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CHAPTER 1
Introduction

The current situation in particle physics involves a large number of both theoreti-

cal proposals and experimental measurements. The relation between the two is often

intricate, as every new physics model comes with its own set of motivations and predic-

tions, and each measurement that is performed has consequences for many theoretical

models. The purpose of this thesis is to set the basis for a general, organized and

efficient way of dealing with these issues.

At first sight, a naive systematic approach to the problem may be devised: pick a

representative set of models together with a sufficiently extensive set of observables,

and compute every observable for each model. This procedure suffers from several

drawbacks. Firstly, it is not easy to decide which models and observables to include:

if there are too many, the task becomes impossible in practice, but one risks not

being general enough otherwise. Secondly, it is inefficient: similar calculations will be

performed many times. Lastly, it does not scale well: if a new kind of model becomes

interesting, one has to recompute the value of all observables; and if a new experiment

is designed, then one has to go back to every model to compute the observables that

are going to be measured. Roughly speaking, the number of calculations that need

to be performed grows as the product of the number of models and the number of

observables of interest.

The use of an Effective Field Theory (EFT) solves these problems by splitting the

calculations in two parts: matching high-energy models to the EFT and computing

observables using the EFT only. Because an EFT is a general parametrization of the

physics involving the degrees of freedom it contains (within some range of energies),

it is guaranteed that no model or observable is discarded. Moreover, part of the

repetitive work that had to be done for each model is included in the calculation of

observables in the EFT, which only needs to be done once. In addition, the scaling

with the number of models and the number of observables is improved: the number

of calculations grows roughly like the sum of the two.1

Two EFTs are commonly used to describe the interactions of the Standard Model

(SM) particles: the Higgs EFT (HEFT) and the Standard Model EFT (SMEFT) (see

1It should be noted that this works when working at a fixed precision. To improve the precision, it
is necessary to extend the effective Lagrangian with extra terms, which means that both observables
and matching must be recomputed.

1



2 CHAPTER 1. INTRODUCTION

section 3.7). They differ in how the SM symmetries are implemented. In the HEFT,

the electroweak gauge group is realized non linearly. For this reason, perturbative

unitarity is broken for energies around 4π times higher than the electroweak scale. In

the SMEFT, all fields belong to linear representations of the electroweak group. It can

be viewed as a particular case of the HEFT in which some relations between parameters

are imposed. The advantage of using it (apart from its simplicity in comparison with

the HEFT) is that it does not break perturbativity just above the electroweak scale.

This means that its cutoff scale is arbitrary in principle.

At any rate, neither the SMEFT nor the HEFT can describe the resonant pro-

duction of new particles that are not present in the SM. Their purpose is to describe

the low-energy effects of such extra degrees of freedom, when there is some separation

between their masses and the probed energies. They would not be of use in a hypo-

thetical discovery of a new particle through its direct production in an experiment.

That is, in the program introduced above of splitting the calculations that relate new

physics models to experimental observables, these EFTs only cover indirect effects.

To describe resonances, it is necessary to introduce new fields. If one wishes to

proceed in a fully general way, without theoretical prejudices or any further experi-

mental knowledge about the high-energy physics, every possible new field should be

included. In general, the extensions of the SM with new fields can be classified in two

groups: those that contain unstable particles that decay into the SM ones and those

that do not. Many of the concrete models for physics beyond the SM belong to the

first class. For a field to create a particle that decays into the SM, it must have the

same Lorentz and gauge quantum numbers as some composite SM operator. In this

thesis, we construct an EFT for these fields together with the SM ones, which we call

the Beyond the SM EFT (BSMEFT).

More precisely, the BSMEFT is an EFT with symmetry given by the linearly-

realized SM gauge group, and whose field content consists of the SM fields together

with those extra fields for which at least one linear coupling to the SM is allowed by

Lorentz and gauge invariance (see chapter 7). The linear realization of the symmetries

is required for perturbative unitarity to hold not much above the electroweak scale.

The requirement of linear couplings to the SM is only made to obtain the quantum

numbers of the new fields, and then all their relevant interactions are considered,

including those that are non linear. Having these quantum numbers is a necessary

condition for the new particles to have decays into the SM ones, but it is not sufficient:

although their decay is allowed by the SM symmetries, it may be forbidden by new

ones. In this way, the BSMEFT also includes many models with stable particles. On

the other hand, the presence of linear couplings is necessary for leading-order effects

in loop expansions: at tree level, only those fields with linear interactions can have

single production, decay or indirect effects. The BSMEFT has a cutoff scale above

the masses of the extra particles. At each order in the expansion in inverse powers of

this cutoff, only a finite number of possibilities for the quantum numbers of the new

fields are allowed by the linear coupling condition. This makes the theory manageable:

the representations of all the fields and their Lagrangian can be explicitly written and

studied.

The BSMEFT further splits the calculations connecting concrete models and ex-

perimental data, bringing its own advantages. Two tasks must be performed to relate

its parameters to experimental observables in an efficient and systematic way: com-
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puting observables in which resonant production of new degrees of freedom may be

important, and matching to the SMEFT. Then, for each model in the large class of

those that are particular cases of the BSMEFT, one does not need to do any calcula-

tions. Instead, one just has to identify how it fits inside the BSMEFT. The relation

with observables and with the SMEFT is automatically given by particularizing the

general calculations, which can be done once and for all. If a new physics model is

not a particular case of the BSMEFT, but its lightest particles are contained in the

BSMEFT, the heavier ones can always be integrated out, and the result treated using

the BSMEFT.

An example of the usefulness of the BSMEFT is given by matching it at tree level

to the SMEFT with operators of dimension 6 or less. This is done in this work (in

chapter 8). The result is a complete tree-level dictionary between extensions of the

SM with new particles and the dimension-6 SMEFT. This dictionary can be used to

translate constraints over the SMEFT coming from experimental data into bounds over

the parameters of models with new particles. If a deviation from the SM is detected and

parametrized with the SMEFT, one can use the dictionary to find out which possible

new particles can generate it. For example, one may obtain all the representations

and interactions of the new fields that can generate the observed anomalies in LHCb

(as done in section 8.6), or enumerate all high-energy models with tree-level indirect

effects in Higgs physics (as in section 8.7).

Another application of the BSMEFT that we consider in this thesis (in chapter 9)

is the model-independent study of vector-like quarks. They appear in many well-

motivated scenarios beyond the SM. A model-independent analysis can be performed

using the adequate sector of the BSMEFT. This allows for the study of both direct

and indirect effects. General properties of vector-like quarks can be extracted, which

apply to any model that contains them.

In the context of EFTs for physics beyond the SM, one has to deal with large

numbers of operators and fields. For this reason, it is convenient and even necessary

in practice to develop computer tools that make faster and less error-prone calculations.

In this work, we present two such tools, whose aim is to automatize some of the most

common tasks one has to perform in this setting (see part II).

In particular, the use of bases of operators is of great practical importance. They

drastically reduce the number of operators that must be included in the effective

Lagrangian. To rewrite a Lagrangian in terms of a basis, field redefinitions must be

performed. At leading order in the EFT expansion, this is equivalent to the use of

equations of motion. Higher order terms may be important in the EFTs we deal with

for a number of reasons. For example, they could give the leading contribution to

some observables, if the symmetries forbid contributions from lower order terms. In

this case, it becomes crucial to understand the effects of field redefinitions at higher

orders, which we also study in this thesis (in chapter 4).

The thesis is organized as follows:

• In part I, several topics related to EFTs as used in particle physics are discussed.

Chapter 3 is a review of the subject. It introduces the EFT construction and

some related ideas, such as power counting, renormalization and matching. It

also gives a presentation of non-abelian gauge theories and the particular case

of the SMEFT. In chapter 4, the effects of field redefinitions at higher orders are
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analyzed. It is shown that they cannot be reproduced using just the equations

of motion. The interplay between redefinitions, renormalization and matching is

also studied.

• In part II, two computer tools are presented. MatchingTools, which is intro-

duced in chapter 5, is a Python package that does two kinds of EFT calcula-

tions: tree-level matching and reduction of an effective Lagrangian to a basis

of operators. BasisGen, another Python package, presented in chapter 6, com-

putes operators bases for EFTs. Both tools work in a very general setting: any

Lorentz-invariant non-abelian gauge theory can be treated with them.

• Part III is dedicated to general extensions of the SM with new particles. We study

them using the BSMEFT, which is introduced in chapter 7. The representations

under the SM symmetry group of all new fields of the BSMEFT are presented,

together with a general effective Lagrangian for them. In chapter 8, the full tree-

level matching of the BSMEFT to the SMEFT is performed and the dictionary

obtained from it is presented. Two examples of use of this dictionary are given.

In chapter 9, the sector of the BSMEFT that only contains new quarks is studied.

We focus on the case in which their couplings are not necessarily renormalizable.

As explained there, vector-like quarks with non-renormalizable interactions have

new features that are not present when only renormalizable interactions are

allowed, including new production and decay channels, and, in some cases, long

lifetimes.

Most of the results presented in this thesis have been published in the following articles:

part of the language and notation used in chapter 3 and the results in chapter 4 can

be found in ref. [3]; MatchingTools and BasisGen were presented in ref. [4] and

ref. [5], respectively; the representations and Lagrangian that appear in chapter 7

were constructed in refs. [6–10]; the dictionary and first example given in chapter 8

were presented in ref. [10]; the second example in chapter 8 was presented in ref. [11];

and the results in chapter 9 appeared in ref. [12].



CHAPTER 2
Introducción

La situación actual en f́ısica de part́ıculas involucra un gran número de propuestas

teóricas y medidas experimentales. La relación entre ambas es muchas veces compleja,

ya que cada modelo de nueva f́ısica tiene su propio conjunto de motivaciones y predic-

ciones, y cada medida que se realiza tiene consecuencias para muchos modelos teóricos.

El propósito de esta tesis es sentar las bases de una estrategia general, organizada y

eficiente para lidiar con estos problemas.

A primera vista, se puede pensar en una aproximación sistemática sencilla a este

problema: elegir un conjunto representativo de modelos, junto con un conjunto de

observables suficientemente completo, y calcular todos los observables en cada modelo.

Este procedimiento tiene varias desventajas. Primero, no es fácil decidir qué modelos

y observables incluir: si hay demasiados, la tarea será imposible en la práctica, pero

se está en riesgo de no ser suficientemente general en caso contrario. Segundo, es

ineficiente: muchas veces se realizarán cálculos similares. Por último, no tiene buena

escalabilidad: si un nuevo tipo de modelo resulta interesante, hay que recalcular el

valor de todos los observables; y si se diseña un nuevo experimento, entonces hay que

volver a cada modelo para calcular los observables que se van a medir. Grosso modo,
el número de cálculos a realizar crece como el producto del número de modelos y el

número de observables de interés.

El uso de una Teoŕıa de Campos Efectiva (EFT, por sus siglas en inglés) resuelve

estos problemas dividiendo los cálculos en dos partes: matching de modelos de altas

enerǵıas con la EFT y cálculo de observables usando únicamente la EFT. Como una

EFT es una parametrización general de la f́ısica que involucra los grados de libertad

que contiene (dentro de cierto rango de enerǵıas), está garantizado que ningún modelo

u observable se va a descartar. Además, parte del trabajo repetitivo que teńıa que

hacerse para cada modelo está incluido en el cálculo de observables de la EFT, que

sólo ha de realizarse una vez. La escalabilidad con el número de modelos y el número

de observables también mejora: el número de cálculos crece aproximadamente como

la suma de los dos.1

1Nótese que esto funciona cuando se trabaja a una precisión fija. Para mejorar la precisión,
es necesario extender el Lagrangiano efectivo con términos extra, lo cual significa que tanto los
observables como el matching tiene que ser recalculados.

5



6 CHAPTER 2. INTRODUCCIÓN

Hay dos EFTs que se usan habitualmente para describir las interacciones de las

part́ıculas del Modelo Estándar (SM): la EFT del Higgs (HEFT) y la EFT del Mod-

elo Estándar (SMEFT) (ver sección 3.7). Estas difieren en la implementación de las

simetŕıas del SM. En la HEFT, el grupo gauge electrodébil tiene una realización no

lineal. Por esta razón, unitariedad está rota a nivel perturbativo para enerǵıas alrede-

dor de 4π veces más altas que la escala electrodébil. En la SMEFT, todos los campos

pertenecen a representaciones lineales del grupo electrodébil. Se la puede ver como un

caso particular de la HEFT en el que se imponen algunas relaciones entre parámetros.

La ventaja de usarla (aparte de su simplicidad en comparación con la HEFT) es que

no rompe perturbatividad justo debajo de la escala electrodébil. Esto significa que su

escala de cutoff es arbitraria en principio.

En cualquier caso, ni la SMEFT ni la HEFT pueden describir la producción res-

onante de nuevos grados de libertad que no estén presentes en el SM. Su propósito

es describir los efectos a bajas enerǵıas de estos grados de libertad extra, cuando hay

cierta separación entre sus masas y las enerǵıas exploradas. No seŕıan de utilidad en el

hipotético descubrimiento de una nueva part́ıcula a través de su producción directa en

un experimento. Esto es, en el programa que hemos introducido anteriormente con-

sistente en dividir los cálculos que relacionan modelos de nueva f́ısica con observables

experimentales, estas EFTs solo incluyen efectos indirectos.

Para describir resonancias, es necesario introducir nuevos campos. Si se quiere pro-

ceder de manera completamente general, sin prejuicios teóricos ni ningún conocimiento

experimental sobre la f́ısica de altas enerǵıas, todo nuevo campo posible debe ser in-

cluido. En general, las extensiones del SM con nuevos campos pueden clasificarse en

dos grupos: aquellas que contienen part́ıculas inestables y aquellas que no. Muchos de

los modelos concretos para f́ısica más allá del SM pertenecen a la primera clase. Para

que un campo cree part́ıculas que decaen al SM, tiene que tener los mismos números

cuánticos que algún operador compuesto del SM. En esta tesis, construiremos una

EFT para estos campos junto con los del SM, la cual llamaremos la EFT Más Allá del

SM (BSMEFT, del inglés Beyond SM EFT).

Más concretamente, la BSMEFT es una EFT con el grupo gauge del SM realizado

linealmente, y cuyo contenido de campos consiste en los campos del SM junto con

aquellos campos extra que tienen al menos un acoplamiento lineal con el SM que esté

permitido por invariancia Lorentz y gauge (ver caṕıtulo 7). La realización lineal de las

simetŕıas se requiere para que exista unitariedad perturbativa no mucho más arriba de

las escala electrodébil. La condición de acoplamiento lineal se utiliza solamente para

obtener los números cuánticos de los nuevos campos, y después se tienen en cuenta

todas sus interacciones relevantes, incluyendo aquellas que son no lineales. Tener es-

tos números cuánticos es condición necesaria para que las nuevas part́ıculas tengan

desintegraciones que dan lugar a part́ıculas del SM, pero no es suficiente: aunque

su desintegración esté permitida por las simetŕıas del SM, puede estar prohibida por

nuevas simetŕıas. De esta manera, la BSMEFT también incluye muchos modelos con

part́ıculas estables. Por otra parte, la presencia de acoplamientos lineales es necesaria

para tener efectos a orden dominante en expansiones en loops : a nivel árbol, sólo aque-

llos campos con interacciones lineales pueden tener producción simple, desintegración

o efectos indirectos. La BSMEFT tiene una escala de cutoff por encima de las masas

de las part́ıculas extra. A cada orden en la expansión en potencias inversas del cutoff,
solo un número finito de posibilidades para los números cuánticos de los nuevos campos
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está permitido por la restricción de acoplamiento lineal. Esto hace que la teoŕıa sea

tratable: las representaciones de todos los nuevos campos y su Lagrangiano pueden

escribirse y estudiarse expĺıcitamente.

La BSMEFT divide de nuevo en dos partes los cálculos necesarios para conectar

modelos y datos experimentales, lo cual conlleva sus propias ventajas. Hay dos tareas a

realizar para relacionar sus parámetros con observables experimentales de una manera

eficiente y sistemática: calcular observables en los que la producción resonante de

nuevos grados de libertad pueda ser importante, y realizar matching con la SMEFT.

Para cada modelo entre todos aquellos que son casos particulares de la BSMEFT, no

es necesario realizar ningún cálculo. En lugar de ello, sólo hay que identificar cómo

encaja en dentro de la BSMEFT. La relación con observables y con la SMEFT puede

encontrarse automáticamente particularizando los cálculos generales, lo cuales solo es

necesario realizar una vez. Si un modelo de nueva f́ısica no es un caso particular de la

BSMEFT, pero sus part́ıculas más ligeras están contenidas en la BSMEFT, las más

pesadas siempre pueden eliminarse mediante su integración, y el resultado tratado

usando la BSMEFT.

Un ejemplo de la utilidad de la BSMEFT aparece cuando se considera su matching
a nivel árbol con la SMEFT con operadores de dimensión 6 o inferior. Esto se realizará

en este trabajo (en el caṕıtulo 8). El resultado es un diccionario completo a nivel árbol

entre extensiones del SM con nuevas part́ıculas y la SMEFT de dimensión 6. Este

diccionario puede usarse para traducir restricciones experimentales sobre la SMEFT

a ĺımites sobre los parámetros de modelos con nuevas part́ıculas. Si se detecta una

desviación del SM y se parametriza usando la SMEFT, se puede usar el diccionario para

encontrar qué posibles nuevas part́ıculas pueden generarla. Por ejemplo, se pueden

obtener todas las representaciones y interacciones de los nuevos campos que pueden

generar las anomaĺıas de LHCb (como se hace en la sección 8.6), o enumerar todos los

modelos de altas enerǵıas con efectos indirectos a nivel árbol en f́ısica del Higgs (como

en la sección 8.7).

Otra aplicación de la BSMEFT que consideramos en esta tesis (en el caṕıtulo 9) es

el estudio independiente del modelo de quarks vector-like. Estos aparecen en muchos

escenarios bien motivados de f́ısica más allá del SM. Un estudio independiente del

modelo puede realizarse utilizando el sector adecuado de la BSMEFT. Esto permite

estudiar efectos tanto directos como indirectos. Aśı se pueden extraer propiedades

generales de quarks vector-like, que aplican a cualquier modelo que los contenga.

En el marco de EFTs para f́ısica más allá del SM, se trabaja con grandes canti-

dades de operadores y campos. Por esta razón, es conveniente e incluso necesario en

la práctica el desarrollo de herramientas computacionales que realicen cálculos más

rápidamente y con una menor propensión a errores. En este trabajo, presentamos dos

de estas herramientas, cuyo objetivo es automatizar algunas de las tareas más comunes

que se han de realizar en este contexto (ver parte II).

En particular, el uso de bases de operadores es de gran importancia práctica. Estas

reducen drásticamente el número de operadores que se deben incluir en el Lagrangiano

efectivo. Para reescribir un Lagrangiano en términos de una base, hay que realizar

redefiniciones de campos. A orden dominante en la expansión de la EFT, esto es

equivalente a usar las ecuaciones de movimiento. Los términos de orden superior

pueden ser importantes en las EFTs con las que trabajamos por varias razones. Por

ejemplo, podŕıan dar la contribución dominante a ciertos observables, si las simetŕıas



8 CHAPTER 2. INTRODUCCIÓN

proh́ıben contribuciones de términos de orden más bajo. En este caso, resulta crucial

entender los efectos de redefiniciones a órdenes superiores, que también estudiaremos

en esta tesis (en el caṕıtulo 4).

La tesis está organizada de la siguiente manera:

• En la parte I, se discuten varios temas relacionados con EFTs tal y cómo se usan

en f́ısica de part́ıculas. El caṕıtulo 3 es una introducción a la construcción de

EFTs y algunas ideas que las rodean, como contaje de potencias, renormalización

y matching. También se da una presentación de teoŕıas gauge no abelianas y

el caso particular de la SMEFT. En el caṕıtulo 4 se analizan los efectos de

redefiniciones a órdenes superiores. Se muestra que estos no se pueden reproducir

usando solamente las ecuaciones de movimiento. También se estudia la relación

de redefinciones con renormalización y matching.

• En la parte II, se presentan dos herramientas computacionales. MatchingTools,

que se introduce en el caṕıtulo 5, es un paquete de Python que hace dos tipos de

cálculos en EFTs: matching a nivel árbol y reducción de un Lagrangiano efectivo

a una base de operadores. BasisGen, otro paquete de Python, presentado en el

caṕıtulo 6, calcula bases de operadores para EFTs. Ambas herramientas trabajan

en un marco muy general: pueden tratar con cualquier teoŕıa gauge no abeliana

invariante Lorentz.

• La parte III está dedicada extensiones general del SM con nuevas part́ıculas.

Estas se estudian usando la BSMEFT, que se introduce en el caṕıtulo 7. Alĺı

se presentan las representaciones bajo el grupo de simetŕıa del SM de todos los

nuevos campos de la BSMEFT, junto con un Lagrangiano efectivo general para

estos. En el caṕıtulo 8, se realiza el matching completo a nivel árbol entre la

BSMEFT y la SMEFT, y se presenta el diccionario que se obtiene de este. Se dan

dos ejemplos de uso de este diccionario. En el caṕıtulo 9, se estudia el sector de

la BSMEFT que solo contiene nuevos quarks, centrándose en el caso en el que sus

acoplamientos no son necesariamente renormalizables. Como se explica alĺı, los

quarks vector-like con interacciones no renormalizables tienen propiedades que

no están presentes cuando solo se permiten interacciones renormalizables. Estas

nuevas propiedades incluyen nuevos canales de producción y desintegración, y,

en algunos casos, vidas medias largas.

La mayoŕıa de resultados presentados en esta tesis se han publicado en los siguientes

art́ıculos: parte del lenguaje y notación utilizados en el caṕıtulo 3 y los resultados

en el caṕıtulo 4 se pueden encontrar en la ref. [3]; MatchingTools y BasisGen se

han presentado en la ref. [4] y la ref. [5], respectivamente; las representaciones y el

Lagrangiano que aparecen en el caṕıtulo 7 se han construido en las refs. [6–10]; el

diccionario y el primer ejemplo dados en el caṕıtulo 8 se han presentado en la ref. [10];

el segundo ejemplo en el caṕıtulo 8 se ha presentado en la ref. [11]; y los resultados en

el caṕıtulo 9 han aparecido en la ref. [12].
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CHAPTER 3
Effective field theories for particle

physics

3.1 Introduction

The core idea underlying the Effective Field Theory (EFT) framework is the ob-

servation that the low-energy behavior of a physical system can be described with-

out detailed knowledge about its high-energy physics [13–16]. More concretely, to

parametrize the local quantum relativistic dynamics of a system below some energy

Λ, it is sufficient to use a local quantum field theory that only includes particles with

masses below Λ. The propagation of heavier degrees of freedom induces, in principle,

non-local couplings of the light particles. However, these non-local interactions can

be expanded as infinite towers of local ones, classified according to the strength of

their effects. Once a finite precision is set, only a finite number of such interactions

is needed to compute observables. The precision of the calculation can always be im-

proved, at the price of introducing more interactions, which increases the number of

free parameters.

This is the quantum field theory implementation of a procedure used across all

areas of physics. Whenever there is a small parameter in the theoretical description of

some physical phenomenon, a perturbative treatment of the problem can be performed.

One expands the quantities of interest as power series in the small parameter. Setting

it to zero gives the lowest order approximation. Then, corrections can be computed by

including the first terms in the series. Better approximations are produced by taking

into account more terms. In the EFTs used in particle physics, the small parameter is

usually E/Λ, where E is the typical energy of the process being studied. Taking the

limit Λ → ∞ amounts to neglecting the new physics that may appear at (or above)

the finite scales.

The applications of EFTs can be classified in two main categories: bottom-up and

top-down. In the bottom-up approach, the high-energy physics are unknown, and

the purpose of the EFT is to parametrize the low-energy physics. In the top-down

case, one wants to study the low-energy regime of some theory. A simpler, more

adequate description in terms of the relevant degrees of freedom in this regime can be

constructed. In this context, the two theories are called “fundamental” and “effective”,

11
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E

Mi−1 Mi Mi+1

EFTi−1 EFTi EFTi+1

Figure 3.1: Tower of EFTs EFTi. E is the typical energy at which each EFT is a good

description. The Mi are the masses of the particles. EFTi−1 contains all the particles

in EFTi except for those with mass Mi, and is matched to EFTi at the scale Mi.

respectively. The parameters of the effective theory are adjusted so that the value of

an observable computed using the it matches the one obtained from the fundamental

one. This procedure is known as matching.

The ideas of EFT are deeply related to renormalization. In the Wilsonian approach

to this topic, a hard momentum cutoff is imposed to regulate divergent quantities. The

Wilsonian renormalization group evolution is given by the variation of the parameters

of the theory as the cutoff is changed. In this context, it is natural to think of regu-

larized theories as EFTs for energies below the cutoff scale. This point of view had

great influence, historically, in the acceptance of effective field theory as a well-defined

framework for describing physical phenomena. However, we will not adopt it in this

work, as it does not represent how EFTs are used in practical applications to particle

physics today [13].

Instead, in modern particle physics phenomenology, mass-independent renormal-

ization schemes are used, such as dimensional regularization with MS. EFTs become

here a necessary technical tool. Although mass-independent schemes have many ad-

vantages, they present the problem that, for energies E much below the mass M of

some particle in the theory, perturbative expansions break down, because of the ap-

pearance of large logarithms, as log(M/E). This happens because the renormalization

group evolution towards the infrared for the parameters of the fundamental theory is

not adequate when the scale M is crossed. A solution to this problem is achieved

by matching the fundamental theory to an effective theory not including the particle

with mass M . The renormalization group evolution of the effective theory eliminates

the large logarithms. This leads to the standard practice for dealing with situations

with several relevant scales: they can be described by a tower of EFTs (see figure 3.1).

Each one of them parametrizes the physics between two consecutive mass thresholds.

The renormalization group evolution can be performed in each theory, using matching

to go from one to the next.

One important feature of EFTs is that they provide a systematic classification of

interactions according to the relative size of their effects. Each term in an effective

Lagrangian has a coefficient of the form c/Λn, where c is an adimensional parameter.

For the perturbative expansion to work, c must be . 4π. The corresponding exponent

n can be derived using dimensional analysis.1 At tree level, the contribution of any

diagram to some amplitude can be estimated as a product with one factor of c(E/Λ)n

for each insertion of the corresponding operator. In principle, loops can break this

direct relation, but it is recovered if a mass-independent renormalization scheme is

1Dimensional analysis arguments can be extended to include other parameters besides 1/Λ. See
section 3.3.



3.2. THE EFFECTIVE FIELD THEORY CONSTRUCTION 13

used. In this way, EFTs provide a framework in which the contribution to physical

observables of each term in the Lagrangian is directly estimated.

Several EFTs are used to describe the different systems studied in particle physics.

In the low-energy regime some of the relevant EFTs are: heavy quark effective the-

ory [17,18], non-relativistic QCD [19,20], chiral perturbation theory [21,22], and soft-

collinear effective theory [23,24]. At higher energies, just below the electroweak scale,

the Weak Effective Theory (WET) is used [25–27]. Above the electroweak scale, one

uses HEFT or the SMEFT, to study the physics of the SM degrees of freedom. We

will the present in chapter 7 an EFT (which we call the BSMEFT) that is valid at

even higher energies, above the masses of extra particles not present in the SM.

This chapter is organized as follows: section 3.2 is a brief review of the usual

EFT construction in particle physics. In section 3.3, a general presentation of power-

counting methods is given. Section 3.4 outlines the relation between EFTs and renor-

malization. In section 3.5 a general presentation of matching is given, together with a

summary of one of the available methods for tree-level matching, which is used later

in the thesis. Section 3.6 focuses on one of the most common types of EFTs in par-

ticle physics: gauge theories. One of the most important examples, the SMEFT, is

presented in section 3.7. We conclude in section 3.8.

3.2 The effective field theory construction

This section is a review of the construction of an EFT to describe the scattering of

a collection of quantum relativistic particles at energies below some scale Λ. It is

assumed that their dynamics is weakly coupled. The main piece of information that

is needed as an input for the construction is the set of all relevant particles with mass

below Λ, which is the so-called cutoff scale.

There must be a unitary representation U of the (universal cover of the) Poincaré

group P = R
4
⋊ SL(2,C) over the Hilbert space of states. The one-particle states are

eigenvectors of momentum and spin. Therefore, they can be labeled as |pσ〉, where p
is the eigenvalue of momentum and σ denotes collectively the eigenvalue of spin and

possibly the particle type. There is a one-to-one correspondence between particles and

orbits of P in the space of one-particle states. Apart from Poincaré invariance, other

symmetries may be present. The Hilbert space should also be equipped with unitary

representations of them.

It is well known that quantum field theory is the suitable framework to describe

the local interactions of these particles. For each value of the label σ, one introduces

a quantum field ϕ such that 〈0|ϕ(0) |pσ〉 6= 0. We will use the symbol φ to denote the

collection of all fields, and index them using Latin letter indices. The implementation

of Poincaré symmetry in the space of fields requires that there is a representation ρ of

the Lorentz group over the target space. Then, the action of a Poincaré transformation

(L, a) over the fields φ is given by

U(L, a)φi(x)U(L, a)† = ρij(L
−1)φj(Lx+ a). (3.1)

All observed elementary particles have spin ≤ 1. The field-theoretical description of

particles with spin 0 or 1/2 is straightforward: they correspond to scalar and spinor

fields, respectively. Massive spin-1 particles are described by vector fields. For the
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massless case, gauge invariance must be introduced. Massive spin-1 particles can be

embedded in a gauge theory through the Higgs mechanism.2 Higher-spin particles

can also be incorporated in the formalism described here. In general, those that are

massless will also require gauge invariance.

A local operator at some spacetime point x is defined as a polynomial in the fields

and their derivatives evaluated at x. The name local operator (or simply operator) is
also used to refer to functions that assign, to every spacetime point x, a local operator

at x. We make use of this last definition in this text. The set of all local operators

naturally has the structure of an algebra. An important subalgebra is that of invariant

operators, which are those that are invariant under the symmetry group, including the

gauge group, if present. A local action is the spacetime integral of a local invariant

operator, whereas a quasi-local action is an infinite sum of local ones. The invariant

operator that appears inside the integral of the action is known as the Lagrangian

density, or simply the Lagrangian.

Each operator that is a monomial in the fields represents a local interaction of the

corresponding particles. Because there is an infinite number of them, an organizing

principle is needed to determine the relative importance of each interaction. Any EFT

should be equipped with a splitting of the algebra A of local operators into a direct

sum

A =

∞⊕

n=nmin

An, (3.2)

of finite-dimensional vector spaces An. The subspace of invariant operators inherits

this structure: Ainv =
⊕∞

n=nmin
Ainv
n , where the Ainv

n are finite dimensional. Then, it is

prescribed that the action of the EFT is of the form

S[φ] =

nmax∑

n=nmin

∑

O∈Bn

λncO

∫
d4xO(φ), (3.3)

where Bn is a basis of Ainv
n , λ = 1/Λ is the inverse of the cutoff scale and the cO are

adimensional coefficients, known as Wilson coefficients. The splitting of the algebra

of operators together with the prescription shown in eq. (3.3) is known as a power-

counting rule, because it assigns a power of λ to certain operators. An insertion in

some Feynman diagram of a term of the action containing a factor of λn will give a

factor in the diagram of order (E/Λ)n or less, with E representing here the low-energy

scales involved in the process.3 Therefore, if one wishes to produce predictions up to

a finite precision ε, it is sufficient to choose nmax ∼ log(ε)/ log(E/Λ) for the action

to parametrize with full generality the physics of interest. To summarize, an EFT is

defined by the following elements:

1. The particle content, including the spin of each particle. Equivalently, the field

content and representation of the target space under the Lorentz group can be

given.

2. The gauge group and global symmetry group, if they exist, together with their

representation over the space of one-particle states, or, equivalently, over the

target space of the fields.

2See section 3.6 for a review of gauge theories and the Higgs mechanism.
3This is preserved at the quantum level only if a mass-independent scheme is used. See section 3.4.
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3. The power-counting rule.

Once these elements are provided, one can construct a general effective action as in

eq. (3.3). For any finite precision ε one can find the correct nmax. The number of free

parameters of the theory, the Wilson coefficients cO, is then finite. One can use the

experimentally measured values of any complete set of observables to fix the values of

the cO. Then, predictions for other observables can be computed.

The purpose of an EFT as defined here is to parametrize the scattering amplitudes

of the particles being considered. Once the general form of the effective action is set,

scattering amplitudes can be computed in terms of the Wilson coefficients. We give

below a brief presentation of how this is done. It is convenient to define the generating

function, which, for a given action S, local operator F and source J is:

Z(S, F )[J ] :=

∫
Dφ exp {iS[φ] + JαF

α(φ)} , (3.4)

with the normalization Z(S, F )[0] = 1. We use here the unconventional notation

Z(S, F ) with explicit parameters S and F because of its convenience for the discussion

in this chapter and the next one (chapter 4). If F (φ) = φ, we will just write Z(S).
We ignore renormalization for the moment. We follow the convention of indicating the

adjoints of complex fields with distinct labels i, in such a way that a sum over i includes
both a field and its adjoint, if not real. Furthermore, we use the compact DeWitt

notation φα = φi(x), with repeated collective indices indicating also integration over

the space-time variables.

The functional derivatives of Z(S, F ) with respect to Jα at J = 0 are the Green

functions for F in the theory defined by S. The momentum-space Green functions G
are given by

G(S, F )i1...in(p1, . . . , pn) := ai1α1
(p1) . . . a

in
αn(pn)

δnZ(S, F )

δJα1 . . . δJαn
, (3.5)

where aijx(p) = δije
ipx. Similarly, connected Green functions are derived from the

function W (S, F )[J ] := −i log{Z(S, F )[J ]}.
An operator F i such that 〈0|F i(0) |pσ〉 6= 0 is called an interpolating field for

particle σ. Interpolating fields are important because scattering amplitudes can be

obtained from their Green functions. It is a fundamental property of such functions

that they present poles when the sum of some of the momenta goes on-shell; that

is, when the sum approaches the mass of the corresponding stable particle. Unstable

particles also correspond to poles of Green functions, but the points in momentum

space at which they are located have a non-vanishing imaginary part. New particles

are often discovered through this property: in a collider experiment, one can study

the dependence of the cross section on the invariant mass of the final state. If a bump

appears in this distribution, it is interpreted as the effect of a pole in the complex

plane, corresponding to some new unstable particle. The poles of stable particles are

of course experimentally inaccessible, but they usually present measurable tails.

Scattering amplitudes are obtained from Green functions using the LSZ reduction

formula. The former are, up to some constant factors, the residue of the later when all

external momenta go on shell. Specifically, the LSZ formula is the following asymptotic
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relation:

G(S, F )i1...in(p1, . . . , pr,−pr+1, . . . ,−pn)

∼
∑

σ1,...,σn

(
r∏

k=1

〈pkσk|F ik(0) |0〉
p2k −m2

k

)(
n∏

k=r+1

〈0|F ik(0) |pkσk〉
p2k −m2

k

)

× 〈pr+1σr+1, . . . , pnσn|S(S) |p1σ1, . . . , prσr〉 , (3.6)

as all momenta p2k approach the physical mass m2
k of some particle for which F ik is an

interpolating field. Here, S(S) is the S matrix (the infinite time evolution operator)

for action S. Notice that this formula allows for the computation of S-matrix elements

(scattering amplitudes) 〈pr+1σr+1, . . .|S(S) |p1σ1, . . .〉 independently of which specific

interpolation field F is used. We will return to this topic in section 4.2, as this is one

of the key results that make EFTs invariant under field redefinitions.

3.3 Power counting

The EFTs of interest often depend on several parameters, which can be taken to be

the cutoff scale Λ and additional dimensionless quantities, such as coupling constants,

ratios of masses and 4π factors associated to loops. The EFT is organized as a multiple

power series in λ = 1/Λ and certain combinations of the parameters, which are assumed

to be small (compared to the probed energies, if dimensionful). In the following we use

η to refer to λ and any of these combinations. For example, chiral perturbation theory

is arranged as a power series in λ with λ = 1/(4πf) and f the pion decay constant. One

could consider a simultaneous expansion in 1/f at each order in λ, but this expansion
is conveniently resummed using the underlying structure of an spontaneously broken

theory. To organize systematically these expansions, it is important to have a power-

counting rule that assigns a number Nη(O) to each operator O and each parameter η.
Then, the “natural” coefficient of an operator O is given by

CO ≃
∏

η

ηNη(O). (3.7)

For instance, in chiral perturbation theory, chiral counting dictates that Nλ(O) is

equal to the number of derivatives in O. In some cases it is convenient to include

in the specification of the operator not only fields and derivatives but also powers of

particular coupling constants or masses, which are treated as spurions and taken into

account in the counting. To guarantee the stability of the loop expansion, the power-

counting rule should be such that all the diagrams that can generate an operator give

a contribution that is similar to or smaller than its natural coefficient. In particular,

this requires

∆η(O1O2) = ∆η(O1) + ∆η(O2), (3.8)

where ∆η(O) = Nη(O) + cη for some cη independent of the operator.

A simple power-counting rule for λ is derived from the canonical dimensions ∆(O)

of the operators O. One chooses ∆λ(O) = ∆(O) and cλ = 4, so that Nλ(O) =

∆(O) − 4. This is just dimensional analysis: the energy dimensions of each operator

are balanced by powers of energy scale Λ, making the action adimensional. The
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canonical dimension of an operator that is a product of fields and derivatives is the

sum of the dimensions of the factors. Derivatives have ∆(∂µ) = 1. The dimension of

any field can be derived from its kinetic term.

Naive dimensional analysis (NDA) [28–30] is a power-counting rule that extends di-

mensional analysis. It is appropriate in many circumstances and enjoys nice properties.

In this case the actual numerical coefficients are expected to be approximately equal

to their natural values when the UV completion is strongly coupled, and smaller than

them when it is weakly coupled. Approximate symmetries or tunings in the fundamen-

tal theory can also give rise to smaller coefficients. Certain assumptions on the UV

theory allow to incorporate these suppressions systematically in the power-counting

rules [31].

3.4 Renormalization

The path integral in eq. (3.4) is a formal object without a well-defined meaning. As

is well known, naive calculations at the quantum level give divergent results and a

renormalization procedure is needed to obtain finite quantities. A renormalization

scheme R is a regularization for the divergent integrals that appear, together with

a substraction scheme: a prescription that changes the original action in a certain

way, usually by adding new terms called counterterms. Schematically, eq. (3.4), gets

modified into:

Z(S, F )[J ] := lim
ǫ→0

∫

Rǫ

Dφ exp {iRǫ(S)[φ] + JαF
α(φ)} , (3.9)

where ǫ is a parameter known as the regulator,
∫
Rǫ

Dφ is the regularized path integral

and Rǫ(S) is the action including the counterterms prescribed by the renormalization

scheme R. The renormalization scheme should ensure that the limit in eq. (3.9) gives

a finite result.

Renormalization introduces a new dimensionful parameter: the renormalization

scale µ. One is free, in principle, to choose any value of µ and then proceed by

fitting the cO to experimental data. However, perturbative expansions are typically

improved when µ is of the order the energy scales E involved in the calculation,

because the expansion parameter usually contains factors of log(E/µ). Therefore, it is
useful to have a way of translating the values of cO from one renormalization scale to

another. This is achieved by solving the renormalization group equation, which is the

requirement that physical quantities do not depend on µ. This can be implemented

in several ways. A possibility is to impose

d

dµ
Z(S, F )[J ] = 0. (3.10)

This is to be understood as a differential equation over the cO, which are seen as

functions of µ. Because Z(S, F ) is not a physical object, eq. (3.10) is only a sufficient

condition for physical quantities to be independent of µ. As we will see in chapter 4,

different actions can give rise to the same scattering amplitudes. Thus, another pos-

sibility for the implementation of the renormalization group is given by the equation

dS(S)/dµ = 0, together with some condition that fixes a specific action among those

that satisfy it.
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The beta functions are defined as βcO := dcO/d log µ. When they do not depend on

µ, the renormalization scheme is said to be a mass-independent scheme. Such a scheme

has the advantage of preserving the power counting of the EFT, so that the operators

with a coefficient of order λn will always produce effects of order (E/Λ)n. An example

of a mass independent scheme is dimensional regularization with minimal substraction

(MS) (or the more convenient MS), which is widely used in particle physics.

The usage of a mass independent scheme comes with some disadvanges. The main

problem is that, for a renormalization scale µ much below the mass of some particle

in the theory, pertubative expansions are broken, because factors of large logarithms

log(M/µ) appear in the expansion parameters. The solution is to find an EFT which

does not contain the particle of mass M , but reproduces the physical predictions of

the original theory for energy scales E < M . We will see how this is done in the

next section. The renormalization group evolution of the low-energy effective theory

eliminates the large logarithms.

3.5 Matching

3.5.1 General considerations

In a matching calculation, one relates two theories by requiring that they produce the

same predictions in some range of energies. An energy scale is fixed, separating what

we call the high and low-energy regimes. The two theories that are matched are called

the “fundamental” theory and “effective” theory. The fundamental theory is supposed

to be a valid description of both the high-energy and the low-energy regimes, at least

in principle. The effective theory is only valid for low energies, and only contains

the relevant light degrees of freedom that are present in this regime. The matching

condition is that the effective theory should give the same physical results as the

fundamental one, but only in its range of validity. We make this requirement and its

variations more precise later in this section.

One could wonder why is it that matching is a useful tool, as it produces an

EFT (the effective theory) that merely reproduces the low-energy behavior of the

fundamental one, while the information about its high-energy regime is lost. Despite

this fact, performing matching calculations may provide many practical advantages.

First, if one is going to concentrate only on the low-energy physics, it is often the case

that the effective description is simpler and generally more convenient, as it contains

a smaller number of degrees of freedom and parameters. Second, at the quantum

level, it becomes necessary to employ an effective theory to remove large logarithms

in mass-independent renormalization schemes, as explained in section 3.4. Finally, it

is possible that the experimentally accessible physics belong to the low-energy regime

and the correct fundamental theory is unknown. The effective theory then becomes

a convenient way to parametrize experimental results. Different fundamental theories

can be matched to it, and as a result their parameters become related to experimental

data.

Let SUV be the action of the fundamental theory, which contains a set of light fields

φ and heavy fields Φ. That is, there is some scale Λ separating the masses of the fields
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φ and Φ. An effective action S̄ for the light fields can be defined by requiring that

Z(SUV)[J ] = Z(S̄)[J ], (3.11)

where the Z(SUV)[J ] should be understood as having source terms Jαφ
α only for the

light fields φ. If sources were added for the heavy fields, the effective action would also

depend on them. Then,

exp
(
iS̄[φ]

)
=

∫
DΦexp (iSUV[Φ, φ]) . (3.12)

The effective action S̄ can be found by two equivalent methods: A) requiring that

eq. (3.11) is satisfied, which amounts to matching the off-shell 1PI functions of the ef-

fective theory to the off-shell one-light-particle-irreducible functions of the fundamental

theory; B) integrating out the heavy degrees of freedom explicitly, i.e. computing di-

rectly eq. (3.12), for instance using functional methods. In section 3.5.2, an algebraic

method for tree-level matching belonging to class B is presented. This is the method

that will be used later in this thesis, in chapters 5 and 8.

The action S̄, obtained by any of these methods is non-local. However, a local

effective action can be constructed to approximately reproduce the function Z(S̄).
The approximation is controlled by the dimensionful parameter λ = 1/Λ. Given a

(non-local) effective action S̄, we define
⌈
S̄
⌉
n
as the local action containing terms of

order λn or less and such that

Z(S̄) = Z(
⌈
S̄
⌉
n
) +O(λn+1). (3.13)

The exact action S̄ and generating function ZS̄ can be viewed formally as infinite

series in λ:

S̄[φ] =

∞∑

k=0

λkS̄k[φ], Z(S̄)[J ] =

∞∑

m=0

λmZ(S̄)m[J ]. (3.14)

Note that each S̄k is local, as adding derivatives to an operator increases its order in λ.
But because S̄ is non-local, it turns out that knowing S̄k for k ≤ n for any given n is

not enough, in general, to compute Z(S̄)n. Even if any sum of a finite number of terms

with k > n gives a vanishing contribution to Z(S̄)n, the tail
∑

k≥N λ
kS̄k of the series

may contribute to it for arbitrarily large N . Therefore, the naive truncation
⌊
S̄
⌋
n
of

S̄ to order n does not coincide, in general, with the local effective action S =
⌈
S̄
⌉
n
,

which gives the correct approximation of Z(S̄) to order n.
In the saddle-point expansion, this can be understood in the following way [32].

The saddle-point configuration, which gives the effective action at the tree level, is in

practice approximated by a truncated expansion in λ, say to order N . Then, besides

the usual quadratic and higher-order terms, the heavy-field expansion of the action

about this non-exact saddle point includes linear terms suppressed by λN+1 and higher

powers of λ. Despite this suppression, such terms must be taken into account in the

integral of the heavy fields Φ. Indeed, the quantum corrections may give contributions

to orders k < N , independently of how large N is. The essential reason is that loop

integrals regularized with dimensionless regulators probe all energy scales, including

those higher than Λ. A way of finding these contributions within approach B, based

on the method of regions [33], has been proposed in [34]. In the matching approach
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A, correcting
⌊
S̄
⌋
n
to find

⌈
S̄
⌉
n
is not really an issue: in practice, the matching

is performed directly between SUV and S =
⌈
S̄
⌉
n
at some given n. The necessary

contributions then appear automatically from diagrams in the fundamental theory

involving loops of both light and heavy fields [32, 35, 36].

A renormalization procedure is required to make sense of all these equations. The

matching can be performed at the regularized level (with the same dimensionless

regulator). This leads to a regularized effective action that can be perturbatively

renormalized. But it makes more physical sense to match the renormalized theories,

as at the end of the day the aim of matching is to express the renormalized parameters

of the local effective action S as functions of the renormalized parameters of SUV. In

method B, this can be achieved by adding counterterms to the UV action but refraining

from removing the regulator; then the necessary counterterms in the effective theory

will be generated (in the same regularization and renormalization scheme) during the

matching procedure. The UV behaviours of the fundamental and effective theories are

different, and so will be the counterterms. In the standard approach to matching within

method A, the renormalized Green functions of the fundamental and effective theories

are compared (with removed regulators). This allows great flexibility, as neither the

regularization method nor the renormalization scheme need to be the same in both

theories. The relation between renormalized parameters depends on these schemes. To

preserve this relation, the effective theory should be used in the same scheme used for

the matching. In this regard, observe that, because the effective theory is local, all its

renormalized couplings and masses can be modified by finite counterterms. Hence, by

adapting the scheme to each UV theory, all the UV information in the renormalized

parameters of the effective theory can be erased. Scheme independence, however,

ensures that the calculations done in such a scheme (which will depend on the UV

parameters) will reproduce to the required order the low-energy predictions of the

corresponding fundamental theory. In practice, it is preferable to see this information

explicitly in the renormalized parameters, so a universal renormalization scheme, such

as MS, should be used in the effective theory.

3.5.2 An algebraic method for tree-level matching

At the tree-level, eq. (3.12) becomes S̄[φ] = SUV[φ,Φc(φ)], where Φc is the solution to

the (classical) equation of motion

δSUV

δΦ
[φ,Φc(φ)] = 0. (3.15)

The UV action splits as

SUV[φ,Φ] = −1

2
QαβΦ

αΦβ + SφUV[φ] + Sint
UV[φ,Φ], (3.16)

where Q is some differential operator not containing any fields, SφUV is the part of

the action that only depends on φ and Sint
UV contains only interaction terms. Then,

eq. (3.15) can be solved iteratively as

Φc,0(φ) = 0, Φα
c,k+1(φ) = (Q−1)αβ

δSint
UV

δΦβ
[φ,Φc,k(φ)]. (3.17)
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The operator Q contains terms corresponding the massesM (or masses squaredM2) of

the heavy fields. Its inverse can then be expanded in powers of ∂µ/M . Each iteration

of the procedure outlined in eq. (3.17) induces a correction Φc,k+1 − Φc,k containing

only terms of canonical dimension higher than those in Φc,k. In an EFT with power

counting based on the canonical dimension of the operators, this means that the order

of the corrections in the expansion in powers of λ increases with k. The expansion

can be truncated at any desired order by reaching a sufficiently high value of k. The

expression for Φc obtained in this way can be plugged into SUV, giving a truncated

expansion in λ for S̄. Since we are working at tree level, we do not need to worry

about the subtleties of truncated effective actions explained in section 3.5.1.

The procedure described here can be applied in a purely gauge-covariant manner.

In eq. 3.16, terms in the action containing covariant derivatives may be split into the

quadratic and interaction parts. If the full covariant derivatives are kept inside Q,
all the objects in eq. (3.17) become covariant. We collect here an explicitly covariant

form of the equations of motion (ready for the application of eq. 3.17) for the following

types of fields:

• Scalars:

Φ =

∞∑

n=0

(−1)n
D2n

M2n+2

δSint
UV

δΦ† . (3.18)

• Fermions:

F =
1

M

(
i /DF +

δSint
UV

δF̄

)
. (3.19)

• Vectors:

V = − 1

M2

∞∑

n=0

Rn δS
int
UV

δV † , where (RW )µ :=
DνDµ − ηµνD

2

M2
W ν . (3.20)

These equations are used in the implementation of MatchingTools, the computer tool

for tree-level matching introduced in chapter 5. We will also use them in the construc-

tion of the tree-level UV/IR dictionary presented in chapter 8, which is computed both

by hand and using MatchingTools.

3.6 Gauge theories and the Higgs mechanism

Most of the EFTs used today in particle physics phenomenology are gauge theories.

They are used to incorporate spin-1 particles in a manifestly Lorentz-invariant quan-

tum field theory. Vector fields have the correct transformation properties under the

Lorentz group to describe them. However, the naive introduction of a vector field

for each such particle presents some problems. First, vector fields seem to contain

longitudinal polarizations that massless particles do not have. Second, the longitu-

dinal polarizations of massive vector fields have interactions that break perturbative

unitarity at energies not much higher than their masses, unless some method is used

to restore it, such as the Higgs mechanism. A convenient description of both massless

and massive vectors can be given in terms of gauge invariance.
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We briefly introduce now the gauge theory construction and return latter to the

issue of describing spin-1 particles. Let G be a reductive Lie group. For each of its

simple or abelian factors Gk, consider a collection of vectors Akaµ , one for each generator

tka of Gk. It is convenient to define the Lie algebra-valued field Akµ = tkaAkaµ .4 The

corresponding field strength tensors are defined as F k
µν := ∂µA

k
ν − ∂νA

k
µ + igk[A

k
µ, A

k
ν ],

where the gk are free parameters known as the gauge coupling constants. Other fields

ψ can be present. A representation ρψ of Gk over their target space should be specified.

A gauge transformation is defined as a function Ω assigning, to each spacetime point

x, an element Ωk(x) of every Gk. Its action on the objects defined so far is given by

Akµ 7→ ΩkA
k
µΩ

−1
k − i

gk
Ωk∂µΩ

−1
k , (3.21)

F ka
µν 7→ ad(Ω)abF

kb
µν , (3.22)

ψi 7→ ρψ(Ω)
i
jψ

j, (3.23)

where ad is the adjoint representation and the components F ka
µν of the field strength

tensor are defined by F k
µν = F ka

µν t
ka. A theory that is invariant under this set of space-

time point-dependent transformations is said to be gauge invariant. The group G is

called the gauge group, the fields Akaµ are the gauge fields, etc. A gauge-covariant

operator is a multiplet of operators Oi that, under a gauge transformation Ω, trans-

forms as Oi 7→ ρO(Ω)
i
jOj, for some representation ρO of G. Both field strength tensors

and matter fields are examples of covariant operators. Let ρ(Akµ) be the image of Akµ
under the Lie algebra representation corresponding to ρ. The covariant derivative of

a covariant operator O is defined as

DµOi :=

(
∂µδ

i
j + i

∑

k

gk ρO
(
Akµ
)i
j

)
Oj. (3.24)

Covariant derivatives satisfy the basic properties of derivatives: linearity and the Leib-

niz rule. They have the advantage that, for any covariant operator O, the derivative

DµO is also a covariant operator with the same representation ρO. The Lagrangian

of any gauge-invariant theory with matter fields can be written in terms of the field

strength tensors, matter fields and covariant derivatives only.

Gauge theories can be used to describe both massless and massive spin-1 fields. In

principle, a gauge transformation can be chosen so that the longitudinal polarizations

of the gauge fields are eliminated. Thus, they contain the right number of degrees of

freedom needed to describe massless particles. Moreover, a naive mass term AµA
µ is

forbidden by gauge invariance. It is therefore clear that massless spin-1 particles can

be directly incorporated through gauge fields.

On the other hand, it seems at first sight that the gauge theory construction cannot

accommodate the massive case. This impression turns out not to be true. Consider a

gauge invariant Lagrangian and suppose that we want to give non-zero masses to some

subset of the gauge fields, denoted by Aâµ, that correspond to the generators tâ of a

coset G/H for some subgroup H of the gauge group G. One possibility is to introduce

extra terms in the Lagrangian, including the mass term AâµA
âµ but possibly others,

that explicitly break gauge invariance because of the non-covariant appearance of Aâµ.

4Summation over k is not implicit in this section
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An equivalent gauge invariant description is obtained by adding a new scalar field ξâ

for each tâ. They are collected in a G/H-valued covariant operator U = eiξ
âtâ/f (with

f a constant with dimensions of mass) that transforms under gauge transformations

as U 7→ ΩU . All occurrences of Aâµ can then be rewritten in terms of uµ = U †DµU .
For example, a gauge-invariant mass term is then given by

Lmass = f 2 tr(uµu
µ). (3.25)

In this way, the gauge bosons acquire a mass of the order of f . A gauge transformation

can then be chosen to set the scalar fields ξâ to zero, and then the vector fields have

a non-vanishing longitudinal component. This is known as the unitary gauge. In this

context, the scalar fields are said to be “eaten” by the gauge bosons. Alternatively,

one can go to the gauge in which the longitudinal components of the vector are zero,

but then they absorbed in non-zero scalar fields.

