showing that representational space tuning could be a mechanism of 

preparatory bias, which could reflect predictive coding principles where iterative 

loops of feedback and feedforward communication shape cognition (Friston, 

2005). 

Crucially, the structure of information encoded by all these regions was sensitive 

to trial-wise motivational states. Surprisingly, reward expectation diminished the 

dissimilarities between the representations of the instructions although 

preserving the organizational scheme found in each area. Based on recent 

findings of increased task decodability (Etzel et al., 2016), we had hypothesized 

that reward would either polarize the representational structure  or  increase the 

representational distances overall. Results were, however, in the opposite 

direction, even when our reward manipulation was successful at boosting 
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performance and also increased activity in control and reward-related regions 

(Parro et al., 2017). Most importantly, decreases in dissimilarities were also 

robustly correlated with behavioral improvements. Taking into account that 

additional analysis employing MVPA and using data from the implementation 

stage corroborated these results, their implication must be thoughtfully 

considered. One possibility is that the decrease in dissimilarities is generated by 

a general boost of reward in signal-to-noise ratio. Although our results persisted 

after normalizing data across trials, a reward-related reduction of multivariate 

noise pattern could still be possible, and it could benefit task coding in the 

absence of the hypothesized RSA results. However, the MVPA did not reveal 

improved task classification accuracy in the rewarded condition, and thus this 

interpretation remains uncertain. Alternatively, motivation could have 

influenced task coding in ways that our searchlight procedure was not sensitive 

to. That would be the case if reward affected the spatial distribution of 

information: as ROIs were defined by size-fixed searchlight spheres, and were 

equal in rewarded and non-rewarded conditions, an effect like that would remain 

shadowed. Finally, the task complexity could also be key. In less demanding 

situations such as repetitive task switching (Etzel et al., 2016), reward could 

directly sharpen task encoding representations. In novel environments, however, 

motivation could exert a more general effect at the process level -instead of at the 

representational one. It could increase the efficiency of task reconfiguration 

(Braem & Egner, 2018), as indexed by the improvements in behavior, while the 

specific rule representations would remain equally structured. Nonetheless, more 

research is needed to properly characterize the intricate interactions among 

proactive control and motivation (Pessoa, 2017) in rich task environments, more 
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akin to daily life situations. 

The current study entails some limitations that constrain the scope of our findings 

and call for further research. On the one hand, the nature of our paradigm 

demanded the selection of a few instruction-organizing variables. Some other 

dimensions, critical for anticipatory encoding, may have been left unaddressed. 

Furthermore, non-linear combinations of variables could add to the organization 

principles governing control regions (Rigotti et al., 2013). Considering an 

increasing number of plausible models in more complex and/or naturalistic 

scenarios, together with data-driven methods such as multidimensional scaling 

or component analysis, will complement our results. On the other hand, our main 

dependent variable (fMRI hemodynamic signal) provided spatially precise, but 

temporal impoverished data. Temporally resolved techniques, such as 

electroencephalography or magnetoencephalography, could be key to unveil the 

temporal dynamics of the representational patterns.  

Overall, our findings provide novel insights on how verbal complex novel 

instructions organize proactive brain activations. The emerging picture departs 

from pure localizationist approaches where brain regions carry fixed information 

about concrete cognitive processes. Rather, the different dimensions relevant for 

efficient instructed action shape brain activity across an extended set of areas, 

flexibly structuring encoding activity according to the relevant task parameters. 
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Abstract 

Anticipatory task configuration entails the encoding of rule parameters to guide 

perceptual and motor systems according to current goals. This is a dynamic 

process, where task representations change along successive differentiated stages 

(Stokes et al., 2013). Recent evidence, obtained with functional Magnetic 

Resonance Imaging (fMRI), indicates that novel complex instructions structure 

anticipatory activations simultaneously according to different proactive control 

and motivation-relevant variables (Palenciano, González-García, Arco, Pessoa, & 

Ruz, 2019). Nonetheless, the temporal unfolding of such variable and 

multidimensional preparatory codification remains unknown. To investigate it, 

in the current study we collected high-density electroencephalography data while 

participants followed the same set of novel verbal instructions, and employed 

state of the art pattern analyses. Our results did not provide strong evidence 

supporting a clear effect of control-related variables at organizing task sets. 

Motivation, however, exerted a clear impact on anticipatory representations, 

making rules more similar among each other when a monetary reward was 

expected. This replicated and further characterized previous fMRI findings 

(Palenciano et al., 2019), showing that reward has an impact on two separated 

temporal windows. Our results open debate about how to conceptualize 

motivation-control interplays.  

 

 



128 
 

6.1. Introduction 

In our daily life, we perform multiple and diverse tasks, quickly shifting among 

them when contextual demands and internal preferences require (Braver, 2012b; 

Monsell, 2003). This flexibility is crucial in novel contexts, where fixed, habit-like 

behavior does not lead to success. In such circumstances, humans can make an 

efficient use of instructions to guide our actions – an ability key for our adaptation 

to changing environments (Cole, Laurent, et al., 2013). Functional magnetic 

resonance imaging (fMRI) studies have highlighted the role of lateral prefrontal 

and parietal cortices during novel task processing (Bourguignon et al., 2018; 

González-García et al., 2017; Hartstra et al., 2012), and recent results indicate 

that complex instructions containing several relevant parameters at once 

(Palenciano et al., 2019) orchestrate anticipatory representations in different 

brain areas. In the temporal domain, understanding how flexible novel behavior 

is implemented in dynamic brain activity patterns is key for cognitive 

neuroscience.  

To guide our behavior, instructions must be transformed into action-based 

representations. These are known as tasks-sets (Sakai, 2008) and contain the 

relevant rules, target stimuli, and responses (Sakai, 2008). Crucially, part of the 

task-set reconfiguration is proactive, starting and developing before actual 

stimuli presentation. The efficiency of this anticipatory task preparation 

influences the posterior behavioral performance (Rogers & Monsell, 1995). 

Success on new and complex demands relies even more on this proactive 

reconfiguration due to the most costly novel task-set assembly (Cole et al., 2018). 

Despite its relevance, it is yet unknown how preparatory activity for such complex 
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novel action plans structures the different relevant pieces of information in the 

temporal domain. 

Some insights about the dynamic nature of this proactive reconfiguration can be 

extracted from electrophysiological recordings in non-human primates. In these 

studies, when a task is coded in advance, the resulting representation does not 

remain static until execution. Contrary, it displays a complex temporal evolution 

across different stages during the preparation interval (King & Dehaene, 2014; 

Sigala, Kusunoki, Nimmo-Smith, Gaffan, & Duncan, 2008; Stokes et al., 2013). 

These anticipatory variable task representations seem to instantiate an encoding 

context for upcoming stimuli, ensuring that they are processed in a goal-related 

fashion (Stokes et al., 2013). Similar complex dynamics have also been found in 

humans (Hebart, Bankson, Harel, Baker, & Cichy, 2018). Nevertheless, all the 

evidence available comes from simple experimental settings employing few and 

highly practiced rules. No attempts have been made for addressing this dynamic 

reconfiguration in more complex and novel task scenarios.  

On this line, a recent study showed that preparation for novel instructions is 

linked to a flexible, task-oriented organization of anticipatory brain activity 

(Palenciano et al., 2019). Dimension integration requirements, response set 

complexity and target category (all of them related to proactive control) structure 

novel task representations across multiple brain regions. As these results were 

obtained with fMRI, the temporal profile characterizing these effects remained 

completely obscured. However, there are theoretical reasons to hypothesize the 

existence of different time courses underlying the influence of each variable on 

the encoding structure. In this sense, it has been proposed that preparation 

entails two differentiated stages: a first global task goal setting, followed by a 
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more concrete stimulus-response reconfiguration (De Baene & Brass, 2014; 

Rubinstein et al., 2001). This leads to the possibility that initial stages of novel 

task setting could be organized by more abstract, goal-related attributes (as 

dimension requirements and target category), followed by a response-oriented 

representational organization. Such a pattern could potentially reflect how 

instruction preparation entails the transit from a more abstract format to an 

increasingly proceduralized representation (Brass et al., 2017). To shed some 

light upon this issue, we adapted the study of Palenciano and colleagues (2019) 

to measure high-density electroencephalography (EEG) data. Extending 

advanced multivariate analysis (Haxby et al., 2014; Kriegeskorte et al., 2008) to 

the temporal plane (Grootswagers, Wardle, & Carlson, 2017) allowed us to track 

the temporal dynamics underlying the distinct proactive representational spaces.  

Furthermore, continuing with our previous research, here we also assessed the 

impact of the motivational state upon task preparation, by including economic 

incentives in our paradigm. Reward expectations, traditionally associated with 

behavioral improvements, have been linked to a boost in proactive control 

mechanisms (Chiew & Braver, 2016; Shen & Chun, 2011). In line with this, 

Palenciano et al. (2019) found a robust motivation effect on preparatory task 

encoding. Intriguingly, reward expectations robustly decreased the dissimilarity 

among instructions representations, and this influence was tightly linked to 

benefits on performance. Previous results in practiced and simpler task scenarios 

pointed toward an opposite effect, with reward enhancing rule discriminability 

on neural patterns (Cole et al., 2011; Hall-McMaster et al., 2019). Consequently, 

we aimed to replicate our puzzling motivation-related finding, as well as to 
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characterize its temporal profile, which could help to better understand its 

implications. 

