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Abstract: The extracellular matrix (ECM) is a network of different proteins and proteoglycans that
controls differentiation, migration, repair, survival, and development, and it seems that its remodeling
is required for healthy adipose tissue expansion. Obesity drives an excessive lipid accumulation
in adipocytes, which provokes immune cells infiltration, fibrosis (an excess of deposition of ECM
components such as collagens, elastin, and fibronectin) and inflammation, considered a consequence
of local hypoxia, and ultimately insulin resistance. To understand the mechanism of this process is a
challenge to treat the metabolic diseases. This review is focused at identifying the putative role of
ECM in adipose tissue, describing its structure and components, its main tissue receptors, and how it
is affected in obesity, and subsequently the importance of an appropriate ECM remodeling in adipose
tissue expansion to prevent metabolic diseases.
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1. Introduction

The increase in overweight and obesity prevalence is a result of lifestyle changes that are due
to the social and demographic transition that started some decades ago and it has been dramatically
augmented in the worldwide [1–3]. It was already recognized that there are individuals who despite
having normal weight, they have an increased metabolic and cardiovascular risk due to they are
hyperinsulinemic, insulin resistant, hypertriglyceridemic and predisposed to subsequent development
of type 2 diabetes (T2D) [4]. Additionally, being normal weight metabolically unhealthy in childhood
predicts lower insulin sensitivity as youth enter puberty [5].

The extracellular matrix (ECM) is a complex structure composed by different proteins,
proteoglycans and polysaccharides, which provides a scaffold for cells modulating biological processes
such as cell adhesion, migration, repair, survival, and development. The role of ECM in cell adhesion
and signaling into the cells is carried out by integrins, which transduce signals through the plasma
membrane to activate intracellular signaling [6–8]. As obesity is characterized by massive adipose
tissue expansion, ECM remodeling and reorganization are requisites to providing enough space for
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the enlargement of adipocytes (hypertrophy), and to form new ones through adipogenesis from the
precursor cells (hyperplasia) [9]. In adipose tissue, ECM is composed mainly by collagens (I, II, III,
and IV), fibronectin, and a small amount of laminin [10,11]. However, several components, such
as A disintegrin and metalloproteinase domain-containing protein (ADAMs), osteopontin (OPN),
hyaluronan (HA), thrombospondins (THBS1), matrix metalloproteases (MMPs), and tissue inhibitor
of metalloproteinases (TIMPs), play an important role in the ECM remodeling and adipose tissue
function [12,13]. Besides, this process allows the formation of new blood vessels, which is crucial
for the healthy adipose tissue expansion because the failure of this results in necrosis of adipocytes,
and hypoxia, which triggers chronic, low-grade inflammation and fibrosis, which is a major player in
adipose tissue dysfunction, and lastly insulin resistance (IR) [9,14,15]. Indeed, the ECM and integrins
are important regulators of insulin action and it may be a novel therapeutic target to treat the underlying
IR associated with T2D [6]. The aim of this review is to update the importance of ECM remodeling in
adipose tissue to prevent adipocyte dysfunction, and then the fibrosis, inflammation, IR related to
obesity and metabolic diseases.

2. Structure of Extracellular Matrix in the Adipose Tissue and Obesity

2.1. Integrins and Other Receptors

Integrins are the major tissue receptors for cell adhesion to ECM proteins, and also play important
roles in certain cell–cell adhesions. Since they were recognized by Hynes in 1987 [16], they have
intensively studied as adhesion receptors, and they transduce signals through the plasma membrane
to activate intracellular signaling. Integrins are heterodimeric transmembrane receptors composed by
α- and β-subunits, and so far they can assemble into 24 distinct integrins, with different ligand-binding
specificities and signaling properties [8]. Integrins are composed of a large ectodomain, which mediates
ligand binding; a transmembrane domain; and a short cytoplasmic tail, which indirectly associates with
the actomyosin cytoskeleton. For their activation, it is required a shift from bent-closed/extended-closed
conformation to the extended-open conformation. To do this, there are intracellular adaptor proteins,
like talins and kindlins, which are indispensably implicated in the integrin activation [17,18]. However,
integrins themselves lack kinase activity, and the downstream signaling is through focal adhesion kinase
(FAK) and integrin-linked kinase (ILK). FAK is a tyrosine kinase with the properties of intracellular
signaling, stabilization of cytoskeleton, and focal adhesion turnover, and it is regulated by the epidermal
growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), and the insulin receptor (IRc).
In adipose tissue, FAK signaling controls insulin sensitivity through regulation of adipocyte survival in
adipose tissue [19], and ILK interacts with β1, β2, and β3-integrin cytoplasmic domains and numerous
cytoskeleton-associated proteins. Collagen, fibronectin, laminin, Arg–Gly–Asp peptide (RGD), and
leucocytes all bind integrin receptors, and collagen and laminin share a common integrin β1 subunit,
whereas leucocytes bind to integrin β2 subunit [6].

