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Abstract: The modeling of growth phenomena has become a matter of great interest in many different
fields of application and research. New stochastic models have been developed, and others have been
updated to this end. The present paper introduces a diffusion process whose main characteristic is that
its mean function belongs to a wide family of curves derived from the classic Weibull curve. The main
characteristics of the process are described and, as a particular case, a diffusion process is considered
whose mean function is the hyperbolastic curve of type III, which has proven useful in the study of cell
growth phenomena. By studying its estimation we are able to describe the behavior of such growth
patterns. This work considers the problem of the maximum likelihood estimation of the parameters
of the process, including strategies to obtain initial solutions for the system of equations that must be
solved. Some examples are provided based on simulated sample paths and real data to illustrate the
development carried out.

Keywords: growth curves; generalized Weibull curve; Hyperbolastic models; inference in diffusion
processes

1. Introduction

Many researchers from a variety of fields have focused their efforts on modeling dynamic systems
related to growth phenomena. Traditionally, the models used for these purposes have been determin-
istic, and obtained by means of ordinary differential equations. Among such models, those associated
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with sigmoidal growth curves stand out: they display slow growth at the beginning, followed by a fast
(exponential) growth that slows down gradually until reaching an equilibrium value (usually named
carrying capacity or level of saturation). The classic Malthusian, logistic, and Gompertz models gave
way to others, amongst which we can mention the Von Bertalanffy, Richards, monomolecular, Blum-
berg, double sigmoidal, etc., each of which shows some particularity that make them more suitable
to study certain growth patterns. Tsoularis and Wallace [1] reviewed these models and proposed a
generalization of the logistic curve that assimilates them as particular cases.

The literature on this subject abounds, fruit of the great diversity of fields of application where
these models have been used. We may mention, among others, studies concerning phytophenology
[2], animal growth [3], and applications in biomedicine: infectious diseases type H1N1 [4], muscle
fatigue studies [5], as well as tumor growth [6], and modeling of cancer radiovirotherapy [7]. Another
field of interest is the modeling of the exploitation of energy resources [8, 9]. All these works include,
in turn, numerous references to other application fields.

Today, the need to model growth phenomena has led to two lines of research on the rise: the
generalization of classic models and the introduction of new ones. Koya and Goshu [10, 11] presented
a model that includes the most commonly used classical ways to model biological growth as a particular
case; Burger et al. [12] proposed generalizations of the logistic and Gompertz models and applied them
to the study of epidemic outbreaks. Tabatabai et al. [13] introduced the hyperbolastic curves, which
have proved to be very useful in the study of the evolution of tumor processes and stem cell growth [15].
These models have been the starting point for the development of others, such as the oscillabolastic
and T-type models (see [16, 17]).

The Weibull curve has been another widely-studied growth curve. Its origins are to be found in
the probability distribution of the same name, described in detail by Waloddi Weibull in 1951 [18],
although it was previously considered by Fréchet and applied by Rosin and Rammler [19] to describe
the distribution of the sizes of certain particles. Its applications are numerous in fields such as Survival
Analysis, Engineering and, more currently, in the Theory of Extreme Values.

Like other sigmoidal curves, Weibull’s can be obtained from the distribution function of a contin-
uous random variable [20]. This allowed it to be considered as suitable to model growth phenomena
in various fields in addition to those previously mentioned. Among others, applications were made to
Forestry [21] and population growth [22, 23]. In [24] the authors considered the Weibull curve as an
extension of the Gompertz model, which also opens up the possibility of using it in fields such as cell
proliferation and tumor growth. Along the same line we find the hyperbolastic curve of type III, which
was introduced in [13] from a generalization of the differential equation that generates the Weibull
curve. Also, the need to adjust real data has made essential the development of specific software such
as the R-package growth models [25].

Nevertheless, the models mentioned above are deterministic and do not include other information
apart from that provided by the variable under study. Including the fluctuations or perturbations that
could exist in the system led to the consideration of stochastic differential equations, whose solution
are stochastic diffusion processes. Feller was the first author to do so, circumscribing it to the logistic
field despite the fact that no expression of the probability transition functions could be obtained in
closed-form for the resulting process. Later, other logistic processes were constructed by changing the
volatility term of the stochastic differential equation [26].

Among all the diffusion processes obtained from this methodology, those associated with the Gom-
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pertz model have been the most widely studied. One of the first formulations of this process can be
found in [27]. The fact that this process is especially useful for modeling the evolution of tumors and
cell proliferation in general, has made it the object of deep study. This has led to numerous mod-
ifications aimed at adapting the model to different tumor cell evolution patterns (see, for instance,
[28, 29, 30, 31, 32] and references therein).

