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Abstract 
Magnetorheological fluids (MRFs) are suspensions consisting of ferromagnetic 

microparticles that are usually dispersed in a Newtonian liquid. Under the presence of an 

external magnetic field, the dispersed particles self-assemble through magnetostatic 

interactions giving rise to anisotropic structures oriented in the field direction. The 

strength of these structures depends on the particle concentration and on the applied field 

strength. 

As a result of the field-induced structuration (at the microscopic level), the viscosity of 

the MRF (at the macroscopic level) increases several orders of magnitude and, when the 

viscosity becomes infinite, the system can even bear an applied stresses. In this latter case 

it is necessary to exert a minimum force level (i.e. the so-called yield stress) in order to 

make the suspension flow. The ability to induce such a liquid to solid transition in a 

controlled manner only by changing the particle concentration and the magnetic field has 

been used to implement MRFs as smart electromechanical interfaces in several torque-

transfer devices. Typically, these kind of applications deal with large concentrations and 

strong responsive magnetic particles in order to cover the widest possible range of 

required mechanical properties with only one sample and at moderate applied fields. 

Under these operational conditions, the mean distance between particle surfaces is 

exceedingly small (smaller than particle diameter) promoting the appearance of non-

negligible magnetic multipoles and the necessity of considering multibody interactions 

as non-pairwise ones. This, together with the non-linear ferromagnetic behavior, triggers 

non-linear effects also in the magnetostatic force and, thus, in the material yield stress. 

Despite of this, traditional models in magnetorheology frequently neglect multipoles, and 

when they are considered, forces in the large particle collectivity are simplified. As a 

result, the calculated yield stresses systematically underestimate experimental 

measurements. 

To overcome these shortcomings, a Finite Element Method simulation based on periodic 

boundary conditions and a reduced formulation is proposed here to model field induced 

structures as periodic arrays of magnetic particles. The model includes all multipoles, 

multibody effects and non-linear magnetic behavior in the solution and is applicable 

regardless the particle concentration and field strength. In addition, as it is only restricted 

to periodic arrangements, it properly simulates any strain in the structure whenever the 

shear affine motion is accepted. Predicted yield stress values show a good agreement with 

experimental ones for all investigated fields (from linear to saturation regime) and 

concentrations (evaluated up to 50 vol%). 

The comparison between traditional models and the proposed one highlights that the 

former are useful only at small strains, small concentrations and small field strengths (i.e. 

when the dispersed particles behave as linear magnetic materials). The proposed model 

is also verified in the saturated regime (high fields, at any concentration) when the 

magnetostatic force is truly dipolar. To do so, a simple numerical computation (based 

again in periodic arrangements) is proposed. This dipolar computation shows a perfect 

agreement with the new model and points that long-range multibody effects, introduced 

analytically, have to been maintained in this regime as well. 

The experimental validation is carried out in a conventional magnetorheometer with 

texturized/sandblasted plates to avoid wall-slip phenomena. However, in order to apply 
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sufficiently strong magnetic fields needed to reach the saturation regime, a novel 

magnetorheometer (double-gap) cell was designed, tested and used. This new design 

keeps the main advantages of commercial ones (high shear rate operational range and the 

elimination of normal forces) but also allows applying larger magnetic fields 

guaranteeing a high field homogeneity to measure the yield stress properly. 

The aforementioned yield stress computations and measurements are performed on model 

MRFs in order to keep the systems as simple as possible while still including the key 

ingredients to capture the Physics behind. However, for instance, these kind of samples 

show a very poor stability against sedimentation what does not make them directly 

suitable for applications. In this sense, a novel route to minimize a severe kinetic 

destabilization is described using a second population of magnetic particles. Different 

from traditional methods, where the second population consists of only single or 

multidomain particles, here it is shown that the use of particles with sizes in the limit 

between single and multidomain regimes can enhance the yield stress and the long-term 

stability. 
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Resumen 
Los fluidos magnetorreológicos (FMR) son suspensiones basadas en microparticulas 

ferromagnéticas usualmente dispersadas en un líquido newtoniano. Bajo la presencia de 

un campo magnético externo, las partículas interaccionan magnetoestáticamente 

autoensamblándose y dando lugar a estructuras anisótropas en la dirección del campo. La 

resistencia de dichas estructuras depende de la concentración de partículas y de la 

intensidad del campo magnético aplicado. 

Como resultado de la estructuración inducida por el campo (a nivel microscópico), la 

viscosidad del FMR (a nivel macroscópico) aumenta varios ordenes de magnitud y, 

cuando se hace infinita, el sistema incluso puede soportar un esfuerzo aplicado sin 

deformarse. En tal caso, es necesario aplicar una fuerza mínima (el llamado esfuerzo 

umbral) para hacer fluir a la suspensión. La habilidad para inducir esta transición de 

líquido a sólido de forma controlada simplemente cambiando la concentración de 

partículas y el campo magnético ha sido usada para implementar los FMR como interfaces 

electromecánicas en diversos aparatos de trasmisión de torque/esfuerzo. Normalmente, 

los FMR utilizados en este tipo de aplicaciones constan de partículas con una fuerte 

respuesta magnética y en altas concentraciones con el objetivo de cubrir el intervalo más 

amplio posible de propiedades mecánicas con solo una muestra y aplicando campos 

moderados. 

Bajos estas condiciones de operación, la distancia media entre superficies de partículas 

es extremadamente pequeña (menor que el diámetro de la partícula) favoreciendo la 

aparición de multipolos magnéticos no despreciables y la necesidad de considerar 

interacciones multicuerpo en lugar de interacciones entre parejas. Esto, unido al 

comportamiento ferromagnético no lineal de las partículas, hace que la fuerza 

magnetoestática entre las mismas no sea lineal, y en consecuencia, tampoco lo sea el 

esfuerzo umbral. A pesar de esta fenomenología, los modelos tradicionales en 

magnetorreología generalmente no tienen en cuenta multipolos magnéticos y, cuando lo 

hacen, es a costa de simplificar las fuerzas entre la colectividad de partículas. Como 

resultado, el esfuerzo umbral calculado subestima sistemáticamente las medidas 

experimentales. 

Para superar estas limitaciones, en esta tesis se propone modelar las estructuras inducidas 

por el campo magnético como redes periódicas de partículas magnéticas usando un 

método de elementos finitos basado en condiciones periódicas y formulación reducida. 

El modelo incorpora todos los efectos magnéticos multipolares, multicuerpo y no lineales 

en la solución y es aplicable independientemente de la concentración o el campo aplicado. 

Además, como únicamente está limitado a estructuras periódicas, puede simular cualquier 

grado de deformación en la estructura siempre que se admita como válida la deformación 

afín. Los valores de esfuerzo umbral predichos muestran un buen acuerdo con los 

experimentales para todos los campos (desde régimen lineal hasta saturación) y 

concentraciones (evaluadas hasta el 50 vol%) investigados. 

La comparación entre los modelos tradicionales y el propuesto resaltan que los primeros 

son útiles solo a pequeñas deformaciones, bajas concentraciones y campos de poca 

intensidad (cuando las partículas se comportan como materiales lineales). El modelo 

propuesto también se verifica en el régimen de saturación (campos aplicados altos a 

cualquier concentración) cuando la interacción magnética es solamente dipolar. Para ello, 

se propone un cálculo numérico sencillo (de nuevo sobre estructuras periódicas). Este 
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cálculo con fuerzas dipolares coincide perfectamente con el modelo de elementos finitos 

e indica que las interacciones multicuerpo de largo alcance, introducidas analíticamente, 

también deben considerarse en el régimen de saturación. 

Para llevar a cabo la validación experimental se utilizó un magnetorreómetro 

convencional equipado con platos texturizados y rugosos evitando así fenómenos 

asociados a deslizamiento en paredes. Sin embargo, para aplicar los campos necesarios 

para alcanzar el régimen de saturación se diseñó, validó y utilizó una celda 

magnetorreológica nueva (“double-gap”). Este nuevo diseño mantiene las principales 

ventajas de los diseños comerciales (capacidad de aplicar velocidades de deformación 

elevadas y eliminación de fuerzas normales) a la vez que puede aplicar campos elevados 

garantizando una gran homogeneidad y permitiendo la medida correcta del esfuerzo 

umbral. 

Tanto el modelado como las medidas experimentales anteriores de esfuerzo umbral 

fueron realizadas en FMR modelo con el objetivo de mantener el sistema tan sencillo 

como fuese posible pero incluyendo los elementos clave para observar la física 

subyacente. Sin embargo, este tipo de FMR muestran, por ejemplo, muy poca estabilidad 

contra la sedimentación lo que hace difícil su aplicación comercial directa. En este 

sentido, se describe la adición de una segunda población de partículas magnéticas como 

una nueva ruta para minimizar tal inestabilidad cinética. A diferencia de los métodos 

tradicionales, donde la segunda población de partículas magnéticas consiste 

exclusivamente en partículas mono- o multidominio, aquí se muestra que la utilización 

de partículas con un tamaño en el límite entre ambos regímenes puede mejorar el esfuerzo 

umbral y mantener al sistema estable durante más tiempo.  
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Chapter 1. Magnetic Suspensions 

1.1 Introduction: simple magnetic suspensions, applications 

and related problems 

Over time, Science and Technology, and in particular Material Science, have addressed 

the synthesis and development of diverse systems with specific characteristics. These 

systems are designed in order to be applied in particular processes that require the 

aforementioned characteristics to perform optimally. Unfortunately, this route allows the 

synthesis of particular materials for very particular problems. Thus, it would be desirable 

to develop materials that are capable to adapt to more than one specific case. With this 

target, a new kind of adaptative material has been created, the so-called smart materials 

[1]. 

Interestingly, the properties of these (smart) materials (permeabilities, conductivities, 

stiffness, viscosity, shape, size, etc.) can be tuned by external stimuli such as temperature, 

magnetic and electric fields, strain, electric current, pH or light exposure among others. 

In this context, smart materials open a new and broad spectrum of applications thanks to 

their ability to be controlled ad hoc. Among the different smart materials available today, 

magnetic suspensions and especially magnetorheological fluids (MRFs) have attracted a 

lot of attention due to their multiple applications in research and industry fields (see 

below). 

Generally speaking, magnetic suspension are multiphase systems where, at least, one of 

the phases responds to an applied magnetic field. In the simplest cases, there are only two 

phases. The magnetizable one is constituted by spherical particles, usually made of ferro- 

or ferrimagnetic materials due to their stronger magnetic response, while the second phase 

is a non-field responsive Newtonian liquid that serves as a carrier. Depending on the 

dispersed particle size, two main groups can be distinguished: ferrofluids (FFs) and 

conventional magnetorheological fluids (CMRFs) [2]. In this dissertation, we will focus 

only in the (magneto) rheological response of magnetic suspensions, i.e., how they react 

to an imposed stress/strain when they are under the presence of a magnetic field. Indeed, 

this macroscopic behavior strongly depends on the particle size in the magnetic 

suspension. 

In FFs, the particulate phase has a typical size below 10 nm. Because of this, particles 

continuously suffer from Brownian motion (they are truly colloids) both in the absence 

and presence of magnetic fields. As a result, under an external field, the system gets 

magnetized (i.e. the particle magnetic moment orients according to the external field) but 

remains itself in the fluid state (i.e. the Brownian motion is still capable to keep the 

particles properly dispersed). In this way, FFs can be seen as continuous media with 

homogeneous properties (magnetization and viscosity) only dependent, in many 

circumstances, on the applied magnetic field and temperature [3]. The first feature (FF 

magnetization) allows the FF to be dragged and located in the desired region using 

magnetic field gradients while the second feature (FF remains as a fluid) allows the FF to 

adapt to the surrounding geometry. In this context, major applications consist in using 

FFs as lubricants and sealings of rotating shafts [4-6], cooling systems [7] and contrast 

agents for magnetic resonance image [8] among many others [9]. 
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In CMRFs, the particulate phase has a typical size above 1 µm. These systems exhibit a 

strong response to magnetic fields (much more intense than in FFs) that prevails over 

Brownian motion giving rise to phase separation phenomena (particle structuration), 

extrinsic and/or non-material properties (dependent on the sample size, sample shape, 

experimental conditions, etc.). 

Upon the application of a magnetic field, the particles dispersed in a CMRF become 

magnetized and start to interact through magnetic forces. In only a few milliseconds, these 

interactions lead to the arrangement of the particles in structures that offer some resistance 

to be deformed under flow. As a consequence, the viscosity of a CMRF increases several 

orders of magnitude (so-called MR effect). What is more, if the structures are strong and 

large enough to percolate the sample, the application of the magnetic field can induce a 

yield stress. In other words, it is necessary to macroscopically apply a minimum force to 

make the sample flow. Below this threshold, the suspension behaves as a viscoelastic 

material [10-12]. 

Such a strong, reversible and fast change in the rheological behavior has motivated the 

use of CMRFs in torque transfer application with electronic control. Typical examples 

are clutches, brakes or dampers included in diverse engineering branches: civil, 

automotive, military equipment, prosthetic, robotic, haptic, etc. [13,14]. Furthermore, 

CMRFs can also be seen in chemical sensors [15] and in biomedical applications [16]. 

Unfortunately, so simple magnetic suspensions only consisting of particles dispersed in a 

liquid, as described so far, do not fulfill the stringent requisites of current commercial 

applications. On the one hand, due to their high surface to volume ratio, FF nanoparticles 

tend to irreversibly aggregate [2]. On the other hand, CMRF microparticles are prone to 

aggregate as well, in this case, due to the magnetic remanence still present in the particles 

when the external field is switched off. But, undoubtedly, the most important problem 

towards real life applications of CMRFs is their tendency to settle down because of the 

absence of Brownian motion and the large density mismatch between the particles and 

the carrier fluid [12]. In addition, depending on the continuous phase, the surface of the 

bare ferromagnetic particles can be oxidized or degraded over time reducing their 

magnetic response [17]. In the case of CMRFs, this also supposes a limit in their lifetime 

since an oxidized surface is weaker than the particle body what leads to more and more 

severe particle wear. As a result, CMRFs become a cake that is impossible to be 

redispersed [18,19]. 

1.2 Partial solutions: sophisticated magnetic suspensions 

Common approaches to avoid interparticle aggregation in the absence of magnetic fields 

are based on the use of surfactants to cover the particles surfaces through a steric 

stabilization mechanism. Once adsorbed at the surfaces, the surfactant tails provide a 

layer (of a few nm) that acts as an elastic spring preventing direct contacts between the 

particles, increasing the typical interparticle distance and with this, reducing the effects 

of dispersion, surface and/or remanence interactions. Obviously, the choice of the 

surfactant must be done according to the nature of the particulate and continuous phases 

so that surfactant molecules are tightly adsorbed onto particles but their tails are fully 

stretched into the carrier liquid [2,3]. 

Steric stabilization together with other well-known techniques in Colloid Science (for 

example, interparticle repulsion due to electric double layers) have shown to be effective 

against particle agglomeration and favor sample redispersibility both in FFs [2,3,20] and 
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CMRFs [21-23]. However, they are not effective in preventing particle sedimentation in 

CMRFs. 

With this in mind, several modifications of the traditional formulation of CMRFs have 

led to a steady growth of the family of magnetic suspensions today. In this sense, it has 

been proposed the substitution of the Newtonian carrier fluids by yield stress fluids such 

as thixotropic media (e.g. MR greases, MRGs, and gels) to reduce the sedimentation rate 

[24-26]. Particles can be trapped in a thixotropic network when the latter exhibits a 

sufficiently large yield stress in comparison to the gravitational stress. However, if the 

yield stress is too large the MR effect can be reduced. Typically, redispersion is hindered 

when using thixotropic carriers. An extreme case corresponds to magnetorheological 

elastomers (MREs) where the carrier liquid is substituted by an elastic matrix (for a recent 

review on this topic see Ref. [27]). More frequently, the matrix gelation occurs in the 

presence of the magnetic particles and under the presence of an external field. In this way, 

the particle structuration occurs at the initial stage of the curing process and the field-

directed structures are frozen in the matrix (so-called anisotropic or aligned elastomers). 

Due to their (visco) elastic nature, both MRGs and MREs are commonly used in 

applications that do not require the sample to flow but in passive apparatuses (where 

changes in the elastic modulus via magnetic fields are useful) such as dampers or 

piezoresistive sensors. 

Other alternatives to improve particle stability against sedimentation, keeping the 

continuous phase as a liquid, have been mainly directed towards changes in the particulate 

phase. Probably the simplest modification is given by bimodal MRFs. These suspensions 

use a Newtonian liquid as a carrier but consist of, at least, two particle populations with 

different size. One of them belongs to the typical size scale of CMRFs, around 1 µm, to 

guarantee a noticeable MR effect. The other one with diameters one order of magnitude 

higher (around 10 µm) [28-30] or in the nanometric scale [31,32]. The incorporation of 

another population in the micronsized range cannot mitigate sedimentation problems as 

neither of these particles suffer from Brownian motion, however these mixtures show a 

smaller viscosity in the absence of a magnetic field than the corresponding monomodal 

CMRF with the same solids concentration. This enhances the MR effect and sample 

handling. On the other hand, bimodal suspensions containing nanoparticles can reduce 

sedimentation rate probably due to the collisions (driven by Brownian motion) between 

both particle populations but, at the same time, they increase the viscosity in the absence 

of a field and reduce the MR effect because of the smaller magnetic properties of the 

nanoparticles.  

Changes in the particle shape have been also investigated. In this sense, it has been shown 

that the use of magnetic fibers, instead of spheres, in MRFs can enhance the MR effect 

for the same solids concentration. In addition, fiber suspensions do not settle down so 

easily because fibers, randomly oriented in the absence of field, entangle themselves 

resulting in a yield stress bearing structure. Unfortunately, this fact also restricts their use 

to dilute systems since highly concentrated samples already have a non-negligible yield 

stress that precludes sample flow or handling in the absence of magnetic fields [33,34]. 

Several steps have been done also in reducing particle density. An example is the case of 

tailor-made core-shell particles (typically a magnetic core surrounded by a non-magnetic 

shell). The shell is usually made of a softer material, e.g. a polymer, so that effective 

density of the core-shell structure is smaller than the original particle [35]. In addition, 

these shells would act as a protection layer against chemical corrosion improving the 

MRF lifetime [36,37]. Other examples are hollow particles (shells of magnetic material) 
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[38] and magnetic latexes (latex particles doped with magnetic nanoparticles) [39,40]. In 

all these synthesis routes, a compromise must be reached always since magnetic response 

of the new particles is weakened by the relative magnetic content reduction. 

In another approximation, magnetic particles are mixed with non-magnetic ones. When 

the latter particles are abrasive, these MRFs can be used in polishing applications since 

the places where abrasion takes place can be located using an external field [41-43]. Also, 

non-magnetic particles (without any other especial property) mixed with magnetic ones 

have shown to be useful since they can enhance or maintain the MR effect of CMRFs for 

the same solids concentration. As a result, one obtains MRFs with the same performance 

but being lighter and cheaper [44]. 

Nevertheless, the most characteristic magnetic suspension using non-magnetic particles 

are the so-called inverse ferrofluids (IFFs) [45,46] where non-magnetic particles are 

suspended in a FF. As a first approximation, IFFs can be regarded as magnetic analogues 

of CMRFs (that is, the magnetization mechanism of the sample does not depend on which 

phase, particulate or continuous, is magnetic). Moreover, from the point of view of the 

synthesis, IFFs exhibit some advantages basically because there exist multiple, simple 

and well-known methods to synthesize non-magnetic microparticles with tailored 

properties [12]. In this sense, particles can be produced with a strict control of their size 

(monodisperse suspensions), made of materials with densities that match those of the FFs 

(so that sedimentation is avoided), they can be surface activated (to eliminate aggregation) 

or fluorescently labeled (to track their movement). 

These features allows a wide control over IFFs what makes them a model system useful 

for academia. In contrast, the yield stress developed in IFFs is significantly smaller in 

comparison to CMRFs and hence their use in commercial applications is very limited. Of 

course, magnetic particles can be dispersed also in a FF to recover usual values of the MR 

effect. In addition, certain control is gained over the carrier fluid in comparison to 

CMRFs. However, since both phases are magnetic, this control is not decoupled from the 

particle behavior what can lead to different particle structures and interactions [47-49]. 

Further progress in material engineering can be achieved by introducing in the 

formulation other constituents that are dependent on other external variables. In this 

sense, in the previous literature it has been proposed the synthesis of particles with an 

anisotropic magnetic content or particles that are responsive to both magnetic and electric 

fields so that particle orientation can be tuned ad hoc giving rise to more complex 

structures with anisotropic yielding behaviors [50]. Similarly, carrier fluids experiencing 

a liquid to solid transition upon temperature change have also been studied as a bridge 

between MRFs and MREs [51] and thus sharing the major advantages of both families. 