Some studies suggest cross-talk between ECM and insulin signaling; indeed, striated
muscle-specific integrin β1-deficient mice show IR by impairment of insulin-stimulated skeletal muscle
glucose uptake and glycogen synthesis resulted from a decrease in AKT Ser-473 phosphorylation [20].
Moreover, diet-induced muscle IR is associated with ECM and interaction with integrin α2β1 in mice,
therefore this data support an important cross-talk between integrin receptor function and insulin action
in skeletal muscle [21]. Although the function of integrins in adipose tissue is still unknown, nonetheless,
there are some studies indicating an important role. Actually, adipose-specific loss of kindlin-2, which
promotes integrin activation, provokes lipodystrophy and metabolic disturbance [22]. In transgenic
and T2D animal models, integrin β1 is displayed as modulator of GLUT4, the most important
insulin-dependent glucose transporter in adipose tissue. In addition, the ILK has been suggested to
modulate capillarization of the muscle from diet-induced insulin resistant mice [23]. In mice with
general depletion of ILK, in adulthood, the integrin signaling molecule exhibits hyperglycemia and
hyperinsulinemia with a downregulation in GLUT4 expression, decreasing the insulin sensitivity
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and AKT phosphorylation at Ser473, suggesting that ILK may be a molecular target and a prognostic
biomarker of IR [24] (Figure 1). It has been also identify the mechanical stress as a novel mechanism
directly regulating Drosophila insulin sensitivity and resistance. The mechanical stress caused by
agitation of tissue ex vivo or body movement in vivo is required for activation of insulin signaling in
the Drosophila larval fat body and this movement induces the membrane localization of the IRc and
several IRc substrates. Sensing of mechanical stimuli is mediated in part by integrins, whose activation
is necessary and sufficient for mechanical stress-dependent insulin signaling, suggesting that integrin
signaling and plays a crucial role in the membrane localization of IRc to regulate insulin sensitivity [25].
On the other hand, there are integrins like β2, which are implicated in the immune system due to
they are key in trafficking and function of leukocytes. These integrins β2 are regulated by kindlin-3
and talin as cytoplasmic intracellular domains and those integrins increase neutrophil production
and infiltration into muscle, which aggravate the IR state. Therefore, integrins β2 modulates glucose
homeostasis under high-fat diet (HFD) feeding, predominantly through actions on skeletal muscle and
adipose tissue [26].

Figure 1. ECM remodeling is linked to obesity and IR in adipose tissue. Abbreviations: AKT:
protein kinase B; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERK:
extracellular-signal-regulated kinase; FGF: fibroblast growth factor; FGFR: fibroblast growth factor
receptor; GLUT4: glucose transporter type 4; ILK: integrin-linked kinase; IR: insulin receptor; IRS1:
Insulin receptor substrate 1; MAPK: mitogen-activated protein kinases; mTOR: mammalian target of
Rapamycin; PI3K: phosphatidylinositol 3-kinase; RGD: Arg–Gly–Asp peptide; SOS: Son of Sevenless;
Src: Proto-oncogene tyrosine-protein kinase.

The CD44 is a cell surface transmembrane glycoprotein ubiquitously expressed and it binds to
the ECM, mainly HA and OPN. CD44 regulates different cell functions like cell–cell and cell–matrix
interactions [27], and it has been described three types of molecular action: first, it can bind different
ligands, such as HA, which drives cell behavior regardless the interactions with receptor tyrosine
kinase or actin cytoskeleton. Second, CD44 has coreceptor functions that mediate the signaling of
receptor tyrosine kinases; and, third, CD44 provides a link between the plasma membrane and the
actin cytoskeleton [28]. Regarding obesity and metabolic diseases, CD44 plays an important role in
development of adipose tissue inflammation and IR. CD44 deficiency ameliorates IR and adipose tissue
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inflammation in a diabetic mouse model, and the treatment with an anti-CD44 antibody decreases
blood glucose levels and macrophages infiltration under high-fat diet (HFD) [29]. Indeed, a recent
study showed that treatment with HA nanoparticles in diet-induced obesity mice suppressed adipose
tissue inflammation as indicated by reduced macrophage content, the production of proinflammatory
cytokines and NLRP3 inflammasome activity in epididymal white adipose tissue (WAT), leading to
improved insulin sensitivity and normalized blood glucose levels [30]. In humans, CD44 is highly
expressed in inflammatory cells in obese adipose tissue and serum levels are positively correlated
with IR and glycemic control. Moreover, OPN and CD44 gene expression is increased in human
obese adipose tissue, representing a potential therapeutic target for treating IR [31]. On the other
hand, a genome-wide DNA methylation analysis showed an epigenetic regulation involved in the
dysregulation of visceral adipose tissue in humans. The authors differentiated between insulin-resistant
from insulin-sensitive obese subjects, and CD44 was identified as a novel IR-related gene that could
predispose patients to IR and future T2D in morbid obesity [32].

2.2. Collagens

Collagen is the main ECM component and contributes considerably to the non-cell mass of
the adipose tissue. Collagen is primarily produced by the adipocytes, although the preadipocytes,
endothelial cells and the stem cells can also produce it. Mature adipocytes store energy as triglycerides,
and this drives a strong mechanical stress, which is transferred from the outside to the inside of
the cell and can be decreased by the strong external skeleton. Furthermore, collagens contribute to
cell adhesion, migration, differentiation, morphogenesis, and wound healing in the adipose tissue.
Between the collagens, collagen IV is a major component in each adipocyte as basement membrane,
and this is necessary for adipocyte survival [13,33]. Collagen I is the most abundant component of
ECM [34]. In obesity, accumulation of collagen causes fibrosis of adipose tissue increasing rigidity,
reduces its expandability, and provokes IR [35]. It has been observed in the adipose tissue of obese
mice under HFD, such as collagen IV, which is highly increased in obese humans [36], that collagens I,
III, V, and VI are increased [6,37].

In mice, collagen VI seems to be more specific for adipocytes. It is strongly binds to collagen IV,
which is important for adipocyte survival and both collagens are classified as non-fibrillar types and
their interaction has been suggested to mediate anchoring of the basement membrane to cells [33].
Collagens I, III, V and VI are increased in adipose tissue from obese mice under HFD [6,37]. Collagen
type VI, α3 (COL6A3) is a protein highly expressed in mice adipose tissue and collagen IV KO lead to
an enhancement in metabolic syndrome. Nevertheless, COL6A3 is downregulated in adipose tissue
from obese people, whereas diet- and surgery-induced weight loss increases COL6A3 expression in
subcutaneous WAT which is regulated by leptin treatment decreasing its expression [38]. In this line,
Sun et al. (2014) demonstrated that endotrophin is a cleaved fragment of the α-3 chain of collagen
VI, which has been shown to be implicated in the collagen deposition in adipose tissues during HFD
exposure triggering inflammation and IR [39].