Other models, such as the one associated with the Bertalanffy curve, have been similarly treated
[33]. However, not all the previous diffusion processes verify that their mean function is a growth
curve of the same type as the one associated with the starting deterministic model. For this reason, some
authors have focused their efforts on obtaining diffusion processes whose mean function is a specific
growth curve, which is useful in real applications in which a certain growing pattern is observed. Along
this line we may mention the works [34, 35, 36], focused on the Bertalanffy, logistic and Richards
curves respectively, and more recently [37, 38] whose goals are the hyperbolastic type-I and the multi-
sigmoidal Gompertz curves, respectively.

The main goal of the present paper is to develop a new diffusion process whose mean function
results in a Weibull-type curve, and its structure is as follows: In Section 2 a wide family of Weibull-
type functions is introduced from the generalization of the ordinary differential equation satisfied by
the classical Weibull curve. The properties of the curves so defined allow extending the deterministic
model to a stochastic one by including a white noise in the ordinary differential equation that originates
these curves. This is the objective of Section 3. In Section 4, the hyperbolastic type-III diffusion
process is introduced as a particular case of the one previously introduced, with its mean function being
a hyperbolastic type-III function of the type introduced in [13]. Due to the usefulness of such a function
for the description of important growth phenomena, a detailed study is carried out on the estimation
of the process parameters. The rest of Section 4 deals with this study, with an emphasis on obtaining
initial solutions for the resolution of the system of likelihood equations that are obtained. Finally, in
Section 5, some simulation examples are considered, whereas Section 6 provides an application to a
real case in the context of the qPCR (Quantitative Polymerase Chain Reaction).

2. A generalization of the Weibull model

Let gν be an integrable real function verifying
∫ t

gν(u)du → +∞ as t → +∞, where ν ∈ Rq

denotes a q-dimensional real parametric vector. On the basis of this function, we consider the following
generalization of the Weibull curve

fν(t) = k − αe−
∫ t

gν(u)du, t ≥ t0 ≥ 0, k, α > 0. (2.1)

This curve satisfies the following ordinary linear differential equation of the Malthusian type

d
dt

fν(t) = fν(t) hν(t), (2.2)

where

hν(t) =
α εν(t)

k − α εν(t)
gν(t) (2.3)

for εν(t) = e−
∫ t

gν(u)du.
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Taking into account (2.1), equation (2.2) can also be expressed as

d
dt

fν(t) = (k − fν(t)) gν(t), (2.4)

which is a generalization of the linear differential equation verified by the Weibull distribution function.
If we consider the initial condition fν(t0) = f0 > 0, solving both equations leads to two expressions

of the curve (2.1). Concretely, the solution of (2.2) is

fν(t) = f0
η − εν(t)
η − εν(t0)

, (2.5)

where η =
k
α
> 0, while the solution of (2.4) is

fν(t) = k −
k − f0

εν(t0)
εν(t). (2.6)

Both expressions can be understood as generalizations of the classic Weibull curve, depending on
function gν. The main difference between them is the limit value of the system under study, usually
called carrying capacity. For curve (2.1) this value depends on the value of the population under study
at the initial instant of observation, specifically

lim
t→+∞

fν(t) = f0
η

η − εν(t0)
(2.7)

whereas for (2.6) this limit is equal to k, and therefore independent on initial value f0. This allows us to
choose the most appropriate expression depending on the context. For instance, when every path has
a particular initial and limit value, despite showing a common Weibull growth pattern, (2.5) would be
more adequate. In the present work, we will presume that the carrying capacity depends on the initial
values, and therefore this last model will be considered.

Since these models are considered in the context of growth phenomena, we will assume that (2.5)
takes positive values. This, together with (2.7), leads to η > εν(t), ∀t ≥ t0. As for the inflection points,
the candidates will be the solutions of d2 fν(t)

dt2 = 0, for which we must solve the equation

d
dt

gν(t) = g2
ν(t). (2.8)

Note that the classic Weibull curve is a particular case of the one presented here considering gν(t) =

βγtγ−1. Other selections of such function lead to different curves, some of which are widely used today.
That is the case of the hyperbolastic curve of type III, obtained by taking

gν(t) = βγtγ−1 +
θ

√
1 + θ2t2

, ν = (β, γ, θ)T . (2.9)

This curve was introduced in 2005 by Tabatabai et al. [13] to solve the problems found when
using classic models, such as logistic, Bertalanffy, or Gompertz, in the study of tumor growth. One
of its main features is its increased flexibility, thanks to which data can be adjusted with different
evolution patterns to those considered by classic models. It has been successfully applied to several
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fields. For example, in [13] it was applied to data from the polio epidemic in EEUU (1949) and from
multicellular tumor spheroids; in [14] it was used to model the growth of solid Ehrlich carcinoma under
a variety of treatments; whereas in [15] it was considered as a mathematical model for studying stem
cell proliferation. Note that this curve approaches the Weibull one when θ vanishes (in fact, parameter
θ determines the distance from this model to the Weibull curve).

