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Abstract. We study the passive particle transport generated by a circular

vortex path in a 2D ideal flow confined in a circular domain. Taking the

strength and angular velocity of the vortex path as main parameters, the bi-
furcation scheme of relative equilibria is identified. For a perturbed path, an

infinite number of orbits around the centers are persistent, giving rise to peri-

odic solutions with zero winding number.

1. Introduction. The passive particle transport in a 2D incompressible inviscid
flow with prescribed vorticity is a research topic of the highest relevance in Fluid
Dynamics [2, 8, 10]. In the Lagrangian formulation, the advection of single particles
is ruled by a Hamiltonian system where the stream function plays the role of the
Hamiltonian. In this paper, we consider the dynamics induced in an ideal flow
confined in a circular domain of radius R under the action of a prescribed T -periodic
vortex path. Such dynamics model the stirring process of an agitator plunged into
a fluid inside a cylindrical tank free surface. The main interest of this model is to
investigate the amount of fluid that actually mix and how the path of the vortex
affects stirring. We refer to [1, 3, 4, 6] and references therein for more information
on the model and its historical overview in the literature.

Let BR ⊂ R2 be the open ball of center (0, 0) and radius R, and consider a
T -periodic vortex path given by z : R→ BR. Then, the stream function of the fluid
confined in BR and under the action of the vortex is given by

Ψ(t, ζ) =
Γ

2π

(
ln |ζ − z(t)| − ln

∣∣∣∣ζ − R2

|z(t)|2
z(t)

∣∣∣∣) .
Here, Γ is the strength or charge of the vortex, and its sign gives the sense of
rotation. In this function, the first term accounts for the vortex action, whereas the
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second term models the influence of the solid circular boundary. It is useful to see
ζ as a complex variable, then the corresponding Hamiltonian system is

ζ̇∗ =
Γ

2πi

 1

ζ − z(t)
− 1

ζ − R2

|z(t)|2 z(t)

 , (1)

where the asterisk means the complex conjugate.
In the related literature, z(t) is called the stirring protocol. When it is constant,

then Ψ is a conserved quantity and all the particles rotate around the vortex in
circular trajectories. In particular, the model does not mix appropiately. When
z(t) is time-dependent, then the Hamiltonian ceases to be a conserved quantity and
one must in general expect to observe chaotic particle motion. In this direction,
Aref [1] proves the existence of chaotic regions in the case when the protocol z(t) is
piece-wise constant (also known as blinking protocol) by showing that the Poincaré
map is semiconjugate to the Bernoulli shift on two symbols. In particular, the
blinking protocol produce an efficient mixing.

In [3], it is proved that any smooth stirring protocol z(t) induces an infinite num-
ber of periodic trajectories rotating around the vortex (non-zero winding number).
A natural question is to try to identify the stirring protocols that generate periodic
trajectories with zero winding number, that is, particles moving periodically but not
rotating around the vortex. This question was posed explicitly as an open problem
in [9, Section 7.3]. The identification of periodic solutions of zero winding number
is relevant in the interpretation of the model as a stirring problem. Indeed, in the
case of the existence of stable solutions, the stability region conforms a confined
portion of fluid that will not mix with the fluid around the vortex.

Our intention is to advance on the comprehension of this problem by analyzing
the family of circular protocols z(t) = r0 exp(iθ0t). In this case, the change to a
corotating frame ζ(t) = η(t) exp(iθ0t) transforms equation (1) into the autonomous
system

η̇∗ = iθ0η
∗ +

Γ

2πi

(
1

η − r0
− 1

η − R2

r0

)
. (2)

The Hamiltonian structure is preserved, so the streamlines are just the level curves
of the corresponding Hamiltonian, which is indeed a conserved quantity. In [6], the
authors study the case when the stirring protocol moves according with the passive
motion of the fluid (free vortex). That is, the trajectories of the vortex are circles
with radii r0 and angular speed θ0 = Γ

2π
1

R2−r20
. In this case, the phase portrait of the

disk consists on a heteroclinic connection between two points on the boundary of BR
separating the vortex from a center generated by the passive fluid (see Figure 1b.)
The authors evidence regions of chaotic motion via Melnikov method due to the
transverse crossing of the stable and unstable manifolds of the heteroclinic orbit
once the radius of the stirring protocol is perturbed by a 2π-periodic function.