Finally, it has been described other collagen types such as collagen XVIII which is ubiquitously
expressed and structural complex basement membrane proteoglycan which support preadipocyte
differentiation and the maintenance of this differentiation state of adipocytes. Thus, a specific
lack of this collagen in mice leads to reduced adiposity, ectopic lipid accumulation in liver, and
increase very-low-density lipoprotein-triglyceride levels. Collagen XVIII was identified as extracellular
matrix-directed mechanism that may contribute to the control of the multistep adipogenic program [40].

2.3. Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs)

The metzincin superfamily of zinc-dependent metalloproteinases comprises the MMP, ADAM,
and ADAMTS (ADAM with a Thrombospondin type-1 motif) subfamilies [41]. MMP is a family of
calcium-dependent and zinc-containing endopeptidases that are responsible for the degradation of
ECM proteins [42,43]. MMPs play an essential role in regulating ECM remodeling in both normal
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physiology and diseases and are principally involved in wound healing, angiogenesis, and tumor
cell metastasis [43,44]. MMPs’ actions include other biological processes such as adipose tissue
expansion, liver fibrosis, and atherosclerosis [45]. Besides, nuclear MMPs can induce apoptosis in
cardiac myocytes, endothelial cells [46], and renal tubular cells [47], and several of them are able to
bind to DNA promoters, regulating the transcription of either heat shock family proteins or different
growth factors [48].

MMPs family members can be categorized into soluble collagenases (MMP1, -8, and -13),
gelatinases A and B (MMP2 and -9), stromelysin-1, 2 and 3 (MMP3, -10, and -11), matrilysin-1 and
-2 (MMP7 and -26), membrane-type MMPs (MT-MMPs) (MMP14, -15, -16, -17, -24, and -25), and
elastase (MMP12) [44]. Endothelial cells, pericytes and podocytes, fibroblasts, and myofibroblats,
and macrophages secrete MMP-2 and -9 [49]. Those MMPs degrade collagen IV and participate in
vasculature remodeling, angiogenesis, inflammation, and atherosclerotic plaque rupture [50]. MMP-3
and MMP-10 have similar substrate specificities, although MMP-3 has higher proteolytic effects as
compared to MMP-10. Both MMPs degrade fibronectin, laminin, gelatins-I, III, IV and V, collagen
fibers, and proteoglycans. Others like MMP-7 and -26 are able to hydrolize fibronectin, gelatins and
also they break human plasminogen generating a fragment that is angiogenesis inhibitor [51].

The MMPs are inhibited by specific endogenous TIMPs, which comprise a family of four protease
inhibitors: TIMP-1, -2, -3, and -4 [52]. Circulating levels of TIMP-1 and -2 are increased in patients
with metabolic syndrome and T2D [13,53]. MMPs imbalance is associated with the pathophysiology of
obesity and T2D in humans [54–56]. Plasma concentrations of MMP-2 and -9 are increased in people
with obesity [56] and T2D [53,57], but little information is available on the ADAMTS group [41].

The expansion of adipose tissue is associated with adipogenesis and angiogenesis [58] and
different studies have demonstrated that MMPs are involved in both processes. The adipose expression
of MMP-9 positively correlates with the homeostasis model assessment index of insulin resistance
(HOMA-IR) in obese humans [56]. In animal models, MMP-3, MMP-11, MMP-12, MMP-13 and
MMP-14 levels are upregulated in abdominal WAT, whereas MMP-7, MMP-9, MMP-16, MMP-24 and
TIMP-4 were downregulated [59]. On the other hand, MMP-2 and MMP-9 activity are reduced in WAT
from IR animal model induced by a sucrose-rich diet, and no changes were reported in MMP plasma
activity [60,61]. In fact, a recent study has speculated that resistance training could play a key role in
the maintenance of WAT ECM by modulating MMP-2, vascular endothelial growth factor (VEGF)-A,
and TIMP-2 activity [62]. It has also been observed an increased level in WAT of MMP-9 in patients
with obesity related to cardiovascular risk [63]. Although the specific role of these proteins in the
development of obesity is not fully defined, MMPs gene targeting experiments in mice have identified
variable functions of each protein in WAT [59–61,64,65].

The local balance between activated MMPs and TIMPs controls the net result of MMPs activity in
tissues. However, this balance can be altered in some pathological situations leading to an uncontrolled
activation of those MMPs [61]. On this matter, MMP-11 has also observed to be increased in the WAT of
obese insulin-resistant mice, which suggested that dysregulation of MMP-11 may be an early process
in tissue dysfunction [66]. Analyses of visceral and subcutaneous WAT from obese mice and humans
have also pointed that upregulation of MMP-12 could be implied in obesity and IR development [67].
A study has shown that the deletion of MMP-12 exacerbated the HFD-induced hypertrophy, but
improved insulin sensitivity [68]. Because of the upregulation of MMPs in obesity, a decrease in elastin
is observed in obese WAT [13].

In relation to TIMPs dysregulation in obese adipose tissue, it has been observed an increase of
TIMP-1 and -2 in patients with metabolic syndrome and diabetes [53]. In fact, these two enzymes
may be considered as markers of non-alcoholic fatty liver disease (NAFLD) [69–71]. On the one hand,
the authors reported an increase TIMP-1 levels in the serum of patients with gestational diabetes
mellitus [72] and patients with obesity and cardiovascular risk [63]. Nevertheless, the overexpression
of TIMP-1 in pancreatic β-cells pointed protection against diabetes in mice [73], whereas deletion of
this protein provoked an increase in food intake and obesity [74]. These serum protein levels were
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also elevated in obese prediabetic rats [75]. On the other hand, the genetic deletion of TIMP-2 in mice
promotes HFD-induced obesity and diabetes [76] and exercise has been reported to exert a positive
effect in TIMP-2 modulation, improving insulin sensitivity [77]. Other TIMPs, such as TIMP-3 and -4,
possess a crucial role in insulin sensitivity dysfunction. Specifically, a TIMP-3 deletion in mice has
pointed to cause hepatic steatosis and WAT inflammation [78] while an overexpression seemed to
protect from them [79]. Relating to TIMP-4, recent studies have evidenced the pathogenic effect of
TIMP-4 deregulation in IR in different rodent models [80,81].