As we stated before, the inflection time instants are determined by solving equation (2.8). Usu-
ally, this type of curve presents a single inflection point, but there are several phenomena in which the
maximum level of growth is reached after successive stages, in each of which there is a deceleration
followed by an exponential explosion. Consequently, multi-sigmoidal models must be taken into ac-
count. Considering the Weibull growth pattern, this can be achieved by taking gν(t) =

∑p
k=1 νktk being

a polynomial of order p with real coefficients ν =
(
ν1, . . . , νp

)T
and νp > 0. Then, curve (2.5) becomes

a multi-sigmoidal Weibull curve of the form

x(t) = x0
η −

∏p+1
k=1 eωktk

η −
∏p+1

k=1 eωktk0
,

where ωk = − νk−1
k , k = 1, . . . , p + 1. Recent developments in multi-sigmoidal Gompertz functions with

random noise can be seen in [38].

3. The generalized Weibull diffusion process

This section introduces a diffusion process whose mean function is the generalized Weibull curve
described in the previous section. We start by observing how curve (2.5) verifies the differential equa-
tion of type (2.2). This ensures that the growth phenomenon represented by the curve can be modeled
by a non-homogeneous lognormal diffusion process with such a mean function. Several studies have
modeled similar growth phenomena (see, for instance [35, 36, 37]) and obtained diffusion processes
whose mean functions are specific growth curves.

Following Román-Román et al. [39], where a general study of the non-homogeneous lognormal
diffusion process is carried out, we define the generalized Weibull diffusion process, {X(t); t ∈ I}, as
the process solution of the stochastic differential equation

dX(t) = hν̄(t) X(t)dt + σX(t)dW(t), (3.1)

where I = [t0,+∞) is a real interval (t0 ≥ 0), ν̄ =
(
νT , η

)T
, W(t) is a Wiener process, independent on

the initial condition X(t0) = X0 for t ≥ t0, and hν̄(t) is obtained from (2.3) by considering η = k
α
. Here

σ represents a diffusion parameter linked to random fluctuations.
An explicit formula for the solution of (3.1) is given, for t ≥ t0, by

X(t) = X0 exp
(
Hξ(t0, t) + σ(W(t) −W(t0))

)
, (3.2)

where

Hξ(t0, t) =

∫ t

t0
hν̄(u)du −

σ2

2
(t − t0) = ln

η − εν(t)
η − εν(t0)

−
σ2

2
(t − t0)

being ξ =
(
ν̄T , σ2

)T
.
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In order to find the distribution of the process we must fix the one corresponding to X0. In this sense,
if X0 is distributed according to a lognormal distribution Λ1

[
µ0, σ

2
0

]
, or X0 is a degenerate variable (i.e.

P[X0 = x0] = 1), the finite dimensional distributions of the process are lognormal (note that the
second case is a particular case of the former by considering µ0 = ln x0 and σ2

0 = 0). Hence, ∀n ∈ N
and t1 < · · · < tn, vector (X(t1), . . . , X(tn))T follows an n-dimensional lognormal distribution Λn[ε,Σ],
where the components of vector ε are εi = µ0+Hξ(t0, ti), i = 1, . . . , n, beingσi j = σ2

0+σ2(min(ti, t j)−t0),
i, j = 1, . . . , n those of the matrix Σ.

The transition probability density functions of the process are also lognormal; concretely,

X(t)|X(s) = y ∼ Λ1

[
ln y + Hξ(s, t), σ2(t − s)

]
, s < t. (3.3)

On the other hand, several characteristics of the process can be deduced from the expression

Rλ
ξ(t|y, τ) = eλ1(y+Hξ(τ,t))eλ2(λ3σ

2
0+σ2(t−τ))λ4

,

for different values of λ = (λ1, λ2, λ3, λ4)T ∈ R4. In particular, the mean function is obtained by taking
λ = (1, 1/2, 1, 1)T , τ = t0 and y = µ0, resulting in

m(t) = E[X(t)] = E[X0]
η − εν(t)
η − εν(t0)

,

whereas the choice of λ = (1, 1/2, 0, 1)T , τ = t0 and y = ln x0 leads to the conditional mean function

m(t|t0) = E[X(t)|X0 = x0] = x0
η − εν(t)
η − εν(t0)

.

Note that both functions belong to the type introduced before, which was what we aimed for when we
introduced the present diffusion process.

4. Hyperbolastic type-III difussion process

4.1. Definition of the process

Hyperbolastic curves are a family of curves introduced in [13] with the goal of extending patterns
of behavior, such as the logistic (type I) and Weibull (type III), through the inclusion of hyperbolic
functions. This achieves greater flexibility, which in turn allows for the improved representation of
certain growth phenomena.