6.2. Methods  

Participants 

We recruited 36 students (22 women; average age = 22.28 years, SD = 3.2 years), 

all of them right-handed, native Spanish speakers, and with normal or corrected-

to-normal vision. They all signed a consent form approved by the Ethics 

Committee of the University of Granada and received monetary compensation in 

exchange for their participation (10-20€, according to their performance). The 

sample size was computed with a power analysis focused on the detection of a 

two-way behavioral interaction term (assuming a small-medium effect size of 

Cohen’s d = .3 and 80% power). Five participants were excluded from the final 

sample, three due to poor performance (<70% accuracy rate) and the remaining 

two due to excessive artifacts in the EEG signal. Thus, data from 31 participants 

were submitted to the analysis.  

Stimuli and procedure 

The main experimental paradigm replicated the one employed in Palenciano et 

al. (2019). The instructions, stimuli and timings parameters remained the same, 

and all the details are available in Chapter 5. Crucially, as in the previous fMRI 

study, the independent variables manipulated here were integration across or 

within stimuli dimension, response set complexity, target category and reward 

expectation. 
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In addition, to aid in the detection and removal of ocular artifacts in the EEG 

signal, participants also completed a reading task. This was built employing 

random sentences from Wikipedia articles, sharing either the same number of 

words or letters than the instructions employed in the main task. We also ensured 

that only those with descriptive content were selected, avoiding sentences 

containing any kind of procedural information. A total of 60 sentences were 

presented in random order during 2500ms each, separated by a 3000ms ISI.  

When participants arrived at the laboratory, and once the EEG equipment was 

set, they completed a practice session. This was identical to the experimental task, 

with the exception of the specific instructions employed, which were drawn from 

a different set to maintain rule novelty. Participants had to reach 80% of accuracy 

to continue with the main phase of the study. For timing reasons, we established 

a maximum of four repetitions of the practice block to allow continuance (with a 

maximum duration of 36 minutes). We did not record EEG data during this 

phase.  

Afterward, participants performed the reading task, which was introduced with 

the purpose of maximizing the amount of data containing clear saccade artifacts, 

but in the absence of the neural signal of interest (i.e., activity linked to 

instruction encoding and preparation). During this task, participants were 

instructed to read as naturally as possible, but avoiding blinks and sudden 

saccades outside of the sentence location. During the ISI, they were told to stare 

at the central fixation point. The full reading task had a duration of five minutes 

and a half.  
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Finally, participants completed the main experimental task, composed of 192 

trials distributed in six independent blocks with self-paced pauses between them. 

This phase lasted around an hour. 

EEG recordings and preprocessing 

High-density EEG was recorded from a 65-electrodes system (actiCap slim, Brain 

Products) with a 1000Hz sampling rate and an online high-pass cutoff of 

0.016Hz. Two electrodes, TP9 and TP10, were used as horizontal 

electrooculogram (EOG), placed lateral to both eyes, to record saccades. 

Impedances were kept below 5kΩ, and data were referenced online to the FCz 

electrode. All data preprocessing was performed using EEGLAB software running 

on Matlab (r2016a version). First, we visually inspected the raw data to detect 

major artifacts and bad channels. However, no channel interpolation was 

required for any participant. Then, the recordings were downsampled to 256 Hz, 

average re-referenced, and filtered using a low-pass FIR of 127Hz. The main 

analyses were done on epochs anchored at the onset of the instruction events, 

with 3500ms duration [-500, 3000ms], and baseline-corrected using the [-500, 

0ms] interval, corresponding to the previous reward cue period. A control test, 

carried out to assess data quality (see MVPA section), was performed on wider 

epochs. As this analysis focused on the trials’ motivation condition, the epochs 

included the time window where reward information was available (anchored at 

reward cues, lasting for 5500ms [-500, 5000ms], baseline-corrected employing 

the [-500, 0ms] preceding ISI period).  

An identical preprocessing was done with data from the reading task. We 

extracted epochs anchored at sentence onset, of 3500ms duration [-500, 
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3000ms], with a baseline correction on the [-500, 0ms] period of the previous 

ISI. Then, for each participant, we concatenated epochs from the reading and the 

main experimental task and used them to perform ICA (runica algorithm in 

EEGLAB), after excluding the ocular channels. We used visual inspection of 

components’ topographies and power spectrum, together with SASICA software 

(correlation of components time course with EOG channels) to identify blinks and 

lateral movement ICAs (Chaumon, Bishop, & Busch, 2015). This step was critical, 

as the nature of the main instruction-following task necessarily involved saccadic 

movements as participants read the instructions. We additionally identified 

components containing clear muscular or channel-specific noise (Chaumon et al., 

2015). Artifact-related ICAs were removed from the data. Finally, after discarding 

the reading task epochs, we conducted an automatic trial rejection procedure, in 

which epochs displaying abnormal spectra (>d50dB in 0-2 Hz frequency window; 

<100dB or >25dB in 20-40Hz), extreme voltage values (±200V) or improbable 

data (voltages departing ±6SDs from the baseline) were eliminated. 

Behavioral data analysis 

Accuracies and reaction times were entered, separately, in 4-ways repeated 

measures ANOVA, including Integration demands (within vs. across dimension), 

Response set complexity (simple vs. sequential responses), Target category (faces 

vs. food) and Reward (rewarded vs. non-rewarded trials), as factors. Post-hoc 

comparisons were Bonferroni-corrected for multiple comparisons. Behavioral 

analyses were performed with the software JASP (JASP Team, 2019; 

https://jasp-stats.org/). 

 

https://jasp-stats.org/
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EEG data analysis 

Our main goal was to address the temporal unfolding of novel task 

representational structure, tracking the effect of proactive control-related 

variables. We also assessed their interaction with motivation. The analyses 

followed those in Palenciano et al. (2019) as much as possible, with the goal of 

maximizing the comparability of EEG and fMRI results. A detailed description of 

the analysis procedures (including figures) can be found in Palenciano et al 

(2019), included in Chapter 5. Here we include mainly the information that 

deviates from these previous analyses, mostly due to the different nature of the 

neuroimaging method. We employed two multivariate techniques: 

Representational Similarity Analysis (RSA; Kriegeskorte, Mur, & Bandettini, 

2008) and Multivariate Pattern Analysis (MVPA; Haxby, Connolly, & Guntupalli, 

2014). Importantly, both techniques were applied in a time-resolved fashion, 

iterating at each time point of the encoding interval, and yielding time courses of 

the measure of interest as a result. 

Taking into account the particularities of these analyses, we applied a series of 

preparatory steps on the data to avoid inflated or biased results. First, we avoided 

imbalanced data sets, which could affect the interpretability of MVPA results (see 

below). We ensured that an equal number of trials of each condition were 

included in the MVPA (e.g., same number of faces and food-related trials in all 

Target category analyses). Furthermore, as motivation was manipulated 

concurrently with the proactive control-related variables, we also controlled that 

the same proportion of rewarded and non-rewarded trials were included for each 

condition. This way, effects linked to the motivational state could not be 
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misattributed to any of the other factors. In both cases, this was done by 

downsampling the data from the majority class.  

Once we had a balanced set of trials to be included in the analyses, we extracted 

the corresponding epochs (which, unless otherwise stated, were anchored at the 

presentation of instructions) and smoothed the signal with a sliding window 

encompassing 10-samples (≈40 ms). We then downsampled each trial data to one 

third (selecting one of every three time points) to reduce computational costs. 

Finally, data were z-scored (ensuring that M = 0 and SD = 1) for each trial and 

channel separately. We then used these data to build the trial-wise multivariate 

activity patterns, generated time point by time point, which consisted of the 

normalized voltage values of all 63 electrodes (excluding EOG channels). Despite 

the proved benefits of trial averaging (i.e., the employment of supertrials; 

Grootswagers, Wardle, & Carlson, 2017) on EEG signal decoding to increase the 

signal-to-noise ratio, the number of observations in our design was not well 

suited for this approach, which forced the use of trial-by-trial estimators. All 

analyses were performed employing custom-developed MATLAB code (López-

García, Sobrado, Peñalver, Górriz & Ruz, 2019). 

Representational Similarity Analysis (RSA) 

We first assessed when, during the instruction encoding, Task-set complexity, 

Response set complexity and Target category explained the instructions’ 

encoding organization. RSA allowed us to compare, time point by time point, 

theoretical models based on these three variables with the estimated neural 

representational space.  
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To do so, we first generated the theoretical representational dissimilarity 

matrices (RDMs), in which each cell contained the expected distance (1 = 

maximal dissimilarity; 0 = minimal dissimilarity) between a pair of instructions, 

according to each of the three control-related variables manipulated. For 

example, in the Category RDM, pairs of face-related instructions had a 

dissimilarity of 0, and pairs of face and food-related instructions, of 1 (see Fig. 