In this gauge-invariant version of the naive implementation of massive vector fields,

it becomes clear that we are dealing with an EFT with cutoff scale not far away from

the masses of the vectors. The interactions of the longitudinal components, which

we can identify with the ξâ, always contain derivatives. They appear together with

inverse powers of f , which balance the energy dimensions of the corresponding term in

the Lagrangian. For this reason, perturbation theory breaks down at energies around

4πf .
The breaking of the perturbativity in this setting can be traced back to the non-

linearity of the realization of G in the space of scalar fields. The Higgs mechanism

provides an extension of this model that realizes G linearly, restoring perturbativity

at the scale 4πf , and allowing for an arbitrary cutoff scale. The scalar sector must

contain a field multiplet φ in a linear representation of G. Let H be the subgroup

of G that leaves invariant any non-zero φ. The slices of the target space of φ for

constant radial component |φ| will form (at least locally) the manifold G/H. The

scalar potential V (φ) must have a degenerate set of minima given by the equation

|φ| = v, for some constant v with dimensions of energy. A vacuum expectation value

(vev) 〈|φ|2〉 = v2 is generated. This is why this mechanism is sometimes referred to

as “spontaneous symmetry breaking”. With these elements, one can construct a mass

term for the gauge bosons corresponding to the generators of G/H as

Lkin
Higgs = Dµφ

†Dµφ. (3.26)

Then, their masses are of the order of the vev v of φ. The relation with the gauge-

invariant approach not implementing the Higgs mechanism can be seen by decomposing

φ = (1 + h/v)Uφ0, where U an element of G/H, h is a scalar with zero vev and φ0 is

a constant fixed at a minimum of V . Defining, as before uµ = U †DµU , we have that

Lkin
Higgs ⊃ v2 tr(uµu

µ). (3.27)

If we were dealing with a global symmetry, the Goldstone bosons would be inside U .
In this setting, they correspond to the scalar fields ξâ that are eaten by the gauge

bosons to get mass. Thus, the ξâ are called “would-be Goldstone bosons”. It can

be proven that, because they are collected together with the extra degree of freedom

h in a linear realization of G, the theory is regulated so that the cutoff is no longer

restricted to be near the masses of the vectors.
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Name Flavors Symbol(s) Poincaré irrep Mult.

Photon – γ/A massless spin 1 1

Gluon – g massless, spin 1 8

W± boson – W± massive, spin 1 2

Z boson – Z massive, spin 1 1

up-type quarks up, charm, top u, c, t massive, spin 1/2 3

down-type quark down, strange, bottom d, s, b massive, spin 1/2 3

charged leptons electron, muon, tau e, µ, τ massive, spin 1/2 1

neutrinos e, µ, τ neut. νe, νµ, ντ massive, spin 1/2 1

Higgs boson – H massive, spin 0 1

Table 3.1: Known elementary particles together with their irreducible representa-

tions under the Poincaré group and multiplity of their possibly degenerate one-particle

states.

3.7 The effective theory approach to the Standard

Model

The Standard Model (SM) of particle physics is the theory that describes the inter-

actions of elementary particles. Since its proposal in the decade of 1960 [37, 38], all

the new particles it predicted have been discovered: the tau lepton [39], the bottom

quark [40], the electroweak gauge bosons [41,42], the top quark [43,44] and the Higgs

boson [45, 46]. The SM explains most of their observed interactions.

A list of all elementary particles known today is presented in table 3.1. Some of

them appear in degenerate mass eigenstates, signaling the presence of the SM sym-

metries. All the fermions come in three copies, known as flavors or generations, which

differ only in their masses. The measured interactions of these particles fit well within a

gauge theory with gauge groupGSM := SU(3)×SU(2)×U(1). The sector related to the

SU(3) subgroup is called quantum chromodynamics (QCD), while the SU(2)× U(1)
part corresponds to the electroweak interactions. The electroweak group is broken to

U(1)Q. The only unbroken generator is Q = T + Y , where T is the SU(2) isospin and

Y is the original U(1) charge, the hypercharge.

The fields that create the elementary particles in table 3.1 can be grouped in

irreducible representations (irreps) labeled as (C, T )Y , where C is the SU(3) irrep, T
is the SU(2) irrep and Y is the hypercharge. The 8 degenerate gluon states are the

SU(3) gauge bosons. The SU(2) and U(1) gauge bosons W a
µ and Bµ are identified in

the following way:

W 1
µ =

1√
2
(W+

µ +W−
µ ), W 3

µ =
gZµ + g′Aµ√
g2 + (g′)2

, (3.28)

W 2
µ =

i√
2
(W+

µ −W−
µ ), Bµ =

−g′Zµ + gAµ√
g2 + (g′)2

, (3.29)

where g and g′ are the gauge coupling constants of SU(2) and U(1), respectively. The 3
degenerate quark states of each kind are collected into SU(3) triplets. The left-handed
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components of all the fermions belong to SU(2) doublet, whereas their right-handed
parts are just singlets. Explicitly:

• The 3 generations of left-handed quark form (3, 2)1/6 multiplets as

qL1 =

(
uL
dL

)
, qL2 =

(
cL
sL

)
, qL3 =

(
tL
bL

)
. (3.30)

• The 3 generations of left-handed lepton form (1, 2)−1/2 multiplets as

lL1 =

(
νeL
eL

)
, lL2 =

(
νµL
µL

)
, lL3 =

(
ντL
τL

)
. (3.31)

• The 3 generations of right-handed up-type quark form (3, 1)2/3 multiplets, cor-

responding to right-handed part of the up-type quark fields: uR, cR and tR.

• The 3 generations of right-handed up-type quark form (3, 1)−1/3 multiplets, cor-

responding to right-handed part of the up-type quark fields: dR, sR and bR.

• The 3 generations of right-handed leptons form (1, 1)−1 singlets, corresponding

to right-handed part of the lepton fields: eR, µR and τR.

Finally, the Higgs boson is collected in a (1, 2)1/2 multiplet together with the would-be

Goldstone bosons of electroweak symmetry breaking, corresponding to the longitudinal

components of the massive electroweak bosons.5 The conventional parametrizations

of this Higgs doublet are

φ =
1√
2

(
φ1 + iφ2

v +H + iφ3

)
=
v +H√

2
U

(
0

1

)
, (3.32)

where v is the vacuum expectation value of φ, given by 〈|φ|2〉 = v2/2 and U is a

G/H-valued field. The representations of all the field strengths and matter fields of

this gauge theory under the Lorentz group and GSM are shown in table 3.2.

The SM can be thought of as an EFT for the degrees of freedom presented here, with

some unknown cutoff Λ. A simple power counting based on the canonical dimension

of the operators can be implemented. As explained in section 3.3, each operator O
with a well-defined canonical dimension ∆(O) is assigned a power Nλ(O) = ∆(O)− 4

of λ = 1/Λ. The complete Lagrangian is therefore given by

LSMEFT = LSM +
1

Λ
L(5)

SMEFT +
1

Λ2
L(6)

SMEFT + . . . (3.33)

where LSM contains operators of dimension 4 or less, while L(d)
SMEFT contains only

operators of dimension d. The limit Λ → ∞ gives the leading order approximation of

this EFT. It turns out that this approximation is enough to fit most of the current

5An alternative, more general effective theory for the SM particles is the Higgs EFT (HEFT), in
which the Goldstones and the Higgs are treated independently. Thus, GSM is non-linearly realized in
its Goldstone sector. The SMEFT is a particular case of the HEFT in which relations between the
HEFT parameters are induced by the fact that the Higgs and Goldstone bosons belong to the same
multiplet. A basis for the HEFT with up to four derivatives has been developed in [47,48].
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Name Lorentz irrep GSM irrep

Gµν (1, 1) (8, 1)0
Wµν (1, 1) (1, 2)0
Bµν (1, 1) (1, 1)0

qLi (1/2, 0) (3, 2)1/6
lLi (1/2, 0) (1, 2)−1/2

uRi (0, 1/2) (3, 1)2/3
dRi (0, 1/2) (3, 1)−1/3

eRi (0, 1/2) (1, 1)−1

φ (0, 0) (1, 2)1/2

Table 3.2: Representations of field strengths and matter fields in the SM under the

Lorentz group and the gauge group GSM.

experimental data in particle physics. It is customary to use the name “Standard

Model” for the theory obtained from this limit, whereas the corresponding EFT for

finite cutoff is known as Standard Model EFT (SMEFT). The SM Lagrangian LSM is

then

LSM =− 1

4
GA
µνG

A µν − 1

4
W a
µνW

a µν − 1

4
BµνB

µν+

+ l̄Li i��D lLi + q̄Li i��DqLi + ēRi i��DeRi + ūRi i��DuRi + d̄Ri i��DdRi+

+ (Dµφ)
†Dµφ− V (φ)−

(
yeij ēRiφlLj + ydij d̄RiφqLj + yuij ūRiφ̃

†qLj + h.c.
)
.

(3.34)

As usual, φ̃ = iσ2φ
∗ denotes the SU(2) doublet of hypercharge −1/2. The Higgs scalar

potential is

V (φ) = −µ2
φ |φ|2 + λφ |φ|4 . (3.35)

There are 18 free parameters in this Lagrangian: 3 gauge coupling constants, the 2

parameters µ and λ of the potential, and 13 parameters in the Yukawa sector. The

counting of parameters in the Yukawa sector should be done after fixing a basis in

the space of flavors of the different fermion multiplets. A priori, there are three 3× 3

matrices of Yukawa couplings. A change of basis can always performed so that they

take the form

ye = diag(ye, yµ, yτ ), (3.36)

yd = diag(yd, ys, yb), (3.37)

yu = V †
CKM diag(yu, yc, yt), (3.38)

where the yi are real parameters and VCKM is a unitary matrix, known as the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, which can be parametrized by 3 mixing angles

θ12, θ13, θ23, and a CP-violating phase δ.
The vev of the Higgs is related to the Higgs potential parameters as v = µφ/

√
λφ.

The masses of all the fields can be obtained by plugging eq. (3.32) into eq. (3.34),

keeping only quadratic terms, and diagonalizing them. The masses of the neutrinos
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are mν = 0. The mass of any other fermion ψ is given by mψ = yψv/
√
2 where yψ is

the corresponding Yukawa coupling. The mass of the Higgs is v/
√
2. The masses of

the vector bosons are

mW =
1

2
gv, mZ =

1

2

√
g2 + (g′)2v, mA = mG = 0. (3.39)

The SM is a very successful theory, which is able to explain most of the experimental

observations in elementary particle physics. However, it is known that it leaves some

important fundamental phenomena unexplained. The most obvious problem is that

neutrinos are predicted to be massless, while they are known experimentally to be

massive. The lack of a description of dark matter and gravity are other issues with

the SM, if it were to be the fundamental theory of nature. All this evidence strongly

suggests the existence of new degrees of freedom that have not been discovered yet.

The scale at which they can resonantly produced sets a finite cutoff for the SMEFT

(unless the new particles are light, that is, at or below the electroweak scale, in which

case the SMEFT is clearly not a complete description of all elementary particles in

this regime).

A wide variety of UV completions of the SM have been proposed. Among then,

there are Grand Unification Theories (GUTs) [49], low-energy supersymmetry [50],

composite Higgs models [51], extra dimensions [52, 53], and many others, each with

different sets of motivations and predictions. Thus, an experimental or phenomenolog-

ical analysis that considers every individual UV completion in a case by case basis in

impractical. Also, the real UV model could be very different from any of the proposed

ones. Thus, it is convenient to use the SMEFT, which parametrizes the low-energy

regime of any these new physics models through higher-dimensional operators.

As described in chapter 4 and specially in section 4.5.1, it is useful to define a com-

plete set of independent operators, known as a basis, in terms of which the Lagrangian

must be written. In tables 3.3, 3.4 and 3.5, a basis operators of dimension 6 or less is

presented (excluding those that are quadratic in the fields). This is the basis that will

be used in this work. It was defined in ref. [54], refining the proposals of refs. [55–58].

We use the notation specified in appendix A.

The presence of higher-dimensional operators modifies the SM interactions and

introduce new ones. The first correction to SM physics comes from dimension 5 oper-

ators. Up to flavor indices, there is only one operator of dimension 5: the Weinberg

operator, listed in table 3.3. Its most important effect is, remarkably, the introduc-

tion of neutrino masses. Operators of dimension 6 are next in importance. There is

large number of them, with a wide variety of effects. They have become nowadays

a standard tool for parametrizing new physics effects in a model-independent way.

Currently, many of the coefficients of dimension-6 operators in the SMEFT have been

constrained using experimental data [59–81].

3.8 Conclusions

In this chapter, we have reviewed the theoretical framework that serves as a basis for

the work presented in the rest of the thesis: the EFT construction. We have discussed

some of the ideas that surround it: power counting, renormalization and matching.

We have also introduced the SMEFT, the EFT that parametrizes the interactions of
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Operator Notation

Dim. 4

(
φ†φ
)2 Oφ4

ēRφ
†lL Oye

d̄Rφ
†qL Oyd

ūRφ̃
†qL Oyu

Dim. 5 lcLφ̃
∗φ̃†lL O5

Table 3.3: Operators of dimension four and five. in the SMEFT.

Operator Notation Operator Notation

(
L̄L
) (
L̄L
)

(
l̄LγµlL

) (
l̄Lγ

µlL
)

Oll

(q̄LγµqL) (q̄Lγ
µqL) O(1)

qq (q̄LγµσaqL) (q̄Lγ
µσaqL) O(3)

qq(
l̄LγµlL

)
(q̄Lγ

µqL) O(1)
lq

(
l̄LγµσalL

)
(q̄Lγ

µσaqL) O(3)
lq

(
R̄R
) (
R̄R
)

(ēRγµeR) (ēRγ
µeR) Oee

(ūRγµuR) (ūRγ
µuR) Ouu

(
d̄RγµdR

) (
d̄Rγ

µdR
)

Odd

(ūRγµuR)
(
d̄Rγ

µdR
)

O(1)
ud (ūRγµTAuR)

(
d̄Rγ

µTAdR
)

O(8)
ud

(ēRγµeR) (ūRγ
µuR) Oeu (ēRγµeR)

(
d̄Rγ

µdR
)

Oed

(
L̄L
) (
R̄R
)

(
l̄LγµlL

)
(ēRγ

µeR) Ole (q̄LγµqL) (ēRγ
µeR) Oqe(

l̄LγµlL
)
(ūRγ

µuR) Olu

(
l̄LγµlL

) (
d̄Rγ

µdR
)

Old

(q̄LγµqL) (ūRγ
µuR) O(1)

qu (q̄LγµTAqL) (ūRγ
µTAuR) O(8)

qu

(q̄LγµqL)
(
d̄Rγ

µdR
)

O(1)
qd (q̄LγµTAqL)

(
d̄Rγ

µTAdR
)

O(8)
qd(

L̄R
) (
R̄L
) (

l̄LeR
) (
d̄RqL

)
Oledq

(
L̄R
) (
L̄R
) (q̄LuR) iσ2 (q̄LdR)

T O(1)
quqd (q̄LTAuR) iσ2 (q̄LTAdR)

T O(8)
quqd(

l̄LeR
)
iσ2 (q̄LuR)

T O(1)
lequ

(
l̄LσµνeR

)
iσ2 (q̄Lσ

µνuR)
T O(3)

lequ

B-violating

ǫABC
(
d̄cAR uBR

) (
q̄cCL iσ2lL

)
Oduq

ǫABC
(
q̄cAL iσ2q

B
L

) (
ūcCR eR

)
Oqqu

ǫABC
(
d̄cAR uBR

) (
ūcCR eR

)
Oduu

ǫABC(iσ2)αδ(iσ2)βγ

(
q̄cAαL qBβL

)(
q̄cCγL lδL

)
Oqqq

Table 3.4: Basis of dimension-six operators: four-fermion interactions. Flavor indices

are omitted.
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Operator Notation Operator Notation

X3 εabcW
a ν
µ W b ρ

ν W c µ
ρ OW εabcW̃

a ν
µ W b ρ

ν W c µ
ρ OW̃

fABCG
Aν
µ GB ρ

ν GC µ
ρ OG fABCG̃

Aν
µ GB ρ

ν GC µ
ρ OG̃

φ6
(
φ†φ
)3 Oφ

φ4D2
(
φ†φ
)
�
(
φ†φ
)

Oφ�

(
φ†Dµφ

)
((Dµφ)† φ) OφD

ψ2φ2

(
φ†φ
) (
l̄LφeR

)
Oeφ(

φ†φ
)
(q̄LφdR) Odφ

(
φ†φ
) (
q̄Lφ̃uR

)
Ouφ

X2φ2

φ†φBµνB
µν OφB φ†φB̃µνB

µν OφB̃

φ†φW a
µνW

aµν OφW φ†φW̃ a
µνW

aµν OφW̃

φ†σaφW
a
µνB

µν OφWB φ†σaφW̃
a
µνB

µν OφW̃B

φ†φGA
µνG

Aµν OφG φ†φG̃A
µνG

Aµν OφG̃

ψ2Xφ

(
l̄Lσ

µνeR
)
φBµν OeB

(
l̄Lσ

µνeR
)
σaφW a

µν OeW

(q̄Lσ
µνuR) φ̃Bµν OuB (q̄Lσ

µνuR) σ
aφ̃W a

µν OuW

(q̄Lσ
µνdR)φBµν OdB (q̄Lσ

µνdR) σ
aφW a

µν OdW

(q̄Lσ
µνTAuR) φ̃G

A
µν OuG (q̄Lσ

µνTAdR)φG
A
µν OdG

ψ2φ2D

(φ†i
↔
Dµφ)

(
l̄Lγ

µlL
)

O(1)
φl (φ†i

↔
D a
µ φ)

(
l̄Lγ

µσalL
)

O(3)
φl

(φ†i
↔
Dµφ) (ēRγ

µeR) Oφe

(φ†i
↔
Dµφ) (q̄Lγ

µqL) O(1)
φq (φ†i

↔
D a
µ φ) (q̄Lγ

µσaqL) O(3)
φq

(φ†i
↔
Dµφ) (ūRγ

µuR) Oφu (φ†i
↔
Dµφ)

(
d̄Rγ

µdR
)

Oφd

(φ̃†iDµφ) (ūRγ
µdR) Oφud

Table 3.5: Basis of dimension-six operators: operators other than four-fermion inter-

actions. Flavor indices are omitted.

the known elementary particles. It does so in a general way, independently of the new

physics that might appear at high energies.

The low-energy effects of unknown high-energy degrees of freedom is taken into ac-

count in the SMEFT through the introduction of higher-dimensional operators, whose

contribution to observables is suppressed by inverse powers of the cutoff. At ener-

gies around the cutoff scale, these new degrees of freedom may be produced and the

SMEFT stops being a valid description of the physics. As we will see in part III, one

can go beyond the SMEFT while keeping most of its advantages. Under very gen-

eral conditions, all possible new particles can be enumerated and collected together

with the SM ones in an EFT that extends the SMEFT without loosing model inde-

pendence. Then, both direct and indirect effects of the new particles can be studied,

taking advantage of the EFT approach.





CHAPTER 4
Field redefinitions

4.1 Introduction

The description of a given quantum field theory in terms of an action and a renormal-

ization scale (or a cutoff, in the Wilsonian approach) is highly redundant. Firstly, the

renormalization group invariance represents a one-parameter redundancy: a change in

the renormalization scale (or in the cutoff) can be compensated by a change in the

action in such a way that the predictions of the theory are preserved.1 Secondly, phys-

ical observables are invariant under redefinitions of the quantum fields.2 This property

of quantum field theory is sometimes known as the equivalence theorem (not to be

confused with the equivalence theorem in the Higgs mechanism). Different versions of

this theorem, with different assumptions and in different contexts, have been proved

and discussed in the literature [83–89]. Here we have in mind the application of the

EFT to the scattering of particles. In this context, the redundancy is given by the

freedom in choosing interpolating fields that can create the relevant particles from the

vacuum and be used to compute scattering amplitudes.

In this chapter, we explore some aspects of local perturbative field redefinitions

in EFTs. By perturbative, we mean that the variation in the fields is treated as a

perturbation. These redefinitions have the virtue of being automatically invertible with

a local inverse, in a perturbative sense. Moreover, as shown, for instance, in [90] and

reviewed below, their effect is particularly simple, as the Jacobian of the transformation

can be ignored in methods such as dimensional regularization. Most of the time, the

change of the fields will be taken to be suppressed by some positive integer power of

the inverse of the cutoff scale 1/Λ. Then, treating it as a perturbation is actually

implied by the perturbative expansion of the EFT in powers of 1/Λ. This kind of

redefinition mixes different orders in the 1/Λ expansion of the effective action in a

triangular fashion: the n-th order of the redefined action depends only on terms of

order m ≤ n in the original one.

1More generally, any change of renormalization scheme can compensated by a change in the
action.

2Actually, the renormalization group invariance can be understood as the invariance under a
particular type of field redefinition [82].

31
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Perturbative redefinitions are performed customarily by EFT practitioners in order

to write general or particular effective actions, consistent with certain symmetries, in

reduced forms [54,56–58,89,91,92]. The idea is to eliminate part of the reparametriza-

tion redundancy by imposing a condition on the action. This is completely analogous

to fixing a gauge in a gauge-invariant theory, and we will borrow this terminology.3 A

standard gauge-fixing condition is to require the vanishing of the coefficients of certain

operators. As we review in section 4.5, this can be achieved order by order in 1/Λ by

perturbative redefinitions. If no linear combination of the remaining operators can be

redefined away without violating the gauge-fixing condition, then these operators are

said to form a non-redundant basis. When eliminating a certain term of order n, the
change in the action at orders m > n (and in the other terms at order n) can be ab-

sorbed into the operator coefficients of the original action, if it is completely general.4

From the purely effective point of view, there is often no need to track this redefini-

tion of the coefficients, as they are free parameters to be determined experimentally.

For this reason, among others, the “higher-order effects” of the field redefinition are

usually ignored. Then, it turns out that the order-by-order algorithm to remove op-

erators with perturbative redefinitions is equivalent to a very simple recipe: using the

equations of motion of the action at lowest order (n = 0) in any of the terms of order

n ≥ 1 [91].

However, in many situations it is crucial to know the dependence of the coefficients

in the redefined action on the coefficients of the original one. This is the case, for

instance, when one wants to translate the experimental limits on the coefficients in

one basis of operators into limits on the coefficients of the operators in another (re-

duced) basis. Another common scenario is the one in which the coefficients in a certain

effective action are known functions of the parameters of some ultraviolet (UV) com-

pletion of interest, and one wants to know the corresponding functional dependence

of the operator coefficients in a particular non-redundant basis. In these situations,

all the effects of the field redefinitions up to a certain order must be considered if the

aimed precision requires a calculation to that order [94]. Analyzing the perturbative

structure of these effects—including the impact of quantum corrections and dimen-

sionless couplings—is the main purpose of this chapter. In particular, we clarify the

relation between perturbative field redefinitions and the classical equations of motion,

which still is, apparently, the source of some confusion. For example, it is well known

that many of the corrections of order n ≥ 2 generated by the perturbative redefinitions

are missed by the recipe based on the lowest-order equations of motion. One could try

to improve this situation by including higher-order terms in the equation of motion, as

done in [27, 95]. We show, however, that the higher-order corrections induced by the

redefinitions are not correctly recovered by this extended recipe. The essential reason

is that the classical equations of motion only capture the first-order response of the ac-

tion to variations of the fields. Therefore, using naively the equations of motion, with

or without higher-order corrections, gives in general an action that is not equivalent

to the original one at the second and higher orders. Imposing equations of motion is

not the same as performing field redefinitions.

3In fact, this is more than a mere analogy: any quantum field theory has a BRST symmetry
associated with field redefinitions [93].

4Note that the necessary redefinitions will always preserve the symmetries of the action, see
section 4.5.
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Whether the higher-order terms, in particular those induced by field redefinitions,

are significant or not in practice, depends on many factors: the experimental precision,

the process to be calculated, the theory at hand, the value of E/Λ and the value of

the remaining parameters that appear in the action. For instance, it may happen that

the first-order contributions are vanishing or very suppressed, due to some symmetry

or to some dynamical reason. Then the second-order terms would give the leading

correction [96,97].

Taking into account the higher-order terms generated by field redefinitions is rele-

vant, in particular, for the consistent perturbative matching of a local EFT to a more

fundamental UV theory with the same light degrees of freedom. In this respect, we

also study the impact on the EFT of field redefinitions performed in the UV theory.

We find that, non-trivially, the redefinitions of the light fields do not commute at the

quantum level with the matching procedure. This is related to the contribution of

heavy-light loops in the UV theory.

The chapter is organized as follows. In section 4.2, we review the effect of lo-

cal redefinitions on quantum field theories for off-shell and on-shell quantities, paying

special attention to the case of perturbative redefinitions.5 We discuss in particular

renormalization and subtleties related to tadpoles. We also present an a toy model

illustrating the role of the Jacobian and the sources in the field transformation. In sec-

tion 4.3, we discuss the relation between field redefinitions and the classical equations

of motion. In particular, we give a counterexample to the exact validity of eliminating

operators proportional to the equations of motion. In section 4.4, we examine how

field redefinitions affect the matching of an EFT to a more fundamental one. We also

perform a sample calculation that proves the appearance of non-trivial effects of field

redefinitions when a quasi-local action (such as the one obtained from matching) is

truncated at a finite order in the 1/Λ expansion. In section 4.5, we analyze pertur-

bative field redefinitions in which the perturbation is controlled by the same small

parameters as the perturbative expansion of the EFT. This refers mainly to the length

scale 1/Λ, but also to other dimensionless parameters that may enter in the EFT,

such as coupling constants or 1/4π factors related to loops. We also point out a few

effects at higher orders in 1/Λ or in the loop expansion. Inside this section, we also

show that explicit gauge covariance is preserved by covariant field redefinitions and is

manifest in the exact equations of motion of a gauge theory. In particular, this implies

that the corrections to the SMEFT equations of motion given in ref. [95] in terms of

ordinary derivatives and gauge fields can be written in terms of field-strength tensors

and covariant derivatives.

4.2 Reparametrization invariance

4.2.1 Reparametrization invariance in general

Consider a quantum field theory constructed as in chapter 3 from an action S. Let

Z(S)[J ] be the corresponding generating function. Now, let us perform a change of

integration variables φ → F (φ), where F is an invertible function. Ignoring regular-

5Much of the content of this section can be found in ref. [89]. We also clarify a couple of important
details and summarize latter work on renormalization.



34 CHAPTER 4. FIELD REDEFINITIONS

ization and renormalization for the moment, we get

Z(S)[J ] :=

∫
Dφ exp (iS[φ] + Jαφ

α), (4.1)

=

∫
Dφ det

(
δF

δφ

)
exp (iS[F (φ)] + JαF

α(φ)). (4.2)

So, the generating function is invariant under a field redefinition in the action, S ′[φ] =
S[F (φ)], if the redefinition is accompanied by the corresponding Jacobian factor and

the corresponding change in the source terms, as specified by eq. (4.2). Usually, the

transformation F is taken to respect the symmetry and hermiticity properties of the

original action, although this is not strictly necessary: as long as the transformation

is invertible, the change of variables is valid and the generating function will remain

invariant (see nonetheless comments in [98]).

Both the Jacobian and the modified source terms are required for Z to remain

invariant. In particular, they are necessary to cancel possible higher-order poles, as

illustrated in section 4.2.2. Fortunately, they can be neglected under certain circum-

stances, as we now review. This is the usual statement of the equivalence theorem.

The Jacobian of the transformation can be written in terms of ghost fields c, c̄:

det
δF

δφ
=

∫
Dc̄Dc exp

(
−ic̄α

δF α

δφβ
cβ
)
. (4.3)

In the following we consider only local transformations, with F ax(φ) depending analyt-
ically on the value of the fields and their derivatives, up to a finite order, at the point

x. Then the Jacobian in terms of ghosts can be simply added to the action, which

remains (quasi) local. In general, this contribution to the action has a non-trivial effect

(see section 4.2.2). However, most applications involve perturbative field redefinitions

F (φ) = φ+ λG(φ), (4.4)

where G is analytic in λ and all terms proportional to positive powers of λ are to be

treated as interactions in perturbation theory. Then, the inverse of the transformation

is also local. Moreover, the ghost propagator is equal to the identity and the ghost loops

only contain insertions of δG(φ)/δφα, which by the locality assumption are polynomials

of the internal momenta. Therefore the ghost loops will integrate to zero in dimensional

regularization [90]. The same will happen to the contributions that were cancelled by

these loops. So, in dimensional regularization (and in any regularization with this

property), the Jacobian of a local, perturbative transformation is equal to the identity

and the ghosts can be ignored. We then have the identity Z(S) = Z(S ′, F ). Let us

stress that, for consistency, the quadratic terms in S ′ that vanish as λ → 0 should

neither be resummed into the propagators of that theory.

The change in the source terms is important for the invariance of off-shell quantities,

but thanks to the LSZ reduction formula6 it has no impact on the S matrix, at least

for local perturbative redefinitions. To understand this, note first that the poles of the

momentum-space two-point function of any operatorO are equal to the physical masses

ma of the particles a that this operator can create from the vacuum. The probability

6See section 3.2 and ref. [99].
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amplitude of creating particle a with momentum p,
√
Za

O := 〈ap| O(0) |0〉 6= 0, is given

by the residues at the poles. The operator O is then a valid interpolating field that

can be used in the reduction formula to find S-matrix elements involving any of the

particles a, with wave-function renormalization given by
√
Za

O. For a perturbative

field redefinition eq. (4.4),

〈ap|F i0(φ) |0〉 = 〈ap|φi0 |0〉+O(λ). (4.5)

Therefore, if Za
φi 6= 0 when λ → 0, then Za

F i(φ) 6= 0. Hence, F i(φ) is also a valid

interpolating field for the particle a. Moreover, because the physical masses of the

particles do not know about the field representation, the poles in the two-point function

will remain the same at any order. In terms of generating functionals, all this means

that Z(S) and Z(S ′) give rise to the same S matrix. We will say that they are

equivalent on-shell and write

Z(S) = Z(S ′, F ) ∼ Z(S ′). (4.6)

Let us emphasize that this results holds for a general perturbative redefinition [89].

The function G in eq. (4.4) can be non-linear, it can contain terms proportional to

the field or to the field derivatives and it can contain a non-vanishing constant. The

latter might raise some concerns, as the proof of the LSZ formula assumes a vanishing

vacuum expectation value (vev) of the operator O. Let us examine this issue. Suppose

δZ[J ]/δJ i(x)|0 = vi. If vi 6= 0, it is customary to write φi(x) = vi + hi(x) and work

with the shifted fields hi, which have vanishing vev in the original theory S. Let

δZ ′[J ]/δJ i(x)|0 = ṽi. The corresponding shift is φi(x) = ṽi + h̃i(x), such that h̃i has
vanishing vev in the theory S ′. The transformation F induces another transformation

F̄ on the shifted fields: hi = F̄ i(h̃) = F i(ṽ+h̃)−vi = h̃i+λḠi(h̃). At the classical level,
it can be easily checked that F i(ṽ) = vi. This also holds at the quantum level when F
is linear. In this case, F̄ and Ḡ have no constant term.7 Conversely, in this case the

transformation F̄ i(h̃) = F i(ṽ + h̃) − F i(ṽ) leads to fields hi with no vev. For generic

non-linear transformations, on the other hand, F i(ṽ) 6= vi at the quantum level. This

can be seen as a particular consequence of the fact that the quantum action (unlike

the classical one) is not a scalar under non-linear field redefinitions. This is due to

the lack of covariance of the source terms Jαφ
α: a non-linear field redefinition in this

term cannot be absorbed into a redefinition of the sources. Covariant extensions of

the effective action have been proposed in [100,101]. At any rate, in general F̄ and Ḡ
will have a constant at O(~), and it is this constant that guarantees vanishing vevs. In

practice, this amounts to performing a field transformation, calculating the vevs with

the new action and then performing the corresponding shift (in perturbation theory

this can be achieved by imposing tadpole cancellation as a renormalization condition,

see the corresponding comments in [98]).8

It should be remembered that the simplified result eq. (4.6) is not valid for off-shell

quantities. We have already mentioned the fact that the vevs of the fields are not

7This property is implicit in the discussion of spontaneously broken theories in [89].
8Alternatively, it is possible to work with h′ = F−1(v+h)−F−1(v), which in general will have a

vev at O(~λ). The field h′ is perturbatively close to h̃ so the results will be the same in perturbation
theory, although the presence of tadpoles is an unwanted complication. It can also be used in the
LSZ formula, since the contribution of the (constant) difference with h̃ lacks the corresponding pole.
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covariant under field redefinitions. As pointed out in [98], care is also needed with

unstable particles. Of course, as long as they are rigorously treated as resonances

in processes with stable asymptotic states, the LSZ formula holds and eq. (4.6) can

be used. The problem with eq. (4.6) arises when one insists in treating the unstable

particles as external states, which is extremely useful since most of the particles in the

SM (SM) are unstable. For this, different treatments have been proposed (see ref. [102]

and references therein). It would be interesting to assess to what extent eq. (4.6) is a

good approximation in each of these treatments.

To finish this section, let us discuss in what sense these results survive renormal-

ization. Following the notation in section 3.4, let S be a classical action and R(S)
the corresponding renormalized action according to a renormalization scheme R. The

action S ′[φ] = S[F (φ)] can also be renormalized to give R(S ′), which cannot be re-

covered by just making the same field redefinition in the original renormalized action.

That is, R(S ′) 6= R(S)′. One nice way of relating the renormalization in both theories

has been proposed in [103]. The essential idea is to add sources La for all the possible
operators. Then, it is shown that to connect both renormalized theories not only the

fields but also the sources must be transformed: φ → F (φ), L → L′(L). This is quite
natural in the framework of the renormalization of composite operators [104], which

is required here because φ in the theory S ′ is composite from the point of view of the

original theory S. Interestingly, in this picture renormalization itself can be seen as a

regulator-dependent change of variables [103,105]. The most important implication of

these relations between renormalized theories is that predictivity is preserved: if the

observables depend on a finite number of physical parameters, to a given order, in the

theory defined in the original variables, the same holds in the theory defined with the

new variables (see ref. [106] for an explicit example in a renormalizable theory).

4.2.2 A simple example

To explicitly show how the original Green functions of a theory are reproduced after a

redefinition of the fields, we describe here an example of a field redefinition in a simple

quantum field theory. We start with a free massless real scalar field φ. Its generating
function is

Z(Sfree)[J ] =

∫
Dφ exp

(
− i

2
φx(�φ)

x + Jxφ
x

)
. (4.7)

A change of variables φ→ F (φ) = φ+(1/m2)(�φ+ gφ3) in the path integral gives

the following expression, where we have used eq. (4.3):

Z(Sfree)[J ] = Z(S, F )[J ], (4.8)

where S[φ, c, c̄] = Sφ[φ] + Sc[φ, c, c̄] is given by

Sφ = −
∫
ddx

[
1

2
φ�

(
1 +

�

m2

)2

φ+
g

m2
φ3�

(
1 +

�

m2

)
φ+

g2

2m4
φ3�φ3

]
, (4.9)

Sc = −
∫
ddx

[
c̄(�+m2)c+ 3gφ2c̄c

]
. (4.10)

We have normalized c to have a canonical kinetic term.
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=
i

p2(1− p2/m2)2
=: ∆φ(p),

p
=

6ig

m2
p2
(
1− p2

m2

)
,

pc

pb

pa

=
36ig2

m4
(pa + pb + pc)

2,

= 1− p2

m2
, =

6g

m2

=
i

p2 −m2
=: ∆c(φ), = −6ig.

Figure 4.1: Feynman rules from eqs. (4.8), (4.9), (4.10). Crossed dots represent sources.

Solid and dotted lines correspond to φ and ghosts, respectively. An arrow over a φ line

is used to specify that the corresponding momentum enters in the factor associated

with the vertex it points to. The square that splits the 6-line vertex specifies the three

momenta that appear in its associated factor.

The momentum space Green function G(n)(S, F ) is the sum over all connected

diagrams with n sources constructed using the Feynman rules collected in Figure 4.1.

The propagator ∆φ(p) for φ contains the physical pole at p2 = 0 but also a new

(double) pole at p2 = m2 that was not present originally. This problematic behavior

will be canceled by the momentum dependent vertices and the pole at the same point

of the ghost propagator ∆c(p).
There are several cancellations between subgraphs of the diagrams we are consid-

ering. This is just an example of the more general case nicely discussed in [90]. Three

of these cancelllations are shown in Figure 4.2. From the first two equations in this

figure, it follows that that we can obtain the full result by summing over a subset of

all diagrams: those that do not contain 3-line sources, 6-line vertices, any arrows in

external lines or two arrows in the same internal line. In other words, we only need to

consider diagrams with 1-line sources, 4-line vertices, no arrows in external lines and

at most one arrow in each internal line.

For any diagram, let V be the number of vertices, I the number of internal lines

and L the number of loops. We have the relation

V − I + L = 1. (4.11)

The number of arrows over φ lines equals the number of φ4 vertices, so at tree level

(L = 0) there are no diagrams with less than two arrows in all internal lines. The only

exception is the case V = 0, which gives the only diagram contributing toG(2)(p,−p) =
i/p2. All the other Green functions vanish at tree level.
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+ = 0, + = 0,

· · ·

+

· · ·

= 0.

Figure 4.2: Cancellations between subdiagrams.

For L > 0, we can reduce the problem by cutting all internal φ lines without arrows.

The result might be disconnected. For each connected component C the number of φ4

vertices equals the number of internal φ lines and the number of φ2c̄c vertices equals
the number of ghost lines. Therefore, using eq. (4.11), C has exactly one loop (L = 1).

A 1-loop diagram has as a subgraph one of the two 1-loop diagrams in Figure 4.2, so

it must cancel with the diagram obtained by replacing the subgraph with the other

1-loop diagram in the same figure. The cancellation of the connected components after

the cut implies the cancellation of the diagrams resulting from joining them back. The

conclusion is that the L-loop correction (with L > 0) to any Green function is zero.

We have computed all the Green functions to all orders in the loop expansion:

G(2)(S, F )(p,−p) = i

p2
, G(S, F )(n>2) ≡ 0, (4.12)

they agree exactly with the G(n)(Sfree), which are obtained in a more straightforward

way from Z(Sfree). Therefore, they must also be equal order by order in p2/m2. This

means that if we had worked perturbatively in p2/m2 we would have obtained the

same results. However the calculations would have had an important difference: the

ghost momentum would never appear in the denominator, so their loop integrals would

vanish in dimensional regularization. As stated in general in section 4.2, we can ignore

the ghosts when the redefinition is perturbative and dimensional regularization is used.

The Green functions G(S)(n) generated with the function Z(S), obtained from

eq. (4.8) by replacing JαF
α(φ) → Jαφ

α in Z(S, F ), are equal to the ones computed

from Z(S, F ) except for the source factors. Now, there is nothing to cancel the first

diagram in Figure 4.1, but the corresponding factor has a pole at p2 = m2 and not

at p2 = 0, so its contribution is eliminated by the LSZ formula. The other difference,

the p2/m2 term in the factor corresponding to the 1-line source, also vanishes on shell.

Thus, Z(S, F ) ∼ Z(S).
In section 4.3, it is proven that some parameter of the action is redundant if and

only if the derivative of the action with respect to it is proportional to the equation of
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motion. This condition is satisfied in this case:

∂Sφ
∂(1/m2)

=
δSφ
δφx

(
�φ+ gφ3 − 1

m2

[
�2φ+ 3gφ2�φ+ g�φ3 + 3g2φ5

])x
+O

(
1

m4

)
,

(4.13)

which means that the parameter 1/m2 of the action Sφ is redundant. For the parameter

g, a similar equation (of the form ∂Sφ/∂g ∝ δSφ/δφ) can be obtained. However, this

is not necessary to eliminate g from Sφ because 1/m2 can be taken to be zero (as it is

redundant) and then Sφ becomes independent of g.

4.3 Equations of motion

4.3.1 Equations of motion and redundant operators

The Schwinger-Dyson equations follow from the invariance of the path integral under

infinitesimal field redefinitions9 and can be written succinctly as

∫
Dφ
[
i
δS

δφβ
+ Jβ

]
exp(iS + Jαφ

α) = 0. (4.14)

Differentiation with respect to J gives an infinite set of relations among the Green

functions, which can be considered the quantum equations of motion of the theory. In

this section, we discuss instead relations between field redefinitions and the classical
equations of motion, δS/δφα = 0.

For the perturbative redefinition in eq. (4.4), we can Taylor expand the resulting

action,

S ′[φ] = S[F (φ)] (4.15)

=

∞∑

m=0

1

m!
λmGα1(φ) · · ·Gαm(φ)

δmS[φ]

δφα1 . . . δφαm
(4.16)

= S[φ] + λGα1(φ)
δS[φ]

δφα1
+O(λ2) (4.17)

=: S ′
linear[φ] +O(λ2). (4.18)

The term linear in G, of order λ is proportional to δS/δφ, and thus vanishes if the

classical equations of motion of S are used. However, due the higher-order terms, we

see that S ′ is not equal to S ′
linear, that is, S and S ′

linear are not related by this field

redefinition for any G and λ. As we show below, for a generic G they are actually not

related by any local field redefinition. Thus, adding to S a perturbation proportional

to its equations of motion does not result in general in an action equivalent to S.
Equally, eliminating terms in the action by imposing the classical equations of motion
of the rest of the action does not produce an equivalent theory. The equivalence only

holds at linear order in the perturbation. Note that the perturbation λGδS/δφ is

neither redundant in the classical limit. Indeed, the relevant equations of motion for a

9Conversely, the path integral (4.1) can be understood as a formal solution to the Schwinger-
Dyson equations.
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tree-level calculation of Green functions include the variation of the perturbation itself

and the variation of the source terms.

All this looks pretty straightforward, but apparently there is still some confusion

about the limitations of the classical equations of motion, even among experts in EFTs.

For example, statements such as “the operators that vanish by the equations of motion

are redundant” or “the operators that vanish by the equations of motion give no con-

tribution to on-shell matrix elements”, without further qualification, are found every

now and then in the specialized literature. To make this point completely clear, we

stress that the proofs in [107–110] of the redundancy of equation-of-motion operators

are only valid at the linear level, as indicated in these references. Let us briefly review

the argument in [107], which is reproduced in the discussion about field redefinitions

and equations of motion in the lecture notes [16]. Given an action S and an operator

of the form O(z) = (f iδS/δφi)(z), field redefinitions in the path integral are used to

show that the correlators 〈0|Tφi1x1 . . . φinxnO(z)|0〉 in the theory described by S can be

written as a sum of terms proportional to delta functions involving the points i1 . . . in.
10

Then, it follows from the LSZ formula that 〈p1 . . . pr|O(z)|pr+1 . . . pn〉 vanishes, since
the number of poles is smaller than n. From this, it is concluded in [16] that the

operator O “can be dropped because it does not contribute to the S matrix”. But this

conclusion is an unjustified extrapolation of the particular result for S-matrix elements

with only one insertion of O.11 Indeed, the perturbative calculations with the complete

action S+λO involve in general arbitrary powers of the interaction λO, so one needs to

also take into account the correlators 〈0|Tφi1x1 . . . φinxnO(z1) . . .O(zm)|0〉 with m > 1.

It can be checked that these correlators contain terms that are not proportional to

any delta function involving the points x1, . . . , xn. These terms do not need to vanish

when the elementary fields are reduced into on-shell particles. Therefore, diagrams

with a single insertion of O do not contribute when the external legs are on shell, but

diagrams with two or more insertions do, in general. In section 4.3.2, we check explic-

itly in a simple example that, already at the tree level, 〈p1p2|TO(z1)O(z2)|p3p4〉 6= 0.

All this agrees with eq. (4.18): λO can be eliminated at the linear order in λ by a per-

turbative field redefinition, but in doing so other operators proportional to the second

and higher powers of λ are generated. The single (and multiple) insertions of these

new operators reproduce the effect of the multiple insertions of O.

4.3.2 An example

In ref. [107] (see also ref. [16]) it is proven that the S matrix with one insertion of an

operator proportional to the equation of motion vanishes. This is not true, however,

for two or more insertions. We check here both statements in the case proposed in

exercise 6.1 of [16]. We will compute connected momentum-space Green functions

G(m,n) in the theory

Z(S, (φ, θ))[Jφ, Jθ] =

∫
Dφ exp

(
iS[φ] + Jφxφ

x + Jθxθ
x
)

(4.19)

10This is a simple generalization of the Schwinger-Dyson equations. Dimensional regularization is
assumed in order to neglect the Jacobian of the transformation.

11The author of ref. [16] warns latter that “working to second order in the equations of motion
is tricky” (see ref. [27] for more details). However, as shown in section 4.5 and in the example of
section 8.6, using the equations of motion at second order is in general wrong, rather than tricky,
while at first order it involves no complications.
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S[φ] = −
∫
d4x

(
1

2
φ(�+m2)φ+

λ

4!
φ4

)
, (4.20)

θ = φ
δS

δφ
= −φ(�+m2)φ− λ

3!
φ4. (4.21)

They are defined in eq. (3.5). The corresponding Feynman rules are presented in

Figure 4.3. We will calculate G(4,1) and G(4,2). The relevant diagrams are shown in

Figure 4.4. In terms of them, the Green functions are

G(4,1) = A+

4∑

r=1

Br, (4.22)

G(4,2) =

4∑

r=1

2∑

k=1

Crk +

4∑

r=1

2∑

k,l=1
k 6=l

Drkl +

4∑

r,s=1
s>r

2∑

k,l=1
k 6=l

Erskl. (4.23)

The S matrix is obtained by taking the residue when all pi go on-shell. Let Res be

the operation

Res(G) = lim
p21→m2

lim
p22→m2

lim
p23→m2

lim
p24→m2

[(
4∏

i=1

(p2i −m2)

)
G

]
. (4.24)

Applying it to each diagram gives

Res(A) = −4λ, Res(Br) = λ, (4.25)

Res(Crk) = −4iλ, Res(Erskl) = iλ, (4.26)

Res(Drkl) = iλ

(
1 +

(ql + pr)
2 −m2

(ql + qk + pr)2 −m2

)
, (4.27)

where all momenta are taken as ingoing. Using eqs. (4.22)-(4.27) we get

Res(G(4,1)) = 0, (4.28)

Res(G(4,2)) = iλ


−12 +

4∑

r=1

2∑

k,l=1
k 6=l

(ql + pr)
2 −m2

(ql + qk + pr)2 −m2


 . (4.29)

So, indeed, the S-matrix element with one insertion of θ vanishes. However, when two

insertions of θ are included, it does not.

4.3.3 Equations of motion and redundant parameters

Another approach to the analysis of redundancies in the action is focusing on redundant
parameters instead of redundant operators. In this case, there is an exact relation with

the classical equations of motion. A parameter ξ in an action Sξ will be redundant if

it can be eliminated by a local field redefinition, i.e. if an invertible Fξ exists such that

S ′ = Sξ ◦ Fξ does not depend on ξ. Then, using that ∂S ′/∂ξ = 0,

∂Sξ
∂ξ

=
∂(F−1

ξ )α

∂ξ

δF β
ξ

δφα
δSξ
δφβ

. (4.30)
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=
i

p2 −m2
= −iλ

= p21 + p22 − 2m2 = −4λ

Figure 4.3: Feynman rules for φ4 theory and insertions of the operator θ, represented
by a solid dot.

A = Br =

r

Crk =

r
k

Drkl =

r

k
l

Erskl =

s

r
k

l

Figure 4.4: Relevant diagrams for the computation of G(4,1) and G(4,2) in the φ4 theory

with θ insertions at tree level. Empty (solid) dots denote the sources for φ (θ).

We conclude that if ξ is redundant, then ∂Sξ/∂ξ vanishes when the classical equations

of motion are enforced. The converse implication is also true: if ∂Sξ/∂ξ vanishes by

the classical equations of motion, then ξ is redundant [111]. Indeed, the variation

of Sξ under an infinitesimal change δξ of the parameter ξ is δSξ = (∂Sξ/∂ξ)δξ. If

(∂Sξ/∂ξ) = fαδS/δφα, then the change δSξ can be compensated by the infinitesimal

transformation given by eq. (4.4) with λ = δξ and G = −f , as can be seen in eq. (4.18).

That is, ∂(Sξ◦Fξ)/∂ξ = 0. Since this holds for any value of ξ, it follows that S ′ = Sξ◦Fξ
is constant in ξ.

Let us use this last approach to study under which circumstances may S + λf be

equivalent to S. Here, f is a local functional of φ and neither S nor f depend on λ.
As we have just seen, λ is a redundant parameter if and only if

f = gα
δ

δφα
(S + λf). (4.31)

for some local λ-dependent functionals gα of φ. We want to solve this equation for

gα. As we are interested in perturbative redefinitions, we require that gα has a power

expansion gα = g(0)α + λg(1)α + . . . . Comparing the terms of order 0 in λ, we see

that, for a solution to exist, it must be possible to write f in the form f = fαS,α, and
then g(0)α = fα. Incidentally, this shows once more that the equations of motion can

be employed to eliminate terms at first order; the necessary perturbative redefinition
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with Gα = −fα follows from eq. (4.30). Writing gα = fα + λḡα, (4.31) reduces to

0 = ḡαS,α + (fα + λḡα)(fβ,αS,β + fβS,βα) (4.32)

Looking at the leading order of this equation, we see that, for a solution to exist, we

need

fαfβS,βα = hαS,α, (4.33)

for some hα. For a non-trivial action S and a generic fα, there is no solution to this

equation, since the first and second derivatives give a non-homogeneous result when

acting on terms in S with different number of fields. A solution exists, however, if

fα = fαβS,β. Actually, in this case there is a solution of eq. (4.31) to all orders in λ,
since eq. (4.32) is then of the form

0 =
(
ḡγ + fαβS,βW

γ
α + λḡαW γ

α

)
S,γ, (4.34)

where W γ
α is constructed with fαβ, S,α and their functional derivatives. Thanks to

its factorized form, this equation can always be solved recursively, to obtain a local

solution ḡα, and thus a local solution gα, as a power series in λ. From this, the local

perturbative redefinition that eliminates λf to all orders can also be obtained recur-

sively, using eq. (4.30). Therefore, we conclude that a perturbation λf is redundant in

perturbation theory if f is at least quadratically proportional to the equation-of-motion

operator δS/δφ. This result has actually been obtained before in [101, 112]. Here, we

have seen that for a general action this condition on f is not only sufficient, but also

necessary. A more direct way of checking that λS,αf
αβS,β is redundant is to perform a

field redefinition to eliminate it at first order. Then, it is easy to check that the higher

order terms have the same form. Therefore, successive field redefinitions will move the

effects of the perturbation to higher and higher orders, while preserving the property

that the generated terms are quadratic in the equation-of-motion operator. In this

way, the effects of the perturbation can be completely eliminated up to an arbitrary

power of λ.

4.4 Matching

In this section, we work in the setting and notation introduced in section 3.5.1. In

particular, SUV is the action of the fundamental theory, S̄ is the non-local action

for the light fields that exactly reproduces the effects of SUV and
⌈
S̄
⌉
n
is the local

action approximately reproduces them to order n. Let us perform a general local

change of variables involving both the heavy and the light fields, (Φ, φ) → F (Φ, φ) =
(Fh(Φ, φ), Fl(Φ, φ)). We find

Z(SUV)[J ] =

∫
DφDΦdet

(
δF

δ(φ,Φ)

)
exp {iSUV[F (Φ, φ)] + JαF

α
l (Φ, φ)} (4.35)

=: Z(S ′
UV, Fl)[J ], (4.36)

where S ′
UV[Φ, φ] = SUV[F (Φ, φ)]. Consider first the particular case with Fl(Φ, φ) =

Fl(φ), that is to say, the case in which the new light fields depend only on the original
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light fields.12 Then,

Z(SUV)[J ] = Z(S ′, Fl)[J ], (4.37)

where

exp
(
iS ′[φ]

)
=

∫
DΦdet

(
δFh
δΦ

)
exp {iSUV[Fh(Φ, φ), Fl(φ)]} (4.38)

=

∫
DΦexp {iSUV[Φ, Fl(φ)]} . (4.39)

In the last line we have redefined back the heavy variables for fixed light fields. This

change of variables is given by Φ = F−1
h (Φ′, Fl(φ)), with F

−1
h defined by F−1(Φ, φ) =

(F−1
h (Φ, φ), F−1

l (Φ, φ)).
The last equation shows that

S ′[φ] = S̄[Fl(φ)], (4.40)

which is also consistent with a change of variables in eq. (3.12). So, for the transfor-

mations we are considering now, the heavy field redefinition does not modify S̄, while
the light field redefinition commutes with the integration of the heavy field.

However, the local version of eq. (4.40),

⌈
S ′
⌉
n
[φ]

?
=
⌈
S̄
⌉
n
[Fl(φ)], (4.41)

does not hold, in general. Here, both
⌈
S̄
⌉
n
and

⌈
S ′
⌉
n
are defined by eq. (3.13) (with

sources coupling linearly to φ). Eq. (4.41) is equivalent to

Z(S̄, F−1
l )

?
= Z(⌈S⌉n, F−1

l ) +O(λn+1), (4.42)

as can be seen by performing a redefinition φ → Fl(φ), using the definition of
⌈
S ′
⌉
n
,

its assumed equality with
⌈
S̄
⌉
n
◦ F and performing another redefinition φ→ F−1

l (φ).
But requiring agreement to a given order of the Green functions of φ is not the same

as requiring agreement to that order of the Green functions of F−1
l (φ). This means

that doing redefinitions does not commute with matching to a local action. To prove

this, we give here a counterexample to eq. (4.42). Instead of considering redefinitions

of the fields in the action, one can equivalently deal with redefinitions in the source

terms, because changes of variables in the path integral relate one case to the other.