Our first contribution in this direction is to classify all possible phase portraits for
all circular stirring protocols. That is, we will consider θ0 ∈ R as a free parameter.
By a complete bifurcation analysis of the relative equilibria, performed in Section

2, setting φ0 := 2πR2θ0
Γ and ρ0 := r0

R , we obtain five regions in the parameter space
(φ0, ρ0) ∈ R×(0, 1) with phase portraits as shown in Figures 1a to 1e divided by four
codimension one curves with phase portraits as shown in Figures 1f to 1h (the curve
φ0 = 0 correspond to the constant stirring protocol.) In particular, the center inside
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(a) (b) (c) (d)
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Figure 1. Phase portrait of system (3) depending on the param-
eters according to Theorem 2.1.

the ball BR is not always present and there are no periodic orbits with zero winding
number at least in the integrable scenario. In Section 3 we consider the case when
the radius of the stirring protocol is perturbed by a T -periodic function. As in [6] the
natural scenario is that, in the cases that homoclinic or heteroclinic orbits appear
separating the vortex and the center, such stable and unstable manifolds generically
intersect transversally giving rise to chaotic regions. Our second contribution is an
analytic proof showing that, under small periodic perturbations of the radius of
z(t), there are still periodic trajectories surrounding a certain perturbed critical
point and giving rise to periodic orbits with zero winding number. Consequently,
in the terminology of Fluid Dynamics the model turns to be a not efficient stirring
process.

2. Phase portrait and bifurcation analysis. This section is devoted to the
bifurcation analysis of the phase portrait of system (2). Working on Cartesian
coordinates, the streamlines are level curves of the Hamiltonian function

Ψ(x, y) = −θ0

2
(x2 + y2) +

Γ

2π
ln

√
(x− r0)2 + y2

(x− R2

r0
)2 + y2

.

Here (R,Γ, θ0) ∈ (0,+∞) × (R \ {0})2 and r0 ∈ (0, R). From now on, for the sake
of further simplicity, we denote

a(x) := a(x, r0) = x− r0, b(x) := b(x,R, r0) = x− R2

r0
and c :=

Γ

2πθ0
.

Thus, system (2) can be written in the (x, y)-variables as
ẋ =

∂Ψ

∂y
= −θ0y + cθ0y

(
1

a(x)2 + y2
− 1

b(x)2 + y2

)
,

ẏ = −∂Ψ

∂x
= θ0x− cθ0

(
a(x)

a(x)2 + y2
− b(x)

b(x)2 + y2

)
.

(3)
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Let DR ⊂ R2 be the closed ball of center (0, 0) and radius R. It is an immediate
calculation to show that DR is invariant by the flow of system (3). Next result deals
with the phase portrait of the system on DR. It will be shown that the position r0

and angular velocity θ0 of the vortex path are the main parameters on the system,
whereas the remaining ones can be normalized. To this end, and for the sake of

simplicity on the statement, we set ρ0 := r0
R and φ0 := R2

c = 2πR2θ0
Γ . Thus, the

parameter space of system (3) turns Λ := {(ρ0, φ0) ∈ R2 : 0 < ρ0 < 1 and φ0 6= 0}.
Moreover, let us define

f(ρ0, φ0) := 27ρ2
0(ρ2

0 − 1) + φ0

(
2− 3ρ2

0 − 3ρ4
0 + 2ρ6

0 − 2(1− ρ2
0 + ρ4

0)
3
2

)
,

and

B :=

{
(ρ0, φ0) ∈ Λ : φ0f(ρ0, φ0)

(
ρ0 −

1− φ0

1 + φ0

)(
ρ0 −

φ0 − 1

1 + φ0

)
= 0

}
.