The expression of ADAMTS1, 4, 5, and 8 proteins in murine adipose tissue was detected, and a
marked upregulation of ADAMTS5 during development of obesity was observed [82,83]; also in rat
adipose tissue during HFD feeding [84]. In addition, Koza et al. have showed a positive correlation
between ADAMTS5 expression in adipose tissue and interindividual fat mass differences in genetically
identical C57BL/6J obese mice, and also some authors have revealed that ADAMTS5 promotes murine
adipogenesis and WAT expansion [85,86].

Elastin is a protein that confers elasticity to many tissues and it is degraded by MMPs [87]. In
detail, MMP-12 (macrophage elastase) is one of the major MMPs degrading elastin in mice [88]. Under
HFD, CD11c adipose macrophages (M2) express immense levels of MMP-12 [68,89]; although the
literature supports that elastin downregulation aggravates IR in obese WAT [90,91].

ECM remodeling is composed of a bulk of processes and proteins, and further research is required
for a better understanding and possible therapies development. TIMPs may act as endogenous
inhibitors of MMPs that are responsible for degrading excess ECM, it is unclear whether the beneficial
effects of increased TIMP or ADAMTS activities are solely due to the suppressed activity of MMPs
and increased ECM stability [92]. Additional research is required for a major understanding of the
implication of MMPs, TIMP, ADAMTS and elastin in metabolic disorders.

2.4. Other Components: Osteopontin, Hyaluronan, and Thrombospondin

The expression of OPN, another relevant component of ECM [93], is highly increased in the WAT
of HFD-induced mice as well as people with obesity [94]. This protein is mostly expressed in WAT
macrophages [95], and its deletion in mice has been demonstrated to prevent WAT inflammation and
macrophage infiltration, and thus improve insulin sensitivity [96–98]. Recently, some studies have
pointed out that plasma OPN is significantly elevated in T2D patients [99,100]. Relating to the possible
key role of OPN in IR, it has also been proposed that baseline values of OPN may predict 3-year T2D
remission in patients undergoing bariatric surgery [101]. In this study, authors observed baseline
circulating levels of OPN significantly correlated with reductions of body weight, body mass index
(BMI) and insulin sensitivity improvements [101].

Other components of WAT ECM are THBS1 and HA. The latter promotes monocyte adhesion and
chemotaxis through the binding to CD44 [102,103]. HA is increased in obese mice comparing with
their counterparts and the HA inhibitor treatment improved adipose inflammation and IR [104,105].
In humans, although some studies reinforced this theory [30,106,107], a recent study has signaled
that HA decreases adipogenesis [108]. Thus, further studies are needed to elucidate the role of HA
in IR. On the other hand, THBS1 is known to be highly increased in insulin-resistant obese mice
and humans [109–112]. In mice, it has been shown that the treatment with recombinant THBS1 may
suppress insulin signaling in the cultured muscle cell, which could represent crosstalk between the
WAT and skeletal muscle in obesity [113]. On this matter, treatments against THBS1 may be a beneficial
therapy against IR, even though further research is required.

3. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Insulin Resistance

3.1. Angiogenesis

Angiogenesis is the physiological process through which new blood vessels form from preexisting
vessels, and it is essential for proper maintenance of normal tissue physiology and tissue remodeling
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and expansion [114,115]. It happens between the vascular (endothelial cells, pericytes and smooth
muscle cells) and WAT components such as pre- or adipocytes, stromal vascular cells, fibroblasts,
macrophages, and other proinflammatory cells [116,117]. These cells can secrete several pro- and
antiangiogenic molecules to modulate angiogenesis through paracrine and autocrine mechanisms.

WAT is one of the most highly vascularized tissues in the body [118]. The blood vasculature
is a closed tubular system that is arranged into tree-like structures composed of arteries, veins, and
interconnecting capillaries [119]. Blood vessels provide oxygen, nutrients, hormones, cytokines, and
growth factors to the tissue. It also supplies the infiltration of inflammatory cells and facilitates
wasting products. Some studies have revealed that angiogenesis often precedes adipogenesis, being
the expansion of WAT associated with active angiogenesis while inhibition of the latter prevents WAT
enlargement, concluding the existence of a dynamic cross-talk between adipocytes and endothelial
cells [120–122]. The current literature supports the essential role of impaired angiogenesis in WAT
dysfunction. A recent work reported a lower gene expression in subcutaneous WAT of angiogenic
markers, insulin sensitivity, and adipogenesis, whereas ECM remodeling markers were increased in
obese and overweight subjects [123].

Although angiogenesis is a physiological process, it can be altered in some diseases such as obesity,
diabetes, cancer, and cardiovascular diseases (CVD), playing a crucial role in these conditions [124]. In
obesity, WAT expands and it consequently needs the formation of new vessels, which also promotes
adipocyte differentiation [125]. However, hypertrophic growth of WAT is not often accompanied
by a similar increased rate of angiogenesis, following dysfunction of the tissue [117,126]. The
angiogenesis process is regulated by factors such as VEGF-A, and VEGF-B, fibroblast growth factor-2,
angiopoietins 1-2 (Ang-1 and Ang-2), leptin, adiponectin, and plasminogen activator inhibitor-1, among
others [127,128]. Especially, VEGF and, specifically, VEGF-A, through VEGF receptor-2 (VEGFR2), play
a crucial role in the angiogenesis process [117,129,130].

