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CHAPTER

Introduction

The current situation in particle physics involves a large number of both theoreti-
cal proposals and experimental measurements. The relation between the two is often
intricate, as every new physics model comes with its own set of motivations and predic-
tions, and each measurement that is performed has consequences for many theoretical
models. The purpose of this thesis is to set the basis for a general, organized and
efficient way of dealing with these issues.

At first sight, a naive systematic approach to the problem may be devised: pick a
representative set of models together with a sufficiently extensive set of observables,
and compute every observable for each model. This procedure suffers from several
drawbacks. Firstly, it is not easy to decide which models and observables to include:
if there are too many, the task becomes impossible in practice, but one risks not
being general enough otherwise. Secondly, it is inefficient: similar calculations will be
performed many times. Lastly, it does not scale well: if a new kind of model becomes
interesting, one has to recompute the value of all observables; and if a new experiment
is designed, then one has to go back to every model to compute the observables that
are going to be measured. Roughly speaking, the number of calculations that need
to be performed grows as the product of the number of models and the number of
observables of interest.

The use of an Effective Field Theory (EFT) solves these problems by splitting the
calculations in two parts: matching high-energy models to the EFT and computing
observables using the EFT only. Because an EFT is a general parametrization of the
physics involving the degrees of freedom it contains (within some range of energies),
it is guaranteed that no model or observable is discarded. Moreover, part of the
repetitive work that had to be done for each model is included in the calculation of
observables in the EFT, which only needs to be done once. In addition, the scaling
with the number of models and the number of observables is improved: the number
of calculations grows roughly like the sum of the two.!

Two EFTs are commonly used to describe the interactions of the Standard Model
(SM) particles: the Higgs EFT (HEFT) and the Standard Model EFT (SMEFT) (see

Tt should be noted that this works when working at a fixed precision. To improve the precision, it
is necessary to extend the effective Lagrangian with extra terms, which means that both observables
and matching must be recomputed.




2 CHAPTER 1. INTRODUCTION

section 3.7). They differ in how the SM symmetries are implemented. In the HEFT,
the electroweak gauge group is realized non linearly. For this reason, perturbative
unitarity is broken for energies around 47 times higher than the electroweak scale. In
the SMEFT, all fields belong to linear representations of the electroweak group. It can
be viewed as a particular case of the HEFT in which some relations between parameters
are imposed. The advantage of using it (apart from its simplicity in comparison with
the HEFT) is that it does not break perturbativity just above the electroweak scale.
This means that its cutoff scale is arbitrary in principle.

At any rate, neither the SMEFT nor the HEFT can describe the resonant pro-
duction of new particles that are not present in the SM. Their purpose is to describe
the low-energy effects of such extra degrees of freedom, when there is some separation
between their masses and the probed energies. They would not be of use in a hypo-
thetical discovery of a new particle through its direct production in an experiment.
That is, in the program introduced above of splitting the calculations that relate new
physics models to experimental observables, these EFTs only cover indirect effects.

To describe resonances, it is necessary to introduce new fields. If one wishes to
proceed in a fully general way, without theoretical prejudices or any further experi-
mental knowledge about the high-energy physics, every possible new field should be
included. In general, the extensions of the SM with new fields can be classified in two
groups: those that contain unstable particles that decay into the SM ones and those
that do not. Many of the concrete models for physics beyond the SM belong to the
first class. For a field to create a particle that decays into the SM, it must have the
same Lorentz and gauge quantum numbers as some composite SM operator. In this
thesis, we construct an EFT for these fields together with the SM ones, which we call
the Beyond the SM EFT (BSMEFT).

More precisely, the BSMEFT is an EFT with symmetry given by the linearly-
realized SM gauge group, and whose field content consists of the SM fields together
with those extra fields for which at least one linear coupling to the SM is allowed by
Lorentz and gauge invariance (see chapter 7). The linear realization of the symmetries
is required for perturbative unitarity to hold not much above the electroweak scale.
The requirement of linear couplings to the SM is only made to obtain the quantum
numbers of the new fields, and then all their relevant interactions are considered,
including those that are non linear. Having these quantum numbers is a necessary
condition for the new particles to have decays into the SM ones, but it is not sufficient:
although their decay is allowed by the SM symmetries, it may be forbidden by new
ones. In this way, the BSMEFT also includes many models with stable particles. On
the other hand, the presence of linear couplings is necessary for leading-order effects
in loop expansions: at tree level, only those fields with linear interactions can have
single production, decay or indirect effects. The BSMEFT has a cutoff scale above
the masses of the extra particles. At each order in the expansion in inverse powers of
this cutoff, only a finite number of possibilities for the quantum numbers of the new
fields are allowed by the linear coupling condition. This makes the theory manageable:
the representations of all the fields and their Lagrangian can be explicitly written and
studied.

The BSMEFT further splits the calculations connecting concrete models and ex-
perimental data, bringing its own advantages. Two tasks must be performed to relate
its parameters to experimental observables in an efficient and systematic way: com-



puting observables in which resonant production of new degrees of freedom may be
important, and matching to the SMEFT. Then, for each model in the large class of
those that are particular cases of the BSMEFT, one does not need to do any calcula-
tions. Instead, one just has to identify how it fits inside the BSMEFT. The relation
with observables and with the SMEFT is automatically given by particularizing the
general calculations, which can be done once and for all. If a new physics model is
not a particular case of the BSMEFT, but its lightest particles are contained in the
BSMEFT, the heavier ones can always be integrated out, and the result treated using
the BSMEFT.

An example of the usefulness of the BSMEFT is given by matching it at tree level
to the SMEFT with operators of dimension 6 or less. This is done in this work (in
chapter 8). The result is a complete tree-level dictionary between extensions of the
SM with new particles and the dimension-6 SMEFT. This dictionary can be used to
translate constraints over the SMEFT coming from experimental data into bounds over
the parameters of models with new particles. If a deviation from the SM is detected and
parametrized with the SMEFT, one can use the dictionary to find out which possible
new particles can generate it. For example, one may obtain all the representations
and interactions of the new fields that can generate the observed anomalies in LHCb
(as done in section 8.6), or enumerate all high-energy models with tree-level indirect
effects in Higgs physics (as in section 8.7).

Another application of the BSMEFT that we consider in this thesis (in chapter 9)
is the model-independent study of vector-like quarks. They appear in many well-
motivated scenarios beyond the SM. A model-independent analysis can be performed
using the adequate sector of the BSMEFT. This allows for the study of both direct
and indirect effects. General properties of vector-like quarks can be extracted, which
apply to any model that contains them.

In the context of EFTs for physics beyond the SM, one has to deal with large
numbers of operators and fields. For this reason, it is convenient and even necessary
in practice to develop computer tools that make faster and less error-prone calculations.
In this work, we present two such tools, whose aim is to automatize some of the most
common tasks one has to perform in this setting (see part II).

In particular, the use of bases of operators is of great practical importance. They
drastically reduce the number of operators that must be included in the effective
Lagrangian. To rewrite a Lagrangian in terms of a basis, field redefinitions must be
performed. At leading order in the EFT expansion, this is equivalent to the use of
equations of motion. Higher order terms may be important in the EFTs we deal with
for a number of reasons. For example, they could give the leading contribution to
some observables, if the symmetries forbid contributions from lower order terms. In
this case, it becomes crucial to understand the effects of field redefinitions at higher
orders, which we also study in this thesis (in chapter 4).

The thesis is organized as follows:

e In part I, several topics related to EFTs as used in particle physics are discussed.
Chapter 3 is a review of the subject. It introduces the EFT construction and
some related ideas, such as power counting, renormalization and matching. It
also gives a presentation of non-abelian gauge theories and the particular case
of the SMEFT. In chapter 4, the effects of field redefinitions at higher orders are
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analyzed. It is shown that they cannot be reproduced using just the equations
of motion. The interplay between redefinitions, renormalization and matching is
also studied.

e In part II, two computer tools are presented. MatchingTools, which is intro-
duced in chapter 5, is a Python package that does two kinds of EFT calcula-
tions: tree-level matching and reduction of an effective Lagrangian to a basis
of operators. BasisGen, another Python package, presented in chapter 6, com-
putes operators bases for EFTs. Both tools work in a very general setting: any
Lorentz-invariant non-abelian gauge theory can be treated with them.

e Part III is dedicated to general extensions of the SM with new particles. We study
them using the BSMEFT, which is introduced in chapter 7. The representations
under the SM symmetry group of all new fields of the BSMEFT are presented,
together with a general effective Lagrangian for them. In chapter 8, the full tree-
level matching of the BSMEFT to the SMEFT is performed and the dictionary
obtained from it is presented. Two examples of use of this dictionary are given.
In chapter 9, the sector of the BSMEFT that only contains new quarks is studied.
We focus on the case in which their couplings are not necessarily renormalizable.
As explained there, vector-like quarks with non-renormalizable interactions have
new features that are not present when only renormalizable interactions are
allowed, including new production and decay channels, and, in some cases, long
lifetimes.

Most of the results presented in this thesis have been published in the following articles:
part of the language and notation used in chapter 3 and the results in chapter 4 can
be found in ref. [3]; MatchingTools and BasisGen were presented in ref. [4] and
ref. [5], respectively; the representations and Lagrangian that appear in chapter 7
were constructed in refs. [6-10]; the dictionary and first example given in chapter 8
were presented in ref. [10]; the second example in chapter 8 was presented in ref. [11];
and the results in chapter 9 appeared in ref. [12].



CHAPTER

Introduccion

La situacion actual en fisica de particulas involucra un gran ntimero de propuestas
tedricas y medidas experimentales. La relacion entre ambas es muchas veces compleja,
ya que cada modelo de nueva fisica tiene su propio conjunto de motivaciones y predic-
ciones, y cada medida que se realiza tiene consecuencias para muchos modelos teéricos.
El propédsito de esta tesis es sentar las bases de una estrategia general, organizada y
eficiente para lidiar con estos problemas.

A primera vista, se puede pensar en una aproximacion sistemdtica sencilla a este
problema: elegir un conjunto representativo de modelos, junto con un conjunto de
observables suficientemente completo, y calcular todos los observables en cada modelo.
Este procedimiento tiene varias desventajas. Primero, no es facil decidir qué modelos
y observables incluir: si hay demasiados, la tarea serda imposible en la practica, pero
se estd en riesgo de no ser suficientemente general en caso contrario. Segundo, es
ineficiente: muchas veces se realizaran calculos similares. Por 1ltimo, no tiene buena
escalabilidad: si un nuevo tipo de modelo resulta interesante, hay que recalcular el
valor de todos los observables; y si se disena un nuevo experimento, entonces hay que
volver a cada modelo para calcular los observables que se van a medir. Grosso modo,
el nimero de calculos a realizar crece como el producto del nimero de modelos y el
nimero de observables de interés.

El uso de una Teoria de Campos Efectiva (EFT, por sus siglas en inglés) resuelve
estos problemas dividiendo los calculos en dos partes: matching de modelos de altas
energias con la EFT y céalculo de observables usando tinicamente la EFT. Como una
EFT es una parametrizaciéon general de la fisica que involucra los grados de libertad
que contiene (dentro de cierto rango de energias), esta garantizado que ningtin modelo
u observable se va a descartar. Ademads, parte del trabajo repetitivo que tenia que
hacerse para cada modelo esta incluido en el célculo de observables de la EFT, que
solo ha de realizarse una vez. La escalabilidad con el niimero de modelos y el niimero
de observables también mejora: el ntimero de calculos crece aproximadamente como
la suma de los dos.!

INétese que esto funciona cuando se trabaja a una precisién fija. Para mejorar la precisién,
es necesario extender el Lagrangiano efectivo con términos extra, lo cual significa que tanto los
observables como el matching tiene que ser recalculados.
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Hay dos EFTs que se usan habitualmente para describir las interacciones de las
particulas del Modelo Estandar (SM): la EFT del Higgs (HEFT) y la EFT del Mod-
elo Estandar (SMEFT) (ver seccion 3.7). Estas difieren en la implementacién de las
simetrias del SM. En la HEFT, el grupo gauge electrodébil tiene una realizacion no
lineal. Por esta razon, unitariedad esta rota a nivel perturbativo para energias alrede-
dor de 47 veces mas altas que la escala electrodébil. En la SMEFT, todos los campos
pertenecen a representaciones lineales del grupo electrodébil. Se la puede ver como un
caso particular de la HEFT en el que se imponen algunas relaciones entre parametros.
La ventaja de usarla (aparte de su simplicidad en comparacién con la HEFT) es que
no rompe perturbatividad justo debajo de la escala electrodébil. Esto significa que su
escala de cutoff es arbitraria en principio.

En cualquier caso, ni la SMEFT ni la HEFT pueden describir la produccion res-
onante de nuevos grados de libertad que no estén presentes en el SM. Su propdsito
es describir los efectos a bajas energias de estos grados de libertad extra, cuando hay
cierta separacion entre sus masas y las energias exploradas. No serian de utilidad en el
hipotético descubrimiento de una nueva particula a través de su produccion directa en
un experimento. Esto es, en el programa que hemos introducido anteriormente con-
sistente en dividir los cédlculos que relacionan modelos de nueva fisica con observables
experimentales, estas EFTs solo incluyen efectos indirectos.

Para describir resonancias, es necesario introducir nuevos campos. Si se quiere pro-
ceder de manera completamente general, sin prejuicios tedricos ni ningiin conocimiento
experimental sobre la fisica de altas energias, todo nuevo campo posible debe ser in-
cluido. En general, las extensiones del SM con nuevos campos pueden clasificarse en
dos grupos: aquellas que contienen particulas inestables y aquellas que no. Muchos de
los modelos concretos para fisica mas alla del SM pertenecen a la primera clase. Para
que un campo cree particulas que decaen al SM, tiene que tener los mismos ntimeros
cuanticos que algin operador compuesto del SM. En esta tesis, construiremos una
EFT para estos campos junto con los del SM, la cual llamaremos la EFT Mas Alla del
SM (BSMEFT, del inglés Beyond SM EFT).

Mas concretamente, la BSMEFT es una EFT con el grupo gauge del SM realizado
linealmente, y cuyo contenido de campos consiste en los campos del SM junto con
aquellos campos extra que tienen al menos un acoplamiento lineal con el SM que esté
permitido por invariancia Lorentz y gauge (ver capitulo 7). La realizacion lineal de las
simetrias se requiere para que exista unitariedad perturbativa no mucho mas arriba de
las escala electrodébil. La condicién de acoplamiento lineal se utiliza solamente para
obtener los nimeros cuanticos de los nuevos campos, y después se tienen en cuenta
todas sus interacciones relevantes, incluyendo aquellas que son no lineales. Tener es-
tos nimeros cuanticos es condiciéon necesaria para que las nuevas particulas tengan
desintegraciones que dan lugar a particulas del SM, pero no es suficiente: aunque
su desintegracion esté permitida por las simetrias del SM, puede estar prohibida por
nuevas simetrias. De esta manera, la BSMEFT también incluye muchos modelos con
particulas estables. Por otra parte, la presencia de acoplamientos lineales es necesaria
para tener efectos a orden dominante en expansiones en loops: a nivel arbol, sélo aque-
llos campos con interacciones lineales pueden tener produccion simple, desintegracion
o efectos indirectos. La BSMEFT tiene una escala de cutoff por encima de las masas
de las particulas extra. A cada orden en la expansién en potencias inversas del cutoff,
solo un nimero finito de posibilidades para los niimeros cuanticos de los nuevos campos



esta permitido por la restriccién de acoplamiento lineal. Esto hace que la teoria sea
tratable: las representaciones de todos los nuevos campos y su Lagrangiano pueden
escribirse y estudiarse explicitamente.

La BSMEFT divide de nuevo en dos partes los calculos necesarios para conectar
modelos y datos experimentales, lo cual conlleva sus propias ventajas. Hay dos tareas a
realizar para relacionar sus parametros con observables experimentales de una manera
eficiente y sistematica: calcular observables en los que la produccién resonante de
nuevos grados de libertad pueda ser importante, y realizar matching con la SMEFT.
Para cada modelo entre todos aquellos que son casos particulares de la BSMEFT, no
es necesario realizar ningun calculo. En lugar de ello, s6lo hay que identificar cémo
encaja en dentro de la BSMEFT. La relaciéon con observables y con la SMEFT puede
encontrarse automaticamente particularizando los cédlculos generales, lo cuales solo es
necesario realizar una vez. Si un modelo de nueva fisica no es un caso particular de la
BSMEFT, pero sus particulas més ligeras estan contenidas en la BSMEFT, las més
pesadas siempre pueden eliminarse mediante su integracion, y el resultado tratado
usando la BSMEFT.

Un ejemplo de la utilidad de la BSMEFT aparece cuando se considera su matching
a nivel arbol con la SMEFT con operadores de dimension 6 o inferior. Esto se realizara
en este trabajo (en el capitulo 8). El resultado es un diccionario completo a nivel drbol
entre extensiones del SM con nuevas particulas y la SMEFT de dimension 6. Este
diccionario puede usarse para traducir restricciones experimentales sobre la SMEFT
a limites sobre los parametros de modelos con nuevas particulas. Si se detecta una
desviacion del SM y se parametriza usando la SMEFT, se puede usar el diccionario para
encontrar qué posibles nuevas particulas pueden generarla. Por ejemplo, se pueden
obtener todas las representaciones y interacciones de los nuevos campos que pueden
generar las anomalias de LHCD (como se hace en la seccién 8.6), o enumerar todos los
modelos de altas energias con efectos indirectos a nivel arbol en fisica del Higgs (como
en la seccién 8.7).

Otra aplicacién de la BSMEFT que consideramos en esta tesis (en el capitulo 9) es
el estudio independiente del modelo de quarks vector-like. Estos aparecen en muchos
escenarios bien motivados de fisica mas alld del SM. Un estudio independiente del
modelo puede realizarse utilizando el sector adecuado de la BSMEFT. Esto permite
estudiar efectos tanto directos como indirectos. Asi se pueden extraer propiedades
generales de quarks vector-like, que aplican a cualquier modelo que los contenga.

En el marco de EFTs para fisica més alla del SM, se trabaja con grandes canti-
dades de operadores y campos. Por esta razon, es conveniente e incluso necesario en
la préactica el desarrollo de herramientas computacionales que realicen calculos mas
rapidamente y con una menor propension a errores. En este trabajo, presentamos dos
de estas herramientas, cuyo objetivo es automatizar algunas de las tareas mas comunes
que se han de realizar en este contexto (ver parte II).

En particular, el uso de bases de operadores es de gran importancia practica. Estas
reducen drasticamente el niimero de operadores que se deben incluir en el Lagrangiano
efectivo. Para reescribir un Lagrangiano en términos de una base, hay que realizar
redefiniciones de campos. A orden dominante en la expansion de la EFT, esto es
equivalente a usar las ecuaciones de movimiento. Los términos de orden superior
pueden ser importantes en las EFTs con las que trabajamos por varias razones. Por
ejemplo, podrian dar la contribucién dominante a ciertos observables, si las simetrias
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prohiben contribuciones de términos de orden més bajo. En este caso, resulta crucial
entender los efectos de redefiniciones a 6rdenes superiores, que también estudiaremos
en esta tesis (en el capitulo 4).

La tesis estd organizada de la siguiente manera:

e En la parte I, se discuten varios temas relacionados con EFTs tal y como se usan
en fisica de particulas. El capitulo 3 es una introduccién a la construccion de
EFTs y algunas ideas que las rodean, como contaje de potencias, renormalizacion
y matching. También se da una presentacion de teorias gauge no abelianas y
el caso particular de la SMEFT. En el capitulo 4 se analizan los efectos de
redefiniciones a 6rdenes superiores. Se muestra que estos no se pueden reproducir
usando solamente las ecuaciones de movimiento. También se estudia la relacién
de redefinciones con renormalizacién y matching.

e En la parte II, se presentan dos herramientas computacionales. MatchingTools,
que se introduce en el capitulo 5, es un paquete de Python que hace dos tipos de
calculos en EFTs: matching a nivel arbol y reduccion de un Lagrangiano efectivo
a una base de operadores. BasisGen, otro paquete de Python, presentado en el
capitulo 6, calcula bases de operadores para EFTs. Ambas herramientas trabajan
en un marco muy general: pueden tratar con cualquier teoria gauge no abeliana
invariante Lorentz.

e La parte III estda dedicada extensiones general del SM con nuevas particulas.
Estas se estudian usando la BSMEFT, que se introduce en el capitulo 7. Alli
se presentan las representaciones bajo el grupo de simetria del SM de todos los
nuevos campos de la BSMEFT, junto con un Lagrangiano efectivo general para
estos. En el capitulo 8, se realiza el matching completo a nivel arbol entre la
BSMEFT y la SMEFT, y se presenta el diccionario que se obtiene de este. Se dan
dos ejemplos de uso de este diccionario. En el capitulo 9, se estudia el sector de
la BSMEFT que solo contiene nuevos quarks, centrandose en el caso en el que sus
acoplamientos no son necesariamente renormalizables. Como se explica alli, los
quarks vector-like con interacciones no renormalizables tienen propiedades que
no estan presentes cuando solo se permiten interacciones renormalizables. Estas
nuevas propiedades incluyen nuevos canales de produccion y desintegracion, vy,
en algunos casos, vidas medias largas.

La mayoria de resultados presentados en esta tesis se han publicado en los siguientes
articulos: parte del lenguaje y notacion utilizados en el capitulo 3 y los resultados
en el capitulo 4 se pueden encontrar en la ref. [3]; MatchingTools y BasisGen se
han presentado en la ref. [4] y la ref. [5], respectivamente; las representaciones y el
Lagrangiano que aparecen en el capitulo 7 se han construido en las refs. [6-10]; el
diccionario y el primer ejemplo dados en el capitulo 8 se han presentado en la ref. [10];
el segundo ejemplo en el capitulo 8 se ha presentado en la ref. [11]; y los resultados en
el capitulo 9 han aparecido en la ref. [12].
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CHAPTER

Effective field theories for particle
physics

3.1 Introduction

The core idea underlying the Effective Field Theory (EFT) framework is the ob-
servation that the low-energy behavior of a physical system can be described with-
out detailed knowledge about its high-energy physics [13-16]. More concretely, to
parametrize the local quantum relativistic dynamics of a system below some energy
A, it is sufficient to use a local quantum field theory that only includes particles with
masses below A. The propagation of heavier degrees of freedom induces, in principle,
non-local couplings of the light particles. However, these non-local interactions can
be expanded as infinite towers of local ones, classified according to the strength of
their effects. Once a finite precision is set, only a finite number of such interactions
is needed to compute observables. The precision of the calculation can always be im-
proved, at the price of introducing more interactions, which increases the number of
free parameters.

This is the quantum field theory implementation of a procedure used across all
areas of physics. Whenever there is a small parameter in the theoretical description of
some physical phenomenon, a perturbative treatment of the problem can be performed.
One expands the quantities of interest as power series in the small parameter. Setting
it to zero gives the lowest order approximation. Then, corrections can be computed by
including the first terms in the series. Better approximations are produced by taking
into account more terms. In the EFTs used in particle physics, the small parameter is
usually E'/A, where E is the typical energy of the process being studied. Taking the
limit A — oo amounts to neglecting the new physics that may appear at (or above)
the finite scales.

The applications of EFTs can be classified in two main categories: bottom-up and
top-down. In the bottom-up approach, the high-energy physics are unknown, and
the purpose of the EFT is to parametrize the low-energy physics. In the top-down
case, one wants to study the low-energy regime of some theory. A simpler, more
adequate description in terms of the relevant degrees of freedom in this regime can be
constructed. In this context, the two theories are called “fundamental” and “effective”,

11
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M;_y M; My
EFT; EFT, EFT;, |

E

Figure 3.1: Tower of EFTs EFT;. E is the typical energy at which each EFT is a good
description. The M; are the masses of the particles. EFT;_; contains all the particles
in EFT; except for those with mass M;, and is matched to EFT; at the scale M;.

respectively. The parameters of the effective theory are adjusted so that the value of
an observable computed using the it matches the one obtained from the fundamental
one. This procedure is known as matching.

The ideas of EFT are deeply related to renormalization. In the Wilsonian approach
to this topic, a hard momentum cutoff is imposed to regulate divergent quantities. The
Wilsonian renormalization group evolution is given by the variation of the parameters
of the theory as the cutoff is changed. In this context, it is natural to think of regu-
larized theories as EFTs for energies below the cutoff scale. This point of view had
great influence, historically, in the acceptance of effective field theory as a well-defined
framework for describing physical phenomena. However, we will not adopt it in this
work, as it does not represent how EFTs are used in practical applications to particle
physics today [13].

Instead, in modern particle physics phenomenology, mass-independent renormal-
ization schemes are used, such as dimensional regularization with MS. EFTs become
here a necessary technical tool. Although mass-independent schemes have many ad-
vantages, they present the problem that, for energies £ much below the mass M of
some particle in the theory, perturbative expansions break down, because of the ap-
pearance of large logarithms, as log(M/E). This happens because the renormalization
group evolution towards the infrared for the parameters of the fundamental theory is
not adequate when the scale M is crossed. A solution to this problem is achieved
by matching the fundamental theory to an effective theory not including the particle
with mass M. The renormalization group evolution of the effective theory eliminates
the large logarithms. This leads to the standard practice for dealing with situations
with several relevant scales: they can be described by a tower of EFTs (see figure 3.1).
Each one of them parametrizes the physics between two consecutive mass thresholds.
The renormalization group evolution can be performed in each theory, using matching
to go from one to the next.

One important feature of EFTs is that they provide a systematic classification of
interactions according to the relative size of their effects. Each term in an effective
Lagrangian has a coefficient of the form ¢/A", where ¢ is an adimensional parameter.
For the perturbative expansion to work, ¢ must be < 4xw. The corresponding exponent
n can be derived using dimensional analysis.! At tree level, the contribution of any
diagram to some amplitude can be estimated as a product with one factor of ¢(E/A)"
for each insertion of the corresponding operator. In principle, loops can break this
direct relation, but it is recovered if a mass-independent renormalization scheme is

!Dimensional analysis arguments can be extended to include other parameters besides 1/A. See
section 3.3.
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used. In this way, EFTs provide a framework in which the contribution to physical
observables of each term in the Lagrangian is directly estimated.

Several EFTs are used to describe the different systems studied in particle physics.
In the low-energy regime some of the relevant EFTs are: heavy quark effective the-
ory [17,18], non-relativistic QCD [19,20], chiral perturbation theory [21,22], and soft-
collinear effective theory [23,24]. At higher energies, just below the electroweak scale,
the Weak Effective Theory (WET) is used [25-27]. Above the electroweak scale, one
uses HEFT or the SMEFT, to study the physics of the SM degrees of freedom. We
will the present in chapter 7 an EFT (which we call the BSMEFT) that is valid at
even higher energies, above the masses of extra particles not present in the SM.

This chapter is organized as follows: section 3.2 is a brief review of the usual
EFT construction in particle physics. In section 3.3, a general presentation of power-
counting methods is given. Section 3.4 outlines the relation between EFTs and renor-
malization. In section 3.5 a general presentation of matching is given, together with a
summary of one of the available methods for tree-level matching, which is used later
in the thesis. Section 3.6 focuses on one of the most common types of EFTs in par-
ticle physics: gauge theories. One of the most important examples, the SMEFT, is
presented in section 3.7. We conclude in section 3.8.

3.2 The effective field theory construction

This section is a review of the construction of an EFT to describe the scattering of
a collection of quantum relativistic particles at energies below some scale A. It is
assumed that their dynamics is weakly coupled. The main piece of information that
is needed as an input for the construction is the set of all relevant particles with mass
below A, which is the so-called cutoff scale.

There must be a unitary representation U of the (universal cover of the) Poincaré
group P = R* x SL(2,C) over the Hilbert space of states. The one-particle states are
eigenvectors of momentum and spin. Therefore, they can be labeled as |po), where p
is the eigenvalue of momentum and o denotes collectively the eigenvalue of spin and
possibly the particle type. There is a one-to-one correspondence between particles and
orbits of P in the space of one-particle states. Apart from Poincaré invariance, other
symmetries may be present. The Hilbert space should also be equipped with unitary
representations of them.

It is well known that quantum field theory is the suitable framework to describe
the local interactions of these particles. For each value of the label o, one introduces
a quantum field ¢ such that (0| (0) [po) # 0. We will use the symbol ¢ to denote the
collection of all fields, and index them using Latin letter indices. The implementation
of Poincaré symmetry in the space of fields requires that there is a representation p of
the Lorentz group over the target space. Then, the action of a Poincaré transformation
(L, a) over the fields ¢ is given by

U(L,a)¢' (z)U(L,a)’ = pi(L~1) ¢ (Lx + a). (3.1)

All observed elementary particles have spin < 1. The field-theoretical description of
particles with spin 0 or 1/2 is straightforward: they correspond to scalar and spinor
fields, respectively. Massive spin-1 particles are described by vector fields. For the
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massless case, gauge invariance must be introduced. Massive spin-1 particles can be
embedded in a gauge theory through the Higgs mechanism.? Higher-spin particles
can also be incorporated in the formalism described here. In general, those that are
massless will also require gauge invariance.

A local operator at some spacetime point x is defined as a polynomial in the fields
and their derivatives evaluated at x. The name local operator (or simply operator) is
also used to refer to functions that assign, to every spacetime point x, a local operator
at x. We make use of this last definition in this text. The set of all local operators
naturally has the structure of an algebra. An important subalgebra is that of invariant
operators, which are those that are invariant under the symmetry group, including the
gauge group, if present. A local action is the spacetime integral of a local invariant
operator, whereas a quasi-local action is an infinite sum of local ones. The invariant
operator that appears inside the integral of the action is known as the Lagrangian
density, or simply the Lagrangian.

Each operator that is a monomial in the fields represents a local interaction of the
corresponding particles. Because there is an infinite number of them, an organizing
principle is needed to determine the relative importance of each interaction. Any EFT
should be equipped with a splitting of the algebra A of local operators into a direct
sum

oo
A= P A. (3.2)
N=Nmin
of finite-dimensional vector spaces A,,. The subspace of invariant operators inherits
this structure: A™ =@,°  A™, where the A are finite dimensional. Then, it is

prescribed that the action of the EFT is of the form

Mmax

Sl = Y. > Neo [ dw0(e), (33)

N=nmin O€By

where B,, is a basis of A™ A = 1/A is the inverse of the cutoff scale and the co are
adimensional coefficients, known as Wilson coefficients. The splitting of the algebra
of operators together with the prescription shown in eq. (3.3) is known as a power-
counting rule, because it assigns a power of A to certain operators. An insertion in
some Feynman diagram of a term of the action containing a factor of A" will give a
factor in the diagram of order (E/A)™ or less, with F representing here the low-energy
scales involved in the process.® Therefore, if one wishes to produce predictions up to
a finite precision ¢, it is sufficient to choose nymax ~ log(e)/log(E/A) for the action
to parametrize with full generality the physics of interest. To summarize, an EFT is
defined by the following elements:

1. The particle content, including the spin of each particle. Equivalently, the field
content and representation of the target space under the Lorentz group can be
given.

2. The gauge group and global symmetry group, if they exist, together with their
representation over the space of one-particle states, or, equivalently, over the
target space of the fields.

2See section 3.6 for a review of gauge theories and the Higgs mechanism.
3This is preserved at the quantum level only if a mass-independent scheme is used. See section 3.4.



3.2. THE EFFECTIVE FIELD THEORY CONSTRUCTION 15

3. The power-counting rule.

Once these elements are provided, one can construct a general effective action as in
eq. (3.3). For any finite precision ¢ one can find the correct ny.,. The number of free
parameters of the theory, the Wilson coefficients cp, is then finite. One can use the
experimentally measured values of any complete set of observables to fix the values of
the cp. Then, predictions for other observables can be computed.

The purpose of an EFT as defined here is to parametrize the scattering amplitudes
of the particles being considered. Once the general form of the effective action is set,
scattering amplitudes can be computed in terms of the Wilson coefficients. We give
below a brief presentation of how this is done. It is convenient to define the generating
function, which, for a given action S, local operator F' and source J is:

Z(S,F[J] = /D(b exp {iS[p]| + J.F(9)}, (3.4)

with the normalization Z(S,F)[0] = 1. We use here the unconventional notation
Z(S, F) with explicit parameters S and F because of its convenience for the discussion
in this chapter and the next one (chapter 4). If F(¢) = ¢, we will just write Z(5).
We ignore renormalization for the moment. We follow the convention of indicating the
adjoints of complex fields with distinct labels ¢, in such a way that a sum over ¢ includes
both a field and its adjoint, if not real. Furthermore, we use the compact DeWitt
notation ¢® = ¢'(z), with repeated collective indices indicating also integration over
the space-time variables.

The functional derivatives of Z(S, F') with respect to J, at J = 0 are the Green
functions for F' in the theory defined by S. The momentum-space Green functions G
are given by

o | | A
G(S, F)' " (p1,...,pn) = agl(pl)...a;’;(pn)d ( )

Joy - 0d (3:5)

where a},(p) = d5e*. Similarly, connected Green functions are derived from the
function W (S, F)[J] := —ilog{Z(S, F)[J]}.

An operator F* such that (0] F*(0) |po) # 0 is called an interpolating field for
particle o. Interpolating fields are important because scattering amplitudes can be
obtained from their Green functions. It is a fundamental property of such functions
that they present poles when the sum of some of the momenta goes on-shell; that
is, when the sum approaches the mass of the corresponding stable particle. Unstable
particles also correspond to poles of Green functions, but the points in momentum
space at which they are located have a non-vanishing imaginary part. New particles
are often discovered through this property: in a collider experiment, one can study
the dependence of the cross section on the invariant mass of the final state. If a bump
appears in this distribution, it is interpreted as the effect of a pole in the complex
plane, corresponding to some new unstable particle. The poles of stable particles are
of course experimentally inaccessible, but they usually present measurable tails.

Scattering amplitudes are obtained from Green functions using the LSZ reduction
formula. The former are, up to some constant factors, the residue of the later when all
external momenta go on shell. Specifically, the LSZ formula is the following asymptotic
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relation:
G(S7 F)ilmin (pl; vy Pry TPr415 -0 4y _pN)
~ 3 H (prox| F*(0) |0) H (0 7+ (0) [prow)
01,00 \k=1 p% a mi k=r+1 pz - mz

X <pr+10_r+17 s 7pn0_n‘ S(S) ’plah cee 7p7“0r> ) (36)

as all momenta p; approach the physical mass m?2 of some particle for which F is an
interpolating field. Here, S(S) is the S matrix (the infinite time evolution operator)
for action S. Notice that this formula allows for the computation of S-matrix elements
(scattering amplitudes) (p,+10,41,...|S(S)|p101,...) independently of which specific
interpolation field F' is used. We will return to this topic in section 4.2, as this is one
of the key results that make EFTs invariant under field redefinitions.

3.3 Power counting

The EFTs of interest often depend on several parameters, which can be taken to be
the cutoff scale A and additional dimensionless quantities, such as coupling constants,
ratios of masses and 47 factors associated to loops. The EFT is organized as a multiple
power series in A = 1/A and certain combinations of the parameters, which are assumed
to be small (compared to the probed energies, if dimensionful). In the following we use
7 to refer to A and any of these combinations. For example, chiral perturbation theory
is arranged as a power series in A with A = 1/(47 f) and f the pion decay constant. One
could consider a simultaneous expansion in 1/f at each order in A, but this expansion
is conveniently resummed using the underlying structure of an spontaneously broken
theory. To organize systematically these expansions, it is important to have a power-
counting rule that assigns a number N, (O) to each operator O and each parameter 7.
Then, the “natural” coefficient of an operator O is given by

Co~ [[n™. (3.7)
n

For instance, in chiral perturbation theory, chiral counting dictates that N,(O) is
equal to the number of derivatives in . In some cases it is convenient to include
in the specification of the operator not only fields and derivatives but also powers of
particular coupling constants or masses, which are treated as spurions and taken into
account in the counting. To guarantee the stability of the loop expansion, the power-
counting rule should be such that all the diagrams that can generate an operator give
a contribution that is similar to or smaller than its natural coefficient. In particular,
this requires

Ay(0102) = Ay(01) + An(Oy), (3.8)

where A, (O) = N, (O) + ¢, for some ¢, independent of the operator.

A simple power-counting rule for A is derived from the canonical dimensions A(O)
of the operators O. One chooses A)(O) = A(O) and ¢\, = 4, so that N,(O) =
A(O) — 4. This is just dimensional analysis: the energy dimensions of each operator
are balanced by powers of energy scale A, making the action adimensional. The
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canonical dimension of an operator that is a product of fields and derivatives is the
sum of the dimensions of the factors. Derivatives have A(9,) = 1. The dimension of
any field can be derived from its kinetic term.

Naive dimensional analysis (NDA) [28-30] is a power-counting rule that extends di-
mensional analysis. It is appropriate in many circumstances and enjoys nice properties.
In this case the actual numerical coefficients are expected to be approximately equal
to their natural values when the UV completion is strongly coupled, and smaller than
them when it is weakly coupled. Approximate symmetries or tunings in the fundamen-
tal theory can also give rise to smaller coefficients. Certain assumptions on the UV
theory allow to incorporate these suppressions systematically in the power-counting
rules [31].

3.4 Renormalization

The path integral in eq. (3.4) is a formal object without a well-defined meaning. As
is well known, naive calculations at the quantum level give divergent results and a
renormalization procedure is needed to obtain finite quantities. A renormalization
scheme R is a regularization for the divergent integrals that appear, together with
a substraction scheme: a prescription that changes the original action in a certain
way, usually by adding new terms called counterterms. Schematically, eq. (3.4), gets
modified into:

2(5.P)J) =l | Do exp (R(S)lo] + . F(0)). (3.9)
where € is a parameter known as the regulator, fRe D¢ is the regularized path integral
and R.(9) is the action including the counterterms prescribed by the renormalization
scheme R. The renormalization scheme should ensure that the limit in eq. (3.9) gives
a finite result.

Renormalization introduces a new dimensionful parameter: the renormalization
scale . One is free, in principle, to choose any value of p and then proceed by
fitting the cp to experimental data. However, perturbative expansions are typically
improved when g is of the order the energy scales F involved in the calculation,
because the expansion parameter usually contains factors of log(E/u). Therefore, it is
useful to have a way of translating the values of co from one renormalization scale to
another. This is achieved by solving the renormalization group equation, which is the
requirement that physical quantities do not depend on . This can be implemented
in several ways. A possibility is to impose

d

duZ(S’ F)[J] =0. (3.10)
This is to be understood as a differential equation over the cp, which are seen as
functions of p. Because Z(S, F') is not a physical object, eq. (3.10) is only a sufficient
condition for physical quantities to be independent of u. As we will see in chapter 4,
different actions can give rise to the same scattering amplitudes. Thus, another pos-
sibility for the implementation of the renormalization group is given by the equation
dS(S)/du = 0, together with some condition that fixes a specific action among those
that satisfy it.
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The beta functions are defined as f.,, := dco/dlog u. When they do not depend on
1, the renormalization scheme is said to be a mass-independent scheme. Such a scheme
has the advantage of preserving the power counting of the EFT, so that the operators
with a coefficient of order \" will always produce effects of order (E/A)". An example
of a mass independent scheme is dimensional regularization with minimal substraction
(MS) (or the more convenient MS), which is widely used in particle physics.

The usage of a mass independent scheme comes with some disadvanges. The main
problem is that, for a renormalization scale y much below the mass of some particle
in the theory, pertubative expansions are broken, because factors of large logarithms
log(M /) appear in the expansion parameters. The solution is to find an EFT which
does not contain the particle of mass M, but reproduces the physical predictions of
the original theory for energy scales £ < M. We will see how this is done in the
next section. The renormalization group evolution of the low-energy effective theory
eliminates the large logarithms.

3.5 Matching

3.5.1 General considerations

In a matching calculation, one relates two theories by requiring that they produce the
same predictions in some range of energies. An energy scale is fixed, separating what
we call the high and low-energy regimes. The two theories that are matched are called
the “fundamental” theory and “effective” theory. The fundamental theory is supposed
to be a valid description of both the high-energy and the low-energy regimes, at least
in principle. The effective theory is only valid for low energies, and only contains
the relevant light degrees of freedom that are present in this regime. The matching
condition is that the effective theory should give the same physical results as the
fundamental one, but only in its range of validity. We make this requirement and its
variations more precise later in this section.

One could wonder why is it that matching is a useful tool, as it produces an
EFT (the effective theory) that merely reproduces the low-energy behavior of the
fundamental one, while the information about its high-energy regime is lost. Despite
this fact, performing matching calculations may provide many practical advantages.
First, if one is going to concentrate only on the low-energy physics, it is often the case
that the effective description is simpler and generally more convenient, as it contains
a smaller number of degrees of freedom and parameters. Second, at the quantum
level, it becomes necessary to employ an effective theory to remove large logarithms
in mass-independent renormalization schemes, as explained in section 3.4. Finally, it
is possible that the experimentally accessible physics belong to the low-energy regime
and the correct fundamental theory is unknown. The effective theory then becomes
a convenient way to parametrize experimental results. Different fundamental theories
can be matched to it, and as a result their parameters become related to experimental
data.

Let Syy be the action of the fundamental theory, which contains a set of light fields
¢ and heavy fields ®. That is, there is some scale A separating the masses of the fields
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¢ and ®. An effective action S for the light fields can be defined by requiring that
Z(Suv)lJ] = Z(S)[J], (3.11)

where the Z(Syy)[/] should be understood as having source terms J,¢* only for the
light fields ¢. If sources were added for the heavy fields, the effective action would also
depend on them. Then,

exp (iS[¢]) = /ch exp (1Suv (@, ¢]) - (3.12)

The effective action S can be found by two equivalent methods: A) requiring that
eq. (3.11) is satisfied, which amounts to matching the off-shell 1PI functions of the ef-
fective theory to the off-shell one-light-particle-irreducible functions of the fundamental
theory; B) integrating out the heavy degrees of freedom explicitly, i.e. computing di-
rectly eq. (3.12), for instance using functional methods. In section 3.5.2, an algebraic
method for tree-level matching belonging to class B is presented. This is the method
that will be used later in this thesis, in chapters 5 and 8.

The action S, obtained by any of these methods is non-local. However, a local
effective action can be constructed to approximately reproduce the function Z(S).
The approximation is controlled by the dimensionful parameter A = 1/A. Given a
(non-local) effective action S, we define Lﬂn as the local action containing terms of
order \" or less and such that

Z(S) = Z(|5] )+ O(\"™). (3.13)

The exact action S and generating function Zs can be viewed formally as infinite
series in A:

Sl6] =Y NEdel  ZE)) = A Z(S)ml ], (314

Note that each S, is local, as adding derivatives to an operator increases its order in .
But because S is non-local, it turns out that knowing Sy for £ < n for any given n is

not enough, in general, to compute Z(.5),,. Even if any sum of a finite number of terms

with k& > n gives a vanishing contribution to Z(S),, the tail D ksN MESy of the series
may contribute to it for arbitrarily large N. Therefore, the naive truncation LS‘JH of

S to order n does not coincide, in general, with the local effective action S = (Sh’
which gives the correct approximation of Z(S) to order n.