Finally, more sophisticated formulations concern magnetic suspensions where magnetic 

and non-magnetic liquid phases coexist. In this case, in addition to the stabilization step 

to get appropriate FFs, it is necessary to choose a carrier fluid that is immiscible with the 

FF and an additional stability agent to avoid phase separation due to coalescence. A 

classic example are magnetic emulsions (FF drops in a non-magnetic carrier fluid) 

commonly used as model systems for magnetic suspensions with deformable constituents 

[52,53] but also applied in optics as filters [54]. Furthermore, magnetic emulsions have 

been also used as carriers (so-called ternary systems) to enhance sedimentation stability 

and MR effect [55]. Of course, if a magnetic particulate phase is already present, neither 

of two liquids have to be magnetic to get a MR effect as in the case of capillary MRFs. 

For these systems, the secondary fluid phase shows a surface activity completely opposed 
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to the main carrier fluid, therefore it prefers to be adsorbed on the particle surfaces 

connecting or bridging them. As a result, magnetic particles also form a structure in the 

absence of magnetic field avoiding sedimentation but making sample flow more difficult 

[56]. 

1.3 Dissertation scope and structure 

As shown in Sec. 1.1, MRFs are currently present in multiple and different day to day 

applications. Therefore, the deepest knowledge possible about these systems is necessary 

in order to correctly predict their behavior and optimize their performance. However, due 

to the inherent complexity of MRFs, most of the current analytical and simulation 

methods are based on assumptions that are hardly reachable in real systems, namely: low 

concentrations, low particle magnetic response and low applied field strengths [57]. 

The two first assumptions allows regarding MRF particles as a group of interacting 

dipoles while the last one allows treating them as a linear material. On the contrary, 

common MRF applications typically use highly concentrated systems (above 30 vol%) 

[58], particles have a strong magnetic response (magnetic multipoles are present) and are 

ferromagnetic (inherently non-linear when interrogated along typical applicable magnetic 

fields). 

Due to the high concentration and strong magnetic response, the small interparticle 

distance favors the appearance of induced multipoles above the dipolar one. In addition, 

the magnetic interaction related to these multipoles is not additive. This stage involves 

accounting for multipolar and multibody effects what, together with the ferromagnetic 

behavior of the particles, results in a highly non-linear MR response [59]. As a 

consequence, current methods in the literature commonly underestimated the main 

rheological properties (viscosity, yield stress, viscoelactic moduli) of MRFs. In this 

dissertation a numerical method is proposed to take into account these multibody, 

multipole and non-linear effects on the yield stress of periodic particle arrangements. 

Regarding MRF colloidal instability, Sec. 1.2 points that current solutions are only partial 

and, although they can slow down sedimentation and aggregation rates, they also entail 

some undesired effects such as reduction of the MR effect or more sophisticated and 

delicated synthesis routes. In the second part of this dissertation, we explore the use, for 

first time, of particles with sizes in the limit between single and multidomain regimes as 

a secondary particle population of bimodal MRFs showing better stability and MR effect. 

The dissertation is organized as follows: first, specific objectives are itemized in Chapter 

2. Next, current available methods reported in the literature together with the theoretical 

basis to understand the rheological behavior of CMRFs are summarized in Chapter 3. In 

addition, particular experimental and numerical techniques employed in the dissertation 

are explained in Chapter 4. 

From Chapter 5 to Chapter 8 we propose the aforementioned numerical method (based 

on the Finite Element Method) to compute the yield stress in CMRF including all 

multipoles, multibody and non-linear effects. Throughout these chapters, the proposed 

model is validated experimentally, compared to traditional numerical methods (to see its 

advantages/shortcomings) and verified analytically in the saturated regime, where only 

dipolar contribution remains. In order to reach that regime and properly carry out the 

rheological measurements, a new magnetorheometer double gap cell, Chapter 9, was 

developed. 
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In the last chapters the novel bimodal MRFs are investigated. To do so, first the 

rheological behavior of MRFs, exclusively based on those particles in the frontier 

between single and multidomain regimes, is evaluated in Chapter 10. Then, these particles 

are used as a secondary population of bimodal MRFs (Chapter 11 and Chapter 12). Basing 

on experiments and simulations, it is shown how the performance of the bimodal MRFs 

can be optimized depending on the particle material. 

Finally, the dissertation ends with the main conclusions. 
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Chapter 2. Objectives 
There are two major objectives behind this dissertation. First, to conceive a numerical 

method to reproduce the yield stress of real CMRFs. Second, to come up with a novel 

route to synthesize MRFs of larger yield stress and colloidal stability using bimodal 

suspensions.  

Other specific objectives read as follow: 

 To present a numerical method that is capable of predicting the yield stress of 

CMRFs when these are regarded as periodic arrangements of particles. The model 

has to take into account multibody, multipole and non-linear effects. Thus, it 

should be applicable regardless the particle concentration, the applied magnetic 

field strength or the magnetic constitutive behavior of the particles. 

 To study how the particular particle arrangement influences the yield stress. 

 To study how interparticle gaps, typically present due to particle roughness and 

oxidized layers, affect the yield stress. 

 To explore the predictive behavior of the proposed model in the post-yield regime.  

 To identify the shortcomings of the traditional methodologies in view of the 

present model.  

 To validate the proposed method using experiments in the dilute and concentrated 

regimes as well as over linear and saturating field regimes. 

 To validate the proposed method using a theoretical analysis on unbounded 

lattices of dipoles in the saturation regime. 

 To develop a micromechanical model to compute shear and normal stresses in 

isolated chains of dipoles. 

 To design, construct and validate (using experiments and numerical simulations) 

an improved magnetocell device capable to generate homogeneous and saturating 

fields. 

 To measure the rheological properties of CMRFs in the saturation regime. 

 To study (using experiments and numerical simulations) how particle coercivity 

affects the rheological behavior of MRFs based on particles in the single-

multidomain limit. 

 To measure the yielding behavior and kinetic stability of bimodal MRFs with a 

secondary particle population based on particles in the single-multidomain limit. 

 To extend the proposed numerical method to these novel bimodal MRFs giving 

an explanation to their yielding behavior. 

 To compare the performance (MR effect and long-time stability) of these novel 

bimodal MRFs with CMRFs and classic bimodal MRFs.  
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Chapter 3. Theoretical Overview 
As it happens to any other kind of suspension, the macroscopic behavior of MRFs is 

intimately connected to the phenomena that take place at the microscale. In this chapter, 

the theoretical basis necessary to describe and understand the particle micro-

configuration, its dynamics and how these two are related to the MRF collective response 

are summarized. In the following, MRFs will be treated as suspensions of 𝑁 magnetic 

monodisperse spherical particles (diameter 𝑑) in a continuous phase occupying a total 

volume 𝑉. 

The chapter is mainly focused on CMRFs. In these particular MRFs Brownian motion 

can be neglected. However, at the end of the chapter some comments about FFs are given. 

Brownian motion plays a key role in FFs.  

3.1 Microscopic description of the dynamics 

For any colloid or suspension (i.e. it does not have to be magnetic), the size of the 

dispersed particles is large enough to consider the carrying continuous phase as a fluid 

with a well-defined viscosity 𝜂𝑐. When a dispersed particle moves within the continuous 

viscous phase, for example under the action of an external force, it will distort the fluid 

velocity and pressure fields. Thus, the new velocity and pressure fields will drag 

neighboring particles hence changing their positions. With this in mind, any particle acts 

over its neighbors through a fluid-mediated force, the hydrodynamic one �⃗�ℎ, that would 

not exist if the particles were in vacuum. 

Generally speaking, hydrodynamic forces are not pairwise analytical interactions and 

hence they cannot be written solely in terms of the relative positions or dynamic state (i.e. 

velocity and/or acceleration) of the particles. Instead, since they are fluid-mediated forces, 

they depend on the dynamics of the surrounding fluid. Consequently, the fluid flow 

problem must be solved first. 

In most cases, the carrier fluid is found to be incompressible (i.e. it is a liquid). Thus, the 

mass-balance (continuity) equation reduces to: 

 ∇ ∙ �⃗� = 0 (3.1) 

where �⃗� is the fluid velocity field. In addition, if the fluid satisfies the Newton’s viscosity 

law (i.e. the fluid is Newtonian), the hydrodynamic pressure 𝑝 and velocity fields are 

coupled by the momentum-balance (Navier-Stokes) equation: 

 
𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� =

1

𝜌𝑐
(−∇𝑝 + 𝜂𝑐∇

2�⃗� + 𝑓𝑒𝑥𝑡) (3.2) 

where 𝜌𝑐 is the fluid density and 𝑓𝑒𝑥𝑡 is the body force (per unit volume) exerted by any 

external agent. Furthermore, if the flow is not isothermal an additional energy-balance 

differential equation must be solved. However, for incompressible fluids this equation is 

uncoupled (i.e. it does not depend on velocity or pressure fields) and can be solved a 

posteriori. Nevertheless, through this dissertation temperature dependencies and heat 

transfer phenomena are not considered. As a result, the energy equation does not need to 

be solved. 
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In order for the problem to be well-posed, Eqs. (3.1) and (3.2) must be completed with 

boundary conditions. These strongly depend on the specific geometry under study. 

However, they typically consist in imposing uniform velocity fields as far-field conditions 

or periodicity (for unbounded media), a prescribed fluid velocity (the so-called no-slip 

condition) or a pressure on the confining walls (for bounded media). 

Finally, the coupling between the carrier fluid and the particle movement is accounted for 

by imposing no-slip conditions in all particle surfaces, that is, �⃗� must meet the particle 

velocity on its surface: 

 �⃗� = �⃗⃗� + �⃗⃗⃗� × 𝑟𝑆 (3.3) 

here �⃗⃗� is the translational velocity of the particle, �⃗⃗⃗� is its angular velocity and 𝑟𝑆 is a 

vector joining each point of the particle surface (where �⃗� is evaluated) with the particle 

center. 

The particle velocity is given by Newton’s second law: 

 𝑚
𝑑�⃗⃗�

𝑑𝑡
= �⃗� = �⃗�ℎ + �⃗�𝑛ℎ   (3.4) 

 𝐼
𝑑�⃗⃗⃗�

𝑑𝑡
= �⃗⃗� = �⃗⃗�ℎ + �⃗⃗�𝑛ℎ (3.5) 

where 𝑚 is the particle mass, 𝐼 is its inertia tensor and �⃗� (�⃗⃗�) is the total force (torque) 

acting over the particle. This force (torque) can be split into the hydrodynamic force 

(torque) �⃗�ℎ (�⃗⃗�ℎ) plus contributions coming from non-hydrodynamic effects �⃗�𝑛ℎ (�⃗⃗�𝑛ℎ), 
that is, all those forces (torques) that the particles would experience if they were not 

immersed in a fluid. 

Regarding the hydrodynamic interaction, the total force exerted by the fluid over the 

particle is given by the integral, over the particle surface 𝑆𝑝, of the fluid total stress tensor 

�̃�: 

 �̃� = −𝑝𝛿 + 𝜂𝑐2�̃� (3.6) 

where 𝛿 is the second-order identity tensor and �̃� is the strain rate tensor which can be 

written in terms of the flow kinematics (velocity field) as �̃� = [∇�⃗� + (∇�⃗�)𝑇] 2⁄ . 

Therefore: 

 �⃗�ℎ = ∫ 𝑡𝑛𝑑𝑠
𝑆𝑝

≡ ∫ �̃� ∙ �̂�𝑑𝑠
𝑆𝑝

 (3.7) 

here �̂� is the surface normal vector pointing to the fluid. Due to the continuous nature of 

the fluid, this does not only exert a punctual force over the particle but a continuous 

distribution over its surface. As a consequence, the hydrodynamic interaction is not 

reduced only to a total force; the fluid also exerts a moment. In its more general form, the 

first moment of the hydrodynamic force can be written as follows: 

 �̃� = ∫ 𝑡𝑛𝑟�̃�𝑑𝑠
𝑆𝑝

 (3.8) 
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where the symbol 𝑡𝑛𝑟�̃� is understood as the dyadic product of the vectors 𝑡𝑛 and 𝑟𝑆 (note 

that given two vectors �⃗� and �⃗⃗�, the second-order tensor 𝑎�̃� would read in index notation 

𝑎𝑖𝑏𝑗). However, in fluid dynamics it is more useful to split �̃� in its symmetric and 

antisymmetric parts. The former part is called the stresslet: 

 �̃� =
1

2
(�̃� + �̃�𝑇) (3.9) 

and it does not have any effect on the dynamics of rigid particles (see below). On the 

contrary, it can be shown that the antisymmetric part �̃� = (�̃� − �̃�𝑇) 2⁄  is just the torque 

due to �⃗�ℎ [1]: 

 �⃗⃗�ℎ = ∫ 𝑟𝑆 × 𝑡𝑛𝑑𝑠
𝑆𝑝

 (3.10) 

and thus, responsible for the particle rotation. 

As it can be seen, the coupling between particle and fluid motion is done in both 

directions. The velocity of the fluid �⃗� depends on the particle translational �⃗⃗� and angular 

�⃗⃗⃗� velocities through the no-slip condition (Eq. (3.3)) and the particle velocities depend 

on the fluid velocity through the hydrodynamic force and torque (Eqs. (3.7) and (3.10)) 

that accelerates/decelerates the particles. 

Equations (3.1)-(3.10) govern the dynamics of the (Newtonian) continuous and (solid) 

dispersed phases using first principles. However the resultant differential equation system 

is extremely complicated to solve. Firstly, just regarding the fluid dynamics, Navier-

Stokes equation is a nonlinear partial differential equation and approximations are needed 

to be solved. Secondly, a many-body problem with nonlinear and irreversible features 

results when a dispersed phase is incorporated to the fluid. In addition, due to the absence 

of Brownian motion, the problem becomes deterministic what requires tracking the 

explicit movement of a vast number of particles precluding any analytical treatment.  

Tackling the problem from a numerical point of view is neither easy. Most common 

Computational Fluid Dynamics (CFD) simulations are mesh-based techniques where the 

fluid domain has to be discretized (in mesh elements). In this way, the governing partial 

differential equations (Eqs. (3.1) and (3.2)) can be transformed in algebraic ones to be 

solved by a computer. However, in MRFs problems, the fluid domain continuously 

evolves when the particles change their position. Consequently, at every time step both 

the computational domain and the mesh should adapt to the new particle configuration. 

Furthermore, in order to evaluate the time derivative in Eq. (3.2) at the present time step, 

the velocity field in the previous time step has to be projected onto the new mesh (by 

interpolating the velocity field) [2]. 

Taking this into consideration together with the fact that: (i) the mesh has to be dense 

enough around every particle (to properly compute the force and torque acting on them), 

(ii) the great difference between the involved lengths scales (in a CMRF, the typical 

particle diameter is around 1 µm but the sample size is usually around 0.3-1 mm) and (iii) 

the large number of unknowns (pressure plus three velocity components) one can see that 

solving Eqs. (3.1)-(3.10) is not straight forward and some approximations are required. 
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3.1.1 Stokes approximation 

In many cases, the study of MRFs is done under conditions where both fluid and particle 

inertia is negligible in comparison to the viscous dissipation at both sample and particle 

length scales. Therefore, Navier-Stokes equation is reduced to the Stokes equation: 

 ∇𝑝 = 𝜂𝑐∇
2�⃗� (3.11) 

In this expression, external body forces are assumed to be conservative and therefore can 

be included in the pressure term (LHS). Consequently, 𝑝 will not stand for the absolute 

pressure and derived forces exerted by the fluid (see Eqs. (3.6) and (3.7)) will not account 

for the effects of that body forces. As it can be seen, Stokes equation is linear and it does 

not contain any explicit dependence on the time. Consequently, although a new mesh 

would be required at each time step, the flow field in the previous steps is not needed. It 

only depends on the current particle configuration and particle velocities (that are 

introduced as boundary conditions, that is, known values from previous step). 

Although the use of Eq. (3.11) instead of Eq. (3.2) allows to get rid of projecting and time 

deriving the flow field, solving the MRF dynamics by mesh-based CFD techniques still 

implies a large computational effort due to the large number of nodes present in the 

meshes. During the evolution of the system the highest velocity gradients, and with them 

the highest forces (see Eqs. (3.6) and (3.7)), are localized in the gaps between solid 

surfaces and confining walls (if apply). In order to accurately resolve the velocity 

gradients, these gaps should be densely meshed increasing the computational cost. The 

situation is aggravated with the number of particles and geometry complexity restricting 

mesh-based CFD simulations to very simple systems with a small number (tens) of 

particles and/or 2D domains [3-5]. 

This problem can be partially overcome using techniques that do not require adaptive 

meshes such as the Lattice Boltzmann Method (LBM) [6,7] where an initial mesh can be 

defined without further rearrangement because the flow field is only solved on those 

nodes that are not occupied by the particles. Notwithstanding, a dense mesh is still needed 

to solve plausible field gradients. Finally, mesh-free methods such as Smooth Particle 

Hydrodynamics (SPH) [8,9] or Dissipative Particle Dynamics (DPD) [10,11] have also 

been used to study MRFs. The basic difference with respect to mesh-based CFD methods 

lies on regarding the continuous phase not as a continuum but as an ensemble of discrete 

‘fluid elements’ at the mesoscale. These interact with each other in a way that, once time- 

and space-averaged, are able to reproduce the fluid macroscopic behavior. Nevertheless, 

these mesh-free methods base their accuracy on the ‘fluid element’ size, that is, the 

smaller the ‘fluid element’ the greater the resolution of the flow field around the particles. 

Thus, although they are more versatile and some computational effort can be saved, the 

necessity of a very fine discretization (of the continuous phase instead of the 

computational domain) to resolve the flow problem does not make them the best choice 

to deal with MRFs neither. 

From the previous discussion it seems that solving explicitly the flow field around the 

particulate phase is an unaffordable task from a computational point of view. To 

circumvent this problem, other methods have been proposed taking advantage of the 

linear properties of Stokes equation. As a first approximation, any flow field, regardless 

of its complexity, can be expressed around a given point 𝑟0 by its Taylor series: 

 �⃗�(𝑟) = �⃗⃗�0 + �̃�0 ∙ (𝑟 − 𝑟0) + Ω⃗⃗⃗0 × (𝑟 − 𝑟0) (3.12) 



28 

 

where Ω⃗⃗⃗ = (∇ × �⃗�) 2⁄  and it should be understood that the velocity �⃗⃗�0, the shear rate 

tensor �̃�0 and the vorticity Ω⃗⃗⃗0 are evaluated on 𝑟0. As it can be seen, according to Eq. 

(3.12) any flow can be approximated, till first order, as the sum of simpler flow fields 

(Fig. 3.1): a homogeneous flow field �⃗⃗�0, a pure straining flow field �̃�0 ∙ (𝑟 − 𝑟0) and a 

pure rotational flow field Ω⃗⃗⃗0 × (𝑟 − 𝑟0). 

     

     

Figure 3.1: Any flow field (a) around a given point (red dot) can be decomposed in 

three simpler flows: a homogeneous component (b), a pure rotational component (c) and 

a pure straining component (d). 

Linearity implies that the effect of the total flow field over the immersed particles can be 

also split in the individual effects that each of the previous simpler flow fields have on 

the particles separately. In this way, for any flow field, one can evaluate the associated 

total hydrodynamic force/torque over a particle by addition of the corresponding 

force/torque suffered by the particle under a homogeneous, pure rotational and pure 

straining flow. 

With this, the problem reduces to solve the total flow field (Eqs. (3.1) and (3.11) together 

with the boundary condition (3.3)) around a spherical particle under these three simpler 

flows. It can be shown that, applying Eqs. (3.7) and (3.10) at the particles surface, 

(a) (b)

(c) (d)
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hydrodynamic force and torque over the particle, till first order, can be written as follows 

[1]: 

 �⃗�ℎ = 3𝜋𝜂𝑐𝑑(V⃗⃗⃗ − �⃗⃗�) (3.13) 

 �⃗⃗�ℎ = 𝜋𝜂𝑐𝑑
3(Ω⃗⃗⃗ − �⃗⃗⃗�) (3.14) 

Equation (3.13) is commonly also known as Stokes’ drag law. Several points can be 

highlighted from Eqs. (3.13) and (3.14): 

1. The hydrodynamic force (torque) comes only from the homogeneous (pure 

rotational) flow field, that is, a spherical particle immersed in a homogeneous 

(pure rotational) flow does not experience any hydrodynamic torque (force). 