On this matter, in spite of VEGF-A function has been quite studied in animal and human models;
however, the results are ambiguous on the local and systemic levels of the protein during obesity due to
its further metabolic effects. Several authors have reported an increase in VEGF serum concentration in
overweight and obese subjects and animal models that also correlated with BMI [131–133]. In contrast,
other studies have failed to reproduce these results [134]. On the contrary, other authors have observed
a decrease in Vegf expression in WAT of obese mice [135,136] and obese humans [137]. These results
and the fact that Vegf overexpression in mice was able to protect them from HFD induced inflammation
and IR [138] are in accordance with a study that reported a higher VEGF levels in morbidly obese
subjects with low IR than in obese subjects with high IR [56], supporting the idea of a close crosstalk
between adipogenesis and angiogenesis [139]. A recent meta-analysis has also pointed out the strong
association of an increase in VEGFs genes expression with metabolic syndrome, although evidence in
obesity is confused [140]. Thus, a better understanding of VEGF-A actions on human metabolism and
angiogenesis is needed.

On the other hand, it has been suggested that when WAT expansion occurs, hypertrophic adipocytes
may become distant from the vasculature, generating hypoxic regions inside the tissue [141–143]. In
this regard, hypoxia may represent a link between impaired adipogenesis and WAT inflammation due
to the stabilization of the proinflammatory, factor hypoxia-inducible transcription factor-1 (HIF-1) and
the consequent activation of proangiogenic factor such as VEGFs, Ang-1 and Ang-2, MMPs, leptin and
plasminogen activators [117,141,144–148].

Even though hypoxia alone is not enough to stimulate angiogenesis, it has been suggested
that it is one of the initiators of angiogenesis in animal models [141,149]. Nevertheless, the role
of WAT hypoxia in human obesity is less compelling. Some studies support the theory observed
previously [137,150,151], whereas others did not find the same results [152,153], and even report
hyperoxic conditions during adipose tissue expansion [147]. Moreover, it has been observed that
although obese insulin-resistant subjects present a reduced expression of angiogenic genes, along with
decreased capillary density and blood flow in WAT [154], O2 partial pressure is unchanged [155–157].
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The absence of hypoxia could be explained by the differences in methodology between studies as
well as the reduced metabolic rate observed in the tissue [158]. However, it appears that hypoxia,
despite not being the only angiogenic stimulus in WAT and the controversial implication in human
obesity, plays a crucial role in angiogenesis and inflammation. A recent study has reported that the
transmembrane glycoprotein CD248 affects several pathways related to hypoxia in adipocytes and
modulates the vascularity of WAT, establishing a link between the lack of oxygen and angiogenesis.
They also observed an increase in CD248 expression in human white adipocytes that was positively
associated with obesity and metabolic complications [159].

Finally, recent research denotes that modulation of angiogenic activity in WAT could result
in benefits for obesity and metabolic disorders treatments [125]. Interestingly, novel subcutaneous
implantation of the allograft adipose matrix with angiogenic and adipogenic factors has promoted
adipogenesis in nude mouse and human dorsal wrist [160]. Thus, a better understanding of components
of WAT and regulation of the microvasculature in human obesity would be of crucial importance to
develop an effective treatment of obesity and associated disorders.

3.2. ECM Remodeling, Insulin Signaling, and Glucose Homeostasis

In obese WAT, both hypoxia and inflammation induce a pathological expansion
of ECM with macrophages recruitment and increased protein expression, such as
collagens [15,21,37,105,111,136,154,161–165]. This collagen accumulation hinders adipocyte expansion,
which causes WAT to exceed its capacity to store fat and culminates in lipid deposition into other
tissues, [161] such as the liver, skeletal muscle, pancreas, and heart [125]. It is known that an
excess of tissue fat deposition promotes local inflammation and IR through the formation of different
lipotoxic molecules [166]. Moreover, recent literature point out that ectopic lipid accumulation
in the pancreas and kidneys may contribute to β-cell dysfunction, which could contribute to IR
development [167,168]. Furthermore, an increase in visceral/intra-abdominal fat deposition is a marker
of ectopic fat accumulation in various organs [169,170].

In particular, liver is one of the tissues with a greater predisposition for the lipid accumulation
associated with dysfunctional WAT. NAFLD, whose prevalence is around 24%, is the most common
chronic liver disease worldwide and obesity represents one of the most relevant risk factors [170].
The prevalence of this disease is of 80% in patients with obesity compared with 15% in healthy
normal-weight individuals [171]. Although NAFLD increases with age in adults, it has been also
reported in children and adolescents due to the high rates of obesity and T2D in these populations [172].

In this pathological condition, lipids are accumulated in the cytoplasm and give rise to lipid
metabolites, leading to an imbalance between fatty acid oxidation, lipid disposal, and storage, inducing
the synthesis of toxic lipid intermediates such as diacylglycerol and ceramides [173,174]. These
compounds are associated with impaired insulin signaling and IR probably through the activation of
hepatic protein kinase C [175,176]. Furthermore, adiponectin, an anti-inflammatory adipokine able
to prevent lipid accumulation and with an insulin-sensitizing effect, is reduced in NAFLD, which
aggravates IR in these patients [177,178]. Beyond insulin sensitivity state, an increase in hepatic lipid
pool is also implied in the development of mitochondrial dysfunction, increased oxidative stress and
the release of proinflammatory cytokines [179], what contributes to tissue inflammation.

Furthermore, it has been also suggested that early fat accumulation in the liver and hepatic IR
precede skeletal muscle IR [180]. Therefore, even though it remains unclear if NAFLD is a cause or a
consequence of IR [181,182], it is known that they are closely associated and hepatic lipid deposition is
a risk factor for the development of CVD and T2D [183].

Additionally, skeletal muscle, one of the most important tissues in the body, represents 40% of
total body mass and is an important regulator of glucose metabolism and lipid utilization [184]. As
in the case of the liver, an excess in intramyocellular lipid (IMCL) accumulation is associated with
the development of IR and T2D [185]. However, an accumulation of IMCLs has also been observed
in highly trained insulin-sensitivity individuals, which also have a high oxidative capacity [186]. In
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this way, IR seems to be produced not only by skeletal muscle fat deposition, but also rather by the
accumulation of the toxic lipid intermediates, such as diacylglycerol and ceramides.