As mentioned above, the hyperbolastic type-III curve can be obtained from (2.2) by considering

hν̄(t) =
εν(t)

η − εν(t)
gν(t)

where gν is given by (2.9). The explicit form adopted by the curve is given by (2.5), being

εν(t) = exp (−β tγ − arcsinh(θ t)) .

Following the methodology described in the previous section, we define the hyperbolastic type-III
process as a diffusion process {X(t); t ∈ I} that takes values in R+, and with infinitesimal moments

A1(x, t) = hν̄(t)x,
A2(x) = σ2x2, σ > 0.

Both the distribution of the process and its main characteristics are derived immediately from the
results displayed in the previous section after considering the expression that function εν(t) adopts.
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4.2. Estimating the parameters of the process

One of the main goals of this process is to develop a tool able to fit growth patterns to real cases, and
to this end we will address the estimation of the parameters of the model by means of the maximum
likelihood method. The results below are the adaptation, to the present process, of the development
described in [39]. There, a general treatment of this question was carried out for the non-homogeneous
lognormal process, of which the process dealt with in this paper is a particular case.

For the purposes of estimation our starting point is the observation of d sample-paths at time instants
ti j, (i = 1, . . . , d, j = 1, . . . , ni). Please note that neither the sample sizes nor the times of observation
have to be the same, although we will suppose that the first time of observation is common for all
sample-paths, that is, ti1 = t0, i = 1, . . . , d. Let XT

i be the vector containing the random variables of

the i-th sample-path, that is Xi = (X(ti1), . . . , X(ti,ni))
T , i = 1, . . . , d, and denote X =

(
XT

1 | · · · |X
T
d

)T
. In

addition, we consider a lognormal Λ1[µ1, σ
2
1] distribution as the one followed by X0.

From (3.3), and considering the distribution of X0, the probability density function of vector X is

fX(x) =

d∏
i=1

exp
(
−

[ln xi1−µ1]2

2σ2
1

)
xi1σ1

√
2π

ni−1∏
j=1

exp
(
−

[
ln(xi, j+1/xi j)−mi, j+1, j

ξ

]2

2σ2∆
j+1, j
i

)
xi jσ

√
2π∆

j+1, j
i

, (4.1)

where mi, j+1, j
ξ and ∆

j+1, j
i are given by

mi,m,n
ξ = Hξ(tin, tim) = φi,m,n

ν̄ −
σ2

2
∆m,n

i , ∆m,n
i = tim − tin,

with φi,m,n
ν̄ = ln

η − εν(tim)
η − εν(tin)

, i = 1, . . . , d; m, n ∈ {1, . . . , ni−1},m > n.

For a fixed value x of X, expression (4.1) provides the likelihood function, whose logarithm is

Lx(ς, ξ) = −
(n + d) ln(2π)

2
−

d lnσ2
1

2
−

d∑
i=1

ln xi1 −

d∑
i=1

[
ln xi1 − µ1

]2

2σ2
1

−
n lnσ2

2
−

Z1 + Φξ − 2Γξ

2σ2

where n =
∑d

i=1(ni − 1), ς = (µ1, σ
2
1)T is the parametric vector of the initial distribution, and

Z1 =

d∑
i=1

ni−1∑
j=1

ln(xi, j+1/xi j)

∆
j+1, j
i

, Φξ =

d∑
i=1

ni−1∑
j=1

(
mi, j+1, j
ξ

)2

∆
j+1, j
i

, Γξ =

d∑
i=1

ni−1∑
j=1

ln(xi, j+1/xi j)m
i, j+1, j
ξ

∆
j+1, j
i

.

Under the assumption that ς and ξ are functionally independent, the estimate of ς is

µ̂1 =
1
d

d∑
i=1

ln xi1 and σ̂2
1 =

1
d

d∑
i=1

(ln xi1 − µ̂1)2,

while that of ξ is obtained (see [39] for details) from the system of equations

Ψν̄ −Ωξ = 0, (4.2)
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Z1 + Φξ − 2Γξ − σ
2Z2 + σ2Υξ = nσ2, (4.3)

where

Ωξ =
1
2
∂Φξ

∂ν̄T , Ψν̄ =
1
2
∂Γξ

∂ν̄T , Υξ = −
∂Φξ

∂σ2 , Z2 = −2
∂Γξ

∂σ2 .