2. The pure straining flow does not exert any force or torque over the particle. 

3. The flow field and particle movement are supposed to be non-inertial. Thus both 

force and torque can be expressed as a function of the relative velocity, that is, it 

is always possible to find a reference frame where the particle or the fluid are 

quiescent. 

4. A linear dependence exists between the force (torque) and the translational 

(rotational) velocity because Stokes equation is linear. 

From the previous discussion, it could be inferred that the pure straining flow is not 

affected by the presence of the particles as no net force or torque are developed. However, 

this result arises from the spatial symmetry of the straining flow field around a spherical 

particle. Actually, particles are really under a stresslet only due to the pure straining flow 

component: 

 �̃� =
5

6
𝜋𝜂𝑐𝑑

3�̃� (3.15) 

but, as solid bodies, they can bear any stresslet without straining (�̃� = 0 inside the 

particles), and consequently �̃� does not play any role in their movement. Note also that, 

because of this, the stresslet in Eq. (3.15) is not expressed in terms of the relative strain 

field as it happens for the force and the torque (Eqs. (3.13) and (3.14)). 

Till now, it has only been considered that the continuous phase has a negligible inertia. 

Taking into consideration the small size of the particles it can also be supposed that the 

particles are inertialess, and hence, the total force, �⃗�, and torque, �⃗⃗�, acting on them must 

be zero. According to Eqs. (3.4) and (3.5), this implies that the hydrodynamic force/torque 

is always balanced by the non-hydrodynamic forces/torques: �⃗�ℎ = −�⃗�𝑛ℎ and �⃗⃗�ℎ = −�⃗⃗�𝑛ℎ. 

Introducing these conditions in Eqs. (3.13)-(3.15) yields: 

 �⃗�𝑛ℎ = 3𝜋𝜂𝑐𝑑(�⃗⃗� − V⃗⃗⃗) (3.16) 

 �⃗⃗�𝑛ℎ = 𝜋𝜂𝑐𝑑
3(�⃗⃗⃗� − Ω⃗⃗⃗) (3.17) 

 �̃� =
5

6
𝜋𝜂𝑐𝑑

3�̃� (3.18) 

Note that in this new set of Eqs. (3.16)-(3.18), force and torque values do not depend on 

the kinematic state of the continuous phase as it happens in Eqs. (3.13)-(3.15). Now the 

forces and torques are the non-hydrodynamic ones that usually depend on the particles 

positions.  
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Equations (3.16)-(3.18) govern the particle dynamics in the suspension (whenever inertia 

is neglected) but it should be born in mind that, in these expressions, the quantities V⃗⃗⃗, Ω⃗⃗⃗ 

and �̃� are not simply constants. They contain the homogeneous, pure rotational and pure 

straining parts of the total flow at the particle position, that is, the flow externally imposed 

(V⃗⃗⃗∞, Ω⃗⃗⃗∞, �̃�∞) plus the perturbation flow field created by each dispersed particle 

(V⃗⃗⃗𝛼 , Ω⃗⃗⃗𝛼, �̃�𝛼) at that position. Focusing only in the translational motion, it is clear that the 

homogeneous part of the flow field created by particle 𝛼, V⃗⃗⃗𝛼, will depend on its 

translational velocity and non-hydrodynamic force, V⃗⃗⃗𝛼 = 𝑓𝛼(�⃗⃗�𝛼 , �⃗�𝑛ℎ,𝛼, ⋯ ). 

However, if particle 𝛼 is also rotating at �⃗⃗⃗�𝛼 and suffering a non-hydrodynamic torque 

�⃗⃗�𝑛ℎ,𝛼, it will create another flow field that will have homogeneous, pure rotation and pure 

straining components, all of them dependent on �⃗⃗⃗�𝛼 and �⃗⃗�𝑛ℎ,𝛼. In the same sense, if the 

particle 𝛼 is under a straining flow, it will create another flow field with its corresponding 

components that depends, in this case, on the stresslet �̃�𝛼. 

Therefore, when all homogeneous components are joined together, it yields V⃗⃗⃗𝛼 =

𝑓𝛼(�⃗⃗�𝛼 , �⃗�𝑛ℎ,𝛼, �⃗⃗⃗�𝛼, �⃗⃗�𝑛ℎ,𝛼, �̃�𝛼) with the main advantage that the previous dependence is 

linear in all variables due to Stokes flow properties. Now extending the previous 

reasoning to rotational and straining components induced by the rest of the particles we 

arrive to: 

 V⃗⃗⃗ = V⃗⃗⃗∞ +∑𝑓𝛼
𝛼

 (3.19a) 

 Ω⃗⃗⃗ = Ω⃗⃗⃗∞ +∑�⃗�𝛼
𝛼

 (3.19b) 

 �̃� = �̃�∞ +∑ℎ̃𝛼
𝛼

 (3.19c) 

Since each function (𝑓𝛼, �⃗�𝛼, ℎ̃𝛼) is linear in its variables, when they are introduced in Eqs. 

(3.16)-(3.18) they can be rearranged so that the particle dynamics governing equations 

can be written as a matrix equation: 

 (
�⃗⃗⃗�𝑛ℎ

�⃗⃗⃗�𝑛ℎ
�̃�

) = (

ℛ𝐹𝑢 ℛ𝐹𝜔 ℛ𝐹𝐸
ℛ𝑇𝑢 ℛ𝑇𝜔 ℛ𝑇𝐸

ℛ𝑆𝑢 ℛ𝑆𝜔 ℛ𝑆𝐸

) ∙ (

�⃗⃗⃗� − �⃗⃗⃗�∞

�⃗⃗⃗⃗� − �⃗⃗⃗�∞
�̃�∞

) = �̃� ∙ (

�⃗⃗⃗� − �⃗⃗⃗�∞

�⃗⃗⃗⃗� − �⃗⃗⃗�∞
�̃�∞

) (3.20) 

where the bold symbols consist of the corresponding magnitude of each particle appended 

one after another, that is, �⃗⃗⃗�𝑛ℎ = (�⃗�𝑛ℎ1, �⃗�𝑛ℎ2, ⋯ , �⃗�𝑛ℎ𝑁). Note that with this notation, each 

element of �̃� is not a scalar but a tensor of the proper order to satisfy the linear 

relationship between the dynamic and kinematic variables. The terms V⃗⃗⃗∞, Ω⃗⃗⃗∞ and �̃�∞ are 

usually known because they are imposed macroscopically, hence the solution is expressed 

in terms of the relative velocities. 

�̃� is known as the grand resistance matrix. It consists of the proper combination of the 

𝑓𝛼, �⃗�𝛼 and ℎ̃𝛼 functions to relate the particles kinematics (translational and rotational 

velocities) and fluid strain to the dynamics acting over a given particle. Importantly, both 

�̃� [12] and the LHS of Eq. (3.20) only depend on the relative position of the particles, 
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therefore the kinematics of each particle can be obtained just evaluating both terms in the 

current position of the particles and computing �̃�−1. Once the velocities are solved, the 

next particle configuration can be obtained by integration over time. This scheme 

constitutes the basis of the Stokesian Dynamics (SD) technique [13]. 

As it can be seen, Stokes flow linearity allowed the construction of a matrix system to 

solve the particle dynamics but nothing has been said about how to compute the elements 

within �̃�. Frequently, these are obtained by computing the flow field around a pair of 

particles that is subjected to the three aforementioned components of a general flow: 

homogeneous, pure rotational and pure straining. Depending on the interparticle distance 

this total flow field is solved using a reflection/perturbation method (large distances above 

2𝑑), the lubrication approximation (short distances, from 1𝑑 to 1.01𝑑) or tabulated values 

coming from simple CFD simulations for intermediate interparticle distances [14,15]. 

Note that according to these methods, the elements within �̃� are really accounting for 

two-particle interactions only. Nevertheless, it is stated that during �̃�−1 computation, 

these elements are combined and thus many-body interactions are finally considered [13]. 

It is not the scope of this dissertation to find the particular expressions for the elements 

within �̃�. Nevertheless, it is worth mentioning two of their basic features. On the one 

hand, at long interparticle distances 𝑅𝛼𝛽, the flow field and, with it, the hydrodynamic 

force induced by particle 𝛽 at the position of particle 𝛼 scales as ∝ 𝑅𝛼𝛽
−1 . Clearly, this is a 

long ranged force that obliges to consider force contributions even from particles that are 

widely separated [16]. 

On the other hand, at short 𝑅𝛼𝛽, the main hydrodynamic force is due to the lubrication. 

For the case of two particles, approaching at a constant velocity 𝑈 along their common 

axis, this force is repulsive and scales as ∝ 𝑈 (𝑅𝛼𝛽 − 𝑑)⁄ . As it can be seen, the 

lubrication force diverges with the surface-to-surface distance meaning that particle 

contacts take an infinite time to happen. Actually, contacts may occur in real systems 

because of surface roughness and the existence of non-hydrodynamic interactions. 

The computation of �̃� is a tedious process. However, it can be implemented numerically 

without a high computational cost since it starts from already known/tabulated functions. 

Moreover, the resolution of particle dynamics using SD does not imply any 

approximations (whenever inertia can be neglected) regarding hydrodynamic interactions 

but, at the same time, does not require explicitly solving the continuous phase dynamics. 

As a result, it becomes a molecular-like treatment of the problem where only particle-

particle interactions (dependent only on the relative positions) are considered. 

Although molecular-like SD simulations require a smaller computational effort in 

comparison to mesh-based CFD ones, they are still computationally expensive as a dense 

matrix (remember that hydrodynamic interactions are long-ranged and thus couple the 

motion of all dispersed particles regardless their separation) inversion is needed for each 

time step. Looking at Eq. (3.20), it can be seen that in order to follow the system evolution 

with time, it is necessary to solve only the two first rows concerning translational and 

rotational velocities of the particles. Therefore, from a computational point of view, the 

more expensive required step is to invert a matrix of dimension 6𝑁 × 6𝑁, where 𝑁 is the 

number of simulated particles and 6 refers to the total number of components of the force 

and torque together. Note that the last row in Eq. (3.20) concerning stresslets is not needed 

if only the particle configuration is pursued. However, it will be shown in Sec. 3.4 that 
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stresslets are fundamental to understand sample rheology. Nevertheless, their 

computation can be seen as a separated problem once particle velocities are solved. 

Dense matrix inversion constitutes a strong limitation to the implementation of SD 

simulations to study MRF systems with only hundreds of particles, usually in 2D [17,18]. 

If SD are applied outside these borders, some kind of approximations in the 

hydrodynamics interactions, neglecting their short or long range effects, for example, are 

needed [19-22]. 

As commented above, available methodologies described so far to solve hydrodynamics 

(based on Stokes or Navier-Stokes equations) are too expensive from a computational 

point of view to model MRFs. This is essentially because the number of particles 

explicitly simulated to properly resemble real systems and do averages is typically above 

1000. Thus, most frequently used approaches aim to solve particle and fluid dynamics 

separately, designing (or not) a coupling scheme to obtain consistent solutions for the 

whole system. In these approximations, particles move in the same spatial domain 

occupied by the fluid, that is, there is not a volume exclusion and particles do not displace 

the surrounding fluid during their motion. 

Particle dynamics are governed again by Newton’s second law (Eq. (3.4)), usually 

neglecting rotational degrees of freedom. Although different expressions can be taken in 

order to consider neighboring particles, inertial flow and other effects on the 

hydrodynamic force [23,24], the latter is typically given by the Stokes’ drag law: 

 �⃗�𝑆 = 3𝜋𝜂𝑐𝑑(�⃗⃗� − �⃗�) (3.21) 

where �⃗� is the fluid velocity at the particle position. This velocity together with the 

pressure fields are computed by solving continuity equation (Eq. (3.1)) and a modified 

Navier-Stokes as follows: 

 
𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� =

1

𝜌𝑐
(−∇𝑝 + 𝜂𝑐∇

2�⃗� + 𝑓𝑒𝑥𝑡 + 𝑓𝑐) (3.22) 

Equation (3.22) differs from Eq. (3.2) in the term 𝑓𝑐. It stands for the force exerted by all 

the immersed particles over the fluid and is the responsible for the coupling between 

particle dynamics and fluid flow problems [25]. In order to satisfy Newton’s third law we 

have: 

 𝑓𝑐 = −
1

𝑉𝑐
∑�⃗�𝑆,𝛼
𝛼

 (3.23) 

where 𝑉𝑐 is the fluid unit volume and the summation on 𝛼 runs over those particles inside 

𝑉𝑐. This scheme (usually known as two-way coupling) roughly considers the effect of a 

particle on the fluid that surrounds it reducing/increasing the fluid velocity to adjust it to 

the particle one. The many-body problem of particle dynamics is usually solved through 

molecular-like simulations (such as Molecular Dynamics or Discrete Element Method, 

see Chapter 4) while the flow problem is addressed again using FEM (in this case, 𝑉𝑐 in 

Eq. (3.23) is the mesh element volume) or SPH (𝑉𝑐 would be the cutoff distance related 

to each ‘fluid particle’), for example. 

The two-way coupling scheme is capable to deal with 3D systems containing a large 

number of particles (𝑁 ~ 1000), but it can take a considerable computation time. In 

addition, through this section it has not been addressed other factors that could influence 
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the particle dynamics and that may increase the required computational effort. Examples 

of these factors can be confining wall effects [26,27], complex flow geometries [28], non-

spherical particles [29-31], rotational degrees of freedom [32,33], polydispersity [34-36] 

or complex non-hydrodynamic interactions that do not have to be pairwise [37-39]. Thus, 

in order to include and study these new features but still keeping a reasonable 

computational time and cost, a final approximation is commonly used. It is the one-way 

coupling, where 𝑓𝑐 = 0. This scheme completely disconnects particle and fluid dynamics. 

Both problems are solved independently: the flow field is solved first without any 

immersed particle and then it is introduced in the particle dynamics problem through 

Stokes drag law. 

3.2 Magnetic interactions 

In Sec. 3.1 it has been shown that, at least theoretically, it is possible to compute particle 

trajectories in a CMRF as long as the non-hydrodynamic forces acting over all dispersed 

particles are known at each time step. In this section only magnetostatic forces are 

addressed because they are the most relevant ones in magnetorheology. It will be seen 

that, in order to exactly compute the magnetostatic forces, it is not only needed the particle 

spatial configuration but also how the total magnetic field, flux and magnetization 

distribute in the whole system. 

Ultimately, these distributions will depend on the magnetic behavior of the dispersed 

particles, and therefore on the particle material and size. Magnetic particles used in the 

formulation of CMRFs are usually made of (soft) ferro- or ferri-magnetic materials such 

as iron (and its oxidized derivatives: magnetite and maghemite), nickel, cobalt or their 

alloys. The reason for this is that these materials exhibit a reasonably large magnetization 

under moderate magnetic fields (e.g. for a field strength of ~100 kA/m, magnetization 

reaches values of the order of 1000 kA/m (iron), 300 kA/m (nickel) and 100 kA/m (cobalt) 

[40]). 

Regarding their size, particles within a CMRF have a typical diameter of the order of 

microns (above 1 m). From an atomistic perspective, these can be seen as multidomain 

magnetic bodies: each particle can be divided in regions (domains), separated by Bloch 

walls, where the atomic spins are strongly coupled, all pointing in the same direction. As 

a consequence, in every domain there is a net magnetization. In the absence of an external 

magnetic field, the direction related to each domain within the particle is randomly 

distributed yielding a null particle magnetization. 

When an external magnetic field �⃗⃗⃗�𝑒𝑥𝑡 is applied (acting as a homogenous background 

field), domains initially aligned, or almost aligned, with the field start to grow at the 

expense of misaligned domains. As a result, the net particle magnetization becomes non-

zero. Then, as �⃗⃗⃗�𝑒𝑥𝑡 is further increased, favorable domains grow larger and magnetization 

increases till all atomic spins are aligned with �⃗⃗⃗�𝑒𝑥𝑡. At this moment the particle is fully 

saturated, that is, increasing �⃗⃗⃗�𝑒𝑥𝑡 does not result in a higher magnetization level [41]. 

The atomistic description of the particle magnetization mechanism is an extraordinarily 

complex task that is out the scope this dissertation. Fortunately, this is not necessary as 

all these microscopic events involved can be accounted for working with ‘macroscopic’ 

magnitudes (understood at the particle scale). In this sense, the previous discussion can 

be simplified defining the particle magnetization as a function of the total magnetic field 
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evaluated inside the particle (the so-called internal field �⃗⃗⃗�𝑖𝑛𝑡) with some 

phenomenological features [42]: (i) it should saturate to a constant value 𝑀𝑆 at high 

magnetic field, (ii) it should increase linearly (slope of 𝜇𝑖 − 1) at low magnetic fields, 

(iii) it should be zero in the absence of the field and (iv) it should be collinear with the 

magnetic field. Note that previous description captures a non-linear response and assumes 

the absence of coercivity or anisotropy. 

There are several models for the magnetization-field constitutive equation. Through this 

dissertation, the Fröhlich-Kennelly model was chosen as it is commonly done in the 

literature: 

 �⃗⃗⃗� = (𝜇𝑟(𝐻𝑖𝑛𝑡) − 1)�⃗⃗⃗�𝑖𝑛𝑡 =
(𝜇𝑖 − 1)𝑀𝑆

𝑀𝑆 + (𝜇𝑖 − 1)𝐻𝑖𝑛𝑡
�⃗⃗⃗�𝑖𝑛𝑡 (3.24) 

where 𝜇𝑟(𝐻𝑖𝑛𝑡) is the scalar and field-dependent relative permeability while 𝑀𝑆 and 𝜇𝑖 
(saturation magnetization and initial magnetic permeability, respectively) are the two 

parameters of the model. It must be noted again that �⃗⃗⃗�𝑖𝑛𝑡 stands for the total magnetic 

field inside the particle and this one does not meet with �⃗⃗⃗�𝑒𝑥𝑡. 

Generally speaking, if a finite magnetic body is magnetized, its induced magnetization 

will act as a source of a secondary magnetic field �⃗⃗⃗�𝑠𝑒𝑐 defined over the whole space, 

inside and outside the body [41]: 

 �⃗⃗⃗�𝑠𝑒𝑐 =
1

4𝜋
∫ 𝜌𝑀

�⃗⃗�

𝑅3
𝑑𝑣

𝑉𝑝

+
1

4𝜋
∫ 𝜚𝑀

�⃗⃗�

𝑅3
𝑑𝑠

𝑆𝑝

 (3.25) 

where the first (second) integral is done over the body volume (surface), �⃗⃗� is position 

vector of the point where �⃗⃗⃗�𝑠𝑒𝑐 is computed, relative to the considered differential element 

of the magnetic body during integration; 𝜌𝑀 = ∇ ∙ �⃗⃗⃗� is the magnetization charge density, 

𝜚𝑀 = �̂� ∙ �⃗⃗⃗� is the magnetization charge surface density and �̂� is the normal vector of the 

body surface (pointing outwards). 

Clearly, �⃗⃗⃗�𝑠𝑒𝑐 depends on its source magnetization (how it is distributed in the magnetic 

body), on the body shape as well as on the evaluation point (it is not homogeneous). 

Traditionally, when �⃗⃗⃗�𝑠𝑒𝑐 is evaluated inside its own source body it becomes to be known 

as the demagnetization field �⃗⃗⃗�𝑑𝑒 since it has opposite direction to its source 

magnetization. In the following we will keep this convention, saving the name �⃗⃗⃗�𝑠𝑒𝑐 only 

for the secondary field created by the body outside it. 

Thus, for the case of an isolated body, it is easy to identify the only two contributions to 

the internal field as �⃗⃗⃗�𝑖𝑛𝑡 = �⃗⃗⃗�𝑒𝑥𝑡 + �⃗⃗⃗�𝑑𝑒. In Fig. 3.2, the relative permeability for an 

isolated magnetizable spherical particle (�⃗⃗⃗�𝑑𝑒 = −�⃗⃗⃗�/3) is shown as a function of 𝐻𝑖𝑛𝑡 
and 𝐻𝑒𝑥𝑡. As it can be seen, it undergoes three differentiated regimes (the boundaries 

indicated by illustrative vertical lines): a linear regime at low fields where 𝜇𝑟(𝐻𝑖𝑛𝑡) → 𝜇𝑖, 
a saturation regime at high magnetic fields where 𝜇𝑟(𝐻𝑖𝑛𝑡) → 1 and a transition regime 

connecting previous values, which is responsible for the non-linear behavior. These three 

regimes will appear throughout this dissertation as the magnetic response of the dispersed 

particles is intimately connected to the rheological response of the CMRFs. 
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Figure 3.2: Relative permeability for an isolated magnetizable spherical particle as a 

function of the internal field 𝐻𝑖𝑛𝑡 and the external one 𝐻𝑒𝑥𝑡. The Fröhlich-Kennelly 

model is assumed with 𝜇𝑖 = 1000 and 𝑀𝑆 = 1600 kA/m. These parameters correspond 

to the carbonyl iron typically used in magnetorheology [43]. 