Although fat deposition in the liver and skeletal muscle predominantly exerts a systemic IR
effect, lipid accumulation in the epi-/pericardial areas, blood vessels, and myocardium itself seems to
induce mostly local IR effects, further to contractile dysfunction, among others (reviewed in [187,188]).
Besides, the epicardial fat depot is also suggested to release and secrete cytokines, adipokines and
vasoactive factors to the adjacent myocardium and coronary arteries, thus contributing to CVD [142].

Although nonalcoholic fatty pancreas disease (NAFPD) has been less studied (reviewed in [189]),
human studies have pointed that fat pancreatic accumulation also interferes with insulin secretion,
although more studies are needed to elucidate the mechanism of action in humans [190].

Beyond fat ectopic depots, numerous studies have confirmed that also the increased accumulation
of ECM components and the activation of several ECM receptor pathways in WAT are associated with
IR and obesity-associated inflammation.

Relating to collagen, excessive accumulation can promote IR in humans [191]. Collagen is less
soluble and less digestible by collagenases and cyanogen bromide in patients with diabetes compared to
controls, which can increase the accumulation in different tissues, highlighting liver, bone and skeletal
muscle [192–194]. The collagen depots produce the thickening of capillary basement membrane, a
signal of diabetic microangiopathy, what precedes the T2D [195,196]. In fact, patients with diabetes are
more probably to suffer a bulk of tendon diseases, such as tendinopathy than healthy individuals [197].
Several studies have demonstrated the association between IR and collagen accumulation. A recent
publication has demonstrated a positive association between collagen content in WAT and the degree
of IR in both Chinese and Caucasian populations [198]. Similar results were observed among obese
subjects where insulin sensitivity was evaluated trough hyperinsulinemic-euglycemic clamp. The
grade of fibrosis in WAT was higher in the most insulin-resistant subjects, which made the authors
conclude that WAT fibrosis is associated with IR [199]. Another study also reinforced the idea that IR
was followed by a high rise of type I and type III collagens in WAT biopsies of healthy males [199,200].
It has also observed that excessive collagen accumulation in WAT may inhibit angiogenesis [201].
These studies in humans propose a pathogenic role of collagen accumulation in insulin sensitivity,
confirming the results obtained in various animal models of metabolic diseases [37,39].

Although the mechanisms through ECM remodeling are associated with IR is not completely
known, some authors have proposed several mechanisms [202,203]. De Lin et al. [13] suggested a link
between ECM receptor in WAT to obesity-associated IR. This pathway activation could induce genes
expression implied in metabolically unfavorable processes, such as adipocyte death, angiogenesis
inhibition and proinflammatory macrophage infiltration, which could result in IR.

First, it is thought that excessive accumulation of ECM components in WAT reduces the expansion
of adipocytes and causes cell death through either necrosis or apoptosis [161]. Consequently, adipose
inflammation and IR is caused due to the capacity of necrotic adipocytes to attract proinflammatory
macrophages [204]. Second, as it has already reviewed herein, although an increase in angiogenesis
is a necessary process for WAT expansion, this process is dysregulated in obesity. Lastly, immune
cell infiltration into WAT provides an important link among obesity, IR and diabetes. WAT in
insulin-resistant obese patients shows a major infiltration of macrophages compared with their
respective controls, independently of the fat mass [205]. It has also been suggested that WAT
inflammation may be a cause rather than the consequence of IR since progressive macrophage
infiltration in VAT preceded an increase in insulin serum [205].

In conclusion, angiogenesis and ECM remodeling play crucial roles in WAT inflammation and
novel therapeutic approaches are needed for effective treatment of IR and metabolic associated diseases
such as T2D and CVD. Table 1 summarizes the studies related to extracellular matrix remodeling of
adipose tissue in obesity and insulin resistance.
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Table 1. Main characteristics of studies related with angiogenesis.

Measure/Reference Effect in Blood Levels/WAT Fluid or Tissue Sample Other Effects

VEGF [131] Elevated in patients with
obesity Serum 10 men and 28 women,

all of them with obesity

VEGF-A serum was
reduced after weight
reduction. VEGF-A was
positively associated
with visceral fat
accumulation and BMI

VEGF [133] Elevated in patients with
obesity Plasma 15 obese and 15

normal-weight men
VEGF-A positively
associated with BMI

VEGF [134] No change Serum
21 (13 women/ 8 men)
lean and 44 (32 women/
12 men) obese

VEGF-A [136] Decreased in obesity WAT Obese mice

VEGF [137] Decreased in patients with
obesity WAT 9 (5 men/4 women) lean

and 12 (6/6) obese

VEGF-A expression
negatively associated
with capillary density

VEGF-A [138] - - C57Bl6/SJL mice

VEGF-A overexpression
protected mice from
HFD inflammation and
IR

VEGF-A [56] Overexpression in patients with
obesity WAT 26 obese and 17

normal-weight men

VEGF-A expression was
higher in low IR obese
than in high IR patients

PO2 [150] Decreased in obesity WAT 23 obese and 21 lean
men

PO2 [151] Decreased in obesity WAT
24 (20 women/4 men)
obese and 10 lean (7
women/3 men)

PO2 [153] No differences WAT 7 lean (5 women/2 men),
7 obese women

PO2 [137] Decreased in obesity WAT
9 lean (4 women/5 men),
12 (6/6) overweight and
obese

PO2 [152] No differences WAT 7 lean men, 28 (14
women/14 men) obese

Abdominal
subcutaneous AT
oxygenation is
associated with insulin
sensitivity

PO2 [147] Elevated in obesity WAT 10 lean, 10 obese men

Abbreviations: AT: adipose tissue; BMI: body mass index; HDF: high-fat diet; IR: insulin resistance; PO2: partial
pressure of oxygen; VEGF: vascular endothelial growth factor; WAT: white adipose tissue.