In the saddle-point expansion, this can be understood in the following way [32].
The saddle-point configuration, which gives the effective action at the tree level, is in
practice approximated by a truncated expansion in A, say to order N. Then, besides
the usual quadratic and higher-order terms, the heavy-field expansion of the action
about this non-exact saddle point includes linear terms suppressed by AN¥*1 and higher
powers of A. Despite this suppression, such terms must be taken into account in the
integral of the heavy fields ®. Indeed, the quantum corrections may give contributions
to orders k < N, independently of how large N is. The essential reason is that loop
integrals regularized with dimensionless regulators probe all energy scales, including
those higher than A. A way of finding these contributions within approach B, based
on the method of regions [33], has been proposed in [34]. In the matching approach
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A, correcting LSJH to find {g-‘n is not really an issue: in practice, the matching
is performed directly between Syy and S = (SM at some given n. The necessary
contributions then appear automatically from diagrams in the fundamental theory
involving loops of both light and heavy fields [32, 35, 36].

A renormalization procedure is required to make sense of all these equations. The
matching can be performed at the regularized level (with the same dimensionless
regulator). This leads to a regularized effective action that can be perturbatively
renormalized. But it makes more physical sense to match the renormalized theories,
as at the end of the day the aim of matching is to express the renormalized parameters
of the local effective action S as functions of the renormalized parameters of Syy. In
method B, this can be achieved by adding counterterms to the UV action but refraining
from removing the regulator; then the necessary counterterms in the effective theory
will be generated (in the same regularization and renormalization scheme) during the
matching procedure. The UV behaviours of the fundamental and effective theories are
different, and so will be the counterterms. In the standard approach to matching within
method A, the renormalized Green functions of the fundamental and effective theories
are compared (with removed regulators). This allows great flexibility, as neither the
regularization method nor the renormalization scheme need to be the same in both
theories. The relation between renormalized parameters depends on these schemes. To
preserve this relation, the effective theory should be used in the same scheme used for
the matching. In this regard, observe that, because the effective theory is local, all its
renormalized couplings and masses can be modified by finite counterterms. Hence, by
adapting the scheme to each UV theory, all the UV information in the renormalized
parameters of the effective theory can be erased. Scheme independence, however,
ensures that the calculations done in such a scheme (which will depend on the UV
parameters) will reproduce to the required order the low-energy predictions of the
corresponding fundamental theory. In practice, it is preferable to see this information
explicitly in the renormalized parameters, so a universal renormalization scheme, such
as MS, should be used in the effective theory.

3.5.2 An algebraic method for tree-level matching

At the tree-level, eq. (3.12) becomes S[¢] = Syv|[d, P.(¢)], where @, is the solution to
the (classical) equation of motion

0Suv
Al = 0. 1
21, ,(0)] = 0 (315)
The UV action splits as
1 :
Suv[o, @) = —5Qap®° @7 + Sy (0] + St [, @), (3.16)

where @) is some differential operator not containing any fields, ng is the part of
the action that only depends on ¢ and S contains only interaction terms. Then,

eq. (3.15) can be solved iteratively as

int

Pea@) =0, D (6) = (@ NP EW g () (317)
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The operator @) contains terms corresponding the masses M (or masses squared M?) of
the heavy fields. Its inverse can then be expanded in powers of 0,/M. Each iteration
of the procedure outlined in eq. (3.17) induces a correction @, 41 — @) containing
only terms of canonical dimension higher than those in ®.;. In an EFT with power
counting based on the canonical dimension of the operators, this means that the order
of the corrections in the expansion in powers of A increases with k. The expansion
can be truncated at any desired order by reaching a sufficiently high value of k. The
expression for @, obtained in this way can be plugged into Syy, giving a truncated
expansion in A for S. Since we are working at tree level, we do not need to worry
about the subtleties of truncated effective actions explained in section 3.5.1.

The procedure described here can be applied in a purely gauge-covariant manner.
In eq. 3.16, terms in the action containing covariant derivatives may be split into the
quadratic and interaction parts. If the full covariant derivatives are kept inside @),
all the objects in eq. (3.17) become covariant. We collect here an explicitly covariant
form of the equations of motion (ready for the application of eq. 3.17) for the following
types of fields:

e Scalars:
> . D §Sint
=) (-1) T 5ot (3.18)
n=0
e Fermions: -
1 OSTA
F= (z’lDF+ 5?) . (3.19)
e Vectors:
_ 1  on OSUY _ DDy —nuD?
V——W;;R <o where (RW), := e W, (3.20)

These equations are used in the implementation of MatchingTools, the computer tool
for tree-level matching introduced in chapter 5. We will also use them in the construc-
tion of the tree-level UV/IR dictionary presented in chapter 8, which is computed both
by hand and using MatchingTools.

3.6 Gauge theories and the Higgs mechanism

Most of the EFTs used today in particle physics phenomenology are gauge theories.
They are used to incorporate spin-1 particles in a manifestly Lorentz-invariant quan-
tum field theory. Vector fields have the correct transformation properties under the
Lorentz group to describe them. However, the naive introduction of a vector field
for each such particle presents some problems. First, vector fields seem to contain
longitudinal polarizations that massless particles do not have. Second, the longitu-
dinal polarizations of massive vector fields have interactions that break perturbative
unitarity at energies not much higher than their masses, unless some method is used
to restore it, such as the Higgs mechanism. A convenient description of both massless
and massive vectors can be given in terms of gauge invariance.
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We briefly introduce now the gauge theory construction and return latter to the
issue of describing spin-1 particles. Let G be a reductive Lie group. For each of its
simple or abelian factors G, consider a collection of vectors Aﬁ“, one for each generator
t** of Gj. It is convenient to define the Lie algebra-valued field AF = t** Ay The
corresponding field strength tensors are defined as F, := 9, A} — 9, A}, + igi[Af, A}],
where the g are free parameters known as the gauge coupling constants. Other fields
1 can be present. A representation py, of Gy, over their target space should be specified.
A gauge transformation is defined as a function €2 assigning, to each spacetime point
x, an element € (x) of every Gy. Its action on the objects defined so far is given by

l

Al QAR — ngkaMQ,;l, (3.21)
Fjg — ad(Q)gij, (3.22)
V' = py ()57, (3.23)

where ad is the adjoint representation and the components F) Zflf‘ of the field strength
tensor are defined by F, = F¥t*. A theory that is invariant under this set of space-
time point-dependent transformations is said to be gauge invariant. The group G is
called the gauge group, the fields Al’j“ are the gauge fields, etc. A gauge-covariant
operator is a multiplet of operators O" that, under a gauge transformation €2, trans-
forms as O p@(Q)§Oj , for some representation pp of G. Both field strength tensors
and matter fields are examples of covariant operators. Let p(AF) be the image of A
under the Lie algebra representation corresponding to p. The covariant derivative of
a covariant operator O is defined as

D,0O" := (aﬂa;l +iY gk po (Aﬁ)j,) o’ (3.24)
k

Covariant derivatives satisfy the basic properties of derivatives: linearity and the Leib-
niz rule. They have the advantage that, for any covariant operator O, the derivative
D, O is also a covariant operator with the same representation pp. The Lagrangian
of any gauge-invariant theory with matter fields can be written in terms of the field
strength tensors, matter fields and covariant derivatives only.

Gauge theories can be used to describe both massless and massive spin-1 fields. In
principle, a gauge transformation can be chosen so that the longitudinal polarizations
of the gauge fields are eliminated. Thus, they contain the right number of degrees of
freedom needed to describe massless particles. Moreover, a naive mass term A, A" is
forbidden by gauge invariance. It is therefore clear that massless spin-1 particles can
be directly incorporated through gauge fields.

On the other hand, it seems at first sight that the gauge theory construction cannot
accommodate the massive case. This impression turns out not to be true. Consider a
gauge invariant Lagrangian and suppose that we want to give non-zero masses to some
subset of the gauge fields, denoted by AZ, that correspond to the generators t% of a
coset G/ H for some subgroup H of the gauge group G. One possibility is to introduce
extra terms in the Lagrangian, including the mass term A% A% but possibly others,
that explicitly break gauge invariance because of the non-covariant appearance of AZ.

4Summation over k is not implicit in this section
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An equivalent gauge invariant description is obtained by adding a new scalar field ga
for each t%. They are collected in a G /H-valued covariant operator U = ¢"*'// (with
f a constant with dimensions of mass) that transforms under gauge transformations
as U — QU. All occurrences of Az can then be rewritten in terms of u, = U'D,U.
For example, a gauge-invariant mass term is then given by

Lonass = f* tr(u,ut). (3.25)

In this way, the gauge bosons acquire a mass of the order of f. A gauge transformation
can then be chosen to set the scalar fields €% to zero, and then the vector fields have
a non-vanishing longitudinal component. This is known as the unitary gauge. In this
context, the scalar fields are said to be “eaten” by the gauge bosons. Alternatively,
one can go to the gauge in which the longitudinal components of the vector are zero,
but then they absorbed in non-zero scalar fields.

In this gauge-invariant version of the naive implementation of massive vector fields,
it becomes clear that we are dealing with an EFT with cutoff scale not far away from
the masses of the vectors. The interactions of the longitudinal components, which
we can identify with the £%, always contain derivatives. They appear together with
inverse powers of f, which balance the energy dimensions of the corresponding term in
the Lagrangian. For this reason, perturbation theory breaks down at energies around
At f.

The breaking of the perturbativity in this setting can be traced back to the non-
linearity of the realization of G in the space of scalar fields. The Higgs mechanism
provides an extension of this model that realizes G linearly, restoring perturbativity
at the scale 47 f, and allowing for an arbitrary cutoff scale. The scalar sector must
contain a field multiplet ¢ in a linear representation of G. Let H be the subgroup
of G that leaves invariant any non-zero ¢. The slices of the target space of ¢ for
constant radial component |¢| will form (at least locally) the manifold G/H. The
scalar potential V' (¢) must have a degenerate set of minima given by the equation
|¢| = v, for some constant v with dimensions of energy. A vacuum expectation value
(vev) {|¢|?) = v? is generated. This is why this mechanism is sometimes referred to
as “spontaneous symmetry breaking”. With these elements, one can construct a mass
term for the gauge bosons corresponding to the generators of G/H as

L = Dy Do (3.26)
Then, their masses are of the order of the vev v of ¢. The relation with the gauge-
invariant approach not implementing the Higgs mechanism can be seen by decomposing
¢ = (14 h/v)Ud¢o, where U an element of G/H, h is a scalar with zero vev and ¢, is
a constant fixed at a minimum of V. Defining, as before u, = U'D,U, we have that

L D v tr(u,ut). (3.27)
If we were dealing with a global symmetry, the Goldstone bosons would be inside U.
In this setting, they correspond to the scalar fields £% that are eaten by the gauge
bosons to get mass. Thus, the £ are called “would-be Goldstone bosons”. It can
be proven that, because they are collected together with the extra degree of freedom
h in a linear realization of GG, the theory is regulated so that the cutoff is no longer
restricted to be near the masses of the vectors.
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Name Flavors Symbol(s)  Poincaré irrep ~ Mult.
Photon — v/ A massless spin 1 1
Gluon - g massless, spin 1 8
W= boson - W= massive, spin 1 2
Z boson - A massive, spin 1 1
up-type quarks up, charm, top u, ¢, t massive, spin 1/2 3
down-type quark down, strange, bottom d, s, b massive, spin 1/2 3
charged leptons electron, muon, tau e, [, T massive, spin 1/2 1
neutrinos e, |, T neut. Ve, Vy, V- Massive, spin 1/2 1
Higgs boson - H massive, spin 0 1

Table 3.1: Known elementary particles together with their irreducible representa-
tions under the Poincaré group and multiplity of their possibly degenerate one-particle
states.

3.7 The effective theory approach to the Standard
Model

The Standard Model (SM) of particle physics is the theory that describes the inter-
actions of elementary particles. Since its proposal in the decade of 1960 [37,38], all
the new particles it predicted have been discovered: the tau lepton [39], the bottom
quark [40], the electroweak gauge bosons [41,42], the top quark [43,44] and the Higgs
boson [45,46]. The SM explains most of their observed interactions.

A list of all elementary particles known today is presented in table 3.1. Some of
them appear in degenerate mass eigenstates, signaling the presence of the SM sym-
metries. All the fermions come in three copies, known as flavors or generations, which
differ only in their masses. The measured interactions of these particles fit well within a
gauge theory with gauge group Gy := SU(3)xSU(2)xU(1). The sector related to the
SU(3) subgroup is called quantum chromodynamics (QCD), while the SU(2) x U(1)
part corresponds to the electroweak interactions. The electroweak group is broken to
U(1)g. The only unbroken generator is () = T'+ Y, where T is the SU(2) isospin and
Y is the original U(1) charge, the hypercharge.

The fields that create the elementary particles in table 3.1 can be grouped in
irreducible representations (irreps) labeled as (C,T)y, where C' is the SU(3) irrep, T
is the SU(2) irrep and Y is the hypercharge. The 8 degenerate gluon states are the
SU(3) gauge bosons. The SU(2) and U(1) gauge bosons W¢ and B, are identified in
the following way:

_92ut 94

1
1_ & st - 3
W, = Q(WM + W), W o (g')2’ (3.28)
2o L —w _ =92t 94
W= \/§(Wu -W,), B, = e (3.29)

where g and ¢’ are the gauge coupling constants of SU(2) and U(1), respectively. The 3
degenerate quark states of each kind are collected into SU(3) triplets. The left-handed
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components of all the fermions belong to SU(2) doublet, whereas their right-handed
parts are just singlets. Explicitly:

e The 3 generations of left-handed quark form (3, 2); /s multiplets as

U c t
Qle(di>7 QL2:(SE), ng:(bi)' (3.30)

e The 3 generations of left-handed lepton form (1,2)_;/, multiplets as

Vel VuL Vrr
= "2 ) he= ) = ). 3.31

e The 3 generations of right-handed up-type quark form (3,1),/5 multiplets, cor-
responding to right-handed part of the up-type quark fields: ug, cg and tg.

e The 3 generations of right-handed up-type quark form (3, 1)_; /3 multiplets, cor-
responding to right-handed part of the up-type quark fields: dg, sg and bg.

e The 3 generations of right-handed leptons form (1,1)_; singlets, corresponding
to right-handed part of the lepton fields: eg, ugr and 5.

Finally, the Higgs boson is collected in a (1,2); o multiplet together with the would-be
Goldstone bosons of electroweak symmetry breaking, corresponding to the longitudinal
components of the massive electroweak bosons.” The conventional parametrizations
of this Higgs doublet are

_ 1 o' +ig* \ _v+H [0
5 (i) () e

where v is the vacuum expectation value of ¢, given by (|¢|*>) = v?/2 and U is a
G /H-valued field. The representations of all the field strengths and matter fields of
this gauge theory under the Lorentz group and Ggy are shown in table 3.2.

The SM can be thought of as an EFT for the degrees of freedom presented here, with
some unknown cutoff A. A simple power counting based on the canonical dimension
of the operators can be implemented. As explained in section 3.3, each operator O
with a well-defined canonical dimension A(Q) is assigned a power N, (O) = A(O) — 4
of A =1/A. The complete Lagrangian is therefore given by

1

Lsverr = Lsm + A

1

5 6)

Lovmrr + 33 Lsvmer + - (3.33)
where Lg\ contains operators of dimension 4 or less, while Eg&EFT contains only
operators of dimension d. The limit A — oo gives the leading order approximation of
this EFT. It turns out that this approximation is enough to fit most of the current

°An alternative, more general effective theory for the SM particles is the Higgs EFT (HEFT), in
which the Goldstones and the Higgs are treated independently. Thus, Ggy; is non-linearly realized in
its Goldstone sector. The SMEFT is a particular case of the HEFT in which relations between the
HEFT parameters are induced by the fact that the Higgs and Goldstone bosons belong to the same
multiplet. A basis for the HEFT with up to four derivatives has been developed in [47,48].



26 CHAPTER 3. EFFECTIVE FIELD THEORIES FOR PARTICLE PHYSICS

Name Lorentz irrep Ggyy irrep

G (1,1) (8,1)o
W;w (17 1) (172)0
Bw/ (17 1) (17 1)0
qLi (1/2,0) (3, 2)1/6
lLi (1/2,0) (1,2) 12
URi (0,1/2) ( ,1)2/3
dg; (0,1/2) (3,1)_1/3
€Ri (0,1/2) (1,1)4
¢ (070) (17 2)1/2

Table 3.2: Representations of field strengths and matter fields in the SM under the
Lorentz group and the gauge group Ggu.

experimental data in particle physics. It is customary to use the name “Standard
Model” for the theory obtained from this limit, whereas the corresponding EFT for
finite cutoff is known as Standard Model EFT (SMEFT). The SM Lagrangian Lgy is
then

1 v 1 a a v 1 v
LG G = QWL W — By, B
i Pl + qrii P qui + erii Peri + tigi i Pups + drii P dpi+

+ (D) D6 = V() = (i emidle; + s dpicar; + iy tridlar; +hc.) .
(3.34)

Lovi=—

As usual, ¢ = i0y¢* denotes the SU(2) doublet of hypercharge —1/2. The Higgs scalar
potential is

V(¢) = —p3 6] + Mo 0] (3.35)

There are 18 free parameters in this Lagrangian: 3 gauge coupling constants, the 2
parameters p and A\ of the potential, and 13 parameters in the Yukawa sector. The
counting of parameters in the Yukawa sector should be done after fixing a basis in
the space of flavors of the different fermion multiplets. A priori, there are three 3 x 3
matrices of Yukawa couplings. A change of basis can always performed so that they
take the form

y© = diag(ye, Yu, ¥r), (3.36)
yd = diag(yda Ys, yb)7 (337)
v = Vi diag(Yu, Yo, v1), (3.38)

where the y; are real parameters and Vg is a unitary matrix, known as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, which can be parametrized by 3 mixing angles
012, 013, O23, and a CP-violating phase 9.

The vev of the Higgs is related to the Higgs potential parameters as v = H¢/\/)‘_¢~
The masses of all the fields can be obtained by plugging eq. (3.32) into eq. (3.34),
keeping only quadratic terms, and diagonalizing them. The masses of the neutrinos
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are m, = 0. The mass of any other fermion ¢ is given by my, = yuv/ V2 where Yy 18
the corresponding Yukawa coupling. The mass of the Higgs is v/v/2. The masses of
the vector bosons are

1 1
my = §gfu, my = 5\/92 —+ (g’)Qv, ma = mg = 0. (339)

The SM is a very successful theory, which is able to explain most of the experimental
observations in elementary particle physics. However, it is known that it leaves some
important fundamental phenomena unexplained. The most obvious problem is that
neutrinos are predicted to be massless, while they are known experimentally to be
massive. The lack of a description of dark matter and gravity are other issues with
the SM, if it were to be the fundamental theory of nature. All this evidence strongly
suggests the existence of new degrees of freedom that have not been discovered yet.
The scale at which they can resonantly produced sets a finite cutoff for the SMEFT
(unless the new particles are light, that is, at or below the electroweak scale, in which
case the SMEFT is clearly not a complete description of all elementary particles in
this regime).

A wide variety of UV completions of the SM have been proposed. Among then,
there are Grand Unification Theories (GUTs) [49], low-energy supersymmetry [50],
composite Higgs models [51], extra dimensions [52,53], and many others, each with
different sets of motivations and predictions. Thus, an experimental or phenomenolog-
ical analysis that considers every individual UV completion in a case by case basis in
impractical. Also, the real UV model could be very different from any of the proposed
ones. Thus, it is convenient to use the SMEFT, which parametrizes the low-energy
regime of any these new physics models through higher-dimensional operators.

As described in chapter 4 and specially in section 4.5.1, it is useful to define a com-
plete set of independent operators, known as a basis, in terms of which the Lagrangian
must be written. In tables 3.3, 3.4 and 3.5, a basis operators of dimension 6 or less is
presented (excluding those that are quadratic in the fields). This is the basis that will
be used in this work. It was defined in ref. [54], refining the proposals of refs. [55-58].
We use the notation specified in appendix A.

The presence of higher-dimensional operators modifies the SM interactions and
introduce new ones. The first correction to SM physics comes from dimension 5 oper-
ators. Up to flavor indices, there is only one operator of dimension 5: the Weinberg
operator, listed in table 3.3. Its most important effect is, remarkably, the introduc-
tion of neutrino masses. Operators of dimension 6 are next in importance. There is
large number of them, with a wide variety of effects. They have become nowadays
a standard tool for parametrizing new physics effects in a model-independent way.
Currently, many of the coefficients of dimension-6 operators in the SMEFT have been
constrained using experimental data [59-81].

3.8 Conclusions

In this chapter, we have reviewed the theoretical framework that serves as a basis for
the work presented in the rest of the thesis: the EFT construction. We have discussed
some of the ideas that surround it: power counting, renormalization and matching.
We have also introduced the SMEFT, the EFT that parametrizes the interactions of
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Operator Notation
(¢70)"  Ou
§R¢T1L Oye
Dim. 4 dequL Oyd
'aquTQL Oy“
Dim. 5 [£¢*¢Tl, O

Table 3.3: Operators of dimension four and five. in the SMEFT.

Operator Notation Operator Notation
B (levale) (Ieytln) O
(LL) (LL)  (Gvuqr) (" QL) O (@ W00tr) (@7 0aqr) Ol
H 1 - _ 3
(le) @tar)  O) (lvuoals) (@ ouqr) O
(Enveer) (exr"en) Ou ]
(RR) (RR) (BRwr) (@ ur) - O (dryudr) (dry"dr) O
T Irytdg) O T dpy"Tadg) O
(UR%UR)( R R) ud UR% AUR) (7R'Y A R) ud
(eryuer) (@py'ur)  Oey (ervuer) (dry'dR) Oea
(lLyulr) (Erv*er) O (Gryuar) (€ry"er) Oge
(LL) (RR) (levule) (@ry*ugr)  Ou (lLvulr) (dry*dR) O
(@3pas) (@ny"um) O (w7Taqr) (@ry*Taur) O
(qrvuqr) (dr*dr) (’);d) (@7 Taqr) (dry*Tadr) Oéfz)
(LR) (RL)  (ler) (drar)  Ocaq
LR (LR) \drur)ios (qrdr)" O(i)qd (quTaur) ios (qrTadr)" O(i)qd
( )( ) (l_ . _ T Ogl) I . = v T 033)
LeR) 1092 (qLUR) lequ ( LUuVeR) 102 (qLU uR) lequ
EABC((dCA )()qL( ZfézlL% Ouduq
. : eapc (T 09qr ) (5 er)  Ogqu
B-violat -
viotatiig eape (d5uf) (W57er)  Oguu
€aBc(102)as(102) gy QEAO‘(JEB) LCU% Ouqq

Table 3.4: Basis of dimension-six operators: four-fermion interactions. Flavor indices

are omitted.
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Operator Notation Operator Notation
i CaWVEWEIWEE Oy car VWP R Oy
fapcGRrGErGSH Og fABcGA”GBpGC“ Oa
% (¢¢)” Oy
¢'D? (67¢) O (67¢)  Ouny (6'D,u0) (D) ¢)  Oup
D2 ? (¢70) (ILder) Oes
(6'0) (@odr)  Ous (¢'0) (ur)  Ous
¢' ¢ B, B Oy ¢ ¢ B, B 0,5
X242 PToW, Wer Osw Prow, wanr Ogwr
$10, oW B Oy $ToadWe, B Ouip
TOGA,GA Oy PtoGA,GAR Ouc
(loteR) ¢B  Ocp (lotveg) o®oWe, O
w2x¢ (gLo—wjuR) ¢Buu OuB ( UW/ ) OuW
(qro"dr) B, Oup (qro*dg) o® Oaw
(Gro*Taug) G5,  Ouc (qro*Tadr) ¢G Ouc
<> _ _
(¢ngu¢) (1) OF (qbwD;(p) (Irtoas) O
D (Gﬁ”%@) (€rr*er)  Oge o
(61D,0) (@r*as) O (¢iD;0) (@7"0uar)  Og)
(ﬁbT@Dyﬁf)) (upy'ur)  Ogpu (¢7iD,¢) (dry"dr)  Opa

(¢1iD,0) (ury"dr)  Opud

Table 3.5: Basis of dimension-six operators: operators other than four-fermion inter-
actions. Flavor indices are omitted.

the known elementary particles. It does so in a general way, independently of the new
physics that might appear at high energies.

The low-energy effects of unknown high-energy degrees of freedom is taken into ac-
count in the SMEFT through the introduction of higher-dimensional operators, whose
contribution to observables is suppressed by inverse powers of the cutoff. At ener-
gies around the cutoff scale, these new degrees of freedom may be produced and the
SMEFT stops being a valid description of the physics. As we will see in part I1I, one
can go beyond the SMEFT while keeping most of its advantages. Under very gen-
eral conditions, all possible new particles can be enumerated and collected together
with the SM ones in an EFT that extends the SMEFT without loosing model inde-
pendence. Then, both direct and indirect effects of the new particles can be studied,
taking advantage of the EFT approach.






CHAPTER

Field redefinitions

4.1 Introduction

The description of a given quantum field theory in terms of an action and a renormal-
ization scale (or a cutoff, in the Wilsonian approach) is highly redundant. Firstly, the
renormalization group invariance represents a one-parameter redundancy: a change in
the renormalization scale (or in the cutoff) can be compensated by a change in the
action in such a way that the predictions of the theory are preserved.! Secondly, phys-
ical observables are invariant under redefinitions of the quantum fields.? This property
of quantum field theory is sometimes known as the equivalence theorem (not to be
confused with the equivalence theorem in the Higgs mechanism). Different versions of
this theorem, with different assumptions and in different contexts, have been proved
and discussed in the literature [83-89]. Here we have in mind the application of the
EFT to the scattering of particles. In this context, the redundancy is given by the
freedom in choosing interpolating fields that can create the relevant particles from the
vacuum and be used to compute scattering amplitudes.

In this chapter, we explore some aspects of local perturbative field redefinitions
in EFTs. By perturbative, we mean that the variation in the fields is treated as a
perturbation. These redefinitions have the virtue of being automatically invertible with
a local inverse, in a perturbative sense. Moreover, as shown, for instance, in [90] and
reviewed below, their effect is particularly simple, as the Jacobian of the transformation
can be ignored in methods such as dimensional regularization. Most of the time, the
change of the fields will be taken to be suppressed by some positive integer power of
the inverse of the cutoff scale 1/A. Then, treating it as a perturbation is actually
implied by the perturbative expansion of the EFT in powers of 1/A. This kind of
redefinition mixes different orders in the 1/A expansion of the effective action in a
triangular fashion: the n-th order of the redefined action depends only on terms of
order m < n in the original one.

!More generally, any change of renormalization scheme can compensated by a change in the
action.

2Actually, the renormalization group invariance can be understood as the invariance under a
particular type of field redefinition [82].

31
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Perturbative redefinitions are performed customarily by EFT practitioners in order
to write general or particular effective actions, consistent with certain symmetries, in
reduced forms [54,56-58,89,91,92]. The idea is to eliminate part of the reparametriza-
tion redundancy by imposing a condition on the action. This is completely analogous
to fixing a gauge in a gauge-invariant theory, and we will borrow this terminology.® A
standard gauge-fixing condition is to require the vanishing of the coefficients of certain
operators. As we review in section 4.5, this can be achieved order by order in 1/A by
perturbative redefinitions. If no linear combination of the remaining operators can be
redefined away without violating the gauge-fixing condition, then these operators are
said to form a non-redundant basis. When eliminating a certain term of order n, the
change in the action at orders m > n (and in the other terms at order n) can be ab-
sorbed into the operator coefficients of the original action, if it is completely general.*
From the purely effective point of view, there is often no need to track this redefini-
tion of the coefficients, as they are free parameters to be determined experimentally.
For this reason, among others, the “higher-order effects” of the field redefinition are
usually ignored. Then, it turns out that the order-by-order algorithm to remove op-
erators with perturbative redefinitions is equivalent to a very simple recipe: using the
equations of motion of the action at lowest order (n = 0) in any of the terms of order
n>1[91].

However, in many situations it is crucial to know the dependence of the coefficients
in the redefined action on the coefficients of the original one. This is the case, for
instance, when one wants to translate the experimental limits on the coefficients in
one basis of operators into limits on the coefficients of the operators in another (re-
duced) basis. Another common scenario is the one in which the coefficients in a certain
effective action are known functions of the parameters of some ultraviolet (UV) com-
pletion of interest, and one wants to know the corresponding functional dependence
of the operator coefficients in a particular non-redundant basis. In these situations,
all the effects of the field redefinitions up to a certain order must be considered if the
aimed precision requires a calculation to that order [94]. Analyzing the perturbative
structure of these effects—including the impact of quantum corrections and dimen-
sionless couplings—is the main purpose of this chapter. In particular, we clarify the
relation between perturbative field redefinitions and the classical equations of motion,
which still is, apparently, the source of some confusion. For example, it is well known
that many of the corrections of order n > 2 generated by the perturbative redefinitions
are missed by the recipe based on the lowest-order equations of motion. One could try
to improve this situation by including higher-order terms in the equation of motion, as
done in [27,95]. We show, however, that the higher-order corrections induced by the
redefinitions are not correctly recovered by this extended recipe. The essential reason
is that the classical equations of motion only capture the first-order response of the ac-
tion to variations of the fields. Therefore, using naively the equations of motion, with
or without higher-order corrections, gives in general an action that is not equivalent
to the original one at the second and higher orders. Imposing equations of motion is
not the same as performing field redefinitions.

3In fact, this is more than a mere analogy: any quantum field theory has a BRST symmetry
associated with field redefinitions [93].

4Note that the necessary redefinitions will always preserve the symmetries of the action, see
section 4.5.
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Whether the higher-order terms, in particular those induced by field redefinitions,
are significant or not in practice, depends on many factors: the experimental precision,
the process to be calculated, the theory at hand, the value of E/A and the value of
the remaining parameters that appear in the action. For instance, it may happen that
the first-order contributions are vanishing or very suppressed, due to some symmetry
or to some dynamical reason. Then the second-order terms would give the leading
correction [96,97].

Taking into account the higher-order terms generated by field redefinitions is rele-
vant, in particular, for the consistent perturbative matching of a local EFT to a more
fundamental UV theory with the same light degrees of freedom. In this respect, we
also study the impact on the EFT of field redefinitions performed in the UV theory.
We find that, non-trivially, the redefinitions of the light fields do not commute at the
quantum level with the matching procedure. This is related to the contribution of
heavy-light loops in the UV theory.

The chapter is organized as follows. In section 4.2, we review the effect of lo-
cal redefinitions on quantum field theories for off-shell and on-shell quantities, paying
special attention to the case of perturbative redefinitions.” We discuss in particular
renormalization and subtleties related to tadpoles. We also present an a toy model
illustrating the role of the Jacobian and the sources in the field transformation. In sec-
tion 4.3, we discuss the relation between field redefinitions and the classical equations
of motion. In particular, we give a counterexample to the exact validity of eliminating
operators proportional to the equations of motion. In section 4.4, we examine how
field redefinitions affect the matching of an EFT to a more fundamental one. We also
perform a sample calculation that proves the appearance of non-trivial effects of field
redefinitions when a quasi-local action (such as the one obtained from matching) is
truncated at a finite order in the 1/A expansion. In section 4.5, we analyze pertur-
bative field redefinitions in which the perturbation is controlled by the same small
parameters as the perturbative expansion of the EFT. This refers mainly to the length
scale 1/A, but also to other dimensionless parameters that may enter in the EFT,
such as coupling constants or 1/4w factors related to loops. We also point out a few
effects at higher orders in 1/A or in the loop expansion. Inside this section, we also
show that explicit gauge covariance is preserved by covariant field redefinitions and is
manifest in the exact equations of motion of a gauge theory. In particular, this implies
that the corrections to the SMEFT equations of motion given in ref. [95] in terms of
ordinary derivatives and gauge fields can be written in terms of field-strength tensors
and covariant derivatives.

4.2 Reparametrization invariance

4.2.1 Reparametrization invariance in general

Consider a quantum field theory constructed as in chapter 3 from an action S. Let
Z(S)[J] be the corresponding generating function. Now, let us perform a change of
integration variables ¢ — F(¢), where F' is an invertible function. Ignoring regular-

®Much of the content of this section can be found in ref. [89]. We also clarify a couple of important
details and summarize latter work on renormalization.
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ization and renormalization for the moment, we get
2= [ Doexp 1Sl + o). (4.1)
= /ng det (i—g) exp (iS[F(9)] + JoF“()). (4.2)

So, the generating function is invariant under a field redefinition in the action, S’[¢] =
S[F(¢)], if the redefinition is accompanied by the corresponding Jacobian factor and
the corresponding change in the source terms, as specified by eq. (4.2). Usually, the
transformation F' is taken to respect the symmetry and hermiticity properties of the
original action, although this is not strictly necessary: as long as the transformation
is invertible, the change of variables is valid and the generating function will remain
invariant (see nonetheless comments in [98]).

Both the Jacobian and the modified source terms are required for Z to remain
invariant. In particular, they are necessary to cancel possible higher-order poles, as
illustrated in section 4.2.2. Fortunately, they can be neglected under certain circum-
stances, as we now review. This is the usual statement of the equivalence theorem.

The Jacobian of the transformation can be written in terms of ghost fields ¢, ¢:

OF IF
—_— = C —1C ——— B
det 7 /Dc’Dcexp ( iCo 557 c > (4.3)

In the following we consider only local transformations, with F**(¢) depending analyt-
ically on the value of the fields and their derivatives, up to a finite order, at the point
x. Then the Jacobian in terms of ghosts can be simply added to the action, which
remains (quasi) local. In general, this contribution to the action has a non-trivial effect
(see section 4.2.2). However, most applications involve perturbative field redefinitions

F(¢) = ¢+ AG(9), (4.4)

where G is analytic in A and all terms proportional to positive powers of A\ are to be
treated as interactions in perturbation theory. Then, the inverse of the transformation
is also local. Moreover, the ghost propagator is equal to the identity and the ghost loops
only contain insertions of G(¢)/d¢®, which by the locality assumption are polynomials
of the internal momenta. Therefore the ghost loops will integrate to zero in dimensional
regularization [90]. The same will happen to the contributions that were cancelled by
these loops. So, in dimensional regularization (and in any regularization with this
property), the Jacobian of a local, perturbative transformation is equal to the identity
and the ghosts can be ignored. We then have the identity Z(S) = Z(S5’, F'). Let us
stress that, for consistency, the quadratic terms in S’ that vanish as A — 0 should
neither be resummed into the propagators of that theory.

The change in the source terms is important for the invariance of off-shell quantities,
but thanks to the LSZ reduction formula® it has no impact on the S matrix, at least
for local perturbative redefinitions. To understand this, note first that the poles of the
momentum-space two-point function of any operator O are equal to the physical masses
m, of the particles a that this operator can create from the vacuum. The probability

6See section 3.2 and ref. [99].
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amplitude of creating particle a with momentum p, /Z% := (ap| O(0) |0) # 0, is given
by the residues at the poles. The operator O is then a valid interpolating field that
can be used in the reduction formula to find S-matrix elements involving any of the
particles a, with wave-function renormalization given by \/Z_% For a perturbative
field redefinition eq. (4.4),

(ap| F(¢)10) = (ap| ¢"[0) + O(N). (4.5)

Therefore, if Z§ # 0 when A\ — 0, then Z;,, # 0. Hence, Fi(¢) is also a valid
interpolating field for the particle a. Moreover, because the physical masses of the
particles do not know about the field representation, the poles in the two-point function
will remain the same at any order. In terms of generating functionals, all this means
that Z(S) and Z(S’) give rise to the same S matrix. We will say that they are
equivalent on-shell and write

Z(8) = Z(S', F) ~ Z(3"). (4.6)

Let us emphasize that this results holds for a general perturbative redefinition [89].
The function G in eq. (4.4) can be non-linear, it can contain terms proportional to
the field or to the field derivatives and it can contain a non-vanishing constant. The
latter might raise some concerns, as the proof of the LSZ formula assumes a vanishing
vacuum expectation value (vev) of the operator O. Let us examine this issue. Suppose
6Z[J]/6J (x)|o = v'. If v # 0, it is customary to write ¢'(x) = v’ + h'(z) and work
with the shifted fields A¢, which have vanishing vev in the original theory S. Let
62'[J]/8J¢(x)]o = ©". The corresponding shift is ¢'(x) = &' + hi(x), such that h’ has
vanishing vev in the theory S’. The transformation F' induces another transformation
F on the shifted fields: h? = F'(h) = F(0+h)—v' = h'+AG¥(h). At the classical level,
it can be easily checked that F*(?) = v*. This also holds at the quantum level when F
is linear. In this case, F and G have no constant term.” Conversely, in this case the
transformation F*(h) = F'(o + h) — F'(?) leads to fields h? with no vev. For generic
non-linear transformations, on the other hand, F*(0) # v* at the quantum level. This
can be seen as a particular consequence of the fact that the quantum action (unlike
the classical one) is not a scalar under non-linear field redefinitions. This is due to
the lack of covariance of the source terms .J,¢%: a non-linear field redefinition in this
term cannot be absorbed into a redefinition of the sources. Covariant extensions of
the effective action have been proposed in [100,101]. At any rate, in general F' and G
will have a constant at O(h), and it is this constant that guarantees vanishing vevs. In
practice, this amounts to performing a field transformation, calculating the vevs with
the new action and then performing the corresponding shift (in perturbation theory
this can be achieved by imposing tadpole cancellation as a renormalization condition,
see the corresponding comments in [98]).8

It should be remembered that the simplified result eq. (4.6) is not valid for off-shell
quantities. We have already mentioned the fact that the vevs of the fields are not

"This property is implicit in the discussion of spontaneously broken theories in [89].

8 Alternatively, it is possible to work with A’ = F~1(v+ h) — F~1(v), which in general will have a
vev at O(hA). The field b’ is perturbatively close to h so the results will be the same in perturbation
theory, although the presence of tadpoles is an unwanted complication. It can also be used in the
LSZ formula, since the contribution of the (constant) difference with h lacks the corresponding pole.
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covariant under field redefinitions. As pointed out in [98], care is also needed with
unstable particles. Of course, as long as they are rigorously treated as resonances
in processes with stable asymptotic states, the LSZ formula holds and eq. (4.6) can
be used. The problem with eq. (4.6) arises when one insists in treating the unstable
particles as external states, which is extremely useful since most of the particles in the
SM (SM) are unstable. For this, different treatments have been proposed (see ref. [102]
and references therein). It would be interesting to assess to what extent eq. (4.6) is a
good approximation in each of these treatments.

To finish this section, let us discuss in what sense these results survive renormal-
ization. Following the notation in section 3.4, let S be a classical action and R(S)
the corresponding renormalized action according to a renormalization scheme R. The
action S’[¢] = S[F(¢)] can also be renormalized to give R(S’), which cannot be re-
covered by just making the same field redefinition in the original renormalized action.
That is, R(S") # R(S)’. One nice way of relating the renormalization in both theories
has been proposed in [103]. The essential idea is to add sources L, for all the possible
operators. Then, it is shown that to connect both renormalized theories not only the
fields but also the sources must be transformed: ¢ — F(¢), L — L'(L). This is quite
natural in the framework of the renormalization of composite operators [104], which
is required here because ¢ in the theory S’ is composite from the point of view of the
original theory S. Interestingly, in this picture renormalization itself can be seen as a
regulator-dependent change of variables [103,105]. The most important implication of
these relations between renormalized theories is that predictivity is preserved: if the
observables depend on a finite number of physical parameters, to a given order, in the
theory defined in the original variables, the same holds in the theory defined with the
new variables (see ref. [106] for an explicit example in a renormalizable theory).

4.2.2 A simple example

To explicitly show how the original Green functions of a theory are reproduced after a
redefinition of the fields, we describe here an example of a field redefinition in a simple
quantum field theory. We start with a free massless real scalar field ¢. Its generating
function is

Z(Suall] = [ Doexp (~50u(00) + 167, (@7)

A change of variables ¢ — F(¢) = ¢+ (1/m?)(0¢ + g¢?*) in the path integral gives
the following expression, where we have used eq. (4.3):

Z(Sfree)[J] = Z(S> F)[J]> (48)

where S|, ¢, ¢] = Sy[¢] + Sc[9, ¢, ¢ is given by

S¢:—/dd$

Se = —/ddx [e(0+ m?*)c + 3g¢°cc] . (4.10)

1 0 g .3 U 92 3143
§¢D<1+ﬁ) ¢+W¢D(1+ﬁ)¢+2_m4¢m¢ , (49)

We have normalized ¢ to have a canonical kinetic term.
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Figure 4.1: Feynman rules from egs. (4.8), (4.9), (4.10). Crossed dots represent sources.
Solid and dotted lines correspond to ¢ and ghosts, respectlvely. An arrow over a ¢ line
is used to specify that the corresponding momentum enters in the factor associated
with the vertex it points to. The square that splits the 6-line vertex specifies the three
momenta that appear in its associated factor.

The momentum space Green function G (S, F) is the sum over all connected
diagrams with n sources constructed using the Feynman rules collected in Figure 4.1.
The propagator Ay(p) for ¢ contains the physical pole at p?> = 0 but also a new
(double) pole at p? = m? that was not present originally. This problematic behavior
will be canceled by the momentum dependent vertices and the pole at the same point
of the ghost propagator A.(p).

There are several cancellations between subgraphs of the diagrams we are consid-
ering. This is just an example of the more general case nicely discussed in [90]. Three
of these cancelllations are shown in Figure 4.2. From the first two equations in this
figure, it follows that that we can obtain the full result by summing over a subset of
all diagrams: those that do not contain 3-line sources, 6-line vertices, any arrows in
external lines or two arrows in the same internal line. In other words, we only need to
consider diagrams with 1-line sources, 4-line vertices, no arrows in external lines and
at most one arrow in each internal line.

For any diagram, let V' be the number of vertices, I the number of internal lines
and L the number of loops. We have the relation

V-I+L=1 (4.11)

The number of arrows over ¢ lines equals the number of ¢* vertices, so at tree level
(L = 0) there are no diagrams with less than two arrows in all internal lines. The only
exception is the case V' = 0, which gives the only diagram contributing to G (p, —p) =
i/p*. All the other Green functions vanish at tree level.
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Figure 4.2: Cancellations between subdiagrams.

For L > 0, we can reduce the problem by cutting all internal ¢ lines without arrows.
The result might be disconnected. For each connected component C' the number of ¢*
vertices equals the number of internal ¢ lines and the number of ¢*cc vertices equals
the number of ghost lines. Therefore, using eq. (4.11), C has exactly one loop (L = 1).
A 1-loop diagram has as a subgraph one of the two 1-loop diagrams in Figure 4.2, so
it must cancel with the diagram obtained by replacing the subgraph with the other
1-loop diagram in the same figure. The cancellation of the connected components after
the cut implies the cancellation of the diagrams resulting from joining them back. The
conclusion is that the L-loop correction (with L > 0) to any Green function is zero.

We have computed all the Green functions to all orders in the loop expansion:

1

GA(S, F)(p, —p) = = G(S, F)">? =, (4.12)
they agree exactly with the G(”)(Sfree), which are obtained in a more straightforward
way from Z(Sgee). Therefore, they must also be equal order by order in p?/m?. This
means that if we had worked perturbatively in p?/m? we would have obtained the
same results. However the calculations would have had an important difference: the
ghost momentum would never appear in the denominator, so their loop integrals would
vanish in dimensional regularization. As stated in general in section 4.2, we can ignore
the ghosts when the redefinition is perturbative and dimensional regularization is used.
The Green functions G(S)™ generated with the function Z(S), obtained from
eq. (4.8) by replacing J,F*(¢) — Jo0“ in Z(S, F), are equal to the ones computed
from Z(S, F') except for the source factors. Now, there is nothing to cancel the first
diagram in Figure 4.1, but the corresponding factor has a pole at p> = m? and not
at p? = 0, so its contribution is eliminated by the LSZ formula. The other difference,
the p?/m? term in the factor corresponding to the 1-line source, also vanishes on shell.