Results shown in Fig. 3.2 can be computed easily because only an isolated particle has 

been regarded. On its part, CMRFs are constituted by a large number of magnetized 

particles therefore, a particle 𝛽 in a given CMRF will be exposed to a local field that is 

the sum of �⃗⃗⃗�𝑒𝑥𝑡 plus all the non-homogenous secondary fields created by the rest of the 

magnetized particles  �⃗⃗⃗�𝑠𝑒𝑐,𝛼: �⃗⃗⃗�𝑙𝑜𝑐 = �⃗⃗⃗�𝑒𝑥𝑡 + ∑ �⃗⃗⃗�𝑠𝑒𝑐,𝛼𝛼 . Bearing this in mind, the internal 

field of particle 𝛽 is given now, as a function of the local field instead of the external one, 

by �⃗⃗⃗�𝑖𝑛𝑡,𝛽 = �⃗⃗⃗�𝑙𝑜𝑐 + �⃗⃗⃗�𝑑𝑒,𝛽 with �⃗⃗⃗�𝑙𝑜𝑐 evaluated at the particle 𝛽 position. At this point two 

main problems appear. Firstly, the calculation of �⃗⃗⃗�𝑠𝑒𝑐,𝛼 due to the rest of dispersed 

particles is a hard task as it depends on the corresponding �⃗⃗⃗�𝑖𝑛𝑡,𝛼 that, at the same time, 

depends on �⃗⃗⃗�𝑙𝑜𝑐 but now evaluated on the rest of 𝛼 particle positions and thus, containing 

the initially pursued �⃗⃗⃗�𝑖𝑛𝑡,𝛽. Secondly and more severe, as any of the CMRF particles are 

not under a homogeneous field, their demagnetization fields will not fulfill �⃗⃗⃗�𝑑𝑒 = −�⃗⃗⃗�/3 

as in the case of an isolated particle. Indeed, the only thing that can be said is that 

relationship between both magnitudes has to fulfill Eq. (3.25) when it is evaluated inside 

each particle. 

As it can be seen, the computation of the magnetic field inside a CMRF is not trivial and 

requires a self-consistent approach. Nevertheless, from first principles, the total field �⃗⃗⃗� 

at any point can be obtained from Maxwell equations [44]: 

 ∇ ∙ �⃗⃗⃗� = 𝜌 (3.26) 

 ∇ × �⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡
 (3.27) 

 ∇ ∙ �⃗⃗� = 0 (3.28) 
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 ∇ × �⃗⃗⃗� = 𝑗 +
𝜕�⃗⃗⃗�

𝜕𝑡
 (3.29) 

where �⃗⃗⃗� and �⃗⃗� are the electric and magnetic field flux densities respectively, �⃗⃗� is the 

electric field, 𝜌 is the free charge density and 𝑗 is the free current density. As it is known, 

fields and flux densities are not independent from each other but they are related through 

the constitutive equations: 

 �⃗⃗⃗� = 𝜀0�⃗⃗� + �⃗⃗� (3.30) 

 �⃗⃗� = 𝜇0(�⃗⃗⃗� + �⃗⃗⃗�) (3.31) 

being 𝜀0 and 𝜇0 the vacuum permittivity and permeability respectively, �⃗⃗� the material 

polarization and �⃗⃗⃗� the previously introduced material magnetization (for example, given 

by Eq. (3.24)). Typically, in CMRFs, the field changes in time are very slow allowing a 

quasi-static study. In addition, there are not free charges nor currents thus, Eqs. (3.26)-

(3.29) are reduced to: 

 ∇ ∙ (𝜀0�⃗⃗� + �⃗⃗�) = 0 (3.32) 

 �⃗⃗� = −∇𝑉𝑒 (3.33) 

 ∇ ∙ (�⃗⃗⃗� + �⃗⃗⃗�) = 0 (3.34) 

 �⃗⃗⃗� = −∇𝑉𝑚 (3.35) 

where 𝑉𝑒 and 𝑉𝑚 are scalar electric and magnetic potentials. As it can be seen �⃗⃗� is fully 

decoupled from �⃗⃗⃗�, and, since the former does not play any relevant role, it will not be 

regarded in the following discussion. However, before discarding it, it is worth noticing 

the total analogy between �⃗⃗� and �⃗⃗⃗�, pointing that phenomena observed in a magnetic 

suspension must have an electric counterpart based on polarizable particles. Effectively 

those systems exist and are known electrorheological fluids (ERFs). Although, from an 

experimental of view, ERFs entail some crucial differences with respect to CMRFs 

(which made them not so useful from an application point of view), ERFs can be 

theoretically seen as electric analogues when CMRFs are interrogated in their linear 

magnetic regime [45]. This will allow us to extract some results from ERF references in 

Sec. 3.4. 

Equations (3.32) and (3.35) are applicable in the whole CMRF, that is, inside each 

dispersed particle and in the continuous phase. Just at the interphase between the two 

media, continuity equations apply: 

 �̂� ∙ (�⃗⃗�𝑝 − �⃗⃗�𝑐) = 0 (3.36) 

 �̂� × (�⃗⃗⃗�𝑝 − �⃗⃗⃗�𝑐) = 0 (3.37) 

where �̂� is the normal vector of the interphase and the subscripts 𝑝 and 𝑐 denote field/flux 

density in the particulate and continuous phase, respectively. Equations (3.30)-(3.37) 

together with an appropriate boundary condition (for example, �⃗⃗⃗� = �⃗⃗⃗�𝑒𝑥𝑡 far away from 

the CMRF if the CMRF is of finite size) are a closed system that allows us to solve the 

magnetostatic problem yielding magnetic field, magnetic field flux density and 

magnetization.  
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Once the field variables are known, the magnetic interaction, i.e. the force acting between 

magnetized particles, can be calculated. This is of fundamental interest because, as it will 

be shown in Sec. 3.4, the interparticle force determines the rheological behavior of the 

CMRF. To compute the force, one can use the well-known expression from Lorentz or, 

in a more treatable way, that proposed by Kelvin [46]. However, these expressions require 

as input the magnetization of the particle (which is known) and the local field at its 

position, that is, they do not require the total field (local plus demagnetization one). This 

can be a shortcoming since, typical methods used to solve the magnetostatic problem in 

CMRFs (see below) yield the total fields, without splitting them in external, local nor 

demagnetization fields. 

At this point, it is more advantageous to compute the force following the Maxwell’s stress 

tensor formulation. This approach directly comes from the Lorentz force approach and 

expresses the force in terms of the total magnetic field and flux density that are the most 

easily accessible quantities. In addition, it reduces the complexity of the computation 

since it is based on the integration of the proper tensor components over an arbitrary 

surface that must encompass the body over which force is to be computed. This approach 

is different from the Lorentz force because the latter requires a volume integration. 

Surface arbitrariness can be leveraged to choose a simple one, for example, lying 

completely in the continuous phase (which is a linear material without magnetic 

response). Following the Maxwell’s stress tensor formulation, the magnetic force acting 

on the body �⃗�𝑚 is given by: 

 �⃗�𝑚 ∙ �̂� = ∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆

 (3.38) 

where �̂� denotes the direction of the force component that is to be computed, 𝑆 is the 

arbitrary surface encompassing the body, �̂� is its normal vector and �̃� is the Maxwell’s 

stress tensor (do not confuse this second-order tensor with the torque vector �⃗⃗�): 

 �̃� = 𝐵�̃� − 𝛿
𝐵𝐻

2
 (3.39) 

where 𝐵 and 𝐻 are the modulus of magnetic field flux density and magnetic field 

respectively. The use of this definition for �̃� implies that surface integration must be done 

in a linear medium [47]. In addition, that surface must not cross an interphase between 

media with different constitutive equations. 

Finally, in some particular cases, it could be also useful to compute the energy of the 

CMRF as a whole in a volume 𝑉. In this case, the magnetostatic energy is defined as [48]: 

 𝑊𝑉 = −∫ (∫ �⃗⃗�𝑑�⃗⃗⃗�′
�⃗⃗⃗�

0

)
𝑉

𝑑𝑣 (3.40) 

The previous expression depends on the constitutive equation and therefore the integrand 

changes depending on whether 𝑑𝑣 is placed in the continuous phase or in the particulate 

one. If both phases are isotropic (that is �⃗⃗� and �⃗⃗⃗� are collinear) the constitutive equations 

can be expressed as �⃗⃗� = 𝜇0𝜇𝑟(𝐻)�⃗⃗⃗� and therefore, Eq. (3.40) is rewritten as: 
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 𝑊𝑉 = −𝜇0∫ (∫ 𝜇𝑟(𝐻′)𝐻′𝑑𝐻′
𝐻

0

)
𝑉

𝑑𝑣 (3.41) 

In the case of a linear media, 𝜇𝑟(𝐻) is constant and therefore the magnetostatic energy is 

reduced to 𝑊𝑉 = 𝜇0𝜇𝑟 𝐻
2 2⁄ = 𝐵𝐻 2⁄ . For non-linear materials a more complex 

dependency 𝑊𝑉(𝐻) is expected (see Chapter 5 for example). 

The energy computation has interest by itself because it allows comparing different 

particle configurations within the CMRF, discerning which is the most favorable (i.e. 

minimum energy state) and, hence, the most probable state at equilibrium. In addition, 

for conservative systems (note that according to Eq. (3.35) this is the case), it also offers 

another way to compute forces by properly changing the configuration of the system: 

 �⃗�𝑚 ∙ �̂� = −
𝜕𝑊𝑉

𝜕𝑒
 (3.42) 

being 𝑒 the generalized coordinate related to the desired force component. At a first 

glance, it could seem that the force computation from energy arguments has not any 

advantage over the force computation from the Maxwell’s stress tensor as the former 

implies a volume integral and an additional derivation operation. However, as it was 

pointed out previously, the Maxwell’s stress tensor related surface 𝑆 must lie in a linear 

material, and this is a condition that cannot be always fulfilled (think for example in a 

magnetic particle dispersed in a non-linear magnetic continuous phase as it happens in 

IFFs). In this particular case, the energetic approach is of more interest because it can 

circumvent non-linearities in both media (as it explicitly accounts for the constitutive 

equation, see Eq. (3.41)) yielding the force related to the generalized coordinate 𝑒. 

As it can be seen, once the magnetostatic problem is solved, magnetic field and flux 

density are known in each point of the space and forces and/or energy can be calculated. 

Unfortunately, the necessity of applying Eqs. (3.36) and (3.37) at each interphase restricts 

the analytical solution to very simple problems consisting of two or three particles in high 

symmetry configurations. In cases where a large number of particles is intended to be 

taken into consideration, methods based on capacitance matrices [49], multipole 

expansion [50] or boundary elements [38] have been applied in the literature. 

Nevertheless, the aforementioned solutions are restricted to linear materials (that is, not 

applicable to ferro- or ferri-magnetic materials of interest in magnetorheology) and 

besides, they do not yield a complete solution as this is given in terms of a finite number 

of multipoles or approximate particle positions at large interparticle distances. 

When the materials involved are magnetically non-linear, numerical methods are 

practically mandatory. Clearly, the Finite Element Method (FEM) is the preferred choice 

in magnetorheology [43,51-54]. This kind of numerical simulations aim to solve Eqs. 

(3.34)-(3.37) directly including all multipoles, so, they can be seen as virtually exact. The 

basis of FEM techniques are given in Chapter 4 to highlight their performance. At this 

moment, it is enough to point out that FEM is a mesh-based method and therefore it can 

become computationally expensive for systems involving very different length scales 

(since it was noted when flow field problem was regarded). Due to this fact, FEM is not 

the definitive method to solve magnetostatic problems related to CMRFs. 

3.2.1 Mean Magnetization Approximation (MMA) 

Alternatively, one can decide to solve Eqs. (3.34)-(3.37) till a first order approximation 

using the so-called ‘Mean Magnetization Approximation’ (MMA). This is based on a 
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well-known magnetostatic problem: an isolated spherical particle in a homogeneous 

external field �⃗⃗⃗�𝑒𝑥𝑡 is magnetized homogeneously (i.e. its magnetization is constant 

through the particle volume) and creates, outside the particle, the field corresponding to 

a point dipole placed at the particle center [55]: 

 �⃗⃗⃗�𝑑 =
1

4𝜋

3�⃗⃗�(�⃗⃗⃗� ∙ �⃗⃗�) − 𝑅2�⃗⃗⃗�

𝑅5
 (3.43) 

where �⃗⃗� is the vector joining the particle center with the field point (i.e. the place where 

the magnetic field is evaluated) and �⃗⃗⃗� is the dipole moment. Since the particle is 

homogeneously magnetized, this is simply given by �⃗⃗⃗� = 𝑉𝑝�⃗⃗⃗� being 𝑉𝑝 = 𝜋𝑑3 6⁄  the 

particle volume and �⃗⃗⃗� the magnetization: 

 �⃗⃗⃗� = 3𝛽(𝐻𝑖𝑛𝑡)�⃗⃗⃗�𝑒𝑥𝑡 = 3
𝜇𝑟,𝑝(𝐻𝑖𝑛𝑡) − 𝜇𝑟,𝑐

𝜇𝑟,𝑝(𝐻𝑖𝑛𝑡) + 2𝜇𝑟,𝑐
�⃗⃗⃗�𝑒𝑥𝑡 (3.44) 

where 𝛽(𝐻𝑖𝑛𝑡) is the contrast factor, 𝜇𝑟,𝑐 is the relative permeability of the continuous 

phase (required to be linear) and 𝜇𝑟,𝑝 is the relative permeability of the particulate phase 

(linear or not). Taking this into consideration, MMA states that, although any particle is 

surrounded by many others in a CMRF, they magnetize following Eq. (3.44) but 

evaluated at the local magnetic field �⃗⃗⃗�𝑒𝑥𝑡 → �⃗⃗⃗�𝑙𝑜𝑐. Note that this approximation tries to 

incorporate multibody effects but, at the end of the day, it is equivalent to suppose that 

the particles are still isolated, not under �⃗⃗⃗�𝑒𝑥𝑡 but under another homogeneous field with 

value �⃗⃗⃗�𝑙𝑜𝑐. In addition, Eq. (3.44) shows that magnetization mechanism comes from the 

permeability difference between particulate and continuous phases. In particular, it 

demonstrates that non-magnetic particles dispersed in a linear magnetic media also 

interact, at least, through dipoles. This allows to consider IFFs (where 𝛽 < 0) as 

analogues of CMRFs (𝛽 > 0) whenever the used FF is linear. 

The main advantage of the MMA is that it allows computing local field easily at any point 

in the CMRF because the secondary field due to every dispersed particles is just �⃗⃗⃗�𝑠𝑒𝑐,𝛼 =

�⃗⃗⃗�𝑑,𝛼 (that now is analytically known from Eq. (3.43)): 

 �⃗⃗⃗�𝑙𝑜𝑐 = �⃗⃗⃗�𝑒𝑥𝑡 +∑ �⃗⃗⃗�𝑑,𝛼

𝑁

𝛼=1

 (3.45) 

The summation in Eq. (3.45) should run over all particles in the CMRF, however, since 

the magnetic field decreases with the distance, a cutoff distance is commonly used to save 

computational cost. With this, only neighboring particles are considered. 

Again, once the magnetic field is known in every point, the interparticle force �⃗�𝑑 can be 

computed using the Maxwell’s stress tensor, Lorentz or Kelvin law. However, the force 

on a (field) point dipole �⃗⃗⃗�𝛼 due to a magnetic field is also known analytically. What is 

more, as the particles are replaced by point dipoles, any of them will suffer a magnetic 

torque �⃗⃗�𝑚 under the presence of the field that tries to align with it. Both magnitudes read 

as follows: 

 �⃗�𝑑 = 𝜇0𝜇𝑟,𝑐∇(�⃗⃗⃗�𝛼 ∙ �⃗⃗⃗�𝑙𝑜𝑐) (3.46) 
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 �⃗⃗�𝑚 = 𝜇0𝜇𝑟,𝑐�⃗⃗⃗�𝛼 × �⃗⃗⃗�𝑙𝑜𝑐 (3.47) 

Nevertheless, as noted at the beginning of this section, the particle magnetization is 

supposed to be collinear with the field and thus, CMRF particles are not expected to suffer 

this torque. Regarding the force, Eq. (3.46) shows that it is zero unless the magnetic field 

changes in the space. Ideally, CMRFs are subjected to external homogeneous fields and 

thus, the only magnetic force their particles experience should be due to the secondary 

field created by another (source) dipole �⃗⃗⃗�𝛽. In that case, the force can be written as: 

 

�⃗�𝑑

=
3𝜇0𝜇𝑟,𝑐

4𝜋
[
(�⃗⃗⃗�𝛼 ∙ �⃗⃗⃗�𝛽)�⃗⃗�𝛼𝛽 + (�⃗⃗⃗�𝛽 ∙ �⃗⃗�𝛼𝛽)�⃗⃗⃗�𝛼 + (�⃗⃗⃗�𝛼 ∙ �⃗⃗�𝛼𝛽)�⃗⃗⃗�𝛽

𝑅𝛼𝛽
5

− 5
(�⃗⃗⃗�𝛼 ∙ �⃗⃗�𝛼𝛽)(�⃗⃗⃗�𝛽 ∙ �⃗⃗�𝛼𝛽)�⃗⃗�𝛼𝛽

𝑅𝛼𝛽
7

] 

 

 

 

(3.48) 

where �⃗⃗�𝛼𝛽 is the vector joining the dipole �⃗⃗⃗�𝛽 with the dipole �⃗⃗⃗�𝛼. Note that, in general, 

�⃗⃗⃗�𝛼 and �⃗⃗⃗�𝛽 do not have to be the same in magnitude and/or direction. These will depend 

on the local field at the respective positions of both dipoles.  

To get a deeper insight into the interparticle dipolar interaction, it is worthwhile to 

particularize Eq. (3.48) for the case of two identical dipoles �⃗⃗⃗�𝛼 = �⃗⃗⃗�𝛽 = �⃗⃗⃗�. Writing Eq. 

(3.48) in spherical coordinates (centered in the source dipole and supposed to be directed 

in the 𝑧 direction): 

 
�⃗�𝑑 = −

3𝜇0𝜇𝑟,𝑐𝑚
2

4𝜋𝑅4
[(3 cos2 𝜃 − 1)�̂� + sin(2𝜃) 𝜃]

= −𝐹𝑚𝑎𝑔 (
𝑑

𝑅
)

4

[(3 cos2 𝜃 − 1)�̂� + sin(2𝜃) 𝜃] 

 

 

(3.49) 

Clearly, it can be seen that the dipolar force is not central. It does not depend on the 

azimuthal coordinate but it is anisotropic; repulsive for 55º ≤ 𝜃 ≤ 125º and attractive in 

other case. Regarding the polar component, it is negative for 𝜃 ≤ 90º (thus, it tries to 

move the field dipole over the source one) and positive for 90º ≤ 𝜃 (in this case, it moves 

the field dipole under the source one). Just at 𝜃 = 90º the polar component is null but 

unstable, that is, any small perturbation that pushes apart the field particle from 𝜃 = 90º 

will provoke that the field dipole aligns with the source one. At 𝜃 = 0º and 𝜃 = 180º, the 

polar coordinate is also zero, however, in these cases, the position is stable: any 

perturbation at these positions will be balanced by a restoring-like force that will place 

the field dipole aligned with the source one. In addition, for a chosen interparticle distance 

𝑅, it can be seen that the force in the dipole orientation direction, �⃗�𝑑(𝜃 = 0º) and �⃗�𝑑(𝜃 =

180º) is typically two times larger than in the normal direction, �⃗�𝑑(𝜃 = 90º). Thus, when 

the particles are freely suspended in the continuous phase, this behavior is translated in 

the formation of chain-like structures directed along the dipole (field) direction. 