We will use this fact to simplify the following discussion, in which we consider changes

of the source terms only.

Consider the (non-local) action S̄ coming from integrating out the field Φ, using

eq. (3.12), from the theory defined by the UV action

SUV[Φ, φ] = −
∫
d4x

{
1

2
φ�φ+

1

2
Φ(�+M2)Φ + gΦφ2

}
. (4.43)

Let S̄tree be the action obtained by integrating out Φ at tree-level. We take 1/M2 as

the small parameter that controls the approximation of the EFT. The truncation of

S̄tree is

⌊
S̄tree

⌋
n
[φ] = −

∫
d4x

{
1

2
φ�φ− g2

2M2
φ2

(
n−1∑

k=0

(−1)
k
�k

M2k

)
φ2

}
, (4.44)

12This kind of redefinition is implicitly performed in the method proposed in ref. [113] to account
for the heavy-light loop contributions.
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A = B =

C = D =

Figure 4.5: Relevant diagrams for the 1-loop 3-point function generated by Z ′ and Z ′
n.

A and B are diagrams of G(3), C is a diagram of G
(3)
n and D appears in both.

At tree-level,
⌊
S̄tree

⌋
n
gives the same results as S̄tree up to order M−2n. The local

effective action
⌈
S̄
⌉
n
is obtained by including both the heavy loop corrections S̄− S̄tree

and the corrections
⌈
S̄
⌉
n
−
⌊
S̄
⌋
n
due to heavy-light loops. Notice that

⌈
S̄
⌉
n
will not

contain monomials that are odd powers of φ because of the φ→ −φ symmetry of the

original action SUV, that is preserved in the EFT. We will show that the functions

Z(S̄, φ+ λφ2)[J ] =

∫
Dφ exp (iS̄[φ] + Jα(φ+ λφ2)α), (4.45)

Z(⌈S⌉n, φ+ λφ2)[J ] =

∫
Dφ exp (i

⌈
S̄
⌉
n
[φ] + Jα(φ+ λφ2)α), (4.46)

do not satisfy the identity Z(S̄, φ + λφ2)[J ]
?
= Z(⌈S⌉n, φ + λφ2)[J ] + O(1/M2n) for

any n > 0. It is enough to see that the 3-point functions G(3) and G
(3)
n generated

by them are different. The relevant diagrams are presented in Figure 4.5. Because

computing Green functions for φ with the non-local action S̄ is exactly equivalent to

computing them with the local action SUV, we present the corresponding diagrams in

terms of the Feynman rules for SUV, with double lines representing the propagator for

the heavy field Φ. The 4-line dot in diagram C represents the φ4 local interaction in⌈
S̄
⌉
n
generated at tree level. We have

G(3) = A+B +D + (permutations), G(3)
n = C +D + (permutations). (4.47)

Diagram C can be obtained by expanding in powers of 1/M2 the heavy propagator

inside A+B. Thus, for G
(3)
n to be equal to G(3) to order n, we should have

A+B + (permutations)
?
= C + (permutations) +O

(
1

M2n+2

)
. (4.48)

This is not true in general. Denoting by p1, p2 and p3 the momenta in each diagram

entering in the top, left and right vertex, respectively, we have that, in dimensional

regularization,

A|p21=0 = C|p21=0 = 0, (4.49)

because when p21 = 0 both A and C are scaleless integrals. On the other hand,

B|p21=0 = −8ig2λµ2ǫ

p22p
2
3

∫
d4−2ǫk

(2π)4−2ǫ

1

k2(k + p1)2[(k + p1 + p2)2 −M2]

∣∣∣∣
p21=0

(4.50)
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=
g2λ

2π2p22p
2
3(p

2
2 − p23)

{
log

(
M2 − p23
M2 − p22

)[
1

ǫ
− γ + log

4πµ2

M2

]
+ Li2

p22
M2

− Li2
p23
M2

+ log2
(
1− p22

M2

)
− log2

(
1− p23

M2

)}
+O(ǫ). (4.51)

where we have used the results for 1-loop integrals presented in [114]. The conclusion

is that Z(S̄, φ + λφ2) is not approximated by Z(⌈S⌉n, φ + λφ2) to order n, which

completes the counterexample to eq. (4.42). Nevertheless, the approximation should

be recovered on-shell, as Z(S̄, φ + λφ2) and Z(⌈S⌉n, φ + λφ2) differ only from the

original generating functions Z(S̄) and Z(⌈S⌉n) by the source terms. This can be

checked directly: diagram B does not have a pole at p21 = 0 and therefore it does not

contribute to the S matrix.

All this discussion applies irrespectively of whether method A or B is employed for

the matching. Let us add a few remarks on method A. In this method, the matching

is standardly performed for Green functions of the fields φ that appear in the action,

be it the original or the transformed one. If the comparison with the Green functions

for action SUV or S ′
UV is performed with a general local effective action that includes

all the symmetric operators to a given order, then S or S ′ will be automatically found,

respectively. As we have shown, they will be equivalent, but not directly related by

the transformation F . A problem may arise if a non-redundant basis is employed.

Then it is not possible, in general, to adjust the coefficients in such a way that the

off-shell Green functions reproduce those of the fundamental theory with an arbitrary

SUV. Indeed, proceeding in this way would be like trying to match Green functions

of different fields, φ and φ′ = F (φ). Therefore, any conversion into a reduced basis

should be performed after the (off-shell) matching, also in method A. The alternative

is to require only agreement for on-shell quantities, as proposed in [91].

In eq. (4.37) and (4.39) we have used in several places (determinant, action and

source terms) the fact that Fl is independent of Φ. Therefore, the simple relation

eq. (4.40) cannot be extended to the general case in which Fl depends on the heavy

fields.13 Nevertheless, as long as the redefined light field is a valid interpolating field

for the light particles, we have

Z(SUV) ∼ Z(S̄ ′′) (4.52)

with

exp
(
iS̄ ′′[φ]

)
=

∫
DΦdet

(
δF

δ(φ,Φ)

)
exp {iSUV[F (Φ, φ)]} . (4.53)

S̄ ′′ (and the corresponding
⌈
S̄ ′′⌉

n
) can be used to compute on-shell amplitudes of light

particles, even if it has no general simple connection with S̄ (
⌈
S̄
⌉
n
).

In addition to these remarks, note that the discussion in the previous section about

renormalization before and after the field redefinition also applies to the fundamental

and effective renormalized theories that enter the matching.

13The redefinition used in the method of ref. [34] to account for heavy-light loops belongs to this
more general case.
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4.5 Perturbative expansions

4.5.1 Removing reparametrization redundancy

The theory space of possible actions with a given field content can be divided into

equivalence classes, with actions in the same class related by field redefinitions (pos-

sibly with some restrictions, as discussed in section 4.2). All the actions in the same

class give rise to the same S matrix. An elegant way of working with these equivalent

classes, which has been mostly employed in non-linear sigma models, is to use a geo-

metric approach, in which the fields are coordinates of a differentiable manifold with

a connection [100,115–122]. This allows to maintain explicit covariance under changes

of coordinates (that is, field redefinitions). Here we will study the more mundane

(but also useful) approach of choosing a representative for each equivalence class and

systematically reducing every action to the corresponding representative [123]. This

is what we called “fixing a gauge” in the introduction. In this subsection, we first

review how this gauge fixing can be performed order by order in perturbation theory

and then examine the consequences of this procedure.

The EFT is organized as a power series in λ = 1/Λ:

S[φ] =

∞∑

n=0

λnSn[φ]. (4.54)

Let us study the effect of local perturbative redefinitions of order k, of the form

F (φ) = φ + λkG(φ), with k ≥ 1 and G analytic in λ. Under this redefinition, the

action changes into

S ′[φ] = S[F (φ)] (4.55)

=

∞∑

n,m=0

1

m!
λn+kmGα1(φ) · · ·Gαm(φ)

δmSn
δφα1 . . . δφαm

(4.56)

= S[φ] + λkGα(φ)
δS0

δφα
+O

(
λk+1

)
. (4.57)

In particular, the last line of this equation shows that all the actions that differ by

order-k terms proportional to the lowest-order equation of motion belong to the same

class to order k. Suppose Sk contains a term of the form fαk (φ)δK/δφα, with K any

term in S0. Then, this term can be eliminated by the following field redefinition of

order k:
F α
k (φ) = φα − λkfαk (φ). (4.58)

Obviously, this redefinition has no effect to order k−1. At order k, its only effect is to

add −fαk δS0/δφ
α to the action, which is the same as using the lowest-order equation of

motion to change δK/δφα by δ(K − S0)/δφ
α. The redefinition eq. (4.58) also changes

the action at order k + 1 and higher, as indicated in eq. (4.55).

Therefore, once the lowest order action S0 is fixed, a representative of each equiva-

lence class can be chosen, order by order, by picking at each order k ≥ 1 a specific term

Kk (which could be a linear combination of other terms) of S0 and imposing (besides

the hermiticity of the action and invariance under the relevant symmetries) that the

coefficients of operators in Sk proportional to δKk/δφ
α be equal to zero. Identifying
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these operators may require algebraic manipulations and integration by parts. Note

that, for a given Kk, the maximal number of different factors δKk/δφ
ix is equal to the

number of different fields φi. Therefore, to eliminate all the ambiguities at each order

k, Kk should be chosen such that δKk/δφ
ix 6= 0 for all i. A standard choice that works

for any k is to take Kk as the sum of all the kinetic terms. Then, any subsequent

redefinition of order k would move the action into a different gauge, so the remaining

linearly-independent operators that can appear in Sk will form a non-redundant basis

of operators at that order. To reach this basis from an arbitrary effective action, one

proceeds order by order. Let S(k−1) be the transformed action after consecutive field

redefinitions F1, . . . , Fk−1 that put it in the prescribed form to O(λk−1) and let fk(φ)
be the coefficient of δKk/δφ

α in S(k−1). Then, the field redefinition eq. (4.58) trans-

forms S(k−1) into S(k), which is in the prescribed form to O(λk). The actions S(k) and

S are connected by the field redefinition F = Fk ◦ Fk−1 ◦ · · · ◦ F1.

We see that, in order to define a non-redundant basis of operators, it is enough to

use the lowest-order equations of motion in the operators to be eliminated [91]. Indeed,

for this purpose, and as long as all the algebraically-linearly-independent operators

are included from the very beginning, the higher order corrections at each step k are

absorbed into coefficients that were arbitrary anyway, so there is no need to worry

about them. In fact, the same holds for the coefficients of the non-vanishing operators

at order k. So, as described in the last paragraph, it actually suffices to identify a set

of appropriate Kk and put to zero all the terms proportional to δKk/δφ
α. However,

we have already stressed that it is often important to know the dependence of the

coefficients in the transformed action on the original ones. Then, the redefinition must

be performed explicitly. When working to next-to-leading order, n = 1, the algorithm

has only one step (k = 1) and it is sufficient to apply the equations of motion of S0 to

the operators to be eliminated. But when working at orders n ≥ 2, it is mandatory

to include the higher-order corrections in the redefinition. This is the case when one

wants to rewrite a known action S in a particular basis. To second order, for instance,

this can always be achieved as explained above by a field redefinition F = F2 ◦ F1,

where F α
k (φ) = φα + λkGα

k (φ), with Gk a λ-independent function of the parameters of

Sm , m ≤ k. The redefined action is

S ′[φ] = S[F (φ)] (4.59)

= S0[φ] + λ

[
S1 +Gα

1 (φ)
δS0

δφα

]
(4.60)

+ λ2
[
S2 +Gα

1 (φ)
δS1

δφα
+

1

2
Gα

1 (φ)G
β
1 (φ)

δ2S0

δφαδφβ
+G2(φ)

δS0

δφα

]
+O(λ3) (4.61)

= S ′
0[φ] + λS ′

1[φ] + λ2S ′
2[φ] +O(λ3). (4.62)

We see explicitly that S ′
k depends in general on the parameters of all Sn with n ≤

k, and also that the higher-order effect of F1 must be taken into account in order

to get the correct dependence of the parameters of S ′
2 on the parameters of S0, S1

and S2. In particular, (4.62) is relevant when comparing, to second order in λ, the
constraints on the operator coefficients in one basis with the ones in another basis.

The same considerations apply to perturbative matching: field redefinitions performed
to eliminate terms of order k in the effective action have an impact on the matching
not only at order k but also at higher orders. This is readily seen in eq. (4.58) and
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eq. (4.62), taking S to be the local effective action obtained from matching to a more

fundamental theory. For instance, even if we put G2 = 0 in eq. (4.62), we cannot say

that to order 2 this S is equivalent to S0 + S ′
1 + S2. Changing S1 by S ′

1 requires in

general a change S2 → S ′
2. Observe also that knowledge of the field redefinition F (in

particular of F1) is needed to find the correct S ′
2.

We stressed in section 4.3 that using the exact classical equations of motion is

not equivalent to a non-infinitesimal field redefinition, and that it does not lead to

an equivalent action. Perturbatively, the effect of an order-k field redefinition can be

written as

S ′[φ] = S[φ] + λkG(φ)α
δS

δφα
+O

(
λ2k
)
. (4.63)

The exact equations of motion only give the linear contribution, starting at λk, but
miss the remaining O(λ2k) terms, which are necessary for S ′ to be equivalent to S.
Hence, the equations of motion at higher orders, as used for instance in [27, 95], are

not sufficient to find the higher-order corrections induced by a field redefinition. In

particular, using in S1 (and S2) the equation of motion to second order in λ does

not give, in general, an action that is equivalent to S to second order. The same

conclusions apply to the case in which the equations of motion of S ′ are used in S1

(and S2), as can be seen by exchanging the roles of S and S ′ and considering the

inverse transformation. To obtain the correct S ′, it is necessary to perform the actual

field redefinition in every term of the original action. This can be done either directly

or using the functional-derivative expansion in the second line of eq. (4.55).

The redefinitions needed to reduce some gauge-invariant action to a basis do not

break its invariance. The whole reducing procedure can be performed in a gauge-

covariant way. The fαk (φ) defined above are gauge-covariant operators with the same

quantum numbers as δK/δφα or, equivalently, of φα. Therefore, when the redefinition

in eq. (4.58) is performed, all the factors that multiply the functional derivative in the

redefined action in eq. (4.55) are covariant, as Gα(φ) = −fαk (φ). We show here that

these functional derivatives are also covariant. We denote the action by S[φ,A], where
A are the gauge fields. Consider a redefinition

φ→ φ′ = φ+ ζG, A→ A′ = A+ ηH, (4.64)

where G and H are covariant operators with G in the same representation as φ and

H in the adjoint representation. The gauge fields A only appear in the action S
through the field strength F

(A)
µν = ∂µAν−∂νAµ−ig[Aµ, Aν ] and the covariant derivative

D
(A)
µ = ∂µ − igAµ. For these objects, we have

F (A′)
µν = F (A)

µν + η
(
D(A)
µ Hν −D(A)

ν Hµ

)
− iη2g[Hµ, Hν ], (4.65)

D(A′)
µ O = D(A)

µ O − iηgHµO. (4.66)

All the terms in this expressions are covariant, with the same representation under the

gauge group. It follows that the transformed action S[φ′(φ,A), A′(φ,A)] is still gauge
invariant. Its expansion in ζ, η is

S[φ+ζG,A+ηH] =

∞∑

m,n=0

ζm ηn

(m+ n)!
Gα1 · · ·Gαm Hβ1 · · ·Hβn

δm+nS

δφα1 · · · δφαmδAβ1 · · · δAβn .

(4.67)
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Because this is invariant for any ζ and η, it must be invariant order by order in each of

them. Now, the covariance of the functional derivatives follows from the covariance of

the product of the operators G and H. In particular, the equation of motion operators

δS/δφ and δS/δA must be covariant and therefore it is possible to write them in terms

of field strengths and covariant derivatives, with no independent occurrences of the

gauge fields and partial derivatives.

4.5.2 Power counting

In this section, we follow the notation presented in section 3.3: Nη(O) denotes the

power of η that corresponds to the operator O. The “natural” coefficient of O can be

found as a product of ηNη(O) for all η.
Consider a field redefinition given by F α(φ) = φα + fα(φ), with f local. We can

write each f j as a linear combination of local operators f j1 , . . . , f
j
nj
. The redefinition

will be perturbative when min{Nη(f
j
1 ), . . . , Nη(f

j
nj
)} > Nη(φ

j) for some η. Thanks to
the factorization property eq. (3.8), the redefinition preserves the counting rule: an

action with natural operator coefficients is transformed into an action with natural

operator coefficients whenever the coefficients of the operators in f are natural. The

latter means that the coefficient αji of each operator f ji is

αji ≃
∏

η

η∆η(f
j
i )−∆η(φj) =

∏

η

ηNη(f
j
i )−Nη(φj). (4.68)

This condition will always be satisfied if the redefinition is performed to eliminate any

term in an action with natural coefficients.14 Explicitly, if the redefinition removes a

term Q = fα(δK/δφα), with K any term in the original action S, an operator O in

the original action will give rise to a sum of terms of the form

O[m] = fα1 . . . fαm
δmO

δφα1 . . . δφαm
, (4.69)

with power counting given by

Nη(O[m]) = Nη(O) +m · (Nη(Q)−Nη(K)). (4.70)

We have used the factorization property ∆η(Q) = ∆η(f)+∆η(K)−∆η(φ). If the coef-
ficient in Q happens to be suppressed by a factor ξ, relative to its natural value, while

O has a coefficient suppressed by a factor κ and K is natural, then the contribution

O[m] in S
′ will be be suppressed by ξmκ.

In the rest of the section we point out a few implications of this counting when

working with the SMEFT [124]. This EFT is usually described as having a power

counting determined by the canonical dimension ∆ of the operators: Nλ(O) = ∆(O)−
14If the definition has any other purpose, coefficients αj

i smaller or larger than (4.68) (that is,
“under-natural” and “super-natural”, respectively) are possible that still preserve the perturbativity
of the transformation. Super-natural coefficients will give rise to perturbative corrections that desta-
bilize the hierarchical structure of the original effective action. This will not be reflected in on-shell
quantities if all the new terms are included, since the new action is equivalent to the original one.
But the perturbative orders will be mixed, which must be taken into account in truncations of the
new action.
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4. In this case, ∆1/Λ = ∆ and c1/Λ = 4. We ignore in the following the few operators of

dimension 5 and 7. In order to reach some standard basis at dimension 6, one may need

to redefine the Higgs doublet φ in such a way that the dimension-6 terms proportional

to �φ are removed. The necessary cancellation arises from the kinetic term, while the

remaining terms of dimension 4 generate other terms (of the form O[1] in eq. (4.69)) at

dimension-6. This is the same as using the dimension-4 Higgs equation of motion in the

terms to be eliminated. As discussed in the previous section, there will be corrections

at dimension 8, from substituting one φ at dimension 6 or two φ at dimension 4.

Note, however, that an important detail is missing in this discussion: the SMEFT

does not start at dimension 4. The gauge-invariant operator Oµ = φ†φ has canonical

dimension 2. Under the same field redefinition, this super-renormalizable operator

gives contributions of the form (Oµ)[1] of dimension 4. Even if one can absorb the

corrections into a renormalization of the SM couplings, this renormalization modifies

the coefficients at dimension 6 (see chapter 8). These linear contributions can also be

found using the equations of motion. But on top of this, Oµ contributes at dimension

6 with terms of the form (Oµ)[2]. Indeed, using eq. (4.70) in this particular case, we

find Nλ((Oµ)[2]) = −2 + 2 · 2 = 2. Because (Oµ)[2] is proportional to δ
2Oµ/δφ

2, these

dimension-6 contributions will be missed if one only uses the equations of motion.

Note that this does not contradict the standard procedure to reach a basis by using

the equations of motion, reviewed in section 4.5, because the action at leading order

is not given by the dimension-4 terms but by the integral of Õµ = −µ2Oµ. Thus, the

field redefinition we are considering has nothing to do with the equations of motion of

the action at leading order.15

Of course, the coefficient µ2 of Oµ is not natural with the counting based on

dimensions. Experimentally, we know that there is a hierarchy µ≪ Λ. Hence, the new

terms (Oµ)[1] and (Oµ)[2] arising from Oµ will carry an extra suppression (µ/Λ)2 and

will typically be less important, numerically, than the corresponding dimension-4 and

dimension-6 terms. This can be rephrased in a more systematic way by incorporating µ
in the power counting: ∆λ(µ

2) = 2. This modified counting is nothing but dimensional

analysis. It follows that Nλ(Õµ) = 0. So, with the new counting Õµ is of the same

order as the dimension-4 terms, and the SM is the leading order approximation of the

SMEFT.

Consider next (differential) cross sections calculated in the SMEFT to order n in

1/Λ2. They are schematically of the form

σ ∝
∣∣∣∣A

(0) +
1

Λ2
A(1) +

1

Λ4
A(2) + · · ·

∣∣∣∣
2

, (4.71)

where A(n) is the coefficient of Λ−2n in the 1/Λ2 expansion of the on-shell amplitude.

We denote by A
(n)
i1i2...ik

the part of A(n) given by diagrams with k insertions of operators,

one from Si1 , another one from Si2 , etc. Then, we have:

A(n) =
∑

i1+i2+···+ik=n
A

(n)
i1i2...ik

. (4.72)

15The equation of motion at leading order is just φ = 0. This could be used to eliminate recursively
all the terms containing the Higgs doublet at dimension 4 and above. This looks strange, but it is
consistent with the natural value of µ2 being of order Λ2, according to the dimensional counting.
Actually, a field with a mass of the order of the cutoff will decouple from the other fields. More
precisely, it should be integrated out.
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We ignore here phase-space factors, as we are only going to discuss the relative

importance of the quadratic and interference terms in the evaluation of the right-hand

side of eq. (4.71), which are schematically of the form A(i)A(j), with i, j ≤ n. Let us

nevertheless refer to [30] for an interesting result for the scaling of total cross sections

in NDA. Expanding eq. (4.71),

σ ∝
∣∣A(0)

∣∣2+ 2

Λ2
Re
(
A(0)∗A

(1)
1

)
+

1

Λ4

[∣∣A(1)
∣∣2 + 2Re

(
A(0)∗A

(2)
11 + A(0)∗A

(2)
2

)]
+O

(
1

Λ6

)
,

where we have grouped contributions of the same order. In many applications, only the

first two terms need to be taken into account. However, there are processes in which

the interference terms Re(A(0)∗A(1)) vanish (or are very suppressed) [125]. Then the

terms in brackets give the leading correction and must be included in the analysis [126,

127]. Furthermore, it may occur that Re(A(0)∗A
(2)
2 ) vanishes at well. This happens

often when the process is mediated by one heavy particle in the UV theory [128],

since its propagator generates effective operators with the same symmetry properties

at all orders. In this scenario, the quadratic term |A(1)|2 and the interference term

Re(A(0)∗A
(2)
11 ) give the only corrections to order 1/Λ4 and the terms in S2 are not

necessary to compute the leading-order correction to the cross section.

Is this situation preserved by field redefinitions in the EFT? The equivalence the-

orem tells us that the amplitudes are invariant and comparing order by order we see

that the same will hold for each A(i). However, the individual contributions A
(2)
2 and

A
(2)
11 need not be invariant separately. Hence, it is possible that Re(A(0)∗A

′(2)
2 ) does

not vanish any longer, and then the new operators in S ′
2 cannot be neglected, unless

they do not interfere with A(1).

The quadratic terms may also be very relevant if the coefficient of an involved

operator O(1) in S1 is for some reason α > 1. Then, |A(1)|2 and A(0)∗A
(2)
11 are enhanced

by α with respect to A(0)∗A(1). All these terms could then be comparable at sufficiently

high energies. In this case, it is mandatory to include them. Furthermore, at second

order the effect of operators in S2 can be neglected if it is known that their coefficients

are significantly smaller than α2. This is the case in certain SM extensions (such as the

example in section 8.6). But again, these statements depend on the field coordinates.

A field redefinition that removes O(1) introduces in S2 operators with an enhancement

α2, so their contributions Re(A(0)∗A
′(2)
2 ) can no longer be neglected.

4.5.3 The loop expansion

Our previous discussion of power counting also applies to the loop expansion of the

EFT and of the fundamental theory. Let us start with the former, which makes no

reference to loops in the fundamental theory and is valid also for strongly coupled

UV theories.16 Reintroducing explicitly ~, we can formally expand the generating

functional of the renormalized EFT as

Z(S)[J ] =

∞∑

k=0

~
kZeff(S)

(k)[J ], (4.73)

16In some interesting cases, the former are related with some other parameter in the fundamental
theory. For instance, loops in chiral perturbation theory are related to 1/Nc corrections in low-energy
QCD. This type of relation has been made precise in gauge-gravity dualities [129].



4.5. PERTURBATIVE EXPANSIONS 53

This actually corresponds to an expansion in the EFT couplings divided by 1/(4π)2.
We have already mentioned that the power counting of the (renormalized) effective

action should be consistent with this expansion.

When working in a reduced basis at order λn, it is often found that counterterms

made out of operators that were removed to reach that basis are necessary to obtain

renormalized Green functions. These counterterms (including their arbitrary finite

part) can then be written in the reduced basis, to order n, by a perturbative field

redefinition in which the perturbation parameter is proportional to ~
mλn, with m the

loop order of the counterterm. In this way, one finds a reduced renormalized action

(SR)′ (instead of the initial renormalized reduced action). As stressed in section 4.2,

this action does not give finite Green functions of the elementary field when the reg-

ulator is removed. But it does give finite S-matrix elements. So, we can say that the

theory described by this action has been renormalized on shell (this concept is not

to be confused with an on-shell renormalization scheme). To illustrate this, consider

one of the simplest examples of a reduced action: requiring canonical normalization

of the kinetic terms in order to remove the exact ambiguity of field rescalings. To

obtain finite Green functions, wave function renormalization is required. Then, the

renormalized action is no longer in the reduced form. By a regulator-dependent field

rescaling, we can, however, transform the renormalized action into a reduced renor-

malized action, which has canonical kinetic terms; the wave function counterterms

are moved into a redefinition of the remaining counterterms. But the Green functions

associated to this action are just the Green functions of the bare field (written in terms

of renormalized masses and couplings), which are divergent [130]. Nevertheless, these

Green functions can be used to calculate finite scattering amplitudes, with the regula-

tor removed after the on-shell reduction. Coming back to the general case, note that,

at higher orders in λ, the reduced renormalized action will contain also corrections

of order ~m and higher, as indicated in the power-counting formula eq. (4.70). These

higher-order counterterms are also required for finiteness of the S matrix.

Importantly, the finite parts of all the redefined counterterms can be fixed in terms

of renormalization conditions for each operator in the reduced action (see ref. [88]

for a detailed argument in the context of the exact renormalization group). Thus,

no independent renormalized couplings associated to redundant operators need to be

introduced. This implies that one can describe the renormalization-group evolution of

the reduced renormalized couplings in terms of reduced renormalized couplings only,

which has led to the definition in [131] of effective beta functions along the reduced

directions, depending only on reduced renormalized couplings. The renormalization

group equation of on-shell quantities can be written in terms of these effective beta

functions. Depending on the aimed precision, the higher-order corrections introduced

by the field redefinition may be relevant for the running of reduced couplings. Once

again, we stress that using the equations of motion may lead to incorrect results.

The linearized renormalization-group evolution can be described in terms of opera-

tor mixing; in this case, the beta functions are just anomalous dimensions. It has been

observed in theories of interest that, at one-loop, the anomalous-dimension matrix

has many vanishing entries, not explained by power counting [132–138]. This pattern

has been explained in terms of the Lorentz structure of the involved operators, which

forbids certain mixings at one loop [139].

Let us next consider the loop expansion of the fundamental theory SUV, which we
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assume to be weakly coupled:

Z(SUV)[J ] =

∞∑

k=0

~
kZ(SUV)

(k)[J ]. (4.74)

This corresponds to an expansion in the UV couplings divided by 1/(4π)2. In order

to match this expansion, the bare effective action S̄ in eq. (3.11) and its local versions

S =
⌈
S̄
⌉
n
must depend explicitly on ~. We write

S[φ] =
∞∑

k=0

~
kS(k)[φ]. (4.75)

Then, each coefficient Z(k) is recovered by combining the powers of ~ in S with the

ones associated to loops (and counterterms) in the EFT. The terms of order ~
k in

S̄ must be corrected as explained in section 3.5 to find the coefficients S(k) in the

expansion of the local action S. In approach A to matching, S(k) is given by k-loop
diagrams in the UV theory and k-loop diagrams in the effective theory. Consider now

a double expansion of S in ~ and λ:

S[φ] =

n∑

m=0

∞∑

k=0

~
kλmS(k)

m [φ]. (4.76)

Note that if all the possible operators are included, then all the S
(k)
m with a fixed m will

contain the same operators. That is, the quantum corrections can be absorbed into

a renormalization of the coefficients. But as discussed above, the point of matching

is to compare the renormalized parameters of the EFT with the UV parameters in a

renormalization scheme that is independent of the fundamental theory. Let us perform

a perturbative field redefinition to eliminate an operator in S
(j)
n . This will rearrange

all S
(k)
m with k ≥ j and m ≥ n, in a way consistent with eq. (4.70). Once again, there

are practical consequences for the matching workflow. Suppose, for example, that S
(1)
0

is non vanishing and that we want to eliminate a first order term at the classical level,

that is, a term in S
(0)
1 . Then, there will be corrections not only to S

(0)
1 but also to S

(1)
1 .

This means that to calculate the matching at one-loop one must not only integrate

out at that level, but also keep track of possible rearrangements of the effective action

at the classical level. For this, it is not sufficient to know the final form at the classical

level, (S ′)
(0)
1 . So, the necessary corrections would be missed if one simply added the

one-loop result to the results of tree-level matching given in the literature in particular

basis. In other words and with more generality, the same light fields should be used

in calculating the contributions at each order in the loop expansion.

A related issue is the fact that the classification in [96] of tree-level and loop

operators, as those that can be induced or not at the tree-level, respectively, is not

stable under field redefinitions. Therefore, this classification is only meaningful in one

the following two interpretations: either for classes of operators that can be connected

by field redefinitions, as proposed in [133], or for individual operators in the context of

a given non-redundant basis of operators. This latter classification is basis-dependent.

It turns out that the former is closely related to the pattern of operator mixing [139].
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4.6 Conclusions

It is clear that a perturbative transformation, controlled by a small parameter λ, of
any function depending analytically on λ will rearrange at all orders its perturbative

expansion in λ, with the new coefficients depending on the original ones of the same or

lower order. It is also clear that this rearrangement cannot be reproduced by a linear

approximation in the perturbation. These simple facts may have non-trivial practical

implications for EFTs.

EFTs are treated perturbatively in 1/Λ and in a loop expansion. When putting

together different orders, it is crucial that they are all given in the same field coordi-

nates. Otherwise, inconsistencies will be present, not only off-shell but also in on-shell

observables. Preserving the consistency of field redefinitions requires some care when

the different orders are calculated independently. Consider, for example, the SMEFT.

We compute complete matching of this effective theory to arbitrary UV completions

in chapter 8 at the tree-level and to order 1/Λ2, with Λ the lightest mass of the heavy

particles. The results of the matching are given in the Warsaw basis [54]. They are

very useful when working to order 1/Λ2 and at the tree level, but, unfortunately, they

cannot be combined with future direct results of tree-level matching at order 1/Λ4.

For this, knowledge of the higher-order terms generated by the lower-order field re-

definitions is required. But this information is usually not provided in the literature,

including our results in chapter 8, nor can it be recovered without repeating the whole

calculation. Similarly, the Warsaw-basis results of tree-level matching cannot be com-

bined with one-loop corrections, even if the latter are transformed into the Warsaw

basis. Moreover, in some methods it may be convenient to also perform field redef-

initions in the UV action in order to find one-loop corrections to the matching. For

consistency, the tree-level contributions must be calculated for the same light fields.

Note that an identical situation will arise again and again at higher and higher orders.

This is not a fundamental problem, but it conflicts with the idea of building on pre-

vious results. The very same issues are relevant for conversions from one basis into

another one. In particular, the generalization to higher orders of codes that automat-

ically reduce actions (as in MatchingTools, introduced in chapter 5 and in the code

presented in ref. [140]) or translate operator coefficients in different bases [141, 142]

should implement field redefinitions rather than use equations of motion.

Field redefinitions not only change the action, but they also introduce a determi-

nant (which can be added to the action or ignored in dimensional regularization, for

local perturbative redefinitions) and modify the coupling to the sources. The latter

effect is crucial in the derivation of Schwinger-Dyson equations and Ward identities.

Ignoring it amounts to the bold replacement of a coupling of the source to a sum of

composite operators by a linear coupling to the new elementary field. The LSZ for-

mula implies that this replacement has no effect on on-shell quantities. But, as we have

discussed, it does have a non-trivial impact on the form of the local effective action

after matching and also on renormalization. All these subtle effects are relevant for

the standard approach to matching and renormalization in terms of Green functions.

However, we should stress that they go away when computing on-shell amplitudes,

and might be avoided from the beginning in on-shell matching/renormalization.

Working with non-redundant bases of operators in EFTs has become a standard

practice. Besides having a reduced number of operators, these bases have the clear
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advantage of attaching an unambiguous physical meaning to the set of coefficients

that describe the theory to a given order. In particular, flat directions are avoided

in comparing with the experimental data. Notwithstanding this, the conversion into

non-redundant or reduced bases also has a few drawbacks. The first one is apparent

in the example of section 8.6 and, more dramatically, in the example of section 4.2.2:

the necessary field redefinitions typically give rise to a more complicated Lagrangian.

Of course, this is not so in a truly model-independent approach, in which the starting

point is a completely general EFT. But even in this case, the connection to particular

UV completions is more intricate. More importantly, the physical predictions are

typically more obscure, as the redefinition introduces correlations between operator

coefficients that must be precisely preserved.17 For instance, at first sight it is far

from obvious that eq. (4.9) represents a free theory in disguise. Another issue that

we have discussed is that reduced actions are not stable under renormalization and

renormalization-group evolution, although the departures can be absorbed on-shell

into reduced counterterms and effective beta functions. Finally, we have seen that field

redefinitions may modify the power counting inherited from (classes of) UV theories,

when it cannot be formulated in terms of the effective theory alone. So, such a power

counting needs not be apparent in non-redundant bases.

The basis proposed in [133,134] is optimal in dealing with all the issues just men-

tioned, but only for particular processes (Higgs physics) and rather specific UV sce-

narios (universal theories). Let us put forward another possibility: working with a

standard over-complete, i.e. non-reduced, basis. In principle, this minimizes the prob-

lems pointed out above. Indeed, the connection with UV theories is more transparent,

at least at the tree level, and there is flexibility in reproducing the field coordinates

used in the matching. Also, if no redefinitions are made after matching, the physical

predictions will typically be more obvious, and for simple models will not contain flat

directions. The tree-level or loop origin of operators is directly given by the classifica-

tion in [96]. And finally, from the point of view of the EFT itself, a general action in

the over-complete basis is stable under renormalization and gives rise to finite off-shell

Green functions that obey standard renormalization group equations. The package

BasisGen, presented in chapter 6, can generate both reduced and over-complete basis

for EFTs, because it performs field redefinitions only optionally.

Working in this approach would first involve selecting a basis at each order, ob-

tained only with algebraic manipulations of the operators (the convenience of the

latter should also be assessed in each case). Then, the results of matching and the

beta functions would be provided in this basis (with information about possible field

redefinitions in the process). And finally, to profit from the advantages of reduced

bases, it would be useful to know the conversions of the over-complete basis into non-

redundant bases, including higher-order operators generated in the process, or to have

the tools to perform automatically this task.

17This is also a consequence of some algebraic manipulations performed to reach a given basis,
such as Fierz reorderings.
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effective field theories

To form a general idea of the size of the calculations that are encountered when dealing

with EFTs for physics beyond the SM, one can look at the number of fields and terms

in the effective Lagrangians. A basis of dimension-6 operators for the SMEFT has

3045 different operators (84 if flavor is neglected). Roughly speaking, the number of

operators grows exponentially with their dimension. There are 48 different multiplets

of new fields with linear dimension-4 couplings to the SM. Their effective Lagrangian

with terms of dimension 5 or less involves thousands of operators.

In view of this situation, it becomes clear that it is convenient to have computer

tools to help performing the calculations. Using a computer reduces the time that it

takes to perform them and the possibility of introducing human errors. Computers are

also useful to exchange information, given the large sets of data available. A complete

and coherent set of tools is still under development. There are already several tools

with different purposes, overlapping at different places and with different degrees of

generality:

• Rosetta [141] translates between bases of dimension-6 operators in the SMEFT.

• DsixTools [143] and Wilson [144] do renormalization group evolution in the

dimension-6 SMEFT and the Weak Effective Theory (WET, the EFT just below

the electroweak scale), as well as one-loop matching between them.

• SMEFTsim [145] and flavio [146] compute predictions for observables in the

dimension-6 SMEFT (and the WET, in the case of flavio).

• DEFT [142] generates bases of operators and translates between them, for gauge

theories based on the SU(N) groups.

• smelli [147] provides a global likelihood for the dimension-6 SMEFT.

• SmeftFR [148] generates the Feynman rules for the dimension-6 SMEFT.

In this part of the thesis, we present two Python packages: MatchingTools (in

chapter 5) and BasisGen (in chapter 6). They cover calculations that cannot be

performed with previously available tools, with emphasis on being general and efficient.

MatchingTools does tree-level matching in any Lorentz-invariant EFT with linearly-

realized gauge symmetry and operators of arbitrary dimension. It can also reduce the

effective Lagrangian that is generated in this way to a basis of operators. BasisGen

generates operator bases for EFTs under the same setting, for any reductive gauge
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group. As the number of fields and dimension of the operators is increased, this task

easily becomes very computationally expensive. For this reason, BasisGen is designed

to be as fast as possible without sacrificing generality. It improves the time taken to

obtain a basis by two orders of magnitude with respect to previous tools. The use

of field redefinitions is optional, allowing for the computation of over-complete basis,

which may be convenient for some purposes, as explained in section 4.6.

We will make use of both tools in part III. In chapter 7, BasisGen will be used to

generate the representations of the new fields in the BSMEFT with linear interactions

of dimension 4 or less. It will also be used to compute a basis for the corresponding

effective Lagrangian. In chapter 8, MatchingTools will perform the matching calcu-

lation and the procedure of reducing the Warsaw basis. The correctness of this basis

can also be checked using BasisGen. In chapter 9, BasisGen will be used to produce

the representations of the vector-like quarks with linear couplings of dimension 5 or

less and their effective Lagrangian.



CHAPTER 5
MatchingTools: tree-level matching

and reducing

5.1 Introduction

MatchingTools is a Python library for doing symbolic calculations in EFTs. It pro-

vides the tools to construct general models by defining their field content and their

interaction Lagrangian. Once a model is given, the heavy particles can be integrated

out at the tree level to obtain an effective Lagrangian in which only the light particles

appear. After this matching procedure, some of the terms of the resulting Lagrangian

might not be independent. MatchingTools contains functions for transforming these

terms to rewrite them in terms of any chosen set of operators.

The procedure of matching can be described algebraically in terms of tensor calcu-

lus manipulations involving the computation of functional derivatives and the substi-

tution of heavy fields by other previously obtained expressions (see section 3.5.2 and

refs. [32, 34, 149–158]). The complexity of the process quickly grows with the number

of heavy fields and their interactions. It is in this context where the development of a

computer tool to automatize the process becomes necessary.

MatchingTools can perform tree-level integration of heavy fields in any given La-

grangian. It has been developed with the application to the SMEFT in mind, but

it is able to work with any situation describable by a Lorentz invariant field theory

in which the high energy degrees of freedom to be removed are scalars, vector-like or

Majorana fermions, or vectors. By introducing the generic solution to their equations

of motion, other types of fields can be treated as well. The validity of MatchingTools

extends to any level in the expansion in inverse powers of the cut-off energy of the

EFT.

The Lagrangian resulting from integration usually contains redundancies, as ex-

plained in chapter 4: there are operators that can be written in terms of others using

identities of the symmetry group, integration by parts and field redefinitions. A com-

plete set of operators that are independent under this set of transformations is called

a basis. Several such bases have been described [54,159,160].

The transformation of the results of matching to a chosen basis can also be done

using MatchingTools. One should introduce the identities between tensor expressions

61



62 CHAPTER 5. MATCHINGTOOLS: TREE-LEVEL MATCHING AND REDUCING

needed to transform some operators into others, as well as the desired basis.

There are other tools for the manipulation of bases of operators, such as Rosetta [141].

The portion of MatchingTools that deals with this calculations differs from it in two

main points: first, it allows not only for the transformations between sets of already

independent operators, but for the transformation of any set of operators into a ba-

sis. Moreover, MatchingTools has the ability of doing transformations not with the

operators themselves, but with parts of them, allowing for general transformations

between parts of tensor expressions into others. Actually, MatchingTools can be used

as system for tensor calculus manipulations, not necessarily in the context of an EFT.

It provides a fast way of doing complex symbolic calculations with many fields and

terms involved, which is safe against algebraic errors.

A package that implements a similar way of dealing with the specification of models

is FeynRules [161,162], thought its objectives are completely distinct. One possible di-

rection for future work with MatchingTools is making the connection with FeynRules.

Among other computer tools for calculations in the context of the SMEFT we have

DsixTools [143] (which allows for several calculations including a case of tree level

matching) and SMEFTsim [145] (which is able to produce theoretical predictions and

constraints for the Wilson coefficients of the dimension 6 SMEFT).

MatchingTools is available in GitHub (https://github.com/jccriado/matchingtools)

and in the PyPI repository (https://pypi.python.org/pypi/matchingtools/), so it can

be installed using pip [163] as

> pip install matchingtools

This chapter is organized as follows: sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4 explain the

features of MatchingTools and how to use it. Section 8.6 proposes a simple example

that serves to see the library in action and as a test case. Some extra features for

the applications in physics beyond the SM are introduced in section 5.4. Section 5.5

is an explanation of how to integrate out new types of fields that are not included in

MatchingTools.

5.2 Interface

5.2.1 Creation of models

In this section we will describe how to create a model using the module matchingtools.core.

It assumes that the classes and functions that are used are in the namespace. To im-

port all the classes and functions that appear here do

from matchingtools.core import (

Tensor , Operator , OperatorSum

TensorBuilder , FieldBuilder ,

D, Op , OpSum ,

number_op , power_op

)

The from ... import ... style is recommended, as the expressions that appear

when using this library tend to be long, so having the short names directly accessible

is preferable.
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Creation of tensors and fields

In MatchingTools, the basic building blocks for everything are the objects of the class

Tensor, which we simply call tensors here. Examples of tensors are fields (light and

heavy), symmetry group related tensors (such as Pauli matrices) or coupling constants

(including gauge couplings, Yukawa couplings and masses).

Tensors have an attribute is_field that is True if and only if they are spacetime

dependent (i.e., they are fields). Fields can have derivatives applied to them. The

attribute num_of_der counts the number of derivatives that apply to a field. Deriva-

tives are understood here to be covariant derivatives Dµ corresponding to the gauge

group of the low energy EFT. Each derivative applies only to one field. The Leibniz

rule is used whenever a derivative of a product is encountered. Tensors can be either

commuting of anti-commuting, which is distinguished by the attribute statistics.

It can be set equal to either boson or fermion, both being variables defined in this

module. Finally, all tensors have an attribute indices, a list of integer numbers rep-

resenting their tensor indices; and an attribute name, an identifier. Other attributes,

content and exponent, are for internal use. Names starting with the character ’$’ are

also reserved for internal calculations.

To create the tensors and fields of a model, the classes TensorBuilder and FieldBuilder

should be used. For example, the Pauli matrices σaij could be defined as

sigma = TensorBuilder("sigma")

and then used when needed as sigma(i1, i2, i3) where i1, i2 and i3 are the

indices. Similarly, a boson field φ (with its conjugate φ∗) and a fermion f (with its

separate chiralities and their conjugates) are defined as

phi = FieldBuilder("phi", 1, boson)

phic = FieldBuilder("phic", 1, boson)

fL = FieldBuidler("fL", 1.5, fermion)

fR = FieldBuidler("fR", 1.5, fermion)

fLc = FieldBuidler("fLc", 1.5, fermion)

fRc = FieldBuidler("fRc", 1.5, fermion)

The second argument of FieldBuilder is the dimension of the field.

Definition of the interaction Lagrangian

Once all the tensors are created, we are ready to define the interaction Lagrangian. It

should be a sum of operators, which in turn are just products of fields. It is defined

using the functions OpSum and Op:

int_lag = -OpSum(Op(...) , Op(...) , ...)

The minus sign is defined for operator sums and individual operators. The function

OpSum creates an object of the class OperatorSum, a container for a list of operators

representing their sum. The function Op creates an Operator that contains a list of

tensors and represents their product:

Op(tensor1(i1 , i2 , ...), tensor2(i3 , i4 , ...), ...)
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Tensors t name = TensorBuilder("t name")

Fields f name = FieldBuilder("f name", dim,

statistics)

Lagrangian lag = -OpSum(Op(...), Op(...), ...)

Operators Op(tensor1(i1, i2, ...), ...)

Derivatives Op(..., D(i1, tensor(...)), ...)

Numeric coefficient number_op(number) * Op(...)

Symbolyc power inv_mass_sq = power_op("M", -2)

Table 5.1: Summary of the tools for the creation of a model.

Positive indices are used to express contraction. During the creation of the model,

any index should be contracted with another, so we will only use here positive ones.

When indices are repeated inside the same operator, the corresponding contraction is

understood. For example, the product of tensors rijslimnmtnjl would be written as

Op(r(0, 1), s(3, 0, 4, 5, 4), t(5, 1, 3))

To introduce a covariant derivative inside an operator, the appropriate function is

D, whose first argument is the Lorentz index of the derivative and whose second one

is the tensor to which it is to be applied:

D(i1 , tensor(i2 , ...))

For numeric coefficients, the function number_op creates an operator with only one

special tensor representing a number (its name is "$number" and has an attribute

content with the actual number). Multiplication is defined for operators, so the

operator iVµS
∗
aDµSa can be expressed as

number_op (1j) * Op(V(0), Sc(1), D(0, S(1)))

Tensors representing a symbolic constant exponentiated to some power can be

created using the function power op, that takes the base (a string) and the exponent

(a number) (represented by an extra internal attribute of tensors: exponent) and

optionally some indices and returns an operator containing only the corresponding

tensor. This is useful specially for the masses of the heavy particles, which tend to

appear several times with different powers in all calculations.

A summary of the tools presented in this section is shown in table 5.1.

Dealing with spinors

MatchingTools uses the two-component spinor formalism to treat spinor fields follow-

ing the conventions in [164]. The module matchingtools.core defines the following

tensors to work with them:

• epsUp and epsDown: the totally anti-symmetric tensors ǫαβ and ǫαβ with two

undotted two-component spinor indices defined by ǫ12 = −ǫ21 = −ǫ12 = ǫ21 = 1.

• epsUpDot and epsDownDot: the totally anti-symmetric tensors ǫα̇β̇ and ǫα̇β̇ with

two dotted two-component spinor indices given by ǫα̇β̇ = (ǫαβ)
∗ and ǫα̇β̇ = (ǫαβ)∗.
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• sigma4 and sigma4bar: the tensors σµαα̇ and σ̄α̇αµ given by σµ = (I2×2, ~σ) and

σ̄µ = (I2×2,−~σ), where ~σ is the three-vector of the Pauli matrices. The first

index of sigma4 and sigma4bar corresponds to the Lorentz index.

5.2.2 Integration

This section explains how to use the classes that represent the heavy fields as well as the

function integrate, to integrate them out. They belong to the module matchingtools

.integration. To import them, one can do:

from matchingtools.integration import (

RealScalar , ComplexScalar ,

RealVector , ComplexVector ,

VectorLikeFermion , MajoranaFermion ,

integrate

)

To integrate out the heavy fields from a previously defined Lagrangian we should

specify which of the fields are heavy. This is done using the classes:

• RealScalar. Its constructor receives as arguments the name of the field and the

number of indices it has.

• ComplexScalar. Requires a field–conjugate field pair. The arguments of the

constructor are the name of the field, the name of its conjugate and its number

of indices.

• RealVector. The arguments are the name of the field and the number of indices.

The first index of the field is understood to be the Lorentz vector index.

• ComplexVector. The arguments are the name of the field, the name of its

conjugate and the number of indices. The first index of both fields should be

their corresponding Lorentz vector index.

• VectorLikeFermion. The first argument of the constructor is the name of the

field. The second and third are the names of the left-handed and right-handed

parts. The fourth and fifth are their conjugates. The last is the number of indices.

The first index of the each of the four fields is taken to be their two-component

spinor index.

• MajoranaFermion. The arguments are the name of the field and the name of its

conjugate. The first index of both fields should be their two-component spinor

index.

The constructors for the bosons have the optional arguments: order (default 2),

specifying the order in (D/M)2 to which the solution to the equation of motion is to

be expanded, and max dim (default 4), representing the maximum allowed dimension

for the operators appearing in this expansion. Both bosons and fermions receive the

optional argument has flavor (default True) stating whether the heavy field has a

flavor index. In case it is true, the flavor index is taken to be the last one.
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The heavy field classes include the quadratic terms for the kind of particle they

represent, as well as the solutions to the equations of motion presented in section 3.5.2.

The mass of a field f is represented by a tensor whose name is of the form mass = "M"

+ f.name. This tensor has one index if the heavy field has flavor and none otherwise.

The first step for integration is defining the heavy fields:

heavy_f = HeavyFieldClass("field_name", ...)

Given an interaction Lagrangian int lag, the integration is done using the function

integrate, which takes as arguments a list of the heavy fields, the interaction La-

grangian and a maximum dimension max dim for the operators of the EFT. It returns

the corresponding effective Lagrangian:

heavy_fields = [heavy_f_1 , heavy_f_2 , ...]

eff_lag = integrate(

heavy_fields , int_lag , max_dim

)

5.2.3 Transformations of the effective Lagrangian

After integration, the effective Lagrangian contains in general operators that are not

independent. To rewrite it in terms of a set of independent operators some manipu-

lations are needed, such as using identities for combinations of tensors related to the

symmetry groups, integrating by parts to move derivatives from some fields to others,

or using the equations of motion of the light fields.

The matchingtools.transformations module introduces the functions for doing

this kind of manipulations and for the simplification of the Lagrangian. We will

describe here the functions that are imported with

from matchingtools.transformations import (

simplify , apply_rules

)

First, the function simplify returns a simplified version of the Lagrangian it gets

as an argument. Tensors representing a number that appear inside an operator are

collected and multiplied. Tensors representing a symbolic constant exponentiated

to some power are also collected to give only one tensor with the correct exponent.

simplify also looks for Kronecker deltas (tensors with the name "kdelta" and two

indices) removes them by contracting the corresponding indices.

The transformations of a Lagrangian are done using what we call here rules. A

rule is a pair (a tuple with two elements) whose first element is an operator representing

a pattern and whose second element is an operator sum representing a replacement.

They are used by the function apply rules to find occurrences of the pattern and

replace them by the replacement. A rule is written as

rule = (Op(...) , OpSum(Op(...) , Op(...) , ...))

The indices that appear in tensors inside the rule can be general integer numbers. Non-

negative integers represent contracted indices, as explained in section 5.2.1. Negative

indices are used for free indices and those in the replacement should match the corre-

sponding ones in the pattern. For example the substitution of σaijσ
b
kl by 2δilδkj − δijδkl

can be done using the rule



5.2. INTERFACE 67

rule_fierz_SU2 = (

Op(sigma(0, -1, -2), sigma(0, -3, -4)),

OpSum(

number_op (2) * Op(delta(-1, -4), delta(-3, -2)),

-Op(delta(-1, -2), delta(-3, -4))

)

)

To transform the Lagrangian using integration by parts or equations of motion of the

light fields the user should also specify the corresponding rules following this procedure.

The function apply rules repeatedly tries to apply every rule of a list to each

operator in an operator sum. If the pattern matches some part of an operator, the

rule is applied and the operator sum updated. The first argument to apply rules

is the operator sum, the second is the list of rules and the last one is the number of

iterations. It returns the resulting operator sum.

To rewrite the Lagrangian in terms of a chosen set of independent operators the

procedure is: define the rules to get to the desired basis, add some rules to identify the

operators and apply the function apply rules. The basis operators should be defined

using tensor op, a function that creates an operator with one tensor inside whose

name is the argument of the function. Then write a rule to identify it. For example,

for the operator OφD = (φ†Dµφ)(D
µφ)†φ we would write

OphiD = tensor_op("OphiD")

rule_def_OphiD = (

Op(phic(0), D(1, phi(0)),

D(1, phic (0)), phi(0)),

OpSum(OphiD)

)

If the basis operator in question has some flavor indices, flavor tensor op is to be

used instead of tensor op. It creates a callable object that takes the corresponding

free indices as arguments. As an example, for the operator (Oeφ)ij = l̄LiφeRjφ
†φ we

would have:

Oephi = flavor_tensor_op("Oephi")

rule_def_Oephi = (

Op(lLc(0, 1, -1), phi(1), eR(0, -2), phic(2), phi(2)),

OpSum(Oephi(-1, -2))

)

5.2.4 Output

The class matchingtools.output.Writer serves to nicely represent an effective La-

grangian. It is convenient that the final result is represented as a list of the coefficients

of the operators in the basis. That is, if each of the terms of the Lagrangian contains

a tensor that represents an operator of the basis, we would like to see what are the

tensors that multiply each of them. This is what Writer does. If eff lag is our final

effective Lagrangian and op names is a list of the names of the tensors representing

the operators in the basis, one should do
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eff_lag_writer = Writer(eff_lag , op_names)

The constructor admits an optional argument conjugates, a dictionary whose keys

are the names of all the tensors involved in the final output and whose values are

the names of their conjugates. This helps Writer collect pairs of conjugate products

of tensors returning their real or imaginary part. The string representation can be

obtained just by using the str method of the class Writer. To write it to a text file

the user should use

eff_lag_writer.write_text_file(filename ).