We claim that there is no ρ0 ∈ (0, 1) such that

2− 3ρ2
0 − 3ρ4

0 + 2ρ6
0 − 2(1− ρ2

0 + ρ4
0)

3
2 = 0.

Indeed, the previous equality is equivalent to

−27ρ4
0(ρ0 − 1)2(ρ0 + 1)2 = 0

by means of elementary algebraic manipulations. Therefore, the curve B is the
union of three curves, namely

C1 := {(ρ0, φ0) ∈ Λ : ρ0 = 1−φ0

1+φ0
},

C2 := {(ρ0, φ0) ∈ Λ : ρ0 = φ0−1
1+φ0

},
C3 := {(ρ0, φ0) ∈ Λ : f(ρ0, φ0) = 0},

and splits the parameter space Λ into five connected components, namely Ri, i =
1, . . . , 5, according with Figure 2.

Theorem 2.1. Let (ρ0, φ0) ∈ Λ. The set Λ \ B corresponds to regular parameters
of system (3). On each connected component, the phase portrait is the following:

(a) If (ρ0, φ0) ∈ R1 then the dynamics on DR is a global vortex at (r0, 0) (see
Figure 1a).

(b) If (ρ0, φ0) ∈ R2 then the system has a vortex at (r0, 0), a center at (x∗c , 0)
with x∗c ∈ (−R, 0) and two hyperbolic saddles (x∗s,±y∗s ) at ∂DR with a saddle
connection inside DR (see Figure 1b).

(c) If (ρ0, φ0) ∈ R3 then the system has a vortex at (r0, 0), a center at (x∗c , 0) with
x∗c ∈ (−R, 0) and a hyperbolic saddle at (x∗s, 0) with x∗s ∈ (r0, R) (see Figure 1c).

(d) If (ρ0, φ0) ∈ R4 then the system has a vortex at (r0, 0), a center (x∗c , 0) and a
hyperbolic saddle (x∗s, 0) satisfying 0 < x∗c < x∗s < r0 (see Figure 1d).

(e) If (ρ0, φ0) ∈ R5 then the dynamics on DR is a global vortex at (r0, 0) (see
Figure 1e).

Moreover, the set B corresponds to bifurcation parameters of system (3). On each
curve the phase portrait is the following:

(f) If (ρ0, φ0) ∈ C1 then the system has a vortex at (r0, 0) and a degenerated saddle
at (−R, 0) (see Figure 1f).

(g) If (ρ0, φ0) ∈ C2 then the system has a vortex at (r0, 0), a center at (x∗c , 0) with
x∗c ∈ (−R, 0) and a degenerated saddle at (R, 0) (see Figure 1g).
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Figure 2. Bifurcation diagram of the phase-portrait of system (3)
on DR. The bold curve corresponds to bifurcation parameters B,
whereas the remaining ones correspond to regular parameters. In
Theorem 2.1 the phase portrait at each region is given.

(h) If (ρ0, φ0) ∈ C3 then the system has a vortex at (r0, 0) and a cusp at (x∗p, 0)
(see Figure 1h), where

x∗p := x∗p(R, r0) =
R2 + r2

0 −
√
R4 −R2r2

0 + r4
0

3r0
.

Proof. For the sake of simplicity we first begin the proof by showing that the only
critical points in DR that do not lie on the line {y = 0} are the hyperbolic saddles
(x∗s,±y∗s ) at ∂DR of case (b) on the statement. To this end, assuming y 6= 0, from
equations in (3) we have that ẋ = 0 if and only if

−1 + c

(
1

a(x)2 + y2
− 1

b(x)2 + y2

)
= 0.

Since a(x)2 < b(x)2 for all x < R, if φ0 < 0 then c < 0 and so the left-hand side of
the previous equality is negative. Then assume φ0 > 0. In this case, ẋ = 0 if and
only if

y2 = −1

2
(a(x)2 + b(x)2) +

1

2

√
(b(x)2 − a(x)2)(4c+ b(x)2 − a(x)2).