Thus, Z(S, F) ~ Z(5).
In section 4.3, it is proven that some parameter of the action is redundant if and
only if the derivative of the action with respect to it is proportional to the equation of
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motion. This condition is satisfied in this case:

95, 85,
a(1/m2) 6o

(Dq5 +9¢° — 12 (076 + 39¢*0¢ + g0¢* + 3g2¢5]> +0 (%) :
m m
(4.13)
which means that the parameter 1/m? of the action Sy is redundant. For the parameter
g, a similar equation (of the form 0S,/0g o §S,/0¢) can be obtained. However, this
is not necessary to eliminate g from Sy because 1/m? can be taken to be zero (as it is
redundant) and then Sy becomes independent of g.

4.3 Equations of motion

4.3.1 Equations of motion and redundant operators

The Schwinger-Dyson equations follow from the invariance of the path integral under
infinitesimal field redefinitions” and can be written succinctly as

/ng {ZW + Jﬁ] exp(iS + Jo0%) = 0. (4.14)

Differentiation with respect to J gives an infinite set of relations among the Green
functions, which can be considered the quantum equations of motion of the theory. In
this section, we discuss instead relations between field redefinitions and the classical
equations of motion, §5/d¢* = 0.

For the perturbative redefinition in eq. (4.4), we can Taylor expand the resulting
action,

S'[¢] = S[F(¢)] (4.15)
R Y S o oy_ 05[]
- n;) H)‘ G*(¢)---G (¢)W (4.16)
= S0+ 2G"() A + 00 (4.17)
= Sllinear[qs] + O()‘Q) (418)

The term linear in G, of order A is proportional to .5/d¢, and thus vanishes if the
classical equations of motion of S are used. However, due the higher-order terms, we
see that S” is not equal to S, that is, S and S}, are not related by this field
redefinition for any G and A. As we show below, for a generic GG they are actually not
related by any local field redefinition. Thus, adding to S a perturbation proportional
to its equations of motion does not result in general in an action equivalent to S.
Equally, eliminating terms in the action by imposing the classical equations of motion
of the rest of the action does not produce an equivalent theory. The equivalence only
holds at linear order in the perturbation. Note that the perturbation AGJS/d¢ is

neither redundant in the classical limit. Indeed, the relevant equations of motion for a

9Conversely, the path integral (4.1) can be understood as a formal solution to the Schwinger-
Dyson equations.
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tree-level calculation of Green functions include the variation of the perturbation itself
and the variation of the source terms.

All this looks pretty straightforward, but apparently there is still some confusion
about the limitations of the classical equations of motion, even among experts in EFTs.
For example, statements such as “the operators that vanish by the equations of motion
are redundant” or “the operators that vanish by the equations of motion give no con-
tribution to on-shell matrix elements”, without further qualification, are found every
now and then in the specialized literature. To make this point completely clear, we
stress that the proofs in [107-110] of the redundancy of equation-of-motion operators
are only valid at the linear level, as indicated in these references. Let us briefly review
the argument in [107], which is reproduced in the discussion about field redefinitions
and equations of motion in the lecture notes [16]. Given an action S and an operator
of the form O(z) = (f'65/5¢")(z), field redefinitions in the path integral are used to
show that the correlators (0|T'¢"*1 ... ¢"*(D(2)|0) in the theory described by S can be
written as a sum of terms proportional to delta functions involving the points i; . . . i,.'°
Then, it follows from the LSZ formula that (p; ...p.|O(2)|pr41 ... pn) vanishes, since
the number of poles is smaller than n. From this, it is concluded in [16] that the
operator O “can be dropped because it does not contribute to the S matrix”. But this
conclusion is an unjustified extrapolation of the particular result for S-matrix elements
with only one insertion of O.!' Indeed, the perturbative calculations with the complete
action S+ A0 involve in general arbitrary powers of the interaction AQ, so one needs to
also take into account the correlators (0|T¢"* ... "™ O(z;) ... O(z,)|0) with m > 1.
It can be checked that these correlators contain terms that are not proportional to
any delta function involving the points 1, ..., z,. These terms do not need to vanish
when the elementary fields are reduced into on-shell particles. Therefore, diagrams
with a single insertion of O do not contribute when the external legs are on shell, but
diagrams with two or more insertions do, in general. In section 4.3.2, we check explic-
itly in a simple example that, already at the tree level, (p1p2|TO(21)O(z2)|psps) # 0.
All this agrees with eq. (4.18): AO can be eliminated at the linear order in A by a per-
turbative field redefinition, but in doing so other operators proportional to the second
and higher powers of A are generated. The single (and multiple) insertions of these
new operators reproduce the effect of the multiple insertions of O.

4.3.2 An example

In ref. [107] (see also ref. [16]) it is proven that the S matrix with one insertion of an
operator proportional to the equation of motion vanishes. This is not true, however,
for two or more insertions. We check here both statements in the case proposed in
exercise 6.1 of [16]. We will compute connected momentum-space Green functions
G™m) in the theory

Z(8, (6, 0))[J%, J*] = / Déexp (iS[g] + 6" + J06) (4.19)

10This is a simple generalization of the Schwinger-Dyson equations. Dimensional regularization is
assumed in order to neglect the Jacobian of the transformation.

UThe author of ref. [16] warns latter that “working to second order in the equations of motion
is tricky” (see ref. [27] for more details). However, as shown in section 4.5 and in the example of
section 8.6, using the equations of motion at second order is in general wrong, rather than tricky,
while at first order it involves no complications.
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Slo] = - / &'z (%gb(m )+ %¢) , (4.20)

A
0=¢—=—p(0+m?)¢p— =" 4.21
65, = —0(0+m)o— 5o (a.21)
They are defined in eq. (3.5). The corresponding Feynman rules are presented in
Figure 4.3. We will calculate G*Y and G*?. The relevant diagrams are shown in
Figure 4.4. In terms of them, the Green functions are

4
V=A+) B, (4.22)
4 2: 4 2 4 2
- Z Z Crk + Z Z Drkl + Z Z Erskl- (423)
r=1 k=1 r=1 k];l;ll re=1 k},cz;;

The S matrix is obtained by taking the residue when all p; go on-shell. Let Res be
the operation

Res(G) = lim lim lim lim [(ﬁ(pf—mﬂ) G]. (4.24)

p?—m?2 p2—m? p2—m?2 p2—m? 1
1=

Applying it to each diagram gives

Res(A) = —4), Res(B,) = A, (4.25)
Res(Cry) = —4il, Res(E,sp1) = i, (4.26)
2 2
Res(Dy) = i\ (1 + (ql(jl-l ;T)pm TmQ) 7 (4.27)
where all momenta are taken as ingoing. Using eqs. (4.22)-(4.27) we get
Res(G*Y) = 0, (4.28)
4 2 m2

Res(G%2) = i) —12—}—22 @+ p,)°

_ (4.29)
rlkllql+qk+p -m

So, indeed, the S-matrix element with one insertion of # vanishes. However, when two
insertions of 6 are included, it does not.

4.3.3 Equations of motion and redundant parameters

Another approach to the analysis of redundancies in the action is focusing on redundant
parameters instead of redundant operators. In this case, there is an exact relation with
the classical equations of motion. A parameter £ in an action S¢ will be redundant if
it can be eliminated by a local field redefinition, i.e. if an invertible F¢ exists such that
S" = S¢ o F¢ does not depend on €. Then, using that 95'/9¢ = 0,

0Se  O(F ') 6F, 55,
o8 08 8¢ 6B’

(4.30)



42 CHAPTER 4. FIELD REDEFINITIONS

1 .
- ><M

=i +p3 —2m’ = —4A

Figure 4.3: Feynman rules for ¢* theory and insertions of the operator , represented
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Figure 4.4: Relevant diagrams for the computation of G(*') and G*? in the ¢* theory
with 6 insertions at tree level. Empty (solid) dots denote the sources for ¢ (6).

We conclude that if £ is redundant, then 0S¢ /0¢ vanishes when the classical equations
of motion are enforced. The converse implication is also true: if 9S¢/0¢ vanishes by
the classical equations of motion, then ¢ is redundant [111]. Indeed, the variation
of S¢ under an infinitesimal change 6¢ of the parameter £ is S, = (05¢/0£)0€. 1f
(0S¢/08) = f*05/6¢%, then the change §S¢ can be compensated by the infinitesimal
transformation given by eq. (4.4) with A = 6 and G = —f, as can be seen in eq. (4.18).
That is, 0(SgoF¢)/0& = 0. Since this holds for any value of £, it follows that S = S¢oFy
is constant in &.

Let us use this last approach to study under which circumstances may S + \f be
equivalent to S. Here, f is a local functional of ¢ and neither S nor f depend on .
As we have just seen, )\ is a redundant parameter if and only if

0 0
f=g %(S—%)\f). (4.31)

for some local A\-dependent functionals ¢* of ¢. We want to solve this equation for
g“. As we are interested in perturbative redefinitions, we require that g“ has a power
expansion ¢® = ¢@« + \gM* + .. Comparing the terms of order 0 in \, we see
that, for a solution to exist, it must be possible to write f in the form f = f*S,, and
then ¢ = fo. Incidentally, this shows once more that the equations of motion can
be employed to eliminate terms at first order; the necessary perturbative redefinition
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with G = — f* follows from eq. (4.30). Writing ¢* = f* + Ag®, (4.31) reduces to
0=g"Sa+ (f*+Xg*) ([0S + f7S pa) (4.32)

Looking at the leading order of this equation, we see that, for a solution to exist, we
need

fofP8 sa = h*S ., (4.33)

for some h®. For a non-trivial action S and a generic f¢, there is no solution to this
equation, since the first and second derivatives give a non-homogeneous result when
acting on terms in S with different number of fields. A solution exists, however, if
fo = f*#S 5. Actually, in this case there is a solution of eq. (4.31) to all orders in \,
since eq. (4.32) is then of the form

0= (3" + [S W +Ag* W) S, (4.34)

where W) is constructed with f*#, S, and their functional derivatives. Thanks to
its factorized form, this equation can always be solved recursively, to obtain a local
solution g, and thus a local solution g%, as a power series in A\. From this, the local
perturbative redefinition that eliminates Af to all orders can also be obtained recur-
sively, using eq. (4.30). Therefore, we conclude that a perturbation Af is redundant in
perturbation theory if f is at least quadratically proportional to the equation-of-motion
operator §5/d¢. This result has actually been obtained before in [101,112]. Here, we
have seen that for a general action this condition on f is not only sufficient, but also
necessary. A more direct way of checking that AS, f*#S 5 is redundant is to perform a
field redefinition to eliminate it at first order. Then, it is easy to check that the higher
order terms have the same form. Therefore, successive field redefinitions will move the
effects of the perturbation to higher and higher orders, while preserving the property
that the generated terms are quadratic in the equation-of-motion operator. In this
way, the effects of the perturbation can be completely eliminated up to an arbitrary
power of \.

4.4 Matching

In this section, we work in the setting and notation introduced in section 3.5.1. In
particular, Syy is the action of the fundamental theory, S is the non-local action
for the light fields that exactly reproduces the effects of Syy and (Sﬂn is the local
action approximately reproduces them to order n. Let us perform a general local
change of variables involving both the heavy and the light fields, (®,¢) — F(®,¢) =
(Fn(®, ), F1(®,¢)). We find

5F . .
Zsvol = [ wmdet( o ))exp{zSuv[F@,cb)HJaE (@,6))  (4.35)
= (SIIJV’FI)[J]’ (436)

where S{;v[®, 9| = Suv[F(P,¢)]. Consider first the particular case with Fj(®,¢) =
F,(¢), that is to say, the case in which the new light fields depend only on the original
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light fields.!? Then, o
Z(Suv)[J] = 2(5', Byl ], (4.37)

where

o (i) = [ D@dt( )exp{zst[Fh@,qs),E(as)]} (433)

:/D@exp{isuv[@,ﬂ(ﬁb)]}- (4.39)

In the last line we have redefined back the heavy variables for fixed light fields. This
change of variables is given by ® = F, '(®', Fj(¢)), with F, ' defined by F~1(®,¢) =
(B (®,0), F ' (@,0)).

The last equation shows that

S'l¢] = S[Fi(o)], (4.40)

which is also consistent with a change of variables in eq. (3.12). So, for the transfor-

mations we are considering now, the heavy field redefinition does not modify S, while

the light field redefinition commutes with the integration of the heavy field.
However, the local version of eq. (4.40),

(571,161 = [S], [F(e)), (4.41)

does not hold, in general. Here, both [S] and [S7] are defined by eq. (3.13) (with
sources coupling linearly to ¢). Eq. (4.41) is equivalent to

Z(S, F7Y £ Z([S],, FY) + O™, (4.42)

n?

as can be seen by performing a redefinition ¢ — Fj(¢), using the definition of ’—S—’|n,
its assumed equality with (S’-‘n o I’ and performing another redefinition ¢ — Fl_l(gzﬁ).
But requiring agreement to a given order of the Green functions of ¢ is not the same
as requiring agreement to that order of the Green functions of Fl_1(¢). This means
that doing redefinitions does not commute with matching to a local action. To prove
this, we give here a counterexample to eq. (4.42). Instead of considering redefinitions
of the fields in the action, one can equivalently deal with redefinitions in the source
terms, because changes of variables in the path integral relate one case to the other.
We will use this fact to simplify the following discussion, in which we consider changes
of the source terms only.

Consider the (non-local) action S coming from integrating out the field ®, using
eq. (3.12), from the theory defined by the UV action

Suv[®, ¢] = — /d4x {%ng(b + %@(D + M2)D + g<1)<b2} . (4.43)

Let Siree be the action obtained by integrating out ® at tree-level. We take 1 /M 2 as
the small parameter that controls the approximation of the EFT. The truncation of

Stree 18
[Suel Jo = - [ { 600~ 2 26? (i (‘;fﬂ) ¢2} e

12This kind of redefinition is implicitly performed in the method proposed in ref. [113] to account
for the heavy-light loop contributions.
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Figure 4.5: Relevant diagrams for the 1-loop 3-point function generated by Z' and Z/..

A and B are diagrams of G®, C is a diagram of GY and D appears in both.

At tree-level, LStreeJ gives the same results as Siee up to order M~2". The local
effective action (Sw is obtained by including both the heavy loop corrections S — Siree
and the corrections (Sﬂn — LS’JH due to heavy-light loops. Notice that {Swn will not
contain monomials that are odd powers of ¢ because of the ¢ — —¢ symmetry of the
original action Syy, that is preserved in the EFT. We will show that the functions

2(8.6+ 7)) = [ Doexp (5161 + Julo+ X)), (4.45)
Z([S],.6+ M) = / Doexp (i[S] (6] + Juld+ A6D)),  (4.46)

do not satisfy the identity Z(S,¢ + A\¢?)[J] = Z([S],,6 + Ao?)[J] + O(1/M*") for
any n > 0. It is enough to see that the 3-point functions G and G generated
by them are different. The relevant diagrams are presented in Figure 4.5. Because
computing Green functions for ¢ with the non-local action S is exactly equivalent to
computing them with the local action Syy, we present the corresponding diagrams in
terms of the Feynman rules for Syy, with double lines representing the propagator for
the heavy field ®. The 4-line dot in diagram C' represents the ¢* local interaction in
{S’]n generated at tree level. We have

G® = A+ B + D + (permutations), G® = C + D + (permutations).  (4.47)

Diagram C can be obtained by expanding in powers of 1/M? the heavy propagator
inside A + B. Thus, for G% to be equal to G® to order n, we should have

1
A + B + (permutations) Lo+ (permutations) + O (W) . (4.48)

This is not true in general. Denoting by p;, pe and ps the momenta in each diagram
entering in the top, left and right vertex, respectively, we have that, in dimensional
regularization,

A|p§:0 - C|p%:0 =0, (449)
because when p? = 0 both A and C are scaleless integrals. On the other hand,
8Z~g2)\u26 d4—2€k 1
B’p?zo T 22 / 4-2¢ 1.2 2 2 2 (4.50)
DaP3 @2m)t=2 k2 (k + p1)?[(k +p1+p2)? — M?]|

P
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2 9 ) ) , ;
- 27T2p%p§(p§ — p%) { log (—_ p%) {— — v+ log + Lis el Lis el

+ log? ( — ]\Z_%z) — log? ( — ]\Z—g’?) }+O(e). (4.51)

where we have used the results for 1-loop integrals presented in [114]. The conclusion
is that Z(S, ¢ + A\¢?) is not approximated by Z([S],,¢ + A¢?) to order n, which
completes the counterexample to eq. (4.42). Nevertheless, the approximation should
be recovered on-shell, as Z(S,¢ + A¢p?) and Z([S],,¢ + A¢?) differ only from the
original generating functions Z(S) and Z([S],) by the source terms. This can be
checked directly: diagram B does not have a pole at p? = 0 and therefore it does not
contribute to the S matrix.

All this discussion applies irrespectively of whether method A or B is employed for
the matching. Let us add a few remarks on method A. In this method, the matching
is standardly performed for Green functions of the fields ¢ that appear in the action,
be it the original or the transformed one. If the comparison with the Green functions
for action Syy or iy is performed with a general local effective action that includes
all the symmetric operators to a given order, then S or S’ will be automatically found,
respectively. As we have shown, they will be equivalent, but not directly related by
the transformation F'. A problem may arise if a non-redundant basis is employed.
Then it is not possible, in general, to adjust the coefficients in such a way that the
off-shell Green functions reproduce those of the fundamental theory with an arbitrary
Syuv. Indeed, proceeding in this way would be like trying to match Green functions
of different fields, ¢ and ¢’ = F(¢). Therefore, any conversion into a reduced basis
should be performed after the (off-shell) matching, also in method A. The alternative
is to require only agreement for on-shell quantities, as proposed in [91].

In eq. (4.37) and (4.39) we have used in several places (determinant, action and
source terms) the fact that Fj is independent of ®. Therefore, the simple relation
eq. (4.40) cannot be extended to the general case in which F; depends on the heavy
fields.'® Nevertheless, as long as the redefined light field is a valid interpolating field
for the light particles, we have

Z(Sov) ~ 2(5") (452)
with
exp (i5"[¢]) = /D(ID det (%) exp {iSuv[F(®, ¢)]} . (4.53)

5" (and the corresponding (5’” W ) can be used to compute on-shell amplitudes of light
particles, even if it has no general simple connection with S ((Sﬂn)

In addition to these remarks, note that the discussion in the previous section about
renormalization before and after the field redefinition also applies to the fundamental
and effective renormalized theories that enter the matching.

13The redefinition used in the method of ref. [34] to account for heavy-light loops belongs to this
more general case.



4.5. PERTURBATIVE EXPANSIONS 47

4.5 Perturbative expansions

4.5.1 Removing reparametrization redundancy

The theory space of possible actions with a given field content can be divided into
equivalence classes, with actions in the same class related by field redefinitions (pos-
sibly with some restrictions, as discussed in section 4.2). All the actions in the same
class give rise to the same S matrix. An elegant way of working with these equivalent
classes, which has been mostly employed in non-linear sigma models, is to use a geo-
metric approach, in which the fields are coordinates of a differentiable manifold with
a connection [100,115-122]. This allows to maintain explicit covariance under changes
of coordinates (that is, field redefinitions). Here we will study the more mundane
(but also useful) approach of choosing a representative for each equivalence class and
systematically reducing every action to the corresponding representative [123]. This
is what we called “fixing a gauge” in the introduction. In this subsection, we first
review how this gauge fixing can be performed order by order in perturbation theory
and then examine the consequences of this procedure.
The EFT is organized as a power series in A = 1/A:

Slg) = A"Sa[g]. (4.54)

Let us study the effect of local perturbative redefinitions of order k, of the form
F(¢) = ¢ + \*G(¢), with k > 1 and G analytic in A\. Under this redefinition, the
action changes into

S'[¢] = S[F(¢)] (4.55)
N o oS,

_ HMZ:O %)\ G (p) -G (¢)—5¢a1 5o (4.56)

= S[¢] + )\’“G“(qﬁ)% +0 (A1) (4.57)

In particular, the last line of this equation shows that all the actions that differ by
order-k terms proportional to the lowest-order equation of motion belong to the same
class to order k. Suppose Sj contains a term of the form f{(¢)0KC/d¢p*, with K any
term in Sy. Then, this term can be eliminated by the following field redefinition of
order k:

FR(9) = ¢ = M fR(9). (4.58)

Obviously, this redefinition has no effect to order k —1. At order k, its only effect is to
add —f£0.S0/0¢" to the action, which is the same as using the lowest-order equation of
motion to change 6K /§¢* by §(K — Sp)/d¢p. The redefinition eq. (4.58) also changes
the action at order k + 1 and higher, as indicated in eq. (4.55).

Therefore, once the lowest order action Sy is fixed, a representative of each equiva-
lence class can be chosen, order by order, by picking at each order k£ > 1 a specific term
KC). (which could be a linear combination of other terms) of Sy and imposing (besides
the hermiticity of the action and invariance under the relevant symmetries) that the
coefficients of operators in Sy proportional to 6K;/d¢* be equal to zero. Identifying
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these operators may require algebraic manipulations and integration by parts. Note
that, for a given Ky, the maximal number of different factors 6K /d¢™ is equal to the
number of different fields ¢*. Therefore, to eliminate all the ambiguities at each order
k, K4 should be chosen such that ks /0¢™ # 0 for all i. A standard choice that works
for any k is to take K; as the sum of all the kinetic terms. Then, any subsequent
redefinition of order k& would move the action into a different gauge, so the remaining
linearly-independent operators that can appear in S; will form a non-redundant basis
of operators at that order. To reach this basis from an arbitrary effective action, one
proceeds order by order. Let S~ be the transformed action after consecutive field
redefinitions F, ..., F_; that put it in the prescribed form to O(A\*~1) and let f.(¢)
be the coefficient of §/C;/5¢® in S*~V. Then, the field redefinition eq. (4.58) trans-
forms S*~1 into S®) which is in the prescribed form to O(AF). The actions S*) and
S are connected by the field redefinition F = Fj, 0 F,_y0---0 F}.

We see that, in order to define a non-redundant basis of operators, it is enough to
use the lowest-order equations of motion in the operators to be eliminated [91]. Indeed,
for this purpose, and as long as all the algebraically-linearly-independent operators
are included from the very beginning, the higher order corrections at each step k are
absorbed into coefficients that were arbitrary anyway, so there is no need to worry
about them. In fact, the same holds for the coefficients of the non-vanishing operators
at order k. So, as described in the last paragraph, it actually suffices to identify a set
of appropriate K and put to zero all the terms proportional to 6/ /d¢*. However,
we have already stressed that it is often important to know the dependence of the
coefficients in the transformed action on the original ones. Then, the redefinition must
be performed explicitly. When working to next-to-leading order, n = 1, the algorithm
has only one step (k = 1) and it is sufficient to apply the equations of motion of Sy to
the operators to be eliminated. But when working at orders n > 2, it is mandatory
to include the higher-order corrections in the redefinition. This is the case when one
wants to rewrite a known action S in a particular basis. To second order, for instance,
this can always be achieved as explained above by a field redefinition F' = F; o I,
where F2(¢) = ¢® + \*GY(9), with G}, a M-independent function of the parameters of
S, m < k. The redefined action is

516 = SIF (o) (4.59
= Sol¢] + A [Sl + G?(gb)%] (4.60)

F (524 GO Tt + JGHOGHO s + a0 20 +009) (d01)

= S416] + ASi[6] + A%84[d] + OV, (4.62)

We see explicitly that S} depends in general on the parameters of all S, with n <
k, and also that the higher-order effect of F} must be taken into account in order
to get the correct dependence of the parameters of S) on the parameters of Sy, S;
and Sy. In particular, (4.62) is relevant when comparing, to second order in A, the
constraints on the operator coefficients in one basis with the ones in another basis.
The same considerations apply to perturbative matching: field redefinitions performed
to eliminate terms of order k in the effective action have an impact on the matching
not only at order k but also at higher orders. This is readily seen in eq. (4.58) and
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eq. (4.62), taking S to be the local effective action obtained from matching to a more
fundamental theory. For instance, even if we put Go = 0 in eq. (4.62), we cannot say
that to order 2 this S is equivalent to Sy + 57 + S5. Changing S; by S| requires in
general a change Sy — S5. Observe also that knowledge of the field redefinition F' (in
particular of F) is needed to find the correct S5.

We stressed in section 4.3 that using the exact classical equations of motion is
not equivalent to a non-infinitesimal field redefinition, and that it does not lead to
an equivalent action. Perturbatively, the effect of an order-£ field redefinition can be
written as

05

S'[¢] = S[¢] + A\F G(qzﬁ)o‘w +0 ()\2’“) . (4.63)
The exact equations of motion only give the linear contribution, starting at A, but
miss the remaining O(A\?*) terms, which are necessary for S’ to be equivalent to S.
Hence, the equations of motion at higher orders, as used for instance in [27,95], are
not sufficient to find the higher-order corrections induced by a field redefinition. In
particular, using in S; (and S3) the equation of motion to second order in A does
not give, in general, an action that is equivalent to S to second order. The same
conclusions apply to the case in which the equations of motion of S’ are used in S;
(and Sy), as can be seen by exchanging the roles of S and S’ and considering the
inverse transformation. To obtain the correct S’, it is necessary to perform the actual
field redefinition in every term of the original action. This can be done either directly
or using the functional-derivative expansion in the second line of eq. (4.55).

The redefinitions needed to reduce some gauge-invariant action to a basis do not
break its invariance. The whole reducing procedure can be performed in a gauge-
covariant way. The f2(¢) defined above are gauge-covariant operators with the same
quantum numbers as JKC/0¢® or, equivalently, of ¢®. Therefore, when the redefinition
in eq. (4.58) is performed, all the factors that multiply the functional derivative in the
redefined action in eq. (4.55) are covariant, as G*(¢) = —f(¢). We show here that
these functional derivatives are also covariant. We denote the action by S[¢, A], where
A are the gauge fields. Consider a redefinition

o= ¢ =o+C¢G, A=A =A+nH, (4.64)

where GG and H are covariant operators with G in the same representation as ¢ and
H in the adjoint representation. The gauge fields A only appear in the action S
through the field strength F, ,5;4) = 0,A,—0,A,—ig[A,, A)] and the covariant derivative

DiA) = 0, — tgA,. For these objects, we have

F{*) =F) +n(DVH, — DSVH,) — in’g[H,, H,), (4.65)
DO =DN0O —ingH,0. (4.66)

All the terms in this expressions are covariant, with the same representation under the
gauge group. It follows that the transformed action S[¢'(¢, A), A’(¢, A)] is still gauge
invariant. Its expansion in (, n is

_ - Cm 7’]” aq Qm B1 Bn 5m+ns
5[¢+CG,A+77H]—mZn:OmG e G HT - | G - 0amO AP - AP

(4.67)
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Because this is invariant for any ¢ and 7, it must be invariant order by order in each of
them. Now, the covariance of the functional derivatives follows from the covariance of
the product of the operators G and H. In particular, the equation of motion operators
0S/0¢ and §5/5 A must be covariant and therefore it is possible to write them in terms
of field strengths and covariant derivatives, with no independent occurrences of the
gauge fields and partial derivatives.

4.5.2 Power counting

In this section, we follow the notation presented in section 3.3: N,(O) denotes the
power of n that corresponds to the operator O. The “natural” coefficient of O can be
found as a product of n™1(©) for all 1.

Consider a field redefinition given by F(¢) = ¢* + f*(¢), with f local. We can
write each f7 as a linear combination of local operators f7, ..., f3,- The redefinition

will be perturbative when min{N, (f{), ..., Ny(f3,)} > Ny(¢?) for some 5. Thanks to
the factorization property eq. (3.8), the redefinition preserves the counting rule: an
action with natural operator coefficients is transformed into an action with natural
operator coefficients whenever the coefficients of the operators in f are natural. The
latter means that the coefficient af of each operator fz] is

a/ NH/’7 n(fj) Ay HnNn —Ny( ¢J) (468)

This condition will always be satisfied if the redefinition is performed to eliminate any
term in an action with natural coefficients.'* Explicitly, if the redefinition removes a
term Q = f*(0K/d¢®), with K any term in the original action S, an operator O in
the original action will give rise to a sum of terms of the form

o o "o
Oy = f* .. f FFTTR T (4.69)
with power counting given by
Ny (Opmp) = Np(O) +m - (Ny(Q) — Ny (K)). (4.70)

We have used the factorization property A, (Q) = A, (f)+A,(K)—A,(¢). If the coef-
ficient in Q happens to be suppressed by a factor &, relative to its natural value, while
O has a coefficient suppressed by a factor x and K is natural, then the contribution
O in S” will be be suppressed by {"k.

In the rest of the section we point out a few implications of this counting when
working with the SMEFT [124]. This EFT is usually described as having a power
counting determined by the canonical dimension A of the operators: Ny(O) = A(O)—

147f the definition has any other purpose, coefficients a{ smaller or larger than (4.68) (that is,
“under-natural” and “super-natural”, respectively) are possible that still preserve the perturbativity
of the transformation. Super-natural coefficients will give rise to perturbative corrections that desta-
bilize the hierarchical structure of the original effective action. This will not be reflected in on-shell
quantities if all the new terms are included, since the new action is equivalent to the original one.
But the perturbative orders will be mixed, which must be taken into account in truncations of the
new action.



4.5. PERTURBATIVE EXPANSIONS o1

4. In this case, Aj/y = A and ¢;/y = 4. We ignore in the following the few operators of
dimension 5 and 7. In order to reach some standard basis at dimension 6, one may need
to redefine the Higgs doublet ¢ in such a way that the dimension-6 terms proportional
to ¢ are removed. The necessary cancellation arises from the kinetic term, while the
remaining terms of dimension 4 generate other terms (of the form Op; in eq. (4.69)) at
dimension-6. This is the same as using the dimension-4 Higgs equation of motion in the
terms to be eliminated. As discussed in the previous section, there will be corrections
at dimension 8, from substituting one ¢ at dimension 6 or two ¢ at dimension 4.
Note, however, that an important detail is missing in this discussion: the SMEFT
does not start at dimension 4. The gauge-invariant operator O,, = ¢'¢ has canonical
dimension 2. Under the same field redefinition, this super-renormalizable operator
gives contributions of the form (O,)n; of dimension 4. Even if one can absorb the
corrections into a renormalization of the SM couplings, this renormalization modifies
the coefficients at dimension 6 (see chapter 8). These linear contributions can also be
found using the equations of motion. But on top of this, O, contributes at dimension
6 with terms of the form (O,). Indeed, using eq. (4.70) in this particular case, we
find N\((O,)) = —2+2-2 = 2. Because (O,)y is proportional to 6°0,,/d¢*, these
dimension-6 contributions will be missed if one only uses the equations of motion.
Note that this does not contradict the standard procedure to reach a basis by using
the equations of motion, reviewed in section 4.5, because the action at leading order
is not given by the dimension-4 terms but by the integral of @u = —p20,,. Thus, the
field redefinition we are considering has nothing to do with the equations of motion of
the action at leading order.'®

Of course, the coefficient p* of O, is not natural with the counting based on
dimensions. Experimentally, we know that there is a hierarchy 4 < A. Hence, the new
terms (O,)) and (O,,) arising from O, will carry an extra suppression (;/A)? and
will typically be less important, numerically, than the corresponding dimension-4 and
dimension-6 terms. This can be rephrased in a more systematic way by incorporating p
in the power counting: A, (p?) = 2. This modified counting is nothing but dimensional
analysis. It follows that /N /\(@u) = 0. So, with the new counting @u is of the same
order as the dimension-4 terms, and the SM is the leading order approximation of the
SMEFT.

Consider next (differential) cross sections calculated in the SMEFT to order n in
1/A%. They are schematically of the form

2

1 1
— AW ¢ — , (4.71)

3 A4A(2)+...

O X ’A(O) +

where A™ is the coefficient of A=" in the 1/A? expansion of the on-shell amplitude.
We denote by AE?i)Q.'.ik the part of A™ given by diagrams with k insertions of operators,
one from .S;,, another one from S;,, etc. Then, we have:

n) __ (n)
AW = N Al (4.72)

i1ttt Fig=n

15The equation of motion at leading order is just ¢ = 0. This could be used to eliminate recursively
all the terms containing the Higgs doublet at dimension 4 and above. This looks strange, but it is
consistent with the natural value of p? being of order A2, according to the dimensional counting.
Actually, a field with a mass of the order of the cutoff will decouple from the other fields. More
precisely, it should be integrated out.
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We ignore here phase-space factors, as we are only going to discuss the relative
importance of the quadratic and interference terms in the evaluation of the right-hand
side of eq. (4.71), which are schematically of the form A®AU) with i,j < n. Let us
nevertheless refer to [30] for an interesting result for the scaling of total cross sections
in NDA. Expanding eq. (4.71),

o o |[A© \ﬂ% Re (A(°>*A§1))+% [\A(1)|2 +2Re (A(O)*Aﬁ) + A“’)*A(f)ﬂ +0 (%) ,
where we have grouped contributions of the same order. In many applications, only the
first two terms need to be taken into account. However, there are processes in which
the interference terms Re(A®* AM) vanish (or are very suppressed) [125]. Then the
terms in brackets give the leading correction and must be included in the analysis [126,
127]. Furthermore, it may occur that Re(A(O)*AgQ)) vanishes at well. This happens
often when the process is mediated by one heavy particle in the UV theory [128],
since its propagator generates effective operators with the same symmetry properties
at all orders. In this scenario, the quadratic term |A|? and the interference term
Re(A(O)*Aﬁ)) give the only corrections to order 1/A? and the terms in Sy are not
necessary to compute the leading-order correction to the cross section.

Is this situation preserved by field redefinitions in the EFT? The equivalence the-
orem tells us that the amplitudes are invariant and comparing order by order we see
that the same will hold for each A®. However, the individual contributions Ag) and
Aﬁ) need not be invariant separately. Hence, it is possible that Re(A(O)*AIQ(Q)) does
not vanish any longer, and then the new operators in S, cannot be neglected, unless
they do not interfere with A,

The quadratic terms may also be very relevant if the coefficient of an involved
operator O in S is for some reason o > 1. Then, |AD|? and A©*A®) are enhanced
by a with respect to A@*AM Al these terms could then be comparable at sufficiently
high energies. In this case, it is mandatory to include them. Furthermore, at second
order the effect of operators in Sy can be neglected if it is known that their coefficients
are significantly smaller than . This is the case in certain SM extensions (such as the
example in section 8.6). But again, these statements depend on the field coordinates.
A field redefinition that removes OV introduces in S, operators with an enhancement
a?, so their contributions Re(A(O)*A;(Q)) can no longer be neglected.

4.5.3 The loop expansion

Our previous discussion of power counting also applies to the loop expansion of the
EFT and of the fundamental theory. Let us start with the former, which makes no
reference to loops in the fundamental theory and is valid also for strongly coupled
UV theories.!® Reintroducing explicitly A, we can formally expand the generating
functional of the renormalized EFT as

2] = 3 K Zua( )P, (4.73)

16]n some interesting cases, the former are related with some other parameter in the fundamental
theory. For instance, loops in chiral perturbation theory are related to 1/N, corrections in low-energy
QCD. This type of relation has been made precise in gauge-gravity dualities [129].
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This actually corresponds to an expansion in the EFT couplings divided by 1/(47)2.
We have already mentioned that the power counting of the (renormalized) effective
action should be consistent with this expansion.

When working in a reduced basis at order A", it is often found that counterterms
made out of operators that were removed to reach that basis are necessary to obtain
renormalized Green functions. These counterterms (including their arbitrary finite
part) can then be written in the reduced basis, to order n, by a perturbative field
redefinition in which the perturbation parameter is proportional to A A", with m the
loop order of the counterterm. In this way, one finds a reduced renormalized action
(SEY (instead of the initial renormalized reduced action). As stressed in section 4.2,
this action does not give finite Green functions of the elementary field when the reg-
ulator is removed. But it does give finite S-matrix elements. So, we can say that the
theory described by this action has been renormalized on shell (this concept is not
to be confused with an on-shell renormalization scheme). To illustrate this, consider
one of the simplest examples of a reduced action: requiring canonical normalization
of the kinetic terms in order to remove the exact ambiguity of field rescalings. To
obtain finite Green functions, wave function renormalization is required. Then, the
renormalized action is no longer in the reduced form. By a regulator-dependent field
rescaling, we can, however, transform the renormalized action into a reduced renor-
malized action, which has canonical kinetic terms; the wave function counterterms
are moved into a redefinition of the remaining counterterms. But the Green functions
associated to this action are just the Green functions of the bare field (written in terms
of renormalized masses and couplings), which are divergent [130]. Nevertheless, these
Green functions can be used to calculate finite scattering amplitudes, with the regula-
tor removed after the on-shell reduction. Coming back to the general case, note that,
at higher orders in A, the reduced renormalized action will contain also corrections
of order A™ and higher, as indicated in the power-counting formula eq. (4.70). These
higher-order counterterms are also required for finiteness of the S matrix.

Importantly, the finite parts of all the redefined counterterms can be fixed in terms
of renormalization conditions for each operator in the reduced action (see ref. [8§]
for a detailed argument in the context of the exact renormalization group). Thus,
no independent renormalized couplings associated to redundant operators need to be
introduced. This implies that one can describe the renormalization-group evolution of
the reduced renormalized couplings in terms of reduced renormalized couplings only,
which has led to the definition in [131] of effective beta functions along the reduced
directions, depending only on reduced renormalized couplings. The renormalization
group equation of on-shell quantities can be written in terms of these effective beta
functions. Depending on the aimed precision, the higher-order corrections introduced
by the field redefinition may be relevant for the running of reduced couplings. Once
again, we stress that using the equations of motion may lead to incorrect results.

The linearized renormalization-group evolution can be described in terms of opera-
tor mixing; in this case, the beta functions are just anomalous dimensions. It has been
observed in theories of interest that, at one-loop, the anomalous-dimension matrix
has many vanishing entries, not explained by power counting [132-138]. This pattern
has been explained in terms of the Lorentz structure of the involved operators, which
forbids certain mixings at one loop [139].

Let us next consider the loop expansion of the fundamental theory Syvy, which we
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assume to be weakly coupled:

Z(Suv)J] = fj 1 Z(Suv) (). (4.74)

This corresponds to an expansion in the UV couplings divided by 1/(47)2. In order

to match this expansion, the bare effective action S'in eq. (3.11) and its local versions
S = (Swn must depend explicitly on h. We write

S[e] = hFs®ig]. (4.75)

Then, each coefficient Z*) is recovered by combining the powers of A in S with the
ones associated to loops (and counterterms) in the EFT. The terms of order A* in
S must be corrected as explained in section 3.5 to find the coefficients S®) in the
expansion of the local action S. In approach A to matching, S* is given by k-loop
diagrams in the UV theory and k-loop diagrams in the effective theory. Consider now
a double expansion of S in A and A:

Slo) = Z fj BN S 6] (4.76)

m=0 k=0

Note that if all the possible operators are included, then all the S with a fixed m will
contain the same operators. That is, the quantum corrections can be absorbed into
a renormalization of the coefficients. But as discussed above, the point of matching
is to compare the renormalized parameters of the EFT with the UV parameters in a
renormalization scheme that is independent of the fundamental theory. Let us perform
a perturbative field redefinition to eliminate an operator in SY). This will rearrange
all %) with & > j and m > n, in a way consistent with eq. (4.70). Once again, there
are practical consequences for the matching workflow. Suppose, for example, that Sél)
is non vanishing and that we want to eliminate a first order term at the classical level,
that is, a term in Sf)). Then, there will be corrections not only to S{O) but also to Sil).
This means that to calculate the matching at one-loop one must not only integrate
out at that level, but also keep track of possible rearrangements of the effective action
at the classical level. For this, it is not sufficient to know the final form at the classical
level, (S )ﬁo). So, the necessary corrections would be missed if one simply added the
one-loop result to the results of tree-level matching given in the literature in particular
basis. In other words and with more generality, the same light fields should be used
in calculating the contributions at each order in the loop expansion.

A related issue is the fact that the classification in [96] of tree-level and loop
operators, as those that can be induced or not at the tree-level, respectively, is not
stable under field redefinitions. Therefore, this classification is only meaningful in one
the following two interpretations: either for classes of operators that can be connected
by field redefinitions, as proposed in [133], or for individual operators in the context of
a given non-redundant basis of operators. This latter classification is basis-dependent.
It turns out that the former is closely related to the pattern of operator mixing [139].
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4.6 Conclusions

It is clear that a perturbative transformation, controlled by a small parameter A, of
any function depending analytically on A will rearrange at all orders its perturbative
expansion in A\, with the new coefficients depending on the original ones of the same or
lower order. It is also clear that this rearrangement cannot be reproduced by a linear
approximation in the perturbation. These simple facts may have non-trivial practical
implications for EFTs.

EFTs are treated perturbatively in 1/A and in a loop expansion. When putting
together different orders, it is crucial that they are all given in the same field coordi-
nates. Otherwise, inconsistencies will be present, not only off-shell but also in on-shell
observables. Preserving the consistency of field redefinitions requires some care when
the different orders are calculated independently. Consider, for example, the SMEFT.
We compute complete matching of this effective theory to arbitrary UV completions
in chapter 8 at the tree-level and to order 1/A?, with A the lightest mass of the heavy
particles. The results of the matching are given in the Warsaw basis [54]. They are
very useful when working to order 1/A? and at the tree level, but, unfortunately, they
cannot be combined with future direct results of tree-level matching at order 1/A*.
For this, knowledge of the higher-order terms generated by the lower-order field re-
definitions is required. But this information is usually not provided in the literature,
including our results in chapter 8, nor can it be recovered without repeating the whole
calculation. Similarly, the Warsaw-basis results of tree-level matching cannot be com-
bined with one-loop corrections, even if the latter are transformed into the Warsaw
basis. Moreover, in some methods it may be convenient to also perform field redef-
initions in the UV action in order to find one-loop corrections to the matching. For
consistency, the tree-level contributions must be calculated for the same light fields.
Note that an identical situation will arise again and again at higher and higher orders.
This is not a fundamental problem, but it conflicts with the idea of building on pre-
vious results. The very same issues are relevant for conversions from one basis into
another one. In particular, the generalization to higher orders of codes that automat-
ically reduce actions (as in MatchingTools, introduced in chapter 5 and in the code
presented in ref. [140]) or translate operator coefficients in different bases [141, 142]
should implement field redefinitions rather than use equations of motion.

Field redefinitions not only change the action, but they also introduce a determi-
nant (which can be added to the action or ignored in dimensional regularization, for
local perturbative redefinitions) and modify the coupling to the sources. The latter
effect is crucial in the derivation of Schwinger-Dyson equations and Ward identities.
Ignoring it amounts to the bold replacement of a coupling of the source to a sum of
composite operators by a linear coupling to the new elementary field. The LSZ for-
mula implies that this replacement has no effect on on-shell quantities. But, as we have
discussed, it does have a non-trivial impact on the form of the local effective action
after matching and also on renormalization. All these subtle effects are relevant for
the standard approach to matching and renormalization in terms of Green functions.
However, we should stress that they go away when computing on-shell amplitudes,
and might be avoided from the beginning in on-shell matching/renormalization.