The method write latex file writes a LaTeX file with the representation. It receives

four arguments: the name of the output file, the LaTeX representation of the tensors,

the LaTeX representation of the coefficients of the basis operators and a list of the

strings to be used to represent the indices. The LaTeX representations are given

by dictionaries whose keys are the names of the tensors to be represented (or whose

coefficient is to be represented) and whose values are the corresponding code. This

code should contain placeholders for the necessary indices written as "{}" (Python’s

format style). To produce the characters "{", "}" in the final code they should appear

duplicated in the dictionary values. For a better LaTeX output for the numerical

coefficients, the parameter passed to number op in the definitions should be either an

int or a fractions.Fraction. In this context, the imaginary unit can be introduced

by multiplying by the operator core.i op.

5.3 An example

In this section we will be creating a simple model to show some of the features of

MatchingTools. The model is described as follows: it has SU(2) × U(1) gauge sym-

metry and contains a complex scalar doublet φ (the Higgs) with hypercharge 1/2 and

a real scalar triplet Ξ with zero hypercharge that couple as

Lint = −κΞaφ†σaφ− λΞaΞaφ†φ, (5.1)

where κ and λ are a coupling constants and σa are the Pauli matrices. We will then

integrate out the heavy scalar Ξ to obtain an effective Lagrangian which we will finally

write in terms of the operators:

Oφ6 = (φ†φ)3, Oφ4 = (φ†φ)2,

O(1)
φ = φ†φ(Dµφ)

†Dµφ, O(3)
φ = (φ†Dµφ)(D

µφ)†φ,

ODφ = φ†(Dµφ)φ
†Dµφ, O∗

Dφ = (Dµφ)
†φ(Dµφ)†φ.

(5.2)

Notice that this is not an independent set of operators, as some linear combinations

of them are total derivatives. Because the purpose of this section is to present a very

simple model, we will not be doing integration by parts and therefore we will not

simplify the results any further.

5.3.1 Creation of the model

The required imports are
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from matchingtools.operators import (

TensorBuilder , FieldBuilder , Op , OpSum ,

number_op , tensor_op , boson , fermion , kdelta

)

from matchingtools.integration import RealScalar , integrate

from matchingtools.transformations import apply_rules

from matchingtools.output import Writer

Three tensors will be needed, the Pauli matrices and the coupling constants:

sigma = TensorBuilder("sigma")

kappa = TensorBuilder("kappa")

lamb = TensorBuilder("lamb")

We will also use three fields: the Higgs doublet, its conjugate and the new scalar:

phi = FieldBuilder("phi", 1, boson)

phic = FieldBuilder("phic", 1, boson)

Xi = FieldBuilder("Xi", 1, boson)

Now we are ready to write the interaction Lagrangian:

interaction_Lagrangian = -OpSum(

Op(kappa(), Xi(0), phic(1),

sigma(0, 1, 2), phi(2)),

Op(lamb(), Xi(0), Xi(0),

phic(1), phi (1))

)

5.3.2 Integration

To integrate out the heavy Ξ we write

heavy_Xi = RealScalar("Xi", 1, has_flavor=False)

effective_Lagrangian = integrate(

[heavy_Xi], interaction_Lagrangian , 6

)

5.3.3 Transformations of the effective Lagrangian

After the integration we get operators that contain (φ†σaφ)(φ†σaφ). This product can
be rewritten in terms of the operator (φ†φ)2. To do this, we can use the SU(2) Fierz
identity:

σaijσ
a
kl = 2δilδkj − δijδkl. (5.3)

We now know that we can define a rule to transform everything that matches the

left-hand side of the equality into the expression in the right-hand side with the code



70 CHAPTER 5. MATCHINGTOOLS: TREE-LEVEL MATCHING AND REDUCING

fierz_rule = (

Op(sigma(0, -1, -2), sigma(0, -3, -4)),

OpSum(

number_op (2) * Op(kdelta(-1, -4), kdelta(-3, -2)),

-Op(kdelta(-1, -2), kdelta(-3, -4))

)

)

We should now define the operators in terms of which we want to express the effective

Lagrangian

Ophi6 = tensor_op("Ophi6")

Ophi4 = tensor_op("Ophi4")

O1phi = tensor_op("O1phi")

O3phi = tensor_op("O3phi")

ODphi = tensor_op("ODphi")

ODphic = tensor_op("ODphic")

and then use some rules to express them in terms of the fields and tensors that appear

in the effective Lagrangian

definition_rules = [

(Op(phic(0), phi(0), phic(1), phi(1),

phic(2), phi(2)),

OpSum(Ophi6)),

(Op(phic(0), phi(0), phic(1), phi(1)),

OpSum(Ophi4)),

(Op(D(2, phic (0)), D(2, phi(0)),

phic(1), phi(1)),

OpSum(O1phi)),

(Op(phic(0), D(2, phi(0)),

D(2, phic (1)), phi(1)),

OpSum(O3phi)),

(Op(phic(0), D(2, phi(0)),

phic(1), D(2, phi (1))) ,

OpSum(ODphi)),

(Op(D(2, phic (0)), phi(0),

D(2, phic (1)), phi(1)),

OpSum(ODphic ))

]

To apply the SU(2) Fierz identity to every operator until we get to the chosen opera-

tors, we do

rules = [fierz_rule] + definition_rules

max_iterations = 2

transf_eff_lag = apply_rules(

effective_Lagrangian , rules ,

max_iterations

)
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5.3.4 Output

The class Writer can be used to represent the coefficients of the operators of a La-

grangian as plain text and write them to a file

final_coef_names = [

"Ophi6", "Ophi4", "O1phi",

"O3phi", "ODphi", "ODphic"

]

eff_lag_writer = Writer(

transf_eff_lag , final_coef_names

)

eff_lag_writer.write_text_file(

"simple_example_results.txt"

)

It can also write a LaTeX file with the representation of these coefficients and export

it to pdf to show it directly. For this to be done, we should define how the objects

that we are using are represented in LaTeX code and the symbols we want to be used

as indices

latex_tensor_reps = {

"kappa": r"\kappa",

"lamb": r"\lambda",

"MXi": r"M_{{\Xi}}",

"phi": r"\phi_{}",

"phic": r"\phi^*_{}"

}

latex_op_reps = {

"Ophi":

r"\frac {{\ alpha_ {{\ phi }}}}{{\ Lambda ^2}}",

"Ophi4":

r"\alpha_ {{\ phi 4}}"

}

latex_indices = ["i", "j", "k", "l"]

eff_lag_writer.write_latex(

"simple_example", latex_tensor_reps ,

latex_op_reps , latex_indices

)

The expected result is a .tex file (ready to be compiled) with the coefficients of the

operators we defined.
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5.4 Extras for beyond the Standard Model

applications

MatchingTools includes a subpackage called extras, with some modules defining

tensors and rules that are useful for the applications to physics beyond the SM. These

modules are SU2, SU3, Lorentz, SM and SM dim 6 basis. Other modules will be added

in the future and will be available in the GitHub repository of the program, as well as

in its updates in the pypi repository [163].

5.4.1 The SU2 module

This module defines the following tensors related to SU(2):

• epsSU2: The totally antisymmetric tensor ǫij with two doublet indices and ǫ12 =
1.

• sigmaSU2: The Pauli matrices σaij. The first index is the triplet index, whereas

the second and third are the doublet ones.

• CSU2 and CSU2c: the Clebsh-Gordan coefficients CI
aβ with the first index I being

a quadruplet index, the second a a triplet index, and the third β a doublet index.

The tensor C contracted with the corresponding three objects produces a singlet.

• epsSU2triplets: Totally antisymmetric tensor ǫabc with three SU(2) triplet

indices such that ǫ123 = 1.

• fSU2: Totally antisymmetric tensor with three SU(2) triplet indices given by

fabc =
i√
2
ǫabc.

It also implements the rules for taking expressions with ǫijǫkl, σ
a
ijσ

a
kl, C

I
apǫpmσ

a
ijC

I∗
bq ǫqnσ

b
kl

or contractions of anti-symmetric tensors, and rewriting them in terms of Kronecker

deltas. All the rules are collected in the list rules SU2. The LaTeX representation of

the tensors defined is given by the dictionary latex SU2.

5.4.2 The SU3 module

The SU(3) tensors defined in this module are:

• epsSU3: Totally antisymmetric tensor ǫABC with three SU(3) triplet indices such
that ǫ123 = 1.

• TSU3: SU(3) generators (TA)BC = 1
2
(λA)BC , where λA are the Gell-Mann matri-

ces. The first index is the octet index. The second and third are the anti-triplet

and triplet ones.

• fSU3: SU(3) structure constants fABC .

The rule for transforming ǫijkǫilm into a combination of Kronecker deltas is imple-

mented. It is included in the one-element list rules SU3. The LaTeX representation

of the tensors defined is in latex SU3.
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5.4.3 The Lorentz module

This module includes the tensors epsUp, epsUpDot, epsDown, epsDownDot, sigma4,

sigma4bar from matchingtools.operators and defines:

• eps4: Totally antisymmetric tensor ǫµνρσ with four Lorentz vector indices where

ǫ0123 = 1.

• sigmaTensor: Lorentz tensor

σµν =
i

4

(
σµαγ̇σ̄

νγ̇β − σναγ̇σ̄
µγ̇β
)
. (5.4)

The list rules Lorentz contains the rules for substituting ǫαβǫα̇β̇ by 1
2
σ̄µ,α̇ασ̄β̇βµ , ǫαβǫα̇β̇

by 1
2
σ̄µαα̇σ̄µ,ββ̇ and contracted ǫ tensors by combinations of Kronecker deltas.

5.4.4 The SM module

Here, the tensors corresponding to the SM fields and its gauge coupling constants,

Yukawa couplings and CKM matrix are defined. The SM fields are:

• phi and phic: The Higgs boson and its conjugate. One SU(2) doublet index.

• lL and lLc: The left-handed lepton doublet. Its indices are, in order: the two-

component spinor index, the SU(2) doublet index and the flavor index.

• qL and qLc: The left-handed quark doublet. Its indices are: the two-component

spinor index, the SU(3) triplet (or anti-triplet) index, the SU(2) doublet index
and the flavor index.

• eR and eRc: The right-handed electron. Indices: two-component spinor and

flavor.

• uR and uRc: The right-handed up quark. Indices: two-component spinor, SU(3)
triplet (or antitriplet) and flavor.

• dR and dRc: The right-handed down quark. Indices: two-component spinor,

SU(3) triplet (or antitriplet) and flavor.

• bFS: U(1) field strength tensor. Two Lorentz vector indices.

• wFS: SU(2) field strength tensor. Two Lorentz vector indices and one SU(2)
triplet index.

• gFS: SU(3) field strength tensor. Two Lorentz vector indices and one SU(3)
octet index.

The constant tensors are:

• gb and gw: The U(1) and SU(2) gauge coupling constants.
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• ye, yec, yd, ydc, yu and yuc: The diagonalized Yukawa matrices for the leptons,

the down quarks, the up quarks and their conjugates. They have two indices:

the first one corresponds to the flavor of the doublets and the second to the flavor

of the singlets.

• V and Vc: CKM matrix.

The module also includes a list of rules eoms SM, defined to substitute the equations

of motion, replacing derivatives of the Standard Model fields by a combination of the

other fields. There is a dictionary latex SM containing the LaTeX representation of

the tensors that are defined.

5.4.5 The SM dim 6 basis module

In this module, the basis for the SM effective Lagrangian up to dimension six that ap-

pears in [9] is defined. The rules to identify them are given in the list rules basis definition.

The LaTeX representation of their coefficients is in latex basis coefs. Modules con-

taining other bases, such as the one in [54], will be added in the future.

5.5 Using MatchingTools with other types of fields

As explained above, MatchingTools can integrate scalars, vector-like or Majorana

fermions, and vectors in Lorentz-invariant theories. For this purpose, several classes

representing the heavy fields are supplied. Other kinds of fields (for instance, with

non canonical kinetic terms, spin > 1, or non relativistic) can be treated as well, once

the corresponding class for it is provided. Specifically, to treat a new type of field one

should define a Python class implementing the following methods:

• equations of motion. Receives an OperatorSum object representing an interac-

tion Lagrangian. Returns a dictionary whose keys are strings with the names of

the heavy fields involved (for example, a field and its conjugate, if it is a complex

boson) and whose values are OperatorSum objects representing the correspond-

ing solution to their equation of motion. These solutions can be written in terms

of other heavy fields, but they should be such that iterative substitutions of their

respective equations motion reaches a point where no heavy fields appear to the

desired order in the dimension of the operators.

• quadratic terms. Does not have any parameters. Returns the kinetic and mass

terms of the corresponding heavy field.

For the definition of these methods, it is recommended to use the tools provided by

the core module. Once such a class is defined, its objects can be included in the list

of heavy fields to be passed to integration.integrate and they will be dealt with

in the same way as the others.

5.6 Conclusions

In this chapter, we have presented MatchingTools, a Python library implementing

symbolic tree-level matching for any given model. It is also able to transform the
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resulting Lagrangian using rules specified by the user to remove redundant opera-

tors. With this program one can safely automatize these kind of calculations, which

practically eliminates the possibility of algebraic errors and drastically reduces the

calculation times. Even calculations with complex Lagrangians involving ∼ 100 inde-

pendent terms (thousands of terms in some intermediate steps) can be performed in

about thirty seconds (using a 2.6GHz Intel Core i5 processor).

A direct application of MatchingTools, which has also served as an extensive

check of its validity, is the integration of all possible new fields that have linear gauge-

invariant renormalizable couplings to the Standard Model, keeping terms up to dimen-

sion 6 in the results. We present these results in chapter 8.





CHAPTER 6
BasisGen: bases of operators

6.1 Introduction

BasisGen is a Python package for the automatic generation of bases of operators

in EFTs. It accepts any semisimple symmetry group and fields in any of its finite

dimensional irreducible representations. It takes into account integration by parts

redundancy and, optionally, the use of equations of motion. The implementation is

based on well-known methods to generate and decompose representations using roots

and weights, which allow for fast calculations, even with large numbers of fields and

high-dimensional operators. BasisGen can also be used to do some representation-

theoretic operations, such as finding the weight system of an irreducible representation

from its highest weight or decomposing a tensor product of representations.

The input data needed for this calculation of a basis of operators are the symmetry

group G of the theory and the representation of G corresponding to each field. Once

they are specified, one can obtain, for every monomial in the fields, the number of in-

dependent ways of forming an invariant under the action of G out of it. It must also be

taken into account that total derivative terms can be added to the Lagrangian without

changing the physics (except for effects of surface terms in the action). This means

that some operators with derivatives can be rewritten in terms of others. Moreover,

at each order in the effective Lagrangian, the addition of an operator proportional

to the equations of motion does not change the S matrix up to higher order effects,

as explained in chapter 4. It follows that the equations of motion can be used, for

example, to obtain a basis in which all the operators proportional to the functional

derivative of the kinetic term have been removed [56–58,91,92]. For the SMEFT (see

ref. [124] for a review), several bases and (incomplete) sets of independent operators

have been computed taking all these facts into account [31, 54, 137, 165]. Computer

tools can be used to translate from one basis to another [4, 141,142,144].

In the last few years, many developments have been made in the automatization

of the generation of operator bases. Hilbert series methods provide an elegant way to

compute invariants [166–170]. They can be directly implemented in a computer system

with symbolic capabilities, as done for the SMEFT case in the auxiliary Mathematica

notebook of ref. [169]. One possible drawback of this approach, when used in computer

code, is its performance, as an overhead due to the symbolic nature of the calculations

77
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might be introduced. The program DEFT [142], written in Python, uses a different

approach to check and generate bases of operators for the SMEFT. The operators

are not only counted but they are given explicitly, including their index contraction

structure and the fields to which the derivatives are applied (see ref. [97] for a non-

automatic calculation of the explicit operators in a basis). Additionally, it can perform

changes of bases. The method it implements can be generalized to theories with a

symmetry group given by a product of unitary groups.

BasisGen uses yet another approach, which is valid for any semisimple symmetry

group and avoids the need for symbolic calculations. The algorithms that it uses to

deal with representations of semisimple Lie algebras are the classical ones, based on

weight vectors. They are reviewed, for example, in ref. [171], and implemented in

several computer packages with different purposes [172–177]. To remove integration

by parts redundancy, an adaptation of the method in ref. [170] is used. BasisGen is

∼ 150 times faster than the implementation in the auxiliary notebook of ref. [169].

For example, BasisGen takes 3 seconds to compute the 84 dimension-6 operators of

the 1-generation SMEFT (in a laptop with a 2,6 GHz Intel Core i5 processor), while

the notebook of ref. [169] takes 7 minutes. DEFT also takes minutes for the calculation

of a dimension-6 basis of the 1-generation SMEFT (according to ref. [142]), although

it must be taken into account that it does more work, as the concrete operators are

given instead of just being counted.

For computations with EFTs, BasisGen assumes 4-dimensional Lorentz invariance.

In addition, an internal symmetry group must be specified. This is, in general, the

product of the global symmetry group and the gauge group. Derivatives are assumed

to be gauge-covariant derivatives, so that the derivative of any field has the same

representation under the internal symmetry group as the field itself. The gauge field

strengths to be included in a calculation should be provided by the user. The fields

must belong to linear irreducible representations of both the Lorentz group and the

internal symmetry group. Finally, it is required that a power counting based on

canonical dimensions can be used.

In this context, BasisGen generates bases of invariant operators. It gives the

number of independent invariants that can be formed with each possible field content

for an operator. Sets of all covariant operators, with their corresponding irreducible

representations (irreps), can also be computed. The basic representation-theoretic

functionalities needed for these calculations are: obtaining weight systems of irreps

and decomposing their tensor products. An interface for their direct use is provided.

Although BasisGen does not provide the explicit index contraction structure of

the operators in the basis, the functionality of decomposing tensor products can be

used to help in their construction. For a particular field content, one can take the

tensor product of the first two fields. Then, for each irrep in the decomposition, take

the tensor product with the next field. This process can be iterated, keeping track

of the intermediate irreps. In the end, one can obtain all the possible ways of doing

the products of the fields that give an invariant. Nevertheless, some extra information

(the corresponding Clebsch-Gordan coefficients) is needed to completely determine the

operator.

BasisGen can be installed using pip by doing: pip install basisgen. It re-

quires Python version 3.5 or higher. Its code can be downloaded from the GitHub

repository https://github.com/jccriado/basisgen, where some examples of usage
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Listing 6.1: Simple EFT example script

from basisgen import algebra , irrep , scalar , Field , EFT

phi = Field(

name=’phi’,

lorentz_irrep=scalar ,

internal_irrep=irrep(’SU2’, ’1’),

charges =[1/2]

)

my_eft = EFT(algebra(’SU2’), [phi , phi.conjugate ])

invariants = my_eft.invariants(max_dimension =8)

print(invariants)

print("Total:", invariants.count ())

Listing 6.2: Simple EFT example script’s output

phi phi*: 1

(phi )^2 (phi *)^2: 1

(phi )^2 (phi *)^2 D^2: 2

(phi )^2 (phi *)^2 D^4: 3

(phi )^3 (phi *)^3: 1

(phi )^3 (phi *)^3 D^2: 2

(phi )^4 (phi *)^4: 1

Total: 11

can be found. A simple script using BasisGen is presented in listing 6.1. It defines an

EFT with internal symmetry group SU(2)×U(1) for a complex scalar SU(2)-doublet
field with charge 1/2. It computes a basis of operators of dimension 8 or less. The

output is presented in listing 6.2. Each line gives the number of independent invariant

operators that can be constructed with each field content.

The rest of this chapter is divided in two sections (apart from the conclusions).

They describe BasisGen’s implementation (section 6.2) and interface (section 6.3).

6.2 Implementation

6.2.1 Basic operations with representations

In this section, the methods implemented in BasisGen to deal representations of

semisimple Lie algebras are presented. A representation of a semisimple algebra is

just a tensor product of representations of the algebra’s simple ideals. Using this
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fact, BasisGen decomposes calculations with semisimple algebras into smaller ones

with simple algebras. The basic operations with representations of simple algebras

are: the generation of the weight system of an irrep from its highest weight and the

decomposition of a reducible representation into a direct sum of irreps. They are both

implemented using well-known methods (see refs. [171–177]), which are summarized

here, for completeness.

In the Dynkin basis, which we use in what follows, all weights are tuples of integers.

Thus, the operations done here involve only addition and multiplication of integer

numbers. Each irrep of a simple algebra is uniquely characterized by its highest weight

Λ, which is a tuple (a1 . . . an) of non-negative integers. Every such tuple is the highest

weight of one irrep. The complete weight system of an irrep may be obtained from its

highest weight by the following procedure:

1. Set W = {} and Wnew = {Λ}.

2. Choose some λ ∈ Wnew.

3. For each positive component λi > 0, select the ith row α of the Cartan matrix.

Append to Wnew all weights of the form λ− kα, with 0 < k ≤ λi.

4. Remove λ from Wnew. Append it to W .

5. If Wnew is empty, terminate. Otherwise, go to step 2.

This produces the set W of all weights. The multiplicity nλ of each weight λ can then

be obtained recursively using the Freudenthal formula:

nλ =
2
∑

α

∑
k>0 nλ+kα (λ+ kα, α)

(Λ + δ,Λ + δ)− (λ+ δ, λ+ δ)
, (6.1)

where δ = (11 . . . 1) and the summation for α runs over all positive roots.

The algorithm for the decomposition of a reducible representation as a direct sum

of irreps is straightforward: from the collection of weights of the representation in

question, find the highest and remove from the collection all the weights in the cor-

responding irrep. Repeat until the collection is empty. Then, the successive highest

weights that were found in the process are the highest weights of the irreps in the

decomposition. A direct application of this functionality is to decompose the ten-

sor product of irreps. Let W1 and W2 be the weight systems of two representations

R1 and R2. The weight system W of R1 ⊗ R2 is the collection of all λ1 + λ2 for

(λ1, λ2) ∈ W1 ×W2. Once W is constructed, it can be decomposed using the general

decomposition algorithm.

In some cases, the symmetric or anti-symmetric tensor power of some representa-

tion is needed. If W = {λi}i∈{1,...,n} is the weight system of some representation R,

the weight system of the symmetric tensor power Symk(R) is the collection of weights

computed as λ1 + · · · + λk for every k-tuple (λi1 , . . . , λik) where i1 ≤ · · · ≤ ik. The

weight system of the anti-symmetric power Λk(R) is constructed in a similar way, but

using all k-tuples (λi1 , . . . , λik) with i1 < · · · < ik instead.
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6.2.2 Constructing invariants in effective theories

BasisGen can do calculations for 4-dimensional Lorentz-invariant effective field theo-

ries whose internal symmetry group is of the form G× U(1)n, where G is semisimple.

An EFT is specified when the following data are provided:

• The semisimple Lie algebra g of G.

• A collection of fields φ1, . . . , φm. Each φi must be equipped with:

– An irrep R
(i)
Lorentz of the Lorentz algebra su2 ⊕ su2.

– An irrep R
(i)
internal of g.

– A tuple
(
c
(i)
1 , . . . , c

(i)
n

)
of charges under the U(1) factors.

– The statistics Si. Either boson or fermion.

– A positive real number di, specifying the canonical dimension of the field.

It is assumed that a power counting based on canonical dimensions of the fields, with

derivatives having dimension 1, can be applied. This is used to reduce the number of

possible operators to a finite one.

The main functionality of BasisGen is to compute the number of independent

invariant operators, constructed with the fields φi and their (covariant) derivatives,

and having dimension less than or equal to some fixed dmax. To do this, first, all

the possible operator field contents are found. The field content for some operator

is identified by a tuple C = (e1, . . . , em), representing the exponents of each field in

the operator: O ∼ (φ1)
e1 · · · (φm)em . For each C, the following (possible reducible)

representation is computed:

Rep(C) = T e11 (R(1))⊗ · · · ⊗ T emm (R(m)), (6.2)

where T ki (V ) is the symmetric power Symk(V ) if the statistics Si are bosonic, and

the anti-symmetric power Λk(V ) if they are fermionic. Once Rep(C) is obtained, it

is decomposed into a direct sum of irreps. The number of independent invariant

combinations of the fields in C is then easily obtained as the number of singlet irreps

in the decomposition.

To take into account (covariant) derivatives, the same procedure is used, but now

including the fieldsDµφi, {Dµ, Dν}φi, etc. Anti-symmetric combinations of derivatives

are automatically discarded, as they are equivalent to field strength tensors. Option-

ally, the equations of motion of the fields can be applied. This means that, for each

Dµ1 . . . Dµmφi, only the totally symmetric representation is retained (see ref. [168]).

Let I be the set of all operators constructed with the fields and their derivatives

(using equations of motion if necessary) that are invariant under the internal symmetry

group (but are not necessarily scalars). To eliminate integration by parts redundancy

from I, it is first split into the set of operators with zero derivatives I0, the set of

operators with one derivative I1, etc. Then, the following procedure is applied:

1. Set R = {}.

2. Take one operator O from the non-empty In with lowest n.
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3. Remove O from In and append it to R.

4. Compute the decomposition into irreps of DµO and eliminate the corresponding

operators from In+1. Compute the decomposition of {Dµ, Dν}O and remove it

from In+2. Continue until the maximum dimension is reached.

5. If all Ik are empty, terminate. Otherwise, go to step 2.

After this is done, a basis (in which integration by parts has been taken into account)

is obtained by selecting those operators in R that are scalars. Notice that the irreps

in the decomposition of the derivatives of operators are computed and removed. In

particular, if no (non-zero) scalar appears in the decomposition, then the corresponding

scalar operator will not be eliminated. This avoids the over-counting of integration by

parts redundancy in ref. [168] that was pointed out in ref. [169].

6.3 Interface

6.3.1 Basic objects

The basic objects for the usage of BasisGen are presented here. All of them can be

imported with:

from basisgen import (

algebra , irrep , Field , EFT , boson , fermion ,

scalar , L_spinor , R_spinor , vector , L_tensor , R_tensor

)

Functions

algebra Creates a (semi)simple Lie algebra from one string argument. The returned

object is of the class SimpleAlgebra or SemisimpleAlgebra from the module

algebra.

Examples of arguments: ’A3’, ’C12’, ’F4’, ’SU3’, ’B2+E7’, ’SU5 x SO6 x

Sp10’.

irrep Creates an irreducible representation from 2 string arguments: the first repre-

sents the algebra and the second the highest weight1. The returned object is of

the class representations.Irrep.

Example: irrep(’SU4 x Sp7’, ’1 0 1 0 2 1’).

The weight system of a representations.Irrep object can be obtained by

calling its weights view method. Irreps with the same algebra can be multiplied

to get the decomposition of their tensor product. Any two irreps can be added

to give an irrep of the direct sum of their algebras.

Examples, showing the weights of the octet irrep of SU(3) (which has highest
weight (11)) and the decomposition of the product of a triplet (10) and an anti-
triplet (01) as an octet plus a singlet:

1The highest weights for many irreps of several groups can be found, for example in ref. [171]. In
particular, notice that the highest weight of an SU(2) irrep is its dimension minus one.
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Name Description Default

name String identifier

lorentz irrep Lorentz group irrep

internal irrep Irrep of the internal (semisimple) symmetry group

charges Charges under an arbitrary number of U(1) factors []

statistics Either boson or fermion boson

dimension Canonical dimension of the field 1

number of flavors Number of different copies of the same field 1

Table 6.1: Arguments of the Field constructor

>>> irrep(’SU3’, ’1 1’). weights_view ()

(1 1)

(2 -1) (-1 2)

(0 0) (0 0)

(1 -2) (-2 1)

(-1 -1)

>>> irrep(’SU3’, ’1 0’) * irrep(’SU3’, ’0 1’)

[1 1] + [0 0]

Classes

Field Has an attribute conjugate, the conjugate field. The constructor arguments

are presented in table 6.1.

EFT Constructor arguments:

internal algebra The semisimple Lie algebra of the internal symmetry group.

fields A list of Field objects representing the field content of the theory.

Methods:

invariants Returns a basis of operators, encapsulated in an EFT.Invariants

object. These can be directly printed (implement str ). They have a

method count to calculate the total number of operators in the basis, and a

method show by classes, which returns a simplified string representation

of the basis, provided a dictionary whose keys are the fields and values are

strings representing classes of fields.

covariants Returns a collection of all operators with all possible irreps, in

the form of a EFT.Covariants instance. Its only purpose is to hold the

information until it is printed (implements str ).

Both receive the same arguments: max dimension, the maximum dimension

of the operators computed; use eom (default: True) a boolean to specify

whether the equations of motion should be used; ignore lower dimension (de-

fault: False), a boolean to specify whether operators with dimension less than

max dimension should be included in the results; and verbose (default: False),

a boolean enabling/disabling messages about the progress of the calculations.
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Other

The following irreps of the Lorentz group have been defined, for ease of use: scalar,

L spinor, R spinor, vector, L tensor, R tensor. L spinor and R spinor corre-

spond to left and right Weyl spinors, respectively. L tensor and R tensor correspond

to the left and right parts of an antisymmetric tensor with two indices.

The statistics of a field can be specified by using the variables boson and fermion,

which are set to the values BOSON and FERMION of the enum class Statistics from

the module statistics.

6.3.2 The smeft module

The smeft module contains the definitions of all the SM fields:

• The Higgs doublet phi and its conjugate phic.

• The left and right parts GL and GR of the SU(3) field strength.

• The left and right parts WL and WR of the SU(2) field strength

• The left and right parts BL and BR of the U(1) field strength.

• The quark doublet Q and its conjugate Qc.

• The lepton doublet L and its conjugate Lc.

• The up-type quark singlet u and its conjugate uc.

• The down-type quark singlet d and its conjugate dc.

• The electron singlet e and its conjugate ec.

The bosons are objects of the Field class. The fermions are functions that take

the number of generations and return a Field. Similarly, the function smeft

takes the number of fermion flavors and returns an EFT object representing the

SMEFT. The algebra su3 ⊕ su2 is named sm internal algebra. A dictionary named

sm field classes is included, to simplify the presentation of the results by passing

it as an argument to the method show by classes of an EFT.Invariants object.

Listing 6.3 contains an example script for the computation of bases of arbitrary

dimension (passed as an argument to the script) for the 1-generation SMEFT. It gives

84 operators for dimension 6 (in about 3 seconds in a personal computer with a 2,6

GHz Intel Core i5 processor) and 993 operators for dimension 8 (in around 40 seconds

in the same computer).

6.4 Conclusions

BasisGen computes bases of operators for EFTs in a general setting: the internal

symmetry group can be any product of a semisimple group and an arbitrary number

of U(1) factors. 4-dimensional Lorentz invariance is assumed to provide support for

concrete applications, although adaptations to other spacetime dimensions can be

easily made, due to the generality of the core functionalities.
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Listing 6.3: SMEFT example

from basisgen.smeft import smeft , sm_field_classes

import sys

invariants = smeft(number_of_flavors =1). invariants(

max_dimension=int(sys.argv [1]),

verbose=True ,

ignore_lower_dimension=True

)

print(invariants.show_by_classes(sm_field_classes (1)))

print("Number of invariants: {}".format(invariants.count ()))

We will use BasisGen in chapters 7 and 9, to obtain a basis for EFTs with new

fields beyond the SM ones.

The decision of using the equations of motion is left to the user, as it may be

convenient to work with redundant bases in some cases, as explained in section 4.6. It

is also possible not only to compute invariants but to generate all covariant operators,

classified by their irreps. This can be useful, for example, to find the representation

of fields that couple linearly to an already known theory, which are often the most

relevant ones for phenomenology [6–10]. We will also make use of this feature in

chapters 7 and 9. An interface for doing basic operations with representations of

semisimple groups is also provided.

BasisGen’s speed for large numbers of fields and high-dimensional operators makes

it possible to calculate bases for the SMEFT or for other EFTs for physics beyond

the SM, in times ranging from seconds (for the dimension-8 operators in the SMEFT)

to minutes (for higher-dimensional operators or larger number of fields) in personal

computers.
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CHAPTER 7
General extensions of the Standard

Model

7.1 Introduction

In section 3.7, we introduced the SMEFT: an EFT for the SM particles. Deviations

from the SM physics are parametrized in the SMEFT through the introduction of

higher-dimensional operators. In this way, it provides a model-independent framework

to study new physics. Its range of validity is limited to energies below the threshold

of production of any extra degrees of freedom.

To study the direct production of new particles, it is mandatory to incorporate into

the EFT the extra fields associated to them. Of course, the problem is that we do not

know a priori which are the particles and fields that are relevant at the energies that

can be accessed in the near future. So, in order to preserve model independence, we

need to consider EFTs with arbitrary field content and arbitrary interactions. This

also helps in connecting to particular models and hence in providing a rationale for

the values of the low-energy parameters.

To explicitly write such an EFT, which we call the BSMEFT, it is necessary to

make some assumptions about the high-energy physics. Our aim here is to keep these

assumptions minimal, so that we work in a setting as general as possible. For the

symmetries, we take 4-dimensional Poincaré invariance together with the SM gauge

groupGSM := SU(3)×SU(2)×U(1). This choice does not represent a loss of generality:
while it is possible that new symmetry groups are relevant at high energy, GSM must

be a subgroup of them. Invariance under a larger group fits in the BSMEFT through

a particular choice of relations between its free parameters. For the action of the

symmetries over the fields, we have to commit to some particular choices in order

to have a manageable theory. An important assumption in our construction is that

GSM is linearly realized. This is a requisite for the perturbative unitarity of a theory

that contains the SM gauge bosons (see section 3.6).1 We will introduce some extra

conditions over the representations of the fields, so that we have a finite number of

possibilities for them.

1A related effort for the case of the electroweak chiral Lagrangian, in which the Higgs boson is a
scalar singlet of the non-linearly realized electroweak symmetry is currently underway [178,179].
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This chapter is organized as follows. In section 7.2, the field content of the

BSMEFT is presented. In section 7.3, we collect the sector of their effective Lagrangian

that is relevant for leading order effects; that is, those terms that give tree-level con-

tributions to the dimension-6 SMEFT after matching (see chapter 8). We conclude in

section 7.4, with a summary of the applications of the BSMEFT, some of which are

presented in chapters 8 and 9.

7.2 Field content

In this section, we tackle the task of enumerating the fields that should be included in

the BSMEFT. They can be conveniently classified into irreducible representations of

the Lorentz and gauge symmetry groups. Our theory should contain all the SM field

multiplets (in particular, there should be a scalar in the (1, 2)1/2 representation). In

addition, we assume that the only chiral fermions are the SM ones. These assumptions

are partially justified by the experimental success of the SM, including the discovery

of the Higgs boson, precision electroweak data and Higgs data.

For the fields that are not in the SM, we should consider every representation of

GSM, according to our general approach of including all possible new fields. To reduce

the number of possibilities, we impose the condition that the quantum numbers of

each extra field are same as those of some operator made out of the SM fields only.

This choice is justified by several reasons. First, it must be satisfied if the particles

associated with these fields are unstable and decay into SM ones. Second, these are

the fields whose linear interactions with the SM are allowed by the symmetries. The

existence of linear interactions is a requirement for many tree-level effects. For ex-

ample, single production and decay are governed by them at tree level. Moreover,

integrating out a new field at tree level only gives non-vanishing contributions if the

field has linear couplings.

The full list of assumptions that define the field content of the BSMEFT is:

1. The gauge group GSM := SU(3)× SU(2)× U(1) is linearly realized.

2. The Lorentz and gauge quantum numbers of every field are equal to those of

some SM covariant operator. This includes, in particular, all the SM fields.

3. The only fermion fields with chiral transformations under GSM are the ones in

the SM. In other words, all the extra fermions are vector-like with respect to

GSM or Majorana. This ensures that GSM is non-anomalous.

4. The fields create particles of spin ≤ 1.

The fourth assumption is made to avoid subtle consistency issues with interacting

particles of spin > 1 [180].2 Importantly for the purposes of chapter 8, the first

three assumptions ensure that, at energies much smaller than all the (gauge-invariant)

masses of the extra particles, the theory is well described by the SMEFT.

Let LBSM be the effective Lagrangian of the BSMEFT. The operators of canonical

dimension d > 4 in LBSM have dimensionful coefficients, which can be written as

2Local EFTs involving higher-spin particles are possible, with a restricted region of validity de-
termined by their mass, spin and couplings [181].
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αif
4−d, with f some mass scale and αi dimensionless couplings, which can be related

with the cutoff Λ by power-counting arguments [28–31, 182–184]. As we have seen in

section 3.6, if all the vector bosons in the theory are the additional gauge bosons of

an extended gauge symmetry G ⊃ GSM (spontaneously broken to GSM) and LBSM is

invariant under G, with no anomalies, then the BSMEFT is a unitary EFT that can be

used to perform perturbative calculations to arbitrary precision at energies below the

cutoff Λ. However, in agreement with our model-independent spirit, we will consider

here general theories with Proca vector bosons without enforcing any gauge invariance

beyond GSM.
3 This class of theories contains the ones with extended gauge invariance.

All the covariant derivatives we write are thus understood to be covariant with respect

to GSM only.

The conditions that we have imposed strongly restrict the quantum numbers of the

extra fields. We will prove here a necessary condition over their representation under

GSM. As in section 3.7, we use the label C for the representation under SU(3), T for

the SU(2) isospin and Y for the hypercharge. We define

N(C, T, Y ) = A(C) + B(T ) + Y, (7.1)

with A and B defined by the condition 0 ≤ A(C), B(T ) < 1 and the equations

C(e2iπ/3I) = e2iπA(C)I, T (−I) = e2iπB(T )I. (7.2)

where C(X) (T (X)) denotes the representation of an element X of the SU(3) (SU(2))
algebra defined by C (T ). The values A and B may take are limited: A(C) ∈
{0, 1/3, 2/3} and B(T ) ∈ {0, 1/2}. The set representations of SU(3) is split into

three classes by the corresponding value A:

0 = A(1) = A(8) = A(10) = A(10) = A(27) = . . . (7.3)

1/3 = A(3) = A(6) = A(15) = A(15′) = A(24) = . . . (7.4)

2/3 = A(3) = A(6) = A(15) = A(15′) = A(24) = . . . (7.5)

In a similar way, B splits the set of SU(2) representations in two subsets: those with

integer isospin and the others. Both A and B are additive under the operation of

taking tensor products of representations:

A(C1 ⊗ C2) = A(C1) + A(C2) (mod 1), (7.6)

B(T1 ⊗ T2) = B(T1) + B(T2) (mod 1). (7.7)

We will prove now that if (CO, TO, YO) is the representation of some operator O
constructed with the Standard Model fields, then N(CO, TO, YO) is an integer.4 First,

it can be directly checked that N(Cφ, Tφ, Yφ) is an integer for any SM field φ. Now,

from the additivity of A, B and Y it follows that the value of N corresponding to the

product OQ of two operators O and Q is

N(COQ, TOQ, YOQ) = [A(CO) + A(CQ)] + [B(TO) + B(TQ)] + [YO + YQ] (mod 1)

3Spin-1 particles could alternatively be described by rank-2 antisymmetric tensor fields, which
can be related to our vector formulation by a field redefinition, see [178,185].

4This condition has been given before, in a different form, in ref. [186].
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= [A(CO) + B(TO) + YO] + [A(CQ) + B(TQ) + YQ] (mod 1)

= N(CO, TO, YO) +N(CQ, TQ, YQ) (mod 1),

Therefore, if N(CO, TO, YO) and N(CQ, TQ, YQ) are integers, then N(COQ, TOQ, YOQ)
must also be integer. This completes the proof. Particularizing for specific represen-

tations under SU(3), we obtain the relations:

T + Y ∈
{

Z for C = 1, 8, 10, 27, . . .
Z+ 2/3 for C = 3, 6̄, 15, 15′, . . .

(7.8)

We emphasize that the quantum numbers of all the fields in the BSMEFT must satisfy

this condition. Clearly, the number of different representations for new fields is infinite.

However, their tree-level effects will be suppressed at least by the inverse power of Λ

that corresponds to their linear interactions. Therefore, when working at some fixed

order in the expansion in inverse powers of Λ, only those with linear interactions up

to that order are relevant at tree level. It turns out that only a finite number of

possibilities remain at each order.

In this chapter, we concentrate on those extra fields that can have gauge-invariant

linear interactions with the SM fields of dimension d ≤ 4. They are the relevant

fields for chapter 8, as they are the only ones with tree-level contributions to operators

of dimension 6 or less in the SMEFT, as shown in section 8.2. This means that

they provide the leading contributions to indirect tests. This condition restricts the

quantum numbers of the extra fields to be those of operators of dimension 2, 3 and

5/2 that can be built with SM fields. The allowed irreducible representations can

be found using BasisGen (see chapter 6). All of them, together with the notation

we use for each of the corresponding fields, are collected in tables 7.1, 7.2 and 7.3.

These new fields have been singled out and studied before, in [6–9].5 Several subsets

of the complete collection have appeared in the literature in different contexts (see for

instance [128,188–192]).

7.3 Explicit BSMEFT Lagrangian

In this section, we present the part of LBSM that contributes classically to the SMEFT

with operators of dimension 6 or less. This is the relevant Lagrangian for the matching

calculation we perform in chapter 8. It is therefore the sector of the BSMEFT with

leading-order indirect effects, both in the expansion in loops and in inverse powers

of f or the masses of the extra particles. Apart from the SM ones, the only fields

5There is actually one exception: the vector field L1 was not included in [8]. There exists only one
gauge-invariant operator of dimension d ≤ 4 that is linear in this vector and has no any other extra
field: the super-renormalizable operator L†

1µD
µφ, which mixes the longitudinal part of L1 with the

Higgs doublet. Such an operator will not appear, in the unitary gauge, if L1 is the gauge boson of an
extended, spontaneously broken gauge invariance. Therefore, in a complete unitary theory, it will not
contribute to the SMEFT operators at the leading order. However, it could appear in other gauges
and also in phenomenological models, much as pion-vector resonance mixing is included in certain
descriptions of low-energy QCD [178,185]. In these cases it can be eliminated by a field redefinition,
which in general generates local operators of dimension 4, 5 and 6 weighted by the vector mass and
the dimensional coefficient of the super-renormalizable operator [187]. At the end of the day, as far
as low-energy physics is concerned, this is equivalent to integrating the field out, which will be our
approach in chapter 8.
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Name S S1 S2 ϕ Ξ Ξ1 Θ1 Θ3

Irrep (1, 1)0 (1, 1)1 (1, 1)2 (1, 2) 1
2

(1, 3)0 (1, 3)1 (1, 4) 1
2

(1, 4) 3
2

Name ω1 ω2 ω4 Π1 Π7 ζ
Irrep (3, 1)− 1

3
(3, 1) 2

3
(3, 1)− 4

3
(3, 2) 1

6
(3, 2) 7

6
(3, 3)− 1

3

Name Ω1 Ω2 Ω4 Υ Φ
Irrep (6, 1) 1

3
(6, 1)− 2

3
(6, 1) 4

3
(6, 3) 1

3
(8, 2) 1

2

Table 7.1: New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N E ∆1 ∆3 Σ Σ1

Irrep (1, 1)0 (1, 1)−1 (1, 2)− 1
2

(1, 2)− 3
2

(1, 3)0 (1, 3)−1

Name U D Q1 Q5 Q7 T1 T2
Irrep (3, 1) 2

3
(3, 1)− 1

3
(3, 2) 1

6
(3, 2)− 5

6
(3, 2) 7

6
(3, 3)− 1

3
(3, 3) 2

3

Table 7.2: New vector-like fermions contributing to the dimension-six SMEFT at tree

level.

Name B B1 W W1 G G1 H L1

Irrep (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (8, 1)0 (8, 1)1 (8, 3)0 (1, 2) 1
2

Name L3 U2 U5 Q1 Q5 X Y1 Y5

Irrep (1, 2)− 3
2

(3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)− 5
6

(3, 3) 2
3

(6̄, 2) 1
6

(6̄, 2)− 5
6

Table 7.3: New vector bosons contributing to the dimension-six SMEFT at tree level.

that appear in this Lagrangian are the ones in tables 7.1, 7.2 and 7.3. The complete

BSMEFT be split in the following way:

LBSM = L0 + LS + LF + LV + Lmixed + . . . , (7.9)

where L0 contains terms of dimension d ≤ 6 with only SM fields (and, therefore, it is

of the same form as the SMEFT Lagrangian, defined in section 3.7), LS,F,V contains

terms of dimension d ≤ 5 with extra scalars, fermions and vectors, respectively, but

no products of new fields of different spin, and Lmixed contains terms of dimension

d ≤ 4 involving products of extra fields of different spin. In writing the dimension-

five interactions with the heavy particles we remove redundant operators by using

the SM equations of motion. The dots indicate terms that do not contribute in our

approximation.

The extra fields can have kinetic or mass mixing with the a priori SM ones if

they share the same quantum numbers. However, field rotations and rescalings can

always be performed in such a way that all the kinetic terms in LBSM are diagonal and

canonical and all the mass terms are diagonal in the electroweak symmetric phase.

All our equations are written with this choice of fields (except for the mixing of φ and

possible scalars ϕ with L1, see footnote 5). Furthermore, we assume that no fields

get a non-trivial gauge-invariant vacuum expectation value in the symmetric phase.
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This can always be achieved by convenient shifts of the scalar singlets. To match

models written in a different “field basis”, the shift, diagonalization and canonical

normalization must be performed prior to using our formulas.

Working in this “field basis” not only fixes the precise meaning of the couplings

in LBSM, but also allows to identify the SM fields that enter in L0. The SM fermions

and gauge fields are the massless fermion and vector eigenstates, respectively, whereas

we identify the Higgs doublet φ with the (1, 2)1/2 scalar eigenstate associated to a

negative eigenvalue of the squared mass matrix. We assume that this eigenvalue is

non-degenerate and that all the other eigenvalues are positive. This is required if we

want LBSM to be described by the SMEFT at low energies.

We proceed now to explicitly write the desired sector of LBSM, with the notation

specified in appendix A.

7.3.1 New scalars

The Lagrangian LS can be written as the sum of two pieces:

LS = Lquad
S + Lint

S . (7.10)

The first one contains the kinetic terms (with covariant derivatives) and mass terms

of the new scalars:

Lquad
S =

∑

σ

ησ

[
(Dµσ)

†Dµσ −M2
σσ

†σ
]
. (7.11)

Here, σ are the different scalar fields in table 7.1. More than one scalar field in each

representation is allowed. The prefactor ησ takes the value 1 (1
2
) when σ is in a

complex (real) representation of the gauge group. The second piece in (7.10) contains

the general interactions of the new scalars with the SM fields and among themselves.

We distinguish the terms of dimension d ≤ 4 and the ones of dimension d = 5:

Lint
S = L(≤4)

S + L(5)
S , (7.12)

where

−L(≤4)
S = (κS)rSrφ†φ+ (λS)rsSrSsφ†φ+ (κS3)rstSrSsSt

+
{
(yS1)rijS†

1r l̄Liiσ2l
c
Lj + h.c.

}

+
{
(yS2)rijS†

2kēRie
c
Rj + h.c.

}

+
{
(yeϕ)rijϕ

†
rēRilLj + (ydϕ)rijϕ

†
rd̄RiqLj + (yuϕ)rijϕ

†
riσ2q̄

T
LiuRj

+(λϕ)r
(
ϕ†
rφ
) (
φ†φ
)
+ h.c.

}

+ (κΞ)rφ
†Ξarσ

aφ+ (λΞ)rs (Ξ
a
rΞ

a
s)
(
φ†φ
)

+
1

2
(λΞ1)rs

(
Ξ
a†
1rΞ

a
1s

) (
φ†φ
)
+

1

2
(λ′Ξ1

)rsfabc

(
Ξ
a†
1rΞ

b
1s

) (
φ†σcφ

)

+
{
(yΞ1)rijΞ

a†
1r l̄Liσ

aiσ2l
c
Lj + (κΞ1)rΞ

a†
1r

(
φ̃†σaφ

)
+ h.c.

}

+
{
(λΘ1)r

(
φ†σaφ

)
CI
aβφ̃βǫIJΘ

J
1r + h.c.

}
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+
{
(λΘ3)r

(
φ†σaφ̃

)
CI
aβφ̃βǫIJΘ

J
3r + h.c.

}

+
{
(yqlω1

)rijω
†
1rq̄

c
Liiσ2lLj + (yqqω1

)rijω
A†
1r ǫABC q̄

B
Liiσ2q

cC
Lj

+(yeuω1
)rijω

†
1rē

c
RiuRj + (yduω1

)rijω
A†
1r ǫABC d̄

B
Riu

cC
Rj + h.c.

}

+
{
(yω2)rijω

A†
2r ǫABC d̄

B
Rid

cC
Rj + h.c.

}

+
{
(yedω4

)rijω
A†
4r ē

c
RidRj + (yuuω4

)rijω
A†
4r ǫABC ū

B
Riu

cC
Rj + h.c.

}

+
{
(yΠ1)rijΠ

†
1riσ2l̄

T
LidRj + h.c.

}

+
{
(yluΠ7

)rijΠ
†
7riσ2l̄

T
LiuRj + (yeqΠ7

)rijΠ
†
7rēRiqLj + h.c.

}

+
{
(yqlζ )rijζ

a†
r q̄

c
Liiσ2σ

alLj + (yqqζ )rijζ
a†
r ǫABC q̄

B
Liσ

aiσ2q
cC
Lj + h.c.

}

+
{
(yudΩ1

)rijΩ
AB†
1r ū

c(A|
Ri d

|B)
Rj + (yqqΩ1

)rijΩ
AB†
1r q̄

c(A|
Li iσ2q

|B)
Lj + h.c.

}

+
{
(yΩ2)rijΩ

AB†
2r d̄

c(A|
Ri d

|B)
Rj + h.c.

}

+
{
(yΩ4)rijΩ

AB†
4r ū

c(A|
Ri u

|B)
Rj + h.c.

}

+
{
(yΥ)rijΥ

AB†
r q̄

c(A|
Li iσ2σ

aq
|B)
Lj + h.c.

}

+
{
(yquΦ )rijΦ

A†
r iσ2q̄

T
LiTAuRj + (ydqΦ )rijΦ

A†
r d̄RiTAqLj + h.c.

}

+ (λSΞ)rsSrΞas
(
φ†σaφ

)
+ (κSΞ)rstSrΞasΞat

+ (κSΞ1)rstSrΞa†1sΞa1t +
{
(λSΞ1)rsSrΞa†1s

(
φ̃†σaφ

)
+ h.c.

}

+
{
(κSϕ)rsSrϕ†

sφ+ (κΞϕ)rsΞ
a
r(ϕ

†
sσ

aφ) + (κΞ1ϕ)rsΞ
a†
1r

(
ϕ̃†
sσ

aφ
)
+ h.c.

}

+ (κΞΞ1)rstfabcΞ
a
rΞ

b†
1sΞ

b
1t +

{
(λΞ1Ξ)rsfabcΞ

a†
1rΞ

b
s

(
φ̃†σcφ

)
+ h.c.

}

+
{
(κΞΘ1)rsΞ

a
rC

I
aβφ̃βǫIJΘ

J
1s + (κΞ1Θ1)rsΞ

a†
1rC

I
aβφβǫIJΘ

J
1s

+ (κΞ1Θ3)rsΞ
a†
1rC

I
aβφ̃βǫIJΘ

J
3s + h.c.

}
, (7.13)

and

−L(5)
S =

1

f

[
(k̃φS)rSrDµφ

†Dµφ+ (λ̃S)rSr|φ|4

+ (k̃BS )rSrBµνB
µν + (k̃WS )rSrW a

µνW
aµν + (k̃GS )rSrGA

µνG
Aµν

+ (k̃B̃S )rSrBµνB̃
µν + (k̃W̃S )rSrW a

µνW̃
aµν + (k̃G̃S )rSrGA

µνG̃
Aµν

+
{
(ỹeS)rijSrēRiφ†lLj + (ỹdS)rijSrd̄Riφ†qLj + (ỹuS)rijSrūRiφ̃†qLj + h.c.