Finally, it is worthwhile to remark that the MMA predicts a magnetic force scale as 

 𝐹𝑚𝑎𝑔 =
𝜇0𝜇𝑟,𝑐𝜋

48
𝑑2𝑀2 =

3𝜇0𝜇𝑟,𝑐𝜋

16
𝑑2𝛽2𝐻𝑒𝑥𝑡

2  (3.50) 

Looking at Fig. 3.2 and Eq. (3.44), it can be inferred that, at low magnetic fields when 

the material behaves linearly with 𝛽 constant, this force will be proportional to 𝐻𝑒𝑥𝑡
2 . On 
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the contrary, at high magnetic fields when the material saturates and 𝑀2 tends to 𝑀𝑆
2, the 

force becomes independent on the external field. As it will be seen in Sec. 3.4, this is 

roughly the same trend observed macroscopically in CMRFs, pointing that basic 

polarization phenomena under the MR effect is properly accounted for by regarding only 

dipoles. 

Although the MMA offers a simple solution to the magnetostatic problem, it should be 

remembered that, strictly speaking, it is only valid in two limiting cases: (i) when the 

particles are far enough from each other to feel only an homogeneous field or (ii) when 

particles are fully saturated so that their magnetization is uniform through the particle 

volume and really act as point dipoles. However, the case (i) is impossible to fulfill in 

CMRFs; as it is pointed in Eq. (3.49), dipolar forces can be attractive and therefore, even 

at very low concentrations, they will tend to form particles aggregates where interparticles 

distances are small. As a consequence, particles will not feel a homogeneous field and the 

MMA would not be valid. For its part, the saturation regime in case (ii) is hard to be 

reached experimentally in a controlled way, i.e. guaranteeing that all particles experience 

the same high external field and thus all of them are magnetized at the same (saturation) 

level. In Chapter 9, a device that is capable to apply homogeneous saturating fields is 

presented while the rheological behavior in this regime is evaluated theoretically and 

experimentally in Chapter 8. 
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Figure 3.3: Shear magnetic force (normalized by 𝛽2) in an infinite chain of linear 

particles with relative permeability 𝜇𝑟,𝑝 as a function of the shear strain. Results 

considering only dipolar interaction or all multipoles are plotted with lines and points, 

respectively. Particle diameter 𝑑 = 1 µm, 𝐻𝑒𝑥𝑡 = 400 kA/m, 𝜇𝑟,𝑐 = 1. 

Undoubtedly, the main drawback of the use of MMA as a first order solution, is that it 

does not take into consideration magnetization non-uniformity in the particle volume. 

Importantly, this is, ultimately, the responsible for the multipolar magnetic interactions. 

These multipoles enhance the magnetic field level in small regions between particles what 

leads to greater induced magnetization levels. Consequently, when the interparticle 

distance is small, multipoles play a critical role in the magnetic force computation. As an 

example, in Fig. 3.3 the magnetostatic force in an infinitely long isolated chain of particles 

is plotted as a function of the chain shear strain in affine deformation for a range of 𝜇𝑟,𝑝. 

Lines stand for the MMA solution including only dipoles and points stand for the 
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complete solution, all multipoles included, computed by FEM. It can be seen that, only 

when the magnetic particles are separated enough (high strains) or 𝜇𝑟,𝑝 is small [56] (as 

in IFFs and magnetic latexes), the MMA can reproduce the complete solution. In other 

case, the true magnetic interaction will be strongly underestimated (till four orders of 

magnitude for the worst case in Fig. 3.3). In Sec. 3.4, it will be shown that this 

underestimation can lead to a non-negligible error in the rheological material functions 

of CMRFs. 

3.3 Other non-hydrodynamic interactions 

As in any suspension, particles in a CMRF experience other non-hydrodynamic forces 

besides magnetostatic ones. Most of them are classic interactions in Colloid Science, so 

we refer to well-known treatises in this field for further details [57,58]. In this section we 

only summarize them to see whether they have or not an effect on the particle dynamics 

when compared to magnetostatic forces. 

Regardless of the kind of particulate or continuous phase, any pair of dispersed particles 

will interact through the London-van der Waals or dispersion forces. These are attractive 

interactions coming from the polarization of one particle atoms induced by the atoms of 

the second particle. For the case of two perfect spherical particles, this attractive 

interaction diverges as the surface-to-surface distance goes to zero pointing to an 

irreversible aggregation (similar to what happened with lubrication forces –see Sec. 

3.1.1–). Again, particle roughness poses a limit to the attractive force. For the case of 

CMRFs where 𝑑 > 1 µm and supposing a typical roughness of the order of nanometers, 

the ratio van der Waals to magnetostatic forces takes values of 10-5 or smaller [59]. As a 

result, van der Waals forces can be safely neglected when accounting for other non-

hydrodynamic forces. 

The fact that van der Waals forces favor particle aggregation should not be a problem in 

the presence of a magnetic field since this is precisely the purpose of applying it; to 

promote the directed self-assembly with the difference that van der Waals forces do not 

yield anisotropic structures. However, as it was commented in Chapter 1 , in the absence 

of a magnetic field it is desired that the CMRFs keep kinetically stable and with this aim 

in mind several routes are followed in the literature: core-shell structures, surfactant 

addition and surface charges, among others. These elements introduce other interactions 

between the particles (electric double-layer, osmotic and elastic potentials, depletion, etc.) 

that need to be considered when studying the rheological behavior of the system. Their 

effects depend on a large number of factors (continuous phase permeability, electrolyte 

concentration, surfactant type and concentration, hydrophobicity of the continuous phase, 

particle size, etc.), and hence it is not easy to summarize their final role on the rheology 

of the MRFs. 

Here, we will limit to say that, because the main objective of these approaches is to 

counteract van der Waals forces, it is expected that an optimal route gives rise to a 

stabilization force (regardless of its origin) whose order of magnitude is similar to the van 

der Waals one. Thus, as a first approximation, its effects can be also neglected in the 

presence of a field. 

Classical colloidal forces are due to particle-particle interactions but in a CMRF particles 

are subjected to body forces as well. The main one is the gravitational force that, including 

buoyancy effects, can be written as �⃗�𝑔 = �⃗�(𝜌𝑝 − 𝜌𝑐)𝑉𝑝 where 𝜌𝑝 is the particle density. 
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The magnetostatic force is typically three orders of magnitude larger than the 

gravitational one so, a priori, the latter could be neglected. In the case that the height of 

the macroscopic sample is above a critical size ~ 2𝑑𝐹𝑚𝑎𝑔 𝐹𝑔⁄ , experimental and 

simulation studies have shown that gravity can collapse the field induced structures [60]. 

However, in the worst scenario explored throughout this dissertation (i.e. the smallest 

applied field) the largest gap confining the sample is below this critical height. Thus, 

gravitational forces will not be considered in the analysis. 

In addition to previously discussed forces, any particle dispersed in a continuous phase 

will experience the well-known Brownian motion. This is a diffusive movement due to 

the continuous and random collisions between the dispersed particles and the continuous 

phase molecules. In order to see its importance in comparison to other forces, a typical 

force scale related to the Brownian motion can be defined 𝐹𝐵~𝑘𝐵𝑇/𝑑 where 𝑘𝐵 is the 

Boltzmann’s constant (1.381·10-23 J/K) and 𝑇 is the absolute temperature (do not confuse 

with the vector torque �⃗⃗� nor the Maxwell’s stress tensor �̃�). Taking this into 

consideration, the specialized literature defines the so-called 𝜆 ratio (or coupling factor) 

to measure the relative importance of magnetostatics over thermal forces: 

 𝜆 =
𝐹𝑚𝑎𝑔

𝐹𝐵
=
𝜇0𝜇𝑟,𝑐𝜋𝑑

3𝑀2

96𝑘𝐵𝑇
 (3.51) 

In CMRFs this ratio is very large, above 100, even for low external fields what leads to 

discard Brownian motion in these systems. 

As it can be inferred from the previous discussion, with the exception of hydrodynamic 

forces, any classical colloidal forces can be safely neglected in the study of CMRFs 

because the large particle size (above 1 µm) favors magnetostatic interactions. Indeed, 

strictly speaking, CMRFs are not true colloidal systems due to the absence of Brownian 

motion; they seem to share more features with granular suspensions, especially when high 

concentrations are considered (above volume fractions of 0.4). In the concentrated 

regime, particles suffer repeated collisions with each other and this makes contact forces 

(repulsive and frictional ones) to become a critical agent, even more important than long-

ranged hydrodynamics, in the macroscopic sample behavior [61]. 

Different expressions have been proposed in the literature to model both contact 

interactions although current works in granular rheology usually choose Hertzian 

repulsion (see Chapter 4) and Coulomb-like friction forces for repulsion and frictional 

forces, respectively. Instead of particularizing then here, it is only said that they do not 

introduce a new force scale in the problem to compete against magnetic or hydrodynamic 

forces. On the contrary, they are conceived to model a hard sphere potential and thus, 

they should be able to bear any applied load [61,62]. Ascertaining the actual role of 

friction in rheology is nowadays an open field of research, even in non-magnetic 

suspensions, due to the entailed complexity from all experimental, simulation and 

theoretical points of view. Nevertheless, the parallelism between these granular 

suspensions and CMRFs would suggest that contact forces are also an ingredient to be 

taken into account in the complete description of CMRFs. 

3.4 Rheology 

Sections 3.1 and 3.2 deal with CMRFs from a microscopic point of view. By solving the 

governing equations, under a given macroscopic constraint (particle concentration, 
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applied flow field, external magnetic field) and initial conditions, it is possible to precisely 

know the dynamic state of the system: particle positions, velocities and fluid flow field at 

any time. 

Although complete and detailed, this microscopic description does not inform, by itself, 

about the collective behavior of the system, that is, about its macroscopic state where the 

CMRF is not seen as a suspension of magnetizable solid particles in a Newtonian fluid 

but as continuous medium with macroscopic physical properties. To get these 

macroscopic properties and to relate them to the aforementioned constraints it is 

necessary a further step to link both micro- and macro- descriptions. 

Similar to other suspensions and colloids, CMRFs are constituted by an extraordinarily 

large number of interacting particles. As a result, the link between both kinds of 

descriptions must be done following the Statistical Physics formalism. According to this, 

for each set of macroscopic constraints there is a group, called ensemble, of compatible 

microscopic states each of them having a different probability to really happen. 

Eventually, any physical observable 𝑥 depends on its micro-configuration, however, the 

macroscopically accessible value is given by its ensemble average 〈𝑥〉: the sum of its 

value at each microscopic state of the ensemble weighted by the probability of the 

corresponding microscopic state. This average would imply to know all compatible 

microscopic states together with their probability, and this is extremely complex. Hence, 

what is actually done is to average the pursued physical observable spatially over the 

system [1]: 

 〈𝑥〉 =
1

𝑉
∫ 𝑥
𝑉

𝑑𝑣 (3.52) 

This procedure is valid whenever all particles in the system are statistically equivalent, 

that is, each particle is surrounded by a configuration with the same macroscopic 

properties. In this way, each particle can be regarded as placed in a different microscopic 

state, but compatible with the imposed macroscopic one, what allows identifying volume 

average with the ensemble average. 

The major goal in this dissertation is to elucidate how a CMRF of a given concentration 

responds to a mechanical stimulus (deformation or stress) under the presence of an 

external magnetic field �⃗⃗⃗�𝑒𝑥𝑡; this is the so-called magnetorheological response. Since the 

mechanical state of a material is determined by its total stress tensor 〈�̃�〉, this tensor 

together with 〈�̃�〉 will be the physical observables that will be ascertained 

macroscopically [1]: 

 

〈�̃�〉 =
1

𝑉
∫ �̃�
𝑉𝑓

𝑑𝑣 +
1

𝑉
∑∫ �̃�

𝑉𝑝

𝑑𝑣

𝑁

𝛼=1

=
1

𝑉
∫ (−𝑝𝛿 + 𝜂𝑐2�̃�)
𝑉𝑓

𝑑𝑣 +
1

𝑉
∑∫ �̃�

𝑉𝑝

𝑑𝑣

𝑁

𝛼=1

 

 

 

(3.53) 

In Eq. (3.53) it has been taken into account that the total volume occupied by the CMRF 

can be split in the volume occupied by the fluid 𝑉𝑓 and the volume of each immersed 

particle 𝑉𝑝. In addition, since the carrier fluid is a Newtonian liquid, the total stress tensor 

within the first integral has been substituted by Newton’s viscosity law (Eq. (3.6)). 

Extending the first integral to the whole volume 𝑉, remembering that particles are rigid 
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(i.e. �̃� = 0 in 𝑉𝑝) and bearing in mind that 〈�̃�〉 = �̃�∞ (the macroscopically imposed flow 

field) we arrive to: 

 

〈�̃�〉 =
1

𝑉
∫ (−𝑝𝛿 + 𝜂𝑐2�̃�)
𝑉

𝑑𝑣 +
1

𝑉
∑∫ (�̃� + 𝑝𝛿)

𝑉𝑝

𝑑𝑣

𝑁

𝛼=1

= −〈𝑝〉𝛿 + 𝜂𝑐2�̃�∞ +
1

𝑉
∑∫ (�̃� + 𝑝𝛿)

𝑉𝑝

𝑑𝑣

𝑁

𝛼=1

 

 

 

(3.54) 

The stress tensor �̃� + 𝑝𝛿 inside the rigid particles is undetermined. However, supposing 

that there is not any non-hydrodynamic torque acting over the particles (what is fulfilled 

in CMRFs if magnetization is assumed to be collinear to the field), it can be written using 

the stresslet �̃� (Eqs. (3.8) and (3.9)) over the particles as [17,63]: 

 

1

𝑉
∑∫ (�̃� + 𝑝𝛿)

𝑉𝑝

𝑑𝑣

𝑁

𝛼=1

=
1

𝑉
∑(�̃�𝛼 −

1

3
𝛿 ∫ 𝑟𝑆 ∙ �̃� ∙ �̂�𝑑𝑠

𝑆𝑝

)

𝑁

𝛼=1

=
1

𝑉
∑(�̃�𝛼 − 𝛿𝛼

∗)

𝑁

𝛼=1

=
6𝜙

𝜋𝑑3
(〈�̃�〉 − 〈𝛿∗〉) 

 

 

(3.55) 

where 𝑆𝑝 is the particle surface and 𝜙 = 𝑁𝑉𝑝 𝑉⁄  is the particle volume fraction. Equation 

(3.55) is general, providing that Stokes flow without non-hydrodynamic torques are 

accepted, because no assumption has been done regarding the volume fraction. It 

indicates that the particle contribution to the macroscopic stress is just the sum, per unit 

volume, of the stresslets of all particles plus an isotropic term ∝ 〈𝛿∗〉. The later can be 

merged with the also isotropic mean pressure −〈𝑝〉𝛿 of Eq. (3.54) since they do not play 

any role in the rheology of incompressible magnetic colloids. 

The value of �̃�𝛼 can be computed just from its definition (Eqs. (3.8) and (3.9)) once the 

flow field around each particle is known. However, remembering the theoretical 

development of Sec. 3.1.1, stresslets can be directly solved from the linear system 

presented in Eq. (3.20). In particular, we get: 

 

�̃� = �̃�𝑆𝑢(�⃗⃗⃗� − �⃗⃗⃗�∞) + �̃�𝑆𝐸�̃�∞
= �̃�𝑆𝑢�̃�𝐹𝑢

−1(�⃗⃗⃗�𝑛ℎ − �̃�𝐹𝐸�̃�∞) + �̃�𝑆𝐸�̃�∞
= (�̃�𝑆𝐸 − �̃�𝑆𝑢�̃�𝐹𝑢

−1�̃�𝐹𝐸)�̃�∞ + �̃�𝑆𝑢�̃�𝐹𝑢
−1 �⃗⃗⃗�𝑛ℎ

= �̃�ℎ + �̃�𝑝 

 

 

 

(3.56) 

Remember that bold symbols (in the following omitted) stand for the stresslet associated 

to all suspended particles. It can be seen that the total stresslet has two contributions, the 

so-called hydrodynamic stresslet �̃�ℎ (all those terms accompanying �̃�∞) and particle 

interaction stresslet �̃�𝑝 (proportional to 𝐹𝑛ℎ). It is important to notice here that, in order 

to avoid a long expression, rotation contributions in Eq. (3.56) have been omitted. 

However, since in CMRFs non-hydrodynamic torques are absent, full expression (i.e. 

containing also the rotation contribution) will be still separable only in terms that 

exclusively accompany �̃�∞ or �⃗�𝑛ℎ. At this point, some issues can be highlighted.  

Firstly, the hydrodynamic stresslet �̃�ℎ is not null even when �⃗�𝑛ℎ = 0 (i.e. particles do not 

interact through non-hydrodynamic forces). The origin of this contribution lies on the 

infinite resistance of rigid particles to be strained, thus the only presence of rigid particles 
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in the straining flow field contributes to �̃�ℎ. It will be later shown that this stresslet is the 

responsible for the viscosity increase seen in any particle suspension (Sec. 3.4.3). 

Secondly, the particle interaction stresslet �̃�𝑝 (in the following only particle stresslet, 

although both �̃�ℎ and �̃�𝑝 comes from the dispersed particles) clearly comes from non-

hydrodynamic forces �⃗�𝑛ℎ experienced by the particles. However, it should be born in 

mind that the origin of any stresslet is the distribution of the traction force �̃� ∙ 𝑑𝑆 over the 

particle surface. This indicates that �̃�𝑝 exits not only because there exists non-

hydrodynamic forces but also because there is a continuous phase able to mediate the 

non-hydrodynamic interactions and transmit their effects. In other words, �̃�𝑝 would be 

zero even though �⃗�𝑛ℎ ≠ 0 in a static ensemble of particles (fixed in the space) able to 

interact through long-range forces (for example, magnetic ones) but not dispersed in a 

fluid. Furthermore, if we suppose the same ensemble but now dispersed in a quiescent 

fluid (for example, a MRF under an external magnetic field without a flow field), since 

�⃗⃗� − V⃗⃗⃗∞ and �̃�∞ are both zero, there would not be any stresslet neither. 

The two previous comments demonstrate that �̃�𝑝 cannot be the only contribution coming 

from non-hydrodynamic forces to the total stress tensor 〈�̃�〉. By definition, 〈�̃�〉 ∙ 𝑑𝑆 must 

account for the total force acting across 𝑑𝑆. If we suppose an imaginary surface halving 

the ensemble in the previous example consisting of long-range interacting particles not 

immersed in a fluid, all particles in one halve would act over the other halve with a net 

force, but this would not be taken into account since �̃�𝑝 = 0. To account properly for the 

total non-hydrodynamic force experienced by the particle in the total stress tensor, the so-

called 𝑥�̃� term [64] or thermodynamic stress must be included in the computation of 〈�̃�〉: 

 〈𝑥�̃�〉 = −
1

𝑉
∑𝑟𝛼𝐹�̃�

𝑁

𝛼=1

 (3.57) 

where 𝑟𝛼 is the position vector of particle 𝛼 and �⃗�𝛼 is the total non-hydrodynamic force 

acting over it. Although the example proposed here only considers long-ranged non-

hydrodynamic forces, Eq. (3.57) is also valid for hard-sphere interactions (and, for 

example, contact forces). 

Putting together all previous contributions, the rheological constitutive equation of the 

suspension can be written as follows: 

 〈�̃�〉 = −〈𝑝〉𝛿 + 𝜂𝑐2�̃�∞ + 〈𝑥�̃�〉 +
6𝜙

𝜋𝑑3
(〈�̃�ℎ〉 + 〈�̃�𝑝〉) (3.58) 

Here 〈𝑝〉𝛿 is the mean pressure corrected by the isotropic term 〈𝛿∗〉 derived during the 

stresslet computation (see Eq. (3.55)). At first sight, Eq. (3.58) already shows some 

characteristics that differentiate 〈�̃�〉 from the Newtonian constitutive relationship: 

1. Under Stokes flow approximation, all contributions to 〈�̃�〉 depend on the particle 

positions. Thus, in addition to interparticle forces, their structure also plays a role 

in the rheological behavior. 

2. In the absence of flow and depending on the particle positions, due to the 〈𝑥�̃�〉 
term, the system can develop shear stresses (non-diagonal elements). Thus, when 

an external stress is imposed trying to move the system from its equilibrium state, 
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an internal restoring stress appears to keep particles in their original configuration, 

i.e., there is a yield stress below that the system does not flow. 

3. Not all terms are directly proportional to �̃�∞. On the contrary, some of them are 

proportional to �̃�∞ while others are scalable by 𝐹𝑛ℎ. These two sources of stress 

imply different stress regimes depending on which source is prevailing. As a main 

result, CMRFs show a marked shear-thinning behavior. 

