Available online at www.sciencedirect.com

ch ScienceDirect Procedia

Computer Science

ﬁﬁ‘
ELSEVIER Procedia Computer Science 94 (2016) 121 — 128

The 13th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2016)
An agent middleware for supporting ecosystems of heterogeneous
web services

Pablo A., Pico-Valencia?®, Juan A. Holgado-Terriza®*

“Pontificia Univ. Catdlica Ecuador (Esmeraldas), Esmeraldas 080150, Ecuador
bUniversidad de Granada, Granada 18071, Spain

Abstract

The integration of a Multi-agent technology with a service oriented architecture provides a convenient way to build smarter
applications that satisfy the demand of the current ubiquitous web systems. This paper provides a software tool to develop
ubiquitous applications adopting the philosophy of agents and services as data sources. ADELE (Agent Dynamic EvoLutionary at
runtime) is a middleware that allows developers to create reactive agents with the capability to evolve through the injection of
external behaviors at runtime. An ADELE external behavior is a software component that allows agents to accomplish their goals.
To facilitate the programming of these behaviors, agents can obtain the information consuming local and public web services (WSs)
previously published on different services ecosystems. This paper shows how a Multi-agent System can consume heterogeneous
WSs to satisfy the agent goals using a normative model. We have created three add-ons compatible with SOAP, RESTful, and
DOHA (Dynamic Open Home-Automation) WS model. The integration of these add-ons within the ADELE tool is helpful to
facilitate the invocation of heterogeneous WSs with a high abstraction level. In addition, we describe as an example, an Internet of
Thing (IoT) scenario where the approach presented in this paper is very helpful. Finally, we also evaluate an ADELE application
for giving home comfort employing heterogeneous WSs.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Conference Program Chairs

Keywords: Multi-agent; ADELE; web service; SOAP; RESTFul; DOHA; service ecosystem; dynamic client;

* Corresponding author. Tel.: +34-958-240-570; fax: +34-958-243-179.
E-mail address: jholgado@ugr.es

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Conference Program Chairs

doi:10.1016/j.procs.2016.08.020

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.020&domain=pdf

122

Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

1. Introduction

New trends emerging around the Internet technologies are changing the way about how web and mobile
applications can offer new-value services to users in order to satisfy their needs. The use of semantic models to achieve
interoperability', the inclusion of agents to add intelligence and mobility? or the application of Cloud Computing to
share resources and trying everything as a service®, are some trends in the development of current web and ubiquitous
applications. However, one of the most promising technologies in these fields is undoubtedly related to Web Services
(WSs), since they are able to create interoperable communications between machines over the Internet* managing also
the requests of billions of web and devices that are interconnected at any time everywhere. This is the origin of the
current Internet of Service (IoS).

The IoS describes an infrastructure through a logical collection of WSs which uses the Internet as a medium to
offer, change, adapt, sell and operate WSs for any consumer using one or more WS ecosystems>. Considering that a
WS ecosystem can flood Internet with many atomic and composite services, it is required to apply a discovery stage
for finding services and an execution stage for describing how the realization of a service is carried out®. In this line,
several research works have proposed the fusion between Service Oriented Architecture (SOA) and Multi-agent
Systems (MASs)®"$. However, we have considered to use the approach defined by Paz’ that exposes agent behaviors
as WS (SOAP services) without using a discovery process; but, in our approach, this idea is extended in order to
support the integration of heterogeneous WSs in agent behaviors. In fact, we can access to SOAP (Simple Object
Access Protocol)!?, RESTful (Representational State Transfer)!!, and DOHA (Dynamic Open Home Automation)'?
WSs to compose basic and complex functionalities from these ones, and indirectly helps agents to meet their goals.