}

+ (k̃φΞ)rΞ
a
rDµφ

†σaDµφ+ (λ̃Ξ)rΞ
a
r |φ|2φ†σaφ

+ (k̃WB
Ξ )rΞ

a
rW

a
µνB

µν + (k̃WB̃
Ξ )rΞ

a
rW

a
µνB̃

µν

+
{
(ỹeΞ)rijΞ

a
r ēRiφ

†σalLj + (ỹdΞ)rijΞ
a
r d̄Riφ

†σaqLj + (ỹuΞ)rijΞ
a
r ūRiφ̃

†σaqLj + h.c.
}

+
{
(k̃Ξ1)rΞ

a†
1rDµφ̃

†σaDµφ+ (λ̃Ξ1)rΞ
a†
1r|φ|2φ̃†σaφ+ (ỹeΞ1

)rijΞ
a†
1rēRiφ̃

†σalLj
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+(ỹdΞ1
)rijΞ

a†
1rd̄Riφ̃

†σaqLj + (ỹuΞ1
)rijΞ

a†
1rq̄Liσ

aφuRj + h.c.
}]

. (7.14)

7.3.2 New fermions

As indicated in section 7.1, we exclude the possibility of extra fermions with chiral

transformations under the gauge group GSM. Then, in the massive fermion sector, the

complex irreducible representations of GSM are carried by vector-like Dirac spinors,

while the real irreducible representations are carried by Majorana spinors ψ, with

ψL = (ψR)
c ≡ ψcR. The only instances of the latter possibility are the extra leptons N

and Σ in table 7.2. In our “field basis”, the diagonal mass matrices are given by sums

of Dirac mass terms (for the complex representations) and Majorana mass terms (for

the real representations).6

The general Lagrangian LF is given by

LF = Lquad
F + Lint

F , (7.15)

where

Lquad
F =

∑

ψ

ηψ
[
ψ̄ i��Dψ −Mψψ̄ψ

]
, (7.16)

with ψ labelling the different fields in table 7.2, with an arbitrary number of fields in

each irreducible representation, and ηψ = 1 (ηψ = 1/2) when ψ is Dirac (Majorana),

and

Lint
F = L(4)

leptons + L(4)
quarks + L(5)

leptons + L(5)
quarks, (7.17)

where

−L(4)
leptons = (λN)riN̄Rrφ̃

†lLi + (λE)riĒRrφ
†lLi

+ (λ∆1)ri∆̄1LrφeRi + (λ∆3)ri∆̄3Lrφ̃eRi

+
1

2
(λΣ)riΣ̄

a
Rrφ̃

†σalLi +
1

2
(λΣ1)riΣ̄

a
1Rrφ

†σalLi

+ (λN∆1)rsN̄
c
Rrφ

†∆1Rs + (λE∆1)rsĒLrφ
†∆1Rs

+ (λE∆3)rsĒLrφ̃
†∆3Rs +

1

2
(λΣ∆1)rsΣ̄

c a
Rrφ̃

†σa∆1Rs

+
1

2
(λΣ1∆1)rsΣ̄

a
1Lrφ

†σa∆1Rs +
1

2
(λΣ1∆3)rsΣ̄

a
1Lrφ̃

†σa∆3Rs + h.c., (7.18)

−L(4)
quarks = (λU)riŪRrφ̃

†qLi + (λD)riD̄Rrφ
†qLi

+ (λuQ1
)riQ̄1Lrφ̃uRi + (λdQ1

)riQ̄1LrφdRi

+ (λQ5)riQ̄5Lrφ̃dRi + (λQ7)riQ̄7LrφuRj

+
1

2
(λT1)riT̄

a
1Rrφ

†σaqLi +
1

2
(λT2)riT̄

a
2Rrφ̃

†σaqLi

+ (λUQ1)rsŪLrφ̃
†Q1Rs + (λUQ7)rsŪLrφ

†Q7Rs

6Note that the particular case of a Dirac fermion Ψ of mass MΨ in a real representation of H
is equivalent to our description with two degenerate Majorana fields ψ1 and ψ2 of mass MΨ, with
ΨR = 1/

√
2 (ψ1R + iψ2R) and ΨL = 1/

√
2 (ψc

1R + iψc
2R).
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+ (λDQ1)rsD̄Lrφ
†Q1Rs + (λDQ5)rsD̄Lrφ̃

†Q5Rs

+
1

2
(λT1Q1)rsT̄

a
1Lrφ

†σaQ1Rs +
1

2
(λT1Q5)rsT̄

a
1Lrφ̃

†σaQ5Rs

+
1

2
(λT2Q1)rsT̄

a
2Lrφ̃

†σaQ1Rs +
1

2
(λT2Q7)rsT̄

a
2Lrφ

†σaQ7Rs + h.c., (7.19)

−L(5)
leptons =

1

f

[
(λ̃N)riN̄

c
Rrγ

µ
(
Dµφ̃

)†
lLi

+ (λ̃lE)riĒLrγ
µ (Dµφ)

† lLi + (λ̃BE)riĒLrσ
µνeRiBµν + (λ̃eE)riĒLrφ

†φeRi

+ (λ̃e∆1
)ri∆̄1Rr /DφeRi + (λ̃l∆1

)ri
(
∆̄1Rrφ

) (
φ†lLi

)
+ (λ̃l′∆1

)ri
(
∆̄1RrlLi

) (
φ†φ
)

+ (λ̃B∆1
)ri∆̄1Rrσ

µνlLiBµν + (λ̃W∆1
)ri∆̄1Rrσ

µνσalLiW
a
µν

+ (λ̃e∆3
)ri∆̄3Rr /Dφ̃eRi + (λ̃l∆3

)ri

(
∆̄3Rrφ̃

) (
φ†lLi

)

+ (λ̃lΣ)riΣ̄
c a
Rrγ

µ
(
Dµφ̃

)†
σalLi + (λ̃eΣ)riΣ̄

c a
Rrφ̃

†σaφeRi

+ (λ̃lΣ1
)riΣ̄

a
1Lrγ

µ (Dµφ)
† σalLi + (λ̃eΣ1

)riΣ̄
a
1Lrφ

†σaφeRi

+ (λ̃WΣ1
)riΣ̄

a
1Lrσ

µνeRiW
a
µν

]
+ h.c., (7.20)

−L(5)
quarks =

1

f

[
(λ̃qU)riŪLrγ

µ
(
Dµφ̃

)†
qLi + (λ̃uU)riŪLrφ

†φuRi

+ (λ̃BU )riŪLrσ
µνuRiBµν + (λ̃GU )riŪLrTAσ

µνuRiG
A
µν

+ (λ̃qD)riD̄Lrγ
µ (Dµφ)

† qLi + (λ̃dD)riD̄Lrφ
†φdRi

+ (λ̃BD)riD̄Lrσ
µνdRiBµν + (λ̃GD)riD̄LrTAσ

µνdRiG
A
µν

+ (λ̃uQ1
)riQ̄1Rr /Dφ̃uRi + (λ̃dQ1

)riQ̄1Rr /DφdRi

+ (λ̃qQ1
)ri
(
Q̄1Rrφ

) (
φ†qLi

)
+ (λ̃q′Q1

)ri
(
Q̄1RrqLi

) (
φ†φ
)

+ (λ̃BQ1
)riQ̄1Rrσ

µνqLiBµν + (λ̃WQ1
)riQ̄1Rrσ

µνσaqLiW
a
µν

+ (λ̃GQ1
)riQ̄1Rrσ

µνTAqLiG
A
µν

+ (λ̃dQ5
)riQ̄5Rr /Dφ̃dRi + (λ̃qQ5

)ri

(
Q̄5Rrφ̃

) (
φ†qLi

)

+ (λ̃uQ7
)riQ̄7Rr /DφuRi + (λ̃qQ7

)ri
(
Q̄7Rrφ

) (
φ̃†qLi

)

+ (λ̃qT1)riT̄
a
1Lrγ

µ (Dµφ)
† σaqLi + (λ̃uT1)riT̄

a
1Lrφ

†σaφ̃uRi

+ (λ̃dT1)riT̄
a
1Lrφ

†σaφdRi + (λ̃WT1)riT̄
a
1Lrσ

µνdRiW
a
µν

+ (λ̃qT2)riT̄
a
2Lrγ

µ
(
Dµφ̃

)†
σaqLi + (λ̃uT2)riT̄

a
2Lrφ

†σaφuRi

+ (λ̃dT2)riT̄
a
2Lrφ̃

†σaφdRi + (λ̃WT2)riT̄
a
2Lrσ

µνuRiW
a
µν

]
+ h.c. . (7.21)
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7.3.3 New vectors

For the extra vectors, we write

LV = Lquad
V + Lint

V , (7.22)

where7

Lquad
V =

∑

V

ηV
(
DµV

†
νD

νV µ −DµV
†
νD

µV ν +M2
V V

†
µV

µ
)
, (7.23)

with V on the right-hand side labelling the different fields in table 7.3, with an arbitrary

number of fields in each irreducible representation, and ηV = 1 (ηV = 1/2) when V is

in a complex (real) representation of H, and

Lint
V = L(≤4)

V + L(5)
V , (7.24)

where

−L(≤4)
V = (glB)rijBµr l̄LiγµlLj + (gqB)rijBµr q̄LiγµqLj + (geB)rijBµr ēLiγµeLj

+ (gdB)rijBµr d̄LiγµdLj + (guB)rijBµr ūLiγµuLj +
{
(gφB)rBµr φ†iDµφ+ h.c.

}

+
{
(gduB1

)rijBµ†1r d̄RiγµuRj + (gφB1
)rBµ†1r iDµφ

T iσ2φ+ h.c.
}

+
1

2
(glW)rijWµa

r l̄Liσ
aγµlLj +

1

2
(gqW)rijWµa

r q̄Liσ
aγµqLj

+

{
1

2
(gφW)rWµa

r φ†σaiDµφ+ h.c.

}

+

{
1

2
(gW1)rWµa†

1r iDµφ
T iσ2σ

aφ+ h.c.

}

+ (gqG)rijGµAr q̄LiγµTAqLj + (guG)rijGµAr ūLiγµTAuRj + (gdG)rijGµAr d̄RiγµTAdRj

+
{
(gG1)rijGAµ†1r d̄RiTAγµuRj + h.c.

}

+
1

2
(gH)rijHµaA

r q̄Liγµσ
aTAqLj

+
{
(γL1)rL†

1rµD
µφ+ h.c.

}

+ i(gBL1
)rsL†

1rµL1sνB
µν + i(gWL1

)rsL†
1iµσ

aL1jνW
aµν

+ i(gB̃L1
)rsL†

1rµL1sνB̃
µν + i(gW̃L1

)rsL†
1rµσ

aL1sνW̃
aµν

+ (h
(1)
L1
)rs

(
L†

1rµLµ1s
) (
φ†φ
)
+ (h

(2)
L1
)rs

(
L†

1rµφ
) (
φ†Lµ1s

)

+
{
(h

(3)
L1
)rs

(
L1†

1rµφ
)(

L†µ
1sφ
)
+ h.c.

}

+
{
(gL3)rijLµ†3r ēcRiγµlLj + h.c.

}

+
{
(gedU2

)rijUµ†
2r ēRiγµdRj + (glqU2

)rijUµ†
2r l̄LiγµqLj + h.c.

}

+
{
(gU5)rijUµ†

5r ēRiγµuRj + h.c.
}

7For each V , this covariant Proca Lagrangian describes a particle of spin 1 coupled to the SM
gauge fields. Other choices of the kinetic term would give rise to ghosts.



7.3. EXPLICIT BSMEFT LAGRANGIAN 99

+
{
(gulQ1

)rijQµ†
1r ū

c
RiγµlLj + (gdqQ1

)rijQAµ†
1r ǫABC d̄

B
Riγµiσ2q

cC
Lj + h.c.

}

+
{
(gdlQ5

)rijQµ†
5r d̄

c
RiγµlLj + (geqQ5

)rijQµ†
5r ē

c
RiγµqLj

+(guqQ5
)rijQAµ†

5r ǫABC ū
B
Riγµq

cC
Lj + h.c.

}

+

{
1

2
(gX )rijX aµ†

r l̄Liγµσ
aqLj + h.c.

}

+

{
1

2
(gY1)rijYABµ†

1r d̄
(A|
Ri γµiσ2q

c|B)
Lj + h.c.

}

+

{
1

2
(gY5)rijYABµ†

5r ū
(A|
Ri γµiσ2q

c|B)
Lj + h.c.

}

+
{
(ζL1B)rs

(
L†

1rµφ
)
Bµs + (ζL1B1)rsL̃†

1rµφBµ†1s

+(ζL1W)rs

(
L†

1rµσ
aφ
)
Waµ

s + (ζL1W1)rsL̃†
1rµσ

aφWaµ†
1s + h.c.

}
, (7.25)

and

−L(5)
V =

1

f
Lµ†1r
[
(γ̃

(1)
L1

)r
(
φ†Dµφ

)
φ+ (γ̃

(2)
L1

)r
(
Dµφ

†φ
)
φ+ (γ̃

(3)
L1

)r
(
φ†φ
)
Dµφ

+ (γ̃BL1
)rBµνD

νφ+ (γ̃B̃L1
)rB̃µνD

νφ

+ (γ̃WL1
)rW

a
µνσ

aDνφ+ (γ̃W̃L1
)rW̃

a
µνσ

aDνφ

+ (g̃eDlL1
)rij ēRiDµlLj + (g̃DelL1

)rijDµēRilLj + (g̃dDqL1
)rij d̄RiDµqLj

+ (g̃DdqL1
)rijDµd̄RiqLj + (g̃qDuL1

)rijiσ2q̄
T
LiDµuRj + (g̃DquL1

)rijiσ2Dµq̄
T
LiuRj

+ (g̃duL1
)rijφ̃d̄RiγµuRj + (g̃eL1

)rijφēRiγµeRj + (g̃dL1
)rijφd̄RiγµdRj

+ (g̃uL1
)rijφūRiγµuRj + (g̃lL1

)rijφl̄RiγµlLj + (g̃l′L1
)rij (σ

aφ)
(
l̄Liγµσ

alLj
)

+ (g̃qL1
)rijφq̄LiγµqLj + (g̃q′L1

)rij (σ
aφ) (q̄Liγµσ

aqLj)

]
+ h.c. . (7.26)

7.3.4 Mixed terms

Lmixed can be further decomposed as

Lmixed = LSF + LSV + LVF, (7.27)

where the different pieces are given by

−LSF = (λSE)rsiSrĒLseRi + (λS∆1)rsiSr∆̄1RslLi

+ (λSU)rsiSrŪLsuRi + (λSD)rsiSrD̄LsdRi + (λSQ1)rsiSrQ̄1RsqLi

+ (λΞ∆1)rsiΞ
a
r∆̄1Rsσ

alLi + (λΞΣ1)rsiΞ
a
rΣ̄

a
1LseRi

+ (λΞQ1)rsiΞ
a
rQ̄1Rsσ

aqLi + (λΞT1)rsiΞ
a
r T̄

a
1LsdRi + (λΞT2)rsiΞ

a
r T̄

a
2LsuRi

+ (λΞ1∆3)rsiΞ
a†
1r∆̄3Rsσ

alLi + (λΞ1Σ)rsiΞ
a†
1rΣ̄

c a
Rs e

c
Ri

+ (λΞ1Q5)rsiΞ
a†
1rQ̄5Rsσ

aqLi + (λΞ1Q7)rsiΞ
a
1rQ̄7Rsσ

aqLi

+ (λΞ1T1)rsiΞ
a†
1rT̄

a
1LsuRi + (λΞ1T2)rsiΞ

a
1rT̄

a
2LsdRi + h.c. , (7.28)
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−LSV = (δBS)rsBrµDµSs + (δWΞ)rsWr,µD
µΞs

+
{
(δL1ϕ)rsL1†

1rµD
µϕs + (δW1Ξ1

)rsW1†
1rµD

µΞ1s + h.c.
}

+ (εSL1)rstSrL†
1sµLµ1t + (εΞL1)rstΞ

a
rL†

1sµσ
aLµ1t

+
{
(εΞ1L1)rstΞ

a
1iL†

1sµσ
aL̃µ1t + h.c.

}

+
{
(gSL1)rsφ

† (DµSr)Lµ1s + (g′SL1
)rs (Dµφ)

† SrLµ1s
+ (gΞL1)rsφ

†σa (DµΞ
a
r)Lµ1s + (g′ΞL1

)rs (Dµφ)
† σaΞarLµ1s

+ (gΞ1L1)rsφ̃
†σa (DµΞ

a
1r)

† Lµ1s + (g′Ξ1L1
)rs

(
Dµφ̃

)†
σaΞa†1rLµ1s + h.c.

}
, (7.29)

and

−LVF = (zNL1)rsiN̄
c
Rrγ

µL̃†
1sµlLi + (zEL1)rsiĒLrγ

µL†
1sµlLi

+ (z∆1L1)rsi∆̄1Rrγ
µL1sµeRi + (z∆3L1)rsi∆̄3Rrγ

µL̃1sµeRi

+ (zΣL1)rsiΣ̄
c a
Rr γ

µL̃†
1sµσ

alLi + (zΣ1L1)rsiΣ̄
a
1Lrγ

µL†
1sµσ

alLi

+ (zUL1)rsiŪLrγ
µL̃†

1sµqLi + (zDL1)rsiD̄Lrγ
µL†

1sµqLi

+ (zuQ1L1
)rsiQ̄1Rrγ

µL̃1sµuRi + (zdQ1L1
)rsiQ̄1Rrγ

µL1sµdRi

+ (zQ5L1)rsiQ̄5Rrγ
µL̃1sµdRi + (zQ7L1)rsiQ̄7Rrγ

µL1sµuRi

+ (zT1L1)rsiT̄
a
1Lrγ

µL†
1sµσ

aqLi + (zT2L1)rsiT̄
a
2Lrγ

µL̃†
1sµσ

aqLi + h.c. . (7.30)

No renormalizable operators exist that contain extra scalars, fermions and vectors

simultaneously.

Finally, in order to keep track of the dimensionality of the different contributions

to the operators in the effective Lagrangian presented in section 8.5 we collect here

the mass dimensions of the different types of couplings appearing in the new physics

Lagrangians introduced above:

[κ] = 1, [λ] = [λ′] = 0, [y] = 0, (7.31)

[k̃] = 0, [λ̃] = 0, [ỹ] = 0, (7.32)

[g] = [g′] = 0, [γ] = 1, [h] = 0, [ζ] = 1, (7.33)

[g̃] = 0, [γ̃] = 0, (7.34)

[δ] = 1, [ε] = 1, [z] = 0. (7.35)

7.4 Conclusions

In this chapter, we have presented the BSMEFT, an EFT for the model-independent

description of physics beyond the SM. Unlike the SMEFT, the BSMEFT can describe

the resonant production of degrees of freedom that are not present in the SM. This

makes it a useful tool to parametrize new physics effects that cannot be taken into

account in other ways. Its generality makes it the right tool to avoid dealing with

concrete new physics models in case by case basis: the analyses made within the
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BSMEFT can be used to study any of them, by choosing particular values of its

parameters. In addition, because it is an EFT that includes every operator allowed

by the symmetries, it can help discovering types of new physics effects that may be

missed because of the theoretical prejudice that unavoidably goes into model building.

Performing tree-level matching of the BSMEFT to the SMEFT amounts to doing

tree-level matching between any extension of the SM with new fields and the SMEFT

once and for all. The result can be presented in the form of a dictionary, which

can be used to explore both the low-energy effects of all possible new particles and

every possible new particle that can generate some low energy effect. In chapter 8,

this dictionary will be computed, allowing for operators of dimension 6 or less in

the SMEFT. The relevant new fields for this calculation have been presented in this

chapter, in tables 7.1, 7.2 and 7.3. The corresponding sector of LBSM has been written

in section 7.3.

In chapter 9, we will use the BSMEFT to study vector-like quarks. We will consider

the possibility that their linear interactions are not necessarily renormalizable. Thus,

their allowed representations under GSM are not only those in table 7.2. We will find

that they have experimental signatures that are not present when only renormalizable

interactions are permitted. As with any application of the BSMEFT, the results of this

analysis will be independent of the particular model to which the vector-like quarks

belong.





CHAPTER 8
Complete tree-level matching to

the SMEFT

8.1 Introduction

As explained in section 3.7, the SMEFT provides an essentially model-independent

parameterization of experimental data, inside a range of energies where new degrees

of freedom that are not contained in the SM cannot be produced. The task of relating

the SMEFT parameters to experiment can be done once and for all, independently

of any choice of new physics models.1 Then, these parameters can be connected to

the parameters of specific new-physics models through the process of matching. This

reintroduces the model dependence in the process of comparing experimental data to

new physics. Both calculations can actually be developed simultaneously and almost

independently. Put together, they allow us to use experimental data to test theories

beyond the SM, even when the new particles they bring about cannot be produced.

In chapter 7, we have introduced the BSMEFT. As the SMEFT, the BSMEFT

parametrizes experimental data in a model-independent way. However, the BSMEFT

includes new degrees of freedom, allowing for the parametrization of their resonant

production. To do so without losing generality, it includes every possible new field

under general assumptions. They key requirement for these extra fields is that they

can have linear couplings to the SM ones. This is a necessary condition for them to

have tree-level effects when integrated out.

In this chapter, we perform tree-level matching between the BSMEFT and the

dimension-6 SMEFT. Because the BSMEFT contains every field that can give non-

vanishing contributions in this calculation, we obtain as a result every possible such

contribution, independently of the specific model to which the extra fields belong.

We present our results in the form of a complete tree-level UV/IR dictionary up to

dimension 6 for the SMEFT. Parts of this dictionary have already been computed

before, for quarks [6], leptons [7], vectors [8] and scalars [9]. Here, we calculate the

complete dictionary, including both the already known contributions and the missing

1Global fits have to be updated if there is new experimental data or new theoretical calculations
within the context of the EFT.
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E

MEW MBSM

WET SMEFT BSMEFT

Figure 8.1: Tower of EFTs around and above the electroweak scale MEW. MBSM

represents the mass of the new particles in the BSMEFT. Tree-level matching between

the SMEFT and the WET has been performed in [25].

pieces. In figure 8.1 we show the hierarchy of EFTs that we are considering around

the electroweak scale and above.

We stress that this is a very general result with many practical applications. Con-

sider any weakly-coupled high-energy extension of the SM with new fields. To inte-

grate out these fields at tree level, one can just identify the part of BSMEFT that

corresponds to this model and then read the contribution to the SMEFT from the

dictionary. Conversely, suppose that one wants to find out which weakly-coupled UV

completions of the SM can produce some effect parametrized by the SMEFT. Then,

one can use the dictionary in the opposite way, and directly obtain from it the possible

extra fields that generate the effect, together with the necessary interactions.

We give all our results in the Warsaw basis [54], following the SM conventions in

ref. [135] for the relations between redundant operators.2 This allows the direct use

of our results together with the anomalous dimensions computed in [135,136,193,194]

(see also [133, 134]) to have a proper leading order calculation with possible large

logarithms resummed.3

This chapter is organized as follows. The general contribution to the tree-level

matching for effective operators up to dimension 6 is computed in section 8.2. In

section 8.3, we provide a guide to use our results both in the bottom-up and in a

top-down fashion. The top-down dictionary is given in section 8.4 and the bottom-

up one, which collects the expressions of the Wilson coefficients as functions of the

UV parameters, is reproduced in section 8.5. Then, we give two specific examples of

use of the dictionary: the application to the reported anomalies in certain B-meson

observables, in section 8.6; and the study of Higgs physics in simple models with one

or two new fields, in section 8.7. We conclude in section 8.8.

8.2 Effective Lagrangian and tree-level matching

In order to study the physics of LBSM as defined in section 7.3 at energy scales much

smaller than all the masses of the extra particles, the heavy fields can be integrated

out to find the corresponding effective Lagrangian, organized as a power series in the

2Our results can be easily translated into other popular bases by using publicly available
codes [141].

3There has been an important progress recently towards the automation of one-loop matching
calculations [32, 34, 113, 157, 158, 195–197] which would allow for consistent one-loop calculations in
the new models and, eventually, next-to-leading order ones when the two-loop SMEFT anomalous
dimensions are available.
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inverse masses:

Leff = L0 +

∞∑

n=2

L(n)
eff . (8.1)

where L0, defined in eq. (7.9), is the sector of LBSM containing terms of dimension

d ≤ 6 with only SM fields and the L(n)
eff contain the corrections to L0 from tree-level

matching, containing Lorentz and gauge invariant local operators O(n) of canonical

dimension n (constructed with the SM fields),

L(n)
eff =

∑

j

C
(n)
j O(n)

j . (8.2)

This effective Lagrangian will be a SMEFT with particular Wilson coefficients C
(n)
j ,

of mass dimension 4−n. The dimensions are provided by the masses and other scales

in LBSM.

Not all the operators O(n) are independent. Making use of algebraic identities

and field redefinitions, certain linear combinations can be eliminated from L(n)
eff , at the

price of changing L(>n)
eff (see chapter 4). Taking this redundance into account, several

operator bases have been defined to dimension n = 6. Here, we employ the Warsaw

basis defined in [54]. The operators in that basis are collected in section 3.7. The

main purpose of this chapter is to calculate the corresponding coefficients C(≤6) in the

classical approximation, as functions of the couplings and masses in LBSM.

Note that the generated operators have the same form as the ones in L0. The non-

trivial contributions we are interested in can be distinguished when there is sufficient

information on L0. This is the case if the coefficients of the non-renormalizable terms

in L0 are suppressed by a scale larger than the masses of the new particles, and also

if they are fixed by symmetries or are known functions of the parameters of a given

UV completion of LBSM. The requirement of a soft UV behaviour also imposes some

constraints [178,185].

The individual contributions of heavy fields and the collective contributions of

heavy fields with the same spin (except for the ones involving the vector L1) have

been calculated before in [6–9]. Here, we also incorporate the mixed contributions of

heavy particles of different spin, the contributions of L1 and the contribution of the

operators of dimension d = 5 in LBSM.

Let us explain the systematics of the integration procedure. With this aim, we first

write the part of LBSM involving new fields as

LBSM − L0 = η(i)A
†
i∆

−1
(i)A

i +
∑

m,n

A†
j1
· · ·A†

jn
W j1...jn
i1...im

Ai1 · · ·Aim , (8.3)

where Ai represent all possible extra fields in LBSM, ∆(i) is the covariant propagator

for Ai and W j1...jn
i1...im

are operators constructed with the SM fields, including the identity

operator. The factor η(i) = 1 (1/2) yields canonical normalization for complex (real)

fields (see section 7.3). Lorentz and Dirac indices are implicit. In general, these

operators carry a reducible representation of H, but the ones with a single index

i belong to the same irreducible representation as Ai or A†
i . The integration at the

classical level can be performed by i) using the equations of motion of LBSM to eliminate
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the heavy fields and ii) expanding the propagators of the heavy fields in inverse powers

of D(i)/M(i):

∆(i) = − 1

M2
(i)

(
1−

D2
(i)

M2
(i)

)
+O(1/M6) (scalars), (8.4)

∆(i) = − i��D (i) +M(i)

M2
(i)

(
1−

D2
(i)

M2
(i)

)
+O(1/M5) (fermions), (8.5)

∆
µν
(i) =

ηµν

M2
(i)

+
Dν

(i)D
µ
(i) − ηµνD2

(i)

M4
(i)

+O(1/M6) (vectors). (8.6)

The result at any finite order in D(i)/M(i) is a local Lagrangian. We have performed

the calculations in this algebraic fashion, keeping only the operators of dimension

n ≤ 6. To deal in an efficient manner with the large number of terms that appear

in this process and minimize the possibility of errors, we have employed the symbolic

code MatchingTools, presented in chapter 5, where we have implemented the algebraic

relations and field redefinitions necessary to express our results in terms of the Warsaw-

basis operators defined in section 3.7. All the calculations have been double-checked

by hand and against previous results in the literature.

We have performed field redefinitions in the linear approximation. This is the same

as using the equations of motion of the SM fields. We have shown in chapter 4 that

some contributions to Wilson coefficients of dimension-6 operators are missed in this

approach. They come from the φ†φ operator, when keeping terms that are quadratic

in the perturbation of the field introduced by the redefinition. All these quadratic

contributions are suppressed by µ2/M2, with respect to the natural coefficient dic-

tated by canonical dimension, so they are numerically of the same size as the natural

ones for operators of dimension 8. For this reason, we do not show them in our re-

sults. Following section 4.5.2, we can incorporate µ2 in the power counting by defining

N1/M(µ2) = −2, where M the cutoff of the SMEFT, which corresponds to the masses

of the extra fields. Then, what we are doing in our results is keeping only those terms

O such that N1/M(O) ≤ 2.

Step i) above can be performed in terms of Feynman diagrams. In figure 8.2, we

show the tree-level Feynman diagrams with heavy field propagators that contribute

to Leff to order n = 6. The blobs in this figure represent the SM operators W i1...im
j1...jn

with m incoming and n outgoing lines, and the arrowed lines represent the covariant

propagators ∆(i). The arrows have no significance for real representations. In order to

see that these are the only non-trivial tree-level diagrams contributing to Leff , note first

that the canonical dimension of each term in the expansion of the propagators is non-

negative, while the canonical dimension of each blob is equal to the canonical dimension

of its corresponding interaction in eq. (8.3) minus the one carried away by the bosonic

or fermionic heavy fields. Consider a particular connected tree-level diagram. Let

Bd
f be the number of blobs in the diagram with at least one fermionic index and

corresponding to interactions of canonical dimension d, and Bd
b be the number of blobs

in the diagram with no fermionic indices and corresponding to interactions of canonical

dimension d. Let Lf and Lb be, respectively, the number of fermionic and bosonic

propagators in the diagram and let Xf be the number of blocks with uninterrupted

heavy-fermion lines. The canonical dimensions n of each term in the diagram, after
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W i
∆(i)

Wi W j

∆(i) ∆(j)

Wi

Wi W ijk

Wj

Wk

∆(i) ∆(j)

∆(k)

W i
k Wi

W jW k
j

∆(j)

∆(i)

∆(k)

W i
j

(a) (b)

(c) (d)

Figure 8.2: Feynman diagrams contributing to Leff to dimension n = 6. Non-equivalent

permutations of the arrow directions shown here should be considered as well.

the propagator expansions, obey

n ≥
∑

d

d(Bd
b +Bd

f )− 2Lb − 3Lf . (8.7)

From the topological relations Lb+Lf +1 =
∑

d(B
d
b +B

d
f ) and Lf +Xf =

∑
dB

d
f , the

bound

n ≥ 2 +Xf +
∑

d

[
(d− 2)Bd

b + (d− 3)Bd
f

]
(8.8)

follows. Using the facts that Bd
b = 0 if d < 3 and Bd

f = 0 if d < 4, we find in particular

that

n ≥ B + 2, (8.9)

with B =
∑

d(B
d
b + Bd

f ) the total number of blobs. Therefore, only diagrams with 4

blobs or less can contribute to n ≤ 6. We also see from (8.8) that only interactions of

canonical dimension d ≤ 6 can contribute to n ≤ 6. But the operators with d = 6 only

give the trivial contribution of a diagram with one blob and no propagators, which is

nothing but the term already present in L0. This justifies our restriction to operators

with d ≤ 5 in the explicit expression of LBSM written in section 7.3. Finally, we

observe that both the operators of dimension d = 5 and the ones involving more than

one heavy field can only contribute to n ≤ 6 in the presence of super-renormalizable

operators of dimension d = 3, and that operators of dimension d = 5 with more than

one heavy field do not contribute to this order.

Note that in diagrams (a), (b) and (c) of figure 8.2, all the propagators are con-

tracted with one-index operators Wi or W
i, which arise from terms in LBSM with
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only one heavy field (Ai or A†
i ). In diagram (d), on the other hand, the propaga-

tor ∆(k) is attached only to operators with two indices, W k
j and W i

k. However, upon

the covariant-derivative expansion at finite order of the other two propagator, ∆(i) and

∆(j), the blobs they connect collapse into one-index local operators W̃ k = W k
j [∆(j)]W

j

and W̃k = W i
k[∆(i)]Wi, with [.] indicating the derivative expansion. The operators W̃ k

and W̃k are in the same Lorentz and gauge representation asW k andWk, respectively.

Moreover, to allow for a dimension-six contribution, both of them must have canonical

dimension d = 4. Hence, the fields Ak (A†
k) associated to W̃k (W̃ k) must also belong

to a representation that can couple linearly to the SM fields to give a scalar gauge-

invariant operator of dimension ≤ 4. We conclude that, as promised, only the heavy

fields in the irreducible representations of tables 7.1, 7.2 and 7.3 contribute at the tree

level to the effective Lagrangian to dimension six.

We can draw another interesting corollary from this discussion. Let us define tree-
level operators as those for which there exists a renormalizable UV theory that induces

them at the tree-level, when the effective Lagrangian is written in the Warsaw basis,

and loop operators as those for which no such theory exists.4 As we have just argued,

tree-level operators of dimension six can only be generated by the diagrams in figure 8.2

and only by extra fields that allow for linear couplings to SM operators. This is also

true if, instead of using the EFT LBSM as a starting point, we directly integrate out at

the classical level all the fields beyond the SM in a renormalizable completion of LBSM.

Therefore, our results in section 8.5 explicitly show which operators are tree-level:

those that (potentially) receive contributions in the absence of non-renormalizable

interactions, that is, when f → ∞ and γL1 → 0. Conversely, the operators that can

only have, at most, 1/f or γL1 contributions are loop operators.5 Even if the latter are

connected to LBSM by tree-level diagrams, they cannot be generated at the tree level in

any renormalizable completion of it. That is, the necessary dimension-five interactions

are only generated by loop diagrams in any such UV completion. If this completion is

weakly coupled, their coefficients will have a loop suppression that carries over to the

Wilson coefficients in the SMEFT. Of course, such a suppression will not occur if the

UV completion is strongly coupled. This classification agrees with the one in [96], as

it should, since we employ the same criteria.

8.3 Results of the matching: user guide

The tree-level integration of the 48 fields of spin 0, 1/2 and 1 that can contribute to

the dimension-six SMEFT, via the interactions in eqs. (7.13)-(7.30), generates all the

effective operators in the basis of ref. [54], with the exception of the four operators

OG,G̃,W,W̃ . The explicit expressions of the contributions to the different Wilson coef-

ficients are collected in section 8.5. In this section we offer a basic guidance so that

4The requirement of renormalizability is crucial to make the distinction. Without constraints on
the dimension of the interactions, any gauge-invariant operator could be trivially induced at the tree
level by directly including it in the UV theory. Considering a complete basis gives definite physical
meaning to each operator. Of course, which operators are potentially generated at tree or loop
level depends on the particular choice of basis, but the implications for physical observables remain
unchanged.

5The possibility of generating operators of this type with tree-level diagrams involving higher-
dimensional interactions was pointed out and emphasized in [198].
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users can quickly find the required entries of the UV/IR dictionary inside our long and

numerous equations.

We present our results by writing, for each operator, all the possible contributions

of all the multiplets to its Wilson coefficient. The results for the different operators

have been organized in the following way:

• Pure four-fermion operators (section 8.5.3), classified according to the struc-

ture of chiralities of the fields in the operator, i.e.
(
L̄L
) (
L̄L
)
,
(
R̄R
) (
R̄R
)
,(

L̄L
) (
R̄R
)
,
(
L̄R
) (
R̄L
)
,
(
L̄R
) (
L̄R
)
, and, separately, the baryon-number (B)

violating interactions.

• Pure bosonic interactions (section 8.5.4). We follow the classification of ref. [54]

and include here the operators of the form φ6, φ4D2 and X2φ2, where X refers

to a field-strength tensor.

• Interactions between bosons and fermions (section 8.5.5). We again follow the

classification of ref. [54], and separate the operators of the form ψ2φ3, Xψ2φ and

ψ2φ2D.

Unless otherwise stated, for each Wilson coefficient, the contributions of the different

types of fields are ordered in the following way:

Ci = CScalars
i + CFermions

i + CVectors
i + CMixed

i +
1

f
Cdim 5
i , (8.10)

where CP
i , P = Scalars, Fermions, Vectors, contains the information from the integra-

tion of only one type of spin, in the same order as presented in tables 7.1, 7.2 and 7.3,

respectively. Each of these are further separated, with the contributions from one type

of particle appearing first, and mixing between particles of same spin, afterwards:

CP
i =

∑

m∈P
Cm
i +

∑

m,n∈P
Cmn
i +

∑

m,n,p∈P
Cmnp
i . (8.11)

The contributions coming from Lagrangian interactions between particles of different

spin, eqs. (7.28)-(7.30), are contained in CMixed
i . The coefficient Cdim 5

i includes the

dimension-six interactions generated by the non-renomalizable couplings in eqs. (7.14),

(7.20), (7.21) and (7.26). These can be easily distinguished noting the prefactor 1/f .
Finally, some of the new particles induce modifications on the kinetic term of the

SM Higgs doublet in the EFT. Our results are given in a basis where all fields are

canonically normalized, and we include such corrections into a renormalization of the

Higgs doublet φ → Z
− 1

2
φ φ, with Z

− 1
2

φ given in eq. (8.18). The corresponding factors

of Z
−nφ

2
φ renormalizing operators with nφ scalar doublets are shown explicitly in the

coefficients.

Finally, for those operators that are non-hermitian we only report the coefficient

of the interaction in tables 3.3, 3.4 and 3.5. The corresponding contributions to the

coefficients of the hermitian conjugates can be obtained by complex conjugation.

The results of the matching can be employed in both directions:
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Top-down

To facilitate the matching of particular models with the SMEFT—for instance to

profit from the abundant model-independent constraints phrased in this language (see,

e.g. [59–75])—we have collected in tables 8.1, 8.2 and 8.3, in section 8.4, the different

operators resulting from the integration of each of the scalar, fermion and vector

multiplets, respectively. It turns out that all the operators that receive contributions

involving couplings between different types of extra fields (with the same or different

spin) can always be generated as well by at least one of the particles entering in the

interaction individually. Therefore, tables 8.1-8.3 contain all the information necessary

to identify which operators can be generated in any scenario.

In this way, these tables show all the operators that can be generated given the

field content of the model. One can then look at the corresponding Wilson coefficients

in section 8.5 and use eqs. (8.10) and (8.11) to find the explicit contributions in terms

of the masses and couplings of the new particles.

Bottom-up

Our results can also be used in a bottom-up fashion, to find the explicit SM extensions

that can give rise to a given set of effective interactions. To identify which multiplets

contribute to each dimension-six operator in the EFT, one simply needs to look at the

labels of the masses in the denominators of each term in the expression of the Wilson

coefficient. For operators involving the SM scalar doublet, one must also take into

account that L1 and ϕ can contribute to the renormalization of the scalar doublet Zφ.
Finally, upon integration of the L1 vector field, the effects of its interactions with the

vectors B, B1, W and W1 —parameterized by the ζL1V couplings in the Lagrangian

(7.25)— can be described in a compact form by using modified couplings of B, B1, W
and W1 to the corresponding SM scalar currents. Explicitly, they can be described by

replacing

(gφB)r → (ĝφB)r ≡ (gφB)r − i
(ζL1B)

∗
sr(γL1)s

M2
L1s

, (8.12)

(gφW)r → (ĝφW)r ≡ (gφW)r − 2i
(ζL1W)∗sr(γL1)s

M2
L1s

, (8.13)

(gφB1
)r → (ĝφB1

)r ≡ (gφB1
)r + i

(ζL1B1
)sr(γL1)s

M2
L1s

, (8.14)

(gφW1
)r → (ĝφW1

)r ≡ (gφW1
)r + 2i

(ζL1W1
)sr(γL1)s

M2
L1s

. (8.15)

Writing the solution in terms of the ĝφV couplings has the advantage of simplifying

significantly many of the expressions, but obscures a bit the origin of the contribution.

So, besides looking at the explicit masses, one should take into account that any ĝφV
coupling implicitly involves a dependence on the couplings and mass of the field(s) L1.
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For instance,

(ĝφ
B
)r ≡ (gφ

B
)r − i

(ζL1B)∗
rs

(γL1
)s

M2

L1s

↓
∆C =

(ĝφ
B
)2r

M2
Br

−→ ∆C =
(gφ

B
)2r

M2
Br

− 2i
(gφ

B
)r(ζL1B

)∗sr(γL1
)s

M2
Br
M2

L1s

− (ζL1B
)∗sr(γL1

)s(ζL1B
)∗tr(γL1

)t

M2
Br
M2

L1s
M2

L1t

.

(8.16)

Remember, nevertheless, that the vector multiplets L1 will not contribute at all if they

are the gauge bosons of an extended gauge invariance.

Similarly, the tree-level matching leads to a redefinition of the coefficients of the SM

operators. Then, there are indirect effects in the dimension-six coefficients when the

original SM couplings, which wear a hat, are written in terms of the redefined ones,

without hat, as specified in eqs. (8.23), (8.24) and (8.25). Moreover, the covariant

kinetic term of the Higgs doublet is modified in the presence of γL1 , which leads to

the Higgs-field renormalization in eq. (8.18). Therefore, one should also keep track of

the Yukawa couplings ŷe,u,d and the quartic coupling λ̂φ in order to check which fields

can contribute to the Wilson coefficients.

We include reminders of all these implicit dependences, where appropriate, in sec-

tion 8.5.

8.4 Operators generated by each field multiplet

In this section we provide the representation of each heavy multiplet introduced in

chapter 7 in terms of operators of dimension n ≤ 6 in the low energy effective La-

grangian. The results for the corresponding coefficients are given in section 8.5. See

section 8.3 for details.

8.5 Complete contributions to Wilson coefficients

In this section we present the contributions to the dimension-six SMEFT induced by

the heavy scalars, fermions and vectors introduced in chapter 7. See section 8.3 for

details.

8.5.1 Redefinitions of Standard Model interactions

Upon integrating the heavy fields L1 and ϕ out, the kinetic term of the SM Higgs

doublet receives extra contributions, yielding a non-canonically normalized field:

Lkin,φ = ZφDµφ
†Dµφ, (8.17)

where

Zφ ≡ 1− (γL1)
∗
r(γL1)r

M2
L1r

−
µ̂2
φ(δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

. (8.18)

In what follows, we renormalize φ→ Z
−1/2
φ φ and present our results in a basis where all

fields have canonical kinetic terms (in the electroweak exact phase). The operators with

nφ doublets are therefore renormalized with Z
−nφ/2
φ . (This includes also the operators
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Fields Operators

S Oφ4, Oφ, Oφ�, OφB, OφB̃, OφW , OφW̃ , OφG, OφG̃, Oeφ, Odφ, Ouφ

S1 Oll

S2 Oee

ϕ Ole, O(1)
qu , O(8)

qu , O(1)
qd , O

(8)
qd , Oledq, O(1)

quqd, O
(1)
lequ, Oφ, Oeφ, Odφ, Ouφ

Ξ Oφ4, Oφ, OφD, Oφ�, OφWB, OφWB̃, Oeφ, Odφ, Ouφ

Ξ1 Oφ4, O5, Oll, Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ

Θ1 Oφ

Θ3 Oφ

ω1 O(1)
qq , O(3)

qq , O(1)
lq , O(3)

lq , Oeu, O(1)
ud , O

(8)
ud , O

(1)
quqd, O

(8)
quqd,

O(1)
lequ O(3)

lequ, Oduq, Oqqu, Oqqq, Oduu

ω2 Odd

ω4 Ouu, Oed, Oduu

Π1 Old

Π7 Olu, Oqe, O(1)
lequ, O

(3)
lequ

ζ O(1)
qq , O(3)

qq , O(1)
lq , O(3)

lq , Oqqq

Ω1 O(1)
qq , O(3)

qq , O(1)
ud , O

(8)
ud , O

(1)
quqd, O

(8)
quqd

Ω2 Odd

Ω4 Ouu

Υ O(1)
qq , O(3)

qq

Φ O(1)
qu , O(8)

qu , O(1)
qd , O

(8)
qd , O

(8)
quqd

Table 8.1: Operators generated by the heavy scalar fields introduced in table 7.1.

in L0.) We will show these factors explicitly wherever they are needed, such that all

the Wilson coefficients Ci in this section are defined as the coefficients multiplying the

corresponding operators with canonical fields in the effective Lagrangian. Let us make

two observations about Zφ. First, the effect of the second term in eq. (8.18) on the

Wilson coefficients of dimension-six operators will have have an extra suppression of

the form µ̂2
φ/M

2, with M a heavy mass scale, comparable to the one of the typical

Wilson coefficients of dimension-eight operators with respect to the dimension-six ones.

Hence, even if we include it for completeness of the dimension-six results, for most

practical purposes this second term can be neglected. The first term, on the other

hand, will not be suppressed if the dimensionful coupling γL1 is of order ML1 . Second,

Zφ is non-trivial only when γL1 6= 0, so it can be ignored in perturbative unitary

extensions of the SM.

The contributions to the renormalizable SM interactions in table 3.3 are given by

Z
1
2
φ (Cye)ij =−

µ̂2
φ(δL1ϕ)sr(γL1)

∗
s(y

e
ϕ)rij

M2
ϕrM

2
L1s

−
µ̂2
φŷ

e
ij(δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

2M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
µ̂2
φ(g̃

eDl
L1

)rij(γL1)
∗
r

2M2
L1r

+
µ̂2
φ(g̃

Del
L1

)rij(γL1)
∗
r

2M2
L1r

}
, (8.19)
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Fields Operators

N O5, O(1)
φl , O

(3)
φl

E Oeφ, OeB, O(1)
φl , O

(3)
φl

∆1 Oeφ, OeB, OeW , Oφe

∆3 Oeφ, Oφe

Σ O5, Oeφ, O(1)
φl , O

(3)
φl

Σ1 Oeφ, OeW , O(1)
φl , O

(3)
φl

U Ouφ, OuB, OuG, O(1)
φq , O

(3)
φq

D Odφ, OdB, OdG, O(1)
φq , O

(3)
φq

Q1 Odφ, Ouφ, OdB, OdW , OdG, OuB, OuW , OuG, Oφd, Oφu, Oφud

Q5 Odφ, Oφd

Q7 Ouφ, Oφu

T1 Odφ, Ouφ, OdW , O(1)
φq , O

(3)
φq

T2 Odφ, Ouφ, OuW , O(1)
φq , O

(3)
φq

Table 8.2: Operators generated by the heavy vector-like fermions in table 7.2.

Fields Operators

B Oll, O(1)
qq , O(1)

lq , Oee, Odd, Ouu, Oed, Oeu, O(1)
ud , Ole, Old, Olu, Oqe, O(1)

qu , O(1)
qd ,

OφD, Oφ�, Oeφ, Odφ, Ouφ, O(1)
φl , O

(1)
φq , Oφe, Oφd, Oφu

B1 Oφ4, O(1)
ud , O

(8)
ud , Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ, Oφud

W Oφ4, Oll, O(3)
qq , O(3)

lq , Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ, O(3)
φl , O

(3)
φq

W1 Oφ4, Oφ, OφD, Oφ�, Oeφ, Odφ, Ouφ

G O(1)
qq , O(3)

qq , Odd, Ouu, O(8)
ud , O

(8)
qu , O(8)

qd

G1 O(1)
ud , O

(8)
ud

H O(1)
qq , O(3)

qq

L1 Oφ4, Oye , Oyd , Oyu , Ole, O(1)
qu , O(8)

qu , O(1)
qd , O

(8)
qd , Oledq, O(1)

quqd, O
(1)
lequ,

Oφ, OφD, Oφ�, OφB, OφB̃, OφW , OφW̃ , OφWB, OφWB̃, Oeφ, Odφ, Ouφ,

OeB, OeW , OdB, OdW , OuB, OuW , O(1)
φl , O

(3)
φl , O

(1)
φq , O

(3)
φq , Oφe, Oφd, Oφu

L3 Ole

U2 O(1)
lq , O(3)

lq , Oed, Oledq

U5 Oeu

Q1 Olu, O(1)
qd , O

(8)
qd , Oduq

Q5 Oqe, O(1)
qu , O(8)

qu , Oledq, Oduq, Oqqu

X O(1)
lq , O(3)

lq

Y1 O(1)
qd , O

(8)
qd

Y5 O(1)
qu , O(8)

qu

Table 8.3: Operators generated by the heavy vector bosons presented in table 7.3.
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Z
1
2
φ

(
Cyd
)
ij
=−

µ̂2
φ(δL1ϕ)sr(γL1)

∗
s(y

d
ϕ)rij

M2
ϕrM

2
L1s

−
µ̂2
φŷ

d
ij(δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

2M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
µ̂2
φ(g̃

dDq
L1

)rij(γL1)
∗
r

2M2
L1r

+
µ̂2
φ(g̃

Ddq
L1

)rij(γL1)
∗
r

2M2
L1r

}
, (8.20)

Z
1
2
φ (Cyu)ij =

µ̂2
φ(δL1ϕ)

∗
sr(γL1)s(y

u
ϕ)

∗
rji

M2
ϕrM

2
L1s

−
µ̂2
φŷ

u
ij(δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

2M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
−
µ̂2
φ(g̃

qDu
L1

)∗rij(γL1)r

2M2
L1r

−
µ̂2
φ(g̃

Dqu
L1

)∗rij(γL1)r

2M2
L1r

}
, (8.21)

Z2
φCφ4 =

(κS)r(κS)r
2M2

Sr
+

(κΞ)r(κΞ)r
2M2

Ξr

−
2µ̂2

φ(κΞ)r(κΞ)r

M4
Ξr

+
2(κΞ1)

∗
r(κΞ1)r

M2
Ξ1r

−
4µ̂2

φ(κΞ1)
∗
r(κΞ1)r

M4
Ξ1r

+
µ̂2
φ(ĝ

φ
B1
)∗r(ĝ

φ
B1
)r

M2
B1r

+
µ̂2
φ(ĝ

φ
W)∗r(ĝ

φ
W)r

2M2
Wr

+
µ̂2
φ(ĝ

φ
W1

)∗r(ĝ
φ
W1

)r

4M2
W1r

−
µ̂2
φg2(g

W
L1
)sr(γL1)

∗
s(γL1)r

M2
L1r
M2

L1s

+
µ̂2
φ(h

(1)
L1
)rs(γL1)

∗
r(γL1)s

M2
L1r
M2

L1s

+
2µ̂2

φ Im
(
(ĝφW)r

)
(δWΞ)rs(κΞ)s

M2
Wr
M2

Ξs

+
2µ̂2

φ(δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s

M2
Ξr
M2

Ξs
M2

Wt

+
2µ̂2

φ Im
(
(ĝφW1

)∗r(δW1Ξ1)rs(κΞ1)s

)

M2
Ξ1s
M2

W1r

+
4µ̂2

φ(δW1Ξ1)
∗
st(δW1Ξ1)sr(κΞ1)r(κΞ1)

∗
t

M2
Ξ1r
M2

W1s
M2

Ξ1t

−
2µ̂2

φRe
(
(g

(2)
SL1

)rs(γL1)s

)
(κS)r

M2
SrM

2
L1s

−
µ̂2
φ(εSL1)rts(κS)r(γL1)

∗
t (γL1)s

M2
SrM

2
L1s
M2

L1t

−
2µ̂2

φRe ((δL1ϕ)rs(γL1)
∗
r(λϕ)s)

M2
ϕsM

2
L1r

−
2µ̂2

φλ̂φ(δL1ϕ)
∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

+
2µ̂2

φRe
(
(g

(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2

L1s

+
µ̂2
φ(εΞL1)srt(κΞ)s(γL1)

∗
r(γL1)t

M2
L1r
M2

Ξs
M2

L1t

−
4µ̂2

φRe
(
(g

(1)
ΞL1

)∗rs(γL1)
∗
s

)
(κΞ)r

M2
Ξr
M2

L1s

−
4µ̂2

φRe
(
(g

(1)
Ξ1L1

)∗rs(γL1)
∗
s(κΞ1)r

)

M2
L1s
M2

Ξ1r

+
2µ̂2

φRe ((δL1ϕ)rs(γL1)
∗
r(κSϕ)ts)(κS)t

M2
ϕsM

2
StM

2
L1r

+
2µ̂2

φRe ((δL1ϕ)rs(γL1)
∗
r(κΞϕ)ts)(κΞ)t

M2
L1r
M2

Ξt
M2

ϕs

+
4µ̂2

φRe ((δL1ϕ)rs(γL1)
∗
r(κΞ1ϕ)

∗
ts(κΞ1)t)

M2
ϕsM

2
L1r
M2

Ξ1t

+
1

f

{
−
µ̂2
φ(k̃

φ
S)r(κS)r

M2
Sr

+
µ̂2
φ(k̃

φ
Ξ)r(κΞ)r

M2
Ξr

+
2µ̂2

φRe
(
(γ̃

(3)
L1

)r(γL1)
∗
r

)

M2
L1r
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−
2µ̂2

φ Im
(
(γ̃WL1

)r(γL1)
∗
r

)
g2

M2
L1r

}
. (8.22)

These contributions can be absorbed into redefinitions of the SM Yukawa and quartic

Higgs couplings:

ŷe,u,dij = Z
1
2
φ (y

e,u,d
ij −

(
Cye,u,d

)
ij
), (8.23)

λ̂φ = Z2
φ(λφ − Cφ4). (8.24)

Due to the Higgs-field renormalization, the coefficient of the Higgs mass term is also

redefined:

µ̂2
φ = Zφ µ

2
φ. (8.25)

We remind the reader that the hatted couplings on the left-hand side of the last three

equations are the coefficients of the corresponding operators—with the original Higgs-

field normalization—in the SM part of LBSM. The corresponding unhatted couplings

are the coefficients of these operators—built with canonically-normalized fields—in

Leff . Note that the right-hand sides depend linearly on the explicit hatted couplings

on the left-hand sides. Solving this linear system is straightforward.

In terms of the renormalized Higgs field and the redefined couplings µ2
φ, y

e,u,d

and λφ, all the heavy-field contributions appear in the Wilson coefficients of higher-

dimensional operators. In order to keep our results as compact and clear as possible,

we write the dimension-six operators in terms of the original, hatted couplings. They

can be readily substituted by the solutions to eqs. (8.23), (8.24) and (8.25) to get the

expressions in terms of the redefined couplings. In practice, these expressions can be

greatly simplified. Indeed, all the contributions to Cye,u,d , except the one inside Zφ, and
most of the contributions to Cφ4 are not O(1) but carry an extra suppression µ2

φ/M
2.

For calculations to order E2/M2, with E a low-energy scale, all these contributions can

be neglected. In this approximation, the hatted couplings do not appear on the right-

hand sides of eqs. (8.23), (8.24) and (8.25), which thus give explicitly their expressions

in terms of the redefined ones.