Next, we will provide the expression given by the previous system of equations. First, noting

ω
i,m,n
ν̄ =

∂mi,m,n
ξ

∂ 
,  ∈ {β, γ, θ, η}, i = 1, . . . , d, m, n ∈ {1, . . . , ni−1}, m > n,

we have

ω
i,m,n
ν̄ =



$im
ν̄ tγim −$

in
ν̄ tγin if  = β,

β
(
$im
ν̄ tγim ln tim −$

in
ν̄ tγin ln tin

)
if  = γ,

$im
ν̄ %

im
θ −$

in
ν̄ %

in
θ if  = θ,

(η − εν(tim))−1
− (η − εν(tin))−1 if  = η,

being

$il
ν̄ =

εν(til)
η − εν(tii)

, and %il
θ =

til√
1 + θ2t2

il

.

From these last expressions, and from those of Ωξ and Ψν̄, the subsystem of equations (4.2) remains
in the form

Ξν̄ +
σ2

2
+ Ων̄ = 0,  ∈ {β, γ, θ, η}, (4.4)

where we have noted

Ξν̄ =

d∑
i=1

ni−1∑
j=1

ln
(
xi, j+1/xi j

)
− φ

i, j+1, j
ν̄

∆
j+1, j
i

ω
i, j+1, j
ν̄ , Ων̄ =

d∑
i=1

ni−1∑
j=1

ω
i, j+1, j
ν̄ =

d∑
i=1

ω
i,ni,1
ν̄ ,  ∈ {β, γ, θ, η}.

On the other hand, and since

Φξ = Xν̄
1 +

σ4

4
Z3 − σ

2Xν̄
2, Γξ = Xν̄

3 −
σ2

2
Z2, Υξ = Xν̄

3 −
σ2

2
Z3,

where

Xν̄
1 =

d∑
i=1

ni−1∑
j=1

(
φ

i, j+1, j
ν̄

)2

∆
j+1, j
i

, Xν̄
2 =

d∑
i=1

φi,ni,1
ν̄ , Xν̄

3 =

d∑
i=1

ni−1∑
j=1

ln
(
xi, j+1/xi j

)
φ

i, j+1, j
ν̄

∆
j+1, j
i

,

Z2 =

d∑
i=1

ln
(
xi,ni/xi1

)
, Z3 =

d∑
i=1

∆
ni,1
i ,

equation (4.3) transforms into

σ2
[
n + σ2Z3/4

]
+ 2Xν̄

3 − Xν̄
1 − Z1 = 0. (4.5)
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Note that the system of equations (4.4)-(4.5) can not be solved explicitly, and it is therefore nec-
essary to use numerical methods such as Newton-Raphson’s, for which an initial solution is required.
In the next subsection we present a strategy to provide such a solution according to the information
provided by the sample data. This strategy provides an answer to the problems that some authors ac-
knowledge having encountered when finding initial solutions for the adjustment of growth curves (see
for example Tabatabai et al. [13]).

4.3. Initial solutions

When selecting initial values of the parameters with the goal of solving the system of equations
(4.4)-(4.5), we will distinguish between three cases. The reason is that the calculation of the initial σ
value is independent of that made for the rest of the parameters, and η will require initial solutions for
β, γ, and θ. In any case, the information provided by the sample paths must be used.

The following are the strategies used to obtain these initial solutions.

• It is known that, given a random sample from a lognormal distribution Λ1[η, δ], the quotient
between the arithmetic mean and the geometric one provides an estimation of δ. By applying
this to the distribution of X(t), we obtain, for each ti, an estimate of σ2

0 + σ2 (ti − t0); that is,
σ2

i = 2 ln(mi/m
g
i ), i = 1, . . . , n, where mi and mg

i are, respectively, the values of the mean and
the geometric sample mean of the sample paths at ti. The initial value of σ2 is calculated by
performing a simple linear regression of the σ2

i values against ti. Note that if X0 is a degenerate
distribution, then σ2

0 = 0. Otherwise, σ2
0 is previously estimated from the values of the sample

paths at t0.
• Regarding β, γ and θ, we do as follows. Firstly, we fix a value of γ. Taking into account that

hyperbolastic curve of type III is an extension of the classic Weibull, and being θ the distance
between both curves, our approach here is to fit a Weibull model to sample data. The resulting
estimated value γ0 will be considered as the initial value for γ. Next, we look for pairs of values
(β, θ) within a two-dimensional bounded region satisfying the inflection condition (2.8) for a
predefined error threshold, say ε. That is, it must hold∣∣∣∣∣ d

dt
gν(t∗) − g2

ν(t∗)
∣∣∣∣∣ ≤ ε. (4.6)