5.2.a). Then, at each time point, we built a neural RDM, in which each cell 

contained the actual distance among a pair of instructions’ voltages vector. This 

was computed as 1 – the Pearson correlation coefficient between the multi-

channel activity patterns of both trials. Then, we performed Spearman 

correlations among the theoretical and the neural RDMs, to assess the extent to 

which the former explained the latter. The resulting three correlation values were 

normalized (with the Fisher transformation) and stored, iterating this procedure 

through the whole epoch. This way, for each participant we obtained three 

correlation time courses, one per variable.  

To assess for significant time windows where the variables effectively organized 

the patterns, we followed permutation-based testing (Stelzer, Chen, & Turner, 

2013). This was suitable for the non-parametrical nature of the measure at hand, 

and additionally corrected for the multiple comparisons performed. For each 

participant and control-related variable, we permuted 100 times the trials’ labels, 

used them to build empirical RDMs and repeated the time-resolved RSA. Then, 

we generated 10000 null group-level results, selecting one random correlation 

time course per participant and averaging across them. This allowed us to build 

an empirical null distribution of correlation values per each time point, from 

which we took the values corresponding to the 95 percentile as the threshold for 
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significant positive correlations (P < .05) with the theoretical RDM. We further 

controlled for inflated false positive rates associated with multiple testing with a 

clustering approach. For this purpose, we generated an empirical null 

distribution of cluster sizes (understood as contiguous, significant time points) 

from the permuted and thresholded (p < .05) correlation time courses, and 

assigned each cluster size an FDR-corrected P value. The actual results obtained 

were averaged across the sample, tested against the correlation thresholds, and 

then assigned a P value according to the clustering present in the data.  

We then analyzed how reward expectation interacted with proactive control-

related variables during task encoding. We tested the same two hypotheses 

explored in Palenciano et al. (2019), namely, whether reward polarized 

representational organization (Hypothesis 1), or alternatively, whether it 

increased general task dissimilarities (Hypothesis 2). To do so, we distinguished 

among same and different-condition trials (for example, two faces-related trials 

and a face and a food-related trial, respectively). For each time point, we built two 

neural RDMs, one per motivation condition. Within each RDM, we averaged the 

cells corresponding to same and to different-conditions trials. Hypothesis 1 was 

assessed by comparing if the subtraction of different minus same-condition trials 

was higher in the rewarded than the non-rewarded condition. To test Hypothesis 

2, we just checked whether mean dissimilarity (collapsing between same and 

different-condition trials) was greater when reward was expected than when it 

was not. Again, we used permutation for statistical inference in this analysis. We 

followed the same procedure as above, but building empirical null distributions 

of the two differences among reward conditions assessing Hypotheses 1 and 2. 

Multivariate Pattern Analysis (MVPA) 
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We further performed MVPA to investigate whether the information about 

control-related variables could be decoded from EEG signals. This was motivated 

by the different nature of this and the previous RSA. While RSA informs about 

the higher-level representational structure, with MVPA we access informational 

content. We conducted three MVPAs, aiming to classify between trials: (1) 

requiring within vs. across dimension integration; (2) with single vs. sequential 

responses; and (3) face vs. food-related.  

To do so, we used the same data as in the previous RSA. Again, we repeated the 

MVPAs at each time point of the instruction-anchored epoch. We trained a binary 

linear Support Vector Machine classifier (C = 1; from libSVM, 

http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) in 90% of the two conditions trials, 

and then tested it against the 10% (unlabeled) remaining ones. The percentage of 

trials correctly classified during the testing is informative regarding how readable 

the variable information is. To maximize data usage and generalization, we 

followed a 10-fold cross-validating scheme, which ensured that all trials were 

used once for testing, iterating across the full data set. At this point, we not only 

ensured balanced data among conditions, but also within each iteration of the 

cross-validation scheme (same number of each condition’s trials within fold, and 

the same overall amount of data amount across all folds), which otherwise could 

compromise the results. The accuracies obtained across the cross-validation were 

averaged and assigned to the corresponding time point. Statistical inference 

followed the same approach as the RSA (Stelzer et al., 2013). 

We also assessed reward effects with this technique, similarly as it has been done 

in the past (Etzel et al., 2016). We explored if motivation benefited task 

information coding (enhancing classification accuracy) at any moment of the 
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instruction encoding period. To do so, we repeated the three MPVA but separately 

for rewarded and non-rewarded trials. We then performed paired t-tests to 

identify statistical differences between the two motivation conditions.  

We finally performed one extra analysis as a sanity check, as several aspects of 

our experimental settings are remarkable novel in the literature. The employment 

of paradigms involving naturalistic reading is still quite infrequent with EEG 

recordings, and absent in combination with decoding techniques. Moreover, 

ocular artifact cleaning techniques are recent and under development (e.g.: 

Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011). To ensure that the data were 

suitable for our analysis approach, we conducted a control test decoding 

motivation. At least in fMRI, reward expectation is linked to strong mean activity 

increases (Palenciano et al., 2019; Parro, Dixon, & Christoff, 2019) and its 

encoding is widespread in the brain (Wisniewski, Forstmann, & Brass, 2018). 

Thus, we decided to assess its effect on our data, as this manipulation we expected 

would be easier to detect than other abstract task attributes such as the ones 

explored in the main analysis. We classified rewarded from non-rewarded trials 

following the same procedure as specified before, with the exception that a wider 

epoch was employed, including the reward cue interval in addition to instruction 

presentation. We expected to find clear above-chance accuracies from reward cue 

onwards.  

6.3. Results 

Behavioral  

The findings relating RTs and accuracy were highly congruent with our previous 

results (Palenciano et al., 2019). Dimension integration displayed a robust 
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significant effect on both RT (F1, 30 = 63.82, P <.001, p
2 = .68) and accuracy 

(F1, 30 = 73.56, P = .001, p
2 = .71), with faster (within dimensions: M = 0.98s, 

SD = 0.21s; across dimensions: M = 1.06s, SD = 0.23s) and more accurate 

responses (within dimensions: M = 0.85, SD = 0.12; across dimensions: M = 0.77, 

SD = 0.13) when the integration required was within stimulus dimension than 

across them. Target category also resulted significant in both behavioral 

measures (RT: F1, 30 = 47.28, P <.001, p
2 = .61; accuracy: F1, 30 = 17.90, P 

<.001,  p
2 = .37), with face-related trials linked to more accurate (faces: M = 0.83, 

SD = 0.12; food: M = 0.79, SD = 0.14), but slower responses (faces: M = 1.06s, SD 

= 0.23s; food: M = 0.99s, SD = 0.21s). This category-related pattern has been 

previously found in studies using the same or similar paradigms (Palenciano et 

al., 2019; Palenciano, González-García, Arco, & Ruz, 2018).  

Regarding the effect of reward, it was significant on RTs (F1, 30 = 4.97, P < .05, 

p
2 = .14), with faster responses when an incentive was expected (rewarded: M = 

1.01s, SD = 0.23s; non-rewarded: M = 1.04s, SD = 0.22s). Rewarded trials were 

linked to a numerically higher accuracy rate (rewarded: M = 0.82, SD = 0.13; non-

rewarded: M = 0.80, SD = 0.13), but the difference did not reach statistical 

significance (F1, 30 = 2.90, P = .09, p
2 = .09).  

Finally, the interaction of Reward with Response set complexity (F1, 30 = 6.02, P 

= .02, p
2 = .17) and Dimension integration with Target category (F1, 30 = 4.31, P 

=.05, p
2 = .13) were significant on RTs. We thus performed posthoc comparisons 

to access to the directionality of these effects. In the case of the former, the 

interaction was driven by a significant decrease in RTs in rewarded versus non-

rewarded simple response trials, with less robust differences in the case of 
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sequential response ones (P > .05). Regarding the second interaction, it was 

generated by a non-significant difference between face-related trials requiring 

within-dimension integration and food-related ones integrating across 

dimensions, while the rest of pair-wise comparisons were statistically different. 

Nonetheless, both behavioral interactions fell beyond the scope of this work and 

are not further considered.  

EEG results 

 Dynamics underlying novel task-set encoding structure 

The main goal of this study was to track, with high temporal precision, the 

instauration of three representational structures known to be relevant for novel 

task representation and conveyed by verbal complex instructions. The three 

encoding structures were those governed by dimension integration, response set 

complexity and target category. We extracted this information by generating 

theoretical RDMs and correlating them, time point by time point, with the neural 

RDMs actually established during the instruction encoding interval. The time 

courses of the correlation coefficients for the three variables with the neural 

RDMs are available in Fig. 6.1.  

Requirements for integrating within or across stimuli dimensions structured task 

representation halfway the encoding interval, with significant correlation clusters 

(P < .05 FDR-corrected for multiple comparisons) found between 1100 and 

1500ms after instruction onset.  

Response set complexity captured encoding organization later on, during the 

posterior jitter interval, reaching statistical significance almost 3000ms after rule 

presentation. However, and unexpectedly, an additional significant cluster was 
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found 100ms before instruction onset. The implications of this artifact will be 

later elaborated in the discussion. 

Finally, target category organized task-set encoding during the first half of the 

encoding, with significant peaks at latencies between 900 and 1300ms. However, 

and again, another significant cluster appeared 50ms before instruction onset.  

Temporal profile of reward-proactive control interactions 

In a second step, we further evaluated whether the establishment of organized 

representational spaces was affected by the motivational state of the participants. 