8.5.2 Dimension five

The only dimension-five operator in the basis receives the following contributions:

Zφ (C5)ij =−
2(κΞ1)r(yΞ1)

∗
rji

M2
Ξ1r

+
(λN)rj(λN)xri

2MNr

+
(λΣ)rj(λΣ)ri

8MΣr

. (8.26)

8.5.3 Four-fermion operators
(
LL
) (
LL
)

(Cll)ijkl =
(yS1)

∗
rjl(yS1)rik

M2
S1r

+
(yΞ1)rki(yΞ1)

∗
rlj

M2
Ξ1r

− (glB)rkl(g
l
B)rij

2M2
Br

− (glW)rkj(g
l
W)ril

4M2
Wr

+
(glW)rkl(g

l
W)rij

8M2
Wr

, (8.27)
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(
C(1)
qq

)
ijkl

=
(yqqω1

)rik(y
qq
ω1
)∗rlj

2M2
ω1r

+
3(yqqζ )rki(y

qq
ζ )∗rlj

2M2
ζr

+
(yqqΩ1

)∗rik(y
qq
Ω1
)rjl

4M2
Ω1r

+
3(yΥ)rlj(yΥ)

∗
rki

4M2
Υr

− (gqB)rkl(g
q
B)rij

2M2
Br

− (gqG)rkj(g
q
G)ril

8M2
Gr

+
(gqG)rkl(g

q
G)rij

12M2
Gr

− 3(gH)rkj(gH)ril
32M2

Hr

,

(8.28)

(
C(3)
qq

)
ijkl

=−
(yqqω1

)rki(y
qq
ω1
)∗rjl

2M2
ω1r

−
(yqqζ )rki(y

qq
ζ )∗rjl

2M2
ζr

+
(yqqΩ1

)∗rik(y
qq
Ω1
)rlj

4M2
Ω1r

+
(yΥ)

∗
rki(yΥ)rjl
4M2

Υr

− (gqW)rkl(g
q
W)rij

8M2
Wr

− (gqG)rkj(g
q
G)ril

8M2
Gr

+
(gH)rkl(gH)rij

48M2
Hr

+
(gH)rkj(gH)ril

32M2
Hr

,

(8.29)

(
C

(1)
lq

)
ijkl

=
(yqlω1

)∗rki(y
ql
ω1
)rlj

4M2
ω1r

+
3(yqlζ )

∗
rki(y

ql
ζ )rlj

4M2
ζr

− (gqB)rkl(g
l
B)rij

M2
Br

−
(glqU2

)∗rjk(g
lq
U2
)ril

2M2
U2r

−
3(gX )

∗
rjk(gX )ril

8M2
Xr

, (8.30)

(
C

(3)
lq

)
ijkl

=− (yqlω1
)∗rki(y

ql
ω1
)rlj

4M2
ω1r

+
(yqlζ )

∗
rki(y

ql
ζ )rlj

4M2
ζr

− (gqW)rkl(g
l
W)rij

4M2
Wr

−
(glqU2

)∗rjk(g
lq
U2
)ril

2M2
U2r

+
(gX )

∗
rjk(gX )ril

8M2
Xr

. (8.31)
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(
RR
) (
RR
)

(Cee)ijkl =
(yS2)rki(yS2)

∗
rlj

2M2
S2r

− (geB)rkl(g
e
B)rij

2M2
Br

, (8.32)

(Cdd)ijkl =
(yω2)

∗
rlj(yω2)rki

M2
ω2r

+
(yΩ2)

∗
rik(yΩ2)rjl

2M2
Ω2r

− (gdB)rkl(g
d
B)rij

2M2
Br

− (gdG)rkj(g
d
G)ril

4M2
Gr

+
(gdG)rkl(g

d
G)rij

12M2
Gr

, (8.33)

(Cuu)ijkl =
(yuuω4

)∗rlj(y
uu
ω4
)rki

M2
ω4r

+
(yΩ4)

∗
rik(yΩ4)rjl

2M2
Ω4r

− (guB)rkl(g
u
B)rij

2M2
Br

− (guG)rkj(g
u
G)ril

4M2
Gr

+
(guG)rkl(g

u
G)rij

12M2
Gr

, (8.34)

(Ced)ijkl =
(yedω4

)∗rik(y
ed
ω4
)rjl

2M2
ω4r

− (gdB)rkl(g
e
B)rij

M2
Br

−
(gedU2

)∗rjk(g
ed
U2
)ril

M2
U2r

, (8.35)

(Ceu)ijkl =
(yeuω1

)∗rik(y
eu
ω1
)rjl

2M2
ω1r

− (guB)rkl(g
e
B)rij

M2
Br

−
(gU5)

∗
rjk(gU5)ril

M2
U5r

, (8.36)

(
C

(1)
ud

)
ijkl

=
(yduω1

)∗rlj(y
du
ω1
)rki

3M2
ω1r

+
(yudΩ1

)∗rik(y
ud
Ω1
)rjl

3M2
Ω1r

− (guB)rij(g
d
B)rkl

M2
Br

− (gduB1
)∗rli(g

du
B1
)rkj

3M2
B1r

− 4(gG1)
∗
rli(gG1)rkj

9M2
G1r

, (8.37)

(
C

(8)
ud

)
ijkl

=−
(yduω1

)∗rlj(y
du
ω1
)rki

M2
ω1r

+
(yudΩ1

)∗rik(y
ud
Ω1
)rjl

2M2
Ω1r

− (gdG)rkl(g
u
G)rij

M2
Gr

− 2(gduB1
)∗rli(g

du
B1
)rkj

M2
B1r

+
(gG1)

∗
rli(gG1)rkj

3M2
G1r

. (8.38)
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(
LL
) (
RR
)

Recall that ŷe,u,d are defined in eq. (8.23).

(Cle)ijkl =−
(yeϕ)

∗
rli(y

e
ϕ)rkj

2M2
ϕr

− (geB)rkl(g
l
B)rij

M2
Br

+
(gL3)

∗
rki(gL3)rlj

M2
L3r

−
ŷe∗li (δL1ϕ)sr(γL1)

∗
s(y

e
ϕ)rkj

2M2
ϕrM

2
L1s

−
ŷekj(δL1ϕ)

∗
sr(γL1)s(y

e
ϕ)

∗
rli

2M2
ϕrM

2
L1s

−
ŷekj ŷ

e∗
li (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

2M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
ŷe∗li (g̃

eDl
L1

)rkj(γL1)
∗
r

4M2
L1r

+
ŷe∗li (g̃

Del
L1

)rkj(γL1)
∗
r

4M2
L1r

+
ŷekj(g̃

eDl
L1

)∗rli(γL1)r

4M2
L1r

+
ŷekj(g̃

Del
L1

)∗rli(γL1)r

4M2
L1r

}
, (8.39)

(Cld)ijkl =−
(yΠ1)

∗
rjk(yΠ1)ril

2M2
Π1r

− (gdB)rkl(g
l
B)rij

M2
Br

+
(gdlQ5

)∗rki(g
dl
Q5
)rlj

M2
Q5r

, (8.40)

(Clu)ijkl =−
(yluΠ7

)∗rjk(y
lu
Π7
)ril

2M2
Π7r

− (guB)rkl(g
l
B)rij

M2
Br

+
(gulQ1

)∗rki(g
ul
Q1
)rlj

M2
Q1r

, (8.41)

(Cqe)ijkl =−
(yeqΠ7

)∗rli(y
eq
Π7
)rkj

2M2
Π7r

− (geB)rkl(g
q
B)rij

M2
Br

+
(geqQ5

)∗rki(g
eq
Q5
)rlj

M2
Q5r

, (8.42)

(
C(1)
qu

)
ijkl

=−
(yuϕ)

∗
rjk(y

u
ϕ)ril

6M2
ϕr

−
2(yquΦ )∗rjk(y

qu
Φ )ril

9M2
Φr

− (guB)rkl(g
q
B)rij

M2
Br

+
2(guqQ5

)∗rlj(g
uq
Q5
)rki

3M2
Q5r

+
2(gY5)

∗
rlj(gY5)rki

3M2
Y5r

+
ŷukj(δL1ϕ)rs(γL1)

∗
r(y

u
ϕ)sil

6M2
L1r
M2

ϕs

+
ŷu∗li (δL1ϕ)

∗
rs(γL1)r(y

u
ϕ)

∗
sjk

6M2
L1r
M2

ϕs

−
ŷukj ŷ

u∗
li (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

6M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
−
ŷukj(g̃

qDu
L1

)rli(γL1)
∗
r

12M2
L1r

−
ŷukj(g̃

Dqu
L1

)rli(γL1)
∗
r

12M2
L1r

−
ŷu∗li (g̃

qDu
L1

)∗rkj(γL1)r

12M2
L1r

−
ŷu∗li (g̃

Dqu
L1

)∗rkj(γL1)r

12M2
L1r

}
, (8.43)

(
C(8)
qu

)
ijkl

=−
(yuϕ)

∗
rjk(y

u
ϕ)ril

M2
ϕr

+
(yquΦ )∗rjk(y

qu
Φ )ril

6M2
Φr
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− (guG)rkl(g
q
G)rij

M2
Gr

−
2(guqQ5

)∗rlj(g
uq
Q5
)rki

M2
Q5r

+
(gY5)

∗
rlj(gY5)rki

M2
Y5r

+
ŷukj(δL1ϕ)rs(γL1)

∗
r(y

u
ϕ)sil

M2
L1r
M2

ϕs

+
ŷu∗li (δL1ϕ)

∗
rs(γL1)r(y

u
ϕ)

∗
sjk

M2
L1r
M2

ϕs

−
ŷukj ŷ

u∗
li (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
−
ŷukj(g̃

qDu
L1

)rli(γL1)
∗
r

2M2
L1r

−
ŷukj(g̃

Dqu
L1

)rli(γL1)
∗
r

2M2
L1r

−
ŷu∗li (g̃

qDu
L1

)∗rkj(γL1)r

2M2
L1r

−
ŷu∗li (g̃

Dqu
L1

)∗rkj(γL1)r

2M2
L1r

}
, (8.44)

(
C

(1)
qd

)
ijkl

=−
(ydϕ)

∗
rli(y

d
ϕ)rkj

6M2
ϕr

− 2(ydqΦ )∗rli(y
dq
Φ )rkj

9M2
Φr

− (gdB)rkl(g
q
B)rij

M2
Br

+
2(gdqQ1

)∗rlj(g
dq
Q1
)rki

3M2
Q1r

+
2(gY1)

∗
rlj(gY1)rki

3M2
Y1r

−
ŷd∗li (δL1ϕ)sr(γL1)

∗
s(y

d
ϕ)rkj

6M2
ϕrM

2
L1s

−
ŷdkj(δL1ϕ)

∗
sr(γL1)s(y

d
ϕ)

∗
rli

6M2
ϕrM

2
L1s

−
ŷdkj ŷ

d∗
li (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

6M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
ŷd∗li (g̃

dDq
L1

)rkj(γL1)
∗
r

12M2
L1r

+
ŷd∗li (g̃

Ddq
L1

)rkj(γL1)
∗
r

12M2
L1r

+
ŷdkj(g̃

dDq
L1

)∗rli(γL1)r

12M2
L1r

+
ŷdkj(g̃

Ddq
L1

)∗rli(γL1)r

12M2
L1r

}
, (8.45)

(
C

(8)
qd

)
ijkl

=−
(ydϕ)

∗
rli(y

d
ϕ)rkj

M2
ϕr

+
(ydqΦ )∗rli(y

dq
Φ )rkj

6M2
Φr

− (gdG)rkl(g
q
G)rij

M2
Gr

−
2(gdqQ1

)∗rlj(g
dq
Q1
)rki

M2
Q1r

+
(gY1)

∗
rlj(gY1)rki

M2
Y1r

−
ŷd∗li (δL1ϕ)sr(γL1)

∗
s(y

d
ϕ)rkj

M2
ϕrM

2
L1s

−
ŷdkj(δL1ϕ)

∗
sr(γL1)s(y

d
ϕ)

∗
rli

M2
ϕrM

2
L1s

−
ŷdkj ŷ

d∗
li (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
ŷd∗li (g̃

dDq
L1

)rkj(γL1)
∗
r

2M2
L1r

+
ŷd∗li (g̃

Ddq
L1

)rkj(γL1)
∗
r

2M2
L1r

+
ŷdkj(g̃

dDq
L1

)∗rli(γL1)r

2M2
L1r

+
ŷdkj(g̃

Ddq
L1

)∗rli(γL1)r

2M2
L1r

}
. (8.46)
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(
LR
) (
RL
)
and

(
LR
) (
LR
)

Recall that ŷe,u,d are defined in eq. (8.23).

(Cledq)ijkl =
(ydϕ)rkl(y

e
ϕ)

∗
rji

M2
ϕr

+
2(glqU2

)ril(g
ed
U2
)∗rjk

M2
U2r

−
2(geqQ5

)rjl(g
dl
Q5
)∗rki

M2
Q5r

+
ŷe∗ji (δL1ϕ)sr(γL1)

∗
s(y

d
ϕ)rkl

M2
ϕrM

2
L1s

+
ŷdkl(δL1ϕ)

∗
sr(γL1)s(y

e
ϕ)

∗
rji

M2
ϕrM

2
L1s

+
ŷdklŷ

e∗
ji (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
−
ŷe∗ji (g̃

dDq
L1

)rkl(γL1)
∗
r

2M2
L1r

−
ŷe∗ji (g̃

Ddq
L1

)rkl(γL1)
∗
r

2M2
L1r

−
ŷdkl(g̃

eDl
L1

)∗rji(γL1)r

2M2
L1r

−
ŷdkl(g̃

Del
L1

)∗rji(γL1)r

2M2
L1r

}
, (8.47)

(
C

(1)
quqd

)
ijkl

=−
(yuϕ)rij(y

d
ϕ)

∗
rlk

M2
ϕr

+
4(yqqω1

)rki(y
du
ω1
)∗rlj

3M2
ω1r

+
4(yqqΩ1

)∗rki(y
ud
Ω1
)rjl

3M2
Ω1r

−
ŷd∗lk (δL1ϕ)sr(γL1)

∗
s(y

u
ϕ)rij

M2
ϕrM

2
L1s

+
ŷu∗ji (δL1ϕ)

∗
sr(γL1)s(y

d
ϕ)

∗
rlk

M2
ϕrM

2
L1s

+
ŷu∗ji ŷ

d∗
lk (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
ŷd∗lk (g̃

qDu
L1

)rji(γL1)
∗
r

2M2
L1r

+
ŷd∗lk (g̃

Dqu
L1

)rji(γL1)
∗
r

2M2
L1r

−
ŷu∗ji (g̃

dDq
L1

)∗rlk(γL1)r

2M2
L1r

−
ŷu∗ji (g̃

Ddq
L1

)∗rlk(γL1)r

2M2
L1r

}
, (8.48)

(
C

(8)
quqd

)
ijkl

=−
4(yqqω1

)rki(y
du
ω1
)∗rlj

M2
ω1r

+
2(yqqΩ1

)∗rki(y
ud
Ω1
)rjl

M2
Ω1r

− (ydqΦ )∗rlk(y
qu
Φ )rij

M2
Φr

, (8.49)

(
C

(1)
lequ

)
ijkl

=
(yuϕ)rkl(y

e
ϕ)

∗
rji

M2
ϕr

+
(yeuω1

)rjl(y
ql
ω1
)∗rki

2M2
ω1r

+
(yeqΠ7

)∗rjk(y
lu
Π7
)ril

2M2
Π7r

+
ŷe∗ji (δL1ϕ)sr(γL1)

∗
s(y

u
ϕ)rkl

M2
ϕrM

2
L1s

−
ŷu∗lk (δL1ϕ)

∗
sr(γL1)s(y

e
ϕ)

∗
rji

M2
ϕrM

2
L1s

−
ŷu∗lk ŷ

e∗
ji (δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

+
1

f

{
−
ŷe∗ji (g̃

qDu
L1

)rlk(γL1)
∗
r

2M2
L1r

−
ŷe∗ji (g̃

Dqu
L1

)rlk(γL1)
∗
r

2M2
L1r

+
ŷu∗lk (g̃

eDl
L1

)∗rji(γL1)r

2M2
L1r

+
ŷu∗lk (g̃

Del
L1

)∗rji(γL1)r

2M2
L1r

}
, (8.50)



8.5. COMPLETE CONTRIBUTIONS TO WILSON COEFFICIENTS 121

(
C

(3)
lequ

)
ijkl

=− (yeuω1
)rjl(y

ql
ω1
)∗rki

8M2
ω1r

+
(yeqΠ7

)∗rjk(y
lu
Π7
)ril

8M2
Π7r

. (8.51)

B-violating

(Cduq)ijkl =
(yduω1

)∗rij(y
ql
ω1
)rkl

M2
ω1r

+
2(gdqQ1

)∗rik(g
ul
Q1
)rjl

M2
Q1r

−
2(guqQ5

)∗rjk(g
dl
Q5
)ril

M2
Q5r

, (8.52)

(Cqqu)ijkl =
(yeuω1

)rlk(y
qq
ω1
)∗rij

M2
ω1r

−
2(guqQ5

)∗rki(g
eq
Q5
)rlj

M2
Q5r

, (8.53)

(Cqqq)ijkl =
2(yqqω1

)∗rij(y
ql
ω1
)rkl

M2
ω1r

−
2(yqqζ )∗rij(y

ql
ζ )rkl

M2
ζr

, (8.54)

(Cduu)ijkl =
(yduω1

)∗rij(y
eu
ω1
)rlk

M2
ω1r

−
2(yuuω4

)∗rjk(y
ed
ω4
)rli

M2
ω4r

. (8.55)

8.5.4 Bosonic operators

φ6 and φ4D2

Recall that ĝφV contains contributions from L1 (see eqs. (8.12)–(8.15)) and that λ̂φ is

defined in eq. (8.24).

Due to the length of the contributions to the coefficient of the Oφ operator we have

separated them as follows:

Z3
φCφ = CS

φ + CV
φ + CSV

φ , (8.56)

where CS
φ , C

V
φ , and C

SV
φ are given below.

CV
φ = −

2λ̂φ(ĝ
φ
B1
)∗r(ĝ

φ
B1
)r

M2
B1r

− λ̂φ(ĝ
φ
W)∗r(ĝ

φ
W)r

M2
Wr

−
λ̂φ(ĝ

φ
W1

)∗r(ĝ
φ
W1

)r

2M2
W1r

+
2g2λ̂φ(g

W
L1
)sr(γL1)

∗
s(γL1)r

M2
L1r
M2

L1s

−
2λ̂φ(h

(1)
L1
)rs(γL1)

∗
r(γL1)s

M2
L1r
M2

L1s

+
1

f

{
−

4λ̂φRe
(
(γ̃

(3)
L1

)r(γL1)
∗
r

)

M2
L1r

+
4λ̂φ Im

(
(γ̃WL1

)r(γL1)
∗
r

)
g2

M2
L1r

}
, (8.57)

CS
φ =− (λS)rs(κS)r(κS)s

M2
SrM

2
Ss

+
(κS3)rts(κS)r(κS)t(κS)s

M2
SrM

2
SsM

2
St

+
(λϕ)

∗
r(λϕ)r
M2

ϕr

+
4λ̂φ(κΞ)r(κΞ)r

M4
Ξr

− (λΞ)s(κΞ)s(κΞ)r
M2

Ξr
M2

Ξs

+
8λ̂φ(κΞ1)

∗
r(κΞ1)r

M4
Ξ1r

− 2(λΞ1)rs(κΞ1)
∗
r(κΞ1)s

M2
Ξ1r
M2

Ξ1s
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+

√
2(λ′Ξ1

)rs(κΞ1)
∗
r(κΞ1)s

M2
Ξ1r
M2

Ξ1s

+
(λΘ1)

∗
r(λΘ1)r

6M2
Θ1r

+
(λΘ3)

∗
r(λΘ3)r

2M2
Θ3r

− 2Re ((κSϕ)rs(λϕ)
∗
s)(κS)r

M2
SrM

2
ϕs

+
(κSϕ)

∗
rt(κS)r(κSϕ)st(κS)s
M2

SrM
2
SsM

2
ϕt

− (λSΞ)sr(κS)s(κΞ)r
M2

Ξr
M2

Ss
+

(κSΞ)tsr(κS)t(κΞ)s(κΞ)r
M2

Ξr
M2

Ξs
M2

St

− 2Re ((κΞϕ)rs(λϕ)
∗
s)(κΞ)r

M2
Ξr
M2

ϕs

+
(κΞϕ)

∗
tr(κΞ)t(κΞϕ)sr(κΞ)s
M2

ϕrM
2
Ξs
M2

Ξt

− 4Re ((λSΞ1)rs(κΞ1)
∗
s)(κS)r

M2
Ξ1s
M2

Sr
+

2(κSΞ1)trs(κS)t(κΞ1)
∗
r(κΞ1)s

M2
Ξ1r
M2

Ξ1s
M2

St

− 2
√
2Re ((λΞ1Ξ)rs(κΞ1)

∗
r)(κΞ)s

M2
Ξs
M2

Ξ1r

−
√
2(κΞΞ1)srt(κΞ)s(κΞ1)

∗
r(κΞ1)t

M2
Ξ1r
M2

Ξs
M2

Ξ1t

− 4Re ((κΞ1ϕ)
∗
rs(κΞ1)r(λϕ)

∗
s)

M2
Ξ1r
M2

ϕs

+
4(κΞ1ϕ)

∗
st(κΞ1)s(κΞ1ϕ)rt(κΞ1)

∗
r

M2
Ξ1r
M2

Ξ1s
M2

ϕt

− Re ((κΞΘ1)rs(λΘ1)
∗
s)(κΞ)r

3M2
Θ1s
M2

Ξr

+
(κΞΘ1)

∗
rs(κΞ)r(κΞΘ1)ts(κΞ)t
6M2

Ξr
M2

Θ1s
M2

Ξt

− Re ((κΞ1Θ1)rs(κΞ1)
∗
r(λΘ1)

∗
s)

3M2
Ξ1r
M2

Θ1s

+
(κΞ1Θ1)

∗
tr(κΞ1)t(κΞ1Θ1)sr(κΞ1)

∗
s

6M2
Θ1r
M2

Ξ1s
M2

Ξ1t

− Re ((κΞ1Θ3)rs(κΞ1)
∗
r(λΘ3)

∗
s)

M2
Ξ1r
M2

Θ3s

+
(κΞ1Θ3)

∗
tr(κΞ1)t(κΞ1Θ3)sr(κΞ1)

∗
s

2M2
Θ3r
M2

Ξ1s
M2

Ξ1t

+
2Re ((κΞϕ)

∗
rs(κSϕ)ts)(κΞ)r(κS)t

M2
Ξr
M2

StM
2
ϕs

+
4Re ((κΞ1ϕ)rs(κΞ1)

∗
r(κSϕ)ts)(κS)t

M2
ϕsM

2
Ξ1r
M2

St

+
4Re ((κΞ1ϕ)

∗
rs(κΞ1)r(κΞϕ)

∗
ts)(κΞ)t

M2
ϕsM

2
Ξ1r
M2

Ξt

+
Re ((κΞ1Θ1)

∗
rs(κΞ1)r(κΞΘ1)ts)(κΞ)t

3M2
Θ1s
M2

Ξ1r
M2

Ξt

+
1

f

{
2λ̂φ(k̃

φ
S)r(κS)r
M2

Sr
+

(λ̃S)r(κS)r
M2

Sr
− 2λ̂φ(k̃

φ
Ξ)r(κΞ)r
M2

Ξr

+
(λ̃Ξ)r(κΞ)r

M2
Ξr

+
4Re

(
(λ̃Ξ1)r(κΞ1)

∗
r

)

M2
Ξ1r

}
, (8.58)



8.5. COMPLETE CONTRIBUTIONS TO WILSON COEFFICIENTS 123

CSV
φ

λ̂φ
= −

4 Im
(
(ĝφW)r

)
(δWΞ)rs(κΞ)s

M2
Wr
M2

Ξs

− 4(δWΞ)ts(δWΞ)tr(κΞ)r(κΞ)s
M2

Ξr
M2

Ξs
M2

Wt

−
4 Im

(
(ĝφW1

)∗r(δW1Ξ1)rs(κΞ1)s

)

M2
Ξ1s
M2

W1r

− 8(δW1Ξ1)
∗
st(δW1Ξ1)sr(κΞ1)r(κΞ1)

∗
t

M2
Ξ1r
M2

W1s
M2

Ξ1t

+
4Re

(
(g

(2)
SL1

)rs(γL1)s

)
(κS)r

M2
SrM

2
L1s

+
2(εSL1)rts(κS)r(γL1)

∗
t (γL1)s

M2
SrM

2
L1s
M2

L1t

+
4Re ((δL1ϕ)rs(γL1)

∗
r(λϕ)s)

M2
ϕsM

2
L1r

+
4λ̂φ(δL1ϕ)

∗
ts(γL1)t(δL1ϕ)rs(γL1)

∗
r

M2
L1r
M2

ϕsM
2
L1t

−
4Re

(
(g

(2)
ΞL1

)rs(γL1)s

)
(κΞ)r

M2
Ξr
M2

L1s

− 2(εΞL1)srt(κΞ)s(γL1)
∗
r(γL1)t

M2
L1r
M2

Ξs
M2

L1t

+
8Re

(
(g

(1)
ΞL1

)∗rs(γL1)
∗
s

)
(κΞ)r

M2
Ξr
M2

L1s

+
8Re

(
(g

(1)
Ξ1L1

)∗rs(γL1)
∗
s(κΞ1)r

)

M2
L1s
M2

Ξ1r

− 4Re ((δL1ϕ)rs(γL1)
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∗
r(γL1)s

2M2
L1r
M2

L1s

+
Re
(
(h

(3)
L1
)rs(γL1)
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+
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(8.61)
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∗
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(8.66)
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∗
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(8.67)

ZφCφG =
1

f

(k̃GS )r(κS)r
M2

Sr
, (8.68)

ZφCφG̃ =
1

f

(k̃G̃S )r(κS)r
M2

Sr
. (8.69)
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8.5.5 Operators with bosons and fermions

There are three types of operators coupling bosonic and fermionic fields: the operators

of the form ψ2φ3 represent couplings between scalars and fermions only, while those

of the form Xψ2φ and ψ2Dφ2 contain covariant interactions between the SM scalar,

fermions and gauge fields.

ψ2φ3

Due to the length of the contributions to the coefficients of the different ψ2φ3 operators

(Oeφ, Odφ and Ouφ), we have separated them as follows:

Z
3
2
φ (Ceφ)ij = ŷe∗ji a+ beij + ceij, (8.70)

Z
3
2
φ (Cdφ)ij = ŷd∗ji a+ bdij + cdij, (8.71)

Z
3
2
φ (Cuφ)ij = ŷu∗ji a

∗ + buij + cuij, (8.72)

where the coefficients a, bψij and c
ψ
ij are defined below (eqs. (8.73)–(8.79)). (The coef-

ficients bψij and c
ψ
ij refer to the contributions from only one type of particle and mixed

contributions, respectively.)

Recall also that ĝφV contains contributions from L1 (see eqs. (8.12)–(8.15)) and that

ŷe,d,uji and λ̂φ are defined in eqs. (8.23) and (8.24).
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φ
W)r

4M2
Wr

−
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(ĝφB)r

)
(geB)rkj

M2
Br

+
iŷe∗jk Im

(
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2M2
L1r

−
iŷe∗jk(g̃

l′
L1
)∗rki(γL1)r

2M2
L1r

}
, (8.74)
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ceij =−
(κSϕ)rs(κS)r(y

e
ϕ)

∗
sji

M2
SrM

2
ϕs

−
(κΞϕ)sr(κΞ)s(y

e
ϕ)

∗
rji

M2
ϕrM

2
Ξs

−
2(κΞ1ϕ)

∗
sr(κΞ1)s(y

e
ϕ)

∗
rji

M2
ϕrM

2
Ξ1s

− (λE∆1)rs(λE)
∗
ri(λ∆1)sj

MErM∆1s

− (λE∆3)sr(λE)
∗
si(λ∆3)rj

M∆3rMEs

− (λΣ)
∗
si(λΣ∆1)sr(λ∆1)rj

2M∆1rMΣs

− (λΣ1∆1)rs(λΣ1)
∗
ri(λ∆1)sj

4MΣ1rM∆1s

+
(λΣ1∆3)sr(λΣ1)

∗
si(λ∆3)rj

4M∆3rMΣ1s

− (wSE)rsj(κS)r(λE)
∗
si

M2
SrMEs

− (wS∆1)
∗
rsi(κS)r(λ∆1)sj

M2
SrM∆1s

− (wΞ∆3)
∗
rsi(κΞ)r(λ∆1)sj

M2
Ξr
M∆1s

− (wΞΣ1)srj(κΞ)s(λΣ1)
∗
ri

2MΣ1rM
2
Ξs

− 2(wΞ1∆3)
∗
rsi(κΞ1)r(λ∆3)sj

M2
Ξ1r
M∆3s

−
(λΣ)

∗
si(wΞ1Σ)

∗
rsj(κΞ1)r

M2
Ξ1r
MΣs

+
iŷe∗jk(zEL1)rsk(λE)

∗
ri(γL1)

∗
s

2MErM
2
L1s

+
iŷe∗jk(zEL1)

∗
rsi(γL1)s(λE)rk

2MErM
2
L1s

− iŷe∗ki (z∆1L1)
∗
rsk(γL1)

∗
s(λ∆1)rj

2M∆1rM
2
L1s

− iŷe∗ki (z∆1L1)rsj(λ∆1)
∗
rk(γL1)s

2M∆1rM
2
L1s

− iŷe∗ki (z∆3L1)
∗
srk(γL1)r(λ∆3)sj

2M2
L1r
M∆3s

− iŷe∗ki (z∆3L1)srj(λ∆3)
∗
sk(γL1)

∗
r

2M2
L1r
M∆3s

+
iŷe∗jk(λΣ)

∗
ri(zΣL1)rsk(γL1)s

2MΣrM
2
L1s

+
iŷe∗jk(λΣ)sk(zΣL1)

∗
sri(γL1)

∗
r

2M2
L1r
MΣs

+
iŷe∗jk(zΣ1L1)srk(λΣ1)

∗
si(γL1)

∗
r

4M2
L1r
MΣ1s

+
iŷe∗jk(zΣ1L1)

∗
rsi(γL1)s(λΣ1)rk

4MΣ1rM
2
L1s

+
iŷe∗jk(δBS)rs(g

l
B)rik(κS)s

M2
BrM

2
Ss

− iŷe∗ki (δBS)rs(g
e
B)rkj(κS)s

M2
BrM

2
Ss

+
iŷe∗jk(δWΞ)sr(g

l
W)sik(κΞ)r

2M2
Ξr
M2

Ws

+
2λ̂φ(δL1ϕ)

∗
sr(γL1)s(y

e
ϕ)

∗
rji

M2
ϕrM

2
L1s

, (8.75)
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bdij =
(λϕ)r(y

d
ϕ)

∗
rji

M2
ϕr

+
ŷd∗jk(λD)rk(λD)

∗
ri

2M2
Dr

+
ŷd∗ki (λ

d
Q1
)rj(λ

d
Q1
)∗rk

2M2
Q1r

+
ŷd∗ki (λQ5)rj(λQ5)

∗
rk

2M2
Q5r

+
ŷd∗jk(λT1)rk(λT1)

∗
ri

8M2
T1r

+
ŷd∗jk(λT2)rk(λT2)

∗
ri

4M2
T2r

+
iŷd∗jk Im

(
(ĝφB)r

)
(gqB)rik

M2
Br

−
iŷd∗ki Im

(
(ĝφB)r

)
(gdB)rkj

M2
Br

+
iŷd∗jk Im

(
(ĝφW)r

)
(gqW)rik

4M2
Wr

+
1

f

{
(ỹdS)

∗
rji(κS)r

M2
Sr

+
(ỹdΞ)

∗
rji(κΞ)r

M2
Ξr

+
2(ỹdΞ1

)∗rji(κΞ1)r

M2
Ξ1r

+
iŷd∗jk(λ̃

q
D)rk(λD)

∗
ri

2MDr

+
(λ̃dD)rj(λD)

∗
ri

MDr

+
iŷd∗jk(λ̃

q
D)

∗
ri(λD)rk

2MDr

−
iŷd∗ki (λ̃

d
Q1
)∗rk(λ

d
Q1
)rj

2MQ1r

+
(λ̃qQ1

)∗ri(λ
d
Q1
)rj

MQ1r

+
(λ̃q′Q1

)∗ri(λ
d
Q1
)rj

MQ1r

−
iŷd∗ki (λ̃

d
Q1
)rj(λ

d
Q1
)∗rk

2MQ1r

−
iŷd∗ki (λ̃

d
Q5
)∗rk(λQ5)rj

2MQ5r

+
(λ̃qQ5

)∗ri(λQ5)rj

MQ5r

−
iŷd∗ki (λ̃

d
Q5
)rj(λQ5)

∗
rk

2MQ5r

+
iŷd∗jk(λ̃

q
T1
)rk(λT1)

∗
ri

4MT1r

+
(λ̃dT1)rj(λT1)

∗
ri

2MT1r

+
iŷd∗jk(λ̃

q
T1
)∗ri(λT1)rk

4MT1r

+
iŷd∗jk(λ̃

q
T2
)rk(λT2)

∗
ri

2MT2r

+
(λ̃dT2)rj(λT2)

∗
ri

MT2r

+
iŷd∗jk(λ̃

q
T2
)∗ri(λT2)rk

2MT2r

+
ŷd∗jk ŷ

d
lk(g̃

dDq
L1

)∗rli(γL1)r

4M2
L1r

−
ŷd∗ki ŷ

d
kl(g̃

dDq
L1

)∗rjl(γL1)r

4M2
L1r

−
λ̂φ(g̃

dDq
L1

)∗rji(γL1)r

M2
L1r

−
ŷd∗jk ŷ

d
lk(g̃

Ddq
L1

)∗rli(γL1)r

4M2
L1r

+
ŷd∗ki ŷ

d
kl(g̃

Ddq
L1

)∗rjl(γL1)r

4M2
L1r

−
λ̂φ(g̃

Ddq
L1

)∗rji(γL1)r

M2
L1r

+
iŷd∗ki (g̃

d
L1
)rkj(γL1)

∗
r

2M2
L1r

−
iŷd∗jk(g̃

q
L1
)rik(γL1)

∗
r

2M2
L1r

−
iŷd∗jk(g̃

q′
L1
)rik(γL1)

∗
r

2M2
L1r

+
iŷd∗ki (g̃

d
L1
)∗rjk(γL1)r

2M2
L1r

−
iŷd∗jk(g̃

q
L1
)∗rki(γL1)r

2M2
L1r

−
iŷd∗jk(g̃

q′
L1
)∗rki(γL1)r

2M2
L1r

}
, (8.76)
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cdij = −
(κSϕ)rs(κS)r(y

d
ϕ)

∗
sji

M2
SrM

2
ϕs

−
(κΞϕ)rs(κΞ)r(y

d
ϕ)

∗
sji

M2
Ξr
M2

ϕs

−
2(κΞ1ϕ)

∗
sr(κΞ1)s(y

d
ϕ)

∗
rji

M2
ϕrM

2
Ξ1s

−
(λDQ1)sr(λD)

∗
si(λ

d
Q1
)rj

MQ1rMDs

− (λDQ5)rs(λD)
∗
ri(λQ5)sj

MDrMQ5s

−
(λT1Q1)rs(λT1)

∗
ri(λ

d
Q1
)sj

4MT1rMQ1s

−
(λT2Q1)sr(λT2)

∗
si(λ

d
Q1
)rj

2MQ1rMT2s

+
(λT1Q5)rs(λT1)

∗
ri(λQ5)sj

4MT1rMQ5s

− (wSD)rsj(κS)r(λD)
∗
si

M2
SrMDs

−
(wSQ1)

∗
rsi(κS)r(λ

d
Q1
)sj

M2
SrMQ1s

−
(wΞQ7)

∗
sri(κΞ)s(λ

d
Q1
)rj

MQ1rM
2
Ξs

− (wΞT1)rsj(κΞ)r(λT1)
∗
si

2M2
Ξr
MT1s

− 2(wΞ1Q5)
∗
rsi(κΞ1)r(λQ5)sj

M2
Ξ1r
MQ5s

− (wΞ1T2)rsj(κΞ1)r(λT2)
∗
si

M2
Ξ1r
MT2s

+
iŷd∗jk(zDL1)rsk(λD)

∗
ri(γL1)

∗
s

2MDrM
2
L1s

+
iŷd∗jk(zDL1)

∗
rsi(γL1)s(λD)rk

2MDrM
2
L1s

−
iŷd∗ki (z

d
Q1L1

)∗rsk(γL1)
∗
s(λ

d
Q1
)rj

2MQ1rM
2
L1s

−
iŷd∗ki (z

d
Q1L1

)rsj(λ
d
Q1
)∗rk(γL1)s

2MQ1rM
2
L1s

− iŷd∗ki (zQ5L1)
∗
rsk(γL1)s(λQ5)rj

2MQ5rM
2
L1s

− iŷd∗ki (zQ5L1)rsj(λQ5)
∗
rk(γL1)

∗
s

2MQ5rM
2
L1s

+
iŷd∗jk(zT2L1)rsk(λT2)

∗
ri(γL1)s

2MT2rM
2
L1s

+
iŷd∗jk(zT2L1)

∗
sri(γL1)

∗
r(λT2)sk

2M2
L1r
MT2s

+
iŷd∗jk(zT1L1)rsk(λT1)

∗
ri(γL1)

∗
s

4MT1rM
2
L1s

+
iŷd∗jk(zT1L1)

∗
sri(γL1)r(λT1)sk

4M2
L1r
MT1s

+
iŷd∗jk(δBS)rs(g

q
B)rik(κS)s

M2
BrM

2
Ss

− iŷd∗ki (δBS)rs(g
d
B)rkj(κS)s

M2
BrM

2
Ss

+
iŷd∗jk(δWΞ)sr(g

q
W)sik(κΞ)r

2M2
Ξr
M2

Ws

+
2λ̂φ(δL1ϕ)

∗
sr(γL1)s(y

d
ϕ)

∗
rji

M2
ϕrM

2
L1s

, (8.77)



8.5. COMPLETE CONTRIBUTIONS TO WILSON COEFFICIENTS 133

buij = −
(λϕ)

∗
r(y

u
ϕ)rij

M2
ϕr

+
ŷu∗jk (λU)rk(λU)

∗
ri

2M2
Ur

+
ŷu∗ki (λ

u
Q1
)rj(λ

u
Q1
)∗rk

2M2
Q1r

+
ŷu∗ki (λQ7)rj(λQ7)

∗
rk

2M2
Q7r

+
ŷu∗jk (λT1)rk(λT1)

∗
ri

4M2
T1r

+
ŷu∗jk (λT2)rk(λT2)

∗
ri

8M2
T2r

+
iŷu∗jk Im

(
(ĝφB)r

)
(gqB)rik

M2
Br

−
iŷu∗ki Im

(
(ĝφB)r

)
(guB)rkj

M2
Br

−
iŷu∗jk Im

(
(ĝφW)r

)
(gqW)rik

4M2
Wr

+
1

f

{
(ỹuS)

∗
rji(κS)r

M2
Sr

−
(ỹuΞ)

∗
rji(κΞ)r

M2
Ξr

+
2(ỹuΞ1

)rji(κΞ1)
∗
r

M2
Ξ1r

+
iŷu∗jk (λ̃

q
U)rk(λU)

∗
ri

2MUr

+
(λ̃uU)rj(λU)

∗
ri

MUr

+
iŷu∗jk (λ̃

q
U)

∗
ri(λU)rk

2MUr

−
iŷu∗ki (λ̃

u
Q1
)∗rk(λ

u
Q1
)rj

2MQ1r

+
(λ̃q′Q1

)∗ri(λ
u
Q1
)rj

MQ1r

−
iŷu∗ki (λ̃

u
Q1
)rj(λ

u
Q1
)∗rk

2MQ1r

−
iŷu∗ki (λ̃

u
Q7
)∗rk(λQ7)rj

2MQ7r

+
(λ̃qQ7

)∗ri(λQ7)rj

MQ7r

−
iŷu∗ki (λ̃

u
Q7
)rj(λQ7)

∗
rk

2MQ7r

+
iŷu∗jk (λ̃

q
T1
)rk(λT1)

∗
ri

2MT1r

+
(λ̃uT1)rj(λT1)

∗
ri

MT1r

+
iŷu∗jk (λ̃

q
T1
)∗ri(λT1)rk

2MT1r

+
iŷu∗jk (λ̃

q
T2
)rk(λT2)

∗
ri

4MT2r

− (λ̃uT2)rj(λT2)
∗
ri

2MT2r

+
iŷu∗jk (λ̃

q
T2
)∗ri(λT2)rk

4MT2r

−
ŷu∗jk ŷ

u
lk(g̃

qDu
L1

)rli(γL1)
∗
r

4M2
L1r

+
ŷu∗ki ŷ

u
kl(g̃

qDu
L1

)rjl(γL1)
∗
r

4M2
L1r

+
λ̂φ(g̃

qDu
L1

)rji(γL1)
∗
r

M2
L1r

+
ŷu∗jk ŷ

u
lk(g̃

Dqu
L1

)rli(γL1)
∗
r

4M2
L1r

−
ŷu∗ki ŷ

u
kl(g̃

Dqu
L1

)rjl(γL1)
∗
r

4M2
L1r

+
λ̂φ(g̃

Dqu
L1

)rji(γL1)
∗
r

M2
L1r

+
iŷu∗ki (g̃

u
L1
)rkj(γL1)

∗
r

2M2
L1r

−
iŷu∗jk (g̃

q
L1
)rik(γL1)

∗
r

2M2
L1r

+
iŷu∗jk (g̃

q′
L1
)rik(γL1)

∗
r

2M2
L1r

+
iŷu∗ki (g̃

u
L1
)∗rjk(γL1)r

2M2
L1r

−
iŷu∗jk (g̃

q
L1
)∗rki(γL1)r

2M2
L1r

+
iŷu∗jk (g̃

q′
L1
)∗rki(γL1)r

2M2
L1r

}
, (8.78)
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cuij =
(κSϕ)

∗
rs(κS)r(y

u
ϕ)sij

M2
SrM

2
ϕs

+
(κΞϕ)

∗
sr(κΞ)s(y

u
ϕ)rij

M2
ϕrM

2
Ξs

+
2(κΞ1ϕ)rs(κΞ1)

∗
r(y

u
ϕ)sij

M2
Ξ1r
M2

ϕs

−
(λUQ1)rs(λU)

∗
ri(λ

u
Q1
)sj

MUrMQ1s

− (λUQ7)rs(λU)
∗
ri(λQ7)sj

MUrMQ7s

−
(λT1Q1)sr(λT1)

∗
si(λ

u
Q1
)rj

2MQ1rMT1s

−
(λT2Q1)sr(λT2)

∗
si(λ

u
Q1
)rj

4MQ1rMT2s

+
(λT2Q7)sr(λT2)

∗
si(λQ7)rj

4MQ7rMT2s

− (wSU)rsj(κS)r(λU)
∗
si

M2
SrMUs

−
(wSQ1)

∗
rsi(κS)r(λ

u
Q1
)sj

M2
SrMQ1s

+
(wΞT2)srj(κΞ)s(λT2)

∗
ri

2MT2rM
2
Ξs

+
(wΞQ7)

∗
rsi(κΞ)r(λ

u
Q1
)sj

M2
Ξr
MQ1s

− (wΞ1T1)srj(κΞ1)
∗
s(λT1)

∗
ri

MT1rM
2
Ξ1s

− 2(wΞ1Q7)
∗
rsi(κΞ1)

∗
r(λQ7)sj

M2
Ξ1r
MQ7s

+
iŷu∗jk (zUL1)rsk(λU)

∗
ri(γL1)s

2MUrM
2
L1s

+
iŷu∗jk (zUL1)

∗
rsi(γL1)

∗
s(λU)rk

2MUrM
2
L1s

−
iŷu∗ki (z

u
Q1L1

)∗srk(γL1)r(λ
u
Q1
)sj

2M2
L1r
MQ1s

−
iŷu∗ki (z

u
Q1L1

)srj(λ
u
Q1
)∗sk(γL1)

∗
r

2M2
L1r
MQ1s

− iŷu∗ki (zQ7L1)
∗
rsk(γL1)

∗
s(λQ7)rj

2MQ7rM
2
L1s

− iŷu∗ki (zQ7L1)rsj(λQ7)
∗
rk(γL1)s

2MQ7rM
2
L1s

+
iŷu∗jk (zT1L1)rsk(λT1)

∗
ri(γL1)

∗
s

2MT1rM
2
L1s

+
iŷu∗jk (zT1L1)

∗
sri(γL1)r(λT1)sk

2M2
L1r
MT1s

+
iŷu∗jk (zT2L1)

∗
sri(γL1)

∗
r(λT2)sk

4M2
L1r
MT2s

+
iŷu∗jk (zT2L1)rsk(λT2)

∗
ri(γL1)s

4MT2rM
2
L1s

+
iŷu∗jk (δBS)rs(g

q
B)rik(κS)s

M2
BrM

2
Ss

− iŷu∗ki (δBS)rs(g
u
B)rkj(κS)s

M2
BrM

2
Ss

−
iŷu∗jk (δWΞ)sr(g

q
W)sik(κΞ)r

2M2
Ξr
M2

Ws

−
2λ̂φ(δL1ϕ)sr(γL1)

∗
s(y

u
ϕ)rij

M2
ϕrM

2
L1s

. (8.79)
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Xψ2φ

Z
1
2
φ (CeB)ij =

1

f

{
(λ̃BE)rj(λE)

∗
ri

MEr

+
(λ̃B∆1

)∗ri(λ∆1)rj

M∆1r

−
g1(g̃

eDl
L1

)∗rji(γL1)r

8M2
L1r

+
g1(g̃

Del
L1

)∗rji(γL1)r

8M2
L1r

}
,

(8.80)

Z
1
2
φ (CeW )ij =

1

f

{
(λ̃W∆1

)∗ri(λ∆1)rj

M∆1r

+
(λ̃WΣ1

)rj(λΣ1)
∗
ri

2MΣ1r

−
g2(g̃

eDl
L1

)∗rji(γL1)r

8M2
L1r

+
g2(g̃

Del
L1

)∗rji(γL1)r

8M2
L1r

}
,

(8.81)

Z
1
2
φ (CdB)ij =

1

f

{
(λ̃BD)rj(λD)

∗
ri

MDr

+
(λ̃BQ1

)∗ri(λ
d
Q1
)rj

MQ1r

−
g1(g̃

dDq
L1

)∗rji(γL1)r

8M2
L1r

+
g1(g̃

Ddq
L1

)∗rji(γL1)r

8M2
L1r

}
,

(8.82)

Z
1
2
φ (CdW )ij =

1

f

{
(λ̃WQ1

)∗ri(λ
d
Q1
)rj

MQ1r

+
(λ̃WT1)rj(λT1)

∗
ri

2MT1r

−
g2(g̃

dDq
L1

)∗rji(γL1)r

8M2
L1r

+
g2(g̃

Ddq
L1

)∗rji(γL1)r

8M2
L1r

}
,

(8.83)

Z
1
2
φ (CdG)ij =

1

f

{
(λ̃GD)rj(λD)

∗
ri

MDr

+
(λ̃GQ1

)∗ri(λ
d
Q1
)rj

MQ1r

}
, (8.84)

Z
1
2
φ (CuB)ij =

1

f

{
(λ̃BU )rj(λU)

∗
ri

MUr

+
(λ̃BQ1

)∗ri(λ
u
Q1
)rj

MQ1r

+
g1(g̃

qDu
L1

)rji(γL1)
∗
r

8M2
L1r

−
g1(g̃

Dqu
L1

)rji(γL1)
∗
r

8M2
L1r

}
,

(8.85)
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ψ2φ2D

Recall that ĝφV contains contributions from L1 (see eqs. (8.12)–(8.15)) and that ŷe,u,d

are defined in eq. (8.23).
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ŷukj(g̃

qDu
L1

)rki(γL1)
∗
r

8M2
L1r

−
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ŷdik(g̃

dDq
L1

)∗rjk(γL1)r

4M2
L1r

+
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Dqu
L1

)∗rik(γL1)r

2M2
L1r

}
. (8.95)
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8.6 Example: interpretation of LHCb anomalies

Our UV/IR dictionary is a tool that can be used for different phenomenological pur-

poses, such as finding indirect limits on the parameters of explicit models, constructing

BSM models consistent with existing data or analyzing deviations with respect to the

SM in terms of new physics. In this section we illustrate the latter application with a

particular example: explaining the hints in LHCb data of a violation of lepton flavor

universality (LFU) in B-meson decays [199, 200].6 We will first identify which heavy

multiplets can generate the necessary operators and then look at correlated effects

that could constrain or test the different possibilities. Our schematic analysis is just

intended as an illustration. Most of the results in this section have in fact already

appeared in the literature, but our formulation allows for a compact unified discussion

of the different explanations.

The measurement of the observablesRK ≡ Br(B+ → K+µ+µ−)/Br(B+ → K+e+e−)
and RK∗ ≡ Br(B → K∗µ+µ−)/Br(B → K∗e+e−) provides a particularly clean test

of LFU of the gauge interactions, since a large component of the SM theory uncer-

tainties cancel in the ratio. The LHCb collaboration has presented measurements of

these ratios, both of which deviate from the SM predictions by ∼ 2.6 σ [199] and

∼ 2.4 σ [200], respectively. These are not the only anomalies in b → sℓ+ℓ− processes,

with some discrepancies also in the angular distributions of B → K∗µ+µ− [202–204], or

in the differential branching fractions of B → Kµ+µ− [202] and Bs → φµ+µ− [205]. At

present, the different deviations follow a pattern that can be consistently explained by

the presence of new physics. Altogether, the global fit to all flavour anomalies points to

a deviation with respect to the SM hypotheses of ∼ 3-5 σ, depending on the estimates

assumed for the SM hadronic uncertainties in some of the observables [206–211].

The observed deviations from LFU in B decays are well described by the following

four-fermion effective Hamiltonian, valid at energies E ≪MW ,

Hb→sℓℓ
Eff = −VtbV ∗

ts

αem

4π

4GF√
2

∑
Cℓ
ijOℓ

ij + h.c., (8.96)

where

Oℓ
ij = (s̄γµPib)(ℓ̄γµPjℓ) (8.97)

are the different chiral four-fermion operators that can be obtained from the product

of two vector currents, with PL,R = 1
2
(1∓ γ5). The fit to RK,K∗ favors an explanation

where new physics is present in left-handed leptons and, in particular, points to a

sizable deviation from the SM hypotheses in Cℓ
LL. For the purpose of this example,

we focus the discussion around these interactions. They can be either Cµ
LL < 0 or

Ce
LL > 0, although a global fit to all B anomalies prefers new physics in the muon

sector, with Cµ
LL ≈ −1.2± 0.3 [206–211].

Matching Oℓ
LL with the dimension-six SMEFT at the tree level results in the fol-

lowing four-fermion contributions to Cℓ
LL:

Cℓ
LL = λ−1

t

(
C

(1)
lq + C

(3)
lq

)
ℓℓ23

, (8.98)

where λt ≡ VtbV
∗
ts
αem

4π
4GF√

2
, and we are working in a fermion basis with diagonal Yukawa

interactions for the down-type quarks. The operators O(1,3)
φq and O(1,3)

φl also contribute,

6Recently, new measurements of the related observables has been reported in ref. [201]
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via a modification of the couplings of the Z boson to the relevant quarks and leptons.

However, such non-universal anomalous couplings are strongly bounded by LEP data,

so we concentrate on the operators O(1)
lq and O(3)

lq .

The relevant entries of the UV/IR dictionary are eqs. (8.30) and (8.31). A look at

the masses in the denominators of each term allows us to easily identify all the types

of multiplets that can contribute to C
(1)
lq and C

(3)
lq at the tree level:

(3, 3)
−

1

3

(1, 1)0 (1, 3)0 (3, 1) 2

3

(3, 3) 2

3

{ ζ, B, W , U2, X } . (8.99)

Note that for ω1, C
(1)
lq = −C(3)

lq and therefore Cℓ
LL = 0. This list with one scalar and

four vector multiplets agrees with the classification in other studies, see, e.g. [207,212–

214]. From eqs. (8.30) and (8.31) we also see that there is no collective contribution

with several heavy propagators in the same diagram. Most importantly, we can pin-

point the relevant couplings in LBSM. This is a simple example of looking at an IR

entry of the dictionary to find its UV translation.

For instance, we can readily check in eqs. (8.30) and (8.31) that a product of lepto-

quark couplings is involved in the case of the scalar ζ and the vector bosons X and U2,

while the vectors B and W contribute through a product of a diagonal lepton coupling

and a flavor-changing quark coupling.

With this information, one can proceed to investigate in a systematic way all the

different constraints (or signals) arising from other processes that involve the same

couplings and particles. Processes involving other couplings will also be of great inter-

est if the anomalies are confirmed. Direct searches with resonant production can be

very relevant, but here we focus mostly on indirect searches. They reduce essentially to

an analysis of the different operators, besides O(1)
lq and O(3)

lq , that are generated when

the heavy particles are integrated out. We can distinguish three kinds of contributions

to the Wilson coefficients of the other induced operators:

Type I: Contributions that depend only on couplings that enter in Cℓ
LL. The corre-

sponding observable effects are then correlated with the ones entering in b →
sℓ+ℓ−, and can be used to constrain or probe a given solution to the B-meson

anomalies.

Type II: Contributions that depend on these couplings but can be made arbitrarily

small by tuning an interaction not entering in Cℓ
LL. In this case, the correlations

require extra information on that coupling.

Type III: Contributions that do not depend on the couplings that appear in Cℓ
LL.

These are completely uncorrelated.

In this classification it is of course crucial to take flavor indices into account. Even if

contributions of type I are more relevant, an observation of the effects of contributions

of type II and III could also be used to support the new physics interpretation and for

model discrimination.