Working with non-redundant bases of operators in EFTs has become a standard
practice. Besides having a reduced number of operators, these bases have the clear
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advantage of attaching an unambiguous physical meaning to the set of coefficients
that describe the theory to a given order. In particular, flat directions are avoided
in comparing with the experimental data. Notwithstanding this, the conversion into
non-redundant or reduced bases also has a few drawbacks. The first one is apparent
in the example of section 8.6 and, more dramatically, in the example of section 4.2.2:
the necessary field redefinitions typically give rise to a more complicated Lagrangian.
Of course, this is not so in a truly model-independent approach, in which the starting
point is a completely general EFT. But even in this case, the connection to particular
UV completions is more intricate. More importantly, the physical predictions are
typically more obscure, as the redefinition introduces correlations between operator
coefficients that must be precisely preserved.!'” For instance, at first sight it is far
from obvious that eq. (4.9) represents a free theory in disguise. Another issue that
we have discussed is that reduced actions are not stable under renormalization and
renormalization-group evolution, although the departures can be absorbed on-shell
into reduced counterterms and effective beta functions. Finally, we have seen that field
redefinitions may modify the power counting inherited from (classes of) UV theories,
when it cannot be formulated in terms of the effective theory alone. So, such a power
counting needs not be apparent in non-redundant bases.

The basis proposed in [133,134] is optimal in dealing with all the issues just men-
tioned, but only for particular processes (Higgs physics) and rather specific UV sce-
narios (universal theories). Let us put forward another possibility: working with a
standard over-complete, i.e. non-reduced, basis. In principle, this minimizes the prob-
lems pointed out above. Indeed, the connection with UV theories is more transparent,
at least at the tree level, and there is flexibility in reproducing the field coordinates
used in the matching. Also, if no redefinitions are made after matching, the physical
predictions will typically be more obvious, and for simple models will not contain flat
directions. The tree-level or loop origin of operators is directly given by the classifica-
tion in [96]. And finally, from the point of view of the EFT itself, a general action in
the over-complete basis is stable under renormalization and gives rise to finite off-shell
Green functions that obey standard renormalization group equations. The package
BasisGen, presented in chapter 6, can generate both reduced and over-complete basis
for EFTs, because it performs field redefinitions only optionally.

Working in this approach would first involve selecting a basis at each order, ob-
tained only with algebraic manipulations of the operators (the convenience of the
latter should also be assessed in each case). Then, the results of matching and the
beta functions would be provided in this basis (with information about possible field
redefinitions in the process). And finally, to profit from the advantages of reduced
bases, it would be useful to know the conversions of the over-complete basis into non-
redundant bases, including higher-order operators generated in the process, or to have
the tools to perform automatically this task.

17This is also a consequence of some algebraic manipulations performed to reach a given basis,
such as Fierz reorderings.
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To form a general idea of the size of the calculations that are encountered when dealing
with EFTs for physics beyond the SM, one can look at the number of fields and terms
in the effective Lagrangians. A basis of dimension-6 operators for the SMEFT has
3045 different operators (84 if flavor is neglected). Roughly speaking, the number of
operators grows exponentially with their dimension. There are 48 different multiplets
of new fields with linear dimension-4 couplings to the SM. Their effective Lagrangian
with terms of dimension 5 or less involves thousands of operators.

In view of this situation, it becomes clear that it is convenient to have computer
tools to help performing the calculations. Using a computer reduces the time that it
takes to perform them and the possibility of introducing human errors. Computers are
also useful to exchange information, given the large sets of data available. A complete
and coherent set of tools is still under development. There are already several tools
with different purposes, overlapping at different places and with different degrees of
generality:

e Rosetta [141] translates between bases of dimension-6 operators in the SMEFT.

e DsixTools [143] and Wilson [144] do renormalization group evolution in the
dimension-6 SMEFT and the Weak Effective Theory (WET, the EFT just below
the electroweak scale), as well as one-loop matching between them.

e SMEFTsim [145] and flavio [146] compute predictions for observables in the
dimension-6 SMEFT (and the WET, in the case of flavio).

e DEFT [142] generates bases of operators and translates between them, for gauge
theories based on the SU(N) groups.

e smelli [147] provides a global likelihood for the dimension-6 SMEFT.

SmeftFR [148] generates the Feynman rules for the dimension-6 SMEFT.

In this part of the thesis, we present two Python packages: MatchingTools (in
chapter 5) and BasisGen (in chapter 6). They cover calculations that cannot be
performed with previously available tools, with emphasis on being general and efficient.
MatchingTools does tree-level matching in any Lorentz-invariant EFT with linearly-
realized gauge symmetry and operators of arbitrary dimension. It can also reduce the
effective Lagrangian that is generated in this way to a basis of operators. BasisGen
generates operator bases for EFTs under the same setting, for any reductive gauge
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group. As the number of fields and dimension of the operators is increased, this task
easily becomes very computationally expensive. For this reason, BasisGen is designed
to be as fast as possible without sacrificing generality. It improves the time taken to
obtain a basis by two orders of magnitude with respect to previous tools. The use
of field redefinitions is optional, allowing for the computation of over-complete basis,
which may be convenient for some purposes, as explained in section 4.6.

We will make use of both tools in part III. In chapter 7, BasisGen will be used to
generate the representations of the new fields in the BSMEFT with linear interactions
of dimension 4 or less. It will also be used to compute a basis for the corresponding
effective Lagrangian. In chapter 8, MatchingTools will perform the matching calcu-
lation and the procedure of reducing the Warsaw basis. The correctness of this basis
can also be checked using BasisGen. In chapter 9, BasisGen will be used to produce
the representations of the vector-like quarks with linear couplings of dimension 5 or
less and their effective Lagrangian.



CHAPTER

MatchingTools: tree-level matching
and reducing

5.1 Introduction

MatchingTools is a Python library for doing symbolic calculations in EFTs. It pro-
vides the tools to construct general models by defining their field content and their
interaction Lagrangian. Once a model is given, the heavy particles can be integrated
out at the tree level to obtain an effective Lagrangian in which only the light particles
appear. After this matching procedure, some of the terms of the resulting Lagrangian
might not be independent. MatchingTools contains functions for transforming these
terms to rewrite them in terms of any chosen set of operators.

The procedure of matching can be described algebraically in terms of tensor calcu-
lus manipulations involving the computation of functional derivatives and the substi-
tution of heavy fields by other previously obtained expressions (see section 3.5.2 and
refs. [32,34,149-158]). The complexity of the process quickly grows with the number
of heavy fields and their interactions. It is in this context where the development of a
computer tool to automatize the process becomes necessary.

MatchingTools can perform tree-level integration of heavy fields in any given La-
grangian. It has been developed with the application to the SMEFT in mind, but
it is able to work with any situation describable by a Lorentz invariant field theory
in which the high energy degrees of freedom to be removed are scalars, vector-like or
Majorana fermions, or vectors. By introducing the generic solution to their equations
of motion, other types of fields can be treated as well. The validity of MatchingTools
extends to any level in the expansion in inverse powers of the cut-off energy of the
EFT.

The Lagrangian resulting from integration usually contains redundancies, as ex-
plained in chapter 4: there are operators that can be written in terms of others using
identities of the symmetry group, integration by parts and field redefinitions. A com-
plete set of operators that are independent under this set of transformations is called
a basis. Several such bases have been described [54, 159, 160].

The transformation of the results of matching to a chosen basis can also be done
using MatchingTools. One should introduce the identities between tensor expressions
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needed to transform some operators into others, as well as the desired basis.

There are other tools for the manipulation of bases of operators, such as Rosetta [141].
The portion of MatchingTools that deals with this calculations differs from it in two
main points: first, it allows not only for the transformations between sets of already
independent operators, but for the transformation of any set of operators into a ba-
sis. Moreover, MatchingTools has the ability of doing transformations not with the
operators themselves, but with parts of them, allowing for general transformations
between parts of tensor expressions into others. Actually, MatchingTools can be used
as system for tensor calculus manipulations, not necessarily in the context of an EFT.
It provides a fast way of doing complex symbolic calculations with many fields and
terms involved, which is safe against algebraic errors.

A package that implements a similar way of dealing with the specification of models
is FeynRules [161,162], thought its objectives are completely distinct. One possible di-
rection for future work with MatchingTools is making the connection with FeynRules.

Among other computer tools for calculations in the context of the SMEFT we have
DsixTools [143] (which allows for several calculations including a case of tree level
matching) and SMEFTsim [145] (which is able to produce theoretical predictions and
constraints for the Wilson coefficients of the dimension 6 SMEFT).

MatchingTools is available in GitHub (https://github.com/jccriado/matchingtools)
and in the PyPI repository (https://pypi.python.org/pypi/matchingtools/), so it can
be installed using pip [163] as

> pip install matchingtools

This chapter is organized as follows: sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4 explain the
features of MatchingTools and how to use it. Section 8.6 proposes a simple example
that serves to see the library in action and as a test case. Some extra features for
the applications in physics beyond the SM are introduced in section 5.4. Section 5.5
is an explanation of how to integrate out new types of fields that are not included in
MatchingTools.

5.2 Interface

5.2.1 Creation of models

In this section we will describe how to create a model using the module matchingtools. core.
It assumes that the classes and functions that are used are in the namespace. To im-
port all the classes and functions that appear here do

from matchingtools.core import (
Tensor, Operator, OperatorSum
TensorBuilder , FieldBuilder,
D, Op, OpSum,
number_op, power_op

The from ... import ... style is recommended, as the expressions that appear
when using this library tend to be long, so having the short names directly accessible
is preferable.
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Creation of tensors and fields

In MatchingTools, the basic building blocks for everything are the objects of the class
Tensor, which we simply call tensors here. Examples of tensors are fields (light and
heavy), symmetry group related tensors (such as Pauli matrices) or coupling constants
(including gauge couplings, Yukawa couplings and masses).

Tensors have an attribute is_field that is True if and only if they are spacetime
dependent (i.e., they are fields). Fields can have derivatives applied to them. The
attribute num_of_der counts the number of derivatives that apply to a field. Deriva-
tives are understood here to be covariant derivatives D, corresponding to the gauge
group of the low energy EFT. Each derivative applies only to one field. The Leibniz
rule is used whenever a derivative of a product is encountered. Tensors can be either
commuting of anti-commuting, which is distinguished by the attribute statistics.
It can be set equal to either boson or fermion, both being variables defined in this
module. Finally, all tensors have an attribute indices, a list of integer numbers rep-
resenting their tensor indices; and an attribute name, an identifier. Other attributes,
content and exponent, are for internal use. Names starting with the character '$’ are
also reserved for internal calculations.

To create the tensors and fields of a model, the classes TensorBuilder and FieldBuilder
should be used. For example, the Pauli matrices o7; could be defined as

sigma = TensorBuilder ("sigma")

and then used when needed as sigma(il, i2, i3) where i1, i2 and i3 are the
indices. Similarly, a boson field ¢ (with its conjugate ¢*) and a fermion f (with its
separate chiralities and their conjugates) are defined as

phi = FieldBuilder("phi”, 1, boson)
phic = FieldBuilder("phic", 1, boson)

fL = FieldBuidler("fL", 1.5, fermion)
fR = FieldBuidler("fR", 1.5, fermion)
fLc = FieldBuidler("fLc", 1.5, fermion)
fRc = FieldBuidler("fRc", 1.5, fermion)

The second argument of FieldBuilder is the dimension of the field.

Definition of the interaction Lagrangian

Once all the tensors are created, we are ready to define the interaction Lagrangian. It
should be a sum of operators, which in turn are just products of fields. It is defined
using the functions OpSum and Op:

int_lag = -0pSum(Op(...), OpC...D), ...)

The minus sign is defined for operator sums and individual operators. The function
OpSum creates an object of the class OperatorSum, a container for a list of operators
representing their sum. The function Op creates an Operator that contains a list of
tensors and represents their product:

Op(tensor1(il, i2, ...), tensor2(i3, i4, ...), ...)
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Tensors t_name = TensorBuilder("t_name")
Fields f_name = FieldBuilder("f _name", dim,

statistics)
Lagrangian lag = -OpSum(Op(...), Op(...), ...)
Operators Op(tensorl(il, i2, ...), ...)
Derivatives 0p(..., D(il, temsor(...)), ...)
Numeric coefficient number_op(number) * Op(...)
Symbolyc power inv_mass_sq = power_op("M", -2)

Table 5.1: Summary of the tools for the creation of a model.

Positive indices are used to express contraction. During the creation of the model,
any index should be contracted with another, so we will only use here positive ones.
When indices are repeated inside the same operator, the corresponding contraction is
understood. For example, the product of tensors 7;;Simnmtnj would be written as

Op(r(0, 1), s(3, 0, 4, 5, 4), t(5, 1, 3))

To introduce a covariant derivative inside an operator, the appropriate function is
D, whose first argument is the Lorentz index of the derivative and whose second one
is the tensor to which it is to be applied:

D(i1l, tensor(i2, ...))

For numeric coefficients, the function number_op creates an operator with only one
special tensor representing a number (its name is "$number" and has an attribute
content with the actual number). Multiplication is defined for operators, so the
operator :V,S:D,S, can be expressed as

number_op (1j) * 0p(V(0), Sc(1), D(0O, S(1)))

Tensors representing a symbolic constant exponentiated to some power can be
created using the function power_op, that takes the base (a string) and the exponent
(a number) (represented by an extra internal attribute of tensors: exponent) and
optionally some indices and returns an operator containing only the corresponding
tensor. This is useful specially for the masses of the heavy particles, which tend to
appear several times with different powers in all calculations.

A summary of the tools presented in this section is shown in table 5.1.

Dealing with spinors

MatchingTools uses the two-component spinor formalism to treat spinor fields follow-
ing the conventions in [164]. The module matchingtools.core defines the following
tensors to work with them:

e epsUp and epsDown: the totally anti-symmetric tensors €*? and e,z with two

undotted two-component spinor indices defined by €2 = —€?! = —¢15 = €91 = 1.

e epsUpDot and epsDownDot: the totally anti-symmetric tensors %8 and e o5 With

two dotted two-component spinor indices given by €5 = (€a5)" and B = (e2P)x.
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e sigmad and sigmadbar: the tensors o', and 5’2‘"‘ given by o# = (Iyx2,d) and

0y = (Iax2,—0), where ¢ is the three-vector of the Pauli matrices. The first
index of sigma4 and sigmadbar corresponds to the Lorentz index.

5.2.2 Integration

This section explains how to use the classes that represent the heavy fields as well as the
function integrate, to integrate them out. They belong to the module matchingtools
.integration. To import them, one can do:

from matchingtools.integration import (
RealScalar, ComplexScalar,
RealVector , ComplexVector,
VectorLikeFermion, MajoranaFermion,
integrate

)

To integrate out the heavy fields from a previously defined Lagrangian we should
specify which of the fields are heavy. This is done using the classes:

e RealScalar. Its constructor receives as arguments the name of the field and the
number of indices it has.

e ComplexScalar. Requires a field—conjugate field pair. The arguments of the
constructor are the name of the field, the name of its conjugate and its number
of indices.

e RealVector. The arguments are the name of the field and the number of indices.
The first index of the field is understood to be the Lorentz vector index.

e ComplexVector. The arguments are the name of the field, the name of its
conjugate and the number of indices. The first index of both fields should be
their corresponding Lorentz vector index.

e VectorLikeFermion. The first argument of the constructor is the name of the
field. The second and third are the names of the left-handed and right-handed
parts. The fourth and fifth are their conjugates. The last is the number of indices.
The first index of the each of the four fields is taken to be their two-component
spinor index.

e MajoranaFermion. The arguments are the name of the field and the name of its
conjugate. The first index of both fields should be their two-component spinor
index.

The constructors for the bosons have the optional arguments: order (default 2),
specifying the order in (D/M)? to which the solution to the equation of motion is to
be expanded, and max_dim (default 4), representing the maximum allowed dimension
for the operators appearing in this expansion. Both bosons and fermions receive the
optional argument has flavor (default True) stating whether the heavy field has a
flavor index. In case it is true, the flavor index is taken to be the last one.
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The heavy field classes include the quadratic terms for the kind of particle they
represent, as well as the solutions to the equations of motion presented in section 3.5.2.
The mass of a field £ is represented by a tensor whose name is of the form mass = "M"
+ f.name. This tensor has one index if the heavy field has flavor and none otherwise.
The first step for integration is defining the heavy fields:

heavy_f = HeavyFieldClass("field_name", ...)

Given an interaction Lagrangian int_lag, the integration is done using the function
integrate, which takes as arguments a list of the heavy fields, the interaction La-
grangian and a maximum dimension max_dim for the operators of the EFT. It returns
the corresponding effective Lagrangian:

heavy_fields = [heavy_f_1, heavy_f_2, ...]
eff_lag = integrate(
heavy_fields, int_lag, max_dim

)

5.2.3 Transformations of the effective Lagrangian

After integration, the effective Lagrangian contains in general operators that are not
independent. To rewrite it in terms of a set of independent operators some manipu-
lations are needed, such as using identities for combinations of tensors related to the
symmetry groups, integrating by parts to move derivatives from some fields to others,
or using the equations of motion of the light fields.

The matchingtools.transformations module introduces the functions for doing
this kind of manipulations and for the simplification of the Lagrangian. We will
describe here the functions that are imported with

from matchingtools.transformations import (
simplify, apply_rules
)

First, the function simplify returns a simplified version of the Lagrangian it gets
as an argument. Tensors representing a number that appear inside an operator are
collected and multiplied. Tensors representing a symbolic constant exponentiated
to some power are also collected to give only one tensor with the correct exponent.
simplify also looks for Kronecker deltas (tensors with the name "kdelta" and two
indices) removes them by contracting the corresponding indices.

The transformations of a Lagrangian are done using what we call here rules. A
rule is a pair (a tuple with two elements) whose first element is an operator representing
a pattern and whose second element is an operator sum representing a replacement.
They are used by the function apply rules to find occurrences of the pattern and
replace them by the replacement. A rule is written as

rule = (Op(...), OpSum(Op(...), OpC...), ...))

The indices that appear in tensors inside the rule can be general integer numbers. Non-
negative integers represent contracted indices, as explained in section 5.2.1. Negative
indices are used for free indices and those in the replacement should match the corre-
sponding ones in the pattern. For example the substitution of afja,l;l by 20:10k; — 0i;0ki
can be done using the rule
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rule_fierz_SU2 = (
Op(sigma(0, -1, -2), sigma(0, -3, -4)),
OpSum (
number_op(2) * Op(delta(-1, -4), delta(-3, -2)),
-Op(delta(-1, -2), delta(-3, -4))

)

To transform the Lagrangian using integration by parts or equations of motion of the
light fields the user should also specify the corresponding rules following this procedure.

The function apply_rules repeatedly tries to apply every rule of a list to each
operator in an operator sum. If the pattern matches some part of an operator, the
rule is applied and the operator sum updated. The first argument to apply_rules
is the operator sum, the second is the list of rules and the last one is the number of
iterations. It returns the resulting operator sum.

To rewrite the Lagrangian in terms of a chosen set of independent operators the
procedure is: define the rules to get to the desired basis, add some rules to identify the
operators and apply the function apply_rules. The basis operators should be defined
using tensor_op, a function that creates an operator with one tensor inside whose
name is the argument of the function. Then write a rule to identify it. For example,
for the operator Ogp = (¢'D,¢)(D"¢)T¢ we would write

OphiD = tensor_op("OphiD")
rule_def_OphiD = (
Op(phic(0), D(1, phi(0)),
D(1, phic(0)), phi(0)),
OpSum (OphiD)
)

If the basis operator in question has some flavor indices, flavor_tensor_op is to be
used instead of tensor_op. It creates a callable object that takes the corresponding
free indices as arguments. As an example, for the operator (O.4);; = L, LigbeRjgzﬁngﬁ we
would have:

Oephi = flavor_tensor_op("Oephi")

rule_def_0Oephi = (
Op(1lLc (0, 1, -1), phi(1), eR(0, -2), phic(2), phi(2)),
OpSum (Oephi (-1, -2))

5.2.4 Output

The class matchingtools.output.Writer serves to nicely represent an effective La-
grangian. It is convenient that the final result is represented as a list of the coefficients
of the operators in the basis. That is, if each of the terms of the Lagrangian contains
a tensor that represents an operator of the basis, we would like to see what are the
tensors that multiply each of them. This is what Writer does. If eff_lag is our final
effective Lagrangian and op_names is a list of the names of the tensors representing
the operators in the basis, one should do
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eff_lag _writer = Writer(eff_lag, op_names)

The constructor admits an optional argument conjugates, a dictionary whose keys
are the names of all the tensors involved in the final output and whose values are
the names of their conjugates. This helps Writer collect pairs of conjugate products
of tensors returning their real or imaginary part. The string representation can be
obtained just by using the str method of the class Writer. To write it to a text file
the user should use

eff_lag writer.write_text_file(filename).

The method write_latex_file writes a LaTeX file with the representation. It receives
four arguments: the name of the output file, the LaTeX representation of the tensors,
the LaTeX representation of the coefficients of the basis operators and a list of the
strings to be used to represent the indices. The LaTeX representations are given
by dictionaries whose keys are the names of the tensors to be represented (or whose
coefficient is to be represented) and whose values are the corresponding code. This
code should contain placeholders for the necessary indices written as "{}" (Python’s
format style). To produce the characters "{", "}" in the final code they should appear
duplicated in the dictionary values. For a better LaTeX output for the numerical
coefficients, the parameter passed to number _op in the definitions should be either an
int or a fractions.Fraction. In this context, the imaginary unit can be introduced
by multiplying by the operator core.i_op.

5.3 An example

In this section we will be creating a simple model to show some of the features of
MatchingTools. The model is described as follows: it has SU(2) x U(1) gauge sym-
metry and contains a complex scalar doublet ¢ (the Higgs) with hypercharge 1/2 and
a real scalar triplet = with zero hypercharge that couple as

Ling = —KZ%0 0% — \E°E%1 ¢, (5.1)

where xk and )\ are a coupling constants and ¢ are the Pauli matrices. We will then
integrate out the heavy scalar = to obtain an effective Lagrangian which we will finally
write in terms of the operators:

Ous = (¢79)?, Op1 = (¢79)?,
O = ¢lo(D,0) Dro, OF = (6'D,.0)(DHe)To, (5.2)
Ops = &1(Du0)¢' Do, Op, = (Do) é(D e)Te.

Notice that this is not an independent set of operators, as some linear combinations
of them are total derivatives. Because the purpose of this section is to present a very
simple model, we will not be doing integration by parts and therefore we will not
simplify the results any further.

5.3.1 Creation of the model

The required imports are
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from matchingtools.operators import (
TensorBuilder , FieldBuilder , Op, OpSum,
number_op, tensor_op, boson, fermion, kdelta
from matchingtools.integration import RealScalar, integrate

from matchingtools.transformations import apply_rules

from matchingtools.output import Writer

Three tensors will be needed, the Pauli matrices and the coupling constants:

sigma = TensorBuilder ("sigma")
kappa = TensorBuilder ("kappa')
lamb = TensorBuilder ("lamb")

We will also use three fields: the Higgs doublet, its conjugate and the new scalar:

phi = FieldBuilder("phi", 1, boson)
phic = FieldBuilder ("phic", 1, boson)
Xi = FieldBuilder ("Xi", 1, boson)

Now we are ready to write the interaction Lagrangian:

interaction_Lagrangian = -0pSum(
Op(kappa(), Xi(0), phic(1),
sigma (0, 1, 2), phi(2)),
Op(lamb (), Xi(0), Xi(0),
phic (1), phi(1))

5.3.2 Integration
To integrate out the heavy = we write

heavy_Xi = RealScalar("Xi", 1, has_flavor=False)
effective_Lagrangian = integrate(
[heavy_Xil], interaction_Lagrangian, 6

)

5.3.3 Transformations of the effective Lagrangian

After the integration we get operators that contain (¢'o%¢)(¢T0%®). This product can
be rewritten in terms of the operator (¢'¢)?. To do this, we can use the SU(2) Fierz
identity:

0'%0'21 = 2(51'16@' - 6ij(5kl' (53)

We now know that we can define a rule to transform everything that matches the
left-hand side of the equality into the expression in the right-hand side with the code
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fierz_rule = (
Op(sigma(0, -1, -2), sigma(0, -3, -4)),
OpSum (

number_op (2) * Op(kdelta(-1, -4), kdelta(-3, -2)),
-Op(kdelta(-1, -2), kdelta(-3, -4))

)

We should now define the operators in terms of which we want to express the effective
Lagrangian

Ophi6 = tensor_op("Ophi6")
Ophi4 tensor_op ("0Ophid")
Olphi = tensor_op("Olphi")
03phi = tensor_op("03phi")
0Dphi = tensor_op("ODphi")
ODphic = tensor_op("0Dphic")

and then use some rules to express them in terms of the fields and tensors that appear
in the effective Lagrangian

definition_rules = [
(0p (phic(0), phi(0), phic(1l), phi(1l),
phic(2), phi(2)),
OpSum (0phi6)),
(0p(phic(0), phi(0), phic(1), phi(1)),
OpSum (Ophi4d)),
(0p(D(2, phic(0)), D(2, phi(0)),
phic (1), phi(1)),
OpSum (01phi)),
(0Op (phic(0), D(2, phi(0)),
D(2, phic(1)), phi(1)),
OpSum (03phi)),
(0Op(phic(0), D(2, phi(0)),
phic (1), D(2, phi(1))),
OpSum (0Dphi)),
(0p(D(2, phic(0)), phi(0),
D(2, phic(1)), phi(1)),
OpSum (0Dphic))
]

To apply the SU(2) Fierz identity to every operator until we get to the chosen opera-
tors, we do

rules = [fierz_rule] + definition_rules

max_iterations = 2

transf_eff_lag = apply_rules(
effective_Lagrangian, rules,
max_iterations
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5.3.4 Output

The class Writer can be used to represent the coefficients of the operators of a La-
grangian as plain text and write them to a file

final_coef_names = [
"Ophi6", "Ophi4", "Olphi",
"03phi", "ODphi", "ODphic"
]
eff_lag_writer = Writer(

transf_eff_lag, final_coef_names
)
eff_lag writer.write_text_file(
"simple_example_results.txt"

)

It can also write a LaTeX file with the representation of these coefficients and export
it to pdf to show it directly. For this to be done, we should define how the objects
that we are using are represented in LaTeX code and the symbols we want to be used
as indices

latex_tensor_reps = |
"kappa": r"\kappa",
"lamb": r"\lambda",
"MXi": r"M_{{\Xil}}",
"phi": r"\phi_{}",
"phic": r"\phi~*_{}"

}

latex_op_reps = {
"Ophi":
r"\frac{{\alpha_{{\phi}}}}{{\Lambda~2}}",
"Ophid":
r"\alpha_{{\phi 4}}"

}

latex_indices = [”i", ”j”, "k", uln]

eff_lag writer.write_latex(
"simple_example", latex_tensor_reps,
latex_op_reps, latex_indices

The expected result is a .tex file (ready to be compiled) with the coefficients of the
operators we defined.
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5.4 Extras for beyond the Standard Model
applications

MatchingTools includes a subpackage called extras, with some modules defining
tensors and rules that are useful for the applications to physics beyond the SM. These
modules are SU2, SU3, Lorentz, SM and SM_dim 6 basis. Other modules will be added
in the future and will be available in the GitHub repository of the program, as well as
in its updates in the pypi repository [163].

5.4.1 The SU2 module

This module defines the following tensors related to SU(2):

e epsSU2: The totally antisymmetric tensor €;; with two doublet indices and €12 =
1.

e sigmaSU2: The Pauli matrices of;. The first index is the triplet index, whereas
the second and third are the doublet ones.

e CSU2 and CSU2c: the Clebsh-Gordan coefficients CJ; with the first index I being
a quadruplet index, the second a a triplet index, and the third 5 a doublet index.
The tensor C' contracted with the corresponding three objects produces a singlet.

e epsSU2triplets: Totally antisymmetric tensor eu,. with three SU(2) triplet
indices such that €153 = 1.

o f£SU2: Totally antisymmetric tensor with three SU(2) triplet indices given by

fabc = 6abc

It also implements the rules for taking expressions with €;;e, 030k C pEpm O C’ eqnakl
or contractions of anti-symmetric tensors, and rewriting them in terms of Kronecker
deltas. All the rules are collected in the list rules_SU2. The LaTeX representation of
the tensors defined is given by the dictionary latex_SU2.

5.4.2 The SU3 module
The SU(3) tensors defined in this module are:

e epsSU3: Totally antisymmetric tensor € 4pc with three SU(3) triplet indices such
that €123 — 1.

e TSU3: SU(3) generators (Ta)pc = 2(Xa)pc, where A4 are the Gell-Mann matri-
ces. The first index is the octet index. The second and third are the anti-triplet
and triplet ones.

e £3U3: SU(3) structure constants fapc.

The rule for transforming €;jx€i,, into a combination of Kronecker deltas is imple-
mented. It is included in the one-element list rules_SU3. The LaTeX representation
of the tensors defined is in latex_SU3.
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5.4.3 The Lorentz module

This module includes the tensors epsUp, epsUpDot, epsDown, epsDownDot, sigma4,
sigmadbar from matchingtools.operators and defines:

e eps4: Totally antisymmetric tensor €,,,, with four Lorentz vector indices where
€o123 = 1.

e sigmaTensor: Lorentz tensor

ot = (Ugﬁc_f”w - J@&Mﬁ) : (5.4)

e | .

The list rules_Lorentz contains the rules for substituting e*?¢®* by %6"’“655  €aBagp
by %5;‘@% 55 and contracted e tensors by combinations of Kronecker deltas.

5.4.4 The SM module

Here, the tensors corresponding to the SM fields and its gauge coupling constants,
Yukawa couplings and CKM matrix are defined. The SM fields are:

e phi and phic: The Higgs boson and its conjugate. One SU(2) doublet index.

e 1L and 1Lc: The left-handed lepton doublet. Its indices are, in order: the two-
component spinor index, the SU(2) doublet index and the flavor index.

e gL and gLc: The left-handed quark doublet. Its indices are: the two-component
spinor index, the SU(3) triplet (or anti-triplet) index, the SU(2) doublet index
and the flavor index.

e eR and eRc: The right-handed electron. Indices: two-component spinor and
flavor.

e uR and uRc: The right-handed up quark. Indices: two-component spinor, SU(3)
triplet (or antitriplet) and flavor.

e dR and dRc: The right-handed down quark. Indices: two-component spinor,
SU(3) triplet (or antitriplet) and flavor.

e bFS: U(1) field strength tensor. Two Lorentz vector indices.

e wFS: SU(2) field strength tensor. Two Lorentz vector indices and one SU(2)
triplet index.

e gFS: SU(3) field strength tensor. Two Lorentz vector indices and one SU(3)
octet index.

The constant tensors are:

e gb and gw: The U(1) and SU(2) gauge coupling constants.
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e ye, yec, yd, ydc, yu and yuc: The diagonalized Yukawa matrices for the leptons,
the down quarks, the up quarks and their conjugates. They have two indices:
the first one corresponds to the flavor of the doublets and the second to the flavor
of the singlets.

e V and Vc: CKM matrix.

The module also includes a list of rules eoms_SM, defined to substitute the equations
of motion, replacing derivatives of the Standard Model fields by a combination of the
other fields. There is a dictionary latex SM containing the LaTeX representation of
the tensors that are defined.

5.4.5 The SM_dim 6 _basis module

In this module, the basis for the SM effective Lagrangian up to dimension six that ap-

pears in [9] is defined. The rules to identify them are given in the list rules_basis_definition.
The LaTeX representation of their coefficients is in latex_basis_coefs. Modules con-
taining other bases, such as the one in [54], will be added in the future.

5.5 Using MatchingTools with other types of fields

As explained above, MatchingTools can integrate scalars, vector-like or Majorana
fermions, and vectors in Lorentz-invariant theories. For this purpose, several classes
representing the heavy fields are supplied. Other kinds of fields (for instance, with
non canonical kinetic terms, spin > 1, or non relativistic) can be treated as well, once
the corresponding class for it is provided. Specifically, to treat a new type of field one
should define a Python class implementing the following methods:

e equations_of motion. Receives an OperatorSum object representing an interac-
tion Lagrangian. Returns a dictionary whose keys are strings with the names of
the heavy fields involved (for example, a field and its conjugate, if it is a complex
boson) and whose values are OperatorSum objects representing the correspond-
ing solution to their equation of motion. These solutions can be written in terms
of other heavy fields, but they should be such that iterative substitutions of their
respective equations motion reaches a point where no heavy fields appear to the
desired order in the dimension of the operators.

e quadratic_terms. Does not have any parameters. Returns the kinetic and mass
terms of the corresponding heavy field.

For the definition of these methods, it is recommended to use the tools provided by
the core module. Once such a class is defined, its objects can be included in the list
of heavy fields to be passed to integration.integrate and they will be dealt with
in the same way as the others.

5.6 Conclusions

In this chapter, we have presented MatchingTools, a Python library implementing
symbolic tree-level matching for any given model. It is also able to transform the
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resulting Lagrangian using rules specified by the user to remove redundant opera-
tors. With this program one can safely automatize these kind of calculations, which
practically eliminates the possibility of algebraic errors and drastically reduces the
calculation times. Even calculations with complex Lagrangians involving ~ 100 inde-
pendent terms (thousands of terms in some intermediate steps) can be performed in
about thirty seconds (using a 2.6 GHz Intel Core i5 processor).

A direct application of MatchingTools, which has also served as an extensive
check of its validity, is the integration of all possible new fields that have linear gauge-
invariant renormalizable couplings to the Standard Model, keeping terms up to dimen-
sion 6 in the results. We present these results in chapter 8.






CHAPTER

BasisGen: bases of operators

6.1 Introduction

BasisGen is a Python package for the automatic generation of bases of operators
in EFTs. It accepts any semisimple symmetry group and fields in any of its finite
dimensional irreducible representations. It takes into account integration by parts
redundancy and, optionally, the use of equations of motion. The implementation is
based on well-known methods to generate and decompose representations using roots
and weights, which allow for fast calculations, even with large numbers of fields and
high-dimensional operators. BasisGen can also be used to do some representation-
theoretic operations, such as finding the weight system of an irreducible representation
from its highest weight or decomposing a tensor product of representations.

The input data needed for this calculation of a basis of operators are the symmetry
group G of the theory and the representation of G corresponding to each field. Once
they are specified, one can obtain, for every monomial in the fields, the number of in-
dependent ways of forming an invariant under the action of GG out of it. It must also be
taken into account that total derivative terms can be added to the Lagrangian without
changing the physics (except for effects of surface terms in the action). This means
that some operators with derivatives can be rewritten in terms of others. Moreover,
at each order in the effective Lagrangian, the addition of an operator proportional
to the equations of motion does not change the S matrix up to higher order effects,
as explained in chapter 4. It follows that the equations of motion can be used, for
example, to obtain a basis in which all the operators proportional to the functional
derivative of the kinetic term have been removed [56-58,91,92]. For the SMEFT (see
ref. [124] for a review), several bases and (incomplete) sets of independent operators
have been computed taking all these facts into account [31,54,137,165]. Computer
tools can be used to translate from one basis to another [4,141,142,144].

In the last few years, many developments have been made in the automatization
of the generation of operator bases. Hilbert series methods provide an elegant way to
compute invariants [166-170]. They can be directly implemented in a computer system
with symbolic capabilities, as done for the SMEFT case in the auxiliary Mathematica
notebook of ref. [169]. One possible drawback of this approach, when used in computer
code, is its performance, as an overhead due to the symbolic nature of the calculations
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might be introduced. The program DEFT [142], written in Python, uses a different
approach to check and generate bases of operators for the SMEFT. The operators
are not only counted but they are given explicitly, including their index contraction
structure and the fields to which the derivatives are applied (see ref. [97] for a non-
automatic calculation of the explicit operators in a basis). Additionally, it can perform
changes of bases. The method it implements can be generalized to theories with a
symmetry group given by a product of unitary groups.

BasisGen uses yet another approach, which is valid for any semisimple symmetry
group and avoids the need for symbolic calculations. The algorithms that it uses to
deal with representations of semisimple Lie algebras are the classical ones, based on
weight vectors. They are reviewed, for example, in ref. [171], and implemented in
several computer packages with different purposes [172-177]. To remove integration
by parts redundancy, an adaptation of the method in ref. [170] is used. BasisGen is
~ 150 times faster than the implementation in the auxiliary notebook of ref. [169].
For example, BasisGen takes 3 seconds to compute the 84 dimension-6 operators of
the 1-generation SMEFT (in a laptop with a 2,6 GHz Intel Core i5 processor), while
the notebook of ref. [169] takes 7 minutes. DEFT also takes minutes for the calculation
of a dimension-6 basis of the 1-generation SMEFT (according to ref. [142]), although
it must be taken into account that it does more work, as the concrete operators are
given instead of just being counted.

For computations with EFTs, BasisGen assumes 4-dimensional Lorentz invariance.
In addition, an internal symmetry group must be specified. This is, in general, the
product of the global symmetry group and the gauge group. Derivatives are assumed
to be gauge-covariant derivatives, so that the derivative of any field has the same
representation under the internal symmetry group as the field itself. The gauge field
strengths to be included in a calculation should be provided by the user. The fields
must belong to linear irreducible representations of both the Lorentz group and the
internal symmetry group. Finally, it is required that a power counting based on
canonical dimensions can be used.

In this context, BasisGen generates bases of invariant operators. It gives the
number of independent invariants that can be formed with each possible field content
for an operator. Sets of all covariant operators, with their corresponding irreducible
representations (irreps), can also be computed. The basic representation-theoretic
functionalities needed for these calculations are: obtaining weight systems of irreps
and decomposing their tensor products. An interface for their direct use is provided.

Although BasisGen does not provide the explicit index contraction structure of
the operators in the basis, the functionality of decomposing tensor products can be
used to help in their construction. For a particular field content, one can take the
tensor product of the first two fields. Then, for each irrep in the decomposition, take
the tensor product with the next field. This process can be iterated, keeping track
of the intermediate irreps. In the end, one can obtain all the possible ways of doing
the products of the fields that give an invariant. Nevertheless, some extra information
(the corresponding Clebsch-Gordan coefficients) is needed to completely determine the
operator.

BasisGen can be installed using pip by doing: pip install basisgen. It re-
quires Python version 3.5 or higher. Its code can be downloaded from the GitHub
repository https://github.com/jccriado/basisgen, where some examples of usage
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Listing 6.1: Simple EFT example script

from basisgen import algebra, irrep, scalar, Field, EFT
phi = Field(

name=’phi’,

lorentz_irrep=scalar,

internal _irrep=irrep(’sSU2’, ’1°),

charges=[1/2]
)
my_eft = EFT(algebra(’SU2’), [phi, phi.conjugate])
invariants = my_eft.invariants(max_dimension=8)

print (invariants)
print ("Total:", invariants.count())

Listing 6.2: Simple EFT example script’s output
phi phix: 1

(phi)~2
(phi)~2
(phi) "2
(phi)~3
(phi) "3
(phi)~4

(phix*)~2:

(phix)~2
(phi*) "2

(phi*)"3:

(phix*)~3

(phix*)~4:

)y

Y =
SN
w

-

Total: 11

can be found. A simple script using BasisGen is presented in listing 6.1. It defines an
EFT with internal symmetry group SU(2) x U(1) for a complex scalar SU(2)-doublet
field with charge 1/2. It computes a basis of operators of dimension 8 or less. The
output is presented in listing 6.2. Each line gives the number of independent invariant
operators that can be constructed with each field content

The rest of this chapter is divided in two sections (apart from the conclusions).
They describe BasisGen’s implementation (section 6.2) and interface (section 6.3).

6.2 Implementation

6.2.1 Basic operations with representations

In this section, the methods implemented in BasisGen to deal representations of
semisimple Lie algebras are presented. A representation of a semisimple algebra is
just a tensor product of representations of the algebra’s simple ideals. Using this
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fact, BasisGen decomposes calculations with semisimple algebras into smaller ones
with simple algebras. The basic operations with representations of simple algebras
are: the generation of the weight system of an irrep from its highest weight and the
decomposition of a reducible representation into a direct sum of irreps. They are both
implemented using well-known methods (see refs. [171-177]), which are summarized
here, for completeness.

In the Dynkin basis, which we use in what follows, all weights are tuples of integers.
Thus, the operations done here involve only addition and multiplication of integer
numbers. Each irrep of a simple algebra is uniquely characterized by its highest weight
A, which is a tuple (a; .. .a,) of non-negative integers. Every such tuple is the highest
weight of one irrep. The complete weight system of an irrep may be obtained from its
highest weight by the following procedure:

1. Set W = {} and Wy, = {A}.
2. Choose some A € Wiy

3. For each positive component \; > 0, select the ith row a of the Cartan matrix.
Append to W, all weights of the form A\ — ka, with 0 < k < A,

4. Remove A from W .,. Append it to W.
5. If Wiew is empty, terminate. Otherwise, go to step 2.

This produces the set W of all weights. The multiplicity n, of each weight A can then
be obtained recursively using the Freudenthal formula:

Ny — 2 4 Z;Do Natka (A + ko, @)
PTATLAF) = (A OATI)

(6.1)

where § = (11...1) and the summation for o runs over all positive roots.

The algorithm for the decomposition of a reducible representation as a direct sum
of irreps is straightforward: from the collection of weights of the representation in
question, find the highest and remove from the collection all the weights in the cor-
responding irrep. Repeat until the collection is empty. Then, the successive highest
weights that were found in the process are the highest weights of the irreps in the
decomposition. A direct application of this functionality is to decompose the ten-
sor product of irreps. Let W and W5 be the weight systems of two representations
Ry and Ry;. The weight system W of R; ® Ry is the collection of all A\; + Ay for
(A1, A2) € Wy x Wy, Once W is constructed, it can be decomposed using the general
decomposition algorithm.

In some cases, the symmetric or anti-symmetric tensor power of some representa-
tion is needed. If W = {A\i};c(; , is the weight system of some representation R,

the weight system of the symmetric tensor power Sym®(R) is the collection of weights
computed as A; + --- + X\ for every k-tuple (\;,...,\;,) where i3 < --- < ;. The
weight system of the anti-symmetric power A*(R) is constructed in a similar way, but
using all k-tuples (A, ..., \;,) with ¢, < --- < ¢, instead.
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6.2.2 Constructing invariants in effective theories

BasisGen can do calculations for 4-dimensional Lorentz-invariant effective field theo-
ries whose internal symmetry group is of the form G x U(1)", where G is semisimple.
An EFT is specified when the following data are provided:

e The semisimple Lie algebra g of G.
e A collection of fields ¢1, ..., ¢,,. Each ¢; must be equipped with:

— An irrep R(Ligrentz of the Lorentz algebra suy @ sus.
(@)

— An irrep R, ;.. Of 0.

— A tuple (cgi), . ,cf?) of charges under the U(1) factors.

— The statistics 5;. Either boson or fermion.

— A positive real number d;, specifying the canonical dimension of the field.

It is assumed that a power counting based on canonical dimensions of the fields, with
derivatives having dimension 1, can be applied. This is used to reduce the number of
possible operators to a finite one.

The main functionality of BasisGen is to compute the number of independent
invariant operators, constructed with the fields ¢; and their (covariant) derivatives,
and having dimension less than or equal to some fixed d... To do this, first, all
the possible operator field contents are found. The field content for some operator
is identified by a tuple C = (e, ..., €,), representing the exponents of each field in
the operator: O ~ (¢1)" -+ (¢)™. For each C, the following (possible reducible)
representation is computed:

Rep(C) = T{'(RM) @ - - @ T (R™), (6.2)

where TF(V) is the symmetric power Sym*(V) if the statistics S; are bosonic, and
the anti-symmetric power A*(V) if they are fermionic. Once Rep(C) is obtained, it
is decomposed into a direct sum of irreps. The number of independent invariant
combinations of the fields in C is then easily obtained as the number of singlet irreps
in the decomposition.