Following Palenciano et al. (2019), we assessed two potential mechanisms by 

which this modulation could take place.  

The first hypothesis, regarding a reward-induced polarization of encoding spaces, 

did not obtain evidence to be supported (see Fig. 6.2.A). The effect of our three 

control-related variables remained equivalent between the two motivation 

conditions through the whole encoding interval. We only found two exceptions, 

involving small clusters in which the test reached significance, but with an 

impoverishment of representational structure linked to reward expectancy. They 

appeared in response set complexity RSA (at around 250ms of latency) and in the 

target category RSA (after 2750ms, already during the ISI).  
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Figure 6.2: Time courses of the Spearman correlations for the dimension integration (A), response set 

complexity (B) and target category (C) models RSAs with the neural one across the encoding interval. Shaded 

areas indicate significant positive correlations (P < .05, cluster-wise corrected for multiple comparisons). 
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When then tested the second possibility, we found that motivation exerted a 

general decrease in dissimilarities among instruction representations (Fig 6.2.B), 

as in our previous fMRI results (Palenciano et al., 2019). Furthermore, this effect 

displayed a remarkable clear pattern across the control-related variables 

examined. In the three analyses, two differentiated significant time windows were 

found: the first appearing approximately 200ms after instruction onset and a 

second one during the last 500ms of the encoding interval. In the category RSA, 

two additional clusters appeared before instruction onset, however, motivation 

information was already available during this interval through the reward cue. 

MVPA decoding of proactive control variables 

To complement the RSA results, we introduced our data into three separate 

MVPAs, aiming to decode between the two levels of each one of our control-

related variables. On one hand, the integration within or across dimensions could 

be significantly decoded in small, distributed clusters along the encoding epoch 

(see Fig. 6.3.A). Single and sequential response requirements, on the other hand, 

were predominantly decoded at the end of the encoding window, with significant 

accuracy clusters appearing around 1600ms after instruction onset, and again at 

2800ms latency (Fig. 6.3.B). Finally, target category was decoded mainly from 

the first half of the epoch (Fig. 6.3.C), with an early significant classification peak 

at 200ms, and more compacted clusters around between 500 and 1000ms 

latencies. Additional peaks were found toward the end of the encoding. 
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Figure 6.3: Time courses of the difference explored for the two interaction hypotheses. (A) Results from 

subtracting same-condition trials from different-condition ones, and then comparing among reward 

conditions. Above 0 values correspond to a greater increase in different (versus same) condition trials when 

reward is expected, which will indicate a polarization of the representational space. (B) Results from 

subtracting the mean dissimilarity of non-rewarded trials from rewarded ones. Above 0 values correspond 

to higher dissimilarity under the rewarded condition. In both (A) and (B), bars underneath the graphs depict 

significant deviations from 0 (P < .05, cluster-wise corrected for multiple comparisons). 
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Figure 6.3. Time courses of the classification accuracies for the dimension integration (A), response set 

complexity (B) and target category (C) decoding analysis. Shaded areas indicate significant above-chance 

accuracies (P < .05, cluster-wise corrected for multiple comparisons). 

45%

47%

48%

50%

51%

53%

54%

A
c
c
u

ra
c
y

45%

47%

48%

50%

51%

53%

54%

A
c
c
u

ra
c
y

45%

47%

48%

50%

51%

53%

54%

A
c
c
u

ra
c
y

Time (ms relative to instrution onset)

Target category decoding

Response complexity decoding

Dimension integration decoding(A)

(B)

(C)



148 
 

Motivational state decoding.  

We performed a final analysis as a quality control check, classifying among 

reward expectation conditions. Importantly, reward information was available 

during two differentiated intervals: during the reward cue, which by its physical 

properties (small 1.5º images centered on the screen) was a better match with 

traditional experimental settings, but also during the following instruction 

interval, in which reading-related saccades took place. Thus, we could disentangle 

– in case of absence of the expected results – whether the instruction period, even 

after eye artifact correction, was not well suited for RSA or MVPA.  

The results of these MPVAs are displayed in Fig. 6.4. Motivation information was 

robustly decoded through both reward cue and instruction intervals. 

Classification accuracy rose after reward cue onset, reaching a peak around 

500ms afterwards, and slowly decaying by the end of the period. Once the 

instruction was presented, motivation information was readable again during two 

time intervals, one within the first 500ms, and a second one with an approximate 

latency of 1000ms. Additional peaks were found dispersed by the end of the 

encoding.  
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Figure 6.4: Time course of the classification accuracy for the motivation MVPA. Shaded areas indicate 

significant above-chance accuracies (P < .05, cluster-wise corrected for multiple comparisons). 
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that its effect on the encoding tended to increase towards the end of the 

instruction and the beginning of the ISI. Finally, target category structured task 

sets in two brief time windows just before and after the effect of dimension 

integration. The overall pattern of results obtained displayed a tendency toward 

our hypotheses regarding the three variables. On the one hand, the earlier effect 

of integration requirements and target category could reflect an initial and more 

abstract task goal reconfiguration process. On the other, the later effect of 

response set complexity could imply a shift towards concrete, stimulus-response 

setting. These findings, when taken together, could reflect the existence of a two-

staged preparation process, as it has been previously proposed (De Baene & 

Brass, 2014). 

The MVPAs carried out showed a presence of integration requirements 

information on distributed peaks of above-chance classification across the whole 

preparation period. The response set complexity was decoded on brain data 

during the later portion of the encoding interval and afterward jittered interval, 

converging with the RSA results. Finally, category information showed a wide 

decoding window during the first half of the preparation period. These findings 

showed that, among the three attributes, target category was the information 

most robustly readable in activity patterns. This converges with previous results 

showing widespread anticipatory category decoding in novel task contexts 

(González-García, Mas-Herrero, de Diego-Balaguer, & Ruz, 2016), and extended 

them, by showing the presence of this information only during the first second of 

instruction presentation. Regarding dimension integration, the decoding 

contrasted with the RSA results, not showing a clear temporal window where this 

information was decodable. This highlights the different information provided by 
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RSA and MVPA: while higher level task-set organization could follow the kind of 

integration required, this information itself may not need to be explicitly 

encoded. Nevertheless, response set complexity temporal profile did show 

consistency between RSA and MVPA, which generally could reflect the late nature 

of more concrete sensorimotor rule preparation. Overall, RSA and MVPA 

findings highlight the complexity inherent to proactive instruction preparation, 

characterized by dynamic representational organizations in combination with 

equally flexible coding of task-attributes. 

Nonetheless, several particularities of our RSA and MVPA findings enforce 

serious caution when interpreting these results. Crucially, for the response set 

and category RSA models, we found two significant peaks during the baseline 

period, where no task-information was available. These could be a byproduct of 

the signal preprocessing pipeline followed, especially the smoothing conducted 

to increase the signal-to-noise ratio (Grootswagers et al., 2017). However, we 

averaged within 40ms window for this step, while the baseline significant peak 

for the response model appeared 100ms before instruction onset. Alternatively, 

the RSA could be capturing previous trial response or category information, due 

to the high sensitivity of this and other pattern analysis techniques (Arco, 

González-García, Díaz-Gutiérrez, Ramírez, & Ruz, 2018). Even when trials were 

randomly ordered, spurious dependencies among subsequent trials’ conditions 

could drive significant results (e.g. Todd, Nystrom, & Cohen, 2013). Nonetheless, 

we did not find significant sequential correlations among main task conditions, 

and therefore, this explanation seems implausible. Finally, they could just reflect 

spurious positive results. At this point, though, it is necessary to stress the 

conservative nature of our permutation-based statistical approach, which used 
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empirical null distributions built upon 100 individual and 10000 group 

permutations.  

A second general concern about the proactive-related findings, in both RSA and 

MVPA, is the presence of really brief significant clusters dispersed along the 

encoding period. Our multiple comparison correction involved computing a null 

distribution of cluster sizes, so the significant time points reported pertained to 

clusters larger than the 5% of above threshold peaks in 10000 permuted maps. 

Nonetheless, we were expecting to find more stable findings, as happened in the 

dimension integration model RSA and the category decoding. The prevalent 

fractionated pattern of RSA and MVPA results (see Fig. 6.1 and Fig. 6.3) cast 

doubts about the suitability of the signal during the instruction encoding period. 

Even after the exhaustive cleaning of ocular artifacts, residual noise could have 

contaminated the data. Nonetheless, a control MVPA decoding between reward 

conditions rendered robust and stable above-chance classification windows 

during both the reward cue and instruction epochs. Therefore, we did not obtain 

evidence supporting that our results were caused by contaminated signal.  