Though WSs have important implicit features for the development of scalable distributed systems such as the
autonomy, the simplicity, and the interoperability, they do not have the ability to act intelligently. However, the fact
that atomic and composite WSs can be encapsulated within the behavior of agents at compile time or at runtime, we
can achieve a higher level of interoperability at MASs level. This is the main reason why we propose a middleware
able to build agents that satisfying their goals by using data obtained from heterogencous WSs. We have also
considered the use of several WS technologies, such as SOAP, RESTful and DOHA. SOAP and RESTful were
selected because they are currently the most widespread WS technologies for the development of this type of software
components'>. In addition, we have also included a specific WS technology, DOHA'* based on
DPWS¹⁵¹⁵ (Device Profile Web Service), because in ubiquitous scenarios, it may require
lightweight WSs which act on scenarios with limited resources'.

The future of the Internet and even the future of the web are mainly focused on building smarter applications with
the capacity to satisfy the requirements of the future ubiquitous web'¢. In applications of this nature the mobility and
adaptation are two elementary aspects'’ that they are still under investigation. Respect to the adaptation we have used
the ADELE (Agent Dynamic EvoLutionary at runtimE) middleware'® which offers the adjustment of agents by means
of the injection of external behaviors at runtime for giving to developers the capacity to build these external behaviors
by using Dynamic Clients (DC) or add-ons that allow invoking directly heterogeneous WSs that belong to distinct
service ecosystems. Thereby, ADELE becomes a useful software tool for creating agent platforms that can operate
intelligently on ubiquitous scenarios thanks to its mechanisms of evolutions at runtime and the capability to work with
WSs independently of their location and technology.

The content of this paper is structured in five sections. In Section 2 we discuss some of the related works. Section
3 introduces the main concepts associated with the basic unit of the oS. Section 4 presents the architectural model of
ADELE to support agent actions as a composition of heterogeneous WSs. In addition, a description of the add-ons
SOAPDC, RESTDC and DOHADC are described. In Section 5, we discuss the obtained results of the evaluation of
an ADELE application for giving comfort to a smart home that includes agent goals which are accomplished using
the composition of heterogeneous WSs, and we compared with other similar application that solves the same agent
goals, but by using each service model individually. Finally, conclusions are commented.

2. Related works

Some years ago the approaches related to services and agents have been worked as independent self-contained
technologies without any interaction. However, in the last decade, the integration of both approaches has widely been
accepted by their complementary features for building distributed, open and flexible applications, which have led to
smarter applications that satisfy the demand of the current ubiquitous web. As a result of the integration of the MAS

Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

and SOA into a MAS-SOA approach, the term "smart service" was defined to give an answer to the needs of current
applications in relation to the autonomy, flexibility, adaptability and interoperability!®.

MAS-SOA integration has been conceived in different ways. In ¢ Tapia proposed an architecture to facilitate the
integration of distributed services into a MAS without including the functionality inside the agent structure. To achieve
the MAS-SOA integration it uses a service directory to publish the services that an agent offers to others. In 7, Ry and
Radziszewska also presented a hybrid architecture for the MAS-SOA integration, but in this case the mechanism is
focused into the communication model that allows interaction with external applications using add-ons such as WSDC
(Web Service Dynamic Client). But it is only limited to consume SOAP services. In the same way Herrera presented
in ® an architecture named Service Oriented Cross layer infRAestructure for Distributed smart Embedded devices
(SOCRADES) to integrate MAS and SOA in industrial automation. It uses a Decision Support System (DSS) process
to select the adequate services before doing the invocation. But also it is limited for invoking DWPS services. In 2,
Fernandez-Villamor presented an architecture for the discovery of RESTful services and content on the web using
Belief-Desire-Intention (BDI) agents that perform plans based on the induction of rules for discovery in a REST
architecture style. However, other mechanisms for merging MAS and SOA that do not make use of a service discovery
process is presented by Paz, in °. He considered that actions of agents can be exposed as functional or process WSs
for performing complex tasks by means of additional components such as WSIG (Web Services Integration Gateway)
or WS2JADE (Web services in Java Agent Development Framework).