To take into account (covariant) derivatives, the same procedure is used, but now
including the fields D,¢;, {D,, D, }¢;, etc. Anti-symmetric combinations of derivatives
are automatically discarded, as they are equivalent to field strength tensors. Option-
ally, the equations of motion of the fields can be applied. This means that, for each
D,, ...D,, ¢, only the totally symmetric representation is retained (see ref. [168]).

Let I be the set of all operators constructed with the fields and their derivatives
(using equations of motion if necessary) that are invariant under the internal symmetry
group (but are not necessarily scalars). To eliminate integration by parts redundancy
from I, it is first split into the set of operators with zero derivatives I, the set of
operators with one derivative I, etc. Then, the following procedure is applied:

u1

1. Set R = {}.

2. Take one operator O from the non-empty I,, with lowest n.
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3. Remove O from I,, and append it to R.

4. Compute the decomposition into irreps of D, and eliminate the corresponding
operators from I,,;;. Compute the decomposition of {D,,, D,}O and remove it
from I,,5. Continue until the maximum dimension is reached.

5. If all I, are empty, terminate. Otherwise, go to step 2.

After this is done, a basis (in which integration by parts has been taken into account)
is obtained by selecting those operators in R that are scalars. Notice that the irreps
in the decomposition of the derivatives of operators are computed and removed. In
particular, if no (non-zero) scalar appears in the decomposition, then the corresponding
scalar operator will not be eliminated. This avoids the over-counting of integration by
parts redundancy in ref. [168] that was pointed out in ref. [169].

6.3 Interface

6.3.1 Basic objects

The basic objects for the usage of BasisGen are presented here. All of them can be
imported with:

from basisgen import (
algebra, irrep, Field, EFT, boson, fermion,
scalar, L_spinor, R_spinor, vector, L_tensor, R_tensor

Functions

algebra Creates a (semi)simple Lie algebra from one string argument. The returned
object is of the class SimpleAlgebra or SemisimpleAlgebra from the module
algebra.

Examples of arguments: °A3’, ’C12’, ’F4’, ’SU3’, ’B2+E7’, *SU5 x S06 x
Sp10°.

irrep Creates an irreducible representation from 2 string arguments: the first repre-
sents the algebra and the second the highest weight!. The returned object is of
the class representations.Irrep.

Example: irrep(’SU4 x Sp7’, ’1 01 0 2 17).
The weight system of a representations.Irrep object can be obtained by
calling its weights_view method. Irreps with the same algebra can be multiplied

to get the decomposition of their tensor product. Any two irreps can be added
to give an irrep of the direct sum of their algebras.

Ezamples, showing the weights of the octet irrep of SU(3) (which has highest
weight (11)) and the decomposition of the product of a triplet (10) and an anti-
triplet (01) as an octet plus a singlet:

!The highest weights for many irreps of several groups can be found, for example in ref. [171]. In
particular, notice that the highest weight of an SU(2) irrep is its dimension minus one.



6.3. INTERFACE 83
Name Description Default
name String identifier
lorentz_irrep Lorentz group irrep
internal irrep Irrep of the internal (semisimple) symmetry group
charges Charges under an arbitrary number of U(1) factors []
statistics Either boson or fermion boson
dimension Canonical dimension of the field 1
number_of flavors Number of different copies of the same field 1

Table 6.1: Arguments of the Field constructor

>>> irrep(’SU3°, ’1 17’).weights_view()
(1 D
(2 -1) (-1 2)
(0 0) (0 0)
1 -2) (-2 1)
(-1 -1)
>>> irrep(’SU3’, ’1 0’) % irrep(’SU3’, 0 1°)

(1 1] + [0 0]

Classes

Field Has an attribute conjugate, the conjugate field. The constructor arguments

are presented in table 6.1.

EFT Constructor arguments:

internal algebra The semisimple Lie algebra of the internal symmetry group.

fields A list of Field objects representing the field content of the theory.
Methods:

invariants Returns a basis of operators, encapsulated in an EFT.Invariants
object. These can be directly printed (implement __str__). They have a
method count to calculate the total number of operators in the basis, and a
method show_by_classes, which returns a simplified string representation
of the basis, provided a dictionary whose keys are the fields and values are
strings representing classes of fields.

covariants Returns a collection of all operators with all possible irreps, in
the form of a EFT.Covariants instance. Its only purpose is to hold the
information until it is printed (implements __str__).

Both receive the same arguments: max dimension, the maximum dimension
of the operators computed; use_eom (default: True) a boolean to specify
whether the equations of motion should be used; ignore_lower dimension (de-
fault: False), a boolean to specify whether operators with dimension less than
max_dimension should be included in the results; and verbose (default: False),
a boolean enabling/disabling messages about the progress of the calculations.
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Other

The following irreps of the Lorentz group have been defined, for ease of use: scalar,
L_spinor, R_spinor, vector, L_tensor, R_tensor. L_spinor and R_spinor corre-
spond to left and right Weyl spinors, respectively. L_tensor and R_tensor correspond
to the left and right parts of an antisymmetric tensor with two indices.

The statistics of a field can be specified by using the variables boson and fermion,
which are set to the values BOSON and FERMION of the enum class Statistics from
the module statistics.

6.3.2 The smeft module
The smeft module contains the definitions of all the SM fields:

e The Higgs doublet phi and its conjugate phic.

e The left and right parts GL and GR of the SU(3) field strength.
e The left and right parts WL and WR of the SU(2) field strength
e The left and right parts BL and BR of the U(1) field strength.
e The quark doublet Q and its conjugate Qc.

e The lepton doublet L and its conjugate Lc.

e The up-type quark singlet u and its conjugate uc.

e The down-type quark singlet d and its conjugate dc.

e The electron singlet e and its conjugate ec.

The bosons are objects of the Field class. The fermions are functions that take
the number of generations and return a Field. Similarly, the function smeft
takes the number of fermion flavors and returns an EFT object representing the
SMEFT. The algebra susz & sus is named sm_internal algebra. A dictionary named
sm_field classes is included, to simplify the presentation of the results by passing
it as an argument to the method show_by_classes of an EFT.Invariants object.

Listing 6.3 contains an example script for the computation of bases of arbitrary
dimension (passed as an argument to the script) for the 1-generation SMEFT. It gives
84 operators for dimension 6 (in about 3 seconds in a personal computer with a 2,6
GHz Intel Core i5 processor) and 993 operators for dimension 8 (in around 40 seconds
in the same computer).

6.4 Conclusions

BasisGen computes bases of operators for EFTs in a general setting: the internal
symmetry group can be any product of a semisimple group and an arbitrary number
of U(1) factors. 4-dimensional Lorentz invariance is assumed to provide support for
concrete applications, although adaptations to other spacetime dimensions can be
easily made, due to the generality of the core functionalities.
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Listing 6.3: SMEFT example

from basisgen.smeft import smeft, sm_field_classes
import sys

invariants = smeft (number_of_flavors=1).invariants(
max_dimension=int (sys.argv[1]),
verbose=True,
ignore_lower_dimension=True

print (invariants.show_by_classes(sm_field_classes(1)))
print ("Number of invariants: {}".format(invariants.count()))

We will use BasisGen in chapters 7 and 9, to obtain a basis for EFTs with new
fields beyond the SM ones.

The decision of using the equations of motion is left to the user, as it may be
convenient to work with redundant bases in some cases, as explained in section 4.6. It
is also possible not only to compute invariants but to generate all covariant operators,
classified by their irreps. This can be useful, for example, to find the representation
of fields that couple linearly to an already known theory, which are often the most
relevant ones for phenomenology [6-10]. We will also make use of this feature in
chapters 7 and 9. An interface for doing basic operations with representations of
semisimple groups is also provided.

BasisGen’s speed for large numbers of fields and high-dimensional operators makes
it possible to calculate bases for the SMEFT or for other EFTs for physics beyond
the SM, in times ranging from seconds (for the dimension-8 operators in the SMEFT)
to minutes (for higher-dimensional operators or larger number of fields) in personal
computers.
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7.1 Introduction

In section 3.7, we introduced the SMEFT: an EFT for the SM particles. Deviations
from the SM physics are parametrized in the SMEFT through the introduction of
higher-dimensional operators. In this way, it provides a model-independent framework
to study new physics. Its range of validity is limited to energies below the threshold
of production of any extra degrees of freedom.

To study the direct production of new particles, it is mandatory to incorporate into
the EFT the extra fields associated to them. Of course, the problem is that we do not
know a priori which are the particles and fields that are relevant at the energies that
can be accessed in the near future. So, in order to preserve model independence, we
need to consider EFTs with arbitrary field content and arbitrary interactions. This
also helps in connecting to particular models and hence in providing a rationale for
the values of the low-energy parameters.

To explicitly write such an EFT, which we call the BSMEFT, it is necessary to
make some assumptions about the high-energy physics. Our aim here is to keep these
assumptions minimal, so that we work in a setting as general as possible. For the
symmetries, we take 4-dimensional Poincaré invariance together with the SM gauge
group Gy := SU(3)x.SU(2)xU(1). This choice does not represent a loss of generality:
while it is possible that new symmetry groups are relevant at high energy, Ggy must
be a subgroup of them. Invariance under a larger group fits in the BSMEFT through
a particular choice of relations between its free parameters. For the action of the
symmetries over the fields, we have to commit to some particular choices in order
to have a manageable theory. An important assumption in our construction is that
Gy is linearly realized. This is a requisite for the perturbative unitarity of a theory
that contains the SM gauge bosons (see section 3.6).! We will introduce some extra
conditions over the representations of the fields, so that we have a finite number of
possibilities for them.

LA related effort for the case of the electroweak chiral Lagrangian, in which the Higgs boson is a
scalar singlet of the non-linearly realized electroweak symmetry is currently underway [178,179].

39
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This chapter is organized as follows. In section 7.2, the field content of the
BSMEFT is presented. In section 7.3, we collect the sector of their effective Lagrangian
that is relevant for leading order effects; that is, those terms that give tree-level con-
tributions to the dimension-6 SMEFT after matching (see chapter 8). We conclude in
section 7.4, with a summary of the applications of the BSMEFT, some of which are
presented in chapters 8 and 9.

7.2 Field content

In this section, we tackle the task of enumerating the fields that should be included in
the BSMEFT. They can be conveniently classified into irreducible representations of
the Lorentz and gauge symmetry groups. Our theory should contain all the SM field
multiplets (in particular, there should be a scalar in the (1,2),/, representation). In
addition, we assume that the only chiral fermions are the SM ones. These assumptions
are partially justified by the experimental success of the SM, including the discovery
of the Higgs boson, precision electroweak data and Higgs data.

For the fields that are not in the SM, we should consider every representation of
Gsm, according to our general approach of including all possible new fields. To reduce
the number of possibilities, we impose the condition that the quantum numbers of
each extra field are same as those of some operator made out of the SM fields only.
This choice is justified by several reasons. First, it must be satisfied if the particles
associated with these fields are unstable and decay into SM ones. Second, these are
the fields whose linear interactions with the SM are allowed by the symmetries. The
existence of linear interactions is a requirement for many tree-level effects. For ex-
ample, single production and decay are governed by them at tree level. Moreover,
integrating out a new field at tree level only gives non-vanishing contributions if the
field has linear couplings.

The full list of assumptions that define the field content of the BSMEFT is:

1. The gauge group Ggy := SU(3) x SU(2) x U(1) is linearly realized.

2. The Lorentz and gauge quantum numbers of every field are equal to those of
some SM covariant operator. This includes, in particular, all the SM fields.

3. The only fermion fields with chiral transformations under Ggy are the ones in
the SM. In other words, all the extra fermions are vector-like with respect to
Gsy or Majorana. This ensures that Ggyy is non-anomalous.

4. The fields create particles of spin < 1.

The fourth assumption is made to avoid subtle consistency issues with interacting
particles of spin > 1 [180].> Importantly for the purposes of chapter 8, the first
three assumptions ensure that, at energies much smaller than all the (gauge-invariant)
masses of the extra particles, the theory is well described by the SMEFT.

Let Lpsm be the effective Lagrangian of the BSMEFT. The operators of canonical
dimension d > 4 in Lgsu have dimensionful coefficients, which can be written as

2Local EFTs involving higher-spin particles are possible, with a restricted region of validity de-
termined by their mass, spin and couplings [181].
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a; 474, with f some mass scale and a; dimensionless couplings, which can be related
with the cutoff A by power-counting arguments [28-31,182-184]. As we have seen in
section 3.6, if all the vector bosons in the theory are the additional gauge bosons of
an extended gauge symmetry G O Ggy (spontaneously broken to Ggy) and Lpgy is
invariant under GG, with no anomalies, then the BSMEFT is a unitary EFT that can be
used to perform perturbative calculations to arbitrary precision at energies below the
cutoff A. However, in agreement with our model-independent spirit, we will consider
here general theories with Proca vector bosons without enforcing any gauge invariance
beyond Ggy.? This class of theories contains the ones with extended gauge invariance.
All the covariant derivatives we write are thus understood to be covariant with respect
to Ggm only.

The conditions that we have imposed strongly restrict the quantum numbers of the
extra fields. We will prove here a necessary condition over their representation under
Gsym. As in section 3.7, we use the label C' for the representation under SU(3), T' for
the SU(2) isospin and Y for the hypercharge. We define

N(C,T,Y)=A(C)+ B(T) +Y, (7.1)
with A and B defined by the condition 0 < A(C), B(T) < 1 and the equations
0(62”—/3]) _ €2i7rA(C)I’ T(-I) _ €2i7rB(T)I' (72)

where C(X) (T'(X)) denotes the representation of an element X of the SU(3) (SU(2))
algebra defined by C (7). The values A and B may take are limited: A(C) €
{0,1/3,2/3} and B(T) € {0,1/2}. The set representations of SU(3) is split into
three classes by the corresponding value A:

0=A(1) = A(8) = A(10) = A(T0) = A(27) = ... (7.3)
1/3 = A(3) = A(6) = A(15) = A(15) = A(24) = . .. .
2/3 = A(3) = A(6) = A(T5) = A(T5) = A(Zd) = ... (7.5)

In a similar way, B splits the set of SU(2) representations in two subsets: those with
integer isospin and the others. Both A and B are additive under the operation of
taking tensor products of representations:

A(C) ® Cq) = A(Ch) + A(Cy) (mod 1),

We will prove now that if (Co,To, Yo) is the representation of some operator O
constructed with the Standard Model fields, then N(Co, Tp, Yo) is an integer.? First,
it can be directly checked that N(Cy,T},Y,) is an integer for any SM field ¢. Now,
from the additivity of A, B and Y it follows that the value of N corresponding to the
product OQ of two operators O and Q is

N(Cog,Tog,Yoo) = [A(Co) + A(Cg)] + [B(To) + B(Tg)] + [Yo + Yg| (mod 1)

3Spin-1 particles could alternatively be described by rank-2 antisymmetric tensor fields, which
can be related to our vector formulation by a field redefinition, see [178,185].
4This condition has been given before, in a different form, in ref. [186].
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= [A(Co) + B(T()) + Yo] + [A(CQ) + B(TQ) + YQ] (HlOd 1)
= N(C@, T@, Yo) + N(CQ, TQ, YQ) (mod 1),

Therefore, if N(Co,Tp,Yo) and N(Cg,Tg,Yg) are integers, then N(Cog,Tog, Yoo)
must also be integer. This completes the proof. Particularizing for specific represen-
tations under SU(3), we obtain the relations:

y/ for C =1,8,10,27,...

74+2/3 for C =3,6,15,15 ... (7:8)

T4y e {
We emphasize that the quantum numbers of all the fields in the BSMEFT must satisfy
this condition. Clearly, the number of different representations for new fields is infinite.
However, their tree-level effects will be suppressed at least by the inverse power of A
that corresponds to their linear interactions. Therefore, when working at some fixed
order in the expansion in inverse powers of A, only those with linear interactions up
to that order are relevant at tree level. It turns out that only a finite number of
possibilities remain at each order.

In this chapter, we concentrate on those extra fields that can have gauge-invariant
linear interactions with the SM fields of dimension d < 4. They are the relevant
fields for chapter 8, as they are the only ones with tree-level contributions to operators
of dimension 6 or less in the SMEFT, as shown in section 8.2. This means that
they provide the leading contributions to indirect tests. This condition restricts the
quantum numbers of the extra fields to be those of operators of dimension 2, 3 and
5/2 that can be built with SM fields. The allowed irreducible representations can
be found using BasisGen (see chapter 6). All of them, together with the notation
we use for each of the corresponding fields, are collected in tables 7.1, 7.2 and 7.3.
These new fields have been singled out and studied before, in [6-9]. Several subsets
of the complete collection have appeared in the literature in different contexts (see for
instance [128,188-192]).

7.3 Explicit BSMEFT Lagrangian

In this section, we present the part of Lggy that contributes classically to the SMEFT
with operators of dimension 6 or less. This is the relevant Lagrangian for the matching
calculation we perform in chapter 8. It is therefore the sector of the BSMEFT with
leading-order indirect effects, both in the expansion in loops and in inverse powers
of f or the masses of the extra particles. Apart from the SM ones, the only fields

>There is actually one exception: the vector field £; was not included in [8]. There exists only one
gauge-invariant operator of dimension d < 4 that is linear in this vector and has no any other extra
field: the super-renormalizable operator CI u D¢, which mixes the longitudinal part of £1 with the
Higgs doublet. Such an operator will not appear, in the unitary gauge, if £; is the gauge boson of an
extended, spontaneously broken gauge invariance. Therefore, in a complete unitary theory, it will not
contribute to the SMEFT operators at the leading order. However, it could appear in other gauges
and also in phenomenological models, much as pion-vector resonance mixing is included in certain
descriptions of low-energy QCD [178,185]. In these cases it can be eliminated by a field redefinition,
which in general generates local operators of dimension 4, 5 and 6 weighted by the vector mass and
the dimensional coefficient of the super-renormalizable operator [187]. At the end of the day, as far
as low-energy physics is concerned, this is equivalent to integrating the field out, which will be our
approach in chapter 8.
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Name S 81 82 (2 g El @1 @3
Irrep (171)0 (171)1 (171)2 (172)% (173)0 (173)1 (174)% (174)%
Name w1 w2 w4 Hl H7 C

Ieep (3,11 1)z B1)_s (321 (3,2): (3,31

Name 0 Qy Qy T o

rep  (6,1);  (6,1)_2 (6,1)s (6,3) (82);

Table 7.1: New scalar bosons contributing to the dimension-six SMEFT at tree level.

Name N FE Al Ag DY 21

Irep  (L1), (L1, (L2)_1 (L2)_s (L,3)y (L,3),

Name U D Ql Q5 Q7 Tl T2
Irrep (3,1)§ (3,1)_% (3,2)% (3,2)_% (3,2)% (3,3)_% (3,3)%

Table 7.2: New vector-like fermions contributing to the dimension-six SMEFT at tree
level.

Name B By )4Y% Wi g Gi H L1
Irrep (1,1), (1,1); (1,3), (1,3); (1) (81); (83) (132)%
Name £3 UQ U5 Q1 Q5 X 7y1 8 ys
Irep  (1,2) s (3,12 3,1z (3,2): (3,2) 5 (33)2 (6,2)1 (6,2) 5

Table 7.3: New vector bosons contributing to the dimension-six SMEFT at tree level.

that appear in this Lagrangian are the ones in tables 7.1, 7.2 and 7.3. The complete
BSMEFT be split in the following way:

Losm=Lo+Ls+ Lr+Lyv+ Liixed + -+ -5 (7.9)

where Ly contains terms of dimension d < 6 with only SM fields (and, therefore, it is
of the same form as the SMEFT Lagrangian, defined in section 3.7), Lgp v contains
terms of dimension d < 5 with extra scalars, fermions and vectors, respectively, but
no products of new fields of different spin, and L,wq contains terms of dimension
d < 4 involving products of extra fields of different spin. In writing the dimension-
five interactions with the heavy particles we remove redundant operators by using
the SM equations of motion. The dots indicate terms that do not contribute in our
approximation.

The extra fields can have kinetic or mass mixing with the a prior: SM ones if
they share the same quantum numbers. However, field rotations and rescalings can
always be performed in such a way that all the kinetic terms in Lggy are diagonal and
canonical and all the mass terms are diagonal in the electroweak symmetric phase.
All our equations are written with this choice of fields (except for the mixing of ¢ and
possible scalars ¢ with £y, see footnote 5). Furthermore, we assume that no fields
get a non-trivial gauge-invariant vacuum expectation value in the symmetric phase.
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This can always be achieved by convenient shifts of the scalar singlets. To match
models written in a different “field basis”, the shift, diagonalization and canonical
normalization must be performed prior to using our formulas.

Working in this “field basis” not only fixes the precise meaning of the couplings
in Lgsn, but also allows to identify the SM fields that enter in £y. The SM fermions
and gauge fields are the massless fermion and vector eigenstates, respectively, whereas
we identify the Higgs doublet ¢ with the (1,2);/, scalar eigenstate associated to a
negative eigenvalue of the squared mass matrix. We assume that this eigenvalue is
non-degenerate and that all the other eigenvalues are positive. This is required if we
want Lgsym to be described by the SMEFT at low energies.

We proceed now to explicitly write the desired sector of Lggy, with the notation
specified in appendix A.

7.3.1 New scalars
The Lagrangian Lg can be written as the sum of two pieces:
Lg = L3 4 it (7.10)

The first one contains the kinetic terms (with covariant derivatives) and mass terms
of the new scalars:

L3 — Zm— [ (Do) D'o — M25ta| . (7.11)

Here, o are the different scalar fields in table 7.1. More than one scalar field in each
representation is allowed. The prefactor 7, takes the value 1 (3) when o is in a
complex (real) representation of the gauge group. The second piece in (7.10) contains
the general interactions of the new scalars with the SM fields and among themselves.
We distinguish the terms of dimension d < 4 and the ones of dimension d = 5:

o8t = £ + Lg), (7.12)
where
£(<4) S, 1 A\ S.S t 5.6.5
(HS>7’ ¢ ¢ + ( S)rs §Z5 ¢ + (HSS)TSt t
+ {(y rz]Sh«leZO'QZLJ + h.c. }
+ {(yS rij 2keRleRj + h.c. }
+{

(o) rijrerili; + (Uh)ri Oldriqrs + (Ye)rijPlioadr ug;
(Ao)r (#19) (670) +hoc.}
(k=) $'E00) + (Az)rs (HW?) ()

S0 (528 (610) + 5 0% o fue (S, (610%9)
{ Sh WJlelLla ioaly; + (K= 1)r:ﬂ (QBTUa(b) +h-C-}
{)\91 ") iﬂgb@eu@l‘]r—l—h.c.}

+

+ o+ o+ 4+
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(Noy)s ( ) ;ﬁgzﬁe”@g,,Jrh.c.}

qq At _B - cC
{(y rz]werILzZUQlLJ (ywl)”'jwlr €ABCYL;1029;

+

eu du At 7B cC
(y )MjwlreRzuRJ + (ym)m’jwn 6ABCdBiuRj + h-C-}

Yuro rzngr 6ABC’dB ch + h.c. }

Ym, lenerUQZdeR] + h.c. }

yl I, TZJH7rZJQZLzuRJ + (ylé[(]?)rinJ;réRiQLj + h-C-}

)
Yo )Tl]w47" Cridrj + (ng)rijszeABCﬂgiU%? + h.c.}

)

)
y?l)m(’ qr:i020%lL; + (ygq)ringTEABCCL];BaniU2qz?+h-c'}
Yo, WQABTuRl |d|B) (le)mQABTqu lio q‘LJ) + h.c.}
R IR ol pelt +h.c.}

Ye,) WQABT C(zA| B) | 1. C}

yT)WTABTqLZ ligy0q) qLJ + h.c. }

Yo )ri; wzqﬂTAuRj + (ygq)rij@fTCZRz'TAQLj + h-C-}

(As2)rsS 2 (670°0) + (risz)rsrS, ELES

(sz >rstsT:‘fIE%t+{<Asal>m 52! (¢* "6) +he)
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I 7 — I
DrsZeClidper 07, + (kz,0,)rsZ1 Clsdper 01,

+ (H:1@3)7"S“—‘17" aﬁ¢B€IJ@3S + h.c. } (7.13)

(Eg)TSTDMQbTDM?b + (:\S)r5r|¢|4

+ (k8), 8, B, B"™ + (k) S, We, W + (k§),S,G i, G
+ (k2),8, B B™ + (KY), S, W2, W + (k§),S,GA,GAr
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+(gd )ng‘—llrdelgb o qL] + (y )rl]‘—‘h“QLzO- ¢uRj + h.c. }] (714)

7.3.2 New fermions

As indicated in section 7.1, we exclude the possibility of extra fermions with chiral
transformations under the gauge group Ggy. Then, in the massive fermion sector, the
complex irreducible representations of Ggy; are carried by vector-like Dirac spinors,
while the real irreducible representations are carried by Majorana spinors 1, with
Y1, = (¢Yr)® = ¢§. The only instances of the latter possibility are the extra leptons N
and Y in table 7.2. In our “field basis”, the diagonal mass matrices are given by sums
of Dirac mass terms (for the complex representations) and Majorana mass terms (for
the real representations).®
The general Lagrangian Lr is given by

Lo = L3 4 L, (7.15)

where

LE =N "y (i P — M), (7.16)
P

with ¢ labelling the different fields in table 7.2, with an arbitrary number of fields in
each irreducible representation, and 7, = 1 (1, = 1/2) when ¢ is Dirac (Majorana),
and

S S e Y )

+ L% (7.17)

leptons quarks leptons quarks?

where

‘Cleptons ()‘N)TiNRTQ;TZLi + (AE)riEquleLi
(Aa )riAILr¢€Ri + ()\Ag)riASLréeRi

1 _
§(>\E)T‘ZERT¢ Uale (AEl)riE?PLr(beaalLi
()\NAl)rsNRrgb A1Rs + (AEAl)TSELT¢TA1RS

+
+
+
+ (Apag)rs Brrd Aggs + %()\zm)rsE?ﬁ(gTU“Ams

1 1 _ -
§(A21A1)T821L7“¢ o A1Rs §(A21A3)TSE?LT¢TOGA3RS + h.C‘, (718)
W ) Tmdtars 4+ (An)s Dendlars
quarks ( U)m Rr¢ qri +( D)m Rr¢ qri
+ ()\1521)7%’Q1Lr¢u1%i + (Agh)rinLr@ﬁdRi
+ (Ags)riQ51r0dRi + (Aqs)riQrLrPUR;
1 _ 1 _ -

+ §(AT1)MT1GRT¢T0'GQM T §(AT2)MT§RT¢T0“QM

+ ()‘UQ1)TSUL7"Q~STQ1RS + <)\UQ7)TSULT¢TQ7RS

6Note that the particular case of a Dirac fermion ¥ of mass My in a real representation of H
is equivalent to our description with two degenerate Majorana fields ¥; and 5 of mass My, with

Up =1/V2(t1r +ither) and Vp = 1/v/2 (YS$k + i95R).
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()\DQl )rsDLr¢TQ1Rs + (ADQs)rsDLr(gTQ5Rs

1 .
§(AT1Q1)7"8 1Lr¢ UanRs ()‘Tle)TSTlaqubTO-aQM%S

1 Ta a

§<>‘T2Q1 )TS 2Lr¢ g Qle 5()‘T2Q7)TST2LT¢TO- Q7Rs + h-C->

1

leptons — ?

~L{) (:\NMNEN“ (Duéf;)T ILi

S\ZE)MELH“ (Duﬁb)T lpi + A
1)riAIerD¢6Ri + (5\21

)
)riAero"uylLiB,uu + (S\Z)riAerauyo-alLiWsy
S\CAB)TiA?)Rr]D&eRi + (5\23)7“2 (A.?)RT‘ ~> (¢”Lz)

+ (S\ZZ)MECG < u(b) alLl <)\6 )ME ¢T a¢€Rz
+ (Ao )ri S5, (Dud) 0l + (A5))ri S5, 010" de

+ dg)wz‘ﬁrawemwﬁy +h.c,

) _ 1
_‘Cquarks - ?

(380" (D) i+ (34)rilr 6 b

)mULrU uRzBuu+()\ )T‘ZULTTAU uRzGA
)riDL'r’Y ( u¢) QLi (/\dD)m-DL'rQ25 deRz
)m'DLr 'LwdRiBuu + (Ag)riDLTTAO-MVdRiG;‘V
leerqsuRz (S\dQ1>riQ1erp¢dRi

T (QIRT¢) (¢ QLz) ()\gl)m (QIRTQLZ’) (¢T¢)
leRrU QLiB;w + ()\Q1>riQ1RrUﬂVO-aQLiW5V
TZQ].RT’O—M T QLZGA

mQ5R’rlD¢dRz ( Q5)rz (Q5Rr¢> (ngQLi)
mQ7Rrw¢uR7, ( qQ7)7"i (ercb) (QET(_]M)

T A" (Do) 0% + (N8 )i T, b o dur
T TlaLr ¢T a¢dRi ()\%)T‘inLLTUuV dRi W;jy

TTzaLr’Y ( Mb) oqri + ()‘%g)riTQQLrngga¢uRi

iy
S~— ~— ~— o s

U
Q7
q
T

+ o+ + + + o+ o+ o+ o+ +

P
Lﬂ&.
S— S~— S~—

+ (x%g)""iTQGLTQETO-aQSdRZ‘ + (S\g)mTQ{lLrguyuRiWEL/

+ h.c..
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7.3.3 New vectors
For the extra vectors, we write

Ly = L 4 gine (7.22)
where’

Ly = va (DLV,iD*V* = DVIDHVY + MpVIVH) (7.23)

with V on the rlght—hand side labelling the different fields in table 7.3, with an arbitrary
number of fields in each irreducible representation, and ny =1 (ny = 1/2) when V is
in a complex (real) representation of H, and

it =&Y 4 20 (7.24)
where
—LGY = (g)rii Bl TLivud g + (98)rii Bl aLivudrs + (95)riBleriuers
+ (g8)risB" drivudr; + (95)ris Bl arivaur; + {(gg)rb’ﬁWiDuqb + h.c.}
{ 961 myBiLr dR%%“RJ + (ggl)rBf:z’D”ngi@(b + h.c.}

1

1 a = a
5(9 )r‘z]W ZLZU ")//LZL] 2(93\})7"1]Wﬁ qr:0 ’YHQL]'
1

+

+
)_\

{5 ) WHA T % D ¢—|—hc}
ey
2
+ (98)rii G ariviTagqe; + (96)ri; Gt arivu Tar; + (98)ri; G driv Tadr;
+ {(g leglr dRzTA'YuuR] + h.c. }

(9w, ) o WD, ¢ i00%0 + h.c. }

+ 2(97-[)7"1]% QLz%U TAqu

+ {(m) Ll D" +he. }
4 i(9E oLl L1 BY 4 (gl ) o L, 00 Ly WEH
4 i(9E oL L1 BY 4 (gl ) o LY, 0 Lrg, W
+(hD), (dmm ) (676) + (hD), ( 1w¢> (18)
{02 (ail0) (£lo) +be )
{(gz;g v L4l + huc. }
{(9 )rigsy €rivudng + (9, )rigUsy iy + h.c.}
+ {(9U5)riju5r ERivutin; + h.c.}

"For each V, this covariant Proca Lagrangian describes a particle of spin 1 coupled to the SM
gauge fields. Other choices of the kinetic term would give rise to ghosts.
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d A 7. . c
{(ggl)rw 1ruRz'7Mle + (ggql)rij erMTeABCdgi’YMZU?qLJC + h-C'}
(98 )iy Qb vl + (98) s Qb

+<9Q5)”3 957' EABCuRz/YHQLj + h.c. }

(gy)rig Vi di Y ioagl ) + hc. }

(995)rii Vs o7 MUE{JWZ%QL +hc}

(Cetlrs (£10,0) B+ (Cerm oLl 0B
C[JW)T'S ( 1r,u0- ¢) Wa,u (Cﬁlwl)rs 17”# G¢WQHT + hC} ,

=+

and

—Ly) ——E‘fi [( ), (8" Do) 6+ (FEN), (Dud'0) & + (X)), (616) Do

f
2)BuwD’ ¢+ (72 )r B D" ¢

1

1

)
YN We,a" DY ¢+ (), Wi, o"D" ¢
l

+ o+ + + + + o+

e OQLivugr; + (G2 )rig (0°0) (qrivuo®qr;) | + hec..

7.3.4 Mixed terms

L onixea can be further decomposed as
Liixed = Lsr + Lgv + Ly,

where the different pieces are given by

—Lsp = (Asg)rsiSrErseri + (Asa, )rsiSrAipslr;

()\SU)rsiS ULsuRi ()\SD)rsiSrDLsti + ()\SQ1>rsiSTQIRSQLi

+ (Azay)rsi =0 AR Ui + (Azsy )rsiZ0 24 CRi

(AEQl)rsiurQleU qri + ()\ETl)rsiEanlLsti + (Azm,)rsiZe _QaLSURi
Az 2g)rsi S A0 lri + Az, )re Sl S50,
(AEng))rsiE(llIQM%sOﬂQLz (A“1Q7)rsz~1rQ7RsU qri

(

—atfra —a ra
A2y 1y )rsiZi L1 sURi + ()‘Esz)rsiﬂrTstdRi +h.c.,

(7
(7
(927 )meRzD lej + (G2 i Dyeriliy + (G20 )rijdriDydr

(G0 ris Dudriqry + (G5 Vrigioadl, Dyuny + (G20 )rijioa Dudl ur;
(g %?)rijéJRiVuuRj + (3%, )rijdrivuer; + (G2, )rij0dRiVudr;

(G5, )rijOUniyur; + (Ge, )rij®rival; + (G2,)rij (0°0) (ILivuo®lL;)
(
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—Lsv = (088)rsBruD'Ss + (0wz)rsWr y DH'E
+{Oe e LH, D", + Bz, )WL D" + .}
(e )raSe Ly s + (22 )i Ze L]0 L
+{(ezie @il 0 By + b |
{520 (DS Ly + (g ) (D) S,L4,
+ (922, )rs®'0® (DUED) LY + (952, )rs (Do) 0“Z0LE,
¥ (92,2)rs010 (DZ5)T L1+ (0, e)ee (D) 0 Z50h, + e}, (7.29)

and

—Lvr = (2ne))rsiNi " Ll + (25ey)rsi ELy" £ s
+ (28121 )rsi D1 Lrsperi + (2852, )rsiDarey" Lispe i
+ (2220)rsiSe V" L1001 + (25,00 rsi SV L1000 i
+ (2ve))rsiUne V" L1,u00: + 202y )rsi Dioy £ 41
+ (24 1gl)rsleRr’Y £1SMUR1 + (Zgglgl)rsic?er’YuﬁlsudRi
+ (20521 )rsiQsre Y Lrspdri + (20020 )rsiQrre Y L1sputri
+ (21 2y )rsi T £1S“0 qri + (zT2£1)Tsi@"”v“ﬁisuaaqh +h.c.. (7.30)

No renormalizable operators exist that contain extra scalars, fermions and vectors
simultaneously.

Finally, in order to keep track of the dimensionality of the different contributions
to the operators in the effective Lagrangian presented in section 8.5 we collect here
the mass dimensions of the different types of couplings appearing in the new physics
Lagrangians introduced above:

k] =1, [A]=[X]=0, [y] =0, (7.31)

7.4 Conclusions

In this chapter, we have presented the BSMEFT, an EFT for the model-independent
description of physics beyond the SM. Unlike the SMEFT, the BSMEFT can describe
the resonant production of degrees of freedom that are not present in the SM. This
makes it a useful tool to parametrize new physics effects that cannot be taken into
account in other ways. Its generality makes it the right tool to avoid dealing with
concrete new physics models in case by case basis: the analyses made within the



7.4. CONCLUSIONS 101

BSMEFT can be used to study any of them, by choosing particular values of its
parameters. In addition, because it is an EFT that includes every operator allowed
by the symmetries, it can help discovering types of new physics effects that may be
missed because of the theoretical prejudice that unavoidably goes into model building.

Performing tree-level matching of the BSMEFT to the SMEFT amounts to doing
tree-level matching between any extension of the SM with new fields and the SMEFT
once and for all. The result can be presented in the form of a dictionary, which
can be used to explore both the low-energy effects of all possible new particles and
every possible new particle that can generate some low energy effect. In chapter 8§,
this dictionary will be computed, allowing for operators of dimension 6 or less in
the SMEFT. The relevant new fields for this calculation have been presented in this
chapter, in tables 7.1, 7.2 and 7.3. The corresponding sector of Lgsy has been written
in section 7.3.

In chapter 9, we will use the BSMEFT to study vector-like quarks. We will consider
the possibility that their linear interactions are not necessarily renormalizable. Thus,
their allowed representations under Ggy are not only those in table 7.2. We will find
that they have experimental signatures that are not present when only renormalizable
interactions are permitted. As with any application of the BSMEFT, the results of this
analysis will be independent of the particular model to which the vector-like quarks
belong.






CHAPTER

Complete tree-level matching to
the SMEFT

8.1 Introduction

As explained in section 3.7, the SMEFT provides an essentially model-independent
parameterization of experimental data, inside a range of energies where new degrees
of freedom that are not contained in the SM cannot be produced. The task of relating
the SMEFT parameters to experiment can be done once and for all, independently
of any choice of new physics models.! Then, these parameters can be connected to
the parameters of specific new-physics models through the process of matching. This
reintroduces the model dependence in the process of comparing experimental data to
new physics. Both calculations can actually be developed simultaneously and almost
independently. Put together, they allow us to use experimental data to test theories
beyond the SM, even when the new particles they bring about cannot be produced.

In chapter 7, we have introduced the BSMEFT. As the SMEFT, the BSMEFT
parametrizes experimental data in a model-independent way. However, the BSMEFT
includes new degrees of freedom, allowing for the parametrization of their resonant
production. To do so without losing generality, it includes every possible new field
under general assumptions. They key requirement for these extra fields is that they
can have linear couplings to the SM ones. This is a necessary condition for them to
have tree-level effects when integrated out.

In this chapter, we perform tree-level matching between the BSMEFT and the
dimension-6 SMEFT. Because the BSMEFT contains every field that can give non-
vanishing contributions in this calculation, we obtain as a result every possible such
contribution, independently of the specific model to which the extra fields belong.
We present our results in the form of a complete tree-level UV/IR dictionary up to
dimension 6 for the SMEFT. Parts of this dictionary have already been computed
before, for quarks [6], leptons [7], vectors [8] and scalars [9]. Here, we calculate the
complete dictionary, including both the already known contributions and the missing

LGlobal fits have to be updated if there is new experimental data or new theoretical calculations
within the context of the EFT.
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Mzew Mpsm
WET SMEFT BSMEFT

E

Figure 8.1: Tower of EFTs around and above the electroweak scale Mgw. Mpsum
represents the mass of the new particles in the BSMEFT. Tree-level matching between
the SMEFT and the WET has been performed in [25].

pieces. In figure 8.1 we show the hierarchy of EFTs that we are considering around
the electroweak scale and above.

We stress that this is a very general result with many practical applications. Con-
sider any weakly-coupled high-energy extension of the SM with new fields. To inte-
grate out these fields at tree level, one can just identify the part of BSMEFT that
corresponds to this model and then read the contribution to the SMEFT from the
dictionary. Conversely, suppose that one wants to find out which weakly-coupled UV
completions of the SM can produce some effect parametrized by the SMEFT. Then,
one can use the dictionary in the opposite way, and directly obtain from it the possible
extra fields that generate the effect, together with the necessary interactions.

We give all our results in the Warsaw basis [54], following the SM conventions in
ref. [135] for the relations between redundant operators.? This allows the direct use
of our results together with the anomalous dimensions computed in [135,136,193,194]
(see also [133,134]) to have a proper leading order calculation with possible large
logarithms resummed.?

This chapter is organized as follows. The general contribution to the tree-level
matching for effective operators up to dimension 6 is computed in section 8.2. In
section 8.3, we provide a guide to use our results both in the bottom-up and in a
top-down fashion. The top-down dictionary is given in section 8.4 and the bottom-
up one, which collects the expressions of the Wilson coefficients as functions of the
UV parameters, is reproduced in section 8.5. Then, we give two specific examples of
use of the dictionary: the application to the reported anomalies in certain B-meson
observables, in section 8.6; and the study of Higgs physics in simple models with one
or two new fields, in section 8.7. We conclude in section 8.8.

8.2 Effective Lagrangian and tree-level matching

In order to study the physics of Lggy as defined in section 7.3 at energy scales much
smaller than all the masses of the extra particles, the heavy fields can be integrated
out to find the corresponding effective Lagrangian, organized as a power series in the

20ur results can be easily translated into other popular bases by using publicly available
codes [141].

3There has been an important progress recently towards the automation of one-loop matching
calculations [32,34,113,157,158,195-197] which would allow for consistent one-loop calculations in
the new models and, eventually, next-to-leading order ones when the two-loop SMEFT anomalous
dimensions are available.
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mverse masses:

Lo =Lo+ Y LY. (8.1)

n=2

where Ly, defined in eq. (7.9), is the sector of Lpgy containing terms of dimension
d < 6 with only SM fields and the ngf) contain the corrections to Ly from tree-level
matching, containing Lorentz and gauge invariant local operators O™ of canonical
dimension n (constructed with the SM fields),

£l =3 cmol. (8.2)
J

This effective Lagrangian will be a SMEFT with particular Wilson coefficients Cj(-n),
of mass dimension 4 —n. The dimensions are provided by the masses and other scales
in ACBSM‘

Not all the operators O™ are independent. Making use of algebraic identities
and field redefinitions, certain linear combinations can be eliminated from Lé?f), at the
price of changing Eign) (see chapter 4). Taking this redundance into account, several
operator bases have been defined to dimension n = 6. Here, we employ the Warsaw
basis defined in [54]. The operators in that basis are collected in section 3.7. The
main purpose of this chapter is to calculate the corresponding coefficients C(=%) in the
classical approximation, as functions of the couplings and masses in Lggy.

Note that the generated operators have the same form as the ones in £j. The non-
trivial contributions we are interested in can be distinguished when there is sufficient
information on L. This is the case if the coefficients of the non-renormalizable terms
in Ly are suppressed by a scale larger than the masses of the new particles, and also
if they are fixed by symmetries or are known functions of the parameters of a given
UV completion of Lggy. The requirement of a soft UV behaviour also imposes some
constraints [178,185].

The individual contributions of heavy fields and the collective contributions of
heavy fields with the same spin (except for the ones involving the vector £;) have
been calculated before in [6-9]. Here, we also incorporate the mixed contributions of
heavy particles of different spin, the contributions of £; and the contribution of the
operators of dimension d = 5 in Lggy.