Note that t∗ is the time instant at which the inflection occurs. To obtain it, a spline function
is previously adjusted to the mean values of the observed sample paths and, subsequently, the
maximum of the derivative of said spline function is calculated.
We propose to use values of ε between 0.0001 and 0.1, depending on the order of magnitude of
the sample data. Finally, initial values β0 and θ0 will be the mean of the resulting values for each
parameter, respectively.
Returning to the value of γ, and as shown later in the simulation application, a study has been
carried out in order to check the stability of solutions subject to variations of γ. As a matter
of fact, and taking into account inflection condition (2.8), it follows that increasing values of γ
require decreasing values of β to hold the condition. This requires widening the search region
for the values of β0, and more specifically considering lower bounds for β0. Furthermore, θ also
increases with γ, although to a lesser extent than β. However, this also implies an increase in the
upper bound for θ0.
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• Finally, we must focus our attention on η. From (3) it follows that the upper limit for the mean of
the process is

k =
E[X0] η
η − εν(t0)

,

from where an initial value for η can be obtained taking into account that

η = εν(t0)
(
1 −

E[X0]
k

)−1

. (4.7)

The value of k, in general, will not be known. Therefore, we suggest taking as an approximation
the last value of the mean sample path. In addition, if t0 = 0, then εν(t0) = 1 and η0 can be
calculated independently of values γ0, β0, and θ0. Otherwise, the values previously calculated for
these parameters must be used.

5. Simulation-based examples

In this section we present some simulation examples that illustrate the developments made in the
context of the hyperbolastic type-III diffusion process. One of the main points of interest will be
obtaining initial solutions for the subsequent estimation of the parameters of the process.

The simulations have been made taking into account the following pattern: by considering ex-
pression (3.2), which links the diffusion process being considered and the Wiener process, we have
simulated 20 sample paths for time instants ranging from t0 = 0 to 50 with step 0.1. This resulted in
501 simulated values for each sample path. X0 has been chosen as a degenerate distribution in x0 = 0.2.

In order to evaluate the quality of the estimation of the process, we have considered the relative
absolute error between the sample mean of the simulated process and the estimated one, that is

RAE =
1
n

n∑
j=1

|m j − m̂ j|

m j
,

where m j and m̂ j are the values of the sample mean function and the estimated ones at t j, j = 1, . . . , n.

Figure 1 shows the simulated sample paths obtained by taking η = 2, β = 0.1, γ = 2.5, θ = 0.01
and σ = 0.01.
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Figure 1. Simulated sample paths. The red line represents the sample mean.

By means of the procedure defined in Subsection 4.3, initial values for the resolution of the max-
imum likelihood system of equations can be obtained. Taking into account that t0 = 0, the initial
value for parameter η was calculated directly from sample mean values. In this case, η0 = 2.015171.
On the other hand, initial value σ0 = 0.007966 was obtained by means of simple linear regression,
as it has been explained previously. With respect to parameters β and θ, the first step is to fix an
initial value γ0. In order to do this, a study was carried out concerning the sensibility of the system
of equations to variations of parameter γ, in terms of how the model fit the data. Indeed, following
previous section, a Weibull model was used with original sample mean data. More in detail, study
showed that every value in interval [2.1, 3.75] would be a suitable γ0. Indeed, and as mentioned in
the previous section, increasing values of γ may affect other parameters, mainly β. This implies that
inflection condition (4.6) may not hold in some situations. In order to address this issue, larger search
regions must be considered. In fact, taking into account the lower bounds for β0 would be a suitable
strategy. Then, we apply our methodology with different values of γ0 in [2.1, 3.75] to simulated data,
establishing [0.001, 0.1]× [0, 0.1] as the search region for β and θ. The results are summarized in Table
1. Final estimations for all cases are η̂ = 2.010156, β̂ = 0.103903, γ̂ = 2.466963, θ̂ = 0.008199 and
σ̂ = 0.017711 with RAE = 0.000825.

Table 1. Initial solutions
(
β0, θ0

)
for different γ0 values.

γ0 2.1 2.25 2.4 2.6 2.75 3 3.25 3.75
β0 0.045118 0.048177 0.050789 0.049525 0.046872 0.045965 0.045267 0.041862
θ0 0.064975 0.060913 0.057124 0.056931 0.056113 0.058260 0.058586 0.049617
Points 1698 1195 889 575 431 254 150 58

It is apparent that high values of γ0 tend to shrink regions for the search of (β, θ), and so the number
of candidates points become smaller. For example, increasing from γ0 = 2.25 to γ0 = 3.25, reduces the
number of suitable

(
β0, θ0

)
values in the same region, from 1195 to just 150. With this in mind, and in

order to avoid null search regions in the case of bigger γ0, lower bounds of β0 (and even upper bounds
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of θ0) should be considered.
A graphical output of some of this results is shown in Figure 2, where the contour plot of function

I(β, θ) =

∣∣∣∣∣ d
dt

gν(t∗) − g2
ν(t∗)

∣∣∣∣∣
is shown with different levels. Selected points in the region, marked in red, are those

(
β0, θ0

)
such that

I
(
β0, θ0

)
< ε = 0.01.
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Figure 2. Contour plots for inflection condition and selected points
(
β0, θ0

)
(in red), for

different values of γ. From left to right, up and down: γ0 = 2.1, γ0 = 2.4, γ0 = 3, and
γ0 = 3.75.