As we can note, the architectures proposed for the MAS-SOA integration at present, are focused to invoke only an
individual WSs category between the following ones: SOAP, RESTful, DPWS or others. The selection of one of these
categories is not a simple task and mainly depends on the nature of the application to develop. Hence, instead of
choosing a specific category of WSs to develop ubiquitous smart applications, the software analyst ought to consider
the evaluation of performance between WSs based on SOAP and RESTful. Regarding this issue many works'32!?2
had evaluated the performance between these two categories of WSs. In general the results show that RESTful WSs
have better response time compared to SOAP services?!?, because they consume less amount of memory in contrast
with SOAP WSs'3, and the size of the messages are relatively smaller than in SOAP WSs?2.

For getting the interoperability in a system, it requires the inclusion of mechanisms that allow the communication
with external systems. To achieve it, at SOA level, it is possible to create compositions of WSs starting from atomic
and composite services by adopting a specific service composition model. A review of the main mechanisms is
presented in 24?° to compose SOAP services that include composition models based on orchestration, choreography,
workflow or planning; methods to deploy service composition in a manual, semi-automatic or automatic way; or
different strategy to make up the composition based on a static or dynamic selection of WSs.

These composition models only can be carried out by using mainly the Business Process Execution Language
(WS-BPEL) standards, although it is also possible to achieve it by using other languages such as Web Services
Choreograph Description Language (WS-CDL), Business Process Modelling Language (BPML), Semantic Markup
for Web Services OWL-S or Web Service Modelling Framework (WSMF). However, many of these standards are
only compatible with SOAP services and not to support heterogeneous WSs. That is the reason because the WSDL
2.0 language can already describe RESTful services and therefore also could be composed?® by means of BPEL or
using RESTML as proposes Vieira in?’. Other approaches as Rodriguez'? presented a high level service composition
model based on DOHA services to improve the data handling managed by devices in [oT scenarios by using device
services that encapsulate the functionality and restrictions of physical devices. In contrast, Garriga®® proposed a similar
mechanism for composing RESTful instead of SOAP WSs. However, few works explore directly the composition of
heterogeneous WSs. Thus, Lee?® proposed the composition of heterogeneous WSs combining SOAP, non-SOAP and
non-web services in order to define complex tasks.

3. ADELE and MAS-SOA approach for IoT
3.1. Internet of Things and Internet of Services

An Internet of Things (IoT) scenario is a modern wireless environment where there is a pervasive presence of
electronic things or smart objects which are able to interact with others, sharing information, cooperating with nearest
devices, and coordinating decisions?. To achieve the basic functionality required by this kind of scenarios, Al-Fuqaha
specifies that the delivery of IoT applications needs to define a set of six main elements such as identification, sensing,
communication, computation, services, and semantic®®. Therefore, 10S plays an important role in IoT applications

123

124

Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

because it provides mechanisms that allow people to use devices and smart objects which perform actions by means
of WSs belonging to one or more service ecosystems>!.

Since services are one of the main six elements considered by an IoT architecture, being the WSs the most natural
way to implement them, they turn into a very important component in IoT scenarios. Currently there are several
models such as SOAP, RESTful, DPWS, DOHA, among others, which offers different features.

3.2. MAS-SOA approach and heterogeneous WSs

IoT scenarios require normally certain level of intelligence that optimize the acquisition and management of data
resources and devices connected to the network any time at everywhere. This is the main reason why the integration
of services and agents could be an important challenge.

An architecture that fuses MAS and SOA requires at first instance components that allow consuming WSs already
implemented. In this regard, we have implemented three add-ons compatible with SOAP, RESTful and DOHA as is
shown in Fig. 1. These three service models were selected because they covers the WS technology spectrum with
important features that are useful for IoT scenarios.

Governance Layer

JADE Agent Layer e

change_hierarchy
Platform I
L ‘manage manage Container,
4

el PR

6 O o AGENTS o O 1

14e [0.)u0)) uonnjoAy

associated

Dynamic Reactive Layer

| Internal Behaviors Repository ?

External Templates Repository ‘

output output

[Agent Metadata Behavior | | Agent Injecton Behavior AgentTemplate, java AgentTemplate: java

input

input

‘ Registration of xecuted Action Bchavior

Web Service Dynamic Client Layer

[SOAPDC Add-on | OAP Service invoke 2

1o[1dwos Ay oy uQy

RESTful Service invoke; 2

I RESTDC Add-on |

Fig. 1. ADELE architecture and SOAP, REST, and DOHA Dynamic Clients.