Overall, we find it risky and complex to extract strong conclusions regarding the 

temporality of dimension integration, response set complexity and target 

category effects on novel instruction encoding. Crucially, our previous fMRI study 

showed the impact of the three variables on theoretically-congruent brain 

regions. It is also important to stress that the three variables displayed here an 

equivalent behavioral effect as in Palenciano et al. (2019), with strong effects of 

dimension integration and target category, while response set complexity effect 

remained undetected in both data sets. Consequently, factors inherent to the 

current study could underlie our pattern of results: we employed complex and 
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long-lasting stimuli (novel instructions) and applied a time-resolved analysis on 

EEG signals. First, the efficiency at task reconfiguration is variable both within 

and across subjects (Miyake & Friedman, 2012), and thus it is reasonable to 

assume that the different preparation subprocesses had particular and variable 

timings across trials. This would have a lighter effect on fMRI studies, as the 

nature of the BOLD signal entails averaging across several seconds. Nonetheless, 

EEG (as well as other electrophysiological recordings) captures these subtle 

timing differences, and neither the RSA nor MVPA employed were optimized for 

coping with this variability (Vidaurre, Myers, Stokes, Nobre, & Woolrich, 2019). 

New and promising approaches in pattern analyses may be able to incorporate 

this temporal information (Vidaurre et al., 2019), and its future employment with 

this dataset could help to better characterize our results. Another important 

concern is that neural representations studied here were based on data from all 

recording channels simultaneously (which is the default procedure in this kind of 

study; e.g.: Hebart et al., 2018). Contrary, in fMRI either regions of interest or 

searchlight procedures (Kriegeskorte et al., 2006) are followed, so that the 

activity patterns analyzed usually come from constrained brain regions. Recent 

advances in RSA allows combining EEG and fMRI (as well as other techniques; 

Kriegeskorte et al., 2008) data, together with theoretical models. This approach, 

known as fusion models (Cichy, Pantazis, & Oliva, 2014; Hebart et al., 2018), 

generates time courses indicating representational coherence among a particular 

point on EEG data, a particular region registered with fMRI and theoretical 

expectations. Thus, incorporating information about the regions involved in 

Palenciano et al (2019) could provide interesting insights. Finally, multiple lines 

of research highlight the structuring role of different frequency bands for 
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segregating top-down (in alpha and beta bands) and bottom-up (in gamma) 

information (Fries, 2015). Hence, it would be interesting to conduct further 

analysis directly on proactive control-related frequencies’ power, to assess if that 

allows the detection of our effects of interest.  

The second main goal of this work was to explore the temporal profile of the 

interplay between motivation and proactive preparation in novel instruction 

encoding. As expected, we replicated the reward-related general decrease in task-

set dissimilarities (Palenciano et al., 2019). This finding is highly relevant when 

we consider than practiced and simpler task scenarios generated an opposite 

effect in the past – with motivation increasing task distinguishability (Etzel et al., 

2016; Hall-McMaster et al., 2019). Obtaining the same pattern twice, with 

different neuroimaging techniques, is compelling evidence in favor of our 

motivation effect. Nevertheless, how more similar task representation could lead 

to better performance is still uncertain. Some tentative ideas can be extracted 

from the comparison of our paradigm with others. For example, Hall-McMaster 

and colleges (Hall-McMaster et al., 2019), also employing RSA on EEG data, 

found that high motivation enhanced the organizing effect of different task 

attributes on neural representation (corresponding to the Hypothesis 1 tested 

here). Crucially, they used a classic task switching paradigm (Monsell, 2003) in 

which only two cues were alternated, and employed bivalent stimuli which could 

generate strong conflict during the execution (i.e., when the irrelevant stimuli 

dimension was associated with a response incompatible with the one required by 

the rule). Instead, we used 192 different rules which were applied on novel 

combinations of stimuli. As there was no fixed stimulus-response mapping, no 

conflicting information was present at the execution. Thus, rule variability and/or 
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interference during performance could determine the most suitable strategy for 

optimizing task coding. Motivation would ultimately boost the most appropriate 

mechanism instead of exerting a fixed effect regardless of task context. Further 

research would be highly useful to understand better the intricate motivation-

control relationship.  

We also provided the time course of the motivation-induced decrease in 

instructions dissimilarities, which was characterized by two pronounced 

temporal windows. The first one displayed the strongest effects, and appeared 

early in the encoding, after 200ms. This could reflect the instantiation of a generic 

rule pattern (“IF [stimuli] THEN [responses]) in which the specific novel task 

parameters could be mapped during preparation. In this sense, as the pattern 

would be shared by all the instructions, it would generate decreases in 

representational dissimilarity. Previous fMRI findings (Bourguignon et al., 2018) 

also pointed toward the presence of this mechanism during novel instruction 

coding. In our experiment, it could also be boosted by reward expectations. A 

second, less pronounced window was found later on, towards the end of the epoch 

(approximately 2000ms after instruction onset). This result could still be 

generated by the updating of the generic rule pattern once the whole instruction 

is fully processed. Alternatively, it could also be explained from the compositional 

coding account, which proposes that individual task components are reused for 

generating novel rule representations. As these components would be shared 

across some instructions, its activation would also diminish dissimilarity. In any 

case, future studies explicitly assessing this possible interpretation are necessary 

to better understand the dynamic effect of motivation.  
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6.5. Conclusion 

In conclusion, this study provided important insights into the temporal profile 

underlying proactive coding of new instructions. It was characterized by the 

dynamic establishment of representational encoding structures. We found a 

tendency towards early task-set organizations governed by abstract goal 

attributes (dimension integration and category), which later on followed 

response requirements. However, the novelty of the experimental setting and 

analysis followed entailed considerable variability in our results, enforcing 

caution regarding potential interpretations. Crucially, motivation displayed a 

strong decrease in task-set dissimilarities, replicating previous fMRI results 

(Palenciano et al., 2019). This finding and its temporal characterization are of 

high relevance to the current debate about control-motivation interactions. 

Specifically, we stress that the mechanisms by which reward boosts proactive 

control may depend on the particularities of the task context. Overall, the present 

work contributed to shed some light on an unexplored field on the instructed-

behavior literature: its fine-grained temporal flexibility. Further application of 

recently developed analytical approaches to this data set could be key to shed 

additional light on this topic.  
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7. GENERAL DISCUSSION 

The goal of this thesis was to study the neural control mechanisms that scaffold 

performance guided by novel instructions. We addressed this aim through three 

neuroimaging studies, which explored in progressively increased detail the 

preparatory state engaged by instructions. The main results obtained will be 

briefly reviewed in the following section. Wrapping up our findings, we will 

describe three core notions about proactive control in novel task settings that 

were reached along this thesis. First, the deployment of proactive processes acts 

at overlapping, yet distinct, timescales. Second, these control mechanisms 

operate in interaction with motivation. Third, and finally, proactive control 

processes show a striking overlap on the IFS during novel and complex verbally 

instructed-behavior. We will conclude by highlighting the open questions that our 

research led us to. Addressing these is key both for advancing our understanding 

of novel instruction following and furthermore, for general models of action 

control. 

7.1. Brief results summary.  

In Study 1, we tried to characterize the overall transient and sustained control 

processes (Dosenbach et al., 2008) triggered by task novelty. Using fMRI and a 

mixed design (Petersen & Dubis, 2012), we found that mainly FPN regions were 

recruited at both timescales. This was especially the case for the IFS, transiently 

involved for practiced instruction encoding, and during the implementation of 

novel ones. This region was also associated with tonic activations through blocks 

of new tasks. We complementary assessed the maintenance of distributed rule 

representations within the trial window. Our results showed higher consistency 
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in the CON - an effect that was potentiated by the experience with the 

instructions. Thus, converging with previous literature (reviewed in Chapter 1), 

our findings supported the distinction between the FPN and CON (Crittenden, 

Mitchell, & Duncan, 2016; Dosenbach et al., 2007, 2006), although with a more 

complex subdivision of roles between the two systems. On the one hand, the FPN 

was key for this complex behavior, adopting flexible temporal dynamics 

depending on novelty. Crucially, at the phasic timescale, new instructions 

engaged the IFS later than practiced ones, which could reflect the most costly and 

prolonged preparation process for novel tasks (Cole et al., 2018). The sustained 

participation of this LPFC region could implicate more general, and 

compensatory, proactive control adjustments. On the other hand, CON regions 

were key in sustained task maintenance, but in a narrower timescale than 

previously reported, and especially for practiced tasks. This result contrasts with 

the scarce evidence supporting task coding in these areas (Crittenden et al., 2016; 

Woolgar, Jackson, & Duncan, 2016), and highlights the necessity of better 

understanding the computations carried out by CON regions. 

In Study 2 we focused on the proactive preparation triggered by novel 

instructions. We assessed whether anticipatory activity was structured according 

to relevant task parameters. Employing fMRI and pattern analysis, we found 

flexible representational organizations across the brain. Dimension integration 

requirements organized the encoding in the IFS, while response complexity did 

so in the IPS and motor areas. Target category also guided task coding in the 

fusiform gyrus and the precuneus. Crucially, the three representational structures 

converged on the right IFS. Across all the regions explored, reward expectations 

modulated the encoding structure, making individual task-set representations 
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more similar to each other. These findings further characterize the mean 

increases of instruction encoding activations reported in these areas (Cole et al., 

2010; Demanet et al., 2016; Hartstra et al., 2011; Ruge & Wolfensteller, 2010). 