Considering a more detailed example, the particular case of γ0 = 2.3 is shown next. A search
was performed over 1002 points within the [0.001, 0.01] × [0, 0.1] grid. The bounds of this region
were established by considering a midpoint between computational costs and a reasonable spectrum
of potential solutions. Condition (4.6) was checked taking ε = 0.01 at inflection time t∗ = 2.1. This
provided 1079 pairs (β, θ) meeting the requirements. These pairs of points are marked in red in Figure
3. Any of these pairs would suffice to carry out the numerical method, but mean values were also
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considered. Indeed, taking the mean value of every dimension resulted in initial values β0 = 0.049795
and θ0 = 0.059592.

Next, initial value η0 for parameter η was calculated following (4.7). Regarding this expression, the
lower and upper bounds of the sample data must be considered. We propose using the sample mean as
a reference to take bounds. Thus, in this case, l = 0.1 and u = 0.1985056 were the minimum and the
maximum of simulated mean values, respectively. Starting time t0 = 0 led to εν(t0) = 1 independently
of

(
β0, θ0

)
. With this, η0 = 2.015171. It is worth noting that, in the case t0 , 0, initial values β0 and θ0

are mandatory in order to get η0, which indeed always satisfies η0 > εν(t0).
On the other hand, the initial value for diffusion parameter σ was obtained by linear regression over

time and values σ2
j as explained before. Then, initial value σ0 = 0.007966 was estimated with p-value

less than 2 × 10−16.
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Figure 3. Contour plot of function (4.6) from inflection condition. In red, points (β, θ) at
which the function is below the error threshold.

By considering the initial values obtained above, the system of equations (4.4)-(4.5) was solved
subject to the constraint η > εν(t) for every t. Final results are shown in Table 2. In addition, the
relative absolute error between the sample mean function and the estimated one (shown in Figure 4)
were calculated, resulting in RAE = 0.000825.

Table 2. Simulation results in the case σ = 0.01.

Original value Initial solution Estimated value
η 2.0 2.015171 2.010156
β 0.1 0.049795 0.103903
γ 2.5 2.3 2.466963
θ 0.01 0.059592 0.008199
σ 0.01 0.007960 0.017711
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Figure 4. Sample mean values (points) and hyperbolastic curve evaluated at estimated pa-
rameters (blue line).

Focusing on diffusion parameter σ, simulations with η = 3, β = 0.002, γ = 3 and θ = 0.03, were
carried out for values 0.001, 0.005, 0.01, 0.05. Note that an increasing value of σ leads to more vari-
ability in the sample paths. This can affect the procedures previously used, especially in the calculation
of the initial solutions and, therefore, in the adjustment of the model. Results are shown in Table 3.

Table 3. Simulation results for different values of σ.

Initial value Estimated value RAE Inflection point
σ = 0.001 η 3.0010 3.000 0.002 7.0

β 0.0005 0.002
γ 3.0000 2.993
θ 0.0600 0.029
σ 0.0010 0.001

σ = 0.005 η 2.9730 2.976 0.012 6.5
β 0.0005 0.002
γ 3.0000 2.973
θ 0.0620 0.032
σ 0.0050 0.007

σ = 0.01 η 2.9380 3.066 0.013 5.7
β 0.0005 0.002
γ 3.0000 3.071
θ 0.0620 0.027
σ 0.0110 0.013

σ = 0.05 η 2.7520 2.956 0.023 5.6
β 0.0005 0.001
γ 3.0000 3.364
θ 0.0620 0.053
σ 0.0420 0.061
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It can be seen how inflection time decreases as σ increases. This is due to the sample mean function
being less smooth, although that does not greatly affect the values of the initial solutions (for example,
the values of β0 remain constant). In addition, it can be observed that, as σ increases, the final esti-
mates of the parameters, which already consider all sample values, lose precision with respect to the
theoretical values, which causes a slight increase in the RAE values, as expected.

6. An application to a real case

In this section, the methodology proposed above is applied to molecular biology. qPCR, standing
for quantitative Polymerase Chain Reaction, is a well-known technique, widely used to make copies of
an original piece of nucleic acid, both RNA and DNA. This procedure employs the enzyme polymerase
to anneal acid (DNA) strands previously isolated with primers, in order to make two copies which are
finally elongated. These steps, enclosed in a cycle, are carried out at precise temperatures controlled
by a thermocycler.

The main advantage of qPCR over other classical PCR techniques is its ability to quantify the copies
in real time. In this case, and thanks to DNA-binding dyes, the level of fluorescence emitted by the
copies is constantly monitored by specific mechanisms.