Let us examine along these lines the multiplets ζ, X and W , which have the

compelling feature of allowing only for the required left-handed couplings. In this

case, we will use the dictionary in the UV to IR direction. Tables 8.1 and 8.3 prove

handy for this task, as they list the operators we need to look at for each assumed

multiplet.
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Scalar leptoquark ζ

The interactions of ζ can be found in eq. (7.13). We see that the scalar ζ has, up

to flavor indices, two couplings (besides the gauge couplings, determined by quantum

numbers): the lepto-quark coupling yqlζ and the coupling to quarks yqqζ . A glimpse

at table 8.1 tells us that the following operators are induced: O(1,3)
lq , O(1,3)

qq and Oqqq.

Then, we read the precise contributions to their Wilson coefficients from eqs. (8.28)-

(8.31) and (8.54). Assuming only one ζ multiplet,

(C
(1)
lq )ijkl = 3(C

(3)
lq )ijkl =

3

4

(yqlζ )lj(y
ql
ζ )

∗
ki

M2
ζ

, (8.100)

(C(1)
qq )ijkl = −3(C(3)

qq )ilkj =
3(yqqζ )ki(y

qq
ζ )∗lj

2M2
ζ

, (8.101)

(Cqqq)ijkl = −
2(yqqζ )∗ij(y

ql
ζ )kl

M2
ζ

. (8.102)

Looking at the flavor structure of (8.100), we see that we need sizable couplings (yqlζ )2ℓ

and (yqlζ )3ℓ to explain the anomalies. For sufficiently low mass Mζ , these couplings can

be probed by analyses of single and pair production of ζ at the LHC [215]. The very

same couplings also contribute to other components of C
(1,3)
qq , and we conclude that

C l
LL 6= 0 −→





(C
(1)
lq )ℓℓ33 = 3(C

(3)
lq )ℓℓ33 =

3|(yqlζ )3ℓ|2
4M2

ζ

6= 0,

(C
(1)
lq )ℓℓ22 = 3(C

(3)
lq )ℓℓ22 =

3|(yqlζ )2ℓ|2
4M2

ζ

6= 0.
(8.103)

These are contributions of type I. The corresponding effects in hadronic-flavor-preserving

processes are correlated with the B anomalies. From (8.103) it is also clear that in

these processes each of the two couplings can be measured, in principle, independently.

Both the flavor-preserving and flavor-violating effects in an electron explanation of the

anomalies can be tested in e+e− colliders. The observed values of RK,K∗ can be repro-

duced with Cℓ
LL ∼ O(1), which corresponds to a new physics interaction scale of about

35 TeV, well above the sensitivity of LEP2. Therefore, current e+e− data do not pro-

vide significant constraints on the relevant couplings. However, they could be tested

at future lepton colliders. Any other combination of flavor indices gives contributions

of type III, with effects that are uncorrelated with the anomalies. The same holds

for the contributions to the operators O(1,3)
qq , which involve the quark couplings yqqζ .

Finally, the baryon-number violating operator Oqqq receives contributions of type II or

type III, depending on the flavor indices. Note in particular that the quark couplings

for the first family are strongly constrained by the non-observation of proton decay.

Vector leptoquark X
The analysis of the vector multiplet X is similar, but as we can see in eq. (7.25) in

this case there is only one non-gauge coupling (up to flavor indices): the lepto-quark

coupling gX . In table 8.3 we see that only the operators O(1,3)
lq are generated in the
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EFT below the mass MX . Assuming only one replica of X , eq. (7.13) gives

(C
(1)
lq )ijkl = −3(C

(3)
lq )ijkl = −

3(gX )
∗
jk(gX )il

8M2
X

. (8.104)

We see that the contribution of X to Cℓ
LL is proportional to the product of (gX )

∗
ℓ2

and (gX )ℓ3. Again, there are correlations with the coefficients of the corresponding

hadronic flavor-conserving operators:

C l
LL 6= 0 −→





(C
(1)
lq )ℓℓ33 = −3(C

(3)
lq )ℓℓ33 = −3|(gX )ℓ3|2

8M2
X

6= 0,

(C
(1)
lq )ℓℓ22 = −3(C

(3)
lq )ℓℓ22 = −3|gX )ℓ2|2

8M2
X

6= 0.
(8.105)

The same discussion in the paragraph below eq. (8.103) applies to this case, except

for the fact that now there are no purely-hadronic couplings.

Vector iso-triplet W
As we can check in eq. (7.25), the vector iso-triplet W has couplings glW and gqW to

left-handed fermions and gφW to the Higgs doublet. The latter induces a mixing of

the Z ′ and W ′ components with the Z and W bosons, respectively. There are also

couplings involving a possible vector doublet L1, which we shall not consider. For

masses MW light enough, the Z ′ and W ′ bosons in W can be produced at hadron

colliders if the light-quark couplings are not too small. They then decay into di-

leptons (including lepton + MET) [216] and di-bosons [217] through the couplings to

leptons and to the Higgs, respectively. Regarding indirect effects, the operators that

can be induced are listed in the W entry of table 8.3. The most relevant ones in the

context of the B anomalies are O(3)
lq , Oll and O(3)

qq , with Wilson coefficients given by

(see eqs. (8.31), (8.27) and (8.29))

(C
(3)
lq )ijkl = −(glW)ij(g

q
W)kl

4M2
W

, (8.106)

(Cll)ijkl = −(glW)ij(g
l
W)kl

8M2
W

, (8.107)

(C(3)
qq )ijkl = −(gqW)ij(g

q
W)kl

8M2
W

. (8.108)

We see that to get the necessary Cℓ
LL we need sizable couplings (glW)ℓℓ and (gqW)23.

The first one must be non-universal, while the second one is explicitly flavor-changing.

Schematically, we have the following correlations:

C l
LL 6= 0 −→





(Cll)ℓℓℓℓ = − (gl
W

)2
ℓℓ

8M2
W

6= 0,

(C
(3)
qq )2323 = − (gq

W
)223

8M2
W

6= 0,

(C
(3)
qq )2332 = − |(gq

W
)23|2

8M2
B

6= 0.

(8.109)

Of particular importance is the contribution to (C
(3)
qq )2323, as it generates contributions

to Bs− B̄s mixing amplitudes. Such contributions are tightly constrained, pushing
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the new physical interaction scale to values of O(100) TeV [218, 219].7 This case

shows that, although ∆F = 1 and ∆F = 2 bounds are uncorrelated in a low-energy

operator analysis, correlations may exist and be crucial in specific explanations of the

B anomalies. Similar considerations apply often to processes that may not appear to

be connected in an effective low-energy description. Of course, the correlations become

weaker as more particles (with the same or different quantum numbers) are included,

but some of them are unavoidable [224].

Again, other combinations of flavor indices give contributions of type II and III.

The contributions of W to ψ2φ2D operators,

(C
(3)
φl )ij = −

Re
{
(glW)ij g

φ
W

}

4M2
W

, (8.110)

(C
(3)
φq )ij = −

Re
{
(gqW)ij g

φ
W

}

4M2
W

, (8.111)

are of type II for ij = ℓℓ and ij = 23, 32, respectively, and of type III otherwise.

These operators modify the Z and W couplings to leptons and quarks, so they are

constrained by electroweak precision data, by observables sensitive to flavor-changing

decays of the Z boson, Bs−B̄s mixing and by non-resonant processes with di-lepton

and di-jet final states at the LHC. But these limits can always be made compatible

with the lepton and quark couplings that explain the anomalies by tuning the Higgs

coupling gφW to be small. This coupling also induces type-III effects in Higgs physics,

via the operators OφD, Oφ, Oφ� and Ofφ (f = e, d, u), with Wilson coefficients

CφD = −
Im
{
(gφW)

}2

2M2
W

, Cφ = −λφ(g
φ
W

)2

M2
W

, Cφ� = −|gφW |2
4M2

W
,

(Ceφ(dφ))ij = y
e(d)∗
ji a, (Cuφ)ij = −2yu∗ji a

∗, a ≡ −2|gφW |2 + i Im((gφW)2)

8M2
W

.(8.112)

(Note that we have replaced λ̂φ and ŷe,d,u by λφ and ye,d,u, respectively, as in the

extension we are considering there are no contributions to dimension-four operators.)

Before finishing this section let us point out another possible usage of the UV/IR

dictionary for model building. Say we are interested in a given class of models, includ-

ing one or more of the multiplets that contribute at the tree level to the dimension-six

effective Lagrangian. Then we can relax the indirect limits on the corresponding cou-

plings by including other multiplets that (partially) cancel the contributions to the

Wilson coefficients of interest. The different possibilities can be easily determined by

a scan of our results in section 8.5. For instance, it is easy to see that the contribu-

tions of W to (Cll)1111, which could be tested at future e+e− → e+e− colliders, can

be (partially) cancelled, with some tuning, against the ones of a hypercharge 1 scalar

singlet S1 or triplet Ξ1 [224].

7These bounds, together with the ones discussed below, can be relaxed by reducing the (gqW)23
and gφW couplings at the expense of increasing the corresponding (glW)ℓℓ ones [220, 221]. A similar
comment applies to the case of B. Such leptophilic vector bosons can be probed at colliders in
multi-lepton searches [222,223].
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8.7 Example: Higgs physics in simple models

In this section, we use the UV/IR dictionary to discuss new physics effects in Higgs

physics in simple SM extensions with one or two particles. First, we find the part

of the SMEFT most important for Higgs physics. Then, we study the correlations

found in each model between the effects in Higgs physics and those in other types

of observables. The implications in Higgs physics are not always apparent in the

dimension-6 Lagrangian, because of possible correlations between the coefficients of

operators, and in indirect effects from the modified relations used to obtain the values

of the SM input parameters. These implications have been worked out in the literature

and can be found, for instance, in ref. [225].

The operators in the Warsaw basis that contain the Higgs field and can be generated

at the tree level are listed in the first column of table 8.4. For simplicity, we disregard

four-fermion interactions, even if they might influence Higgs physics indirectly. The

operators Oφ, Oφ� and (Ouφ)33 are the ones that are currently less constrained by

experimental data. The operator OφD and all those of the type Oφψ have been con-

strained to be small by electroweak precision tests (EWPT), while Oφud is also limited

by low-energy data. Experimental data from Higgs physics tell us that the Wilson

coefficients of the interactions (Oeφ)33 and (Odφ)33 should be well below 1 TeV−2.

Using the UV/IR dictionary, we can readily identify which heavy fields can generate

each operator at the tree level. They are listed in the last column of table 8.4, next

to each corresponding operator. In the following, we consider a few simplified models

that contain one or two of these fields. All these models are particular cases of the

BSMEFT. Our selection includes fields that appear frequently in more elaborate setups

and illustrates typical features of the latter. Furthermore, all the operators in table 8.4

are generated by this set of models. We first discuss popular extensions of the SM with

only one particle, which are severely constrained by EWPT. Then, we study minimal

extensions with several particles that preserve custodial symmetry. In this case, the

strongest constraints are evaded and strong effects in Higgs physics are allowed. In

the explicit results below, it can be observed that many of the contributions to the

Wilson coefficients have a definite sign.

8.7.1 Models with one extra particle

Quark singlet: U ∼ (3, 1)2/3

In chapter 9, we study the physics of heavy vector-like quarks in detail. Here, we

concentrate on the Higgs physics of a vector-like quark U , with the same quantum

numbers as the right-handed top, that only has renormalizable interactions. The

relevant sector of LBSM is

LU = LSM + iŪ /DU +MU ŪU −
(
(λU)iŪRφ̃

†qLi + h.c.
)
, (8.113)

which we have particularized for only one flavor of the field U . To avoid flavour-

changing neutral currents, we consider the case in which only one of the three (λU)i is
non-vanishing. From the results presented in section 8.4, we extract the contributions

of U to the SMEFT, which we give in table 8.5. The first two operators contribute to

gauge couplings (also in association with one or two Higgs bosons) of the SM quarks
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Name Operator Constraints Fields that generate it

Oφ |φ|6 [weak constraints] S, ϕ, Ξ, Ξ1, Θ1, Θ3, B1, W
Oφ� |φ|2�|φ|2 [weak constraints] S, Ξ, Ξ1, B, B1, W , W1

OφD |φ†Dµφ|2 EWPT Ξ, Ξ1, B, B1, W , W1

Oeφ |φ|2l̄LφeR Higgs data
S, ϕ, Ξ, Ξ1, E, ∆1, ∆3,

Σ, Σ1, B, B1, W , W1

Odφ |φ|2q̄LφdR Higgs data
S, ϕ, Ξ, Ξ1, D, Q1, Q5,

T1, T2, B, B1, W , W1

Ouφ |φ|2q̄Lφ̃uR [weak constraints]
S, ϕ, Ξ, Ξ1, U , Q1, Q7,

T1, T2, B, B1, W , W1

O(1)
φl (l̄Lγ

µlL)(φ
†i

↔
Dµφ) EWPT N , E, Σ, Σ1, B

O(3)
φl (l̄Lγ

µσalL)(φ
†i

↔
D
a

µφ) EWPT N , E, Σ, Σ1, W
O(1)
φq (q̄Lγ

µqL)(φ
†i

↔
Dµφ) EWPT U , D, T1, T2, B

O(3)
φq (q̄Lγ

µσaqL)(φ
†i

↔
D
a

µφ) EWPT U , D, T1, T2, W
Oφe (ēRγ

µeR)(φ
†i

↔
Dµφ) EWPT ∆1, ∆3, B

Oφu (ūRγ
µuR)(φ

†i
↔
Dµφ) EWPT Q1, Q7, B

Oφd (d̄Rγ
µdR)(φ

†i
↔
Dµφ) EWPT Q1, Q5, B

Oφud (ūRγ
µdR)(φ

†iDµφ̃) low-energy data Q1, B1

Table 8.4: Fields that generate each operator containing the Higgs at the tree level,

together with the type of experimental data that constrains it the most.

(C
(1)
φq )ij (C

(3)
φq )ij (Cuφ)ij

(λU )
∗
i (λU )j

4M2
U

(λU )
∗
i (λU )j

4M2
U

yu∗jk
(λU )

∗
i (λU )k

4M2
U

Table 8.5: Tree-level contributions to operators with the Higgs from the U heavy

vector-like quarks.

whereas the third one contributes to the up-type Yukawa couplings (again plus one

or two extra Higgs bosons). Associated WH or ZH production from the first two

operators in the case of first and second generation quarks is constrained by EWPT.

Other correlations appear once we consider this specific model. Indeed, all three Wilson

coefficients are controlled by a single parameter |(λU)i|2/M2
U . Top gauge couplings are

not so severely constrained, thus allowing a priori for a significant deviation of the

top Yukawa coupling. However, in this case EWPT still constrain the parameters of

the model through one-loop contributions.

Current direct searches for pair production of this vector-like top put a lower bound

of about a TeV for its mass [226,227]. Single production is also sensitive to the Yukawa

coupling of the new quarks [228,229].
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CφD Cφ� (C
[(1)]
φψ )ij

−2(gφ
B
)2

M2
B

− (gφ
B
)2

2M2
B

− (gψ
B
)ij(g

φ
B
)

M2
B

Table 8.6: Tree-level contributions to operators with the Higgs from the neutral vector

singlet B.

Neutral vector singlet: B ∼ (1, 1)0

In this model, a vector field B couples to the SM fermions and the Higgs doublet

through renormalizable operators. Therefore, the terms of LBSM we are interested in

are

LB = LSM +
1

2

(
(DµBν)(DνBµ)− (DµBν)(DµBν) +M2

BBµBµ
)

−
∑

ψ

(gψB)ijBµψ̄iγµψj −
[
gφBBµφ†iDµφ+ h.c.

]
. (8.114)

The only component of this field is associated to a heavy neutral particle of spin 1, i.e.

a Z ′ boson. We assume that the coupling constant gφB to the Higgs is real. The UV/IR

dictionary gives four-fermion operators plus the contributions that appear in table 8.6.

Note that the modification of the Higgs kinetic term depends on Cφ� − CφD/4, and
therefore vanishes in this model. There is however a modification of the SM-like Higgs

coupling to vector bosons via OφD. From the EWPT constraints on OφD, it follows

that gφB should be small. This affects every operator with the Higgs generated by B,
which will be suppressed by gφB or (gφB)

2. Similarly, one has effects in associated ZH

production coming from the operators O[(1)]
φψ , which are also constrained by EWPT.

Searches for single production of neutral vectors decaying to dileptons, dibosons or

dijets exclude additional regions in the parameter space of this model [230–236].

8.7.2 Custodial models

Quark bidoublet: Q1 ∼ (3, 2)1/6 and Q7 ∼ (3, 2)7/6

In this case, we have a multiplet of heavy vector-like quarks in the (2, 2)2/3 representa-
tion of the SU(2)L×SU(2)R×U(1)X symmetry group, where SU(2)L corresponds to

the SU(2) factor in the SM gauge group GSM and the hypercharge of the U(1) factor
in GSM is given by Y = TR3 +X.

As we have stressed above, models that extend the SM symmetries, such as this

one, are particular cases of the BSMEFT, in which some relations between couplings

are imposed. This model corresponds to the sector of the BSMEFT containing the

2 quark doublets Q1 and Q7 in the 21/6 and 27/6 irreps of the electroweak gauge

group, respectively, with the associated parameters related by MQ1 =MQ7 =:M and

λQ1 = λQ7 =: λ. We assume that the heavy quarks only couple to the third generation

of SM quarks. The relevant part of LBSM is given by

Lbidoublet = LSM + iQ̄7 /DQ7 + iQ̄1 /DQ1 +M
(
Q̄7Q7 + Q̄1Q1

)

−
[
λ
(
Q̄7LφtR + Q̄1Lφ̃tR

)
+ h.c.

]
. (8.115)
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(Cuφ)33

yu∗33 |λ|2
M2

Table 8.7: Tree-level contributions to operators with the Higgs from the quark doublets

Q7 and Q1, with the interactions in eq. (8.115).

Because of the extended symmetry, the contributions to the Oφψ operators from

both doublets cancel each other. Only the operator (Ouφ)33 is generated by a tree-level

integration, with a positive Wilson coefficient. The explicit value of (Cuφ)33 in this SM

extension is given in table 8.7. Therefore, this is a model which can give large negative

contributions to the top Yukawa coupling without producing any other effects at the

tree level. Note that one-loop constraints are under control for this particular model:

contributions to the T parameter are protected by custodial symmetry, bounds from

the S parameter are mild, and the contributions of the new quarks to Higgs production

via gluon fusion compensate the reduction in the top Yukawa coupling.

The mass of the extra quarks is bounded from below by direct pair production

limits, similarly to the case of the singlet (subsection 8.7.1).

Hypercharge zero vector triplet: W ∼ (1, 3)0

The hypercharge zero vector triplet contains a Z ′ and a W ′. It couples to the SM

doublets. The relevant part of the BSMEFT Lagrangian is:

LW = LSM +
1

2
((DµWa

ν )(D
νWµa)− (DµWa

ν )(D
µWνa))

+
1

2
M2

WWa
µWµa − 1

2
(glW)ijWµal̄Liσ

aγµlLj

− 1

2
(gqW)ijWµaq̄Liσ

aγµqLj −
[
1

2
(gφW)Wµaφ†σaiDµφ+ h.c.

]
. (8.116)

We assume that gφW is real. Table 8.8 summarizes the tree-level contributions

of W to operators with the Higgs, which can be read from the dictionary. Unlike

the case of the vector singlet B, the coupling gφW is allowed to be large in this case,

because the contribution to the T parameter is zero. Therefore, in this model there

can be large contributions controlled by gφW to Oφ (which modifies the Higgs trilinear

coupling), to Oφ� (that changes the Higgs kinetic term) and to Oψφ (which in this

model modifies Yukawa couplings in an universal way). While the mixing of W with

the SM gauge boson induces a custodial symmetric modification on the SM-like Higgs

to vector couplings (this effect is captured by Oφ�), the net effect in other couplings

follows from a modification of the SM relations used to derive the values of the inputs

of the model.

As for the singlet (subsection 8.7.1), direct searches for single production of Z ′ and
W ′ apply here.

Pair of vector singlets: B ∼ (1, 1)0 and B1 ∼ (1, 1)1

Here, as in the quark bidoublet case, we have the extended symmetry SU(2)L ×
SU(2)R × U(1)X . A pair of vector singlets B and B1 combine to form a (1, 3)0 rep-
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Cφ Cφ� (Cψφ)ij (C
(3)
φψ )ij

−λφ(g
φ)2

M2
W

−3(gφ
W

)2

8M2
W

−yψ∗

ji (gφ
W

)2

4M2
W

− (gψ
W

)ij(g
φ
W

)

4M2
W

Table 8.8: Tree-level contributions to operators with the Higgs from the hypercharge

zero vector triplet W .

Cφ Cφ� (Cψφ)ij

−4λφ(g
φ)2

M2 −3(gφ)2

2M2 −yψ∗

ji (gφ)2

M2

Table 8.9: Tree-level contributions to operators with the Higgs from the pair of vector

singlets B and B1.

resentation of this group (see ref. [237] for a discussion of the effects of the B1 vector

alone). The induced relations between BSMEFT parameters are: MB = MB1 =: M
and gφB = gφB1

/
√
2 =: gφ. Thus, this model is described by the following terms in LBSM:

Lvector-pair = LSM + LB
kin + LB1

kin

+M2

(
1

2
BµBµ + B†

1µBµ1
)

−
[
gφ
(
Bµφ†iDµφ+

√
2Bµ†1 iDµφ

T iσ2φ
)
+ h.c.

]
. (8.117)

For simplicity, we have not included in the previous equation the fermionic couplings

to the heavy vectors. Their effects are independent from the ones discussed in this

subsection.

Using the UV/IR dictionary, we obtain table 8.9. The contribution to OφD from B
cancels the one from B1. This means that the limits on gφ are milder than in the case

with B alone (subsection 8.7.1). In fact, this coupling is not constrained by EWPT

when the fermion couplings vanish. Therefore, large effects in Oφ, Oφ� and Oψφ are

allowed in this model. The discussion of the effects in Higgs physics/couplings coming

from gφ in this model is similar to that in the case of W .

Direct searches at the LHC are sensitive to the Higgs couplings of the new vectors

via vector boson production of the new fields and decays into dibosons. Other channels

are typically more restrictive when the couplings to fermions are not small.

8.8 Conclusions

In this chapter we have shown that the matching between the IR and UV descrip-

tions can be performed once and for all at the leading order, namely for operators of

canonical dimension up to 6 and at the classical level. The idea is to map the model-

independent low-energy EFT approach to arbitrary models of new physics. With this

purpose, we have considered a completely general extension of the SM, the BSMEFT

(see chapter 7), subject only to a few mild assumptions. This extension has an arbi-

trary number of new scalars, fermions and vectors, with no restrictions on their gauge
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quantum numbers nor on their possible interactions. In particular, we have made no

assumption about renormalizability.

We have integrated out the new heavy particles in the BSMEFT at the tree-level

and have computed the Wilson coefficients of the corresponding SMEFT operators of

dimension up to 6 in the Warsaw basis. This is the main contribution of this chapter.

We report our results in the form of a UV/IR dictionary. A top-down approach to the

analysis of new physics would first use our section 8.4, where we list all the operators

that are generated for specific new particles. In section 8.5, on the other hand, we give

our results organized from the bottom-up point of view, by writing the contribution

to each Wilson coefficient from an arbitrary number of new particles. This dictionary

greatly simplifies the task of analyzing the low-energy implications of explicit models

and obtaining the corresponding bounds on their parameters. It also helps disentangle

the origin of possible anomalies eventually observed in experiments. We have included

a short section to guide the reader through our results and have provided a simple

example to illustrate the use of this dictionary.

It is interesting that all operators in the Warsaw basis, except for the ones involving

three field strength tensors, are generated in our tree-level integration. This would

naively seem to contradict the arguments in ref. [96], which, up to the presence of

L1, share our assumptions. In fact there is no contradiction since, as we have shown,

tree-level contributions to operators that are classified as “loop generated” in [96] only

arise due to non-renormalizable, dimension-five operators in our SM extension, which

can only be generated in turn at the loop level in any weakly-coupled renormalizable

UV completion of that theory. (See [198] for a related discussion.) However, we

have included these operators in our dictionary because they could be unsuppressed

in strongly-coupled completions.

We conclude by emphasizing that we have provided a complete classification of

all possible extensions of the SM (with new particles up to spin 1) with low-energy

implications at the leading order. These implications are encoded in tree-level contri-

butions to the Wilson coefficients of the dimension-six operators in the SMEFT, which

we have computed explicitly in terms of the masses and couplings of the new particles.

This result can in principle be extended to operators of higher dimension: as long as

the classical approximation is used, the number of extra fields and extra couplings to

be considered will be finite (even if huge). On the other hand, at the loop level this

endeavor faces an additional problem: there are infinitely-many types of extra fields

that can contribute, already at one loop, to dimension-six operators. The reason is

that fields without linear couplings to the SM need also be considered in this case.

So, a complete matching to general extensions beyond the classical approximation will

need to deal with this difficulty.





CHAPTER 9
Vector-like quarks with

non-renormalizable interactions

9.1 Introduction

So far, we have considered the sector of the BSMEFT in which the new fields have

dimension-4 linear couplings. In this chapter, we study the possibility of relaxing

this bound over the dimension. We do so for the case of vector-like quarks. That is,

spin-1/2 color triplets whose left-handed and right-handed components transform in

the same way the electroweak gauge group. In general, new heavy fermions must be

vector-like in order to have an explicit gauge-invariant mass term.

Vector-like quarks appear in many motivated extensions of the SM, for diverse

reasons. In models with additional symmetries, they may complete multiplets that

include SM fermions [51, 238, 239]. They may also be necessary for the cancellation

of the anomalies of an extended gauge group [240]. In models with (partially) com-

posite quarks [241], they emerge effectively as resonances, while in models in extra

dimensions, they show up as Kaluza-Klein modes when the quarks propagate through

the bulk [242]. Vector-like quarks are also used to relax the bounds from precision

observables [243] or to avoid strong fine tuning in the Higgs sector [244,245]. Here, we

will not worry about the origin of the vector-like quarks or the details of the model

in which they appear. Instead, we follow a systematic model-independent approach

by studying a general effective field theory that describes the new quarks and their

interactions with the SM fields. Our conclusions can be easily translated to specific

models.

At the renormalizable level, the possible gauge-invariant interactions of the extra

quarks in the electroweak symmetric phase are the ones with the gauge bosons, deter-

mined by their quantum numbers, and Yukawa interactions involving either two extra

quarks or one extra quark and one SM quark (see section 7.3). Upon electroweak

breaking, the Yukawa couplings give rise to off-diagonal terms in the quark mass

matrix, which translate into the mixing of mass eigenstates in the interaction terms

with the Z and W bosons and the Higgs (beyond the mixing in the original Yukawas).

Many of the observable effects of the new quarks, such as their decay into SM particles,

their single production and the induced modifications of the light-quark couplings, are

155
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associated to their mixing with the SM quarks, which is suppressed when their gauge-

invariant mass is larger than the Z mass [246]. This suppression is stronger for heavy

vector-like quarks that are not directly connected by Yukawa couplings to the SM

quarks. Therefore, the effects of mixing are sizable only in the presence of vector-like

quarks with gauge quantum numbers that allow for such couplings. Assuming that

electroweak breaking is mostly triggered by the vev v of one or more Higgs doublets,

in agreement with limits on the ρ parameter, there are seven different multiplets of

vector-like quarks that carry the appropriate quantum numbers. They are ones shown

in table 7.2. Vector-like quarks with this property will be called “renormalizable”

vector-like quarks (RVLQ), even if they can also have non-renormalizable interac-

tions. Their components have electric charges in the set {±1/3,±2/3,±4/3,±5/3}.
The most general renormalizable extension of the SM with arbitrary combinations of

the seven types of RVLQ was explicitly written in ref. [6]. In that work, the leading

indirect effects beyond the SM, including flavour-changing neutral currents, right-

handed charged currents and a non-unitary CKM matrix, were studied by integrating

the heavy quarks out and using the results in ref. [59] for the relevant flavourful part

of the SMEFT at dimension 6. The loop contributions of these multiplets to oblique

parameters have also been calculated in refs. [247–249]. Regarding direct searches,

refs. [250, 251] provide a comprehensive and detailed guide to the LHC phenomenol-

ogy of minimal renormalizable extensions of the SM with vector-like quarks that mix

dominantly with the third family. Several other works have been devoted to collider

searches of RVLQ, see for instance refs. [252–256].

Allowing non-renormalizable interactions in the BSMEFT allows us to assess the

robustness of the standard limits on vector-like quarks and to explore possible new

observable signals. For simplicity, we will consider simple extensions with only one

quark multiplet at a time. All the possible particles not included in the effective

Lagrangian, such as additional extra quarks or extra scalars, are assumed to be heavier

than the cutoff Λ; their effects are then encoded into the Wilson coefficients of the

EFT. As usual, the effective Lagrangian is to be expanded in inverse powers of Λ.

When Λ is much higher than the probed energies E and the Higgs vev v, all the effects
of higher-dimensional operators will be suppressed by powers of E/Λ and/or v/Λ with

respect to the effects of the renormalizable ones and will typically give rise to small

corrections to the known results. However, some processes may require the presence

of higher-dimensional interactions, which will then provide the leading contributions.

In particular, this is always the case for quark multiplets that can only couple linearly

and gauge invariantly to the SM fermions at the non-renormalizable level. As we will

see, the phenomenology of these multiplets can indeed be different from the one of

RVLQ.

In fact, relaxing the requirement of renormalizability enlarges the list of vector-

like quarks that can mix with the SM ones and, more generally, have linear couplings

with SM operators.1 In this chapter, we only study explicitly the leading corrections

to renormalizable theories with vector-like quarks. So, we will truncate the effective

Lagrangian at order 1/Λ, that is, we will consider only operators of canonical dimension

n ≤ 5. The quark multiplets that can have linear couplings to this order are collected

in table 9.1. As can be checked there, there are five new multiplets, in addition to the

1Interestingly, non-renormalizable linear interactions of other colour representations, beyond sin-
glets and triplets, are also allowed.
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seven RVLQ, which we have presented before in table 7.2. The new ones will be called

”non-renormalizable” vector-like quarks (NRVLQ). The only gauge-invariant operator

that can be built with the SM fields at dimension 5 is the Weinberg operator, which

involves only leptons and is thus irrelevant in our context. Therefore, the relevant

dimension 5 operators always contain at least one of the extra quarks in table 9.1.

In order to simplify the analysis, we will assume that the extra quarks do not couple

to the first two SM families. This assumption can easily be dropped, at the price of

introducing more free parameters. We study the mixing with the third family of SM

quarks and the associated phenomenology, including indirect effects on electroweak

and Higgs observables and the production and decay of the new quarks. We will see

that for some multiplets there are new single production mechanisms and new decay

channels, which can be sizable in some regions of parameter space. A significant feature

of the vector-like quarks without renormalizable interactions is that their widths are

suppressed. For dimensionless couplings of order 1 and a cutoff Λ larger than 5 TeV,

it turns out that their lifetimes are larger than the typical QCD times and thus non-

perturbative effects, including hadronization, will take place before decay. For still

larger values of Λ, the NRVLQ, or more precisely the hadrons they form, will be long

lived. These quarks would then elude the usual searches, which assume prompt decays,

and lead instead to alternative signatures, such as tracks with anomalous ionization,

long time of flight or displaced vertices.

Extra quarks with non-renormalizable interactions have been studied before in the

context of pseudo-Goldstone composite Higgs models [245, 257–259]. This is a partic-

ular subclass of the theories included in our general model-independent framework,

with Λ identified with the symmetry breaking scale f . But in the pseudo-Goldstone

scenario, the assumed symmetry breaking pattern allows to easily resum the 1/f ex-

pansion. Then, f can be pretty low without loosing predictive power.2 The vector-like

quarks in those models belong to multiplets of an extended symmetry and, for the

popular choices in the literature, decompose under the SM gauge group into a subset

of the seven RVLQ representations. Here, we want to follow a model-independent

approach, so we do not make any assumptions about the nature of the Higgs, about

symmetries beyond the SM ones or about the representations of the quarks (except

for the requirement of linear interactions). Another study of non-renormalizable in-

teractions for new quarks, similar in spirit to the one in this paper, was presented in

ref. [261]. There, the first three multiplets in table 9.1, coupled via operators involv-

ing the Higgs, were considered. We generalize this work by including all the relevant

multiplets and operators at dimension 5. In particular, we consider multiplets without

dimension-4 interactions, which present the most dramatic changes with respect to the

usual phenomenology of vector-like quarks. On the other hand, the flavour structure

we assume is more restrictive than the one in ref. [261], which allowed for couplings to

the light families of SM quarks.

We have implemented in FeynRules 2.0 [162] the EFT for each vector-like mul-

tiplet in table 9.1. All the simulations have been performed with MadGraph5 aMC@NLO

[262,263] with the UFO files generated with FeynRules.

The chapter is organized as follows. In section 9.2, we introduce the EFT for vector-

2The EFT descriptions of these models are valid up to a cutoff higher than f , associated to
additional resonances or strong coupling. In explicit holographic models, these effects are incorporated
and the cutoff can be much higher for many purposes [260].
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like quarks, find the constraints on quantum numbers for linear interactions and write

explicitly the general Lagrangian for an arbitrary multiplet with all the operators of

dimension up to 5. We also comment briefly on the possible ultraviolet (UV) origin

of the non-renormalizable operators. In section 9.3, we diagonalize the mass matrices

that appear in the Higgs phase for the components with the same electric charges as

the SM quarks. Section 9.4 is devoted to indirect effects of the new quarks and to

the corresponding limits from Higgs, electroweak and top data. Production at hadron

colliders is discussed in section 9.5, while the decay of the new quarks is examined in

section 9.6. In this last section, we explain why the branching ratios to Higgs and Z

bosons are approximately equal for all multiplets but one. We also obtain a simple

formula to reinterpret the mass limits provided by the LHC collaborations in the case

with additional decay modes. Our method is based on the one in ref. [264]. We present

our conclusions in 9.7.

9.2 General extensions of the Standard Model

with vector-like quarks

We consider here the sector of the general theory LBSM (defined in chapter 7) that

contains new quarks. We obtained in section 7.2 a general constraint over the rep-

resentation of any SM operator, and thus of any field with a gauge-invariant linear

coupling. In the case of color triplets, it reads

T + Y + 1/3 ∈ Z, (9.1)

with T the isospin of the SU(2) representation and Y the hypercharge. It is also true

that, given a representation of SU(2) × U(1) satisfying eq. (9.1), there is a product

of SM fields that produces this representation. Indeed, consider first the products

φk(φ∗)l of the Higgs doublet and its conjugate. They generate all representations

with T + Y ∈ Z. Then, the operators of the form φk(φ∗)lq give all the possibilities

satisfying eq. (9.1). So this formula allows to find easily the quark multiplets with

linear couplings.

Higher-dimensional multiplets couple linearly to the SM through higher-dimensional

operators. Therefore, the effects of higher-dimensional multiplets tend to be more sup-

pressed than the lower-dimensional ones. As we have just explained, at each order in

inverse powers of the cutoff Λ, which is given by the dimension of the operators, there

is a finite number of multiplets with linear couplings to SM fields. This number in-

creases with the order in 1/Λ. We focus in the following on the next-to-leading order

in this expansion, which is O(1/Λ). Equivalently, we impose a maximum dimension

of 5 for the operators in the effective Lagrangian. There are twelve possible multiplets

with linear couplings at this order, listed in table 9.1. The ones in the first seven rows,

called RVLQ in this paper, can have linear interactions of dimension 4. These are the

multiplets that have been studied in the past. For natural values of the couplings, the

dimension-5 operators will generate small corrections to their properties. The remain-

ing five multiplets, which we call NRVLQ, cannot have dimension-4 linear couplings.

Therefore, for these multiplets the dimension-5 interactions will give leading-order ef-

fects. Let us stress that RVLQ can have non-renormalizable linear interactions and

that NRVLQ have renormalizable quadratic interactions with the gauge fields, besides
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the kinetic and mass terms. Let us also note in passing that, besides the singlet and

triplet representations, other irreducible representations of SU(3) are possible for spin-
1/2 particles with dimension-5 linear couplings to the SM. The extra eight possibilities

for their representations under SU(3)× SU(2)× U(1) are:

(6, 1)−2/3, (6, 1)1/3, (6, 2)−1/6, (8, 1)1, (8, 2)1/2, (15, 1)2/3, (15, 1)−1/3, (15, 2)1/6. (9.2)

Coming back to extra quarks, the dimension-5 operators containing exactly one

vector-like quark can have one of the following two schematic forms: Q̄φφq and

Q̄σµνqFµν , where φ is the Higgs doublet, q and Q represent SM and extra quark

multiplets, respectively, and Fµν is the field-strength tensor of a SM gauge field. We

do not consider operators with the field content Q̄φqD, with D a covariant derivative,

because they can be eliminated using integration by parts and field redefinitions, up

to O(1/Λ2) corrections. The interactions allowed for each multiplet are presented in

table 9.1. They can be found using BasisGen (see chapter 6). It is important to note

that the interactions of the form Q̄φφq will typically give physical effects suppressed

by powers of v/Λ, while the effects of interactions of the form Q̄σµνqFµν are suppressed
by powers of E/Λ, with E the characteristic energy of the process (E ≃ M for on-

shell extra quarks). In the rest of this paper, we study sector of the BSMEFT that

is relevant for each one of the possible multiplets Q at a time. The corresponding

dimension-5 effective Lagrangian L = LSM + Lfree
Q + (Llin

Q + Lquad
Q + h.c.), with

Lfree
Q = Q̄(i /D −M)Q, (9.3)

−Llin
U = λi ŪRφ̃

†qLi + yi (ŪLuRi)(φ
†φ) + wBi ŪLσ

µνuRiBµν + wGi ŪLλ
AσµνuRiG

A
µν ,

(9.4)

−Llin
D = λi D̄Rφ

†qLi + yi (D̄LdRi)(φ
†φ) + wBi D̄Lσ

µνdRiBµν + wGi D̄Lλ
AσµνdRiG

A
µν ,

(9.5)

−Llin
Q1

= λui Q̄1Lφ̃uRi + λdi Q̄1LφdRi + yui (Q̄1Rφ̃)(φ̃
†qLi) + ydi (Q̄1Rφ)(φ

†qLi)

+ wBi Q̄1Rσ
µνqLiBµν + wWi Q̄1Rσ

aσµνqLiW
a
µν + wBi Q̄1Rλ

AσµνqLiG
A
µν , (9.6)

−Llin
Q7

= λi Q̄7LφuRi + yi (Q̄7Rφ)(φ̃
†qLi), (9.7)

−Llin
Q5

= λi Q̄5Lφ̃dRi + yi (Q̄5Rφ̃)(φ
†qLi), (9.8)

−Llin
T1

= λi T̄
a
1Rφ

†σaqLi + yui T̄
a
1LuRiφ

†σaφ̃+ ydi T̄
a
1LdRiφ

†σaφ+ wi T̄
a
1Lσ

µνdRiW
a
µν ,

(9.9)

−Llin
T2

= λi T̄
a
2Rφ̃

†σaqLi + yui T̄
a
2LuRiφ

†σaφ+ ydi T̄
a
2LdRiφ̃

†σaφ+ wi T̄
a
2Lσ

µνuRiW
a
µν ,

(9.10)

−Llin
T4

= yi T̄
a
4LdRiφ

†σaφ̃, (9.11)

−Llin
T5

= yi T̄
a
5LuRiφ̃

†σaφ, (9.12)

−Llin
F1

= yi F̄
a
1RC

a
bcqLicφ

†σbφ+ wi F̄
a
1RC

a
bcσ

µνqLicW
b
µν , (9.13)

−Llin
F5

= yi F̄
a
5RC

a
bcqLicφ

†σbφ̃, (9.14)

−Llin
F7

= yi F̄
a
7RC

a
bcqLicφ̃

†σbφ, (9.15)

−Lquad
Q = WB (Q̄Lσ

µνQR)Bµν +WW (Q̄Lσ
µνTa

QQR)W
a
µν +WG (Q̄Lσ

µνtAQQR)G
A
µν

+ Y1 (Q̄LQR)(φ
†φ) + Y2 (Q̄LT

a
QQR)(φ

†σaφ), (9.16)
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where TA
Q (taQ) are the generators of SU(2) (SU(3)) in the representation of Q. The

rest the group-theory notation used here is defined in appendix A. The index i indicates
the SM fermion family and WW = Y2 = 0 for singlets. We have used the following

notation for coefficients of operators that are linear in Q: λi is the coefficient of Q̄qiφ,
yi is for Q̄qiφφ, and wi is for Q̄σµνqiFµν . When there is more than one possibility,

the corresponding coupling constants are differentiated by an additional subindex,

which indicates the SM field that unambiguously determines the operator. Observe

that we include all the gauge-invariant operators of dimension equal to or smaller

than 5 that can be constructed with the field content of the theory. The condition

of linear couplings is used to select the representations of the vector-like quarks, but

not to restrict their interactions in the EFT. Note also that the λi parameters are

dimensionless, whereas yi, wi, Y and W have dimensions of inverse energy and are

expected to be of order Λ−1.

This new notation for the couplings turns out to be more convenient for our pur-

poses here than the one defined in section 7.2. A direct conversion between the two can

be done. For the coefficients of renormalizable operators, we have λ(u,d)i = (λ
(u,d)
Q )3i.

For the non-renormalizable Yukawas of singlets and triplets: y(u,d)i = (λ̃
(u,d)
Q )3i/f , while

for the Q5 and Q7 doublets: yi = (λ̃qQ)3i/f . For the dimension-5 Yukawa couplings of

the Q1 singlet, we use a basis here that differs from the one in section 7.2. In this case,

we have yui = (λ̃q
′

Q)3i/f and ydi = ((λ̃qQ)3i+(λ̃q
′

Q)3i)/f . Finally, the relation between the

couplings for field strengths are given by w(B,W )i = (λ̃
(B,W )
Q )3i/f and w(G)i = (λ̃GQ)3i/f .

We will consider in this paper only couplings to the third family of SM quarks.

This choice is made to reduce the dimensionality of the parameter space and to auto-

matically satisfy the most stringent flavour limits. It is also motivated by theoretical

ideas in different models. This means that λi, yi and wi are taken to be vanishing

for i = 1, 2. Accordingly, we simplify the name of the non-vanishing couplings in the

following way:

λ = λ3; λt = λu3; λb = λd3;

y = y3; yt = yu3; yb = yd3;

w = w3; wB = wB3; wW = wW3; wG = wG3. (9.17)

Let us briefly comment on possible ultraviolet completions that can give rise to the

dimension 5 operators at low energies. The Yukawa-like operators Q̄qφφ, of dimension

5, can be generated at the tree level in a completion with one additional field: either

a colour-neutral scalar S, with interactions SQ̄q and Sφφ or an additional quark Q,

with interactions QφQ and Qφq. The mass of the extra particle, which is assumed

to be larger than M , sets the cutoff scale Λ of the EFT L. The Feynman diagrams

that contribute to the dimension-5 Yukawas are shown in figure 9.1. The quantum

numbers of the extra field must allow for the gauge-invariant vertices in the diagrams.

This means that the heavy scalar S belongs to one of the representations 10, 30 and

31 of SU(2)×U(1), while the heavy quark Q belongs to one of the representations in

the first seven rows of table 9.1, so it is also a RVLQ (but assumed to be heavier than

the ones in the effective Lagrangian). The operators of the form Q̄σµνqF
µν , on the

other hand, cannot be generated at tree-level in a renormalizable ultraviolet theory.

In figure 9.2 we show a one-loop diagram that contributes to these effective operators

in a theory with an extra scalar multiple S, which must be either a singlet or a triplet
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Name Irrep Q̄φq Q̄φφq Q̄σµνqFµν

U 12/3 ✓ ✓ ✓

D 1−1/3 ✓ ✓ ✓

Q1 21/6 ✓ ✓ ✓

Q5 2−5/6 ✓ ✓ ✗

Q7 27/6 ✓ ✓ ✗

T1 3−1/3 ✓ ✓ ✓

T2 32/3 ✓ ✓ ✓

T4 3−4/3 ✗ ✓ ✗

T5 35/3 ✗ ✓ ✗

F1 41/6 ✗ ✓ ✓

F5 4−5/6 ✗ ✓ ✗

F7 47/6 ✗ ✓ ✗

Table 9.1: Irreps (2T + 1)Y under SU(2)L × U(1)Y and linear interactions of new

quarks with dimension-5 linear couplings. The subscript in the name of each multiplet

is the absolute value of the numerator of its hypercharge, when written as an irreducible

fraction. An explicit formula for this integer number is |2 + 4T̃ + 3(Y − 2/3)/(1− T̃ )|
where T̃ = T (mod 1).

Q

Q

φ φ

q

S

Q

q φ

φ

Figure 9.1: Tree-level diagrams that generate the Q̄qφφ operator in UV completions

of L with additional extra quarks (left) and additional scalars (right).

S

Q

q

Figure 9.2: A one-loop diagram that generates the Q̄σµνqF
µν operator in a UV com-

pletion of L with new scalars.

of SU(2), and a singlet or an octet of SU(3). That is, there are 4 possibilities: (1, 1)0,
(1, 3)0, (8, 1)0 and (8, 3)0. The coefficients w of these “magnetic” operators are thus

naturally suppressed by a loop factor in weakly coupled completions. In addition,

because a quark mass insertion mQ is needed for the chiralities of the external lines

to match those of the effective operator, the suppression with the UV scale mS is not

1/mS as expected from the EFT power counting, but mQ/m
2
S. An explicit model with

a U vector-like quark and a scalar singlet has been studied in [265].
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9.3 Mixing

The multiplets in table 9.1 can be decomposed into component fields with well-defined

electric charge:

Q1 =

(
T 0

B0

)
, Q5 =

(
B0

Y

)
, Q7 =

(
X
T 0

)
, (9.18)

T1 =




T 0

B0

Y


 , T2 =




X
T 0

B0


 , T4 =




B0

Y
Y ′


 , T5 =




X ′

X
T 0


 , (9.19)

F1 =




X
T 0

B0

Y


 , F5 =




T 0

B0

Y
Y ′


 , F7 =




X ′

X
T 0

B0


 . (9.20)

The components are denoted by symbols in the set {X ′, X, T 0, B0, Y, Y ′}, with electric

charges given by

Q(X ′) = 8/3, Q(B0) = −1/3, (9.21)

Q(X) = 5/3, Q(Y ) = −4/3, (9.22)

Q(T 0) = 2/3, Q(Y ′) = −7/3. (9.23)

Upon electroweak breaking, the fields T 0 (B0) will mix, in general, with all the SM

up-type (down-type) quarks. However, with our flavour restriction and neglecting the

tiny off-diagonal CKM elements of the third family, the new quarks mix only with the

top and bottom quarks. The relevant mass terms have the form

Lmass = −
(
t̄0L T̄ 0

L

)( mt
11 mt

12

mt
21 mt

22

)(
t0R
T 0
R

)
(9.24)

−
(
b̄0L B̄0

L

)( mb
11 mb

12

mb
21 mb

22

)(
b0R
B0
R

)
+ h.c., (9.25)

with the superindex 0 emphasizing that the fields are weak eigenstates, i.e. the com-

ponents of the gauge-covariant multiplets.3 The elements of the diagonal of each of

the mass matrices are m11 ∼ v, which arises from the SM Yukawa coupling q̄φq, and
m22 ≃ M . For RVLQ, one of the off-diagonal elements, mij ∼ v, comes from the

operator Q̄φq, and the other one, mji ∼ yv2, comes from Q̄φφq. For NRVLQ, only one

of the off-diagonal elements, mij ∼ yv2, is non-zero. The precise values of the entries

of the mass matrices are given in table 9.2. The mixing angles that relate weak and

mass eigenstates are obtained by diagonalizing the corresponding mass matrices:

(
tL,R
TL,R

)
=

(
ctL,R −eiφtstL,R

e−iφtsuL,R ctL,R

)(
t0L,R
T 0
L,R

)
, (9.26)

(
bL,R
BL,R

)
=

(
cbL,R −eiφbsbL,R

e−iφbsbL,R cbL,R

)(
b0L,R
B0
L,R

)
, (9.27)

3Note that we use the symbol t0R for the right-handed SM weak eigenstate of electric charge 3/2
(-1/3), which is in fact the unique component of the SM iso-singlet uR3 (dR3)of hypercharge 3/2
(-1/3). Of course, t0L (b0L) are the upper and lower components of the SM iso-doublet qL3.
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mt
12 mt

21 mt
22 mb

12 mb
21 mb

22

U λ∗v√
2

yv2

2
M̂ – – –

D – – – λ∗v√
2

yv2

2
M̂

Q1
(yu)∗v2

2
λuv√

2
M̂ − Y2v2

4
(yd)

∗v2

2
λdv√

2
M̂ + Y2v2

4

Q5 – – – y∗v2

2
λv√
2

M̂ − Y2v2

4

Q7
y∗v2

2
λv√
2

M̂ + Y2v2

4
– – –

T1 λ∗v yuv2√
2

M̂ − Y2v2

2
−λ∗v√

2
−ydv

2

2
M̂

T2
λ∗v√

2
−yuv2

2
M̂ λ∗v ydv

2
√
2

M̂ + Y2v2

2

T4 – – – 0 yv2√
2

M̂ − Y2v2

2

T5 0 yv2√
2

M̂ + Y2v2

2
– – –

F1 −y∗v2√
6

0 M̂ − Y2v2

4
−y∗v2√

6
0 M̂ + Y2v2

4

F5
y∗v2√

2
0 M̂ − 3Y2v2

4
y∗v2√

6
0 M̂ − Y2v2

4

F7 −y∗v2√
6

0 M̂ + Y2v2

4
−y∗v2√

2
0 M̂ + 3Y2v2

4

Table 9.2: Mass matrix elements. We use the notation M̂ = M + Y1v
2/2. The 11

component is always just the SM contribution: mt,b
11 = λt,bSMv/

√
2.

where t, T , b and B are the mass eigenstates, ct,bL,R := cos θt,bL,R and st,bL,R := sin θt,bL,R,

with θt,bL,R the mixing angle. In what follows, we take φt = φb = 0, since non-trivial

phases φt,b can be ignored for the observables discussed here. The explicit expressions

for the mixing angles in terms of mt,b
ij are (see also ref. [266])

tan 2θt,bL =
2

∣∣∣mt,b
11(m

t,b
21)

∗
+mt,b

12(m
t,b
22)

∗∣∣∣
|mt,b

11 |2 − |mt,b
12 |2 − |mt,b

21 |2 + |mt,b
22 |2

, (9.28)

tan 2θt,bR =
2

∣∣∣(mt,b
11)

∗
mt,b

12 + (mt,b
21)

∗
mt,b

22

∣∣∣
|mt,b

11 |2 − |mt,b
12 |2 − |mt,b

21 |2 + |mt,b
22 |2

. (9.29)

From these formulas and the scale dependence of each entry it can then be seen that,

for M ≫ v (in agreement with experimental limits, see below), the mixing angles are

suppressed by v/M , at least. Furthermore, θL ≫ θR if |m12| ≫ |m21|, and viceversa.

For natural values of the couplings and Λ > 1 TeV, one of the off-diagonal couplings is

indeed much larger than the other, so the off-diagonal couplings involving heavy and

light quark eigenstates will be mostly chiral (especially in the b sector). For RVLQ,

the dominant mixing angle is θL for even isospin and θR for those with odd isospin.

For NRVLQ, instead, the dominant mixing angle is θR for even isospin and θL for odd

isospin. Note, however, that for some RVLQ the limits from electroweak precision

tests are quite strict [251]. For these multiplets, the off-diagonal entries might be

comparable and then the interactions involving both chiralities would be relevant.
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9.4 Indirect effects

In this section, we discuss the indirect effects of heavy quarks in low-energy physics,

Higgs physics and top physics, which are summarized in table 9.3. NRVLQ typically

generate smaller contributions than RVLQ, as any insertion of a dimension-5 operator

introduces a suppression of 1/Λ. For the same reason, the effects of the dimension-5

interactions of RVLQ will naturally be small corrections to the ones coming only from

dimension-4 interactions, when they are present.

Integrating out the RVLQ at tree level gives contributions to dimension-6 opera-

tors in the SMEFT. The low-energy effective Lagrangian, which can be read from the

results shown in section 8.5, is presented in table 9.4, with the corresponding effective

operators defined in section 3.7 (table 3.5). Observe that the dimension-6 terms with-

out extra quarks in the EFT L, which we are not writing here, will give additional

contributions to the corresponding dimension-6 operators in the SMEFT. However,

these contributions will be suppressed by M2/Λ2 or M/Λ relative to the ones from

integrating out the RVLQ. Still, they might be relevant for M/Λ not small, depending

on the values of the couplings.4 Here we assume that even in this case they do not

cancel against the ones in table 9.4.

Observable Coupling Loop order

EWPT

S and T parameters λ(t), y(t) one loop

Z → bb
λ(t), y(t) one loop

λ(b), y(b) tree level

Higgs

H → bb λ(b), λ(b)y(b) tree level

ttH production λ tree level

gg → H, H → gg λ(t), Y1 one loop

double Higgs production λ(t), Y1 one loop

Top

top single production λ(t)wW tree level

top pair production λ(t), λ(t)wB tree level

ttγ and ttZ production λ(t), λ(t)wB, λ(t)wW tree level

low-energy ✟✟CP electron/neutron EDM λ(t), λ(t)λ(b), λ(t)wF two loops

Table 9.3: Summary of indirect effects of heavy quarks. The subindex (q) means that

only the couplings to the SM quark q should be taken. The dependence on products

of couplings may involve complex conjugation of some of them.

On the other hand, the NRVLQ do not contribute at tree level to the dimension-6

SMEFT. Therefore, their indirect effects are small. Their leading tree-level contribu-

tions of NRVLQ have at least dimension 8 and will not be written explicitly.