Substituting the previous equality on the expression of ẏ in (3) and equaling to zero
one gets the equation

(2x− a(x)− b(x))(a(x) + b(x)) +
√

(b(x)2 − a(x)2)(4c+ b(x)2 − a(x)2)

2(a(x) + b(x))
= 0.

Thus, using that a(x) = x − r0 and b(x) = x − R2

r0
, the previous equation has the

unique solution

x∗s =
R2 + r2

0

2r0
− c

2r0

(
1− r2

0

R2

)
and so

(y∗s )2 =
1

4

(
2(c2 +R4)

R2
− (c−R2)2

r2
0

− (c+R2)2r2
0

R4

)
.
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It is a computation to show that x∗s ∈ (−R,R) if and only if ρ0 > max{ 1−φ0

1+φ0
, φ0−1

1+φ0
}

(that is, (ρ0, φ0) ∈ R2) and (x∗s)
2 + (y∗s )2 = R2. It is only remaining to prove

that (x∗s,±y∗s ) are hyperbolic saddles. This can be done evaluating the previous
expression of the points (x∗s,±y∗s ) on the Jacobian matrix of system (3). In the case
of (x∗s, y

∗
s ) the determinant of the Jacobian matrix is

det(DX(x∗s, y
∗
s )) =

(cR−R3 − (c+R2)r0)(cR−R3 + (c+R2)r0)θ2
0

c2(R2 − r2
0)

which is negative if and only if ρ0 > max{ 1−φ0

1+φ0
, φ0−1

1+φ0
}. Then, (x∗s, y

∗
s ) is a hyperbolic

saddle. The same argument is valid for (x∗s,−y∗s ). Moreover, since ∂DR is an
invariant curve of system (3) and (x∗s, y

∗
s ) ∈ ∂DR, then ∂DR is the stable manifold

of one saddle (and unstable of the other). The corresponding unstable (stable)
manifold cuts transversally the disk of radius R due to the hyperbolicity of the
saddles and so the connection between the saddles follows by Poincaré-Bendixon’s
theorem.

The previous argument shows that out of case (b) on the statement, all the critical
points of system (3) lie on {y = 0}. Let us prove now the remaining cases of the
result. Let us first consider φ0 > 0. This corresponds to the statements (a) − (c)
and (f)− (g). We can assume with no loss of generality that θ0 > 0 and Γ > 0. The
case with θ0 < 0 and Γ < 0 follows by reversion of time. Notice that the hypothesis
φ0 > 0 implies c > 0. System (3) has a critical point at (x∗, 0) inside the disk of
radius R if and only if the function

F (x) := θ0

(
x− c

(
1

a(x)
− 1

b(x)

))
satisfies F (x∗) = 0 for some x∗ ∈ (−R,R). Multiplying by a(x)b(x) the previous
condition turns into F (x∗)a(x∗)b(x∗) = 0. We point out that, on account of the
expressions of a(x) and b(x), the previous two conditions are equivalent if x∗ /∈
{r0,

R2

r0
} (those correspond to singularities on the Hamiltonian function and so no

critical points). Thus, system (3) has a critical point at (x∗, 0) in DR if and only if

x∗a(x∗)b(x∗) = c

(
r0 −

R2

r0

)
=:λ = λ(r0, R, c). (4)

Notice that, since φ0 > 0 then λ < 0. The cubic polynomial P (x) := xa(x)b(x) has

zeros at x = 0, x = r0 and x = R2

r0
. P (x) is negative if x ∈ (−∞, 0) ∪ (r0, R

2/r0)

and it is positive if x ∈ (0, r0)∪(R2/r0,+∞), and the local maximum and minimum
are, respectively,

xM =
R2 + r2

0 −
√
R4 −R2r2

0 + r4
0

3r0
and xm =

R2 + r2
0 +

√
R4 −R2r2

0 + r4
0

3r0
.