We showed that the IFS and IPS were involved in the active representation of 

task-sets at different levels of abstraction. Moreover, the comprehensive task 

information reflected on the activation patters of the IFS stresses the importance 

of this region in orchestrating the preparation process. Crucially, perceptual and 

motor areas also adapted their tuning to upcoming targets according to response 

requirements. Future studies assessing effective connectivity will help to uncover 

whether or not FPN regions are the source of the representational calibration 

found in lower-level areas. Finally, the motivation effect was opposite to previous 

findings (Etzel et al., 2016), but also highly robust and relevant for performance. 

Addressing how the tuning to task parameters is modulated by control-

motivation interactions is an important goal for future research.  

Finally, in Study 3 we investigated the temporal unfolding of the preparatory 

processes triggered by novel instructions. We shifted to EEG recording and 

explored whether the encoding structures found in the previous study also 

influenced the dynamics of preparatory representations. We concurrently 

investigated the fine-grained modulation of motivation of these processes. Our 

results show a tendency toward earlier effects of dimension integration 

requirements and category, followed by response set complexity. This whole 

pattern fits with the presence of two sequential stages during preparation: the 

encoding of abstract task goals, followed by more specific stimulus-response rule 

reconfiguration (De Baene & Brass, 2014; Muhle-Karbe et al., 2014). However, it 

is important to stress that stronger evidence is required to add robustness to our 
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results. Importantly, we replicated the intriguing reward-related increases on 

task similarity, which followed a biphasic temporal profile. A first, early peak of 

task similarity increase appeared around 200ms after instruction onset. 

Interestingly, this could be reflecting the establishment of a general rule template, 

which should be updated with instructed content during task-set building 

(Bourguignon et al., 2018). The effect reappeared at a later window, toward 

instruction offset, but the significance of this effect is more uncertain and calls for 

more detailed investigations.   

Overall, the present thesis provided several pieces of evidence that could be key 

for our understanding of how instructions are transformed into action-oriented 

representations to guide performance. In the following sections, we will describe 

in detail the main insights reached with this work.  

7.2. Proactive control is deployed at different timescales in 

contexts of task novelty. 

The link between proactive-control and instructed behavior is a cornerstone of 

this line of research since its beginning (Cole, Laurent, et al., 2013), and several 

studies have addressed novel task-set reconfiguration at the neural level (e.g. 

Cole, Etzel, Zacks, Schneider, & Braver, 2011; Dumontheil, Thompson, & Duncan, 

2011; González-García, Arco, Palenciano, Ramírez, & Ruz, 2017; Ruge & 

Wolfensteller, 2010; Stocco, Lebiere, O’Reilly, & Anderson, 2012). However, a 

finer conceptualization of the specific processes underlying this phenomenon is 

lacking. In this thesis, we studied the neural basis of instructed-behavior 

employing multiple designs (event-related, mixed), analysis approaches 

(univariate, RSA, MVPA) and recording techniques (behavior, fMRI and EEG). 
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Thanks to this rich approach and the comprehensive data accumulated, we can 

shed some light on these processes. 

The first relevant result pointed toward the participation of the IFS for both 

practiced and novel instructions, during their encoding and implementation, 

respectively (Study 1), a pattern resonating with previous fMRI and MEG data 

(Cole et al., 2010). It is tempting to interpret this neural signature as the 

culmination of task-set preparation, delayed for novel rules (Cole et al., 2018). 

However, alternative accounts also fit with these results, ranging from more 

general semantic instruction processing to more specific computations as the 

binding of novel stimulus-response associations (Demanet et al., 2016; Hartstra 

et al., 2012; Huang, Hazy, Herd, & O’Reilly, 2013). Crucially, compelling evidence 

for the IFS role in task-set representation was provided by Study 2. Results from 

this study showed that the anticipatory activity observed in this area was highly 

structured, reflecting the encoding of instructions in a space with axes defined by 

relevant task attributes. It is important to stress that the new instruction encoding 

found in the IFS was assessed in the context of fMRI and classic event-related 

designs – where several seconds of neural events are collapsed. Different 

approaches are needed to characterize complementary mechanisms with slower 

or faster temporal profiles, which could be also key for performance on novel 

tasks.   

Influential proposals emphasize that proactive control also acts at longer 

timescales, displaying sustained activation patterns that transcend individual 

trials (Braver, Paxton, Locke, & Barch, 2009; Dosenbach et al., 2008). In 

cognitive terms, these would implement task-set maintenance through long 

periods of time. This sustained component is thought to be key for the stability of 
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our behavior –until a sudden disturbance appears (Braver, 2012a). Coinciding 

with this view, we found sustained activations across blocks of novel instructions 

in FPN regions (Study 1). As the rules were considerable variable within blocks, 

the classical interpretation in terms of task-set maintenance (Braver et al., 2009; 

Braver, Reynolds, & Donaldson, 2003; Jimura et al., 2010) does not fit with our 

results. Nevertheless, at this point, it is important to highlight the hierarchical 

nature of human control, stressed across multiple theoretical models (Badre, 

2008; Badre & Nee, 2018; Duncan, 2010; Koechlin & Summerfield, 2007). Our 

complex organized behavior is thought to rely on multilevel control task 

representations (Duncan, 2010), which may involve high levels of abstraction, 

both in the temporal plane (Fuster, 2001) and regarding the task goal-structure 

(Badre, 2008). From this view, the individual instructions in our paradigm may 

have constituted subgoals to be accomplished at a short term. Concurrently, a 

higher level, general task model could be built upon the general indications given 

to the participants or their initial experience with the experimental settings 

(Bhandari & Duncan, 2014; Duncan, Emslie, Williams, Johnson, & Freer, 1996; 

Duncan et al., 2008; Niv, 2019). The maintenance of such model though blocks 

could be implemented by the sustained involvement of the FPN mentioned above. 

Nonetheless, little is known yet about information contained in such tonic activity 

patterns.  

On the other side of the temporal spectrum, there are proactive adjustments 

taking place in quick succession at faster timescales. These would happen in the 

order of hundreds of milliseconds or below, and their dynamics could not be 

accessed by fMRI studies. In this line, successive transitions in task-set 

representations have been described in non-human primates with invasive 
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electrophysiological recordings (Sigala et al., 2008; Stokes et al., 2013). With the 

goal of addressing fast transitions in representations in a non-invasive fashion, 

we assessed the dynamic instantiation of variable representational structures 

during the encoding and preparation for novel instructed tasks (Study 3). Our 

data suggest that the initial stages of encoding organization were compatible with 

global task-goal reconfiguration (affected by task-set complexity and category), 

later shifting to a structure based on response requirements. These fast sequences 

could be the building blocks generating the rule encoding across FPN, perceptual 

and motor cortices shown in Study 2. Importantly, the reward-related decrease 

in task-set dissimilarities pointed toward an additional process taking place 

shortly after instruction presentation: the instantiation of a global rule pattern. 

This would follow the overall task structure used in our paradigm while leaving 

the trial relevant attributes non-specified (e.g.: “If there are [stimuli A] and 

[stimuli B], press [response A], otherwise [press B]”). Such a template could 

sustain task-set building by updating the instructed targets and responses. While 

the identification of this mechanism is based on its potentiation by reward, 

previous findings point toward the same process (Bourguignon et al., 2018; 

Stocco et al., 2012) underlying novel instructed performance. 

Overall, our results showed a complex landscape with time-varying, overlapping 

proactive processes complementing each other during novel instruction 

preparation. 

7.3. Proactive control – motivation interactions. 

So far, we have addressed proactive mechanisms as isolated from other 

interrelated processes. Nonetheless, integration is ubiquitous in the human 
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brain, and accounting for the intricate relationships across domains is a necessity 

for a comprehensive understanding of neural cognitive function (Pessoa, 2017). 

In an attempt to move in this direction, we included a manipulation of motivation 

with economic incentives in our paradigm (Studies 2 and 3) and assessed how 

reward expectations affected novel task organization. 

In this thesis, we uncovered three main aspects of the proactive control-

motivation synergy in novel task contexts. First, in contexts characterized by 

variability in relevant rules where accomplishing the instructed task requires the 

combination of information, reward expectation increases similarity among task 

codes. This effect is behaviorally relevant: it displays robust correlations with 

reward-related performance improvements. Secondly, this finding is replicated 

across different brain regions, both at high and lower-level in the processing 

stream. In this sense, it resembles a general principle modulating task coding 

wherever it is relevant for preparation. Finally, it displays a dual temporal profile, 

biasing the encoding at the early beginning of the preparation and again, when 

the instruction information is no longer available. 

Our interpretation considers that high motivational states increase the efficiency 

of novel task-set generation (for example, via rule template instauration, as 

previously mentioned). However, taking into account the scarce literature on this 

topic, making strong assumptions is risky and problematic. Furthermore, two 

unanswered questions come to mind regarding this explanation. In the spatial 

plane, does reward exert an equivalent effect on task coding across all the regions 

explored here? In the temporal one, are all the sequential time windows sensitive 

to reward reflecting a similar or different underlying process? While further 

research is needed, a key approach would be to combine the obtained fMRI and 
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EEG data (Cichy et al., 2014; Hebart et al., 2018). RSA-based fusion models allow 

the integration of representational spaces obtained from different sources and 

participants  (Hebart, Donner, & Haynes, 2012; Kriegeskorte et al., 2008). 

Specifically, we think it would be key to track where in the brain the two reward-

related peaks of increased task similarity are taking place.  