Concerning to the consumption service, the main process performed by each DC is based on request-response
communication process. In the case of SOAP WSs, the client consumes the operations included in the service contract
implemented through WSDL. On the other hand, in the RESTful model the request is made using a Uniform Resource
Identifier (URI), an HTTP method (GET, PUT, POST, DELETE) and a type of message representation (XML, JSON,
among others) to access to the requested resource deployed by the REST server?, Finally, the DOHA service model
explores devices internally for finding services'?, although the access to other services is carried out by means of the
URL of their service contracts, also described in WSDL, but is standard for DPWS services. Next, we describe each
add-on and the stages for use each one of them.

e SOAP Dynamic Client (SOAPDC): For invoking SOAP WSs, we have developed a DC following the basis of
WSDC?™. The first required step is to create a new instance of dynamicclients.SoapDC. The instance is initialized
by using a method named initialize() employing the information recovered from a valid WSDL service contract
accessible through an URL of the specific SOAP WS. Then, the service can be called by using the method
invokeServiceSTRING() or invokeServiceJSON() including the specific operation and the list of parameters and
their values. This DC accomplishes the request-response by the exchanging of SOAP messages between DC and
the WS provider.

e REST Dynamic Client (RESTDC): To consume RESTful WSs, we have developed a new DC similar to
SOAPDC. The instantiation is done from dynamicclients.RestDC similarly to above. It does not require an
initialization stage, but it invokes directly the service sending a valid URI, the resource requested and the value

Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

or a set of values using a list as parameters. The response is delivered as a String object or a JsonObject.

e DOHA Dynamic Client (DOHADC): The execution of the DOHA WSs is carried out by the instantiation of
dynamicclients.DohaDC. Then, the execution of the method initialize() gives access to devices and their running
services on the subnet through passing the URL of the WSDL service contract as parameter. Then, the invocation
can be executed through the method invokeServiceSTRING() or invokeServiceJSON() passing the specific
operation, a list of parameters, and their values. The results of requests are delivered as a String or a JsonObject.

Regarding to the MAS side, we have applied the ADELE middleware basis'®. Fig. 1 also shows the four primitive
layers (governance, dynamic reactive, evolution control and JADE agents) that compose the architecture of this tool.

However, we have added a new layer named Add-ons Dynamic Client Layer that allows the accomplishment of the

agent goals by accessing to heterogeneous WSs. Therefore, our approach is able to evolve based on a normative model

(Governance Layer) formed by norms that affect one or more active agent instances (JADE Agent Layer). Each norm

is linked to one external behavior which is introduced within the MAS at runtime and injected to active agents affected

by the norm associated with the behavior (Evolution Control Layer). Thus, when an adaptation is required, it is
possible to add new norms and the corresponding behavior without stopping the system. The Add-ons Dynamic Client

Layer, integrates three disengaged add-ons that include methods for invoking SOAP, RESTful and DOHA WSs from

an external behavior template. MAS-SOA integration is carried out here, but adopting the criteria proposed by Lee?®

where the composition of complex actions is performed by means of heterogeneous services and not limited only to

one service category as is presented in 7.

4. Evaluation
4.1. Definition of a scenario

We have considered a scenario where a smart home keeps maintaining the level comfort to the inhabitants. The
level of comfort can be achieved by regulating some specific parameters (e.g., light level, temperature or humidity)
individually or collectively. The smart home system has to look out that the comfort parameters are accomplished and
should activate automatically the corresponding actuating devices (e.g., air conditioning system (HVAC), heating)
when the systems is outside of the user consigns.

For accomplishing the above requirements in ADELE, we have selected some specific parameters such as the
temperature or the humidity. However the system can be scaled adding new parameters or by fusing the information
between some measured parameters. Fig. 2 illustrates the components of the system.