Moreover, since φ0 > 0 then λ = λ(r0, R, c) varies from zero to −∞. Thus P (x)−
λ = 0 has always a solution x∗ ∈ (−∞, 0), it has a double solution x∗ = xm if
P (xm) = λ and two solutions in (r0, R

2/r0) if P (xm) < λ. Let us study when
these solutions correspond to critical points in DR. To this end, we define Q(u) :=



CIRCULAR VORTEX PATH IN CIRCULAR DOMAIN 755

1
R3 (P (Ru)− λ). Elementary algebraic manipulations show that

0 <
xM
R

<
1 + ρ2

0 −
√

(1− ρ2
0)2 + ρ2

0

3ρ0
< ρ0 < 1 <

xm
R
,

Q(1) =
(1− ρ0)(φ0 + 1)

φ0ρ0

(
ρ0 −

φ0 − 1

1 + φ0

)
,

Q(−1) =
−(1 + ρ0)(φ0 + 1)

φ0ρ0

(
ρ0 −

1− φ0

1 + φ0

)
,

Q(0) = Q(ρ0) =
1− ρ2

0

φ0ρ0
> 0.

We point out that since xm > R then at most two zero of P (x)− λ lie in (−R,R).

By the second equality above we have that P (R) − λ > 0 if ρ0 > φ0−1
1+φ0

, that

P (R) − λ = 0 if ρ0 = φ0−1
1+φ0

and P (R) − λ < 0 if ρ0 <
φ0−1
1+φ0

. By the third equality

above we have that P (−R)− λ > 0 if ρ0 <
1−φ0

1+φ0
, that P (−R)− λ = 0 if ρ0 = 1−φ0

1+φ0

and that P (−R)− λ < 0 if ρ0 >
1−φ0

1+φ0
. Thus, if (ρ0, φ0) ∈ R1 no roots of P (x)− λ

are inside [−R,R] and so the result in (a) holds. If (ρ0, φ0) ∈ C1 the unique zero of
P (x) − λ in [−R,R] is x = −R. This correspond to a critical point of system (3)
at (−R, 0). Moreover, it is a degenerated saddle since ∂DR is an invariant curve
of system (3) so (f) is proved. If (ρ0, φ0) ∈ R2 then P (x) − λ has only one zero
x∗C ∈ (−R, 0). Then, on account of the previous discussion about the hyperbolic
saddles (x∗s,±ys∗) on ∂DR, result in (b) is proved. If (ρ0, φ0) ∈ C2 then P (x) − λ
has two zeros: x = x∗c ∈ (−R, 0) and x = R. The critical point (R, 0) corresponds
to a degenerated saddle since ∂DR is an invariant curve of system (3). Then (g)
holds. Finally, if (ρ0, φ0) ∈ R3 then P (x)− λ has two zeros: x = x∗c ∈ (−R, 0) and
x = x∗s ∈ (r0, R). In order to end with the case φ0 > 0 it only remains to prove
that x∗c and x∗s are a center and a hyperbolic saddle, respectively.

The Jacobian matrix associated to system (3) with y = 0 is given by

DX(x, 0) =

 0 θ0

(
−1 + c

(
1

a(x)2
− 1

b(x)2

))
θ0

(
1 + c

(
1

a(x)2
− 1

b(x)2

))
0

 .

(5)

Notice that θ0

(
1 + c

(
1

a(x)2
− 1

b(x)2

))
> 0 for all x ∈ (−R,R). Furthermore,

setting x = x∗ a critical point of (3), we have

c

(
1

a(x∗)2
− 1

b(x∗)2

)
− 1 = x∗

(
1

a(x∗)
+

1

b(x∗)

)
− 1

=
(x∗)2 −R2

(x∗ − r0)(x∗ − R2

r0
)
,

where we used F (x∗) = 0 on the first equality and the expressions of a(x) and b(x)
on the second. Thus

DX(x∗, 0) =

 0 θ0
(x∗)2−R2

(x∗−r0)(x∗−R2

r0
)

θ0

(
2 + (x∗)2−R2

(x∗−r0)(x∗−R2

r0
)