To conclude, one final and critical issue must be addressed regarding motivation-

control interplays. Twice we found an effect going in the opposite direction than 

previously reported (Etzel et al., 2016; Hall-McMaster et al., 2019). It could be 

argued that better task coding leads to more distinguishable rule representations, 

which should be reflected in more accurate classifications on MVPA (e.g.: Cole, 

Ito, & Braver, 2016) or increased dissimilarity distances in RSA (Bourguignon et 

al., 2018). In this line, reward expectations have been linked to increased task 

decoding accuracies in the only two studies that to our knowledge have explored 

this phenomenon to date (Etzel et al., 2016; Hall-McMaster et al., 2019). On the 

other hand, it could also be claimed reward-related boosts on task-set integration 

would improve the preparation on contexts benefiting from conjoint rule 

processing. The discrepancy between the two sets of results we argue could be 

based on the considerably distinct experimental settings employed. One crucial 

difference affected the task execution stage, which was not analyzed here, but 

whose demands could affect how rules are encoded in advance. Our instructions 

were applied over novel combinations of stimuli that did not generate conflict but 

rather required the eventual integration of codes to reach an accurate response. 

In contrast, previous studies used much simpler bivalent targets, with conflicting 

attributes in half of the trials. The presence of competition between stimulus 

dimensions may entail a context where maximal task separability improves 
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processing efficiency. Supporting this view, Hall-McMaster et al. (2019) found 

that reward-related benefits on rule coding were limited to switch trials –where 

interference from the previous task must be overcame-. Also, while our 

experiments exploited flexibility by using a total of 192 complex and abstract 

rules, the two studies from other laboratories alternated among only a couple of 

simpler ones. Maybe simpler task contexts would benefit to a higher extent from 

establishing clear rule distinctions, while a more variable one could exploit task 

commonalities to boost efficiency. Overall, motivation could potentiate the most 

suitable strategy upon specific task demands (Locke & Braver, 2008) instead of 

having fixed effects. In conclusion, these a priori conflicting results should open 

a window of opportunity to keep investigating how reward is integrated with 

control processes to optimize our performance.   

7.4. Left IFS as a core region for flexible novel behavior. 

We conclude by further highlighting one brain region that appeared in all the 

different findings conforming this thesis: the left IFS. Its involvement was a 

constant, regardless of the approach. Fig. 7.1.A displays the overlap between the 

results displaying different temporal profiles of activation for novel and practiced 

tasks (Study 1) and those showing structured anticipatory rule encoding (Study 

2). While significant clusters were spread across the LPFC, when taking into 

account only the statistically significant voxels across the six results maps, all of 

them coincided in the posterior section of the IFS (see Fig. 7.1.B). Importantly, as 

Fig. 7.1.C (taken from Bourguignon, Braem, Hartstra, De Houwer, & Brass, 2018) 

shows, a remarkable similar anatomical pattern has been found in previous 

studies about novel (Demanet et al., 2016; Hartstra et al., 2012; Muhle-Karbe et 

al., 2017; Ruge & Wolfensteller, 2010) or complex (Reverberi, Gorgen, et al., 
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2012) task processing. More generally, almost all current theoretical models 

about control assume a core role for the LPFC (e.g.: Badre, 2008; Botvinick & 

Cohen, 2014; Duncan, 2001; Koechlin, Ody, & Kouneiher, 2003; Miller & Cohen, 

2001). It is reasonable to ask, thus, how is such functional diversity accomplished 

by this brain region? 

 

Figure 7.1: (A) Overlap across the findings of Studies 1 and 2. Results from univariate ANOVAs and t-test 

from Study 1 are shown in warm colors. The direction (greater transient or sustained activation for novel 

than practiced instructions or vice versa) is indicated in the legend. Results from model-based RSAs from 

Study 2 are displayed in cold colors. All the statistical maps were thresholded at P < .05, and FWE-corrected 

for multiple comparisons. Significant results displayed were restricted to the left lateral prefrontal cortex for 

illustrative purposes. (B) Statistically significant voxels coinciding across the six results from (A). (C) A 

similar overlap has been found in previous studies (adapted from  Bourguignon et al., 2018). 

Practiced > Novel: Encoding

Novel > Practiced: Implementation

Novel > Practiced: Sustained

Task complexity model

Response-set complexity model

Target category model

(A)

(B)

(C)
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We argue that what is special about the IFS, and the LPFC in general, is not the 

ability to implement a vast catalog of different cognitive processes. Rather, more 

general organizational principles governing prefrontal function could ultimately 

generate this heterogeneous pattern of results. Among them, neurons in LPFC 

display both abstract and adaptive (Duncan, 2001) receptive fields, responding 

to complex task goals in a context-relevant fashion (Woolgar, Hampshire, 

Thompson, & Duncan, 2011). This entails the LPFC with outstanding 

representational flexibility (Cole, Laurent, et al., 2013). Our findings, directly 

relating the IFS with success upon novel demands, stress that this portion of 

LPFC may be crucial to the first assembly of such complex representations. In 

addition, the nature of our experimental material adds important evidence 

regarding the nature of this adaptive coding in the human brain. Whereas 

previous studies used simpler materials where all the relevant variables were 

manipulated in different, separate trials, each of our complex novel instructions 

incorporates several variables at once. Our fMRI findings indicate that during an 

instruction episode, the IFS contains multiplexed neural patterns that refer to the 

different relevant dimensions coded by the instructions. Our EEG findings, on 

the other hand, suggest that these codes do not remain active throughout the 

whole interval, but activate at different time intervals. Although a full 

comprehension of this complex adaptive pattern is yet to be achieved, our strategy 

opens exciting new avenues of future research. 

7.5. Open questions and future directions.   

The interest in instructed-guided behavior is only recent in Cognitive 

Neuroscience. As a consequence, this is still a largely unexplored but exciting 

field. Among the multiple topics requiring further investigation, here we would 
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like to stress two of them. First, what kind of neural code could sustain the 

limitless variety of novel tasks a human can achieve? And second, how are novel 

task representations put together for the first time? 

Regarding the first topic, two main proposals have been made. On the one hand, 

the compositional perspective emphasizes the reuse of previously acquired task 

component representations, in a combinatory fashion (Cole, Laurent, et al., 2013; 

Reverberi, Görgen, et al., 2012). The recursive application of such strategy could 

potentially explain highly complex goal encoding. On the other hand, the mixed-

selectivity approach is based on explicit task representations via the non-linear 

combinations of relevant parameters (Rigotti et al., 2013). This proposal fits well 

with the adaptive coding principle found in LPFC (Duncan, 2001). Importantly, 

both perspectives are not incompatible a priori, and a combination of both could 

be key for flexible human cognition. Additionally, we advocate for addressing the 

dimensions of such encoding space. So far, we have pointed toward three 

potential axes (task and response set complexity, plus stimulus category) 

structuring LPFC representations. While further research is needed to ascertain 

the specificity of these variables for action-oriented task coding (Sobrado et al., 

in prep), it is equally important to explore additional dimensions organizing 

novel rule representation. In this sense, naturalistic experimental settings would 

be critical to capture the complexity and flexibility of our adaptive behavior. Data-

driven approaches could also be helpful in identifying emerging representational 

structures (Huth, De Heer, Griffiths, Theunissen, & Gallant, 2016).  

In second place, one of the most intriguing open questions refers to the assembly 

process itself. What are the mechanisms that allow a novel task representation to 

be built for the very first time? Addressing this topic is crucial for not falling into 
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implicit homuncular explanations. Investigations framed in computational 

modeling have stressed the role of hierarchical reinforcement learning in 

acquiring these control representations (Botvinick & Cohen, 2014; Niv, 2019). 

These models highlight the extraction process of complex, hierarchical task 

structures from experience. This approach, however, ignores the facilitating role 

of language (and symbolic transmission in general), which allows direct access to 

task procedures via instruction. Further research is needed to connect both areas 

of research, studying whether action-oriented representations built upon 

experience and instructions are equivalent or how they differ. Nevertheless, one 

key insight provided by the reinforcement learning perspective is the link 

between controlled and flexible behavior with more rigid learning principles 

(Braem & Egner, 2018). These have been traditionally seen as the two 

irreconcilable ends of a spectrum, with control being defined in opposition to 

automatic, habit-like behavior. Dissolving this dichotomy and addressing the 

learned nature of flexibility is thus an exciting new window into the 

understanding of cognitive control mechanisms.  
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Chapter 8:  

CONCLUSIONS 
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8. CONCLUSIONS  

 

 Guiding our behavior by novel instructions requires transient and 

sustained proactive processes implemented in the FPN – especially, on the 

left IFS. Costly novel task-set reconfiguration could rely on the long term 

maintenance of a more abstract and general task context models. These 

two proactive mechanisms could be multiplexed on the variable temporal 

dynamics followed by the IFS.  

 The CON supports flexible preparation especially when some experience 

with instruction has been acquired. Rule representations are held in these 

areas from the encoding until stimuli are available – with practice 

improving the quality of this sustained coding. Consequently, CON could 

be key for experience-related increases in task processing efficiency. 