The development of the smart home system has followed the next stages: (i) installation and deployment of sensors
and devices (temperature and humidity sensors, HVAC system and actuator controller), (ii) creation of all the WSs
required to get access to temperature, humidity and HVAC regulator, and a WS named Historize for storing data of
any measurement with a timestamp, (iii) searching of public WSs that provide meteorological data (e.g.,
YahooWeatherService based on RESTful model), (iv) creation of the agents such as temperature, humidity, HVAC
controller and comfort agents, (v) creation of the norms, i.e. from N to Ny, and finally, (vi) the creation of the external
behaviors linked to the created norms that invoke the WSs at service layer.

In addition, Fig. 2 also shows an illustration of the basic pieces of ADELE middleware once the physical devices
have been deployed. According to (ii) we developed the TemperatureService and the HVACControllerService based
on the DOHA model, the HumidityService employed a SOAP model, and the HistorizeService with a RESTful model.
In this way we can contrast the achieved results by using heterogeneous WSs. All these WSs were developed in Java
using DOHA middleware'* in the case of DOHA WSs, JAX-WS (Java API for XML WSs) for SOAP WSs, and JAX-
RS (Java API for RESTful WSs) for RESTful WSs. The last two WSs were deployed on a local Glassfish sever to
avoid a possible dependency with the Internet connectivity.

Once the WSs were deployed, we can adjust the execution of ADELE in base of the defined requirements in the
normative. Therefore, an ADELE generic agent was created using an agent template with the same basic behavior for
each required agent type (TemperatureAgent, HumidityAgent, HVACControllerAgent, and ComfortAgent). As a
consequence of this, ADELE could compile automatically these templates and could generate the corresponding
executable in order to create the agent instances. The adoption of a generic behavior emplaces the assumption of a
specific base behavior such as the support of the injection of external behaviors.

125

126

Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

Ni: Temperature agents have to N»>: Humidity agents have to Na: Comfort agents have to give Na: HVAC controller agents have to
manage the temperature manage the humidity temperature control using sensors control the temperature comfort
‘ e et H sl e ‘ ComfortBehavior ‘ J IIVACManageBehavior

; , Y ;TS T —
% i s lgeE V- P i| Ns: Comfort has to be given applying
2 ; et ComfortTemperaturcAgent™~~~_ .-~~~ {| energy saving policies based on
- ! e il : -V v A i weather prognostic
2 y4 Vot = ?
< 4 S - H &

- |
Q ComfortForecastAgent >~ i i !
i g EnergySavingComfortBehavior i

TemperatureAgent HymidityAgent HVACControllerAgent H i
1 7 I ' ; /

y Vv | 4

Historize : Temperature Regulator !

Service ! Service
& ! 7 7 h 3
g H / ; ! /
& Y Yy v | 4
-] Temperature Humidity YahooWeather
E Service Service Service
@

| I ¢
O«

; g Temperature Humidity HVAC Actuator Yahoo meteorological
=5 Sensor Sensor System Mechanism platform
=
—P Access to physical devices from service — FIPA communication hetween agents SO AD webervice [] Norm
- Request-response process between services --P> Injection of external behavior to agent RESTful web service || Extemnal behavior
--p Invoking service from agent instance =¥ Linking norm with external behavior DOHA web service ~ --P> Actuator controlling device

Fig. 2. Smart home scenario for adding service of comfort of temperature using ADELE middleware and heterogeneous WSs.

Each agent instance should have a behavior that is not yet defined. However, next we will assign their expected
behavior as is shown in Fig. 2. In the case of the TemperatureAgent it should achieve temperature values searching a
specific WS from the yellow pages, while the HumidityAgent looks for a specific WS to get humidity values. Similarly,
the HVACControllerAgent could find regulation strategies on yellow pages to apply to an actuator system in order to
keep a temperature consign, while the ComfortAgent could give comfort from values given by both TemperatureAgent
and HumidityAgent. It is possible to have a cooperative behavior; e.g., the ComfortAgent could profit the values of
temperature, humidity, or another parameter that other agents may share with it.