)
0

 . (6)
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Consequently, taking x∗ = x∗c ∈ (−R, 0) we have (x∗c)
2−R2 < 0 and (x∗c − r0)(x∗c −

R2/r0) > 0. Therefore
(x∗
c)2−R2

(x∗
c−r0)(x∗

c−R2/r0) < 0 and so det(DX(x∗c , 0)) > 0. This

implies that (x∗c , 0) is a center. On the other hand, taking x∗ = x∗s ∈ (r0, R),
(x∗
s)2−R2

(x∗
s−r0)(x∗

s−R2/r0) > 0 and so det(DX(x∗s, 0)) < 0. This implies that (x∗s, 0) is a

hyperbolic saddle. This ends with the proof of statements (a), (b), (c), (f) and (g).
Let us now consider the case φ0 < 0. This corresponds to statements (d), (e)

and (h). In this situation we can assume with no loss of generality that θ0 > 0 and
Γ < 0. The opposite case follows by reversion of time. Notice that the hypothesis
φ0 < 0 implies c < 0. Consequently, on account of the equation (3) critical points
can only belong to {(x, y) ∈ R2 : y = 0}. Similarly as before, system (3) has a
critical point at (x∗, 0) inside the disk of radius R if and only if (4) is satisfied.
Notice that, since φ0 < 0, in this case λ = λ(r0, R, c) varies from zero to +∞.
Thus, on account of R < R2/r0, if λ stays above of the maxima of P (x) inside
(0, r0) then P (x) − λ = 0 has a unique zero which is larger than R. This happens
when f(ρ0, φ0) < 0. If f(ρ0, φ0) = 0 then the maximum of P (x) inside (0, r0)
contact λ and gives the cusp (x∗p, 0) with x∗p = xM . Finally, if f(ρ0, φ0) > 0 then
the maximum of P (x) is greater than λ and so P (x) − λ has two real roots inside
(0, r0): namely x∗c and x∗s, satisfying 0 < x∗c < xM < x∗s < r0. It only remains to
prove the stability of such critical points. This follows from the expression in (5) of
the Jacobian matrix associated to system (3) with y = 0. We point out that, since
a(x)2 < b(x)2 for all x ∈ (0, r0) and c < 0, we have

θ0

(
−1 + c

(
1

a(x)2
− 1

b(x)2

))
< 0.

Moreover, setting x = x∗ a critical point of system (3), on account of F (x∗) = 0 we
have

1 + c

(
1

a(x∗)2
− 1

b(x∗)2

)
= 2 +

(x∗)2 −R2

(x∗ − r0)(x∗ − R2

r0
)

=
3r0(x∗)2 − 2(R2 + r2

0)x∗ +R2r0

(r0 − x∗)(R2 − r0x∗)
.

The previous expression is positive if x∗ ∈ (0, xM ) and it is negative if x∗ ∈ (xM , r0).
This proves that x∗c is a center and x∗s is a hyperbolic saddle and ends with the proof
of (d), (e) and (h).

3. Periodic perturbations and local continuation of periodic orbits. Given
an autonomous planar Hamiltonian system

η̇ = J∇H(η), (7)

it is interesting to look for the existence of periodic solutions of the non-autonomous
planar Hamiltonian system

η̇ = J∇H(t, η; ε), (8)

which are small T -periodic perturbations of (7) meaning that H(t, η; 0) ≡ H(η).
A. Fonda, M. Sabatini and F. Zanolin prove in [5] that under the hypothesis of
the existence of a non-isochronous period annulus for the autonomous Hamiltonian
system and some regularity conditions on H(t, η; ε) such periodic orbits exist.