Let us explain the systematics of the integration procedure. With this aim, we first
write the part of Lggy involving new fields as

Lpsm — Lo = U(i)AIA@)lAi + ) AL AT W A A (8.3)

1.
m,n

where A’ represent all possible extra fields in Lpsum, A is the covariant propagator
for A" and I/Vfl 1;15: are operators constructed with the SM fields, including the identity
operator. The factor 7 = 1 (1/2) yields canonical normalization for complex (real)
fields (see section 7.3). Lorentz and Dirac indices are implicit. In general, these
operators carry a reducible representation of H, but the ones with a single index
i belong to the same irreducible representation as A® or AI. The integration at the

classical level can be performed by i) using the equations of motion of Lggy to eliminate
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the heavy fields and ii) expanding the propagators of the heavy fields in inverse powers
of D(i)/M(i)i

1 Df,
Ay = T (1 - Mi;)) +0(1/M%  (scalars), (8.4)
i+ M Dy, :
A = _% (1 - ]\4%1) +O(1/M®)  (fermions), (8.5)
v v o MVDZ»
, n DDy —n ;
Al = Ve ) (5\44 © +O(1/M®)  (vectors). (8.6)

(@) (@)

The result at any finite order in D;)/M; is a local Lagrangian. We have performed
the calculations in this algebraic fashion, keeping only the operators of dimension
n < 6. To deal in an efficient manner with the large number of terms that appear
in this process and minimize the possibility of errors, we have employed the symbolic
code MatchingTools, presented in chapter 5, where we have implemented the algebraic
relations and field redefinitions necessary to express our results in terms of the Warsaw-
basis operators defined in section 3.7. All the calculations have been double-checked
by hand and against previous results in the literature.

We have performed field redefinitions in the linear approximation. This is the same
as using the equations of motion of the SM fields. We have shown in chapter 4 that
some contributions to Wilson coefficients of dimension-6 operators are missed in this
approach. They come from the ¢'¢ operator, when keeping terms that are quadratic
in the perturbation of the field introduced by the redefinition. All these quadratic
contributions are suppressed by p?/M?, with respect to the natural coefficient dic-
tated by canonical dimension, so they are numerically of the same size as the natural
ones for operators of dimension 8. For this reason, we do not show them in our re-
sults. Following section 4.5.2, we can incorporate p? in the power counting by defining
Nija(p?) = —2, where M the cutoff of the SMEFT, which corresponds to the masses
of the extra fields. Then, what we are doing in our results is keeping only those terms
O such that Ny, (0) < 2.

Step i) above can be performed in terms of Feynman diagrams. In figure 8.2, we
show the tree-level Feynman diagrams with heavy field propagators that contribute
to Leg to order n = 6. The blobs in this figure represent the SM operators VV;;;H”
with m incoming and n outgoing lines, and the arrowed lines represent the covariant
propagators A;). The arrows have no significance for real representations. In order to
see that these are the only non-trivial tree-level diagrams contributing to L.g, note first
that the canonical dimension of each term in the expansion of the propagators is non-
negative, while the canonical dimension of each blob is equal to the canonical dimension
of its corresponding interaction in eq. (8.3) minus the one carried away by the bosonic
or fermionic heavy fields. Consider a particular connected tree-level diagram. Let
ij be the number of blobs in the diagram with at least one fermionic index and
corresponding to interactions of canonical dimension d, and B{ be the number of blobs
in the diagram with no fermionic indices and corresponding to interactions of canonical
dimension d. Let L; and L; be, respectively, the number of fermionic and bosonic
propagators in the diagram and let X; be the number of blocks with uninterrupted
heavy-fermion lines. The canonical dimensions n of each term in the diagram, after
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Figure 8.2: Feynman diagrams contributing to L.g to dimension n = 6. Non-equivalent
permutations of the arrow directions shown here should be considered as well.

the propagator expansions, obey

n>> d(Bj+ Bf) - 2L, - 3Ly. (8.7)
d

From the topological relations Ly + Ly +1 = >",(Bj + Bf) and Ly + Xy = 3, Bf, the
bound
n>2+X;+> [(d—2)B]+ (d—3)BY] (8.8)
d
follows. Using the facts that B = 0if d < 3 and ij = 0if d < 4, we find in particular
that
n>B+2, (8.9)

with B = Y7 (B + BY) the total number of blobs. Therefore, only diagrams with 4
blobs or less can contribute to n < 6. We also see from (8.8) that only interactions of
canonical dimension d < 6 can contribute to n < 6. But the operators with d = 6 only
give the trivial contribution of a diagram with one blob and no propagators, which is
nothing but the term already present in L. This justifies our restriction to operators
with d < 5 in the explicit expression of Lggy written in section 7.3. Finally, we
observe that both the operators of dimension d = 5 and the ones involving more than
one heavy field can only contribute to n < 6 in the presence of super-renormalizable
operators of dimension d = 3, and that operators of dimension d = 5 with more than
one heavy field do not contribute to this order.

Note that in diagrams (a), (b) and (c) of figure 8.2, all the propagators are con-
tracted with one-index operators W; or W* which arise from terms in Lggy with
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only one heavy field (A’ or A'). In diagram (d), on the other hand, the propaga-
tor Ay is attached only to operators with two indices, Wf and W,z However, upon
the covariant-derivative expansion at finite order of the other two propagator, A(i) and
A(jy, the blobs they connect collapse into one-index local operators Wk = Wf (AW
and Wk =W, [A) Wi, with [.] indicating the derivative expansion. The operators Wk
and Wk are in the same Lorentz and gauge representation as W* and W), respectively.
Moreover, to allow for a dimension-six contribution, both of them must have canonical
dimension d = 4. Hence, the fields A* (A!) associated to W, (W*) must also belong
to a representation that can couple linearly to the SM fields to give a scalar gauge-
invariant operator of dimension < 4. We conclude that, as promised, only the heavy
fields in the irreducible representations of tables 7.1, 7.2 and 7.3 contribute at the tree
level to the effective Lagrangian to dimension six.

We can draw another interesting corollary from this discussion. Let us define tree-
level operators as those for which there exists a renormalizable UV theory that induces
them at the tree-level, when the effective Lagrangian is written in the Warsaw basis,
and loop operators as those for which no such theory exists.* As we have just argued,
tree-level operators of dimension six can only be generated by the diagrams in figure 8.2
and only by extra fields that allow for linear couplings to SM operators. This is also
true if, instead of using the EFT Lgg\ as a starting point, we directly integrate out at
the classical level all the fields beyond the SM in a renormalizable completion of Lggy;.
Therefore, our results in section 8.5 explicitly show which operators are tree-level:
those that (potentially) receive contributions in the absence of non-renormalizable
interactions, that is, when f — oo and ., — 0. Conversely, the operators that can
only have, at most, 1/f or ., contributions are loop operators.” Even if the latter are
connected to Lgsy by tree-level diagrams, they cannot be generated at the tree level in
any renormalizable completion of it. That is, the necessary dimension-five interactions
are only generated by loop diagrams in any such UV completion. If this completion is
weakly coupled, their coefficients will have a loop suppression that carries over to the
Wilson coefficients in the SMEFT. Of course, such a suppression will not occur if the
UV completion is strongly coupled. This classification agrees with the one in [96], as
it should, since we employ the same criteria.

8.3 Results of the matching: user guide

The tree-level integration of the 48 fields of spin 0, 1/2 and 1 that can contribute to
the dimension-six SMEFT, via the interactions in eqs. (7.13)-(7.30), generates all the
effective operators in the basis of ref. [54], with the exception of the four operators
Og.aww- The explicit expressions of the contributions to the different Wilson coef-
ficients are collected in section 8.5. In this section we offer a basic guidance so that

4The requirement of renormalizability is crucial to make the distinction. Without constraints on
the dimension of the interactions, any gauge-invariant operator could be trivially induced at the tree
level by directly including it in the UV theory. Considering a complete basis gives definite physical
meaning to each operator. Of course, which operators are potentially generated at tree or loop
level depends on the particular choice of basis, but the implications for physical observables remain
unchanged.

5The possibility of generating operators of this type with tree-level diagrams involving higher-
dimensional interactions was pointed out and emphasized in [198].
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users can quickly find the required entries of the UV/IR dictionary inside our long and
numerous equations.

We present our results by writing, for each operator, all the possible contributions
of all the multiplets to its Wilson coefficient. The results for the different operators
have been organized in the following way:

e Pure four-fermion operators (section 8.5.3), classified according to the struc-
ture of chiralities of the fields in the operator, i.e. (Z_}L) (EL), (RR) (RR),
(EL) (RR), (Z}R) (RL), (ZLR) (Z)R), and, separately, the baryon-number (B)

violating interactions.

e Pure bosonic interactions (section 8.5.4). We follow the classification of ref. [54]
and include here the operators of the form ¢% ¢*D? and X2¢?, where X refers
to a field-strength tensor.

e Interactions between bosons and fermions (section 8.5.5). We again follow the
classification of ref. [54], and separate the operators of the form ¢?¢3, X1?¢ and

V2P2D.

Unless otherwise stated, for each Wilson coefficient, the contributions of the different
types of fields are ordered in the following way:

. . 1 .
Oz' — CviScalars + Cf‘ermlons 4 Ci\/ectors 4 C’LMlxed 4 ?C,th 57 (810)

where CF', P = Scalars, Fermions, Vectors, contains the information from the integra-
tion of only one type of spin, in the same order as presented in tables 7.1, 7.2 and 7.3,
respectively. Fach of these are further separated, with the contributions from one type
of particle appearing first, and mixing between particles of same spin, afterwards:

ch=>Y cr+ > ot Yoo, (8.11)

meP m,neP m,n,peP

The contributions coming from Lagrangian interactions between particles of different
spin, egs. (7.28)-(7.30), are contained in CM*°d. The coefficient C{™5 includes the
dimension-six interactions generated by the non-renomalizable couplings in eqs. (7.14),
(7.20), (7.21) and (7.26). These can be easily distinguished noting the prefactor 1/f.
Finally, some of the new particles induce modifications on the kinetic term of the
SM Higgs doublet in the EFT. Our results are given in a basis where all fields are
canonically normalized, and we 1nclude such corrections into a renormalization of the

Higgs doublet o — Z 2¢>, with Z : given in eq. (8.18). The corresponding factors

of Z, 8 2 renormalizing operators with ng scalar doublets are shown explicitly in the
coefficients.

Finally, for those operators that are non-hermitian we only report the coefficient
of the interaction in tables 3.3, 3.4 and 3.5. The corresponding contributions to the
coefficients of the hermitian conjugates can be obtained by complex conjugation.

The results of the matching can be employed in both directions:
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Top-down

To facilitate the matching of particular models with the SMEFT—for instance to
profit from the abundant model-independent constraints phrased in this language (see,
e.g. [59-75])—we have collected in tables 8.1, 8.2 and 8.3, in section 8.4, the different
operators resulting from the integration of each of the scalar, fermion and vector
multiplets, respectively. It turns out that all the operators that receive contributions
involving couplings between different types of extra fields (with the same or different
spin) can always be generated as well by at least one of the particles entering in the
interaction individually. Therefore, tables 8.1-8.3 contain all the information necessary
to identify which operators can be generated in any scenario.

In this way, these tables show all the operators that can be generated given the
field content of the model. One can then look at the corresponding Wilson coefficients
in section 8.5 and use egs. (8.10) and (8.11) to find the explicit contributions in terms
of the masses and couplings of the new particles.

Bottom-up

Our results can also be used in a bottom-up fashion, to find the explicit SM extensions
that can give rise to a given set of effective interactions. To identify which multiplets
contribute to each dimension-six operator in the EFT, one simply needs to look at the
labels of the masses in the denominators of each term in the expression of the Wilson
coefficient. For operators involving the SM scalar doublet, one must also take into
account that £, and ¢ can contribute to the renormalization of the scalar doublet Zy.
Finally, upon integration of the £; vector field, the effects of its interactions with the
vectors B, By, W and W, —parameterized by the (., couplings in the Lagrangian
(7.25)— can be described in a compact form by using modified couplings of B, B;, W
and W, to the corresponding SM scalar currents. Explicitly, they can be described by
replacing

)~ (i), = (o, — 100 (8.12)
()~ @)= (o), — 2 e Om (8.13)
R (8.14)
Gdr = @o)e = (o). + 2@'“’*@;32“"1)8. (8.15)

Writing the solution in terms of the Q?} couplings has the advantage of simplifying
significantly many of the expressions, but obscures a bit the origin of the contribution.
So, besides looking at the explicit masses, one should take into account that any g$
coupling implicitly involves a dependence on the couplings and mass of the field(s) L.
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For instance,

(CeiB)rs(rey)s

(Qg)r = (gg)r -1 2
Lis
l/ 4
~PN\2 d\2 * * *
T (s - T C ST S C ST s C tr
AC — (AQ/IB;%) .y AC = %gfj 9 (95) J(\é,lﬁ/)fz (veq)s  (CzyB) M(gﬁjl\}%( l]:\}l%)f ('n:l)t_
T T 1s T 1s 1t

(8.16)
Remember, nevertheless, that the vector multiplets £; will not contribute at all if they
are the gauge bosons of an extended gauge invariance.

Similarly, the tree-level matching leads to a redefinition of the coefficients of the SM
operators. Then, there are indirect effects in the dimension-six coefficients when the
original SM couplings, which wear a hat, are written in terms of the redefined ones,
without hat, as specified in eqs. (8.23), (8.24) and (8.25). Moreover, the covariant
kinetic term of the Higgs doublet is modified in the presence of ~.,, which leads to
the Higgs-field renormalization in eq. (8.18). Therefore, one should also keep track of
the Yukawa couplings 9*%““ and the quartic coupling 5\¢ in order to check which fields
can contribute to the Wilson coefficients.

We include reminders of all these implicit dependences, where appropriate, in sec-
tion 8.5.

8.4 Operators generated by each field multiplet

In this section we provide the representation of each heavy multiplet introduced in
chapter 7 in terms of operators of dimension n < 6 in the low energy effective La-
grangian. The results for the corresponding coefficients are given in section 8.5. See
section 8.3 for details.

8.5 Complete contributions to Wilson coefficients

In this section we present the contributions to the dimension-six SMEFT induced by
the heavy scalars, fermions and vectors introduced in chapter 7. See section 8.3 for
details.

8.5.1 Redefinitions of Standard Model interactions

Upon integrating the heavy fields £, and ¢ out, the kinetic term of the SM Higgs
doublet receives extra contributions, yielding a non-canonically normalized field:

Liing = ZyDyud' D" ¢, (8.17)
where 25 5
Zd) —1_ (/751)1*2('7%1)7“ _ :ugb( El@)tsgyﬁl>t( E12AO)7’5<751)T. (818)
M»clr MﬁlrMS%sMﬁlt

In what follows, we renormalize ¢ — Z;l/ 2gb and present our results in a basis where all

fields have canonical kinetic terms (in the electroweak exact phase). The operators with

ne doublets are therefore renormalized with Z;W’/ g (This includes also the operators
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Fields Operators
S O¢47 Od): Od)[la O¢B7 O¢B7 O(bW? O(pﬁ/a O¢Ga O¢éa Oe(f)a Od¢7 Ou¢

S Oy
'52 Oee
Ol87 Oquu Oéi)u 0(52)7 O((]z)u Oledq; O((Ji)qdu Olequa O¢7 Oe(i)v Od(ba O

2
E  Ou, Op, Opps Osa, Opws Oy Ocgs Odgpy Oug
E Opa, Os, O, Oy, Opp, Ogry Oegy Oy Oug

o, 0,
0, O,
1 3 1 3) 1 8 1 8
w Oéq), Oéq), Olys 01, Oeu, O, O, O O
Olequ Olequ’ Odu‘l’ quua O‘I‘I‘]’ Oduu
wy  Ougq
Wy Oum Oed> Oduu
Hl Old
H7 Olu’ Oqe7 Ole u’ Oljgu

1 3
C O((IQ)J O((lq ) Olq ) Ol(q)7 quq

1 3 1 8 1 8
Q1 O((Iq)a O((lq)? Oid)7 Oid)7 Oz(yu)qd’ Oz(yu)qd
Q Oua
Q4 Ouu

T O, 05
o o, 05, 04, 0%, o)

quqd

Table 8.1: Operators generated by the heavy scalar fields introduced in table 7.1.

in L£y.) We will show these factors explicitly wherever they are needed, such that all
the Wilson coefficients C; in this section are defined as the coefficients multiplying the
corresponding operators with canonical fields in the effective Lagrangian. Let us make
two observations about Z,. First, the effect of the second term in eq. (8.18) on the
Wilson coefficients of dimension-six operators will have have an extra suppression of
the form ﬂfb /M?  with M a heavy mass scale, comparable to the one of the typical
Wilson coefficients of dimension-eight operators with respect to the dimension-six ones.
Hence, even if we include it for completeness of the dimension-six results, for most
practical purposes this second term can be neglected. The first term, on the other
hand, will not be suppressed if the dimensionful coupling 7., is of order M, ,. Second,
Zg is non-trivial only when ., # 0, so it can be ignored in perturbative unitary
extensions of the SM.

The contributions to the renormalizable SM interactions in table 3.3 are given by

ﬂi((sﬁlw)sr(7£1)*(yc,eo)rij . /‘lig’?j<5ﬁlﬁp);s(’yﬁl) (55150)7”8(751):
]\42 M£1s 2]\/1%1 M2 Mgu
L1 135G i (e )i N 135G ) vig (1)
2MZ,, 2M7,, ’

(8.19)
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Fields Operators
N 0504, 08
E O O, 0, OF
Ar O, Ocny Ocw, Ogpe
Ag Oe¢>, O¢e
S 05 044, 04, OF
S Oep Oy, OF), OF
U Oup Oup, O, O4), O
D Ou, Ous, Ouc, O;{f, og’f
Q1 Odg, Ougs Oan, Oaw, Oaiy Ouss Ouws Ouc, Osdy Opus Ogua

@5 Ouag, Opa
Q7 Ou¢7 Od)u
Tt Ougs Ougp, Oaw, Q(pz), OSI)

T Oup, Ougp, Ouw, Oélq), qu)

Table 8.2: Operators generated by the heavy vector-like fermions in table 7.2.

Fields Operators

B Ou 04, 0, Ou, Osi, Ouis Ociy Ocurs O, Oy Ot Oty Oy, 0, O,
Oy Op1s Oy Oagy Ougy O, OL) O, Oga, Oy

Bl Ou, 04, 0%, 0y, Osp, O, Oc. Oap, Oug, Opua

W Ops, Oy, O, 0, 04, Oy, Our, Oy, Oy, Oug, O, OF)

W1 O¢4, O¢, O¢D, O¢g, Oe¢, Od¢, Ou¢

G O, 0%, Ou. O, OF, 08, OF

G O, 0%

H o0, 0

Ly Op, Oy, Opa, Oy, O, O}, OR), 08 OF), Oray, OL) 1, O
Oy, Osp, Osrr, Os: Oy, Ogws Oyiiry, Osws Oy gy Ocps Oagy Ougs
Oc: Oaw, Oap, Oaw, Oup, Ouw, 05, 05, 08 08 04, O, Oy

£3 Ole

U, o, 00,

Us  Oecy

Q1 O, 0L, 08 Oy

% Oy, O, OF). Oty Oy, Os,

x oy, oY

Y, O(il)v O(z)

v ol o

Oeda Oledq

Table 8.3: Operators generated by the heavy vector bosons presented in table 7.3.
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23 Im (32 (ve4)7) 92 } (8.22)

2

['17‘
These contributions can be absorbed into redefinitions of the SM Yukawa and quartic
Higgs couplings:

)

~

Ao = Zi(As— Cua). (8.24)

L oeu
ggzu,d — Z(; (y”, 4 (Cyevuld)ij% (823)

Due to the Higgs-field renormalization, the coefficient of the Higgs mass term is also
redefined:

/135 = Z, ui. (8.25)
We remind the reader that the hatted couplings on the left-hand side of the last three
equations are the coefficients of the corresponding operators—with the original Higgs-
field normalization—in the SM part of Lgsy. The corresponding unhatted couplings
are the coefficients of these operators—built with canonically-normalized fields—in
Leg. Note that the right-hand sides depend linearly on the explicit hatted couplings
on the left-hand sides. Solving this linear system is straightforward.

In terms of the renormalized Higgs field and the redefined couplings ui, gyl
and Ay, all the heavy-field contributions appear in the Wilson coefficients of higher-
dimensional operators. In order to keep our results as compact and clear as possible,
we write the dimension-six operators in terms of the original, hatted couplings. They
can be readily substituted by the solutions to eqs. (8.23), (8.24) and (8.25) to get the
expressions in terms of the redefined couplings. In practice, these expressions can be
greatly simplified. Indeed, all the contributions to Cyeu.a, except the one inside Zy, and
most of the contributions to Cys are not O(1) but carry an extra suppression ui /M2
For calculations to order E?/M?, with E a low-energy scale, all these contributions can
be neglected. In this approximation, the hatted couplings do not appear on the right-
hand sides of egs. (8.23), (8.24) and (8.25), which thus give explicitly their expressions
in terms of the redefined ones.

8.5.2 Dimension five

The only dimension-five operator in the basis receives the following contributions:

2(551)7“(1/51):]@' i (AN)rj (AN) Ty i ()\Z)Tj()\Z)m’.

Z¢ (05)1‘3‘ - Mélr 2My, 8Ms, (8.26)
8.5.3 Four-fermion operators
(LL) (LL)
. (ysl)j:jl(y&)rik <y51>7’ki(y51>;lj (gg)rkl(gé)m‘j
(Cll)z’jkl - 2 2 o 2 M2
Slr Elr Br
(9w (gow)ri N (gw)rit (Gn)ri (8.27)

AM2, 8M3,
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(LL) (RR)
Recall that g9 are defined in eq. (8.23).
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(LR) (RL) and (LR) (LR)
Recall that g4 are defined in eq. (8.23).

e\ * l * € *
(yz)rkl(yap)r]‘i 2<gL({12>Til(ggg)7‘jk _ 2(955)"71(.935)7’/%

(Cledq)ijkz = Mc,%T MZ?’2T Mésw
n @;:(5£1w)sr(7£1):(y$)rkl @glw&w):r(VQ)s(y;):ﬁ
M3 MZ, M2, MZ,,
n @2;@5?(551<p)2; (7£1>t(5£1<p>rs (Yeu)r
Mz, Mz Mz,
N 1{ U (G o (2, ) U (G o (2, )
f 2MZ,, 2MZ,,
B ggl(gfflﬁji(’)/ﬁl)r B z);fl(éffl):ﬂ(wl)r} (8.47)
2M7 2M7 ’ '
<0(1) ) _ (yZ)m(yiﬁ)iﬁzk I 4(93?)%1‘(9%)?” 4 4(9?2[11)%(?/5?)%
7uad ) ik M2, 3M2 3M§,
I Oie)sr (e )30 )ris G Omae)s (v ) )
M3, MZ, M2 MZ,
n g;‘ti*gld;@llw)?s(fyh)t((sﬁw)?%('}/ﬁl):
Mz, M2 Mz,
1 {@ﬁ:(gz?“mm: Ot G2 i (e );
f 2MZ, 2MZ,,
_ g;z‘*(fl%?q):m('ml)r _ i (chldq):lk(Vﬁl)r} (8.48)
2012, - '
(O;Z» = 4(yg?)rki(yg?):lj + 2<ygzﬁ):ki(y€)§)rjl _ (ygq):lk@cqbu)ﬂj, (8.49)
ijkl M2 Mg Mg
(C(1) ) :(yg)rkz(yf’;)iﬁ n (ygf>rjl(ygll):ki n (ylc:[i):jk(?/{%)ril
fequ ) i M2, 2M2 2M7.
5t Ocio)sr(e)EWe)me Uik Oao) 5 (V) (WG )50
M3, Mz, Mg, Mz,
5 OB
Mz, M2 MZ,,
! { O GE ey 95 G (e )
f 2MZ, 2MZ,,
i Z)ﬁ:@Z?l):ji(Vm)r @ﬁc*@glel>:ji(751>r} (8.50)
2M7 2M7 ’



8.5. COMPLETE CONTRIBUTIONS TO WILSON COEFFICIENTS 121

( 1(3) ) _ (W) et (Y8 )ik n (yﬁi):jk(y%7)ril. (.51)
o ikl 8Mu2}1'r- 8M12[77‘
B-violating
u\ * dg \ % " Uq \ %
(Cd ) :<yg1)rij(ygll)rkl 2<9qu)rik(ggll>rjl _ 2(99%)@;6(935)“1 (8 52)
uq )ikl Mo%u Méu MésT ) .
©.) _WEDn (W87 2090 )7k (90, )i 553
qqu/ ikl ) .
! M‘%lr Mé57'
* * l
) 208y W8 ) 208 s W ) rw (8.54)
q99 )ikl — ) .
MM, V2
du\* eur 2 yLu)* edri
(Oduu)ijkl :<yw1)‘7]"\z}§yw1) Ik B (yw4)1~]];(yw4) 1 ‘ (855)

Wir War

8.5.4 Bosonic operators
¢® and ¢*D?

Recall that § contains contributions from £; (see eqs. (8.12)-(8.15)) and that A4 is
defined in eq. (8.24).

Due to the length of the contributions to the coefficient of the O, operator we have
separated them as follows:

Z3Cy = C5+CY + C3Y, (8.56)

where C’g, C’(X, and C’g’v are given below.
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8.5.5 Operators with bosons and fermions

There are three types of operators coupling bosonic and fermionic fields: the operators
of the form 1)%2¢® represent couplings between scalars and fermions only, while those
of the form X%¢ and 12D¢? contain covariant interactions between the SM scalar,
fermions and gauge fields.

P2’
Due to the length of the contributions to the coefficients of the different 1)2¢* operators
(Ocs, Oup and O,4), we have separated them as follows:

§ ~Eex e (&
3

Z3 (Cag)yy = Uiia+ b3 + ¢, (8.71)
3

zZ3 (O“¢)ij = gj;a’ + b + ¢y, (8.72)

where the coefficients a, b}? and c;@ are defined below (egs. (8.73)—(8.79)). (The coef-

ficients b;/; and c?; refer to the contributions from only one type of particle and mixed
contributions, respectively.)

Recall also that §{, contains contributions from £; (see eqs. (8.12)~(8.15)) and that
g);-”;d’” and A4 are defined in egs. (8.23) and (8.24).
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Recall that §¢ contains contributions from £; (see egs. (8.12)~(8.15)) and that 5%

are defined in eq. (8.23).
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8.6 Example: interpretation of LHCb anomalies

Our UV/IR dictionary is a tool that can be used for different phenomenological pur-
poses, such as finding indirect limits on the parameters of explicit models, constructing
BSM models consistent with existing data or analyzing deviations with respect to the
SM in terms of new physics. In this section we illustrate the latter application with a
particular example: explaining the hints in LHCb data of a violation of lepton flavor
universality (LFU) in B-meson decays [199,200].° We will first identify which heavy
multiplets can generate the necessary operators and then look at correlated effects
that could constrain or test the different possibilities. Our schematic analysis is just
intended as an illustration. Most of the results in this section have in fact already
appeared in the literature, but our formulation allows for a compact unified discussion
of the different explanations.

The measurement of the observables Ry = Br(BT™ — K™ u™u~)/Br(BT — Ktete™)
and Ryg+ = Br(B — K*u"u~)/Br(B — K*ete™) provides a particularly clean test
of LFU of the gauge interactions, since a large component of the SM theory uncer-
tainties cancel in the ratio. The LHCb collaboration has presented measurements of
these ratios, both of which deviate from the SM predictions by ~ 2.6 ¢ [199] and
~ 2.4 0 [200], respectively. These are not the only anomalies in b — s¢*¢~ processes,
with some discrepancies also in the angular distributions of B — K*u*u~ [202-204], or
in the differential branching fractions of B — Kpu™ ™ [202] and By — ¢utu™ [205]. At
present, the different deviations follow a pattern that can be consistently explained by
the presence of new physics. Altogether, the global fit to all flavour anomalies points to
a deviation with respect to the SM hypotheses of ~ 3-5 o, depending on the estimates
assumed for the SM hadronic uncertainties in some of the observables [206-211].

The observed deviations from LFU in B decays are well described by the following
four-fermion effective Hamiltonian, valid at energies F < My,

b—stl aem 4GYF 0 Al
Hyrp = —VaVi—— i Z C;;0;; + hee, (8.96)
where B
Oy; = (379" Bb) (I, P;t) (8.97)

are the different chiral four-fermion operators that can be obtained from the product
of two vector currents, with P, p = %(1 F75). The fit to Rk k. favors an explanation
where new physics is present in left-handed leptons and, in particular, points to a
sizable deviation from the SM hypotheses in C%,. For the purpose of this example,
we focus the discussion around these interactions. They can be either CY;, < 0 or
¢ > 0, although a global fit to all B anomalies prefers new physics in the muon
sector, with CY'; ~ —1.2 £ 0.3 [206-211].
Matching Of; with the dimension-six SMEFT at the tree level results in the fol-
lowing four-fermion contributions to C% :

cL, =t (C}j’ + C{j’)) (8.98)

023’

where A\, = Vi, Vi % 435 and we are working in a fermion basis with diagonal Yukawa

interactions for the down-type quarks. The operators (9 (13) and O(l % also contribute,

SRecently, new measurements of the related observables has been reported in ref. [201]
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via a modification of the couplings of the Z boson to the relevant quarks and leptons.
However, such non-universal anomalous couplings are strongly bounded by LEP data,
so we concentrate on the operators Ol(; ) and Ol(s).

The relevant entries of the UV/IR dictionary are egs. (8.30) and (8.31). A look at
the masses in the denominators of each term allows us to easily identify all the types
of multiplets that can contribute to C’l(q1 ) and Cl(;’ ) at the tree level:

(I, Do (1,3)0 (3,12 (3,3)2

(3,3) 3 3 3
{ C? 87 WJ Z/lg, X } . (899)

Note that for wy, Cl(ql ) = —Cl(;’ ) and therefore C%, = 0. This list with one scalar and
four vector multiplets agrees with the classification in other studies, see, e.g. [207,212—-
214]. From egs. (8.30) and (8.31) we also see that there is no collective contribution
with several heavy propagators in the same diagram. Most importantly, we can pin-
point the relevant couplings in Lggy. This is a simple example of looking at an IR
entry of the dictionary to find its UV translation.

For instance, we can readily check in egs. (8.30) and (8.31) that a product of lepto-
quark couplings is involved in the case of the scalar ¢ and the vector bosons X and U2,
while the vectors B and W contribute through a product of a diagonal lepton coupling
and a flavor-changing quark coupling.

With this information, one can proceed to investigate in a systematic way all the
different constraints (or signals) arising from other processes that involve the same
couplings and particles. Processes involving other couplings will also be of great inter-
est if the anomalies are confirmed. Direct searches with resonant production can be
very relevant, but here we focus mostly on indirect searches. They reduce essentially to
an analysis of the different operators, besides (9[(;) and Ol(?, that are generated when
the heavy particles are integrated out. We can distinguish three kinds of contributions
to the Wilson coefficients of the other induced operators:

Type I: Contributions that depend only on couplings that enter in C%,. The corre-
sponding observable effects are then correlated with the ones entering in b —
s¢T¢~, and can be used to constrain or probe a given solution to the B-meson
anomalies.

Type II: Contributions that depend on these couplings but can be made arbitrarily
small by tuning an interaction not entering in C{ ;. In this case, the correlations
require extra information on that coupling.

Type I1I: Contributions that do not depend on the couplings that appear in C%,.
These are completely uncorrelated.

In this classification it is of course crucial to take flavor indices into account. Even if
contributions of type I are more relevant, an observation of the effects of contributions
of type II and III could also be used to support the new physics interpretation and for
model discrimination.

Let us examine along these lines the multiplets (, X and VW, which have the
compelling feature of allowing only for the required left-handed couplings. In this
case, we will use the dictionary in the UV to IR direction. Tables 8.1 and 8.3 prove
handy for this task, as they list the operators we need to look at for each assumed
multiplet.



8.6. EXAMPLE: INTERPRETATION OF LHCB ANOMALIES 145

Scalar leptoquark (

The interactions of ¢ can be found in eq. (7.13). We see that the scalar ¢ has, up

to flavor indices, two couplings (besides the gauge couplings, determined by quantum
. ; ql : qq ;

numbers): the lepto-quark coupling y; and the coupling to quarks y.". A glimpse

at table 8.1 tells us that the following operators are induced: Ol(ql 8, 035’3) and Oy
Then, we read the precise contributions to their Wilson coefficients from eqs. (8.28)-
(8.31) and (8.54). Assuming only one ¢ multiplet,

3 W) (i

(1) _ 3) _
(Cig it = 3(Chg Jigi = Mz (8.100)
3y ki (Wi
(Céé))z'jkz = —3(052))%;' = =X 502 < (8.101)
¢
2(y2)5 (8w
(Caga)iim = —CTJCQC- (8.102)

Looking at the flavor structure of (8.100), we see that we need sizable couplings (ygl)%

and (ygl)gg to explain the anomalies. For sufficiently low mass M, these couplings can
be probed by analyses of single and pair production of ¢ at the LHC [215]. The very

73)

same couplings also contribute to other components of C’é; , and we conclude that

3(
(Cl(q))ze33 3(01(;))2233 = % # 0,

CL, #0—
(CD) g2 = 3(C )y = Z;ﬁ' £0.

(8.103)

These are contributions of type I. The corresponding effects in hadronic-flavor-preserving
processes are correlated with the B anomalies. From (8.103) it is also clear that in
these processes each of the two couplings can be measured, in principle, independently.
Both the flavor-preserving and flavor-violating effects in an electron explanation of the
anomalies can be tested in ete™ colliders. The observed values of Ry j+ can be repro-
duced with C¢; ~ O(1), which corresponds to a new physics interaction scale of about
35 TeV, well above the sensitivity of LEP2. Therefore, current e*e~ data do not pro-
vide significant constraints on the relevant couplings. However, they could be tested
at future lepton colliders. Any other combination of flavor indices gives contributions
of type III, with effects that are uncorrelated with the anomalies. The same holds
for the contributions to the operators 035’3), which involve the quark couplings ygq
Finally, the baryon-number violating operator O,,, receives contributions of type II or
type III, depending on the flavor indices. Note in particular that the quark couplings
for the first family are strongly constrained by the non-observation of proton decay.

Vector leptoquark X

The analysis of the vector multiplet X’ is similar, but as we can see in eq. (7.25) in
this case there is only one non-gauge coupling (up to flavor indices): the lepto-quark

coupling gy. In table 8.3 we see that only the operators (9[(;’3) are generated in the
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EFT below the mass My. Assuming only one replica of X, eq. (7.13) gives

3(92{)}%(92{%1 ‘

1 3
(CVijta = =3(C\D) gy = — M2

lq q (8.104)
We see that the contribution of X to C%, is proportional to the product of (gx)j,
and (gx)es. Again, there are correlations with the coefficients of the corresponding
hadronic flavor-conserving operators:

Ct,#A0— (Cl(‘ll)>“33 = _3(01(;))%3 = gX Jesl® SISl £, 5.105)
(Czq Jerz2 = _3(01(;))4622 = 3I9x ez\ Sox)el £ ().
The same discussion in the paragraph below eq. (8.103) applies to this case, except

for the fact that now there are no purely-hadronic couplings.

Vector iso-triplet W

As we can check in eq. (7. 25) the vector iso-triplet W has couplings ¢}, and g, to
left-handed fermions and gW to the Higgs doublet. The latter induces a mixing of
the Z’ and W’ components with the Z and W bosons, respectively. There are also
couplings involving a possible vector doublet £;, which we shall not consider. For
masses Myy light enough, the Z’ and W’ bosons in W can be produced at hadron
colliders if the light-quark couplings are not too small. They then decay into di-
leptons (including lepton + MET) [216] and di-bosons [217] through the couplings to
leptons and to the Higgs, respectively. Regarding indirect effects, the operators that
can be induced are listed in the W entry of table 8.3. The most relevant ones in the
context of the B anomalies are (9[(;3), Oy and (95{;’), with Wilson coefficients given by
(see egs. (8.31), (8.27) and (8.29))

LY. (49
(€l i = — Byl (8.106)
LY. (4]
(Cu)ijr = —W, (8.107)
w
9w)ii (9y
(O = — Bl (8.108)
w

We see that to get the necessary C%; we need sizable couplings (giy)e and (gfy)as.
The first one must be non-universal, while the second one is explicitly flavor-changing.
Schematically, we have the following correlations:

(Cu)eeer = SAVZ%” # 0,

v
Clp#0— ¢ (C5)2323 = %MWQ— # 0, (8.109)
(Coa)oman = — ggVM?' # 0.

Of particular importance is the contribution to (Cég))gggg, as it generates contributions
to Bs— B, mixing amplitudes. Such contributions are tightly constrained, pushing
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the new physical interaction scale to values of O(100) TeV [218,219]."7 This case
shows that, although AF =1 and AF = 2 bounds are uncorrelated in a low-energy
operator analysis, correlations may exist and be crucial in specific explanations of the
B anomalies. Similar considerations apply often to processes that may not appear to
be connected in an effective low-energy description. Of course, the correlations become
weaker as more particles (with the same or different quantum numbers) are included,
but some of them are unavoidable [224].

Again, other combinations of flavor indices give contributions of type II and III.
The contributions of W to 12¢?D operators,

B Re {(9{/\;)@; gﬁv}

B, _
(Cgr)ij = el ; (8.110)
Re {(g%)zj gﬁv}
Gy

are of type II for i5 = ¢¢ and ij = 23,32, respectively, and of type III otherwise.
These operators modify the Z and W couplings to leptons and quarks, so they are
constrained by electroweak precision data, by observables sensitive to flavor-changing
decays of the Z boson, B, — B, mixing and by non-resonant processes with di-lepton
and di-jet final states at the LHC. But these limits can always be made compatible
with the lepton and quark couplings that explain the anomalies by tuning the Higgs
coupling gﬁv to be small. This coupling also induces type-III effects in Higgs physics,
via the operators Oyp, Oy, Ogn and Oy (f = e,d, u), with Wilson coefficients

2
Im{(g{f\))} 6o | ¢ 2
Coh— — C, — _ Aelgw) O — — 9w
oD 2M3\/ ) ¢ Mg, s 4]\43‘/7
(Ceian)ii =¥ a, (Cus)is = —2yjia", a=——" SN2 . &“112)
w

e,d,u

(Note that we have replaced 5\¢ and §%%* by A\, and y®®*, respectively, as in the
extension we are considering there are no contributions to dimension-four operators.)

Before finishing this section let us point out another possible usage of the UV/IR
dictionary for model building. Say we are interested in a given class of models, includ-
ing one or more of the multiplets that contribute at the tree level to the dimension-six
effective Lagrangian. Then we can relax the indirect limits on the corresponding cou-
plings by including other multiplets that (partially) cancel the contributions to the
Wilson coefficients of interest. The different possibilities can be easily determined by
a scan of our results in section 8.5. For instance, it is easy to see that the contribu-
tions of W to (Cy)1111, which could be tested at future ee™ — ete™ colliders, can
be (partially) cancelled, with some tuning, against the ones of a hypercharge 1 scalar
singlet S; or triplet =; [224].

"These bounds, together with the ones discussed below, can be relaxed by reducing the (g%y)23
and gﬁv couplings at the expense of increasing the corresponding (gg/v)ze ones [220,221]. A similar
comment applies to the case of B. Such leptophilic vector bosons can be probed at colliders in
multi-lepton searches [222,223].
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8.7 Example: Higgs physics in simple models

In this section, we use the UV/IR dictionary to discuss new physics effects in Higgs
physics in simple SM extensions with one or two particles. First, we find the part
of the SMEFT most important for Higgs physics. Then, we study the correlations
found in each model between the effects in Higgs physics and those in other types
of observables. The implications in Higgs physics are not always apparent in the
dimension-6 Lagrangian, because of possible correlations between the coefficients of
operators, and in indirect effects from the modified relations used to obtain the values
of the SM input parameters. These implications have been worked out in the literature
and can be found, for instance, in ref. [225].

The operators in the Warsaw basis that contain the Higgs field and can be generated
at the tree level are listed in the first column of table 8.4. For simplicity, we disregard
four-fermion interactions, even if they might influence Higgs physics indirectly. The
operators Oy, Oy and (O,4)33 are the ones that are currently less constrained by
experimental data. The operator Oyp and all those of the type Oy, have been con-
strained to be small by electroweak precision tests (EWPT), while Oy,q is also limited
by low-energy data. Experimental data from Higgs physics tell us that the Wilson
coefficients of the interactions (Oey)ss and (Oge)s3 should be well below 1 TeV 2.

Using the UV/IR dictionary, we can readily identify which heavy fields can generate
each operator at the tree level. They are listed in the last column of table 8.4, next
to each corresponding operator. In the following, we consider a few simplified models
that contain one or two of these fields. All these models are particular cases of the
BSMEEFT. Our selection includes fields that appear frequently in more elaborate setups
and illustrates typical features of the latter. Furthermore, all the operators in table 8.4
are generated by this set of models. We first discuss popular extensions of the SM with
only one particle, which are severely constrained by EWPT. Then, we study minimal
extensions with several particles that preserve custodial symmetry. In this case, the
strongest constraints are evaded and strong effects in Higgs physics are allowed. In
the explicit results below, it can be observed that many of the contributions to the
Wilson coefficients have a definite sign.

8.7.1 Models with one extra particle
Quark singlet: U ~ (3,1)y/3

In chapter 9, we study the physics of heavy vector-like quarks in detail. Here, we
concentrate on the Higgs physics of a vector-like quark U, with the same quantum
numbers as the right-handed top, that only has renormalizable interactions. The
relevant sector of Lpgy 18

Lo = Lo + iU DU + MyUU — ((AU)iURngT qri + h.c.) , (8.113)

which we have particularized for only one flavor of the field U. To avoid flavour-
changing neutral currents, we consider the case in which only one of the three (Ay); is
non-vanishing. From the results presented in section 8.4, we extract the contributions
of U to the SMEFT, which we give in table 8.5. The first two operators contribute to
gauge couplings (also in association with one or two Higgs bosons) of the SM quarks
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Name Operator Constraints Fields that generate it
Oy |[° [weak constraints| S, ¢, 2, =1, O1, O3, By, W
Oun |20 |2 [weak constraints] S, Z, Z1, B, By, W, W,
Oup 61D, 0|2 EWPT =, 24, B, B, W, Wy

T . S (Y2 = El E Al Ag
2 ) ) ) ) ) 9 9
Oes |o|%lLPer Higgs data .50, B, B W. W,
_ . S, 0, 2,21, D, Q, Qs
2 ) I ) ) I ) )
Odd) |¢| QL¢dR nggS data le TQ, B, Bla W, W1
_ 7 : S, 0,221, U, Q, Q7
2 ) ) ) ) ) 3 3
Ouo |p|*qrour [weak constraints| T Ty, B. B, W. W,
_ <>
0% (I:y"1)(¢'iD,¢) EWPT N,E, %, %, B
_ «—a
0% ([y"o1L) (6D, ¢) EWPT N,E, S, S, W
<>
oW (qvar)(¢'iD,0) EWPT U,D, T, T, B
oa
08 (q*o%qr)(¢'iD, ) EWPT U, D, Ty, Ty, W
<~
O (Eryrer)(9liD,0) EWPT Ay, As, B
<~
Opu (TLRV“UR)(WZ'QM@ EWPT Q, Q7. B
O¢d (CZR’)/“dR)<¢T2D“§Z~5) EWPT Ql, Q5, B
Opua  (ary"dr)(¢'iD,p)  low-energy data Q1, By

Table 8.4: Fields that generate each operator containing the Higgs at the tree level,
together with the type of experimental data that constrains it the most.

(Cy (O (Cug)ij

Qi) Qu)iw); ux Av); (Av)k
4MZ 4MZ ik aMz

Table 8.5: Tree-level contributions to operators with the Higgs from the U heavy
vector-like quarks.

whereas the third one contributes to the up-type Yukawa couplings (again plus one
or two extra Higgs bosons). Associated WH or ZH production from the first two
operators in the case of first and second generation quarks is constrained by EWPT.
Other correlations appear once we consider this specific model. Indeed, all three Wilson
coefficients are controlled by a single parameter |(\y);|?/Mg. Top gauge couplings are
not so severely constrained, thus allowing a prior: for a significant deviation of the
top Yukawa coupling. However, in this case EWPT still constrain the parameters of
the model through one-loop contributions.