The agents can select at any moment the required WSs from a list of available WSs from a catalog of yellow pages
when the agent need the resources or functionality encapsulated in a WS o several WSs to accomplish their goals. In
the case of TemperatureAgent we registered the TemperatureService, for HumidityAgent the HumidityService, and
finally, for HVACControllerAgent the HVACControllerService. We also registered the HistorizeService for both
TemperatureAgent and HumidityAgent.

Later, we needed to create the ADELE norms and their corresponding external behaviors. The norms (N;-N4) are
created from user requirements. The norm N; defines that the agent instance created from the
TemperatureAgentTemplate has to get the current value of temperature, while N, specifies that the agent instance built
from HumidityAgentTemplate has to obtain the current value of humidity. On the other hand, the norm N3 establishes
the obligation for the agent instance created from the HVACControllerAgentTemplate to control the actuator
mechanism for handling the HVAC system according to the ComfortAgent requests. Finally N4, defines the agent
instance created from ComfortAgentTemplate that has to the allow communication process with the three agents
already detailed or whichever one that can cooperate with data for carrying out the giving comfort process.

After the creation of the norms, we linked each one to an external behavior. In the case of the
TemperatureManageBehavior and HumidityManageBehavior we developed a mechanism to search on yellow page
the WSs that give the temperature and humidity parameters, respectively. The HVACManageBehavior encapsulates
the required functionality for finding W'Ss that provides resources or devices which can modify the room temperature.
Because we previously registered the TemperatureService, HumidityService, HVACControllerService, and
HistorizeService on the yellow pages, the TemperatureAgent is capable to find the GetTemperature() and Historize()
operations, the HumidityAgent can locate the GetHumidity() and Historize() operations, and HVACControllerAgent
also can discover the SetHVACTemperature() operation. On the other hand, ComfortBehavior enclosed a different
behavior which involves TemperatureAgent and HumidityAgent for obtaining value parameters, and
HVACControllerAgent to regulate the room temperature. In this case ComfortBehavior set FIPA communications with

Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

the corresponding agents.

With the accomplishment of these updates we solved the whole user requirements, adapting the smart home system
at runtime applying the MAS-SOA approach and consuming WSs of different services ecosystems.

In order to test the ADELE benefits we changed the active norms of the smart home adding a new norm. This
allows to verify if ADELE can adapt automatically to the new imposed requirements from the active norms. For
example, we have considered an evolving process that change the operating mode of the system already built. In this
case, the new user requirement consists in a system adaptation to adopt an energy saving policy defined in the norm
Ns whose functionality is encapsulated on the EnergySavingComfortBehavior. This policy involves the regulation of
the HVAC system according to the weather forecast and not only using the data measured by sensors. To accomplish
this new requirement, we added a new agent named ForecastAgent that obtains weather data such as temperature,
humidity, rains or snowfall, from YahooWeatherService. Then, this agent can inform in advance to the ComfortAgent
that controls the HVAC system in order to avoid turning on the system on peak hour or just when it is very cold or
very hot. On conclusion the system can change the overall behavior influenced by the execution of the active agents
in order to satisfy the active norms according to the current user requirements. The automatic adaptations of the system
can also occur when the agent cannot access to specific WS or the agent can search a new WS on the catalog.

4.2. Analysis of results

The results shown in Table 1 were obtained after five executions of each WS composition type in the same scenario.
We employed a Toshiba computer with an i5 2.3GHz processor, 4GB of RAM, 64 bits Windows 8.1 Operating
System, Java SE 1.8.0, JADE v4.3 and Glassfish 4.1 server to deploy WS. The RESTful composition needed an
average execution time of 33.77 ms, DOHA composition required 55.53 ms and, finally, SOAP composition needed
76.50 ms. These results confirm the judgment about the better performance of RESTful WSs compared with SOAP
WSs according to 132122233334 However, DOHA provides results of execution time between RESTful and SOAP,
because the DOHA exploits the light WSs used by DPWS WSs that are executing under DOHA. Moreover, after using
the heterogeneous compositions using SOAP and DOHA for accessing of humidity and temperature, respectively, and
RESTful for historicizing, we required 40.16 ms. This is, 48% more efficient than SOAP behavior, 27% better than
DOHA behavior, but 19% worse than RESTful behavior. However, not all providers offer only RESTful WSs and
therefore, our proposal can be a good approach when the functionality or resource is already implemented by other
service model based on SOAP or DOHA.