More precisely, consider H : A → R twice continuously differentiable and A ⊆ R2

a period annulus such that the inner and outer components of its boundary are
Jordan curves. Assume that A is not isochronous, that is the period of the periodic
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orbits in A covers an interval [Tmin, Tmax], with Tmin < Tmax. Then consider H :
R × A × (0, ε0) → R, whose gradient with respect to the second variable, denoted
by ∇H(t, η; ε), is continuous in (t, η; ε), locally Lipschitz continuous in η and T -
periodic in t for some T > 0. Under these assumptions, the authors in [5] prove the
following result:

Theorem 3.1 (Fonda, Sabatini and Zanolin). Given two positive integers m and
n satisfying

Tmin <
mT

n
< Tmax, (9)

there is an ε̄ > 0 such that, if |ε| ≤ ε̄, then system (8) has at least two mT -periodic
solutions, whose orbits are contained in A, which make exactly n rotations around
the origin in the period time mT .

The authors also emphasize the following immediate consequence:

Corollary 1. For any positive integer N there is a ε̄N > 0 such that, if |ε| < ε̄N ,
then system (8) has at least N periodic solutions, whose orbits are contained in A.

Our purpose in this section is to illustrate this situation in the case when system
(3) has a non-degenerated center inside DR. This occurs for parameters (ρ0, φ0) ∈
R2 ∪ R3 ∪ R4, corresponding to the phase portraits (b), (c) and (d) in Figure 1
and Theorem 2.1. Let us denote by P the period annulus of the center. The inner
boundary of P is the center itself, namely p, whereas the outer boundary of P is
formed by saddle connections. In both cases the outer boundary has critical points
so it is clear that the period function tends to infinity as the orbits approach the
outer boundary. Particularly, the center is not isochronous. Next result states the
period of the linearized center.

Lemma 3.2. Let (ρ0, φ0) ∈ R2 ∪R3 ∪R4 and let p = (x, 0) be the non-degenerated
center of system (3). Then the period of the associated linearized system at p is

T0(x) =
2π√

θ2
0ν( xR )(2 + ν( xR ))

where ν(x) :=
x2 − 1

(x− ρ0)(x− 1
ρ0

)
.

Proof. From the expression of the Jacobian matrix of the system in (6) we have
that the eigenvalues associated to the center are

λ± = ±ωi = ±

√√√√θ2
0

x2 −R2

(x− r0)(x− R2

r0
)

(
2 +

(x2 −R2)

(x− r0)(x− R2

r0
)

)
i

where ω denotes the frequency of the linearized center. Thus, setting ρ0 = r0
R , and

using that the period of the linearized center is T0 = 2π
ω the result holds.

Let us now consider the periodically perturbed stirring protocol

zε(t) = rε(t) exp(iθ0t)

on system (1) where rε(t) is a smooth T -periodic perturbation of r0. More con-
cretely, rε(t) = r0 + εf(t) + g(t; ε) with f and g(·; ε) T -periodic analytic functions
and g(t; ε) tending to zero uniformly on t ∈ R as ε tends to zero. The same change
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to a corotating frame than the presented at the beginning of this paper transforms
(1) into a periodic Hamiltonian system with Hamiltonian function

Ψ(t, x, y; ε) = −θ0

2
(x2 + y2) +

Γ

2π
ln

√
(x− rε(t))2 + y2

(x− R2

rε(t)
)2 + y2

. (10)

Theorem 3.3. Let (ρ0, φ0) ∈ R2 ∪ R3 ∪ R4. For any positive integer N there is
a ε̄N > 0 such that, if |ε| < ε̄N , then the Hamiltonian system u̇ = J∇Ψ(t, u; ε)
has at least N periodic solutions contained in DR. Particularly, the flow induced
by system (1) with T -periodic protocol zε(t) has infinity many periodic trajectories
with zero winding number.

Proof. The spirit of this proof is to use Theorem 3.1 in a certain period annulus
where the regularity hypotheses are satisfied. First, since the outer boundary of
the whole period annulus of the center in system (3) is a saddle connection, the
period of the periodic orbits tends to infinity as they approach the outer boundary.
Second, setting p = (x∗, 0) the center itself, Lemma 3.2 states that the period tends
to

T0(x∗) =
2π√

θ2
0ν(x

∗

R )(2 + ν(x
∗

R ))

as the orbits tends to p. The analyticity of the period function ensures then that
for any M > 0 large enough there exists a period annulus, namely AM , such that
the period of its orbits covers [T0(x∗),M ].