Current direct searches for pair production of this vector-like top put a lower bound
of about a TeV for its mass [226,227]. Single production is also sensitive to the Yukawa
coupling of the new quarks [228,229].
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1
Cop Cen (Cé(w)})ij
. 2(g5)> ( 1k . (gg)z‘j(gg)
M2 INE MZ

Table 8.6: Tree-level contributions to operators with the Higgs from the neutral vector
singlet B.

Neutral vector singlet: B ~ (1,1),

In this model, a vector field B couples to the SM fermions and the Higgs doublet
through renormalizable operators. Therefore, the terms of Lggy we are interested in
are

1
L5 = Lsw+ 5 ((DuB,)(D'B") — (D,B,)(D"B") + MB,B")

— > (g8 B bty — |gaBretiD, + h.c.} . (8.114)
P

The only component of this field is associated to a heavy neutral particle of spin 1, i.e.
a Z' boson. We assume that the coupling constant gg to the Higgs is real. The UV/IR
dictionary gives four-fermion operators plus the contributions that appear in table 8.6.
Note that the modification of the Higgs kinetic term depends on Cyg — Cyp/4, and
therefore vanishes in this model. There is however a modification of the SM-like Higgs
coupling to vector bosons via Oyp. From the EWPT constraints on Oyp, it follows
that gg should be small. This affects every operator with the Higgs generated by B,
which will be suppressed by gg or (92)2. Similarly, one has effects in associated ZH
production coming from the operators (’)(ES))], which are also constrained by EWPT.
Searches for single production of neutral vectors decaying to dileptons, dibosons or
dijets exclude additional regions in the parameter space of this model [230-236].

8.7.2 Custodial models
Quark bidoublet: Q1 ~ (3,2)1/6 and Q7 ~ (3,2)7/6

In this case, we have a multiplet of heavy vector-like quarks in the (2, 2),/3 representa-
tion of the SU(2), x SU(2)g x U(1)x symmetry group, where SU(2) corresponds to
the SU(2) factor in the SM gauge group Ggy and the hypercharge of the U(1) factor
in Ggy is given by YV = Tf + X.

As we have stressed above, models that extend the SM symmetries, such as this
one, are particular cases of the BSMEFT, in which some relations between couplings
are imposed. This model corresponds to the sector of the BSMEFT containing the
2 quark doublets @ and Q7 in the 2,5 and 275 irreps of the electroweak gauge
group, respectively, with the associated parameters related by Mg, = Mg, =: M and
A, = A, =: A. We assume that the heavy quarks only couple to the third generation
of SM quarks. The relevant part of Lggy is given by

Liidowblet = Lsn +1Q7 Q7 + iQ1 Q1 + M (Q7Q7 + Q1Q1)
— |:/\ <Q7L§btR + Q1LQZ~5tR) + hCi| . (8.115)
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(Cug)s3

iz A2
M2

Table 8.7: Tree-level contributions to operators with the Higgs from the quark doublets
Q)7 and @)1, with the interactions in eq. (8.115).

Because of the extended symmetry, the contributions to the Oy, operators from
both doublets cancel each other. Only the operator (O,4)s3 is generated by a tree-level
integration, with a positive Wilson coefficient. The explicit value of (C\4)s33 in this SM
extension is given in table 8.7. Therefore, this is a model which can give large negative
contributions to the top Yukawa coupling without producing any other effects at the
tree level. Note that one-loop constraints are under control for this particular model:
contributions to the 7" parameter are protected by custodial symmetry, bounds from
the S parameter are mild, and the contributions of the new quarks to Higgs production
via gluon fusion compensate the reduction in the top Yukawa coupling.

The mass of the extra quarks is bounded from below by direct pair production
limits, similarly to the case of the singlet (subsection 8.7.1).

Hypercharge zero vector triplet: W ~ (1,3),

The hypercharge zero vector triplet contains a Z’ and a W’'. It couples to the SM
doublets. The relevant part of the BSMEFT Lagrangian is:

Lo = Loy + = (D) (DYWH) — (D) (DRW))

2
1 2 AN I 1 l nay a
+§ W, WHE — i(gw)ijw lLio"yulL;
1 ~ _a 1 a a;
— 5(9%)@']4””(][40’ ’)/Mqu — 5(9%))/\/“ ¢T0' ZDMQS + h.c.|. (8116)

We assume that gf/’v is real. Table 8.8 summarizes the tree-level contributions
of W to operators with the Higgs, which can be read from the dictionary. Unlike
the case of the vector singlet B, the coupling g{’f\, is allowed to be large in this case,
because the contribution to the T parameter is zero. Therefore, in this model there
can be large contributions controlled by g{é\, to Oy (which modifies the Higgs trilinear
coupling), to Oy (that changes the Higgs kinetic term) and to Oy, (which in this
model modifies Yukawa couplings in an universal way). While the mixing of W with
the SM gauge boson induces a custodial symmetric modification on the SM-like Higgs
to vector couplings (this effect is captured by Oyn), the net effect in other couplings
follows from a modification of the SM relations used to derive the values of the inputs
of the model.

As for the singlet (subsection 8.7.1), direct searches for single production of Z’ and
W' apply here.

Pair of vector singlets: B~ (1,1)y and By ~ (1,1);

Here, as in the quark bidoublet case, we have the extended symmetry SU(2), X
SU(2)r x U(1)x. A pair of vector singlets B and B; combine to form a (1,3)y rep-



152 CHAPTER 8. COMPLETE TREE-LEVEL MATCHING TO THE SMEFT

3
Co Coo (Cyo)ij (CS)is
(692 3R @) ()i
M3, 8M3, 4M3, 4M3,

Table 8.8: Tree-level contributions to operators with the Higgs from the hypercharge
zero vector triplet W.

Cy Coo (Cyg)ij
X (9°)? 3(g%)2 Yl (9%)2
T M2 e T M2

Table 8.9: Tree-level contributions to operators with the Higgs from the pair of vector
singlets B and B;.

resentation of this group (see ref. [237] for a discussion of the effects of the B; vector
alone). The induced relations between BSMEFT parameters are: Mg = Mp, =1 M
and gg = gg’; /v/2 =: g®. Thus, this model is described by the following terms in Lpgu:

Evector-pair = LSM + ‘Clljm + Eflln
1
+ M? (515’“8“ + B{Mzsf;)
_ [g¢ <B"¢T iD, + \/§Bsz’Du¢Ti02d)> + h.c.} . (8.117)

For simplicity, we have not included in the previous equation the fermionic couplings
to the heavy vectors. Their effects are independent from the ones discussed in this
subsection.

Using the UV/IR dictionary, we obtain table 8.9. The contribution to Oyp from B
cancels the one from B;. This means that the limits on ¢® are milder than in the case
with B alone (subsection 8.7.1). In fact, this coupling is not constrained by EWPT
when the fermion couplings vanish. Therefore, large effects in Oy, Oy and Oy are
allowed in this model. The discussion of the effects in Higgs physics/couplings coming
from ¢® in this model is similar to that in the case of W.

Direct searches at the LHC are sensitive to the Higgs couplings of the new vectors
via vector boson production of the new fields and decays into dibosons. Other channels
are typically more restrictive when the couplings to fermions are not small.

8.8 Conclusions

In this chapter we have shown that the matching between the IR and UV descrip-
tions can be performed once and for all at the leading order, namely for operators of
canonical dimension up to 6 and at the classical level. The idea is to map the model-
independent low-energy EF'T approach to arbitrary models of new physics. With this
purpose, we have considered a completely general extension of the SM, the BSMEFT
(see chapter 7), subject only to a few mild assumptions. This extension has an arbi-
trary number of new scalars, fermions and vectors, with no restrictions on their gauge
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quantum numbers nor on their possible interactions. In particular, we have made no
assumption about renormalizability.

We have integrated out the new heavy particles in the BSMEFT at the tree-level
and have computed the Wilson coefficients of the corresponding SMEFT operators of
dimension up to 6 in the Warsaw basis. This is the main contribution of this chapter.
We report our results in the form of a UV/IR dictionary. A top-down approach to the
analysis of new physics would first use our section 8.4, where we list all the operators
that are generated for specific new particles. In section 8.5, on the other hand, we give
our results organized from the bottom-up point of view, by writing the contribution
to each Wilson coefficient from an arbitrary number of new particles. This dictionary
greatly simplifies the task of analyzing the low-energy implications of explicit models
and obtaining the corresponding bounds on their parameters. It also helps disentangle
the origin of possible anomalies eventually observed in experiments. We have included
a short section to guide the reader through our results and have provided a simple
example to illustrate the use of this dictionary.

It is interesting that all operators in the Warsaw basis, except for the ones involving
three field strength tensors, are generated in our tree-level integration. This would
naively seem to contradict the arguments in ref. [96], which, up to the presence of
L1, share our assumptions. In fact there is no contradiction since, as we have shown,
tree-level contributions to operators that are classified as “loop generated” in [96] only
arise due to non-renormalizable, dimension-five operators in our SM extension, which
can only be generated in turn at the loop level in any weakly-coupled renormalizable
UV completion of that theory. (See [198] for a related discussion.) However, we
have included these operators in our dictionary because they could be unsuppressed
in strongly-coupled completions.

We conclude by emphasizing that we have provided a complete classification of
all possible extensions of the SM (with new particles up to spin 1) with low-energy
implications at the leading order. These implications are encoded in tree-level contri-
butions to the Wilson coefficients of the dimension-six operators in the SMEF T, which
we have computed explicitly in terms of the masses and couplings of the new particles.
This result can in principle be extended to operators of higher dimension: as long as
the classical approximation is used, the number of extra fields and extra couplings to
be considered will be finite (even if huge). On the other hand, at the loop level this
endeavor faces an additional problem: there are infinitely-many types of extra fields
that can contribute, already at one loop, to dimension-six operators. The reason is
that fields without linear couplings to the SM need also be considered in this case.
So, a complete matching to general extensions beyond the classical approximation will
need to deal with this difficulty.






CHAPTER

Vector-like quarks with
non-renormalizable interactions

9.1 Introduction

So far, we have considered the sector of the BSMEFT in which the new fields have
dimension-4 linear couplings. In this chapter, we study the possibility of relaxing
this bound over the dimension. We do so for the case of vector-like quarks. That is,
spin-1/2 color triplets whose left-handed and right-handed components transform in
the same way the electroweak gauge group. In general, new heavy fermions must be
vector-like in order to have an explicit gauge-invariant mass term.

Vector-like quarks appear in many motivated extensions of the SM, for diverse
reasons. In models with additional symmetries, they may complete multiplets that
include SM fermions [51,238,239]. They may also be necessary for the cancellation
of the anomalies of an extended gauge group [240]. In models with (partially) com-
posite quarks [241], they emerge effectively as resonances, while in models in extra
dimensions, they show up as Kaluza-Klein modes when the quarks propagate through
the bulk [242]. Vector-like quarks are also used to relax the bounds from precision
observables [243] or to avoid strong fine tuning in the Higgs sector [244,245]. Here, we
will not worry about the origin of the vector-like quarks or the details of the model
in which they appear. Instead, we follow a systematic model-independent approach
by studying a general effective field theory that describes the new quarks and their
interactions with the SM fields. Our conclusions can be easily translated to specific
models.

At the renormalizable level, the possible gauge-invariant interactions of the extra
quarks in the electroweak symmetric phase are the ones with the gauge bosons, deter-
mined by their quantum numbers, and Yukawa interactions involving either two extra
quarks or one extra quark and one SM quark (see section 7.3). Upon electroweak
breaking, the Yukawa couplings give rise to off-diagonal terms in the quark mass
matrix, which translate into the mixing of mass eigenstates in the interaction terms
with the Z and W bosons and the Higgs (beyond the mixing in the original Yukawas).
Many of the observable effects of the new quarks, such as their decay into SM particles,
their single production and the induced modifications of the light-quark couplings, are
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associated to their mixing with the SM quarks, which is suppressed when their gauge-
invariant mass is larger than the Z mass [246]. This suppression is stronger for heavy
vector-like quarks that are not directly connected by Yukawa couplings to the SM
quarks. Therefore, the effects of mixing are sizable only in the presence of vector-like
quarks with gauge quantum numbers that allow for such couplings. Assuming that
electroweak breaking is mostly triggered by the vev v of one or more Higgs doublets,
in agreement with limits on the p parameter, there are seven different multiplets of
vector-like quarks that carry the appropriate quantum numbers. They are ones shown
in table 7.2. Vector-like quarks with this property will be called “renormalizable”
vector-like quarks (RVLQ), even if they can also have non-renormalizable interac-
tions. Their components have electric charges in the set {£1/3,£2/3,+4/3,+5/3}.
The most general renormalizable extension of the SM with arbitrary combinations of
the seven types of RVLQ was explicitly written in ref. [6]. In that work, the leading
indirect effects beyond the SM, including flavour-changing neutral currents, right-
handed charged currents and a non-unitary CKM matrix, were studied by integrating
the heavy quarks out and using the results in ref. [59] for the relevant flavourful part
of the SMEFT at dimension 6. The loop contributions of these multiplets to oblique
parameters have also been calculated in refs. [247-249]. Regarding direct searches,
refs. [250,251] provide a comprehensive and detailed guide to the LHC phenomenol-
ogy of minimal renormalizable extensions of the SM with vector-like quarks that mix
dominantly with the third family. Several other works have been devoted to collider
searches of RVLQ), see for instance refs. [252-256].

Allowing non-renormalizable interactions in the BSMEFT allows us to assess the
robustness of the standard limits on vector-like quarks and to explore possible new
observable signals. For simplicity, we will consider simple extensions with only one
quark multiplet at a time. All the possible particles not included in the effective
Lagrangian, such as additional extra quarks or extra scalars, are assumed to be heavier
than the cutoff A; their effects are then encoded into the Wilson coefficients of the
EFT. As usual, the effective Lagrangian is to be expanded in inverse powers of A.
When A is much higher than the probed energies F and the Higgs vev v, all the effects
of higher-dimensional operators will be suppressed by powers of E/A and/or v/A with
respect to the effects of the renormalizable ones and will typically give rise to small
corrections to the known results. However, some processes may require the presence
of higher-dimensional interactions, which will then provide the leading contributions.
In particular, this is always the case for quark multiplets that can only couple linearly
and gauge invariantly to the SM fermions at the non-renormalizable level. As we will
see, the phenomenology of these multiplets can indeed be different from the one of
RVLQ.

In fact, relaxing the requirement of renormalizability enlarges the list of vector-
like quarks that can mix with the SM ones and, more generally, have linear couplings
with SM operators.! In this chapter, we only study explicitly the leading corrections
to renormalizable theories with vector-like quarks. So, we will truncate the effective
Lagrangian at order 1/A, that is, we will consider only operators of canonical dimension
n < 5. The quark multiplets that can have linear couplings to this order are collected
in table 9.1. As can be checked there, there are five new multiplets, in addition to the

Interestingly, non-renormalizable linear interactions of other colour representations, beyond sin-
glets and triplets, are also allowed.
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seven RVLQ), which we have presented before in table 7.2. The new ones will be called
"non-renormalizable” vector-like quarks (NRVLQ). The only gauge-invariant operator
that can be built with the SM fields at dimension 5 is the Weinberg operator, which
involves only leptons and is thus irrelevant in our context. Therefore, the relevant
dimension 5 operators always contain at least one of the extra quarks in table 9.1.
In order to simplify the analysis, we will assume that the extra quarks do not couple
to the first two SM families. This assumption can easily be dropped, at the price of
introducing more free parameters. We study the mixing with the third family of SM
quarks and the associated phenomenology, including indirect effects on electroweak
and Higgs observables and the production and decay of the new quarks. We will see
that for some multiplets there are new single production mechanisms and new decay
channels, which can be sizable in some regions of parameter space. A significant feature
of the vector-like quarks without renormalizable interactions is that their widths are
suppressed. For dimensionless couplings of order 1 and a cutoff A larger than 5 TeV,
it turns out that their lifetimes are larger than the typical QCD times and thus non-
perturbative effects, including hadronization, will take place before decay. For still
larger values of A, the NRVLQ), or more precisely the hadrons they form, will be long
lived. These quarks would then elude the usual searches, which assume prompt decays,
and lead instead to alternative signatures, such as tracks with anomalous ionization,
long time of flight or displaced vertices.

Extra quarks with non-renormalizable interactions have been studied before in the
context of pseudo-Goldstone composite Higgs models [245,257-259]. This is a partic-
ular subclass of the theories included in our general model-independent framework,
with A identified with the symmetry breaking scale f. But in the pseudo-Goldstone
scenario, the assumed symmetry breaking pattern allows to easily resum the 1/f ex-
pansion. Then, f can be pretty low without loosing predictive power.? The vector-like
quarks in those models belong to multiplets of an extended symmetry and, for the
popular choices in the literature, decompose under the SM gauge group into a subset
of the seven RVLQ) representations. Here, we want to follow a model-independent
approach, so we do not make any assumptions about the nature of the Higgs, about
symmetries beyond the SM ones or about the representations of the quarks (except
for the requirement of linear interactions). Another study of non-renormalizable in-
teractions for new quarks, similar in spirit to the one in this paper, was presented in
ref. [261]. There, the first three multiplets in table 9.1, coupled via operators involv-
ing the Higgs, were considered. We generalize this work by including all the relevant
multiplets and operators at dimension 5. In particular, we consider multiplets without
dimension-4 interactions, which present the most dramatic changes with respect to the
usual phenomenology of vector-like quarks. On the other hand, the flavour structure
we assume is more restrictive than the one in ref. [261], which allowed for couplings to
the light families of SM quarks.

We have implemented in FeynRules 2.0 [162] the EFT for each vector-like mul-
tiplet in table 9.1. All the simulations have been performed with MadGraph5_aMC@NLO
[262,263] with the UFO files generated with FeynRules.

The chapter is organized as follows. In section 9.2, we introduce the EF'T for vector-

2The EFT descriptions of these models are valid up to a cutoff higher than f, associated to
additional resonances or strong coupling. In explicit holographic models, these effects are incorporated
and the cutoff can be much higher for many purposes [260].
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like quarks, find the constraints on quantum numbers for linear interactions and write
explicitly the general Lagrangian for an arbitrary multiplet with all the operators of
dimension up to 5. We also comment briefly on the possible ultraviolet (UV) origin
of the non-renormalizable operators. In section 9.3, we diagonalize the mass matrices
that appear in the Higgs phase for the components with the same electric charges as
the SM quarks. Section 9.4 is devoted to indirect effects of the new quarks and to
the corresponding limits from Higgs, electroweak and top data. Production at hadron
colliders is discussed in section 9.5, while the decay of the new quarks is examined in
section 9.6. In this last section, we explain why the branching ratios to Higgs and Z
bosons are approximately equal for all multiplets but one. We also obtain a simple
formula to reinterpret the mass limits provided by the LHC collaborations in the case
with additional decay modes. Our method is based on the one in ref. [264]. We present
our conclusions in 9.7.

9.2 General extensions of the Standard Model
with vector-like quarks

We consider here the sector of the general theory Lggy (defined in chapter 7) that
contains new quarks. We obtained in section 7.2 a general constraint over the rep-
resentation of any SM operator, and thus of any field with a gauge-invariant linear
coupling. In the case of color triplets, it reads

T+Y+1/3€7Z, (9.1)

with 7" the isospin of the SU(2) representation and Y the hypercharge. It is also true
that, given a representation of SU(2) x U(1) satisfying eq. (9.1), there is a product
of SM fields that produces this representation. Indeed, consider first the products
gzﬁk(gé*)l of the Higgs doublet and its conjugate. They generate all representations
with T4+ Y € Z. Then, the operators of the form gzﬁk(gzﬁ*)lq give all the possibilities
satisfying eq. (9.1). So this formula allows to find easily the quark multiplets with
linear couplings.

Higher-dimensional multiplets couple linearly to the SM through higher-dimensional
operators. Therefore, the effects of higher-dimensional multiplets tend to be more sup-
pressed than the lower-dimensional ones. As we have just explained, at each order in
inverse powers of the cutoff A, which is given by the dimension of the operators, there
is a finite number of multiplets with linear couplings to SM fields. This number in-
creases with the order in 1/A. We focus in the following on the next-to-leading order
in this expansion, which is O(1/A). Equivalently, we impose a maximum dimension
of 5 for the operators in the effective Lagrangian. There are twelve possible multiplets
with linear couplings at this order, listed in table 9.1. The ones in the first seven rows,
called RVLQ in this paper, can have linear interactions of dimension 4. These are the
multiplets that have been studied in the past. For natural values of the couplings, the
dimension-5 operators will generate small corrections to their properties. The remain-
ing five multiplets, which we call NRVLQ, cannot have dimension-4 linear couplings.
Therefore, for these multiplets the dimension-5 interactions will give leading-order ef-
fects. Let us stress that RVLQ can have non-renormalizable linear interactions and
that NRVLQ have renormalizable quadratic interactions with the gauge fields, besides
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the kinetic and mass terms. Let us also note in passing that, besides the singlet and
triplet representations, other irreducible representations of SU(3) are possible for spin-
1/2 particles with dimension-5 linear couplings to the SM. The extra eight possibilities
for their representations under SU(3) x SU(2) x U(1) are:

(67 1)—2/37 (6?1)1/3’ (67 2)—1/67 (871)17 (872)1/27 (157 1)2/37 (157 1)—1/3’ (1572)1/6' (92)

Coming back to extra quarks, the dimension-5 operators containing exactly one
vector-like quark can have one of the following two schematic forms: Q¢¢q and
Qa““qFW, where ¢ is the Higgs doublet, ¢ and @) represent SM and extra quark
multiplets, respectively, and F),, is the field-strength tensor of a SM gauge field. We
do not consider operators with the field content Q¢gD, with D a covariant derivative,
because they can be eliminated using integration by parts and field redefinitions, up
to O(1/A?) corrections. The interactions allowed for each multiplet are presented in
table 9.1. They can be found using BasisGen (see chapter 6). It is important to note
that the interactions of the form Q¢¢pq will typically give physical effects suppressed
by powers of v/A, while the effects of interactions of the form Qo**¢F),, are suppressed
by powers of E/A, with E the characteristic energy of the process (E ~ M for on-
shell extra quarks). In the rest of this paper, we study sector of the BSMEFT that
is relevant for each one of the possible multiplets () at a time. The corresponding

dimension-5 effective Lagrangian £ = Lgn + L7 + (£ + Eunad + h.c.), with

Ly =Qip — M)Q, (9.3)
— LI = N Urd'qri + vi (Upur)(6'¢) + wps Upo™ upi B, + we UL/\AUWURz‘Gﬁw

(9.4)
—LY = X\ Dro'qri + yi (Drdri)(¢'¢) + wp; Dpo™ dp; B, + we; DA o™ dpi Gy,

(9.5)
—L = N Qurdupi + Aai Q1r.0dr; + Yui (Q1rd) (D1ars) + yai (Q1rd)(d1qrs)
+ wpi Q1r0" qLi By + wwi Q1ro 0™ quiW, + wp; QurA 0" qLiG,, (9.6)
—LE = X Qrrdug: + yi (Qrrd) (dlqrs),
—L8, = i Qsrddri + i (Q5rd) (9 asa),

—ﬁlThf = X TR0 0" qri + Yui TfLuRiqﬁTang + yai T{drid 0" ¢ + w; TfLU”VdRz‘Wﬁ,,’

(9.9)
— L3 = N T30 0% qri + yui Tsp urid 06 + ya; Tsy drid' o + w; Tgy o up W,
(9.10)
—LF =y, T drid o0, (9.11)
—Ly; =i T upig 0", (9.12)
—LP =y F{rCrqricd' 0" + w; FipCro™ qrieW?h,, (9.13)
—LP =y, F&Cpqricd' 00, (9.14)
—LP =y FCrqricd' 00, (9.15)
— L3 = Wp (Qro" Qr)Buy + Wi (Qro™ THQr)WS, + We (QLo™tiQr)G,

+Y1(QLQr)(0'0) + Y2 (Q1 THQR)(¢'0%0), (9.16)
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where T (t,) are the generators of SU(2) (SU(3)) in the representation of Q. The
rest the group-theory notation used here is defined in appendix A. The index 7 indicates
the SM fermion family and Wy, = Y, = 0 for singlets. We have used the following
notation for coefficients of operators that are linear in @Q: \; is the coefficient of Qg;¢,
y; is for Qq¢, and w; is for Qa“”tim,. When there is more than one possibility,
the corresponding coupling constants are differentiated by an additional subindex,
which indicates the SM field that unambiguously determines the operator. Observe
that we include all the gauge-invariant operators of dimension equal to or smaller
than 5 that can be constructed with the field content of the theory. The condition
of linear couplings is used to select the representations of the vector-like quarks, but
not to restrict their interactions in the EFT. Note also that the \; parameters are
dimensionless, whereas y;, w;, Y and W have dimensions of inverse energy and are
expected to be of order A1,

This new notation for the couplings turns out to be more convenient for our pur-
poses here than the one defined in section 7.2. A direct conversion between the two can

be done. For the coefficients of renormalizable operators, we have A, 4 = ()\((5 ’d))gi.

For the non-renormalizable Yukawas of singlets and triplets: y(, 4 = (5\8 ’d)) 3i/ f, while

for the Q5 and )7 doublets: vy; = (5\22)31 /f. For the dimension-5 Yukawa couplings of
the () singlet, we use a basis here that differs from the one in section 7.2. In this case,
we have y,; = (5\%)31 /[ and yg; = ((S\qQ)gi—i— (5\(1@/)31) /f. Finally, the relation between the
couplings for field strengths are given by wg w) = (S\EQB’W))gi/f and wigy; = (5\8)31/]“

We will consider in this paper only couplings to the third family of SM quarks.
This choice is made to reduce the dimensionality of the parameter space and to auto-
matically satisfy the most stringent flavour limits. It is also motivated by theoretical
ideas in different models. This means that \;, y; and w; are taken to be vanishing
for i = 1,2. Accordingly, we simplify the name of the non-vanishing couplings in the
following way:

A= A3; A= Auzs Ay = Ags;

Y=Y3; Yt = Yu3; Yo = Yd3;
w=ws; W= w3, Wy = Wws3; WG = W3g3- (9.17)

Let us briefly comment on possible ultraviolet completions that can give rise to the
dimension 5 operators at low energies. The Yukawa-like operators Qq¢¢, of dimension
5, can be generated at the tree level in a completion with one additional field: either
a colour-neutral scalar S, with interactions SQq and S¢¢ or an additional quark Q,
with interactions Q¢Q and Q¢q. The mass of the extra particle, which is assumed
to be larger than M, sets the cutoff scale A of the EFT L. The Feynman diagrams
that contribute to the dimension-5 Yukawas are shown in figure 9.1. The quantum
numbers of the extra field must allow for the gauge-invariant vertices in the diagrams.
This means that the heavy scalar S belongs to one of the representations 1y, 3¢ and
31 of SU(2) x U(1), while the heavy quark Q belongs to one of the representations in
the first seven rows of table 9.1, so it is also a RVLQ (but assumed to be heavier than
the ones in the effective Lagrangian). The operators of the form Qo,,qF", on the
other hand, cannot be generated at tree-level in a renormalizable ultraviolet theory.
In figure 9.2 we show a one-loop diagram that contributes to these effective operators
in a theory with an extra scalar multiple S, which must be either a singlet or a triplet
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Name Irrep Qoq Qoédg Qot“qF,,
U Lo/3 Ve v v
D 1y Ve Ve
1 216 v v/ v/
Qs 25,6 v X
Q7 27/6 v v X
Ty, 3.5 v
Ty 3y SV v
T4 3,4/3 X Ve X
T5 35/3 X v X
F1 41/6 X 1/ v/
B s X/ X
F7 47/6 X v X

Table 9.1: Irreps (271'+ 1)y, under SU(2); x U(1), and linear interactions of new
quarks with dimension-5 linear couplings. The subscript in the name of each multiplet
is the absolute value of the numerator of its hypercharge, when written as an irreducible
fraction. An explicit formula for this integer number is |2 +47 +3(Y —2/3)/(1 = T)|
where T =T (mod 1).

Figure 9.1: Tree-level diagrams that generate the Qq¢¢ operator in UV completions
of £ with additional extra quarks (left) and additional scalars (right).

Figure 9.2: A one-loop diagram that generates the QanF m operator in a UV com-
pletion of £ with new scalars.

of SU(2), and a singlet or an octet of SU(3). That is, there are 4 possibilities: (1, 1),
(1,3)0, (8,1)0 and (8,3)p. The coefficients w of these “magnetic” operators are thus
naturally suppressed by a loop factor in weakly coupled completions. In addition,
because a quark mass insertion mg is needed for the chiralities of the external lines
to match those of the effective operator, the suppression with the UV scale mg is not
1/mg as expected from the EFT power counting, but mg/m%. An explicit model with
a U vector-like quark and a scalar singlet has been studied in [265].
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9.3 Mixing

The multiplets in table 9.1 can be decomposed into component fields with well-defined
electric charge:

ao(B) on() e-(f)

T0 X B X
=8| n=|1m]| ©n=v] n={(x] ©19
y B Y’ 70
X 70 X
-l om0 o 5| (9.20)

y y' B

The components are denoted by symbols in the set {X’, X, T°, B, YY"}, with electric
charges given by

Q(X'") =8/3, Q(B") = —1/3, (9.21)
Q(X) =5/3, QYY) = —4/3, (9.22)
Q(T°) =2/3, QY =-17/3. (9.23)

Upon electroweak breaking, the fields 7° (B°) will mix, in general, with all the SM
up-type (down-type) quarks. However, with our flavour restriction and neglecting the
tiny off-diagonal CKM elements of the third family, the new quarks mix only with the
top and bottom quarks. The relevant mass terms have the form

~ mi, mi t0
== (8 ) (2 12 ) (34 024
_ B b b bO
(0 BY (mﬂ ml?)( R )+h.c., 9.25
LBy s )\ 8 02

with the superindex 0 emphasizing that the fields are weak eigenstates, i.e. the com-
ponents of the gauge-covariant multiplets.® The elements of the diagonal of each of
the mass matrices are mqy; ~ v, which arises from the SM Yukawa coupling g¢q, and
mag ~ M. For RVLQ), one of the off-diagonal elements, m;; ~ v, comes from the
operator Q¢q, and the other one, mj; ~ yv?, comes from Qod¢q. For NRVLQ, only one
of the off-diagonal elements, m;; ~ yv?, is non-zero. The precise values of the entries
of the mass matrices are given in table 9.2. The mixing angles that relate weak and
mass eigenstates are obtained by diagonalizing the corresponding mass matrices:

tL,R _ CE,R _ei(thi:,R tOL,R (9 26)
Tor )\ e sy ct 17 ’ .
: L.R L.R LR
( br.r ) _ ( cLp  —€"sin ) ( 0%, ) (9.27)
Br.r 67@”5%,3 C%,R Br )’

3Note that we use the symbol t% for the right-handed SM weak eigenstate of electric charge 3/2
(-1/3), which is in fact the unique component of the SM iso-singlet ugrs (dgrs)of hypercharge 3/2
(-1/3). Of course, t9 (b9) are the upper and lower components of the SM iso-doublet gr3.
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t t t b b b
mya Moy Mag mis Moy Mag
* 2 ~
U ) yv° M _ _
V2 2
_ _ _ Mo yo? y
D 73 3 M
(yu)*v? Awv N — Y (ya)*v? Agv N 4 Yer?
@ T2 V2 T4 2 NG +
Q5 \f _ y*v? /\_\G M _ Yo0?
2 4
Q y*v? pY M + Yav? \? _
7 2 V2 4
2 ~ 2 * 2 ~
%« Yu U Y A _Yyqv
T A*v 3 ] M = 73 > M )
A*p Yu U 9 * Yqu 9 You
T, 73 5 M A 2 M + 5
~ 2
T. — - - 0 W M-
4 ) . 2 V2 2
Ty 0 w4 Y2 . .
V2 2
*2 ~ 2 *,,2 ~ 2
Rt 0 M- e 0 M4
*,.2 ~ 2 *,,2 ~ 2
F5 27 0 M- v 0 M-
4 4
F _\74/’?112 0 M + Y2v2 _\y/§112 0 M + 3Y2’U2
7 V6 4 V2 4

Table 9.2: Mass matrix elements. We use the notation M = M + Y;v?/2. The 11
component is always just the SM contribution: mtlf = )\ts’&v /2.

. t,b tb tb . tb
where ¢, T', b and B are the mass eigenstates, ¢,  := cost; p and s; p = sinf; p,

with QZ?R the mixing angle. In what follows, we take ¢; = ¢, = 0, since non-trivial
phases ¢, can be ignored for the observables discussed here. The explicit expressions
for the mixing angles in terms of mf]b are (see also ref. [266])

,b by * b by *
tom 201 2 m§1(m§1) + m§2(m22> (9.28)
anzby = D 0 0 D) :
|m§1 2 — ]m§2|2 - ‘mglp + \m§2|2
byE b bVE b
b 2 (mth) m§2 + (mgl) mgz
an 207 = )
tan 2604 (9.29)

[mar 2 — [mip|? — |mg]? + [mi|*

From these formulas and the scale dependence of each entry it can then be seen that,
for M > v (in agreement with experimental limits, see below), the mixing angles are
suppressed by v/M, at least. Furthermore, 05, > 6 if |mia| > |ma|, and viceversa.
For natural values of the couplings and A > 1 TeV, one of the off-diagonal couplings is
indeed much larger than the other, so the off-diagonal couplings involving heavy and
light quark eigenstates will be mostly chiral (especially in the b sector). For RVLQ),
the dominant mixing angle is 0, for even isospin and fg for those with odd isospin.
For NRVLQ), instead, the dominant mixing angle is #x for even isospin and 6, for odd
isospin. Note, however, that for some RVLQ the limits from electroweak precision
tests are quite strict [251]. For these multiplets, the off-diagonal entries might be
comparable and then the interactions involving both chiralities would be relevant.
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9.4 Indirect effects

In this section, we discuss the indirect effects of heavy quarks in low-energy physics,
Higgs physics and top physics, which are summarized in table 9.3. NRVLQ typically
generate smaller contributions than RVLQ), as any insertion of a dimension-5 operator
introduces a suppression of 1/A. For the same reason, the effects of the dimension-5
interactions of RVLQ will naturally be small corrections to the ones coming only from
dimension-4 interactions, when they are present.

Integrating out the RVLQ at tree level gives contributions to dimension-6 opera-
tors in the SMEFT. The low-energy effective Lagrangian, which can be read from the
results shown in section 8.5, is presented in table 9.4, with the corresponding effective
operators defined in section 3.7 (table 3.5). Observe that the dimension-6 terms with-
out extra quarks in the EFT L, which we are not writing here, will give additional
contributions to the corresponding dimension-6 operators in the SMEFT. However,
these contributions will be suppressed by M?/A% or M/A relative to the ones from
integrating out the RVLQ. Still, they might be relevant for M /A not small, depending
on the values of the couplings.* Here we assume that even in this case they do not
cancel against the ones in table 9.4.

Observable Coupling Loop order

S and T parameters At Yo one loop

EWPT 7 b Aty Y one loop
A®)s Yo tree level

H — bb )\(b), )\(b)y(b) tree level

. ttH production A tree level

Higgs

g9 — H, H— gg Ay, Y1 one loop

double Higgs production A, Y1 one loop

top single production AywWw tree level

Top top pair production A1), ApWB tree level

tty and ttZ production Ay, Apwp, Apww  tree level

low-energy CF  electron/neutron EDM Ay A)Ap); Apwr  two loops

Table 9.3: Summary of indirect effects of heavy quarks. The subindex (¢) means that
only the couplings to the SM quark ¢ should be taken. The dependence on products
of couplings may involve complex conjugation of some of them.

On the other hand, the NRVLQ do not contribute at tree level to the dimension-6
SMEFT. Therefore, their indirect effects are small. Their leading tree-level contribu-
tions of NRVLQ have at least dimension 8 and will not be written explicitly.

Electroweak precision observables

Electroweak precision observables set the strongest limits on the Yukawa couplings
of each multiplet. In the mass-eigenstate basis, the mixing between the SM b quark

4This is nothing but a more precise formulation of the usual caution one should exert in general
with indirect bounds.
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»Cnh ﬁh
wi)* we)* At *)\2 % 2
o 2o (B S0, ol ol
)\b * )\2 * 2 2
D o o, (B¢ )0, —aRol) - Bro
(9 Lol (9 + 26l 0,
o) + RGP O + 2l O + /\b( N bG M S)fb; + |2/\1\b4|2 Ogp
Yo 2]>w\2At| AL Ow i 0 Oy
+ (ng])\;L/\HQ + ’\b(]\‘?)* Ope
2
Ab * )\2 * 2
Qs Catt 4+ 2 Oy — 5700
* 2 *
* Wa) AP | A
T S Oy + <—ysfsz + %) Ot _3E ) | A HB)
N <(ng)*\>\| /\ yb O¢ 16M2 ~ ¢q 16M2 ~ ¢q
SM?2
Mow)" oy L ) ””) Ot 32 P2 HB)
M SM 2M
Ty T6M2 quq + 16012 O¢q

b * 2 %
+ <—(ysi/3\)42\kl + %) Ops

Table 9.4: Dimension-6 effective Lagrangian generated by tree-level matching of the
EFT with each multiplet to the SMEFT. The contributions to Hermitian and non-
Hermitian operators are separated in £;, and L,;,. The complete effective Lagrangian
is L, + (Lyn + h.c.). The definitions of the operators O; are given in table 3.5.

and the B component of a given multiplet induces a modification of the Zbb coupling,
which affects the R;, A%.5, A, and R. observables at tree level. t~T mixing changes
the Ztt coupling. Insertions of this modified interaction in diagrams with loops of the
top quark also generate corrections to these observables, as well as to the S and T
parameters.

For the renormalizable multiplets, the origin of these effects can be easily identi-
fied in the unbroken phase. They come from tree-level and one-loop diagrams con-
taining the Oy,-type operators generated by tree level matching. Notice that the
non-renormalizable multiplets will also have contributions to these observables, but
to obtain them one needs to keep dimension-8 operators, which indicates that their
effects will be smaller.

In ref. [251], the limits on the mixing angles from electroweak precision observables
were computed, assuming renormalizability. The corrections from dimension-5 interac-
tions can be neglected for RVLQ. However, for NRVLQ), the dimension-5 contribution
is the leading one. Following the method in ref. [251], we can use the experimental
measurements of Ry, AII’; 5, Ay and R, to obtain the following bounds: s; < 0.13 for
the triplet T}, s¢ < 0.02 for the quadruplet F; and s¢ < 0.03 for the quadruplet Fj.
These limits are already satisfied by the mixing angles

Z/U <
0.02, 9.30
BV ( )
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for y < (3 TeV)_l, M > 1TeV. The quadruplet F; produces a Zbb coupling with an
extra suppression of my, /M, so it is even less constrained. The limits from S and T
are weaker than the ones from Z — bb when there is a B component in the multiplet.
The only multiplet without such component among the non-renormalizable ones is
T ~ 35/3. In this case both the limits from Z — bb and from S and T" may be relevant.
Anyway, since these effects are loop suppressed, as long as y/M < (1.7 TeV)72, this
multiplet satisfies these constraints.

Higgs physics

The Oy operator introduces a modification of the top Yukawa coupling, which can be
measured using ttH production. This process has been observed at the LHC [267,268].
The current uncertainty for the top Yukawa coupling is however too large for the effects
of Oy to be relevant. The situation could improve in future experiments [269].

The presence of O,y also changes gluon fusion Higgs production, through its ap-
pearance in diagrams with loops of the top quark. In addition, there are contributions
to gg — H from the heavy-quark loops. At the renormalizable level, the contribution
of the T loops is cancelled quite precisely by the effect of ¢ loops with insertions of
Oy (such cancellation does not happen for B loops) [251]. In the presence of Qg¢¢
operators the cancellation is spoiled by the contributions to Oy, proportional to \y.
However, this contribution is suppressed not only by M /A but also by the small mix-
ing. The dimension-5 interactions with Y; give yet another contribution to this process
(see also ref. [261]). This can be computed by one-loop matching to the SMEFT. The
relevant part of the effective Lagrangian is

(2T + 1)as Re(Yr)
120 M

L1 100p Osas (9.31)

where Oyg = ¢¢) GﬁVGA’“’. As we can see, the coefficient of the induced operator is
not suppressed by the mixing. Bounds on the coefficient on this operator have been
calculated in ref. [77]. They can be translated into limits for the parameters of our
theory:
[Re(¥))] 1
< o
M (27 4+ 1)(1.25TeV)

(9.32)

where T' is the isospin of the corresponding multiplet. Of course, both Oye and O
contribute to the H — gg partial width, through tree-level and one-loop diagrams,
respectively. This is discussed in detail in ref. [251]. These operators modify also
double Higgs production, which has not been observed yet but could be measured at
the HL-LHC [270]. Similarly, there are loop contributions to other vector-boson decay
modes of the Higgs.

On the other hand, the H — bb decay channel is modified at the tree level by the
operator Ops. Because the contribution to this operator from dimension-4 couplings
is suppressed by the Yukawa coupling of the bottom quark, while the dimension-5
contribution does not contain this suppression, it is possible that the dimension-5
interaction dominates. Using the limit on the coefficient of Oy from ref. [77] (with
milder flavour assumptions), we find the bound |yg)|/M < (0.2 TeV) 2.
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Top physics

Several of the dimension-6 SMEFT operators generated at tree level are relevant for the
production of the top quark. Oy and 0¥ contribute to single production, whereas
O, contributes to pair production [271]. In ref. [272], upper limits on the coeffi-
cients of these operators are derived. They range from approximately (0.5 TeV)72 to
(0.8 TeV)fQ. Again, the natural values of these coefficients in our case, which are given
by ~ A\2/2M and ~ Aw/M, already satisfy these limits. The same happens for the
operators O;p, Oy and O&), which contribute to tty and ttZ production, and have
even weaker limits.

Low-energy CP violation

The imaginary part of the coefficients of the operators O.4, O, O, O, Opw and
O,q affects the electric dipole moment of the electron and the neutron. These low-
energy observables must be computed by performing the RG running of the coefficients
down to the electroweak scale and integrating out the top quark. In ref. [76,273,274],
strong limits on the imaginary part of the coefficients have been obtained, ranging
from (2TeV)™> to (42TeV) >, Our UV parameters enter these coefficients with the
combination A\w*/M, so either their absolute value is very small, or all their phases
must be almost equal. A trivial way of satisfying these limits is by imposing that all
parameters are real.

9.5 Production at the LHC

All the vector-like quarks can be produced in pairs at hadron colliders by their coupling
to gluons, which is determined by the value of a; at the relevant energy. Given M, the
production cross section is fixed and it is the same for all the multiplets. One of the
several tree-level diagrams contributing to pair production is represented in figure 9.3a.
On the other hand, the T, B states can be singly produced via their mixing with the
SM t, b quarks. The corresponding process is represented in figure 9.3b.

U,dH—R]

Q

al

gl

IS
a
Q|

(a)

Figure 9.3: Production of heavy quarks in hadron colliders: (a) example diagram for
pair production; (b) single production in association with a light jet j and a heavy SM
quark ¢ =1t,b.