Electroweak precision observables

Electroweak precision observables set the strongest limits on the Yukawa couplings

of each multiplet. In the mass-eigenstate basis, the mixing between the SM b quark

4This is nothing but a more precise formulation of the usual caution one should exert in general
with indirect bounds.
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Lnh Lh

U λ(wB)∗

M
OtB +

λ(wG)
∗

M
OtG +

(
(λtSM)

∗|λ|2
2M2 + λ∗y

M

)
Otφ

|λ|2
4M2O(1)

φq − |λ|2
4M2O(3)

φq

D λ(wB)∗

M
ObB +

λ(wG)
∗

M
ObG +

(
(λbSM)

∗|λ|2
2M2 + λ∗y

M

)
Obφ − |λ|2

4M2O(1)
φq − |λ|2

4M2O(3)
φq

Q1

λt(wB)∗

M
OtB +

λt(wW )∗

M
OtW +

λt(wG)
∗

M
OtG

− |λt|2
2M2Oφt +

|λb|2
2M2Oφb

+
λb(λt)

∗

M2 Oφtb

+
λb(wB)∗

M
ObB +

λb(wW )∗

M
ObW +

λb(wG)
∗

M
ObG

+
(

(λtSM)
∗|λt|2

2M2 +
λt(yt)

∗

M

)
Otφ

+
(

(ybSM)
∗|λb|2

2M2 +
λb(yb)

∗

M

)
Obφ

Q5

(
(λbSM)

∗|λ|2
2M2 + λy∗

M

)
Obφ − |λ|2

2M2Oφb

Q7

(
(λtSM)

∗|λ|2
2M2 + λy∗

M

)
Otφ

|λ|2
2M2Oφt

T1
λ(wW )∗

M
ObW +

(
(ytSM)

∗|λ|2
4M2 + λ∗yt

M

)
Otφ − 3|λ|2

16M2O(1)
φq +

|λ|2
16M2O(3)

φq
+
(

(ybSM)
∗|λ|2

8M2 + λ∗yb
2M

)
Obφ

T2
λ(wW )∗

M
OtW +

(
(ytSM)

∗|λ|2
8M2 − λ∗yb

2M

)
Otφ 3|λ|2

16M2O(1)
φq +

|λ|2
16M2O(3)

φq
+
(

(ybSM)
∗|λ|2

4M2 + λ∗yb
M

)
Obφ

Table 9.4: Dimension-6 effective Lagrangian generated by tree-level matching of the

EFT with each multiplet to the SMEFT. The contributions to Hermitian and non-

Hermitian operators are separated in Lh and Lnh. The complete effective Lagrangian

is Lh + (Lnh + h.c.). The definitions of the operators Oi are given in table 3.5.

and the B component of a given multiplet induces a modification of the Zbb coupling,
which affects the Rb, A

b
FB, Ab and Rc observables at tree level. t–T mixing changes

the Ztt coupling. Insertions of this modified interaction in diagrams with loops of the

top quark also generate corrections to these observables, as well as to the S and T
parameters.

For the renormalizable multiplets, the origin of these effects can be easily identi-

fied in the unbroken phase. They come from tree-level and one-loop diagrams con-

taining the Oφq-type operators generated by tree level matching. Notice that the

non-renormalizable multiplets will also have contributions to these observables, but

to obtain them one needs to keep dimension-8 operators, which indicates that their

effects will be smaller.

In ref. [251], the limits on the mixing angles from electroweak precision observables

were computed, assuming renormalizability. The corrections from dimension-5 interac-

tions can be neglected for RVLQ. However, for NRVLQ, the dimension-5 contribution

is the leading one. Following the method in ref. [251], we can use the experimental

measurements of Rb, A
b
FB, Ab and Rc to obtain the following bounds: sL < 0.13 for

the triplet T4, s
d
L < 0.02 for the quadruplet F7 and sdL < 0.03 for the quadruplet F5.

These limits are already satisfied by the mixing angles

θ ∼ yv2

M
. 0.02, (9.30)
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for y ≤ (3TeV)
−1
, M ≥ 1TeV. The quadruplet F1 produces a Zbb coupling with an

extra suppression of mb/M , so it is even less constrained. The limits from S and T
are weaker than the ones from Z → bb when there is a B component in the multiplet.

The only multiplet without such component among the non-renormalizable ones is

T5 ∼ 35/3. In this case both the limits from Z → bb and from S and T may be relevant.

Anyway, since these effects are loop suppressed, as long as y/M ≤ (1.7TeV)−2
, this

multiplet satisfies these constraints.

Higgs physics

The Otφ operator introduces a modification of the top Yukawa coupling, which can be

measured using ttH production. This process has been observed at the LHC [267,268].

The current uncertainty for the top Yukawa coupling is however too large for the effects

of Otφ to be relevant. The situation could improve in future experiments [269].

The presence of Otφ also changes gluon fusion Higgs production, through its ap-

pearance in diagrams with loops of the top quark. In addition, there are contributions

to gg → H from the heavy-quark loops. At the renormalizable level, the contribution

of the T loops is cancelled quite precisely by the effect of t loops with insertions of

Otφ (such cancellation does not happen for B loops) [251]. In the presence of Qqφφ
operators the cancellation is spoiled by the contributions to Otφ proportional to λy.
However, this contribution is suppressed not only by M/Λ but also by the small mix-

ing. The dimension-5 interactions with Y1 give yet another contribution to this process

(see also ref. [261]). This can be computed by one-loop matching to the SMEFT. The

relevant part of the effective Lagrangian is

L1-loop ⊃ (2T + 1)αsRe(Y1)

12πM
OφG, (9.31)

where OφG = φ†φGA
µνG

A,µν . As we can see, the coefficient of the induced operator is

not suppressed by the mixing. Bounds on the coefficient on this operator have been

calculated in ref. [77]. They can be translated into limits for the parameters of our

theory:

|Re(Y1)|
M

<
1

(2T + 1)(1.25TeV)2
, (9.32)

where T is the isospin of the corresponding multiplet. Of course, both OφG and Otφ

contribute to the H → gg partial width, through tree-level and one-loop diagrams,

respectively. This is discussed in detail in ref. [251]. These operators modify also

double Higgs production, which has not been observed yet but could be measured at

the HL-LHC [270]. Similarly, there are loop contributions to other vector-boson decay

modes of the Higgs.

On the other hand, the H → bb decay channel is modified at the tree level by the

operator Obφ. Because the contribution to this operator from dimension-4 couplings

is suppressed by the Yukawa coupling of the bottom quark, while the dimension-5

contribution does not contain this suppression, it is possible that the dimension-5

interaction dominates. Using the limit on the coefficient of Obφ from ref. [77] (with

milder flavour assumptions), we find the bound |y(b)|/M . (0.2TeV)−2
.
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Top physics

Several of the dimension-6 SMEFT operators generated at tree level are relevant for the

production of the top quark. OtW and O(3)
φq contribute to single production, whereas

OtG contributes to pair production [271]. In ref. [272], upper limits on the coeffi-

cients of these operators are derived. They range from approximately (0.5TeV)−2
to

(0.8TeV)−2
. Again, the natural values of these coefficients in our case, which are given

by ∼ λ2/2M and ∼ λw/M , already satisfy these limits. The same happens for the

operators OtB, Oφt and O(1)
φq , which contribute to ttγ and ttZ production, and have

even weaker limits.

Low-energy CP violation

The imaginary part of the coefficients of the operators Otφ, Oφtb, OtW , OtB, ObW and

OtG affects the electric dipole moment of the electron and the neutron. These low-

energy observables must be computed by performing the RG running of the coefficients

down to the electroweak scale and integrating out the top quark. In ref. [76,273,274],

strong limits on the imaginary part of the coefficients have been obtained, ranging

from (2TeV)
−2

to (42TeV)
−2
. Our UV parameters enter these coefficients with the

combination λw∗/M , so either their absolute value is very small, or all their phases

must be almost equal. A trivial way of satisfying these limits is by imposing that all

parameters are real.

9.5 Production at the LHC

All the vector-like quarks can be produced in pairs at hadron colliders by their coupling

to gluons, which is determined by the value of αs at the relevant energy. GivenM , the

production cross section is fixed and it is the same for all the multiplets. One of the

several tree-level diagrams contributing to pair production is represented in figure 9.3a.

On the other hand, the T , B states can be singly produced via their mixing with the

SM t, b quarks. The corresponding process is represented in figure 9.3b.

u, d

u, d Q

Q

(a)

u, d j

Q

g t̄, b̄

(b)

Figure 9.3: Production of heavy quarks in hadron colliders: (a) example diagram for

pair production; (b) single production in association with a light jet j and a heavy SM

quark q = t, b.

When the heavy quarks have low mass, the cross section for pair production is

larger than the one for single production. As their mass increases, and for fixed collider
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energy, the later eventually becomes the main production mechanism. This has been

studied for RVLQ mixing with the third family in ref. [251]. For these multiplets,

the addition of dimension-5 interactions with natural values of the y couplings and

Λ ≥ 2 TeV does not change significantly the results, as they give a small correction to

the cross section. Here we are assuming that the dimension-4 couplings saturate the

electroweak limits. In the case of NRVLQ, for natural values of the y couplings and

Λ ≥ 2 TeV, pair production is larger than single production for the range of masses

that can be tested at colliders in the present and near future. Some examples of the

dependence of the production cross section on the the mass are shown in figure 9.4.
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Figure 9.4: Cross section for different processes for production of heavy quarks with

y = (4TeV)
−1

and a center-of-mass energy of 14TeV. The left plot corresponds to

the F5 quadruplet, while the right plot is for the T5 and T4 triplets. Pair production

dominates for masses below ≃ 3.5TeV. The dotted and dashed gray lines represent

the minimum cross section needed to obtain at least 10 events at the corresponding

collider, assuming that the expected integrated luminosity is reached [275].

The operators QσµνqFµν open new single production channels, which are sup-

pressed by (M/Λ)2 instead of sin2 θ. In figure 9.5, we show the two main mechanisms,

which produce a heavy quark in association with a SM third generation quark. Other

single production processes are possible with b quarks from the protons in the initial

state . In this way, the B component of multiplets with these operators can be gener-

ated alone, while the T component can be produced together with a jet or a W boson.

As an example, we show in figure 9.6 the cross section of the T production processes

involving these operators, for the U multiplet. For w = (4TeV)
−1

these cross sections

are large. However, these couplings are generated in renormalizable UV completions

only at one loop, so the natural value for w is expected to have a suppression of 1/16π2

in weakly coupled UV completions. Including this suppression gives cross sections that

are smaller than pair production.

A concrete model with QσµνqFµν operators has been tested experimentally, as

presented in ref. [276], for the case of the multiplet Q1. This analysis focuses on a

particular direction in parameter space, which in our notation corresponds to: gsw
G =

gwW = −g′wB/6, with the coefficients of all the other operators set to zero. The

search is for the decay into γb. Under these conditions, M -dependent limits over the
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t̄, b̄
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ū, d̄

Q

t̄, b̄

Figure 9.5: Single production with QσµνqFµν-type operators.
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Figure 9.6: Cross section for different processes involving QσµνqFµν , for production of

heavy quarks in the U model, with a center-of-mass energy of 14TeV.

coefficients of the operators have been obtained, for masses between M = 1TeV and

M = 1.8TeV. Translated into our notation, the bounds for these two masses are

wG . (7TeV)
−1

and wG . (5TeV)
−1
, respectively.

9.6 Decay

9.6.1 Lifetime

In this section, we study the decays of the heavy quarks. Barring cancellations with

other heavy physics, electroweak precision tests require small mixings. In this case,

the splittings between the different components of the extra quark multiplet are small

(of a few GeV at most for masses below 2 TeV). This in turn implies that the decays

from one component to another are very suppressed. The T and B states can decay

via mixing into Ht, Zt, W+b and Hb, Zb, W−b, respectively. They can also decay into

tγ, tg and bγ, bg, respectively, in the presence of w couplings. The X and Y states
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decay via mixing mainly into W+t and W−b, respectively. Their three-body decays

are also sizable. Finally, X ′ and Y ′ have no two-body decays, as their charges differ

by at least two units from the ones of the SM quarks.

The decay width of RVLQ is typically large enough for them to have prompt decays

and small enough for a good narrow width approximation. The NRVLQ, on the other

hand, have smaller and smaller widths for larger and larger values of the cutoff Λ. In

figure 9.7, we show the dependence of the total width of T and B with the dimension-5

Yukawa coupling y for each type of NRVLQ, for M = 2 TeV. For widths below the

QCD scale (see the discussion below), we have extrapolated the results calculated for

larger couplings.

For small enough widths, i.e. long lifetimes, the phenomenology of the vector-

like quarks can be completely different from the one in the standard searches of these

particles. First, when the width is smaller than the QCD scale ΛQCD, non-perturbative

effects, including hadronization, will be significant before the quarks have time to

decay. One possibility is the formation near threshold of QQ̄ quarkonium states. This

has been studied in ref. [277] (see also the review in ref. [278]) and generalized in

ref. [186] to higher color representations. Possible signatures would have di-photon

and di-lepton resonant final states. But the production cross-section is suppressed by

the wave function at the origin and the cross sections are small. For instance, for M
above at the 0.01 TeV, ref. [186] shows that the cross section into γγ for quarks with

masses above 1 TeV is below 0.01 fb. In fact, most of the time the heavy quarks will

fragment independently forming Qq meson states and also baryons with light quarks

from the vacuum. This is completely analogous to the case of b-quarks forming B
mesons. For M ≫ ΛQCD, the mass and partial decay widths of the hadrons will

inherit the properties of the heavy quark, up to small QCD corrections. Moreover,

most of the energy resides in the hadron containing the heavy quark, leaving only

a small fraction to light particles in the accompanying jet, and gluon radiation only

softens the spectrum slightly [277]. Hence, the standard type of search for vectorlike

quarks will be mostly blind to the fact that the quarks hadronize, as long as they

decay promptly (that is, for lifetimes below 10−14 s).

For widths smaller than ∼ 10−12 GeV, the hadrons carrying the heavy quark will

be long-lived. In this context, they are called R-hadrons. Their phenomenology at the

LHC has been studied in detail, especially for squarks and gluinos in supersymmetric

models. R-hadrons interact hadronically as they move through the detector, but in

these processes the heavy quark acts mostly as a spectator of the low-energy scattering

of light partons. Compared to SM hadrons, their energy loss in the calorimeter is

small. Possible signatures include (see ref. [279] for a review of the phenomenology of

long-lived particles):

• Tracks with anomalous ionization, from the slower speed of the heavy quarks in

comparison to SM particles and/or non-standard charges. Note that Qq mesons

formed with X, X ′, Y or Y ′ will always be charged, while those with T and B
can be charged or neutral. In these searches, one must take into account the fact

that the charge of the R-hadrons may change due to the hadronic interactions

of the light partons with the detector material.

• Delayed detector signals, due again to the small speed. In the extreme case, it

is possible for a quasi-stable R-hadron to loose all its energy and stop at the
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hadronic calorimeter; its eventual decay would give out-of-time signals.

• Displaced vertices from the delayed decay of the heavy quark. The final states

produced by R-hadrons with vector-like quarks are very different from the ones in

supersymmetric theories and other scenarios considered thus far. So, a dedicated

search for displaced vertices of vector-like quarks would be necessary to probe

this scenario.

The relevance of each of the signatures depends crucially on the lifetime of the R-
hadron, which is of the order of the lifetime of the heavy quark, as calculated ignoring

QCD. In table 9.5, we give the values of 1/y above which i) non-perturbative QCD

is important (ΛQCD), ii) displaced vertices can be observed (Λdisp) and iii) the heavy

quark is stable within detector distances (Λlong lived).

ΛQCD Λdisp Λlong livedT4 T5 F1 F5 F7

X ′ – 1.0 – – 1.0 5× 105 5× 107

X – 4.6 3.1 – 3.9 106 108

T – 5.3 3.7 5.7 5.6 106 108

B 5.3 – 3.7 5.7 5.7 106 108

Y 4.6 – 3.1 3.9 – 106 108

Y ′ 1.1 – – 1.1 – 5× 105 5× 107

Table 9.5: Value of 1/y (in TeV) at which the total width reaches the scales ΛQCD =

0.2GeV, Λdisp = 10−12 GeV and Λlong lived = 10−16 GeV. For Λdisp and Λlong lived only

an estimate of the order of magnitude is provided, obtained by extrapolation of the

results above ΛQCD.

As a reference, ATLAS has recently put bounds on the mass of long-lived super-

symmetric R-hadrons, using ionization energy loss and time-of-flight information [280].

This search is quite model-independent and can be adapted to the case of vector-like

quarks (which are also color-triplets but fermions, rather than scalars). Comparing

with the limits on production cross sections for squarks and sgluinos, we estimate a

lower bound close to 1500 GeV on the mass of detector stable vector-like quarks.

9.6.2 Branching ratios into Hq, Zq and Wq

In the following, we concentrate on branching ratios, having in mind mostly the case

with prompt decays. Consider RVLQ. If the dimension-5 couplings are turned off,

T essentially decays only into Ht, Zt or W+b, while B decays into Hb, Zb or W−t.
Changing the specific values of the parameters in these models has a small effect in the

branching ratios. This means that the branching ratios are approximately determined

by the choice of multiplet. Because the sum of branching ratios must be one

BR(Q→ Hq) + BR(Q→ Zq) + BR(Q→ W±q′) = 1, (9.33)

(with Q = T,B and q, q′ = t, b) it suffices to know two branching ratios of Q to be

able to know the third. Any two branching ratios BR1 and BR2 of Q form a point
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in the triangle BR1 + BR2 ≤ 1, BR1,2 ≥ 0. Thus, each multiplet determines a point

in this triangle (or a short segment, taking into account variations of the values of

the parameters). This is the usual method for representing graphically the branching

ratios of vector-like quarks [281].

The addition of dimension-5 interactions modifies these points, both by chang-

ing the corresponding partial widths and by introducing new decay channels. Then,

eq. (9.33) no longer holds. For any choice of the values of the parameters, the branch-

ing ratios define a point p in the multi-dimensional simplex determined by BRi ≤ 1,∑
iBRi = 1. In particular, the branching ratios into Ht, Zt and W+b define a point

that falls inside the tetrahedron

Σ := BR(Q→ Hq) + BR(Q→ Zq) + BR(Q→ W±q′) ≤ 1, (9.34)

BR(Q→ Hq), BR(Q→ Zq), BR(Q→ W±q′) ≥ 0. (9.35)

For their graphical representation, we have chosen to plot the projections of p into the

BR(Q → Zq)—BR(Q → Hq) plane and into the BR(Q → W±q′)—BR(Q → Hq)
plane, as shown in figure 9.8.

The results for RVLQ are presented in figures 9.10, 9.11, 9.12 and 9.13, while the

branching ratios of NRVLQ are presented in figures 9.14, 9.15, 9.16 and 9.17. Each

segment is obtained by evaluating at M = 1TeV and at M = 2TeV while keeping all

the other parameters fixed. The value of the coefficients of dimension-5 operators is

chosen to be (2TeV)
−1
. This pretty large value has been chosen to visually highlight

the directions of the corrections induced on the branching ratios for RVLQ. For lower,

probably more realistic values of the coefficients (especially for w), these corrections

will be smaller. For the multiplets without dimension-4 interactions, this value of the

coefficients ensures that the decay width is much higher than the QCD scale, so that

that QCD effects can be neglected. The branching ratios do not change much with the

value of the corresponding coefficient in the range from (2TeV)
−1

down to the values

in which the total width equals ΛQCD.

As it can be clearly seen in the figures, most branching ratios points lie near or

directly over the BR(Q → Hq) = BR(Q → Zq) diagonal. This happens in all

cases where the coefficients of the Q̄σµνqFµν-type operators vanish, except for the F1

multiplet. To show why, we define XL,R
Qq and Y L,R

Qq as the following coefficients in the

Lagrangian:

LZ = − g

2cW
q̄ /Z
(
±XL

qQPL ±XR
qQPR

)
Q+ h.c.,

LH = − gmQ

2mW

q̄H
(
Y L
qQPL + Y R

qQPR
)
Q,

the equality of the braching ratios follows from the equality in magnitude of the domi-

nant XL,R
Qq and the dominant Y L,R

Qq . The weak eigenstates q0, Q0 couple to the Z boson

as

LZ =− g

2cW

∑

χ=L,R

(
q̄0χ Q̄0

χ

)
/Z

(
2T3(q

0
χ)− 2Qe(q

0
χ)s

2
W 0

0 2T3(Q
0
χ)− 2Qe(Q

0
χ)s

2
W

)(
q0χ
Q0
χ

)
,

where T3 denotes the third component of isospin and Qe denotes electric charge. After

the unitary transformation in equations (9.26) and (9.27), we get

XL,R
qQ = 2sL,R cL,R

[
T3(q

0
L,R)− T3(Q

0
L,R)

]
.
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On the other hand, the quark gauge eigenstates q0, Q0 couple to the Higgs as

LH =− 1√
2

(
q̄0L Q̄0

L

)
H

(
y11 y12
y21 0

)(
q0R
Q0
R

)
.

Generally, one of the off-diagonal elements is negligible. This happens because the

dimension-4 and dimension-5 Yukawas always contribute to different elements of the

yij matrix. Either one of them is zero or, when both are present, the dimension-5 one

is smaller. This means that one of the mixing angles θL,R dominates. For multiplets

with dimension-4 couplings, the chirality with the dominant mixing angle θD is D = L
for singlets and triplets and D = R for doublets. For multiplets without dimension-4

couplings it is D = R for triplets and D = L for quadruplets.

The dominant off-diagonal element yD is related to the corresponding mixing angle

as yD ≃ x
√
2mQsD/v, where x = 1 in the cases with dimension-4 interactions and

x = 2 in the ones with only dimension-5 ones. This factor is necessary because of

the different the relation between the mass and Yukawa terms in both cases. The

dominant HqQ coupling is, then

Y D
Qq ≃ xsDcD.

For XD
Qq ≃ Y D

Qq it is necessary and sufficient that

∣∣T3(q0D)− T3(Q
0
D)
∣∣ = x/2. (9.36)

It can be checked case by case that this relation is satisfied for all multiplets except

for F1. In this case, we have |T3(q0L)− T3(Q
0
L)| = 0.

9.6.3 Extra decay channels and limits on mass

The experimental analyses of searches of pair-produced vector-like quarks usually com-

bine the information on the different final states to put lower bounds on the heavy

quark masses, as a function of the branching ratios to Wq′, Zq and Hq [226, 227].

Eq. (9.33) is assumed in these analyses, so the results are not directly valid beyond

the renormalizable level. However, they can be adapted to the case where other decay

channels are present. This has been discussed previously in refs. [264,282]. We derive

here a simple formula for the corrected mass limit due to the presence of extra decays.

Experimental data determines an upper limit Lexp on the sum of the cross-sections

for the production and decay of a pair of heavy quarks, weighted by the efficiency for

each decay channel (see ref. [264]):

σpp→QQ̄(M)
∑

ij

ǫijBRiBRj < Lexp, (9.37)

where M is the mass of the heavy quark, i and j run over all the decay channels,

and ǫij is the corresponding efficiency. A limit on the mass can be derived from this

inequality. In the usual experimental analyses, it is assumed that the sum of the

branching ratios into these three channels is Σ = 1.

We consider now the case Σ < 1. We will obtain a lower limit on the mass of

some heavy quark with branching ratios BRi. Some assumption has to be made
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about the efficiency ǫia = ǫai for the channels a that are not Hq, Zq or W±q′. We

adopt here the conservative choice ǫia = 0. Let M1 be the lower limit on the mass

for the branching ratios BRΣ
i = BRi/Σ, whose sum is 1, so that M1 is known from

experimental analyses. We define the mass MΣ by the equation

Σ2σpp→QQ̄(MΣ) = σpp→QQ̄(M1). (9.38)

Then, we have the identity

σpp→QQ̄(MΣ)
∑

ij

ǫijBRiBRj = σpp→QQ̄(M1)
∑

ij

ǫijBR
Σ
i BR

Σ
j . (9.39)

Because M1 is the limit obtained from eq. (9.37) for branching ratios BRΣ
i , it follows

from this identity that MΣ is the limit for BRi. We now proceed to find an analytic

solution to eq. (9.38). The production cross-section σpp→QQ̄(M) can be approximated,

for masses around M̃ = 1.1TeV by an exponential:

σpp→QQ̄(M) ≃ σpp→QQ̄(M̃) exp

(
−M

1/2 − M̃1/2

f 1/2/2

)
, (9.40)

where f = 20.5GeV. In the range [0.8, 1.4] TeV, the difference between the cross

section produced by this formula and the one obtained using MadGraph increases

towards the extremes of the interval and is at most 3%. Plugging eq. (9.40) in eq. (9.38)

gives

MΣ = (M
1/2
1 + f 1/2 log Σ)2. (9.41)

We have thus found a lower bound MΣ on the mass of any heavy quark as a function

of the lower boundM1 it would have if its branching ratios into Ht, Zq andW±q′ were
rescaled by the same factor 1/Σ, so that eq. (9.33) would hold. Here, f = 20.5GeV

is just a constant. In table 9.6, we present the limits calculated using this formula,

for different choices of the values of the parameters for each model, taking the bound

M1 from ref. [226]. In all cases the couplings of dimension-4 operators are chosen to

saturate the electroweak limits. In figure 9.9, we show the corrections induced by the

use of this formula on the results of ref. [226], for the value Σ = 1/2.
We have emphasized the presence of alternative decay channels at the non-renormali-

zable level. In tables 9.7 and 9.8, we give the decay channels with branching ratio

> 0.01 other than Zq, W±q′ and Hq for T and B, together with the maximum value

they get and the interaction that generates them. We choose the valuesM = 2TeV and

w, y = (2TeV)−1, again quite extreme, in order to maximize these alternative branch-

ing ratios (including those of three-body decays). The tables also include three-body

channels that survive when w = y = 0. For RVLQ, the values of the couplings λ are

chosen to approximately saturate the electroweak limits. For smaller values of λ, the
alternative channels will have larger branching ratios. Large branching ratios are found

for channels involving “magnetic” operators. The reason is that the partial widths are

suppressed in this case by (M/Λ)2, in comparison with the (v/M)2 suppression of the

decay widths of standard channels. Note however that the value of w we use is ∼ 16π2

times too high in weakly coupled completions. A detailed analysis of the decays of a

U vector-like quark into tγ and tg at the LHC has been performed in ref. [283].
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U ∼ 12/3
Only dim. 4 1300

y 1310

wB 1010

wG < 800

D ∼ 12/3
Only dim. 4 1200

y 1190

wB < 800

wG < 800

Q1 ∼ 21/6
Only dim. 4 1340

yt 1340

yb 1120

wB 830

wW 1250

wG < 800

Q5 ∼ 2−5/6

Only dim. 4 1130

y 1130

Q7 ∼ 27/6
Only dim. 4 1360

y 1350

T1 ∼ 3−1/3

Only dim. 4 1220

yt 1250

yb 1200

w 970

T2 ∼ 32/3
Only dim. 4 1130

yt 1130

yb 1130

w 1260

T4 ∼ 3−4/3

y 1130

T5 ∼ 35/3
y 1360

F1 ∼ 41/6
y 1030

w 1010

F5 ∼ 4−5/6

y 1200

F7 ∼ 47/6
y 1130

Table 9.6: Mass limits for each multiplet and different values of the couplings. In the

right column, a lower bound on the mass of the heavy quark (in TeV) is displayed,

assuming that the corresponding coupling in the left column has a value of (2TeV)
−1

and the other dimensionful couplings vanish. The dimensionless couplings λ are always

chosen to saturate the corresponding electroweak precision bounds.
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In the case ofX and Y , the decays intoW+t andW−b, respectively, have branching
ratios in the range 60–90%. The remaining decays are into three particles, two of

which are always W+t or W−b. The branching ratios for these channels are collected

in tables 9.9 and 9.10. The states X ′ and Y ′ have only three-body decays. They

always decay into W+W+t and W−W−b, respectively.



9.6. DECAY 177

Multiplet Decay products Maximum BR Coupling

U

bb̄t 0.02 λ, y
ttt̄ 0.01 λ, y
γt 0.71 wB
gt 0.93 wG

Q1

tW+W− 0.08 λt, yb
ttt̄ 0.01 λt, yt, yb

bHW+ 0.11 yb
bZW+ 0.04 λb, yt, yb
γt 0.77 wB
gt 0.99 wG

Q7 tW+W− 0.08 λ

T1

bHW+ 0.10 yb
tW+W− 0.07 λ, yt, yb
bZW+ 0.83 w
ttt̄ 0.01 λ, yt, yb

bγW+ 0.01 w

T2

bHW+ 0.17 yb
tW+W− 0.25 w
bZW+ 0.06 λ, yt, yb
tbb̄ 0.01 λ, yt, yb
γt 0.21 w

T5 tW+W− 0.08 y

F1

bHW+ 0.30 y
bZW+ 0.23 w
tW+W− 0.66 w

γt 0.09 w

F5
bHW+ 0.10 y
tW+W− 0.07 y

F7

bHW+ 0.28 y
bZW+ 0.10 y
tW+W− 0.09 y

Table 9.7: Extra decay channels of T with branching ratio larger than 0.01 for M =

2TeV, when the couplings λ are fixed to the values that saturate electroweak precision

limits. The last column displays the coupling constant which, when set to (2TeV)−1,

gives the maximum BR in the corresponding channel. The appearance of λ indicates

that the channel in question is present already in the case with dimension-4 interactions

only.
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Multiplet Decay products Maximum BR Coupling

D
γb 0.77 wB
gb 0.99 wG

Q1

tHW− 0.12 yt
tZW− 0.04 λt, yt, yb
bW+W− 0.08 λb, yt, yb

btt̄ 0.02 λt, yt, yb
γb 0.77 wB
gb 0.99 wG

Q5
bW+W− 0.08 λ, y

btt̄ 0.01 λ, y

T1

tHW− 0.19 yt
tZW− 0.06 λ, yt, yb
btt̄ 0.01 λ, yt, yb

bW+W− 0.90 w
γb 0.13 w

T2

tHW− 0.10 λ
bW+W− 0.07 λ, yt, yb
tZW− 0.12 w
btt̄ 0.02 λ, yt, yb

T4 bW+W− 0.08 y

F1

tHW− 0.30 y
bW+W− 0.69 w

γb 0.09 w
tZW− 0.20 w

F5

tHW− 0.28 y
tZW− 0.10 y
bW+W− 0.09 y

F7
tHW− 0.10 y
bW+W− 0.07 y

Table 9.8: Extra decay channels of B with branching ratio larger than 0.01 for M =

2TeV, when the couplings λ are fixed to the values that saturate electroweak precision

limits. The last column displays the coupling constant which, when set to (2TeV)−1,

gives the maximum BR in the corresponding channel. The appearance of λ indicates

that the channel in question is present already in the case with dimension-4 interactions

only.
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Multiplet Decay products Maximum BR Coupling

Q7
tHW+ 0.12 y
tZW+ 0.04 λ, y

T2

tHW+ 0.10 λ, yd
bW+W+ 0.04 λ, yu, yd
tZW+ 0.12 w
ttb̄ 0.02 λ, yu, yd

T5
tHW+ 0.29 y
tZW+ 0.11 y

F1
tHW+ 0.32 y
tZW+ 0.82 w

F7 tHW+ 0.32 y

Table 9.9: Decay channels of X other than W+t with branching ratio larger than 0.01

for M = 2TeV, when the couplings λ are fixed to the values that saturate electroweak

precision limits. The last column displays the coupling constant which, when set to

(2TeV)−1, gives the maximum BR in the corresponding channel. The appearance of λ
indicates that the channel in question is present already in the case with dimension-4

interactions only.

Multiplet Decay products Maximum BR Coupling

Q5

bHW− 0.10 λ, y
bZW− 0.04 λ, y
bbt̄ 0.02 λ, y

T1

bHW− 0.10 λ, yu, yd
bZW− 0.83 w
tW−W− 0.04 λ, yu, yd

T4
bHW− 0.29 y
bZW− 0.11 y

F1
bHW− 0.32 y
bZW− 0.82 w

F5 bHW− 0.32 y

Table 9.10: Decay channels of Y other thanW−b with branching ratio larger than 0.01

for M = 2TeV, when the couplings λ are fixed to the values that saturate electroweak

precision limits. The last column displays the coupling constant which, when set to

(2TeV)−1, gives the maximum BR in the corresponding channel. The appearance of λ
indicates that the channel in question is present already in the case with dimension-4

interactions only.
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Figure 9.7: Total decay width of T (left) and B (right) vs the dimension-5 Yukawa

coupling y for each multiplet without dimension-4 couplings and MQ = 2TeV.
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Figure 9.8: Representation of the (BR(Q→ Zq), BR(Q→ W±q′), BR(Q→ Hq))
point as its projections into the BR(Q → Zq)—BR(Q → Hq) plane and into the

BR(Q→ W±q′)—BR(Q→ Hq) plane.
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Figure 9.9: Left plots: lower bounds for the masses of heavy quarks presented in

ref. [226] assuming that the sum of branching ratios into Hq, Zq and W±q′ is Σ = 1.

Right plots: corrected lower bounds for the case in which Σ = 0.5.
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Figure 9.10: Branching ratios of T into Ht, Zt and W+b for various values of the

parameters in the U , Q7 and Q1 models. The dimensionless couplings λ are always

chosen to saturate the corresponding electroweak precision bounds.
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Figure 9.11: Branching ratios of T into Ht, Zt and W+b for various values of the

parameters in the Q1, T2 and T1 models. The dimensionless couplings λ are always

chosen to saturate the corresponding electroweak precision bounds.
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Figure 9.12: Branching ratios of B into Hb, Zb and W−t for various values of the

parameters in the D and Q1 models. The dimensionless couplings λ are always chosen

to saturate the corresponding electroweak precision bounds.
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Figure 9.13: Branching ratios of B into Hb, Zb and W−t for various values of the

parameters in the Q5, T2 and T1 models. The dimensionless couplings λ are always

chosen to saturate the corresponding electroweak precision bounds.



9.6. DECAY 187

0.20.40.60.81.0
BR(T W +b)

0.0

0.2

0.4

0.6

0.8

1.0

BR
(T

H
t)

T5 25/3

0.0 0.2 0.4 0.6 0.8 1.0
BR(T Zt)

y= (2 TeV) 1, rest = 0

0.20.40.60.81.0
BR(T W +b)

0.0

0.2

0.4

0.6

0.8

1.0

BR
(T

H
t)

F1 21/6

0.0 0.2 0.4 0.6 0.8 1.0
BR(T Zt)

y= (2 TeV) 1, rest = 0
w= (2 TeV) 1, rest = 0

Figure 9.14: Branching ratios of T into Ht, Zt and W+b for various values of the

parameters in the T5 and F7 models.
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Figure 9.15: Branching ratios of T into Ht, Zt and W+b for various values of the

parameters in the F1 and F5 models.
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Figure 9.16: Branching ratios of B into Hb, Zb and W−t for various values of the

parameters in the T4 and F7 models.



190

CHAPTER 9. VECTOR-LIKE QUARKS WITH NON-RENORMALIZABLE

INTERACTIONS

0.20.40.60.81.0
BR(B W t)

0.0

0.2

0.4

0.6

0.8

1.0

BR
(B

H
b)

F5 2 5/6

0.0 0.2 0.4 0.6 0.8 1.0
BR(B Zb)

y= (2 TeV) 1, rest = 0

0.20.40.60.81.0
BR(B W t)

0.0

0.2

0.4

0.6

0.8

1.0

BR
(B

H
b)

F7 27/6

0.0 0.2 0.4 0.6 0.8 1.0
BR(B Zb)

y= (2 TeV) 1, rest = 0

Figure 9.17: Branching ratios of T into Ht, Zt and W−t for various values of the

parameters in the F1 and F5 models.
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9.7 Conclusions

We have used the BSMEFT to study the phenomenology of vector-like extra quarks

near the TeV scale, which is to a large extent governed by gauge invariance and power

counting. To start with, extra quarks can always be pair produced at hadron colliders

by their gauge coupling to gluons. Once produced, they will decay into SM particles

if they have gauge-invariant linear interactions with them.

At the renormalizable level, this is only possible for seven different gauge-covariant

multiplets. These are the multiplets that can have Yukawa couplings with the Higgs

doublet, which mix the extra quarks among themselves and with the SM ones. The

latter mixing gives rise to decays into a SM quark and either Z, W or Higgs bosons.

In simple extensions with only one vector-like multiplet, these are the only significant

decay modes. Furthermore, in the motivated case of exclusive mixing with the third

generation, the branching ratios are fixed by the quantum numbers of the multiplet.

The mixing is also responsible for indirect effects, mass splittings and single production.

This simple picture can be modified in three ways (or combinations of them). First,

one can consider general couplings to all the three SM generations [6, 284–287]. This

typically requires flavour symmetries to evade the strong flavour constraints. Sizable

mixing with the valence quarks in the proton would increase the importance of single

production [286]. Second, it is possible to consider several vector-like quark multiplets,

or other additional particles, like scalars or vector bosons. This may give rise to new

production mechanisms [288] or new decay modes [264, 282, 289], in addition to the

standard ones described above. Third, one can drop the assumption of renormaliz-

ability. This is the path we have explored in this chapter.

We have proposed a model-independent approach based on the BSMEFT, valid up

to a cutoff scale Λ and constructed with the SM fields and the fields that represent

arbitrary new vector-like quarks. This is a faithful description of any model with new

vector-like quarks, as long as the new physics not explicitly included appears at scales

higher than Λ. In particular, our EFT describes well the case of additional particles

when they are heavier than Λ. As usual, the effective Lagrangian is defined by its

expansion in inverse powers of Λ. The lowest order, formed by operators of canonical

dimension ≤ 4, corresponds to the usual renormalizable theories with extra vector-

like quarks. The interactions of higher dimension give contributions to observables

suppressed by powers of µ/Λ, with µ = E,M, v the characteristic scale of the process.

Even if suppressed, these interactions can be very relevant for proceses that do not

exist at the renormalizable level.

In our explicit phenomenological analysis we have worked with the sectors of the

BSMEFT with only one vector-like quark multiplet and we have truncated it at the

next-to-leading order, i.e. at canonical dimension 5. For simplicity we have also as-

sumed couplings to the third generation only. At this order, there are twelve irreducible

representations of extra quarks that can decay into SM particles (and be singly pro-

duced). Up to field redefinition ambiguities, four new types of interactions appear at

dimension 5: the Yukawa-type operators Q̄qφφ and Q̄Qφφ and the “magnetic” oper-

ators Q̄σµνqFµν and Q̄σµνQFµν . The latter have effects that increase with the energy

of the process.

We have distinguished two types of vector-like quarks. Those in the seven repre-

sentations that allow for renormalizable linear interactions, and those in the remaining
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five representations. For the extra quark in the first group, and for natural values of the

coupling constants, the dimension-5 interactions typically give only small corrections

to the standard phenomenology of vector-like quarks. One exception is the possibility

of new indirect effects in Higgs physics. Moreover, in strongly-coupled UV completions

avoiding the loop suppression in the “magnetic” couplings, there can be new single

production modes with cross sections larger than the one of pair production and also

new decay modes (into qg, for instance) with large branching ratios. Of course, all

these effects depend on the cutoff and will be negligible if Λ is much larger than the

TeV scale.

For the quarks in the five multiplets that do not have renormalizable linear inter-

actions (two triplets and four quadruplets), the dimension-5 operators give the leading

contributions. In this case, all the indirect bounds can be easily evaded without ex-

plicit tuning of couplings, for moderate values of Λ. Pair production is still possible

and the decay (possibly after hadronization) will be prompt if Λ is not too high. Some

non-standard decay modes, including three-body decays, can be sizable and the mea-

surements of decays of T and B into Zq, Wq and Hq could easily give rise to new

points in the corresponding triangles. In this respect, we have given a simple formula

to recast the combination limits given by the ATLAS and CMS collaborations, which

assume the absence of other decay channels. For Λ & 106 TeV, the decays of the

hadrons containing the heavy quarks will be non-prompt. The usual searches will not

be sensitive to vector-like quarks in this regime, but one can instead resort to the

signatures associated to coloured and charged long-lived particles. Taking advantage

of these signatures would require dedicated searches of vector-like quarks, specially in

the case of displaced vertices formed by their decay products.

New operators involving the extra quarks appear at yet higher orders in the 1/Λ ex-

pansion. At dimension 6 one should include four fermion operators [290]. In particular,

the interactions of the form qqqQ will give rise to new single production mechanisms,

which can have observable cross sections at the LHC for Λ of a few TeV when the

couplings to the first generation are allowed. Moreover, at each order new types of

vector-like quarks will be able to decay into SM particles. Their lifetime will be sup-

pressed by the corresponding power of M/Λ. Finally, in principle it is also possible

that new vector-like quarks exist in gauge representations with T + Y + 1/3 6∈ Z.

They would be stable or else decay into additional stable particles. However, there are

very strong constraints on the abundances of stable strongly interacting (and charged)

particles, in particular from searches of rare nuclei [291–295]. 5

5See, nevertheless, ref. [296] for comments on the robustness of such bounds and a proposal of
coloured dark matter.
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Conclusions

In this work, we have reviewed and extended a model-independent framework for the

study of physics beyond the SM, based on EFT. We have developed new computer

tools that help automatizing the most common types of calculations in this context.

We have contributed to setting the basis for the phenomenological analysis of new

particles and their interactions through the introduction of the BSMEFT, an EFT

that includes every possible new field under general assumptions.

In chapter 4, we have studied one of the most useful mathematical tools in the

practical implementation of EFTs: field redefinitions. They allow for the reduction of

the number of interactions considered in any EFT. A complete set of independent local

operators that is minimal in the sense that it cannot be reduced using redefinitions is

what is called a basis. Although the use of bases and redefinitions is convenient, some

caution is needed in many of their applications. A common practice when working

at leading order in the EFT expansion is to use the equations of motion of the fields,

instead of redefinitions. They capture, in fact, the leading order effects of redefinitions.

However, we have shown that this procedure cannot be extended to higher orders.

The results of many calculations in EFT, as matching or the computation of the

renormalization group evolution, are usually presented in terms of an operator basis.

The use of redefinitions (or equations of motion) to arrive to a basis generates a

loss of information that cannot be recovered from the final result, unless all the field

redefinitions that have been used are explicitly given. This has led us to the proposal

of the definition and use of over-complete bases in intermediate steps of calculations.

The idea is not to replace the usual bases, but to complement them. For example,

given an over-complete basis and a reduced basis, it would be useful to do off-shell

matching calculations using the former, and then have a dictionary to directly translate

the results to the later.

In chapters 5 and 6, two Python packages have been presented: MatchingTools

and BasisGen. They automatize the generation of bases of operators, tree-level match-

ing and reduction to a basis. In the present situation in phenomenology of physics

beyond the SM, in which one deals with EFTs with many fields and operators, it has

become crucial to develop a reliable set of computer tools in which lengthy calculations

can be implemented. The advantages are manifold: first, the use of computer tools

almost always faster than doing calculations by hand; second, the possibility of the
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introduction of human errors is drastically reduced; in addition, repeated calculations

with minor changes are more easily performed. Both MatchingTools and BasisGen

contribute in advancing in this direction. The correctness of their results has been

checked by hand and against the previous results in the literature. They have been

developed paying attention to performance, specially in the case of BasisGen, which

improves the speed of previous tools that do similar calculations by a factors of about

a hundred.

In chapter 7, the formalism for general extensions of the SM with new fields has

been introduced. We have constructed the BSMEFT, which includes all possible new

particles that can decay into SM ones. The corresponding fields have gauge-invariant

linear couplings to the SM. They are the most relevant ones for phenomenology in many

situations: they have single production, decay and indirect effects at tree level. The

generality of the BSMEFT makes it useful for parametrizing many new physics effects.

It can be used to connect the Wilson coefficients of the SMEFT to the parameters of

any high-energy model with tree-level contributions to them. Contrary to the SMEFT,

the BSMEFT is able describe resonant production of new degrees of freedom. In the

rest of the thesis, we consider some of its applications.

In chapter 8, the complete tree-level dictionary between the dimension-6 SMEFT

and its high-energy completions has been provided. It has been computed by tree-level

matching of the SMEFT to the BSMEFT. This dictionary is a useful result to explore

both the low-energy consequences of high-energy models and the possible high-energy

explanations of low-energy effects. For each combination of particles in some theory

beyond the SM, one can find to which operators of the SMEFT they contribute at

tree-level, as well as their contribution the corresponding Wilson coefficients. Then,

constraints on the SMEFT coefficients can be used to put bounds on the parameters

of the high-energy model. If some new physics effect is observed, implying that some

Wilson coefficient is non-zero, one can find what possible new particles can be respon-

sible, together with the high-energy interactions that are necessary to generate the

effect.

In chapter 9, next-to-leading order effects in the BSMEFT have been studied, for

the case of vector-like quarks. In general, the only extra fields with leading-order effects

are those with dimension-4 linear couplings to the SM. One can relax the condition

over the dimension of these operators to analyze the robustness of the approximation

and to study new experimental signatures that may not be possible at the lowest order.

We have focused on the phenomenology of vector-like quarks with dimension-4 and/or

dimension-5 linear couplings. We have found that new production and decay channels

appear at dimension 5. Those quarks whose linear interactions start at dimension 5 are

less constrained in general by their indirect effects. However, they also generate new

experimental signals due to the fact that their effective couplings are naturally small,

because they are suppressed by inverse powers of the cutoff scale. In consequence,

they may hadronize and produce delayed detector signals and displaced vertices.



CHAPTER 11
Conclusiones

En este trabajo, hemos revisado y extendido el marco independiente del modelo que

proporcionan las EFTs para el estudio de f́ısica más allá del Modelo Estándar. Hemos

desarrollado nuevas herramientas informáticas que ayudan en la automatización de los

tipos más habituales de cálculos en este contexto. También hemos contribuido a sentar

las bases del análisis fenomenológico de nuevas part́ıculas e interacciones a través de

la introducción de la BSMEFT, una EFT que incluye cada posible nuevo campo bajo

asunciones generales.

En el caṕıtulo 4, hemos estudiado una de las herramientas matemáticas más útiles

en la implementación práctica de EFTs: las redefiniciones de campos. Estas permiten

reducir considerablemente el número de interacciones a tener en cuenta en cualquier

EFT. Un conjunto completo de operadores locales independientes tal que no se puede

reducir usando redefiniciones es lo que se conoce como una base. Aunque el uso de

bases y redefiniciones es conveniente, es necesario hacerlo con cierta precaución. Una

práctica común cuando se trabaja a orden dominante es el uso de las ecuaciones de

movimiento de los campos en lugar de redefiniciones. De hecho, las ecuaciones de

movimiento capturan los efectos dominantes de las redefiniciones. Sin embargo, como

hemos demostrado, este procedimiento no puede extenderse a órdenes superiores.

Los resultados de muchos cálculos en EFTs, como el matching o el cálculo de la

evolución con el grupo de renormalización, se presentan normalmente en términos de

una base de operadores. El uso de redefiniciones (o de ecuaciones de movimiento)

para llegar a una base genera una pérdida de información que no puede recuperarse

a partir el resultado final, a menos que todas las redefiniciones utilizadas se propor-

cionen expĺıcitamente. Esto nos ha conducido a la propuesta de la definición y uso

de bases redundantes en pasos intermedios de cálculos. La idea no es reemplazar la

bases habituales, sino complementarlas. Por ejemplo, dada una base redundante una

reducida, seŕıa útil hacer cálculos de matching off-shell usando la primera, y luego

tener un diccionario para traducir directamente los resultados a la segunda.

En los caṕıtulos 5 y 6, se han presentado dos paquetes de Python: MatchingTools

y BasisGen. Estos automatizan la generación de bases de operadores, la realización de

matching a nivel árbol y la reducción de un Lagrangiano hasta escribirlo en términos de

una base de operadores. En la situación actual en fenomenoloǵıa más allá del SM, en la

que hay que trabajar con EFTs con muchos campos y operadores, se ha convertido en
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una necesidad el desarrollo de un conjunto sólido de herramientas informáticas en las

que implementar los largos cálculos que aparecen. Las ventajas son múltiples: primero,

el uso de estas herramientas es prácticamente siempre más rápido que la realización de

los cálculos a mano; segundo, la posibilidad de introducir errores humanos se reduce

en gran medida; por último, la repetición de cálculos con cambios menores puede

hacerse con mayor facilidad. MatchingTools y BasisGen contribuyen a avanzar en

este dirección. La corrección de sus resultados se ha comprobado a mano y usando

los resultados presentados en la literatura. Estas herramientas se han desarrollado

prestando atención a la eficiencia, especialmente en el caso de BasisGen, que mejora

la velocidad de herramientas anteriores que hacen cálculos similares por factores que

llegan a alrededor de cien.

En el caṕıtulo 7, se ha introducido el formalismo para extensiones generales del

SM con nuevos campos. Hemos construido la BSMEFT, que incluye todas las posi-

ble nuevas part́ıculas que pueden decaer a las del SM. Estas son las más relevantes

para fenomenoloǵıa en muchas situaciones: tienen producción simple, desintegración

y efectos indirectos a nivel árbol. La generalidad de la BSMEFT la hace útil para

parametrizar muchos efectos de nueva f́ısica. Se la puede usar para conectar los co-

eficientes de Wilson de la SMEFT con los parámetros de cualquier modelo de altas

enerǵıas con contribuciones a estos a nivel árbol. Al contrario que la SMEFT, la

BSMEFT puede describir producción resonante de nuevos grados de libertad. En el

resto de esta tesis consideramos algunas de sus aplicaciones.

En el caṕıtulo 8, se ha proporcionado el diccionario completo a nivel árbol entre la

SMEFT de dimensión 6 y sus posible extensiones a altas enerǵıas. Este se ha calculado

usando matching a nivel árbol entre la SMEFT y la BSMEFT. Este diccionario es útil

para explorar las consecuencias a bajas enerǵıas de modelos para más altas enerǵıas,

aśı como las posibles explicaciones a altas enerǵıas de efectos de bajas enerǵıas. Para

cada combinación de part́ıculas en cualquier teoŕıa más allá del SM, se puede encontrar

qué operadores de la SMEFT generan a nivel árbol, aśı como su contribución a los

coeficientes de Wilson correspondientes. Entonces, las restricciones sobre coeficientes

de la SMEFT pueden usarse para poner ĺımites a los parámetros del modelo de altas

enerǵıas. Si algún efecto de nueva f́ısica se observa, implicando que algún coeficiente

de Wilson es distinto de cero, se puede encontrar qué nuevas part́ıculas pueden ser

responsables, junto con las interacciones de altas enerǵıas que son necesarias para

generar el efecto.

En el caṕıtulo 9, se estudian algunos efectos a órdenes subdominantes en la BSMEFT.

En general, los únicos campos extra con efectos a orden dominante son aquellos con

acoplamientos lineales de dimensión-4 al SM. Esta condición sobre la dimensión de

los operadores puede relajarse para analizar la robustez de la aproximación y para

estudiar nuevas caracteŕısticas experimentales distintivas que pueden no ser posibles

al orden más bajo. Nos hemos concentrado en la fenomenoloǵıa de quarks vector-like
con acoplamientos lineales de dimensión 4 y/o 5. Hemos encontrado que a dimensión 5

aparecen nuevos canales de producción y desintegración. Aquellos nuevos quarks cuyas
interacciones lineales empiezan en dimensión 5 están menos restringidos a través de

sus efectos indirectos. Sin embargo, generan nuevos efectos experimentales debido al

hecho de que sus acoplamientos son naturalmente pequeños, ya que están suprimidos

por potencias inversas de la escala de cutoff. En consecuencia, pueden hadronizar y

producir señales retrasadas en el detector y vértices desplazados.



APPENDIX A
Standard Model group-theory

notation

In this work we use a notation where color indices are labeled by capital letters,

A,B,C, running over the dimensionality of the corresponding SU(3)c representation.
Whenever possible, objects in the fundamental representations of SU(2)L and SU(3)c
have been written as row or column vectors, with matrix products implied. The

superscript symbol “T” indicates transposition of the SU(2)L indices exclusively. When

showing these indices explicitly, we use the following different labels, depending on

the SU(2)L representation: α, β = 1
2
,−1

2
for SU(2)L doublets; a, b, c = 1, 2, 3 for

the components of SU(2)L adjoints/triplets in Cartesian coordinates; and I, J,K =
3
2
, 1
2
,−1

2
,−3

2
for the components of the SU(2)L quadruplets.

The symbols TA = 1
2
λA and fABC , A,B,C = 1, . . . , 8, denote the SU(3)c generators

and structure constants, respectively, with λA the Gell-Mann matrices. ǫABC (εabc) ,
A,B,C = 1, 2, 3 (a, b, c = 1, 2, 3) is the totally antisymmetric tensor in color (weak

isospin) indices; σa or σa, a = 1, 2, 3 are the Pauli matrices; σµν = i
2
[γµ, γν ]; and

Ãµν =
1
2
εµνρσA

ρσ is the Hodge-dual of the field strength Aµν .
In the construction of the different SU(2)L invariants we also use the following:

• The isospin-1 product of two triplets is obtained through:

fabc =
i√
2
εabc.

• Quadruplets are obtained from the product of an isospin-1 field and a doublet

by means of

C
3/2
aβ =

1√
2




1 0

−i 0

0 0


 , C

1/2
aβ =

1√
6




0 1

0 −i
−2 0


 ,

C
−1/2
aβ = − 1√

6




1 0

i 0

0 2


 , C

−3/2
aβ = − 1√

2




0 1

0 i
0 0


 .
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• The singlet product of two quadruplets is obtained through the SU(2) product

ǫIJ =
1

2




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


 .

Finally, for SU(3)c indices, we use the following notation for the symmetric product

of colored fields:

ψ
(A|
1 . . . ψ

|B)
2 ≡ 1

2

(
ψA1 . . . ψ

B
2 + ψB1 . . . ψ

A
2

)
.
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