One of the most interesting features of qPCR lies in its potential for mathematical modeling. Models
allow the researcher to pinpoint the specific cycle in which a given fluorescence threshold is reached.
Traditionally, the logarithm of the fluorescence has been used. Among others, in [41] Rutledge and
Côté consider the criteria for a simple mathematical development of the relation between cycles, effi-
ciency, and the log-fluorescence threshold. In addition, other studies such as [40, 42, 43] or [44] have
analyzed the periodicity patterns of the process and the use of fixed fluorescence thresholds.

In this section, the new H3 diffusion process (based on the hyperbolastic curve of type III) is used
to model qPCR data from [41], following the methodology proposed earlier. In order to measure the
performance of the new model the RAE is used.
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Figure 5. Left: comparison between original data mean (black), estimated H3 curve (blue)
and the mean of simulated paths of new diffusion (red). Right: original paths (grey) and new
simulated paths (red), (logarithms).
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Table 4. Results of H3 in the case of real qPCR data.

η β γ θ σ

Initial solution 1.011179 0.001 2.98 0.008 0.028498
Estimated value 1.011705 0.0009 3.368802 0.011912 0.028876

The data originate from 20 sample paths of the fluorescence monitored in 40 cycles of a standard
qPCR procedure. The initial distribution, X0 at t0 = 0, is treated as lognormal with parameters µ1

and σ2
1 whose estimations, following Section 4.2, are −5.407914 and 0.103251, respectively. Thus it

follows E[X0] = exp
(
µ̂1 + σ̂2

1/2
)

= 0.004718.
Initial solutions for numerical procedures, aimed to solve maximum likelihood equations, were

obtained following the procedure described in 4.3. Then, γ0 = 2.98 was estimated by means of a
classic Weibull model. Searching in the bounded region [0.001, 0.1] × [0.001, 0.1], values β0 = 0.001
and θ0 = 0.008 were chosen. As in the simulation case, the initial value of η was set from sample mean
values. As a matter of fact, η0 = 1.011179. On the other hand, and by linear regression, σ0 = 0.028498.
With these values, computations of Section 4.2 were performed, following the estimated parameters
η̂ = 1.011705, γ̂ = 3.368802, β̂ = 0.0009, θ̂ = 0.011912 and σ̂ = 0.028876. These values are shown in
Table 4. The value obtained for RAE is 0.011885, which shows a good level of performance.

Graphical results can be observed in Figure 5. In the left side, the estimated H3 curve and the
mean of simulated paths of new diffusion are shown with original mean data. The right side shows
the logarithm of paths of a new hyperbolastic diffusion of type III (red) over original logarithmic data
(grey), as they would show in practical applications.

Similar qPCR data from different replications was used in [37] in the application of the H1 model
(hyperbolastic of type I) by means of the metaheuristic Firefly algorithm. There is no particular reason
to use one or the other hyperbolastic model with this kind of data, but the more sophisticated H3 model
has shown a slightly lower (in the order of 10−3) RAE than H1.

7. Conclusions

Growth curves are commonly used in several fields of research to describe dynamical phenomena.
Their main features are their inflection points and their ability to follow sigmoidal patterns. How-
ever, the choice of the right curve is no trivial matter, particularly when a single phenomenon exhibits
multiple growth patterns.

The present paper considers a generalization of the classic Weibull curve, which is modified by
introducing a generic parametric function gν. Following the methodology described in [35], among
others, we introduce a diffusion process whose mean function covers a wide range of growth curves
(depending on the choice of gν) derived from the Weibull curve. A convenient choice of gν leads to a
diffusion process related to the hyperbolastic curve of type III, which has been recently introduced and
is currently used in fields of application related to cell growth. Several questions arise when estimating
the parameters of the process by means of the maximum likelihood method. Numerical methods are
used to obtain a solution, and to this end initial values are required. We propose a general strategy to
calculate these initial values using information provided by sample data, and which solves the problems
found in this context in the deterministic case. A simulation study is carried out to test the performance
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of the hyperbolastic model, as well as the strategy to solve the maximum likelihood equations.
Note that when considering a stochastic process for modeling growth phenomena, at each time in-

stant we have a random variable that models the behavior of the variable under study, which allows
us to take into account the random fluctuations presented by these phenomena. In addition, by using
dynamic models we may study situations that cannot be approached through deterministic or static
models. Along this line we may mention some techniques associated with the study of temporal vari-
ables such as first-passage times, that is, the time at which the process verifies a certain property for
the first time. We may thus determine the time instant in which the process reaches a certain value or
in which the growth changes speed (inflection).

Finally, an application based on real data from a study about quantitative polymerase chain reaction
has been considered, showing the capability of the process for fitting the fluorescence levels associated
with the amplification of amplicons of DNA.
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