4. Terms coming from particles and their interactions, 〈𝑥�̃�〉, 〈�̃�ℎ〉 and 〈�̃�𝑝〉, are not 

isotropic and consequently normal stress differences can appear at rest or in 

simple shear flow. 

In Secs. 3.4.1-3.4.4, these topics are reviewed from theoretical, experimental and 

numerical points of view. When the system is strained, the discussion will be mainly 

focused in simple shear as it is the most studied flow mode in the MRF research. In this 

case, the flow direction is supposed to be �̂�, the vorticity direction �̂� and the gradient 

direction, together with the external field direction, is �̂� (see Fig. 3.4). With this choice, 

the flow field is �⃗�∞ = �̇�𝑧�̂�, the strain rate tensor is 

 �̃�∞ =
1

2
(

0 0 0

0 0 �̇�
0 �̇� 0

) (3.59) 

and �̇� is the shear rate. Also, to simplify notation, the stress in the shear direction will be 

denoted as 〈𝑡〉𝑧𝑦 = 𝜏 while deviatoric normal stresses (components of total stress tensor 

in the diagonal excluding the isotropic pressure contribution) will be denoted as 𝜎𝑥𝑥, 𝜎𝑦𝑦 

and 𝜎𝑧𝑧. 

 

Figure 3.4: Linear shear flow �⃗� macroscopically imposed and external magnetic field 

�⃗⃗⃗�𝑒𝑥𝑡 together with flow (�̂�), gradient (�̂�) and vorticity directions (�̂�). 

3.4.1 Structure 

As it was indicated in Sec. 3.2.1, the magnetostatic interaction is anisotropic and 

contributes to the particle aggregation in the same direction that the applied magnetic 

field. Traditionally, the field-induced structuration of a MRF is studied under no flow 

conditions in connection to the onset of a yield stress and with emphasis in determining 

the time scale for structure formation and associated order parameters. 
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In view of the theoretical analysis in Secs. 3.1 and 3.2, imposing that the background flow 

(V⃗⃗⃗∞, Ω⃗⃗⃗∞, �̃�∞) is zero, the particles positions can be tracked just solving Eq. (3.20). Since 

there is not flow and particle inertia is neglected, there is only one time scale in the 

structuration problem. As a first approximation, this time scale can be obtained as the 

time needed by a particle to displace a length equal to its diameter under the action of 

dipolar magnetostatic interaction (Eq. (3.50)) and Stokes’ drag force (Eq. (3.21)): 

 𝑡𝑎 =
𝑑

𝑢
=

144𝜂𝑐
𝜇0𝜇𝑟,𝑐𝑀2

 (3.60) 

As observed in Eq. (3.60), the time scale depends on the applied magnetic field strength 

(contained in the magnetization) and the carrier fluid viscosity. In view of this analysis, 

the final structure morphology of an MRF is independent on these magnitudes; 𝑡𝑎 simply 

determines how quickly the structuration process occurs [65]. 

Numerical studies (using magnetic dipolar forces, Stokes’ drag approximation and one-

way coupling scheme without a background fluid velocity) [66,67] together with 

experiments (based on optical microscopy observations for 2D systems [68-70] or light 

scattering [71-73] and computerized tomography for 3D systems [74]) show that the final 

structure morphology and inner particle arrangement strongly depend on the volume 

fraction, sample confinement and way of applying the magnetic field.  

When a uniaxial DC magnetic field is suddenly applied and then kept constant, particles 

reorganize and start to form doublets that quickly merge into short chains along the field 

direction. The onset of this doublet formation also depends on the particle concentration: 

the larger concentration the smaller initial interparticle distance and thus the smaller onset 

time. For the particular example of dilute 2D suspensions, the onset time is found to be 

~ 𝑡𝑎 (100𝜙2D
2.5ℎ0.22)⁄  and hence also (slightly) dependent on the sample height in the field 

direction ℎ [75]. 

In a second stage, these chains start to aggregate in more complex structures depending 

on the volume fraction and the confinement ℎ. Nevertheless, as the chain length increases, 

the aggregation rate is reduced due to the higher hydrodynamic resistance (the longer the 

chains the larger the resistance) and also the nature of the magnetic interaction between 

chains. The magnetic interaction between chains can be repulsive or attractive depending 

on chain length (which is determined by the confinement) and the mean interchain 

distance (which is controlled by the volume fraction). Generally speaking, low volume 

fractions favors isolated chains that repel each other giving rise to a final structure 

consisting of simple chains of one particle width. As volume fraction increases (above 

0.05), initial chains have a richer configuration spectrum (off-/ registered chains, different 

lengths) that leads to the formation of thick interconnected columns/fibers.  

The aggregation process described in the paragraph above takes a very short time; of the 

order of milliseconds for the chain formation and of the order of minutes for the 

subsequent fibers formation. However, these final aggregates are not equilibrium 

structures (in the case of interacting dipoles, the expected equilibrium structure is a 

tetragonal body centered lattice BCT [76-79]). Instead, the particles are kinetically 

arrested in open elongated flocs with a large number of defects. There are several 

possibilities to avoid the formation of kinetically arrested states. The simplest approach 

consists in slowly increasing the magnetic field (instead of suddenly applying it). This 

results in the formation of well separated columns [80]. Another possibility is to use 

toggled fields. This allows the structure to accommodate by diffusion during the short 
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period when external field is absent. This approach results in the formation of disperse 

‘drops’ consisting of particles that are arranged in a BCT lattice [81,82].  

3.4.2 Pre-yield regime. Static yield stress 

Undoubtedly, the yield stress 𝜏0 is the most relevant figure of merit in a MRF [83]. 

Theoretically, it is defined as the critical stress below which a material does not flow but 

behaves as an elastic solid. Thus, if the applied stress is lower than 𝜏0, the sample will 

undergo a strain but once the applied stress is removed the sample will recover its initial 

state. On the contrary, if the applied stress is larger than 𝜏0, it is said that the sample leaves 

the elastic or pre-yield regime, breaks (also called sample failure) and starts to flow or to 

strain continuously [84]. 

However, the previous definition together with its related phenomenology is hardly seen 

experimentally (e.g. Ref. [85]). In terms of the measured shear rate versus the applied 

stress, it is found that samples experience a drastic change in the shear rate (usually 

several orders of magnitude) when the applied stress is varied through a narrow interval 

(smaller than one order of magnitude) around 𝜏0. This narrow interval of stress is called 

apparent yield stress. Generally speaking, for stresses outside this interval (above or 

below), the sample shows a nearly Newtonian behavior with the shear rate proportional 

to the applied stress [86]. As it can be seen, the behavior at stresses above the 

aforementioned interval perfectly agree with the definition of 𝜏0. On the contrary, the 

appearance of the Newtonian behavior below 𝜏0 is controversial as the MRF is not 

perfectly elastic. 

This discussion and related controversy around 𝜏0 measurement or existence are well-

known from long time ago and highlight the paradox about what flows or not: to properly 

demonstrate that a material is elastic for any stress below 𝜏0, it would be necessary 

experiments of infinite duration to see that the shear rate is effectively null in this regime 

[87,88]. Actually, what can be stated is that an apparent yield stress exists (in the sense 

of a dramatic change in the rheological properties) while the related 𝜏0 is subjected to a 

time scale that has been previously chosen, typically the time scale of the experiment or 

problem under study. In this way, below the apparent yield stress the sample can be seen 

as a solid albeit it creeps at very slow rate, i.e. very slow in comparison to the experimental 

time scale. Therefore, 𝜏0 is a magnitude that depends on the measurement conditions. 

Nevertheless, its circumspect use, at least, as engineering concept has been undoubtedly 

useful in material characterization [89]. 

Yield stress ambiguity has given rise to several yield stress definitions. In this dissertation, 

we will deal only with two of them: the so-called static and dynamic yield stresses. Static 

yield stress will be discussed in this section and is identified with 𝜏0, that is, the lowest 

stress required for the onset of irreversible flow [89]. On the other hand, the dynamic 

yield stress (𝜏𝑦) will be introduced in Sec. 3.4.3 (see pag. 57). 

Motivated by torque-transfer applications in electro-mechanical systems, experimental 

studies on the yielding behavior of CMRFs have mainly focused on the dependence of 

the yield stress with the applied magnetic field strength. This dependence has been usually 

parameterized as a power law 𝜏0 ∝ 𝐻𝑒𝑥𝑡
𝑚  where the exponent 𝑚 is not constant but 

changes with the field strength. At low fields (linear regime) some authors obtain 𝑚 = 2 

[90-94]. Increasing the magnetic field strength, the exponent spans from 1.4 to 1.7 [94,95-

103] while further increasing the field strength leads to a (saturation) regime where the 

field dependence disappears, 𝑚 = 0 [98,104-106]. Note that these three intervals 
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correspond to the same ones observed in the magnetic permeability (and thus 

magnetization) of a particle (Fig. 3.2) in Sec. 3.2. This observation highlights the close 

relationship between yield stress, interparticle force and particle magnetization. 

Apart from the magnetic field strength, the yield stress is also strongly dependent on the 

particle concentration. However, very few systematic works exist describing this 

dependence probably because of the complexity involved when dealing with a many-

body problem both from an experimental and theoretical point of view [107,108]. 

Generally speaking, for CMRFs at low-moderate fields, the yield stress increases linearly 

at low volume fractions (below 𝜙 = 0.1) and at a slightly faster rate for intermediate 

volume fractions (𝜙 > 0.1). 

Previous experimental trends have been investigated from both analytical and simulation 

points of view as well. Theoretically, hydrodynamics can be neglected in the pre-yield 

regime (i.e. absence of flow), and therefore, the strain suffered by the sample takes a very 

long time to relax, so that the only non-isotropic contribution to the total stress tensor is 

given by Eq. (3.57). This, of course, depends on the non-hydrodynamic forces exerted 

over the particles and their positions, i.e., their microstructure. Hence, the goal is to find 

the rheological constitutive equation that relates the shear stress generated by the structure 

(restoring stress based only in the non-hydrodynamic forces) when it is shear strained an 

amount 𝛾, 𝜏 = 𝑓(𝛾). Note that according to this, any MR system with the same 

microstructure than a CMRF (for example, anisotropic MREs) will share theoretically the 

same rheological constitutive equation. 

A typical example of this kind of curve is plotted in Fig. 3.5a where different regimes can 

be delineated. Starting from the left, at sufficiently low strains, particle positions are little 

distorted and consequently the interparticle force change is linear. This results in an 

elastic behavior where the dependence between the restoring stress and the applied strain 

is also linear (its slope is defined as the shear modulus 𝐺): as the structure is strained from 

the (meta)stable state, 𝛾 = 0, to 𝛾 > 0, a larger restoring stress appears trying to turn the 

structure back to the original state. Then, the stress stops being linear, reaches a maximum 

𝜏0 = 𝑓(𝛾0) and starts to decrease: in this second stage, greater strains find smaller and 

smaller restoring stresses, this implies that the structure cannot remain stable and breaks. 

In this context, it is easy to identify the aforementioned maximum 𝜏0 with our definition 

of static yield stress understood as the onset of flow. The related strain 𝛾0 will be called 

here yield strain despite the fact that some references save this name for the limit of the 

linear elastic behavior [109]. Analogously to the yield stress, the yield strain denotes the 

limit where the structure can recover its original shape once the applied stress has been 

removed. 

As it was said in Sec. 3.3, in CMRFs non-hydrodynamics forces are completely 

dominated by magnetostatic ones. Thus, the restoring stress will be given by the magnetic 

field distribution inside the CMRF (Sec. 3.2). However, as described in that section, the 

complexity of the field-induced structure together with the length scale mismatch 

between the structure (sample length scale around 1 mm) and its constitutive elements 

(particles length scale around 1 m) prevent us from fully solving the magnetic field 

distribution, and with it the magnetostatic forces, neither theoretical nor computationally. 

Because of this, two main approximations are assumed in the literature to get some insight 

on the yield stress. On the one hand, magnetic interactions are supposed to be known, 

while the structuration under shear is computed. On the other hand, particles positions are 

imposed and both magnetostatic forces and the total stress are solved. 
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Figure 3.5: (a) Restoring shear stress as a function of the microstructure strain. (b) 

Under an affine shear strain the particles are displaced along the shear direction a 

quantity that is proportional to their height 𝑧. 

The first approximation is just the one-way coupling scheme referred in Sec. 3.1: 

magnetic forces are supposed to be dipolar (Eq. (3.48)) while hydrodynamic forces are 

reduced to Stokes’ law (Eq. (3.21)). From the total force acting over each particle, their 

positions can be tracked by solving Newton second law (Eq. (3.4)). Different from 

structuration studies in the quiescent state, now it is necessary to move the particles in 

order to evaluate how the stress changes with the sample shear strain. To do this, 

exceedingly small shear rates are applied to drag the particles and the strain is computed 

as 𝛾 = �̇�𝑡 (where 𝑡 is the simulated time). Obviously, this contradicts our definition of 

pre-yield regime (where there is not flow or any dependence on time), however if the drag 

force coming from the imposed shear rate is small enough in comparison to the 

magnetostatic force (ratio of 10-3 or smaller [36,110]), the computed shear stress versus 

𝛾 still shows the expected behavior consisting of a linearly increase followed by a 

maximum, that is identified with the static yield stress. 

Generally speaking, although this approximation is capable to mimic the structures 

experimentally seen in CMRFs, it underestimates the experimental yield stress values 

(multipoles are not included in the computation, remember Sec. 3.2) and it is not 

computationally efficient neither because it needs very small simulation time steps in 

order not to suffer convergence problems (see Sec. 4.2.1). 

In the second approximation, the MRF structure is imposed and the force/stress computed 

from magnetostatic theory (Sec. 3.2). Traditionally, methods within this group can be 

classified in micro- and macroscopic depending on whether they account for particle 

positions inside the field induced aggregates or not. In Secs. 3.4.2.1 and 3.4.2.2, main 

features behind both models are discussed. 

3.4.2.1 Macroscopic methods 

In the macroscopic approaches the particles are supposed to arrange following the applied 

field direction in fusiform (cylinders or ellipsoids) or sheet-like aggregates whose internal 

structure (precise position of the constituent particles) is unknown but described by the 

aggregate internal volume fraction 𝜙𝑎 (commonly approximated by the randomly closed 

packing for spheres 𝜙𝑎 = 0.64). In this case, the stress curve 𝜏 = 𝑓(𝛾) is calculated 

(a) (b)
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starting from the magnetostatic energy (Eq. (3.40)) that for linear materials can be 

rewritten as (see pages 95-98 from Ref. [111]): 

 𝜏 = −
1

𝑉

𝜕𝑊𝑉

𝜕𝛾
=

1

2𝑉
𝜇0𝐻𝑒𝑥𝑡

𝜕𝑚𝑧

𝜕𝛾
 (3.61) 

where 𝑚𝑧 = 𝑉(1− 𝜇𝑧𝑧
−1)𝐻𝑒𝑥𝑡 is the dipole component in the field direction written in 

terms of the permeability tensor 𝜇𝑧𝑧 of the suspension. This depends on the aggregate 

shape and strain. In the case of sheet like aggregates and cylinders, it can be written as 

follows [112,113]: 

 𝜇𝑧𝑧 = 𝜇∥
1

1+ 𝛾2
+ 𝜇⊥

𝛾2

1 + 𝛾2
 (3.62) 

Here 𝜇∥ and 𝜇⊥ are the permeability components in the parallel and perpendicular 

directions to the aggregate axis respectively. Both are independent on the field (linear 

material) and the strain but they depend on the aggregate shape, contrast factor 𝛽 and 

sample volume fraction. Rather than focusing in deriving these dependencies (the full 

expression computed according to the Maxwell-Garnett theory can be found in Ref. 

[112]) here we will merge them in a general function 𝑔 to directly study 𝜏. Supposing 

isolated aggregates that do not interact with each other: 

 𝜏 = 𝜇0𝜇𝑐
2𝛾

(1+ 𝛾2)2

𝜙

𝜙𝑎
(1 −

𝜙

𝜙𝑎
)𝐻𝑒𝑥𝑡

2 𝑔(𝛾, 𝜙, 𝜙𝑎 , 𝛽) (3.63) 

where the dependence of 𝑔 on the aggregate shape is captured through 𝛽 and the 

dependence on 𝛾 must be included again to cover the case of ellipsoidal aggregates.  

Nevertheless, it has to be said that dependences on 𝛾 and 𝜙 are weak. Consequently, the 

yield stress will happen at the maximum of the function 2𝛾 (1+ 𝛾2)2⁄  that is around 0.58. 

Two main factors control the (yield) stress. In first place, it is proportional to the external 

magnetic field squared due to the linear magnetic behavior previously assumed. In second 

place, despite the fact that aggregates are supposed not to interact with each other, the 

stress is not a linear function of the volume fraction. The explanation for this is that as 𝜙 

gets closer to 𝜙𝑎, the aggregates tend to fill the whole sample volume. Consequently, at 

𝜙 = 𝜙𝑎 the whole sample is a gap-spanning homogeneous aggregate (since internal 

structure is not taken into account) that do not change its energy under the external field 

as it is strained (i.e. there is not any difference between an unbounded homogeneous body 

that is strained or not). 

The comparison between the macroscopic models and experimental data on the yield 

stress of CMRFs is not satisfactory [112]. Similar to what happened with the first 

approximation using the one-way coupling scheme, the theoretical predictions are below 

the experimental data. Clearly, a good match was not expected at intermediate-high fields 

when particles are partially or fully saturated as the model was thought for linear media. 

However, the agreement is not good neither at low fields when the particles fulfill this 

requisite. The main problem is the absence of interactions between neighbor aggregates 

and of multipolar contributions in the model. The latter will enhance the local field in the 

particle poles and gaps hence increasing the magnetic field in these regions. On the 

contrary, the model assumes that the field inside of the sample is homogeneous and 

determined by 𝜇𝑧𝑧 what cannot approximate the real field distribution of the field in the 

aggregates. Despite this finding, macroscopic models do agree very well when compared 

with experiments on IFFs [107,112]. The fact that FFs have a much smaller permeability 
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than ferromagnetic particles used in CMRFs allows neglecting multipoles (see Fig. 3.3) 

and therefore the macroscopic model properly works because it is not crucial to know the 

exact position of every particle. The agreement with IFFs is good not only regarding the 

field dependence but also regarding the volume fraction dependence. It can also be seen 

an experimental maximum in the yield stress with the volume fraction that is also 

anticipated theoretically by Eq. (3.63) [107]. Besides, it must be said that these 

macroscopic models have been also derived for the case of non-linear materials (thus 

involving a numerical resolution) and grounding the computation of the force on the 

Maxwell’s stress tensor [114]. In this case, the agreement with experiments on CMRFs is 

comparable with that provided by microscopic methods exposed in Sec. 3.4.2.2. 

Finally, it is also worth mentioning a last approximation for the pre-yield behavior based 

on the continuum theory at small strains. In this context, the CMRF is seen as a 

homogeneous body with a field-independent anisotropic permeability tensor but now 

independent of the aggregate shape. In fact, the model does not assume the existence of 

aggregates but anisotropy in the magnetic permeability [115]. Of course, the preferred 

direction is that along the field-induced aggregates that changes when the body is sheared. 

By computing how the permeability tensor changes with the strain (something that is 

accessible experimentally), it is possible to compute the rheological constitutive equation 

of the material. Although the model is limited to linear materials and small strains, the 

major advantage behind this formalism is that it does not require a microscopic 

description of the sample, that is, it does not depend on the particle shape/size neither 

magnetization mechanism (dipolar o multipolar terms) or plausible forces between 

particles (non-/hydrodynamics ones) that played a role in the eventual particle structure. 

3.4.2.2 Microscopic models 

In the microscopic approaches the position of each particle is imposed for every applied 

strain. This allows computing the magnetic field distribution from Maxwell equations, 

(Eqs. (3.34) and (3.35)), from this the magnetic force between particles (Eq. (3.38)) for 

each strain and finally the constitutive relationship 𝜏 = 𝑓(𝛾) to identify the yield stress 

from the maximum of the curve. A priori, any particle configuration could be solved, 

however this is a hard task, even for a few particles, due to the necessity of imposing 

boundary conditions (Eqs. (3.36) and (3.37)). Only in the case of linear materials, 

methods based on multipolar expansions that always include a finite number of multipoles 

𝐿 (𝐿-th order solution) have been implemented [49,50]. 