When the heavy quarks have low mass, the cross section for pair production is
larger than the one for single production. As their mass increases, and for fixed collider
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energy, the later eventually becomes the main production mechanism. This has been
studied for RVLQ mixing with the third family in ref. [251]. For these multiplets,
the addition of dimension-5 interactions with natural values of the y couplings and
A > 2 TeV does not change significantly the results, as they give a small correction to
the cross section. Here we are assuming that the dimension-4 couplings saturate the
electroweak limits. In the case of NRVLQ, for natural values of the y couplings and
A > 2 TeV, pair production is larger than single production for the range of masses
that can be tested at colliders in the present and near future. Some examples of the
dependence of the production cross section on the the mass are shown in figure 9.4.

102 10°
— Q0
—— Ybj (Fs multiplet)
Bbj (Fs multiplet)
—— Ttj (Fs multiplet)
—— Btj (Fs multiplet)
—— Tbj (Fs multiplet)
----- LHC run 3 107 5
.................................. HL_LHC

— Q0
—— Ybj (T4 multiplet)
Bbj (T4 multiplet)
—— Xtj (Ts multiplet)
—— Ttj (Ts multiplet)
—— Tbj (Ts multiplet)
----- LHC run 3
HL-LHC

10! 4 10! 4

10° 4 10° 4

101 4

o (fb)

o (fb)

1072 4 1072 4
1073 4 1073 4
1074 4 1074 4
1073 T T T . T 1073 T T T . .
1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 9.4: Cross section for different processes for production of heavy quarks with
y= (4 Te\/’)_1 and a center-of-mass energy of 14TeV. The left plot corresponds to
the Fy quadruplet, while the right plot is for the 75 and T} triplets. Pair production
dominates for masses below ~ 3.5 TeV. The dotted and dashed gray lines represent
the minimum cross section needed to obtain at least 10 events at the corresponding
collider, assuming that the expected integrated luminosity is reached [275].

The operators @a“”qFW open new single production channels, which are sup-
pressed by (M/A)? instead of sin? f. In figure 9.5, we show the two main mechanisms,
which produce a heavy quark in association with a SM third generation quark. Other
single production processes are possible with b quarks from the protons in the initial
state . In this way, the B component of multiplets with these operators can be gener-
ated alone, while the T' component can be produced together with a jet or a W boson.
As an example, we show in figure 9.6 the cross section of the T" production processes
involving these operators, for the U multiplet. For w = (4 Te\/')_1 these cross sections
are large. However, these couplings are generated in renormalizable UV completions
only at one loop, so the natural value for w is expected to have a suppression of 1/167>
in weakly coupled UV completions. Including this suppression gives cross sections that
are smaller than pair production.

A concrete model with @a"”qFW operators has been tested experimentally, as
presented in ref. [276], for the case of the multiplet ;. This analysis focuses on a
particular direction in parameter space, which in our notation corresponds to: gsw® =
gw" = —g'wP /6, with the coefficients of all the other operators set to zero. The
search is for the decay into vb. Under these conditions, M-dependent limits over the
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Figure 9.5: Single production with Qo*"¢F, w-type operators.
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Figure 9.6: Cross section for different processes involving @J’“’qFW, for production of
heavy quarks in the U model, with a center-of-mass energy of 14 TeV.

coefficients of the operators have been obtained, for masses between M = 1TeV and
M = 1.8TeV. Translated into our notation, the bounds for these two masses are
wé < (7TeV) ™ and wC < (5TeV) ™", respectively.

9.6 Decay

9.6.1 Lifetime

In this section, we study the decays of the heavy quarks. Barring cancellations with
other heavy physics, electroweak precision tests require small mixings. In this case,
the splittings between the different components of the extra quark multiplet are small
(of a few GeV at most for masses below 2 TeV). This in turn implies that the decays
from one component to another are very suppressed. The T and B states can decay
via mixing into Ht, Zt, Wb and Hb, Zb, Wb, respectively. They can also decay into
ty, tg and by, bg, respectively, in the presence of w couplings. The X and Y states
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decay via mixing mainly into W+t and Wb, respectively. Their three-body decays
are also sizable. Finally, X’ and Y’ have no two-body decays, as their charges differ
by at least two units from the ones of the SM quarks.

The decay width of RVLQ is typically large enough for them to have prompt decays
and small enough for a good narrow width approximation. The NRVLQ), on the other
hand, have smaller and smaller widths for larger and larger values of the cutoff A. In
figure 9.7, we show the dependence of the total width of 7" and B with the dimension-5
Yukawa coupling y for each type of NRVLQ, for M = 2 TeV. For widths below the
QCD scale (see the discussion below), we have extrapolated the results calculated for
larger couplings.

For small enough widths, i.e. long lifetimes, the phenomenology of the vector-
like quarks can be completely different from the one in the standard searches of these
particles. First, when the width is smaller than the QCD scale Agcp, non-perturbative
effects, including hadronization, will be significant before the quarks have time to
decay. One possibility is the formation near threshold of QQ quarkonium states. This
has been studied in ref. [277] (see also the review in ref. [278]) and generalized in
ref. [186] to higher color representations. Possible signatures would have di-photon
and di-lepton resonant final states. But the production cross-section is suppressed by
the wave function at the origin and the cross sections are small. For instance, for M
above at the 0.01 TeV, ref. [186] shows that the cross section into v+ for quarks with
masses above 1 TeV is below 0.01 fb. In fact, most of the time the heavy quarks will
fragment independently forming ()q meson states and also baryons with light quarks
from the vacuum. This is completely analogous to the case of b-quarks forming B
mesons. For M > Aqcp, the mass and partial decay widths of the hadrons will
inherit the properties of the heavy quark, up to small QCD corrections. Moreover,
most of the energy resides in the hadron containing the heavy quark, leaving only
a small fraction to light particles in the accompanying jet, and gluon radiation only
softens the spectrum slightly [277]. Hence, the standard type of search for vectorlike
quarks will be mostly blind to the fact that the quarks hadronize, as long as they
decay promptly (that is, for lifetimes below 10714 s).

For widths smaller than ~ 10712 GeV, the hadrons carrying the heavy quark will
be long-lived. In this context, they are called R-hadrons. Their phenomenology at the
LHC has been studied in detail, especially for squarks and gluinos in supersymmetric
models. R-hadrons interact hadronically as they move through the detector, but in
these processes the heavy quark acts mostly as a spectator of the low-energy scattering
of light partons. Compared to SM hadrons, their energy loss in the calorimeter is
small. Possible signatures include (see ref. [279] for a review of the phenomenology of
long-lived particles):

e Tracks with anomalous ionization, from the slower speed of the heavy quarks in
comparison to SM particles and/or non-standard charges. Note that )¢ mesons
formed with X, X', Y or Y’ will always be charged, while those with 7" and B
can be charged or neutral. In these searches, one must take into account the fact
that the charge of the R-hadrons may change due to the hadronic interactions
of the light partons with the detector material.

e Delayed detector signals, due again to the small speed. In the extreme case, it
is possible for a quasi-stable R-hadron to loose all its energy and stop at the
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hadronic calorimeter; its eventual decay would give out-of-time signals.

e Displaced vertices from the delayed decay of the heavy quark. The final states
produced by R-hadrons with vector-like quarks are very different from the ones in
supersymmetric theories and other scenarios considered thus far. So, a dedicated
search for displaced vertices of vector-like quarks would be necessary to probe
this scenario.

The relevance of each of the signatures depends crucially on the lifetime of the R-
hadron, which is of the order of the lifetime of the heavy quark, as calculated ignoring
QCD. In table 9.5, we give the values of 1/y above which i) non-perturbative QCD
is important (Aqcp), i) displaced vertices can be observed (Agisp) and iii) the heavy
quark is stable within detector distances (Ajong lived)-

Aqep

T4 T5 Qle F5 F7 Adisp Along lived
X - 10 - - 1.0 5x10° 5x107
X - 46 31 - 39 108 108
T - 53 37 57 56 106 108
B 53 — 37 57 57 106 108
Yy 46 - 31 39 - 108 108
Y 1.1 - 1.1 — 5x10° 5x107

Table 9.5: Value of 1/y (in TeV) at which the total width reaches the scales Aqep =
0.2 GeV, Adisp = 10_12 GeV and Along lived — 10_16 GeV. For Adisp and Along lived OIlly
an estimate of the order of magnitude is provided, obtained by extrapolation of the
results above Agcp.

As a reference, ATLAS has recently put bounds on the mass of long-lived super-
symmetric R-hadrons, using ionization energy loss and time-of-flight information [280].
This search is quite model-independent and can be adapted to the case of vector-like
quarks (which are also color-triplets but fermions, rather than scalars). Comparing
with the limits on production cross sections for squarks and sgluinos, we estimate a
lower bound close to 1500 GeV on the mass of detector stable vector-like quarks.

9.6.2 Branching ratios into Hq, Zq and Wy

In the following, we concentrate on branching ratios, having in mind mostly the case
with prompt decays. Consider RVLQ. If the dimension-5 couplings are turned off,
T essentially decays only into Ht, Zt or Wb, while B decays into Hb, Zb or Wt.
Changing the specific values of the parameters in these models has a small effect in the
branching ratios. This means that the branching ratios are approximately determined
by the choice of multiplet. Because the sum of branching ratios must be one

BR(Q — Hq) + BR(Q — Zq) + BR(Q — W*¢) =1, (9.33)

(with @ = T, B and ¢,¢ = t,b) it suffices to know two branching ratios of @) to be
able to know the third. Any two branching ratios BR; and BRy of () form a point
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in the triangle BR; + BRy < 1, BR;» > 0. Thus, each multiplet determines a point
in this triangle (or a short segment, taking into account variations of the values of
the parameters). This is the usual method for representing graphically the branching
ratios of vector-like quarks [281].

The addition of dimension-5 interactions modifies these points, both by chang-
ing the corresponding partial widths and by introducing new decay channels. Then,
eq. (9.33) no longer holds. For any choice of the values of the parameters, the branch-
ing ratios define a point p in the multi-dimensional simplex determined by BR; < 1,
>, BR; = 1. In particular, the branching ratios into Ht, Zt and Wb define a point
that falls inside the tetrahedron

Y := BR(Q — Hq) + BR(Q — Zq) + BR(Q — W*¢) < 1, (9.34)
BR(Q — Hq), BR(Q — Zq), BR(Q — W*¢') > 0. (9.35)

For their graphical representation, we have chosen to plot the projections of p into the
BR(Q — Zq)—BR(Q — Hgq) plane and into the BR(Q — W*¢)—BR(Q — Hq)
plane, as shown in figure 9.8.

The results for RVLQ are presented in figures 9.10, 9.11, 9.12 and 9.13, while the
branching ratios of NRVLQ are presented in figures 9.14, 9.15, 9.16 and 9.17. Each
segment is obtained by evaluating at M = 1TeV and at M = 2TeV while keeping all
the other parameters fixed. The value of the coefficients of dimension-5 operators is
chosen to be (2 TeV)_l. This pretty large value has been chosen to visually highlight
the directions of the corrections induced on the branching ratios for RVLQ. For lower,
probably more realistic values of the coefficients (especially for w), these corrections
will be smaller. For the multiplets without dimension-4 interactions, this value of the
coefficients ensures that the decay width is much higher than the QCD scale, so that
that QCD effects can be neglected. The branching ratios do not change much with the
value of the corresponding coefficient in the range from (2 Te\/)f1 down to the values
in which the total width equals Aqcp.

As it can be clearly seen in the figures, most branching ratios points lie near or
directly over the BR(QQ — Hq) = BR(Q — Zq) diagonal. This happens in all
cases where the coefficients of the QJ“”qF#,,—type operators vanish, except for the Fj
multiplet. To show why, we define XCLQLIR and YQLq’R as the following coefficients in the
Lagrangian:

Ly = —%q—z (£X% P, + X5 Py) Q + hc.,
gmq _ L R
Lyg= _MQH (Y;]QPL + YqQPR) Q,

the equality of the braching ratios follows from the equality in magnitude of the domi-
nant X, é;IR and the dominant Yéq’R. The weak eigenstates ¢°, Q° couple to the Z boson
as

g ~ 2T3(q)) — 2Qc(qy) st 0 s
£r= 5oy 2 (0 & )Z( 0 om@l - 20.@)s, ) ( Q ) ’

where T3 denotes the third component of isospin and (). denotes electric charge. After
the unitary transformation in equations (9.26) and (9.27), we get

X;QvR — 2SL,R CL7R [T3(q%7R) - T3(Q%7R)i| .



9.6. DECAY 173

On the other hand, the quark gauge eigenstates ¢, Q° couple to the Higgs as

_ 1 0 A0 Y1 Y12 CI%
Ly = \/§(QL QL)H(y21 O)(Q%)'
Generally, one of the off-diagonal elements is negligible. This happens because the
dimension-4 and dimension-5 Yukawas always contribute to different elements of the
y;; matrix. Either one of them is zero or, when both are present, the dimension-5 one
is smaller. This means that one of the mixing angles 0; r dominates. For multiplets
with dimension-4 couplings, the chirality with the dominant mixing angle 0p is D = L
for singlets and triplets and D = R for doublets. For multiplets without dimension-4
couplings it is D = R for triplets and D = L for quadruplets.

The dominant off-diagonal element yp is related to the corresponding mixing angle
as yp =~ mﬂszD/v, where z = 1 in the cases with dimension-4 interactions and
x = 2 in the ones with only dimension-5 ones. This factor is necessary because of
the different the relation between the mass and Yukawa terms in both cases. The
dominant HqQ coupling is, then

Yas

q >~ TSpCp.

For X[, ~ Y} it is necessary and sufficient that

| T5(q%) — T5(Q%)| = /2. (9.36)

It can be checked case by case that this relation is satisfied for all multiplets except
for Fy. In this case, we have |T3(q%) — T3(Q%)| = 0.

9.6.3 Extra decay channels and limits on mass

The experimental analyses of searches of pair-produced vector-like quarks usually com-
bine the information on the different final states to put lower bounds on the heavy
quark masses, as a function of the branching ratios to W¢', Zq and Hq [226,227].
Eq. (9.33) is assumed in these analyses, so the results are not directly valid beyond
the renormalizable level. However, they can be adapted to the case where other decay
channels are present. This has been discussed previously in refs. [264,282]. We derive
here a simple formula for the corrected mass limit due to the presence of extra decays.
Experimental data determines an upper limit Ly, on the sum of the cross-sections
for the production and decay of a pair of heavy quarks, weighted by the efficiency for
each decay channel (see ref. [264]):

Opps0a(M) Y €;BR;BR; < Legy, (9.37)

ij

where M is the mass of the heavy quark, i and j run over all the decay channels,
and ¢;; is the corresponding efficiency. A limit on the mass can be derived from this
inequality. In the usual experimental analyses, it is assumed that the sum of the
branching ratios into these three channels is 3 = 1.

We consider now the case ¥ < 1. We will obtain a lower limit on the mass of
some heavy quark with branching ratios BR;. Some assumption has to be made
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about the efficiency €, = €, for the channels a that are not Hq, Zq or W*¢'. We
adopt here the conservative choice ¢;, = 0. Let M; be the lower limit on the mass
for the branching ratios BRY = BR;/Y, whose sum is 1, so that M; is known from
experimental analyses. We define the mass My by the equation

EQUPPHQQ(Mﬂ = Uppﬁ‘QQ(Ml) (9.38)

Then, we have the identity

0ps0a(Ms) Y €;BRiBR; = 0, .q5(M1) > e;;BRYBR}. (9.39)

i i

Because M, is the limit obtained from eq. (9.37) for branching ratios BR?, it follows
from this identity that My is the limit for BR;. We now proceed to find an analytic
solution to eq. (9.38). The production cross-section ¢, ,o5(M) can be approximated,

for masses around M = 1.1 TeV by an exponential:

— MY2 _ A2
Opps00(M) ~ 0,, s00(M) exp <_T2/2> ; (9.40)

where f = 20.5GeV. In the range [0.8,1.4] TeV, the difference between the cross
section produced by this formula and the one obtained using MadGraph increases
towards the extremes of the interval and is at most 3%. Plugging eq. (9.40) in eq. (9.38)
gives

Ms, = (M} + f'/2log ¥)2. (9.41)

We have thus found a lower bound My on the mass of any heavy quark as a function
of the lower bound M; it would have if its branching ratios into Ht, Zq and W*¢' were
rescaled by the same factor 1/%, so that eq. (9.33) would hold. Here, f = 20.5 GeV
is just a constant. In table 9.6, we present the limits calculated using this formula,
for different choices of the values of the parameters for each model, taking the bound
M from ref. [226]. In all cases the couplings of dimension-4 operators are chosen to
saturate the electroweak limits. In figure 9.9, we show the corrections induced by the
use of this formula on the results of ref. [226], for the value ¥ = 1/2.

We have emphasized the presence of alternative decay channels at the non-renormali-
zable level. In tables 9.7 and 9.8, we give the decay channels with branching ratio
> 0.01 other than Zq, W*¢ and Hgq for T and B, together with the maximum value
they get and the interaction that generates them. We choose the values M = 2 TeV and
w,y = (2TeV)™!, again quite extreme, in order to maximize these alternative branch-
ing ratios (including those of three-body decays). The tables also include three-body
channels that survive when w = y = 0. For RVLQ), the values of the couplings A\ are
chosen to approximately saturate the electroweak limits. For smaller values of A, the
alternative channels will have larger branching ratios. Large branching ratios are found
for channels involving “magnetic” operators. The reason is that the partial widths are
suppressed in this case by (M/A)?, in comparison with the (v/M)? suppression of the
decay widths of standard channels. Note however that the value of w we use is ~ 167>
times too high in weakly coupled completions. A detailed analysis of the decays of a
U vector-like quark into ¢y and tg at the LHC has been performed in ref. [283].
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Table 9.6: Mass limits for each multiplet and different values of the couplings. In the
right column, a lower bound on the mass of the heavy quark (in TeV) is displayed,
assuming that the corresponding coupling in the left column has a value of (2 TeV)f1
and the other dimensionful couplings vanish. The dimensionless couplings A are always

U~y
Only dim. 4 1300
Y 1310
We < 800
D ~1y3
Only dim. 4 1200
Y 1190
wpg < 800
(e, < 800
Q1 ~ 216
Only dim. 4 1340
Yt 1340
wpg 830
Wy 1250
We < 800
@5 ~ 2 56
Only dim. 4 1130
Y 1130
Q7 ~ 276
Only dim. 4 1360
Y 1350

Ty ~ 3 13
Only dim. 4 1220
Ut 1250
w 970
Ty ~ 393
Only dim. 4 1130
w 1260
Ty~ 3 43
Yy 1130
15 ~ 353
Y 1360
Fi~ 4y
Y 1030
w 1010
F5 ~4_56
Yy 1200
Fr ~ 476
Y 1130

chosen to saturate the corresponding electroweak precision bounds.
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In the case of X and Y, the decays into Wt and Wb, respectively, have branching
ratios in the range 60-90%. The remaining decays are into three particles, two of
which are always Wt or W~b. The branching ratios for these channels are collected
in tables 9.9 and 9.10. The states X’ and Y’ have only three-body decays. They
always decay into WTW*t and W~W b, respectively.
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Multiplet Decay products

Maximum BR Coupling

bbt 0.02 Ay
U ttt 0.01 Ay
vt 0.71 wp
gt 0.93 (1Yl
tWHWw= 0.08 Aty Up
tit 0.01 Aoy Yis Yo
0, bHW ™ 0.11 Yp
bZW+ 0.04 )\b, Yty Yp
’7t 0.77 wp
gt 0.99 wag
Q7 tWHWw- 0.08 A
bHW* 0.10 Up
tWHW= 0.07 A, Ui, Ub
T bZW™* 0.83 w
ttt 0.01 A, Yty Yo
byW =+ 0.01 w
bHW* 0.17 UYb
tWHW= 0.25 w
Ty bZW+ 0.06 A, Yes Up
tbb 0.01 A Y U
¥t 0.21 w
T5 tWHWw- 0.08 Y
bHW* 0.30 Y
r bZW+ 0.23 w
! tWHW = 0.66 w
vt 0.09 w
2 bHW* 0.10 Y
> tWHW = 0.07 y
bHW™* 0.28 Y
F; bZW+ 0.10 Y
tWHWw- 0.09 Y

177

Table 9.7: Extra decay channels of 7" with branching ratio larger than 0.01 for M =
2TeV, when the couplings A are fixed to the values that saturate electroweak precision
limits. The last column displays the coupling constant which, when set to (2 TeV)™,
gives the maximum BR in the corresponding channel. The appearance of A indicates
that the channel in question is present already in the case with dimension-4 interactions

only.
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Multiplet Decay products Maximum BR Coupling

b Vb 0.77 wp
gb 0.99 we
tHW~ 0.12 m
tZW - 0.04 Aty Yty Yo
Q bW W= 0.08 )\b, Yty Yp
! btt 0.02 Aty Yty Yo
b 0.77 wp
gb 0.99 Wa
0 bW W~ 0.08 Ay
b bt 0.01 A,y
tZW= 0.06 A Ye, Yb
Ty bit 0.01 A, Yty Yo
bWW~ 0.90 w
~vb 0.13 w
tHW— 0.10 A
T bW W~ 0.07 A, Yt Up
2 tZW = 0.12 w
btt 0.02 A, Uiy Yb
T bW W~ 0.08 y
tHW— 0.30 Y
bWHW = 0.69 w
Fy
vb 0.09 w
tZW~= 0.20 w
tHW~ 0.28 Y
Iy tZW— 0.10 Y
bWV 0.09 y
J2 tHW~ 0.10 Y
r bW W - 0.07 y

Table 9.8: Extra decay channels of B with branching ratio larger than 0.01 for M =
2TeV, when the couplings A are fixed to the values that saturate electroweak precision
limits. The last column displays the coupling constant which, when set to (2 TeV)™!,
gives the maximum BR in the corresponding channel. The appearance of A indicates
that the channel in question is present already in the case with dimension-4 interactions
only.
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Multiplet Decay products Maximum BR Coupling
0 tHW™* 0.12 Y
7 tZW+ 0.04 A,y
tHW™* 0.10 A, Yg
T bWTW+ 0.04 A, Yu, Yd
2 tZW+ 0.12 w
tth 0.02 A Yus Yd
- tHW ™ 0.29 Yy
> tZW+ 0.11 y
2 tHW+ 0.32 Y
! tZW+ 0.82 w
Fr tHW™* 0.32 Y

179

Table 9.9: Decay channels of X other than W*¢ with branching ratio larger than 0.01
for M = 2TeV, when the couplings A are fixed to the values that saturate electroweak
precision limits. The last column displays the coupling constant which, when set to
(2 TeV)™!, gives the maximum BR in the corresponding channel. The appearance of A
indicates that the channel in question is present already in the case with dimension-4

interactions only.

Multiplet Decay products Maximum BR Coupling
bHW ~ 0.10 Ay
Qs bZW— 0.04 Ay
bbt 0.02 Ay
bHW ~ 0.10 Ay Yus Yd
Ty bZW— 0.83 w
tW=-W~= 0.04 A Yu, Yd
bHW ~ 0.29 Y
Ty _
bZW 0.11 Y
Ja bHW~ 0.32 Y
! bZW - 0.82 w
F; bHW ~ 0.32 Y

Table 9.10: Decay channels of Y other than W~b with branching ratio larger than 0.01
for M = 2TeV, when the couplings A are fixed to the values that saturate electroweak
precision limits. The last column displays the coupling constant which, when set to
(2 TeV)™!, gives the maximum BR in the corresponding channel. The appearance of A
indicates that the channel in question is present already in the case with dimension-4

interactions only.
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Figure 9.7: Total decay width of 7' (left) and B (right) vs the dimension-5 Yukawa
coupling y for each multiplet without dimension-4 couplings and Mg = 2TeV.
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Figure 9.8: Representation of the (BR(Q — Zq), BR(Q — W*¢'), BR(Q — Hq))
point as its projections into the BR(Q — Zq)—BR(Q — Hgq) plane and into the
BR(Q — W*¢')—BR(Q — Hgq) plane.
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Figure 9.10: Branching ratios of T into Ht, Zt and Wb for various values of the
parameters in the U, ()7 and ()1 models. The dimensionless couplings A are always
chosen to saturate the corresponding electroweak precision bounds.
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Figure 9.11: Branching ratios of T into Ht, Zt and Wb for various values of the
parameters in the @)1, T5 and 77 models. The dimensionless couplings A are always
chosen to saturate the corresponding electroweak precision bounds.
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Figure 9.12: Branching ratios of B into Hb, Zb and W™t for various values of the
parameters in the D and (); models. The dimensionless couplings A are always chosen
to saturate the corresponding electroweak precision bounds.
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Figure 9.13: Branching ratios of B into Hb, Zb and W™t for various values of the
parameters in the )5, T5 and 77 models. The dimensionless couplings A are always
chosen to saturate the corresponding electroweak precision bounds.



9.6. DECAY 187

1-0 T T T T T T T A
- 1F e y=(2TeV)! rest=0
L [T5 ~ 253
0.8 1r 1
- 0.6 1r 1
e /
= L
@ 04 1r 1
0.2 4k 4
0.0 I PRI RU SR RN UR T T SR PTI TR B P R B
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
BR(T-W *b) BR(T-Zt)
10 T L L L L L B T T L L LI———_ L——p—_ L —
3 - o y=(2TeV)! rest=0
Fl —_ 21/6 A w=(2TeV) !, rest =0
0.8 | 1k .
= 0.6 1F b
T - ¥
é |
= L 1L
Q 0.4} {1k 4
0.2 1F b
0.0 | L L L 1 L L L 1 L L L 1 L L L 1 1 L 1 L L L 1 L L L 1 L L L
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
BR(T-W *b) BR(T-Zt)

Figure 9.14: Branching ratios of T into Ht, Zt and Wb for various values of the
parameters in the Ty and F% models.
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Figure 9.15: Branching ratios of T into Ht, Zt and Wb for various values of the
parameters in the F} and F; models.
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Figure 9.16: Branching ratios of B into Hb, Zb and W™t for various values of the
parameters in the 7, and F% models.
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Figure 9.17: Branching ratios of T" into Ht, Zt and W™t for various values of the
parameters in the F} and F; models.
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9.7 Conclusions

We have used the BSMEFT to study the phenomenology of vector-like extra quarks
near the TeV scale, which is to a large extent governed by gauge invariance and power
counting. To start with, extra quarks can always be pair produced at hadron colliders
by their gauge coupling to gluons. Once produced, they will decay into SM particles
if they have gauge-invariant linear interactions with them.

At the renormalizable level, this is only possible for seven different gauge-covariant
multiplets. These are the multiplets that can have Yukawa couplings with the Higgs
doublet, which mix the extra quarks among themselves and with the SM ones. The
latter mixing gives rise to decays into a SM quark and either Z, W or Higgs bosons.
In simple extensions with only one vector-like multiplet, these are the only significant
decay modes. Furthermore, in the motivated case of exclusive mixing with the third
generation, the branching ratios are fixed by the quantum numbers of the multiplet.
The mixing is also responsible for indirect effects, mass splittings and single production.

This simple picture can be modified in three ways (or combinations of them). First,
one can consider general couplings to all the three SM generations [6,284-287]. This
typically requires flavour symmetries to evade the strong flavour constraints. Sizable
mixing with the valence quarks in the proton would increase the importance of single
production [286]. Second, it is possible to consider several vector-like quark multiplets,
or other additional particles, like scalars or vector bosons. This may give rise to new
production mechanisms [288] or new decay modes [264,282,289], in addition to the
standard ones described above. Third, one can drop the assumption of renormaliz-
ability. This is the path we have explored in this chapter.

We have proposed a model-independent approach based on the BSMEFT, valid up
to a cutoff scale A and constructed with the SM fields and the fields that represent
arbitrary new vector-like quarks. This is a faithful description of any model with new
vector-like quarks, as long as the new physics not explicitly included appears at scales
higher than A. In particular, our EFT describes well the case of additional particles
when they are heavier than A. As usual, the effective Lagrangian is defined by its
expansion in inverse powers of A. The lowest order, formed by operators of canonical
dimension < 4, corresponds to the usual renormalizable theories with extra vector-
like quarks. The interactions of higher dimension give contributions to observables
suppressed by powers of p/A, with p = E, M, v the characteristic scale of the process.
Even if suppressed, these interactions can be very relevant for proceses that do not
exist at the renormalizable level.

In our explicit phenomenological analysis we have worked with the sectors of the
BSMEFT with only one vector-like quark multiplet and we have truncated it at the
next-to-leading order, i.e. at canonical dimension 5. For simplicity we have also as-
sumed couplings to the third generation only. At this order, there are twelve irreducible
representations of extra quarks that can decay into SM particles (and be singly pro-
duced). Up to field redefinition ambiguities, four new types of interactions appear at
dimension 5: the Yukawa-type operators Qq¢¢ and QQ¢¢ and the “magnetic” oper-
ators Qa“”qFW and QUWQF w- The latter have effects that increase with the energy
of the process.

We have distinguished two types of vector-like quarks. Those in the seven repre-
sentations that allow for renormalizable linear interactions, and those in the remaining
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five representations. For the extra quark in the first group, and for natural values of the
coupling constants, the dimension-5 interactions typically give only small corrections
to the standard phenomenology of vector-like quarks. One exception is the possibility
of new indirect effects in Higgs physics. Moreover, in strongly-coupled UV completions
avoiding the loop suppression in the “magnetic” couplings, there can be new single
production modes with cross sections larger than the one of pair production and also
new decay modes (into qg, for instance) with large branching ratios. Of course, all
these effects depend on the cutoff and will be negligible if A is much larger than the
TeV scale.

For the quarks in the five multiplets that do not have renormalizable linear inter-
actions (two triplets and four quadruplets), the dimension-5 operators give the leading
contributions. In this case, all the indirect bounds can be easily evaded without ex-
plicit tuning of couplings, for moderate values of A. Pair production is still possible
and the decay (possibly after hadronization) will be prompt if A is not too high. Some
non-standard decay modes, including three-body decays, can be sizable and the mea-
surements of decays of T" and B into Zq, Wq and Hq could easily give rise to new
points in the corresponding triangles. In this respect, we have given a simple formula
to recast the combination limits given by the ATLAS and CMS collaborations, which
assume the absence of other decay channels. For A > 10° TeV, the decays of the
hadrons containing the heavy quarks will be non-prompt. The usual searches will not
be sensitive to vector-like quarks in this regime, but one can instead resort to the
signatures associated to coloured and charged long-lived particles. Taking advantage
of these signatures would require dedicated searches of vector-like quarks, specially in
the case of displaced vertices formed by their decay products.

New operators involving the extra quarks appear at yet higher orders in the 1/A ex-
pansion. At dimension 6 one should include four fermion operators [290]. In particular,
the interactions of the form gqqQ) will give rise to new single production mechanisms,
which can have observable cross sections at the LHC for A of a few TeV when the
couplings to the first generation are allowed. Moreover, at each order new types of
vector-like quarks will be able to decay into SM particles. Their lifetime will be sup-
pressed by the corresponding power of M/A. Finally, in principle it is also possible
that new vector-like quarks exist in gauge representations with 7"+ Y + 1/3 & Z.
They would be stable or else decay into additional stable particles. However, there are
very strong constraints on the abundances of stable strongly interacting (and charged)
particles, in particular from searches of rare nuclei [291-295]. °

°See, nevertheless, ref. [296] for comments on the robustness of such bounds and a proposal of
coloured dark matter.
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Conclusions

In this work, we have reviewed and extended a model-independent framework for the
study of physics beyond the SM, based on EFT. We have developed new computer
tools that help automatizing the most common types of calculations in this context.
We have contributed to setting the basis for the phenomenological analysis of new
particles and their interactions through the introduction of the BSMEFT, an EFT
that includes every possible new field under general assumptions.

In chapter 4, we have studied one of the most useful mathematical tools in the
practical implementation of EFTs: field redefinitions. They allow for the reduction of
the number of interactions considered in any EFT. A complete set of independent local
operators that is minimal in the sense that it cannot be reduced using redefinitions is
what is called a basis. Although the use of bases and redefinitions is convenient, some
caution is needed in many of their applications. A common practice when working
at leading order in the EFT expansion is to use the equations of motion of the fields,
instead of redefinitions. They capture, in fact, the leading order effects of redefinitions.
However, we have shown that this procedure cannot be extended to higher orders.

The results of many calculations in EFT, as matching or the computation of the
renormalization group evolution, are usually presented in terms of an operator basis.
The use of redefinitions (or equations of motion) to arrive to a basis generates a
loss of information that cannot be recovered from the final result, unless all the field
redefinitions that have been used are explicitly given. This has led us to the proposal
of the definition and use of over-complete bases in intermediate steps of calculations.
The idea is not to replace the usual bases, but to complement them. For example,
given an over-complete basis and a reduced basis, it would be useful to do off-shell
matching calculations using the former, and then have a dictionary to directly translate
the results to the later.

In chapters 5 and 6, two Python packages have been presented: MatchingTools
and BasisGen. They automatize the generation of bases of operators, tree-level match-
ing and reduction to a basis. In the present situation in phenomenology of physics
beyond the SM, in which one deals with EFTs with many fields and operators, it has
become crucial to develop a reliable set of computer tools in which lengthy calculations
can be implemented. The advantages are manifold: first, the use of computer tools
almost always faster than doing calculations by hand; second, the possibility of the
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introduction of human errors is drastically reduced; in addition, repeated calculations
with minor changes are more easily performed. Both MatchingTools and BasisGen
contribute in advancing in this direction. The correctness of their results has been
checked by hand and against the previous results in the literature. They have been
developed paying attention to performance, specially in the case of BasisGen, which
improves the speed of previous tools that do similar calculations by a factors of about
a hundred.

In chapter 7, the formalism for general extensions of the SM with new fields has
been introduced. We have constructed the BSMEF T, which includes all possible new
particles that can decay into SM ones. The corresponding fields have gauge-invariant
linear couplings to the SM. They are the most relevant ones for phenomenology in many
situations: they have single production, decay and indirect effects at tree level. The
generality of the BSMEFT makes it useful for parametrizing many new physics effects.
It can be used to connect the Wilson coefficients of the SMEFT to the parameters of
any high-energy model with tree-level contributions to them. Contrary to the SMEFT,
the BSMEFT is able describe resonant production of new degrees of freedom. In the
rest of the thesis, we consider some of its applications.

In chapter 8, the complete tree-level dictionary between the dimension-6 SMEFT
and its high-energy completions has been provided. It has been computed by tree-level
matching of the SMEFT to the BSMEFT. This dictionary is a useful result to explore
both the low-energy consequences of high-energy models and the possible high-energy
explanations of low-energy effects. For each combination of particles in some theory
beyond the SM, one can find to which operators of the SMEFT they contribute at
tree-level, as well as their contribution the corresponding Wilson coefficients. Then,
constraints on the SMEFT coefficients can be used to put bounds on the parameters
of the high-energy model. If some new physics effect is observed, implying that some
Wilson coefficient is non-zero, one can find what possible new particles can be respon-
sible, together with the high-energy interactions that are necessary to generate the
effect.

In chapter 9, next-to-leading order effects in the BSMEFT have been studied, for
the case of vector-like quarks. In general, the only extra fields with leading-order effects
are those with dimension-4 linear couplings to the SM. One can relax the condition
over the dimension of these operators to analyze the robustness of the approximation
and to study new experimental signatures that may not be possible at the lowest order.
We have focused on the phenomenology of vector-like quarks with dimension-4 and/or
dimension-5 linear couplings. We have found that new production and decay channels
appear at dimension 5. Those quarks whose linear interactions start at dimension 5 are
less constrained in general by their indirect effects. However, they also generate new
experimental signals due to the fact that their effective couplings are naturally small,
because they are suppressed by inverse powers of the cutoff scale. In consequence,
they may hadronize and produce delayed detector signals and displaced vertices.
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Conclusiones

En este trabajo, hemos revisado y extendido el marco independiente del modelo que
proporcionan las EFTs para el estudio de fisica mas alla del Modelo Estandar. Hemos
desarrollado nuevas herramientas informaticas que ayudan en la automatizacion de los
tipos mas habituales de calculos en este contexto. También hemos contribuido a sentar
las bases del andlisis fenomenolégico de nuevas particulas e interacciones a través de
la introduccién de la BSMEFT, una EFT que incluye cada posible nuevo campo bajo
asunciones generales.

En el capitulo 4, hemos estudiado una de las herramientas matematicas méds tutiles
en la implementacion practica de EFTs: las redefiniciones de campos. Estas permiten
reducir considerablemente el nimero de interacciones a tener en cuenta en cualquier
EFT. Un conjunto completo de operadores locales independientes tal que no se puede
reducir usando redefiniciones es lo que se conoce como una base. Aunque el uso de
bases y redefiniciones es conveniente, es necesario hacerlo con cierta precaucion. Una
practica comun cuando se trabaja a orden dominante es el uso de las ecuaciones de
movimiento de los campos en lugar de redefiniciones. De hecho, las ecuaciones de
movimiento capturan los efectos dominantes de las redefiniciones. Sin embargo, como
hemos demostrado, este procedimiento no puede extenderse a 6rdenes superiores.

Los resultados de muchos célculos en EFTs, como el matching o el calculo de la
evolucion con el grupo de renormalizacion, se presentan normalmente en términos de
una base de operadores. El uso de redefiniciones (o de ecuaciones de movimiento)
para llegar a una base genera una pérdida de informacién que no puede recuperarse
a partir el resultado final, a menos que todas las redefiniciones utilizadas se propor-
cionen explicitamente. Esto nos ha conducido a la propuesta de la definicién y uso
de bases redundantes en pasos intermedios de cdlculos. La idea no es reemplazar la
bases habituales, sino complementarlas. Por ejemplo, dada una base redundante una
reducida, seria 1til hacer calculos de matching off-shell usando la primera, y luego
tener un diccionario para traducir directamente los resultados a la segunda.

En los capitulos 5 y 6, se han presentado dos paquetes de Python: MatchingTools
y BasisGen. Estos automatizan la generacion de bases de operadores, la realizacion de
matching a nivel arbol y la reduccion de un Lagrangiano hasta escribirlo en términos de
una base de operadores. En la situacion actual en fenomenologia mas alla del SM, en la
que hay que trabajar con EFTs con muchos campos y operadores, se ha convertido en
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una necesidad el desarrollo de un conjunto sélido de herramientas informaticas en las
que implementar los largos célculos que aparecen. Las ventajas son miltiples: primero,
el uso de estas herramientas es practicamente siempre mas rapido que la realizacion de
los céalculos a mano; segundo, la posibilidad de introducir errores humanos se reduce
en gran medida; por ultimo, la repeticion de calculos con cambios menores puede
hacerse con mayor facilidad. MatchingTools y BasisGen contribuyen a avanzar en
este direccion. La correccion de sus resultados se ha comprobado a mano y usando
los resultados presentados en la literatura. Estas herramientas se han desarrollado
prestando atencion a la eficiencia, especialmente en el caso de BasisGen, que mejora
la velocidad de herramientas anteriores que hacen céalculos similares por factores que
llegan a alrededor de cien.

En el capitulo 7, se ha introducido el formalismo para extensiones generales del
SM con nuevos campos. Hemos construido la BSMEFT, que incluye todas las posi-
ble nuevas particulas que pueden decaer a las del SM. Estas son las més relevantes
para fenomenologia en muchas situaciones: tienen produccién simple, desintegracion
y efectos indirectos a nivel arbol. La generalidad de la BSMEFT la hace ttil para
parametrizar muchos efectos de nueva fisica. Se la puede usar para conectar los co-
eficientes de Wilson de la SMEFT con los parametros de cualquier modelo de altas
energias con contribuciones a estos a nivel arbol. Al contrario que la SMEFT, la
BSMEFT puede describir produccion resonante de nuevos grados de libertad. En el
resto de esta tesis consideramos algunas de sus aplicaciones.

En el capitulo 8, se ha proporcionado el diccionario completo a nivel arbol entre la
SMEFT de dimensién 6 y sus posible extensiones a altas energias. Este se ha calculado
usando matching a nivel arbol entre la SMEFT y la BSMEFT. Este diccionario es 1til
para explorar las consecuencias a bajas energias de modelos para mas altas energias,
asi como las posibles explicaciones a altas energias de efectos de bajas energias. Para
cada combinacion de particulas en cualquier teoria mas alla del SM, se puede encontrar
qué operadores de la SMEFT generan a nivel arbol, asi como su contribucién a los
coeficientes de Wilson correspondientes. Entonces, las restricciones sobre coeficientes
de la SMEFT pueden usarse para poner limites a los parametros del modelo de altas
energias. Si algtin efecto de nueva fisica se observa, implicando que algtin coeficiente
de Wilson es distinto de cero, se puede encontrar qué nuevas particulas pueden ser
responsables, junto con las interacciones de altas energias que son necesarias para
generar el efecto.

En el capitulo 9, se estudian algunos efectos a érdenes subdominantes en la BSMEFT.
En general, los tinicos campos extra con efectos a orden dominante son aquellos con
acoplamientos lineales de dimensién-4 al SM. Esta condicién sobre la dimension de
los operadores puede relajarse para analizar la robustez de la aproximaciéon y para
estudiar nuevas caracteristicas experimentales distintivas que pueden no ser posibles
al orden més bajo. Nos hemos concentrado en la fenomenologia de quarks vector-like
con acoplamientos lineales de dimensién 4 y/o 5. Hemos encontrado que a dimensién 5
aparecen nuevos canales de produccion y desintegracion. Aquellos nuevos quarks cuyas
interacciones lineales empiezan en dimension 5 estan menos restringidos a través de
sus efectos indirectos. Sin embargo, generan nuevos efectos experimentales debido al
hecho de que sus acoplamientos son naturalmente pequenos, ya que estan suprimidos
por potencias inversas de la escala de cutoff. En consecuencia, pueden hadronizar y
producir senales retrasadas en el detector y vértices desplazados.



APPENDIX

Standard Model group-theory
notation

In this work we use a notation where color indices are labeled by capital letters,
A, B, C, running over the dimensionality of the corresponding SU(3). representation.
Whenever possible, objects in the fundamental representations of SU(2), and SU(3).
have been written as row or column vectors, with matrix products implied. The
superscript symbol “I” indicates transposition of the SU(2), indices exclusively. When
showing these indices explicitly, we use the following different labels, depending on
the SU(2)r representation: «,f = %,—% for SU(2), doublets; a,b,c = 1,2,3 for
the components of SU(2), adjoints/triplets in Cartesian coordinates; and I, J, K =
%, %, —%, —% for the components of the SU(2), quadruplets.

The symbols Ty = %/\A and fapc, A, B,C =1,...,8, denote the SU(3). generators
and structure constants, respectively, with A4 the Gell-Mann matrices. €spc (Eape) ,
A, B,C =1,2,3 (a,b,c = 1,2,3) is the totally antisymmetric tensor in color (weak
isospin) indices; o, or %, a = 1,2,3 are the Pauli matrices; o, = %[%,’yy]; and
flw = %em,pUA’” is the Hodge-dual of the field strength A, .

In the construction of the different SU(2), invariants we also use the following:

e The isospin-1 product of two triplets is obtained through:
i

—C&abc-
\/§ b

e Quadruplets are obtained from the product of an isospin-1 field and a doublet
by means of

fabc =

10
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e The singlet product of two quadruplets is obtained through the SU(2) product

0
—1

0
0

—_
o O O

€rg =z
2

O = O O
S O O

-1

Finally, for SU(3). indices, we use the following notation for the symmetric product
of colored fields:

DN | —

it =S (e el )
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