3.3. Potential Targets to Improve Adipose Fibrosis and Dysfunction in Obesity

As described above, obesity-induced adipose tissue expansion drives the continuous production
and deposition of ECM, which is stated as ECM remodeling. The main consequence of this is fibrosis
that impairs adipose tissue plasticity. However, this process is still investigating and there is not
enough evidence to provide a potential therapeutic approach to preserve a healthy ECM under
adipose tissue expansion. Some studies has been focused in antidiabetic drugs such as metformin or
dipeptidyl peptidase-4 (DDP4) to treat T2D. It seems that metformin inhibits excessive ECM deposition
in WAT of obese mice, decreasing the collagen deposition surrounding adipocytes and this is through
AMP-activated protein kinase (AMPK) activation. AMPK is a kinase which is considered the master
regulator of metabolism, activated by low cellular energy status and it may be a therapeutic target for
the treatment of several metabolic diseases such as obesity, diabetes and cancer. Therefore, integrating
AMPK activation may provide a potential therapeutic target to prevent collagen deposition, fibrosis
in adipose tissue and whole-body IR in obesity [206]. In this line, it has been also demonstrated
that metformin prevents hypoxia and reduces HIF1-α accumulation in adipose tissue. Hypoxia is a
consequence of the enlargement of adipocytes and this limits oxygen from the vessels and adipocytes
response by increasing HIF1-α, which is an indicator of adipose dysfunction [207].

DDP4 inhibitors target the enzymatic degradation of incretin peptides and it have been also
recognized for its role to treat T2D. DDP4 has nonenzymatic functions that include its interaction
with adenosine deaminase and other ECM proteins. Then, in addition to its well-known function in
regulation of glucose homeostasis through its enzymatic functions, DPP4 expression in inflammatory
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cells such as macrophages and dendritic cells might play a key role in regulating the inflammation
in adipose tissue through the nonenzymatic function. Actually, DPP4 expression is upregulated in
adipose mononuclear immune cells in obesity-induced IR, which may help to a rapid DPP4-mediated
degradation of incretin peptides via its enzymatic function. Understanding those functions of DPP4
might be a therapeutic target to treat T2D and also to prevent the inflammation, and in the end fibrosis,
in adipose tissue [208].

In conclusion, those drugs are promising targets to treat metabolic diseases and future studies
will explore whether metformin or DDP4 inhibitors could be used to improve the health of individuals
with obesity or to prevent fibrosis and IR in adipose tissue.

4. Epigenetic

Epigenetic mechanisms control gene activity and the development of an organism [209,210]. The
epigenome involves methylation of DNA, histone modifications, and RNA-mediated processes that
regulate cell differentiation, gene expression, parental imprinting, X-chromosome inactivation, and
the stability and structure of DNA. The disruption of this balance may cause several pathologies and
contribute to obesity and T2D [211].

As we described above, WAT hypertrophy is associated with ECM function and angiogenesis.
The formation of new adipocytes is constant during adulthood and this gives a support that epigenetic
mechanisms could participate in regulation of adipose morphology associated to ECM remodeling.
Indeed, a recent study in a large cohort of women has shown that CpG-methylation was related to
adipose morphology on abdominal subcutaneous adipocytes. A higher proportion of CpG-sites were
methylated in hypertrophic compared to hyperplastic WAT, where 2508 differentially methylated
GpG-sites in 638 adipose morphology-associated genes. Interestingly, those genes were up regulated
related to WAT hypertrophy, such as IR, lipolysis, ECM, and innate immunity. Therefore, methylation of
CpG may be critical in determining adipose morphology and constitute a new target to treat T2D [212].

Another study has shown a global human methylome analyzed in visceral adipose tissue from
morbidly obese patients, and they found that the genes associated with the largest methylation
fold change were genes related to metabolic processes, proliferation, inflammation, and ECM
remodeling [213]. On the other hand, subcutaneous WAT also has revealed genes and pathways
differentially methylated within in monozygotic (MZ) twin pairs who are discordant for BMI. It has
been revealed that DNA methylation of 17 genes and 26 pathways in subcutaneous adipose tissue were
related to increased adiposity, demonstrating the combination of different pathogenic changes that
characterize subcutaneous adipose tissue in obesity such as increased ECM remodeling, lipogenesis
and inflammation. Therefore, it seems that subcutaneous adipose tissue needs to adapt to expand
under higher energy intake in obesity and this is epigenetically regulate [214]. Regarding adipose
tissue expansion, it has been also reported three CpG sites located within the hypoxia-inducible
factor 3 subunit alpha (HIF3A), which is part of a group of heterodimeric transcription factors
regulating responses to hypoxia [215]. Even though further studies are needed to understand the
human epigenome, epigenetic modifications clamps promise for therapeutic strategies in obesity and
metabolic diseases.

5. Clinical Studies

As we mentioned above, adipose tissue is the momentary storage of energy as triglycerides. When
the energy balance is a positive energy balance, preadipocytes develop a huge cell shape change and
they differentiate into adipocytes. In this process, ECM remodeling is crucial to allow a proper adipose
tissue expansion [33]. In people with obesity, large-scale transcriptomic analyses of WAT revealed
many inflammatory changes and genes that are significantly involved in several biological processes,
either in stable weight conditions or during weight loss [216]. Khan et al. investigated the metabolic
dysregulation of the body and found that T2D is related to changes in the ECM of adipose tissue [161].
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Another study has shown that single-nucleotide polymorphisms in the promoter region of the MMP-1
gene among Korean subjects are associated with BMI [217].

Transcriptomic analysis of the subcutaneous WAT from obese human subjects, in stable weight
conditions and after weight loss following bariatric surgery has shown that ECM constituents were
significantly upregulated, and also suggested that those elements could play a major role in local
inflammatory phenomena to the alteration of WAT metabolic functions in those obese subjects [218].
In the case of the children population, children with overweight had significantly less total collagen
compared to normal-weight children, whereas, collagen areas were not positive for COL6 and showed
little evidence of collagen surrounding adipocytes [219].