In the case of non-linear materials such as CMRFs, the most frequent choice is to use 

FEM to numerically solve Maxwell equations without any further approximation 

[54,116-120]. However, the high computational cost associated to FEM has restricted the 

study to strong symmetric systems; in particular, periodic arrangements. Their main 

advantage is that they can approximate the CMRF only computing the magnetic field 

distribution around one or two particles in a unit cell whose dimensions are chosen 

according to the volume fraction. 

Due to the small number of explicitly simulated particles, the effects of neighbors (rest of 

dispersed particles in the CMRF) can be accounted for using the appropriate boundary 

conditions. These must be fulfilled regardless the strain in the particle arrangement, thus 

when boundary conditions are imposed, it must be taken into consideration what kind of 

particle arrangement they are giving rise to and whether it resembles the experimental 

one or not. This requirement usually limits the type of shear strain to the very simple 
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affine shear mode where particles maintain constant their positions in the 𝑧 and 𝑥 

directions while the 𝑦 component is changed as 𝑦 = 𝛾𝑧 (see Fig. 3.5b).  

In view of the structures experimentally reported (see Sec. 3.4.1), the natural choice for 

the periodic arrangement would be the 3D tetragonal lattice with body centered basis that 

evolves to a monoclinic one when it is sheared. However, only a few works really 

simulate a 3D lattice [121-123]. Furthermore, these works deal with linear materials. 

Undoubtedly, the preferred geometry is the axisymmetric model originally proposed by 

Ginder and Davis [43], which later has been extensively used or adapted by many other 

authors [116,117,119,124,125]. 

Once the cylindrical symmetry is applied, Ginder and Davis’ model approximates the 3D 

tetragonal lattice by an infinite chain of particles aligned with the external field and 

centered in a cylindrical computational domain. As boundary conditions, they impose 

mirror symmetries on the lateral wall of the cylinder, i.e. the total field normal to this wall 

is zero. This cylindrical geometry and mirror boundary conditions are kept for any strain 

because affine shear strain is modeled with a two-step process: first the chain is elongated 

at constant volume fraction and then the stress along the chain axis is projected 

analytically in the shear direction (chain rotation) to compute 𝜏. 

In this dissertation, from Chapter 5 to Chapter 8, we propose an improved method over 

this classical work, thus it is worthwhile to pause here in order to see the main 

approximations and related shortcomings of the classical approach. The first one clearly 

is that a 3D tetragonal or monoclinic lattice is not axisymmetric. Supposing this symmetry 

together with mirror boundary conditions forces the chain axis and particle magnetization 

to be parallel. This picture could resemble, to some extent, the real structure only in the 

non-strained state (tetragonal lattice). However, at strains different from zero it is not 

possible to know, a priori, the total field direction at the boundaries due to the lack of 

symmetry in the real system (the applied field is pointing in the 𝑧 direction but the chain 

axis is not). Therefore, supposing that in a strained lattice mirror symmetries are still valid 

can lead to interchain interactions quite different from those that truly occur. 

With respect to chain rotation, two major approximations are done in Ginder and Davis’ 

work. The first one is the aforementioned two-step process to model the affine motion. 

This is a geometrical approximation to keep the model axisymmetric but it only works at 

small strains. Hence, its extension to large strains, as it is done in Ginder and Davis’ work, 

is questionable. The second approximation is related to the anisotropic behavior of 

magnetic interaction. Due to the axial symmetry, in classical simulations the applied 

magnetic field, the chain axis and the particle magnetization are all aligned for any strain. 

As a consequence, the simulated interaction between particles placed in the same chain 

is always attractive and aligned with the chain axis, that is, the force acts through the line 

which connects the particles as if it were a central force. However, the magnetic 

interaction is not central (see Sec. 3.2.1, Eq. (3.49)) and magnetization direction is not 

given by the chain axis but by the total magnetic field inside the particle (unknown a 

priori). Thus, computing the shear force simply projecting in this direction as it is done 

in the classical model does not seem to be a good method neither. 

In Chapter 5, a new 3D method based on periodic boundary conditions and a background 

field formulation is introduced to overcome these shortcomings. In addition, in Chapter 

7 it is investigated the physical meaning of assuming as right the Ginder and Davis’ model 

assumptions. 
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Despite the previously noted deficiencies, the classical work of Ginder and Davis was 

capable to address (probably, for the first time) the effects of the non-linear magnetic 

properties of the particles on the CMRF yield stress: due to the presence of multipoles, 

the magnetic field is enhanced in the gaps present between the particles. As a 

consequence, the particle polar regions start to saturate so they cannot increase more their 

magnetization level. This eventually explains why the interparticle force saturates as well. 

In striking contrast to the macroscopic models, the microscopic ones (solved using FEM) 

can reproduce the experimental dependence of the yield stress on the external magnetic 

field. This is basically because they can take into consideration the non-linear 

magnetization of the particles. Regarding the quantitative comparison to experiments, a 

good agreement, at least in the order of magnitude, can be seen in Figure 1b of Ref. [126] 

for several works of the specialized literature. However, some care should be taken in 

these comparisons since FEM simulations are not typically carried out using 

representative values of the particle permeability. For example, in the aforementioned 

Ref. [126], 𝜇𝑖 = 71 although the use of this particular value requires including an 

interparticle gap (i.e. a non-magnetic shell [51]), to reproduce experimental measured 

permeabilities (which are much more smaller, around 10, see Fig. 4.1 for instance). 

However such an interparticle gap is not included in the simulations. The situation is 

aggravated in many other works where this gap is neither considered and 𝜇𝑖 = 1000 is 

taken. Thus, the good agreement between classical FEM simulations and experiments 

could be based on the fact that classical FEM approximations are balanced by a non-

realistic permeability choice. In Chapter 6, the effect of the interparticle gap on the yield 

stress is evaluated when the particle permeability is imposed to be 𝜇𝑖 = 1000 and 𝜇𝑖~ 10. 

Experimental and numerical trends of the yield stress against the external field strength 

have been also corroborated from an analytical point of view. These theoretical analyses 

have been applied to a simple system consisting of one isolated chain but introducing the 

non-linear magnetic behavior of the particles. In summary, three regions are identified: 

 𝜏0 = {

𝑐1𝜇0𝐻𝑒𝑥𝑡
2 𝜙 Low fields 

𝑐2𝜇0𝑀𝑆
1/2
𝐻𝑒𝑥𝑡

3/2
𝜙 Intermediate fields

0.086𝜇0𝑀𝑆
2𝜙 High fields [127]

 (3.64) 

where 𝑀𝑆 is the saturation magnetization of the particles and the proportional constants 

depend upon the reference [116,127].  

As it can be seen, the three reminiscent regimes of the particle magnetization behavior 

(see Fig. 3.2) appear also theoretically. The frontiers between linear, sub-quadratic 

(transition) and saturated regimes are difficult to be established. Indeed, they depend on 

the constitutive equation and preassembled structure of the particles among others. 

Actually, the sub-quadratic dependence is only a particular case because the exponent of 

𝐻𝑒𝑥𝑡 continuously changes from 2 to 0 as the particles saturate from their poles till their 

center [128]. Note that, in any regime, the yield stress is always proportional to the 

volume fraction. This comes from initially supposing isolated non-interacting chains. 

Assuming a homogeneous distribution of chains, it can be shown that the area per chain 

𝑤2 goes as 𝑤2 ∝ 𝜙−1, thus 𝜏0 = 𝐹𝑚 𝑤2⁄ ∝ 𝜙 [129]. 

Finally, with the same goal than in the previous analytical derivation, some models based 

on the MMA (usually neglecting local field computation) for the yield stress of an isolated 

chain have been proposed as well. In general, the yield stress can be written as: 
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 𝜏0 = 𝑐3𝜇0𝑀
2𝜙 (3.65) 

where 𝑀 = 3𝛽𝐻𝑒𝑥𝑡 in the linear regime (see Eq. (3.44)) or 𝑀 = 𝑀𝑆 in the saturation 

regime. 𝑐3 is a proportionality constant that depends on the particular assumptions made: 

𝑐3 = 0.086 for the axisymmetric model [127], 𝑐3 = 0.114 for a pair or particles [130], 

𝑐3 = 0.123 for a semi-infinite chain [131]) or 𝑐3 = 0.274 for the force experienced by one 

particle in the chain [132]. In Chapter 8, a similar method to the one used in the previous 

references is used to compute the yield stress of an isolated chain of saturated particles 

under a true shear strain motion. More complex models can be also found, for example 

in Ref. [133], where the yield stress considering multipoles is computed for a pair of linear 

particles, or in Ref. [131], where a ‘bead-rod’ model is regarded resulting in a yield stress 

that is dependent on the size of the sample. 

3.4.3 Post-yield regime. Shear thinning behavior 

When the applied shear stress overcomes the static yield stress, the structure cannot bear 

it and consequently breaks. At this stage, the sample starts to flow and the shear stress 

consists of the last four terms in Eq. (3.58). This equation can be rearranged as follows: 

 𝜏 = (𝜂𝑐 +
6𝜙

𝜋𝑑3

〈�̃�ℎ〉𝑧𝑦

�̇�
) �̇� + (〈𝑥�̃�〉𝑧𝑦 +

6𝜙

𝜋𝑑3
〈�̃�𝑝〉𝑧𝑦) = 𝜂ℎ�̇� + 𝜏𝑝 (3.66) 

where the different terms have been grouped depending on whether they are proportional 

to �̇� (first bracket that we will call ‘hydrodynamic’ contribution 𝜂ℎ) or proportional to the 

non-hydrodynamic forces 𝐹𝑛ℎ = 𝐹𝑑 (second bracket or ‘particle’ contribution 𝜏𝑝).  

According to the definitions of the stresslets 〈�̃�ℎ〉 and 〈�̃�𝑝〉 (Eq. (3.56)) and the 〈𝑥�̃�〉 term 

(Eq. (3.57)), it can be seen that neither 𝜂ℎ nor 𝜏𝑝 depends explicitly on �̇�. However, it 

should be born in mind that all those terms do depend on the particle microstructure and 

this one is eventually affected by �̇�, thus it should be written 𝜂ℎ = 𝜂ℎ(𝜙, �̇�) and 𝜏𝑝 =

𝜏𝑝(𝜙, �̇�). What is more, taking into account that 𝜏𝑝 is proportional to 𝐹𝑑 and this is, at the 

same time, proportional to 𝑀2 (see Eqs. (3.48)-(3.50)), it can be further written 𝜏𝑝 =

𝑓(𝜙, �̇�)𝑀2. Note that, if the dependence on �̇� through the microstructure is neglected, 

CMRFs would follow a plastic Bingham model. 

It is well known in the Rheology community that the use of material functions (such as 

the shear viscosity in a simple shear flow) is more convenient than the use of the stress 

itself. Simply dividing Eq. (3.66) by �̇� and bearing in mind the aforementioned 

dependencies on 𝜙, �̇� and 𝑀2 we arrive to: 

 𝜂 =
𝜏

�̇�
= 𝜂ℎ(𝜙, �̇�) + 𝑓(𝜙, �̇�)

𝑀2

�̇�
 (3.67) 

The ratio 𝑀2 �̇�⁄  is traditionally introduced through dimensional analysis. It is the so-called 

Mason number Mn and can be conceived as the ratio between hydrodynamic (drag) and 

magnetostatic force scales, advection and magnetic-controlled velocity/ times scales, etc. 

In this dissertation, the first option is chosen and therefore: 

 Mn =
72𝜂𝑐�̇�

𝜇0𝜇𝑐𝑟𝑀2
 (3.68) 

With this and calling 𝜂∞(𝜙) the limiting behavior of 𝜂ℎ(𝜙, �̇�) at large Mn (see below) 

the CMRF viscosity can be made dimensionless: 
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𝜂

𝜂∞(𝜙)
=
𝜂ℎ(𝜙, �̇�)

𝜂∞(𝜙)
+

Mn∗(𝜙, �̇�)

Mn
 (3.69) 

where a critical Mason number has been introduced to bring the different constants 

together: 

 Mn∗(𝜙, �̇�) =
72𝜂𝑐𝜏𝑝(𝜙, �̇�)

𝜇0𝜇𝑐𝑟𝑀2𝜂∞(𝜙)
 (3.70) 

In Fig. 3.6, the dimensionless viscosity 𝜂 𝜂∞⁄  for a given 𝜙 is sketched together with the 

contributions from the functions 𝜂ℎ(𝜙, �̇�) and 𝜏𝑝(𝜙, �̇�). This figure must be regarded as 

a qualitative description to roughly catch the viscosity behavior since it is only adapted 

from SD results given in Ref. [17] for a monolayer of particles with linear polarization 

behavior. Till three regions are usually differentiated. By analyzing them, it is possible to 

give the proper physical meaning to the previously introduced functions 𝜏𝑝(𝜙, �̇�) and 

𝜂ℎ(𝜙, �̇�). 
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Figure 3.6: Sketch adapted from numerical results in Ref. [17] showing the behavior of 

the dimensionless viscosity, hydrodynamic and particle contributions as a function of 

Mn. Logarithmic scale is used in both axes. 

At low Mn (the borderline being dependent on 𝜙), particle motion is expected to be fully 

governed by the magnetostatic forces since they are much greater than the drag created 

by �̇�. Thus, when the CMRF starts to flow, the initial aggregates induced by the magnetic 

field will start to rupture and reattach in more relaxed configurations. However, this re-

configuration of the particles takes place almost instantaneously, or in other words, at a 

time scale that is much smaller than the time scale related to �̇�. Consequently the 

microstructure, and with it 𝜏𝑝(𝜙, �̇�), are both independent on �̇� [110]. In addition, 

according to Fig. 3.6, the contribution from 𝜂ℎ(𝜙, �̇�) (blue dotted line) is several orders 

of magnitude smaller than the 𝜏𝑝(𝜙, �̇�) contribution and then negligible [8,17]. These two 

facts imply that, at low Mn, the CMRF stress level is only given by 𝜏𝑝(𝜙, �̇�) = 𝜏𝑦(𝜙), 

that is, in the magnetostatic regime, the function 𝜏𝑦(𝜙) truly stands for a dynamic yield 

stress generated by the continuously (and almost instantaneously) rearrangement of the 

particles [89]. From here and remembering that 𝜏𝑝(𝜙, �̇�) is proportional to 𝑀2, it is 
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straightforward to see that the viscosity will diverge as Mn decreases in the magnetostatic 

regime: 𝜂 = 𝜏 �̇�⁄ ~ 𝜏𝑦(𝜙) �̇�⁄ = 𝑓(𝜙)𝑀2 �̇�⁄ ∝ 𝑓(𝜙) Mn⁄ . 

On the contrary, in the hydrodynamic regime at large Mn, particles are dragged by the 

fluid flow without any significant influence from magnetostatics: 𝐹𝑚𝑎𝑔 �̇�⁄ ∝ 1 Mn⁄ ~ 0 

(see Eq. (3.50) for the definition of 𝐹𝑚𝑎𝑔). Hence, the suspension behaves as it would 

consist of non-interacting spheres. This makes 𝜏𝑝(𝜙, �̇�) �̇�⁄ ~ 0 but also establishes �̇� as 

the only driving parameter in the CMRF dynamics. Bearing in mind that Stokes flow is 

linear in its driving parameters, it is expected that 〈�̃�ℎ〉 ∝ �̇� (regardless the particle 

microstructure or 𝜙). Introducing this in the first bracket of Eq. (3.66), it is seen that 𝜂ℎ 

does not depend on �̇� in the hydrodynamic regime, thus: 𝜂ℎ(𝜙, �̇�)  = 𝜂∞(𝜙) as it was 

previously anticipated. Because of the fact large Mn values are usually reached by 

applying large shear rates, 𝜂∞(𝜙) is known as the high shear rate viscosity. 

Finally, increasing Mn over the transition regime is expected to trigger particles 

separation from aggregates. As the aggregate size is reduced, they offer less resistance to 

the flow and thus viscosity decreases as well. Ideally, the typical size of the aggregates 

continuously goes down until Mn = Mn∗ when it can be considered that pair of particles 

are forming and breaking continuously in the CMRF [134]. Note that in this regime, due 

to the interplay between the particle microstructure and the different stresslets of Eq. 

(3.66), it is not easy to extract any information about 𝜂ℎ(𝜙, �̇�)  or 𝜏𝑝(𝜙, �̇�). 

To do so, it is necessary to turn to numerical studies that are capable to discern the 

different contributions to the shear stress (or viscosity) such as SD [17] or two-way 

coupling schemes [8]. Results from this kind of studies were sketched in Fig. 3.6. As it 

can be seen in the transition regime, the particle contribution 𝜏𝑝 (𝜂∞�̇�⁄ ) (red dashed line) 

is roughly proportional to 1/Mn. This means, that its behavior in the magnetostatic regime 

(that can be predicted analytically) is applicable also at intermediate Mn. 

Regarding the hydrodynamic contribution, a more complicated behavior is observable 

due to the destruction of the field-induced structure. However, the high computational 

cost required to study this regime (that is, modeling a large number of particles with a 

complete description of hydrodynamic and magnetostatic interactions) has precluded a 

deeper and more detailed understanding of it. Currently, what is done in the literature is 

to extrapolate the behavior of the hydrodynamic contribution away from the 

hydrodynamic regime, i.e., to assume that 𝜂ℎ(𝜙, �̇�)  = 𝜂∞(𝜙) for any Mn. Obviously, 

this approximation is appropriate in the magnetostatic regime. However, it may not be 

valid in the transition regime unless 𝜂ℎ(𝜙, �̇�)  ≪ 𝜏𝑝 (𝜂∞�̇�⁄ ) [8]. 

Under this scenario, Eqs. (3.69) and (3.70) are strongly simplified since now, only 

dependencies on 𝜙 are kept: 

 
𝜂

𝜂∞(𝜙)
= 1+

Mn∗(𝜙)

Mn
 (3.71) 

 Mn∗(𝜙) =
72𝜂𝑐𝜏𝑦(𝜙)

𝜇0𝜇𝑐𝑟𝑀2𝜂∞(𝜙)
 (3.72) 

Equations (3.71) and (3.72) show that, under conditions referred in the previous 

paragraph, the flow behavior of CMRFs follows the Bingham model and depends only 

on Mn and 𝜙. Furthermore, this last dependence is solely contained in Mn∗. According 

to this, the flow curve of any CMRF has the same shape than the one plotted in Fig. 3.6. 



59 

 

The only effect of 𝜙 is to shift the curve (and the frontiers between the three regimes) in 

the x-axis according to the value of Mn∗ (see point in Fig. 3.6). 

Numerous experimental works in magnetic colloids [107,119,131,135-141] and, in minor 

extent, simulation ones [19,27,33,142] works have tried to collapse viscosity data in a 

master curve following Eq. (3.71). In general, the data do not exactly follow that trend; 

instead, they can be better fitted as 𝜂 𝜂∞⁄ = 1+ (Mn∗ Mn⁄ )Δ with Δ ranging from 2/3 to 

1. The origin of this expression is not physical but just a relaxed version of Eq. (3.71) to 

get a better fit. Actually, a perfect agreement is not expected neither since the Bingham 

model arose from the supposition that both 𝜂∞ and 𝜏𝑦 do not depend on �̇� and hence 

involves a certain grade of approximation, especially in the transition regime. 

Other experimental sources of error can appear as well. For example, it is impossible to 

guarantee that non-hydrodynamic forces will be exclusively the magnetostatic ones in 

any CMRFs. This fact can introduce new factors not accounted for in this section that 

probably will have a deeper effect in the transition regime (when neither magnetostatics 

nor hydrodynamics dominate) [17]. To enhance the fitting in this regime, other 

macroscopic models such as the Casson one or the microstructural viscosity model 

proposed in [143] have been used. 

3.4.3.1 Critical Mason number 

Equation (3.71) offers a route to test experimental and simulation data on any MRF 

subjected to (steady simple shear) flow. However, until now, it has a very limited 

predictive utility because nothing has been said about the functional form of Mn∗(𝜙). 
Looking at Eq. (3.72) it can be seen that, indeed, both 𝜂∞(𝜙) and 𝜏𝑦(𝜙) dependences are 

needed separately. 