Let us apply Theorem 3.1 in AM . To this end, it is enough to show that
∇Ψ(t, η; ε) is continuous in (t, η; ε) ∈ R × AM × (0, ε0) for some ε0 > 0, locally
Lipschitz continuous in η = (x, y) ∈ AM and T -periodic in t. From the expression
in (10),

∇Ψ(t, η; ε) =


−yθ0 + cθ0y

(
1

(x− rε(t))2 + y2
− 1

(x− R2

rε(t)
)2 + y2

)

θ0x− cθ0

 x− rε(t)
(x− rε(t))2 + y2

−
x− R2

rε(t)

(x− R2

rε(t)
)2 + y2



 .

First, we claim that limε→0 rε(t) = r0 uniformly on t ∈ R. Indeed, it follows
from the definition of rε(t) and the fact that f is bounded. Second, we notice that
(r0, 0) /∈ AM since the period of the periodic orbits surrounding the vortex (r0, 0)
tends to infinity as they approach the vortex. Consequently,

lim inf
ε→0

d(AM , rε(R)× {0}) > 0

since AM is a compact set. This checks the continuity of the map ∇Ψ. Moreover,
∇Ψ(t, ·; ε) ∈ C1(AM ) so also the property of being locally Lipschitz continuous
in AM holds. Then we are in position to apply Theorem 3.1 and, particularly,
Corollary 1 and show that for any positive integer N there exists 0 < ε̄N < ε0 such
that if |ε| < ε̄N then system η̇ = J∇Ψ(t, η; ε) has at least N periodic solutions
in AM ⊂ DR. Finally, by construction of AM those periodic solutions have zero
winding number with respect to the vortex.
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4. Conclusions. The main result of Section 2 has a natural reading for the under-
lying physical model. Note that ρ0 is the ratio between the path and domain radii
respectively, while φ0 measures the relation between the path angular speed and
the vortex strength. The sign of φ0 indicates if the sense of rotation of the vortex
and the path is the same or opposite. For example, fixing the positive parameters
R,Γ, r0 and leaving θ0, for small positive θ0 there are no equilibria. Then, a first
bifurcation point is θ∗0 = Γ

2πR2
R−r0
R+r0

, where a degenerate saddle appears at (−R, 0).

A second bifurcation point appears at θ∗∗0 = Γ
2πR2

R+r0
R−r0 . For θ0 ∈]θ∗0 , θ

∗∗
0 [, there is

a center and two hyperbolic saddles in the border of the domain connected by an
heteroclinic. They travel along the border until they collide at θ0 = θ∗∗0 into a de-
generate saddle, that enter into the domain as a hyperbolic saddle for values above
θ∗∗0 . On the other hand, for negative values of θ0, corresponding to opposite rotat-
ing sense of the vortex and the stirring protocol, we identify a typical saddle-node
bifurcation.

In the bifurcation scheme identified in Section 2, saddles are connected by hete-
roclinic or homoclinic orbits that constitute barriers for the flux transport. Around
the centers, the particles rotate with different periods, and this fact makes possible
an application of a suitable result for perturbed Hamiltonians (see Section 3), prov-
ing that for a perturbed vortex path there exist infinitely many periodic solutions
that do not rotate around the vortex.

Generically, one can expect that a perturbation of the vortex path will break the
heteroclinic or homoclinic connections of the saddles giving rise to Smale horseshoes,
a fact yet proven in some cases by Franzese and Zannetti in [6]. The problem to
identify more general classes of vortex protocols that generate this kind of periodic
orbits with zero winding number is still open. Also, the investigation of solutions
of zero winding number in more general domains is an interesting open problem to
be addressed in the future. Finally, from the analytical point of view little is known
about the stability properties of the periodic trajectories in this context, the recent
reference [7] goes on this direction.

Acknowledgments. The authors wish to thank the anonymous referee for some
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