 FPN and CON behave like segregated systems during novel instructed 

behavior. However, the distinction among them seems to be beyond their 

temporal profiles, as was previously proposed (Dosenbach et al., 2007). A 

more sophisticated distinction should be pursued, in which the 

information content, as well as its representational format, could play a 

key role. 

 Novel instructions are anticipatorily coded in flexible representational 

spaces, whose axes are defined by relevant task parameters. This proactive 

tuning of encoding spaces could be a general principle for optimal 

preparation in variable scenarios. Crucially, this property is widely 

distributed across prefrontal and parietal control regions. 
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 The IFS encodes new instructions following a complex, overarching 

representational architecture, simultaneously organized by several task 

attributes. This points out the potential role of this region orchestrating 

the proactive adjustments – at least in contexts where higher flexibility is 

required.  

 Motor and perceptual cortices also show structured anticipatory 

activations according to upcoming target and motor requirements. 

Importantly, this preparation state is engaged by abstract task information 

conveyed in verbal instructions. The potential biasing influence of the FPN 

on these lower-level regions during anticipatory task coding is still an open 

question on the field.   

 Complex temporal dynamics underlie the codification of novel 

instructions. The encoding structure flexibly weights different task 

parameters throughout the preparation. Importantly, the representational 

geometry seems to transit from more abstract organizations to more 

specific, response-based ones. However, further investigation addressing 

this interpretation is needed.  

 Motivational state modulates proactive task coding in a behavioral-

relevant fashion, leading to performance improvements. On variable and 

novel scenarios, reward leads to more similar rule representations. 

Potential mechanisms boosted by motivation could be the establishment 

of a general rule template or the compositional reutilization of individual 

task components representations. 
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Los humanos destacamos por nuestra rápida adaptación a medios cambiantes. A 

su base, se encuentra la capacidad de implementar instrucciones en nuestros 

actos. Este medio de adquirir conductas supone una alternativa más rápida y 

eficaz que el aprendizaje por ensayo y error, del cual dependen otras especies 

animales ante la novedad. Por ello, es de enorme importancia para nuestra 

especie. En esta tesis, exploramos los mecanismos neurales a la base de esta 

compleja conducta.  

El comportamiento en base a instrucciones se sustenta en el control cognitivo, un 

conjunto de procesos de alto nivel encaminados a guiar nuestra conducta a 

objetivos que no son alcanzables mediante patrones de conducta automáticos 

(Norman & Shallice, 1986). Estos mecanismos han sido ampliamente estudiados 

en Neurociencia Cognitiva, en especial con Resonancia Magnética Funcional 

(RMf). La investigación ha convergido en el rol de dos redes, una fronto-parietal 

y otra cíngulo-opercualar, que implementan el control actuando a distintas 

escalas temporales (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008). Sin 

embargo, los paradigmas empleados para ello están basados en tareas repetitivas 

y simples, dejando sin explorar gran parte de nuestra conducta flexible.  

Investigaciones recientes asocian el seguimiento de instrucciones con el control 

proactivo (Cole, Braver, & Meiran, 2017; Cole, Patrick, & Braver, 2018), referido 

a ajustes anticipatorios que nos preparan para futuras demandas (Braver, 2012). 

Estos procesos transforman las instrucciones en representaciones de control 

(Cole, Laurent, & Stocco, 2013), conocidas como sets de tarea (Sakai, 2008), que 

contienen los parámetros relevantes para la ejeución (estímulos, respuestas, 

reglas). Los sets de tarea sesgan el procesamiento en regiones motoras y 

perceptivas, y en última instancia, guian nuestras acciones (Miller & Cohen, 
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2001). No obstante, se desconocen los mecanismos neurales que median esta 

preparación en contexto de novedad.  

En esta tesis, hacemos uso de RMf y electroencefalografía (EEG) para investigar 

los procesos neurales de control que permiten guiar nuestro comportamiento en 

base a instrucciones. A lo largo de tres estudios, intentamos abordar cuatro 

objetivos específicos, detallados a continuación.  

El primer estudio de RMf de la tesis (Palenciano, González-García, Arco, & Ruz, 

2018) buscó conocer la participación transitoria y sostenida de las redes de 

control fronto-parietal y cíngulo-opercular durante el seguimiento de 

instrucciones. De esta forma, además de indagar en los procesos de control 

durante el comportamiento instruido, también buscamos estender el modelo dual 

de Dosenbach a contextos de novedad. Para ello, usamos un paradigma basado 

en la codificación e implementación de instrucciones verbales (González-García, 

Arco, Palenciano, Ramírez, & Ruz, 2017). Este fue adaptado a un diseño mixto, 

de bloques y eventos (Petersen & Dubis, 2012), que nos permitió la estimación 

simultánea de activaciones tónicas y fásicas (Visscher et al., 2003).  

A continuación, en un segundo estudio de RMf (Palenciano, González-García, 

Arco, Pessoa, & Ruz, 2019), exploramos la preparación proactiva de 

instrucciones, focalizándonos en cómo los nuevos sets de tarea son representados 

en patrones de activación multivoxel (Haxby, Connolly, & Guntupalli, 2014). 

Específicamente, buscamos estudiar si parámetros relevantes para la ejecución 

estructuran la forma en que los sets de tarea se codifican anticipatoriamente. Para 

ello, generamos instrucciones manipulando la necesidad de integración a través 

de dimensiones estimulares, la complejidad del set de respuesta y la categoría del 
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target. El empleo de Análisis de Similitud Representacional (RSA; Kriegeskorte, 

Mur, & Bandettini, 2008) nos permitió estimar la estructura subyacente a la 

codificación de instrucciones en distintas localizaciones del cerebro 

(Kriegeskorte, Goebel, & Bandettini, 2006). Esta se comparó con modelos 

derivados de las tres variables manipuladas. De esta forma, evaluamos si la 

actividad anticipatoria en distintas regiones estaba organizada de acuerdo a uno 

o varios de los parámetros relevantes para la tarea.  

Basándonos en el estudio anterior, un tercer objetivo consisitó en estudiar las 

dinámicas temporales que subyacen a las distintas estructuras representacionales 

antes descritas, durante la preparación de nuevas tareas. De esta forma, 

buscamos extraer el curso temporal caracterizando el efecto de los parámetros de 

tarea manipulados en el segundo estudio. Para ello, llevamos a cabo un tercer 

experimento, registrando datos de EEG de alta densidad, y replicando el mismo 

paradigma experiemntal que en el estudio anterior. Además, adaptamos el RSA 

para poder llevarlo a cabo de forma resuelta en el tiempo.  

Por último, un cuarto objetivo perseguido en la tesis fue evaluar la interacción 

entre control proactivo y motivación, en contextos de novedad. Las expectativas 

de recompensa parecen incrementar la eficacia de mecanismos prapratorios 

(Chiew & Braver, 2016), habiéndose asociado este efecto a una mejora en la 

fidelidad de las representaciones de reglas relevantes (Etzel, Cole, Zacks, Kay, & 

Braver, 2016; Hall-McMaster, Muhle-Karbe, Myers, & Stokes, 2019). Sin 

embargo, este efecto se ha estudiado únicamente en tareas repetitivas y simples. 

En el segundo y tercer estudio, decidimos incluir incentivos económicos para 

evaluar si este efecto en la codificación se extrapolaba a contextos nuevos y 

variables. De forma importante, pudimos explorar el efecto de motivación a 
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través de distintas regiones cerebrales, y con alta precisión temporal, gracias a la 

recogida de datos de RMf y EEG, respectivamente.  

Gracias a nuestra aproximación multidisciplinar, basada en distintas técnicas de 

registro y el empleo de métodos de análisis uni y multivariados, esta tesis ha 

aportado un conjunto de resultados que ayudan a comprender la generación de 

conducta nueva en base a instrucciones. Tres conclusiones principales 

emergieron de nuestros datos.  

En primer lugar, el seguimiento de instrucciones descansa sobre procesos 

proactivos que se desarrollan a distintas escalas temporales. La corteza prefrontal 

lateral se encarga de la generación del set de tarea novedoso dentro de un mismo 

ensayo. Adicionalmente, esta región presenta actividad sostenida a lo largo de 

bloques, potencialmente implicando la instauración de un modelo general de 

tarea que complementa a la preparación de reglas individuales. Por último, 

dentro del intervalo de preparación, se dan dinámicas rápidas en cuanto a los 

parámetros estructurando la codificación de sets de tarea.  

En segundo lugar, la motivación afecta la codificación proactiva de instrucciones 

robustamente, haciendo más similares entre sí las representaciones de distintas 

tareas. Este efecto está relacionado con la posterior ejecución en la tarea, 

enfatizando su relevancia y la necesidad de explorarlo en más detalle en el futuro.  

Por último, nuestros resultados apuntan a la importancia de una región específica 

del surco frontal inferior (IFS) para el seguimiento de instrucciones nuevas. El 

IFS se vio involucrado con distintos perfiles temporales, y además, representó 

instrucciones novedosas de forma multidimensional, simultáneamente 

incorporando distintos parámetros en la codificación. Por ello, indagar en los 
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principios que subyacen al funcionamiento de esta versátil área es crucial para 

profundizar en el conocimiento del seguimiento de instrucciones, pero también 

para modelos generales de control cognitivo.  
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