Table 1. Average execution time obtained of the evaluation of SOAP, RESTful, DOHA and heterogeneous behaviors (HB).

Times Required (TR) SOAP behavior (ms) RESTful behavior (ms) DOHA behavior (ms) Heterogeneous b. (m1s)
TR to Get Temperature 9,83 432 5,00 5,00
TR to Get Humidity 10,83 5,11 5,03 10,83
TR to Historize Data 55,84 24,33 45,50 24,33
Total TR 76,50 33,77 55,53 40,16

5. Conclusions

The current technological advances require interoperable applications that take in account metrics as less time for
execution, less network traffic, light technologies, and whatever that cooperates with their best performance. Our
approach facilitates the creation of interoperable applications capable to support heterogeneous WSs (SOAP,
RESTful, and DOHA) belonging to different services ecosystems for the accomplishment of user requirements. In
addition, this approach allows the agent and system adaptation at runtime based on a normative model by using
metaprogramming techniques that helps to the inclusion of new components (external behaviors and agent classes) by
means of the compilation “on the fly” available in Java language.

ADELE is a helpful tool that allows to build adaptable ubiquitous applications based on the MAS-SOA and the
normative approach. The inclusion of new user requirements implies to change the active norms in order to perform
an external behavior injection o an injection of a new agent class, without stopping the entire system. Nonetheless, we
need to do some efforts related with the behavior programming as well as the behavior testing individually or globally,
analyzing the impact that a new norm could originate to agent and MAS level.

127

128 Pablo A. Pico-Valencia and Juan A. Holgado-Terriza / Procedia Computer Science 94 (2016) 121 — 128

Acknowledgements

This work was funded by the Ecuadorian Ministry of Higher Education, Science, Technology and Innovation
(SENESCYT) through the Program of PHD for university professors.

References

—

Krishnaswamy S, Way F. The Ubiquitous Semantic Web: Promises, Progress and Challenges. 2014;10(December):1-16.

2. Chang YS, Fan CT, Juang TY. Supporting software intelligence in ubiquitous environment exploits mobile agent. J Ambient Intell Humaniz
Comput. 2012;3(2):141-151.

3. DuanY, Cao Y, Sun X. Various “ aaS ” of Everything as a Service. 2015.

4. Zack Shelby. Embedded web services. 2010;(December):52-57.

5. Cardoso J, Voigt K, Winkler M. Service engineering for the Internet of services. Enterp Inf Syst 10th Int Conf ICEIS 2008.2009:15-27.

6. Tapia DI, Rodriguez S, Bajo J, Corchado JM. FUSION@, A SOA-Based Multi-agent Architecture. 2009:99-107.

7. Ry D, Radziszewska W. Integration between Web Services and Multi-Agent Systems with Applications for Multi-commodity Markets.

2012:65-77.

8. Herrera V, Bepperling A, Lobov A, Smit H, Colombo W, Lastra JLM. Integration of Multi-Agent Systems and Service-Oriented Architecture
for industrial automation. JEEE Int Conf Ind Informatics. 2008:768-773.

9. Pablo J, Grau P, Sanz AC. An Evaluation of Integration Technologies to Expose Agent Actions as Web Services. 2014;279:259-270.

10. Gudgin M, Hadley M, Mendelsohn N, et al. SOAP Version 1.2 Part 1: Messaging Framework. 2007. https://www.w3.org/TR/soap12-partl/.
Accessed January 30, 2016.

11. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD Thesis. 2000.

12. Rodriguez-Valenzuela S, Holgado-Terriza JA, Gutiérrez-Guerrero JM, Muros-Cobos JL. Distributed service-based approach for sensor data
fusion in iot environments. Sensors (Switzerland). 2014;14(10):19200-19228.

13. AlShahwan F, Moessner K. Providing SOAP web services and RESTful web services from mobile hosts. 5th Int Conf Internet Web Appl Serv
ICIW 2010.2010:174-179.