Forty-six subjects with impaired fasting glycemia or impaired glucose tolerance and features of
metabolic syndrome were recruited for a randomized controlled and individualized weight reduction
intervention. In the weight reduction group downregulation of gene expression involving ECM and
cell death was seen. Such changes did not occur in the control group [220]. Healthy participants with
overweight or obesity followed either a 5-week very low calorie diet or a 12-week low-calorie diet
with a subsequent 4-week weight stabilization period and a 9-month follow-up. Changes in leukocyte
integrin gene activity and ECM remodeling were observed [221]. A follow up study during 5 weeks
with very-low-calorie diet and subsequent 4-week weight-stable diet showed a correlation between
stress and ECM-related genes, being highly related to weight regain in adipose tissue biopsies [222].

In addition, the genetic variation in ECM-related genes was investigated in participants with
overweight and obesity of the European DiOGenes study that received an 8-week low-calorie diet
with a 6-month follow-up. The risk of weight regain was increased by the gene variation in POSTN,
LAMB1, COL23A1 FBLN5, and FN1 genes [223].

Forty-four healthy men were involved in an overfeeding protocol with a lipid-enriched diet for 2
months. Subcutaneous abdominal adipose tissue was in the basal state after 14 days and at the end
of the protocol. More than 60 genes encoding proteins of ECM were upregulated such as collagens,
adhesion proteins, proteoglycans, and MMP-2, -9, and -15. This intensive regulation suggests that
ECM remodeling is highly involved during weight gain [224] and implies COL6A3 in adipose tissue
expansion [36,161]. Other clinical trial was carried out in forty healthy individuals overfed for 28
days and skeletal muscle biopsies were taken at baseline, day 3, and day 28. Muscle COL1 and COL3
and MMP-2 mRNA levels were significantly higher 28 days after overfeeding, with no significant
changes in MMP-9, TIMP-1, CD68, and integrin expression. Microarray-based gene set tests shown
that pathways related to ECM receptor interaction, focal adhesion were significantly altered [225].
Table 2 summarizes the clinical studies related to extracellular matrix remodeling.

Table 2. Main characteristics of clinical studies.

Reference Population Sample Main Results

Nho et al. [217]
Population-based cohort
study consisting of 530
subjects

One group with BMI
<25.0 and the other BMI
≥25.0, and MMP-1
polymorphisms by
pyrosequencing analysis
were measured.

MMP-1 frequencies were
significantly higher in
subjects with BMI <25.0

Henegar et al. [218]
Fifty five obese subjects
and 15 lean controls were
prospectively recruited

Transcriptomic signature
of the subcutaneous
WAT in obese human
subjects was analyzed

Phenotypic alterations of
human pre-adipocytes
may lead to an excessive
synthesis of ECM
components
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Table 2. Cont.

Reference Population Sample Main Results

Tam et al. [219]
65 otherwise healthy
children having elective
surgery were selected

Collagen (total and
pericellular), and ECM
gene expression markers
were measured

Increased collagen in AT
is associated with BMI
z-score, suggesting
dynamic interaction
between ECM
remodeling and immune
cells even at an early age.

Kolehmainen et al. [220]

Forty-six subjects with
metabolic syndrome
were randomized either
to a weight reduction
(n=28) or a control (n=18)
group lasting for 33
weeks.

Subcutaneous AT
biopsies were performed
using microarray
technology

Genes regulating the
ECM and cell death
showed a strong
downregulation after
long-term weight
reduction

Roumans et al. [221]

61 healthy overweight or
obese participants
followed either a
very-low-calorie diet or a
low-calorie diet

Abdominal
subcutaneous AT biopsy
samples were collected
for microarray analysis

ECM modification seems
to be involved

Roumans et al. [222]

31 participants with
overweight or obesity
followed a 5-week
very-low-calorie diet
with a subsequent
4-week weight-stable
diet, and then an
uncontrolled 9-month
follow-up.

AT biopsies were
collected for microarray
analysis.

Interaction analysis
between stress- and
ECM-related genes
revealed that several
gene combinations were
highly related to weight
regain.

Roumans et al. [223]

469 overweight and
obese subjects were on
an 8-week low-calorie
diet with a 6-month
follow-up.

AT biopsies were
collected for microarray
analysis.

Variants of ECM genes
are associated with
weight regain after
weight loss in a
sex-specific manner.

Alligier et al. [224]

Forty-four healthy men
were involved in an
overfeeding protocol
with a lipid-enriched diet
for 2 months.

Subcutaneous abdominal
AT biopsies were taken

Reorganization of gene
expression patterns
occurred in AT with an
upregulation of
numerous genes
involved in angiogenesis
and ECM remodeling.

Tam et al. [225]
Forty healthy individuals
were overfed by 1,250
kcal/day for 28days.

Skeletal muscle biopsies
were taken

Skeletal muscle ECM
remodeling occurs early
in response to
over-nutrition with as
little as 3% body weight
gain.

Abbreviations: AT: adipose tissue; BMI: body mass index; ECM: extracellular matrix; MMP: matrix metalloproteases;
WAT: white adipose tissue.

6. Concluding Remarks and Future Perspectives

As we have discussed above, ECM remodeling is a requirement for healthy adipose tissue
expansion. This process also includes the formation of new blood vessels to prevent fibrosis,
inflammation and, ultimately, adipose tissue dysfunction and IR. Thus, an inappropriate ECM
remodeling happens in both humans and rodents with obesity, IR and T2D. However, the precise
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mechanism involved in this process is still unknown; even though some hypothesis has been proposed.
On the other hand, integrin signaling are the main tissue receptors that transduce the signaling from
the outside into the cells and are critical in adipose tissue expansion. Further studies are needed to
determine the mechanisms underlying diet-induced ECM and insulin signaling in adipose tissue, in
which epigenetic modifications could be a novel strategy in the treatment of obesity and metabolic
diseases in new and innovative clinical trials.
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