14. Rodriguez-Valenzuela S, Holgado-Terriza JA, Petkov P, Helfert M. Modeling Context-Awareness in a Pervasive Computing Middleware
Using Ontologies and Data Quality Profiles. Commun Comput Inf Sci. 2013;413 CCIS:271-282.

15. Hilbrich R. An Evaluation of the Performance of DPWS on Embedded Devices in a Body Area Network. 2010 IEEE 24th Int Conf Adv Inf
Netw Appl Work. 2010:520-525.

16. Sheng QZ, Shakshuki EM, Yu J. Ambient and context-aware services for the future web. Comput J. 2015;58(8):1687-1688.

17. Nixon L, Hench G, Lambert D, Filipowska A, Simperl E. The Future of the Internet of Services for Industry: the ServiceWeb 3.0 Roadmap.

18. Pico-Valencia P, Holgado-Terriza JA. ADELE: A middleware for supporting the evolution of multi-agents systems based on a
metaprogramming approach. /4th Int Conf Pract Appl Agents Multi-Agent Syst. 2016;in press.

19. Zhou HJ, Cao JZ, Guo CX, Qin J. The architecture of intelligent distribution network based on MAS-SOA. Power Energy Soc Gen Meet 2010
IEEE. 2010:1-6.

20. Fernandez-Villamor J1, Iglesias CA, Garijo M. A framework for goal-oriented discovery of resources in the RESTful architecture. IEEE Trans
Syst Man, Cybern Syst. 2014;44(6):796-803.

21. Kumari S, Rath SK. Performance comparison of SOAP and REST based Web Services for Enterprise Application Integration. 2015 Int Conf
Adv Comput Commun Informatics. 2015:1656-1660.

22. Hamad H, Saad M, Abed R. Performance evaluation of restful web services for mobile devices. Int Arab J e-Technology. 2010;1(3):72-78.

23. Mohamed K, Wijesekera D. Performance analysis of web services on mobile devices. Procedia Comput Sci. 2012;10:744-751.

24. Taylor P, Garriga M, Flores A, et al. Web Services Composition Mechanisms: A Review. 2016;4602(March 2015):37-41.

25. Sheng QZ, Qiao X, Vasilakos A V., Szabo C, Bourne S, Xu X. Web services composition: A decade’s overview. Inf Sci (Ny). 2014;280:218-
238.

26. Garriga M, Mateos C, Flores A, Cechich A, Zunino A. RESTful Service Composition at a Glance: a Survey. J Netw Comput Appl. 2015;60:32-
53.

27. Vierira R, Ramos R, Pontin R. REST: Advanced Research Topics and Practical Applications. In: Springer. Vol ; 2014:69-89.

28. Lee J, Lee S-J, Wang P-F. A Framework for Composing SOAP, Non-SOAP and Non-Web Services. [EEE Trans Serv Comput.
2014;PP(99):240-250.

29. Shang X, Zhang R, Zhu X, Zhou Q. Design theory, modelling and the application for the Internet of Things service. Enterp Inf Syst.
2015;7575(August 2015):1-19.

30. Al-Fugaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of Things: A Survey on Enabling Technologies, Protocols and
Applications. [EEE Commun Surv Tutorials. 2015;PP(99):1-1.

31. Eloff JHP, Eloff MM, Dlamini MT, Zielinski MP. Internet of People, Things and Services - The Convergence of Security, Trust and Privacy.
In: Third International Workshop IoPTS. Vol ; 2009.

32. Caire G. Web Services Dynamic Client Guide. Italy; 2010.

33. Taherdoost H, Sahibuddin S, Jalaliyoon N. Perceived Barriers and Benefits of Web Based Services. 2014 Int Conf Comput Sci Comput Intell.
2014:34-39.

34. Yan-qin Mao, Lu Jin SS. Research and Implementation on Autonomic Integration Technology of Smart Devices Based on DPWS. In: Advanced
Intelligent Computing Theories and Applications. Vol 9227. ; 2015:179-186.