The determination of 𝜂∞(𝜙) has been extensively addressed in the literature under the 

context of the calculation of the high shear viscosity of non-Brownian Hard Sphere 

suspensions. The solution was provided by Einstein [1] for low volume fractions (𝜙 < 

0.05). In this concentration regime the particles do not interact, even hydrodynamically, 

and the stresslet 〈�̃�ℎ〉 in Eq. (3.66) can be identified with the stresslet of an isolated particle 

(Eq. (3.18)), hence: 

 
𝜂∞(𝜙) = 𝜂𝑐 +

6𝜙

𝜋𝑑3

〈�̃�ℎ〉𝑧𝑦

�̇�
= 𝜂𝑐 +

6𝜙

𝜋𝑑3�̇�

5

6
𝜋𝜂𝑐𝑑

3〈�̃�〉𝑧𝑦

= 𝜂𝑐 (1 +
5

2
𝜙) 

 

 

(3.73) 

Here it has been taken into consideration that 〈�̃�〉 = �̃�∞ (the imposed macroscopic shear 

rate) and �̃�∞ is given by Eq. (3.59). The calculation of 𝜂∞(𝜙) for larger concentrations is 

more complicated. It involves non-negligible hydrodynamic interactions that require 

simulation techniques to be solved. As it has already been pointed out, these simulations 

are highly time/computational consuming and not always offer results comparable to 

experimental data due to the further required simplifications needed to implement them 

numerically. Alternatively, several phenomenological expressions have been proposed in 

the literature coming from mean field theories. In this dissertation, the so-called Quemada 

expression is used [144]: 

 𝜂∞(𝜙) = 𝜂𝑐 (1−
𝜙

𝜙𝑎
)
−2

 (3.74) 
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where 𝜙𝑎 = 0.64 is the randomly closed packing for spheres where viscosity diverges. 

Regarding 𝜏𝑦(𝜙), two main approaches have been followed in the literature: (i) 

microscopic models and (ii) one-way coupling scheme simulations. In both cases, 

magnetostatic interactions are supposed to be dipolar while Stokes’ drag law is used to 

model particle-fluid interaction. 

Similar to those summarized in Sec. 3.4.2, microscopic models are limited to isolated 

chains but now subjected to simple shear flows; the application of these models is 

constrained to the dilute regime. Instead of looking for the maximum of the shear stress 

as a function of the strain (static yield stress), dipolar and drag forces are balanced in the 

chain to obtain the dynamic yield stress. Similar to what happened with the static yield 

stress, working with an isolated chain implies 𝜏𝑦 ∝ 𝜙 whereas the high shear rate is 

simply 𝜂∞(𝜙) = 𝜂𝑐. Consequently Mn∗(𝜙) = 𝑐4𝜙 where 𝑐4 is a constant that depends 

on the particular forces and the specific mechanical stability condition: 𝑐4 = 5.25 [131], 

𝑐4 = 8.49 [137] or 𝑐4 = 8.82 [145]. 

Of course, increasing the particle volume fraction needs the use of numerical simulations. 

Current work has been done with one-way coupling schemes, accounting for 

magnetostatic and hydrodynamic interactions only through dipolar (Eq. (3.48)) and 

Stokes’ drag (Eq. (3.21)) forces [129,142,146]. Results from these simulations yield 𝑐4 = 

0.24. 

At this point, it should be questioned whether this kind of simulations, without coupling 

between particles and fluid, provide a good estimation. A priori, only simulations capable 

to assess the three stresslets 〈�̃�ℎ〉, 〈�̃�𝑝〉 and 〈𝑥�̃�〉, forming part of the total viscosity, should 

be used. However, as it was previously mentioned, 〈�̃�ℎ〉 (through 𝜂∞) is the main 

contribution to the viscosity only at large Mn [17], when it only depends on the volume 

fraction and therefore it can be computed analytically from Eqs. (3.73) or (3.74) 

depending on the concentration. With regards to 〈𝑥�̃�〉, it is properly computed in one-way 

schemes as non-hydrodynamic forces are properly taken into account as well. Main 

claims could arise from 〈�̃�𝑝〉 that requires the use of two-way methods at the expense of 

higher computational effort and smaller simulated systems. 

From an experimental point of view, MRF dominated by magnetostatic dipolar forces 

(e.g. IFFs), regardless of the volume fraction, and CMRFs in the dilute regime (𝜙 ≤ 0.05) 

show an excellent agreement with previous one-way coupling results. On the contrary, 

CMRFs at higher concentrations, show that Mn∗(𝜙) is not linear and almost two order of 

magnitude higher than simulations [129,142,146]. In these references, the disagreement 

was explained in terms of other non-hydrodynamic colloidal forces present in the 

experimental samples but not included in the simulations. In Chapter 6, a new explanation 

will be proposed: only when magnetic multipole and multibody effects are accounted for 

the static yield stress, this one shows a very good agreement with the experimental 

dynamic yield stress (i.e., according to Eq. (3.72), with Mn∗). Of course, this does not 

mean that both yield stresses are interchangeable but could be another evidence that 

multipole and multibody effects play a crucial role in the rheology of concentrated 

CMRFs. 

As it can be seen, once the dependence Mn∗(𝜙) is known, it is possible to predict the 

steady shear flow behavior of any CMRF (regardless its volume fraction, the applied 

shear rate and the applied magnetic field) from Eq. (3.71), that is, it is a master curve. As 

a consequence, it could be considered that we have a general constitutive rheological 
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equation for any CMRF. However, it must be taken into consideration that this section is 

only focused in steady simple shear flows and therefore shear stresses. A true constitutive 

equation should also describe the rest of the components of the stress tensor (e.g. normal 

stresses). 

3.4.4 Normal stresses 

The appearance of non-isotropic normal stresses, as well as normal stress differences, in 

simple shear flow together with the shear rate-dependent viscosity and the yield stress are 

classical signatures of non-Newtonian flow behavior. From Eq. (3.58) and taking into 

account the field-induced anisotropic structures devised in Sec. 3.4.1, it is easy to deduce 

that MR fluids will have also anisotropic normal stress components in the field/gradient 

𝜎𝑧𝑧, shear 𝜎𝑦𝑦, and vorticity 𝜎𝑥𝑥 directions (see Fig. 3.4). 

These normal stresses play a very important role in MRF applications. They promote the 

appearance of macroscopic forces in the field direction acting over the walls confining 

the sample, an enhanced sample-geometry interaction to avoid wall slip, magnetostriction 

effects, etc. Unfortunately, the difficulties related to their precise measurement have 

hindered a substantial progress in their understanding and many previous publications in 

this topic give contradictory results. 

To date, experimental work has focused in measuring the normal force (i.e. in the field 

direction) developed by the sample because it is a magnitude that can be easily accessed 

experimentally. In all reported cases, a positive normal force is found (i.e. the sample tries 

to elongate in the field direction) that approximately increases with 𝐻𝑒𝑥𝑡
2 . However, 

consensus does not seem to be reached regarding the strain/shear rate dependence of the 

normal force in the pre-/post- yield regime. In the pre-yield regime, some authors found 

that the normal force grows with the strain till a maximum associated to the yield stress 

[105,147]. On the contrary, it has also been reported that the normal force is initially 

maximum and decreases till a minimum when yield stress is reached [148]. 

From a theoretical/simulation point of view, any of the models presented in Sec. 3.4.2 can 

be extrapolated to compute the stress in the field direction as it only supposes to redo 

operations but working with the field-direction component of the force instead of the 

shear-direction one. Thus, results share the same properties, 𝜎𝑧𝑧 ∝ 𝜇0𝑀
2𝜙, and would 

reproduce qualitatively the experimental trend with the field. On the contrary, the 

dependence on the volume fraction cannot even be tested as most of the works deal only 

with one concentration, which in addition is typically very high (0.3-0.5) questioning the 

subsequent comparison with these models as they were thought in the dilute limit. 

Furthermore, any of the aforementioned models predict a negative normal force (i.e. the 

sample squeezes in the field direction) in the non-strained state since the magnetostatic 

force between particles in a chain aligned with the field is attractive. It seems that, in 

order to reproduce experimental trends, it is necessary to include effects related to the 

finite size of the sample (demagnetization fields [149] and Maxwell’s stress jump at the 

boundaries [148]), plausible magnetic field gradients in the experimental setup and/or 

defects in the induced structure [52,150,151]. 

During flow, very different observations have been reported as well. While Refs. 

[105,152,153] report a monotonic decrease of the normal force with the shear rate, Ref. 

[148] describes also an initial decrease at low shear rates but followed by an increase that 

eventually leads to a plateau at high shear rates. Simulation studies of normal stresses 

under flow are scarce as well. Using SD simulations in a 2D system (areal fraction of 0.4) 
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Ref. [17] reports (𝜎𝑦𝑦 − 𝜎𝑧𝑧) �̇�⁄ < 0 at any Mn. This quantity decreases, in absolute 

value, with Mn till it vanishes in the hydrodynamic regime. 

3.5 Some comments on ferrofluids 

From Chapter 10 to Chapter 12, a new route to enhance MRFs magnetic response and 

their stability is proposed based on the addition of another particle population with 

diameters in the nanometer scale. Thus, as indicated in Sec. 1.1, it could be expected that 

the resulting systems behave as a FF. In this section a brief overview of the basic FF 

phenomena in the dilute regime is given. For further details, the reader is referred to more 

comprehensive works on FFs. See for instance Refs. [111,154,155] and references 

therein. 

The description of FFs can be made following an analogous approach to the one 

previously used for CMRFs just taking into consideration the new involved features due 

to the smaller diameter of the particles, namely: (i) single domain magnetic behavior and 

(ii) control of colloidal forces and Brownian motion over magnetostatic interactions. 

Next, it will be seen that both features are intimately coupled. 

Despite having the same chemical composition, the nanoparticles in a FF exhibit a 

magnetic response to an external magnetic field that is very different from that of the 

microparticles in a CMRF. The reason for this is that in the case of FFs, the nanoparticles 

are so small that they only accommodate a single magnetic domain where all the spins 

are coupled and aligned in the same direction. Consequently, every particle is 

permanently magnetized even in the absence of a magnetic field. What is more, as all 

spins are perfectly aligned, the particle magnetization level does not depend on the total 

field inside the particle and all particles are fully saturated. As a first order approximation, 

the saturation value could be identified with the bulk one 𝑀𝑆. However, it is usually 

smaller due to size effects such as spin canting phenomena and/or the presence of 

absorbed layers at the atomistic scale [156].  

As a result, every particle in a FF can be substituted by a point dipole; the MMA 

introduced in Sec. 3.2.1 fully applies. Hence, it would be expected that the nanoparticles 

within a FF experience interparticle dipolar forces, even in the absence of an external 

field, driving them to build chain-like structures in the direction of their dipole moment. 

This direction does not have to be the same in all dispersed nanoparticles. Before studying 

which is the direction of each nanoparticle dipole, it is worthwhile to check the magnitude 

of these interactions for comparison with the rest of colloidal forces. 

This task was already accomplished for CMRFs in Sec. 3.3, however the different sizes 

of the dispersed particles in CMRFs and FFs introduce again severe changes with respect 

to the conclusions reached in that section. The main one is that, for FFs, the dominant 

force is not the magnetostatic one but the Brownian force. This can be easily seen just 

noting that the ratio between magnetostatic and Brownian forces (Eq. (3.51)) is 

proportional to volume of the particle, 𝜆 ∝ 𝑑3, and thus it falls quickly when the particle 

diameter is reduced. For typical FFs particle sizes are 𝑑 < 10 nm and 𝜆~ 0.01. Thus, 

although dipolar forces are present in FFs, they are not strong enough to induce 

interparticle aggregation as any pair of coupled particles will be broken by the Brownian 

motion. 

One can also compare gravity and Brownian forces in an analogous way as already done 

in Sec. 3.3 for CMRFs. Brownian forces clearly dominate in FFs, again because of the 
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small particle size. As a result, sedimentation is hindered. Although decreasing particle 

size improves stability against gravity, it enhances the surface to volume ratio and with 

this the surface energy. 

Therefore, nanoparticles are prone to irreversibly aggregate in order to reduce this surface 

energy. Obviously, irreversible aggregation is not desirable and thus the synthesis of any 

FF always involves an additional stabilization step (electrostatic, steric or electrosteric) 

in order to prevent the particles from closely approaching [155,157]. In the following, it 

will be supposed that the FF is somehow properly stabilized and then dispersion or surface 

forces do not have to be considered in order to describe its rheological properties. 

According to this discussion, the only non-hydrodynamic force to be taken into account 

in the motion of FF nanoparticles is the Brownian force. This yields a stochastic equation 

of motion called Langevin or ‘overdamped’ Langevin equation depending on whether it 

includes the inertia term or not [158]. Solving these equations is possible with methods 

analogous to those shown in Sec. 3.1, for instance, SD [159] or one-way scheme (i.e. 

Brownian Dynamics) [31]. 

In Sec. 3.1 it was shown that non-hydrodynamic torques are responsible for a flow 

distortion and, because of this, for a contribution to the suspension rheology as well. In 

the case of CMRFs, non-hydrodynamic torques were assumed to be zero since particle 

magnetization is collinear with the magnetic field. On the contrary, due to their single 

domain behavior, FF nanoparticles can experience a magnetic non-hydrodynamic torque 

depending on how its magnetization relaxes, that is, how the dipole direction changes in 

response to a change in the direction of the external field. 

As noted before, reducing the size of a ferro/ferri- magnetic particle below a critical 

diameter makes the particles to accommodate only one single magnetic domain. As a 

consequence, all atoms in a particle have their spin pointing in the same direction, the so-

called easy axis, even in the absence of an external magnetic field. The direction of this 

axis is fixed to the particle body by different anisotropy energies (crystalline, surface, 

etc.) that, in first approximation, can be written as 𝐸 = 𝐾𝑉𝑝 where 𝐾 is the magnetic 

anisotropy energy density (for more details see Ref. [160]). 

Interestingly, 𝐸 is proportional to 𝑉𝑝 and therefore, reducing the particle size will also 

reduce 𝐸 till a point where it can be balanced by the thermal energy 𝑘𝐵𝑇. In this case, the 

easy axis will be fully decoupled from the particle body being able to rotate freely. A 

priori, the critical size to get such a decoupling could be computed by equating 𝐾𝑉𝑝 =

𝑘𝐵𝑇, however the stochastic nature of the thermal energy makes previous behavior time 

scale dependent, that is, easy axis fluctuations in the particle body take place within a 

typical period given by the so-called Néel time: 

 Δ𝑡𝑁 = Δ𝑡0exp (
𝐾𝑉𝑝

𝑘𝐵𝑇
) (3.75) 

where Δ𝑡0~ 10-9 s. In view of Eq. (3.75), it is important to emphasize the extraordinarily 

fast increase of Δ𝑡𝑁 with 𝑉𝑝, even in the range of nanoparticle sizes. For example, the 

fluctuation time is around 1.6 µs for a cobalt nanoparticle (𝐾~ 0.45 MJ/m) of diameter 5 

nm at 𝑇 = 293 K. However, doubling the particle diameter (10 nm, still in the FF regime) 

the fluctuation time reaches 1.2·109 years. 

Δ𝑡𝑁 gives an estimation of how frequently the dipole rotates within the particle body. 

However it should be born in mind that FF nanoparticles are not pinned in the space but 
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dispersed in the continuous phase and constantly subjected to the Brownian motion. This 

introduces a second relaxation mechanism for the dipole where the change in its direction 

is due to the change in the particle orientation during the particle erratic motion. This 

second mechanism leads to the Brownian relaxation time: 

 Δ𝑡𝐵 =
3𝜂𝑐𝑉𝑝

𝑘𝐵𝑇
 (3.76) 

which is only linear on 𝑉𝑝. Common values of Δ𝑡𝐵 for FFs are in the range of the µs 

although, as it can be seen in Eq. (3.76), they depend also on the continuous phase 

viscosity. For the cobalt nanoparticles used in the previous example, supposed to be 

dispersed in a given silicone oil of 𝜂𝑐 = 200 mPa·s, Δ𝑡𝐵 = 18.75 µs if 𝑑 = 5 nm and 

Δ𝑡𝐵 = 0.15 ms if 𝑑 = 10 nm. 

As both Néel and Brownian mechanisms coexist, after a given time 𝑡, the prevailing one 

will be that with a larger number of realizations, that is, the mechanism with the shorter 

typical time. In this way, because of the linear and exponential dependences on 𝑉𝑝, large 

(small) nanoparticles will relax with the time scale Δ𝑡𝐵 (Δ𝑡𝑁). 

Therefore, the question about whether FF nanoparticles suffer or not a magnetic torque 

depends on the interplay between Δ𝑡𝑁 and Δ𝑡𝐵.Whenever Δ𝑡𝐵 < Δ𝑡𝑁 each particle will 

have a dipole fixed to its body and consequently, under the presence of an external field 

both dipole and particle will suffer a magnetic torque given by Eq. (3.47). On the contrary, 

if Δ𝑡𝑁 < Δ𝑡𝐵 the dipole will be continuously fluctuating within the particle body. Hence, 

although the dipole will feel the torque and will try to align accordingly, it will not be 

able to transmit the torque to the particle since both are uncoupled. 

The rheology of FFs consisting of these two kinds of particles has been widely studied. 

In the case of Δ𝑡𝑁 < Δ𝑡𝐵, since there is not a magnetic torque, the dipolar force is 

negligible and other attractive colloidal interactions are properly compensated via 

stabilization methods, it can be deduced that the system (a Brownian Hard Spheres 

suspension) is governed by the competition between Brownian and viscous forces. That 

is, the same behavior has to be obtained under the presence or absence of an external 

field. Similar to Mn in CMRFs, a dimensionless number can be defined to describe the 

system dynamics, namely the Peclet number: Pe = 3𝜂𝑐�̇�𝜋𝑑
3 (4𝑘𝐵𝑇)⁄ . In short, at small 

Pe, Brownian motion promotes, by diffusion, an isotropic structure that shows some 

resistance to be moved from its equilibrium configuration. As Pe increases, the structure 

breaks and the FF exhibits a slight shear-thinning behavior [161]. 

When the magnetic torque has to be included (i.e. Δ𝑡𝐵 < Δ𝑡𝑁) the rheology is affected by 

the external field what gives rise to the so-called magnetoviscous effect [162,163]. 

Qualitatively, if the external field is null, the imposed shear flow (�̂� direction) will induce 

a rotational velocity to the particle in order to make the hydrodynamic torque (see Eq. 

(3.47)) zero: �⃗⃗⃗� = Ω⃗⃗⃗∞ = �̂� �̇� 2⁄ . Since the dipole is fixed, it will rotate solidary with the 

particle. As soon as the external field is applied in the �̂� direction, it will exert a magnetic 

torque over the particle trying to align it also in the �̂� direction. Consequently, the particle 

will not rotate freely any more inducing a perturbation in the imposed flow field. This 

perturbation will have a pure strain component, proportional to the magnetic torque, that 

will be reflected in an increase of the macroscopic viscosity. 

Of course, the Brownian motion is also present in this process. On the one hand, when 

the external field is applied, not all particles will align with it but will be randomly 
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oriented. As a result, the viscosity will depend on the ratio between the magnetic and 

Brownian torques 𝛼 = 𝜇0𝜋𝑑
3𝑀𝑆𝐻𝑒𝑥𝑡 (6𝑘𝐵𝑇)⁄ . Note that, while 𝜆 ∝ 𝑀𝑆

2 and thus it 

cannot be externally controlled in FFs, 𝛼 ∝ 𝐻𝑒𝑥𝑡 allowing to reach high values that 

overcome Brownian motion effects. 

On the other hand, it will also play a role in the dipole relaxation. When thermal agitation 

is large in comparison to the applied shear rate, Δ𝑡𝐵�̇� < 1, particle reorientation will be 

faster than the induced flow and, regardless the applied �̇�, the number of dipoles pointing 

in the �̂� direction will be given by 𝛼, that is, the magnetoviscous effect will result shear 

rate independent. To the contrary, if Δ𝑡𝐵�̇� ≥ 1 the particle rotational velocity �⃗⃗⃗� and 

sample viscosity will be determined by both 𝛼 and �̇�. 

Finally, it is worthwhile to say that viscosity increments much larger than that predicted 

by the magnetoviscous effect have been reported experimentally, and in some cases a 

yield stress has also been observed. These phenomena seem to be related to systems 

poorly stabilized, which promote particle aggregation, or with a secondary particle 

population (polydisperse systems) with diameters that do not fulfill 𝜆 < 1. 
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Chapter 4. Materials and Methods 

4.1 Experimental 

Most of the CMRFs investigated in this dissertation were formulated using carbonyl iron 

(CI) particles. These particles were kindly provided by BASF SE (Germany) as a powder. 

CI particles are synthesized by thermal decomposition of iron pentacarbonyl (Fe(CO)5) 

and this is the reason for their name. This decomposition process yields polydisperse 

spherical particles in the range of microns with a very high purity of iron (around 97%). 

Undoubtedly, CI is the most frequently employed particulate material in the literature 

[1,2]. This is so because CI particles exhibit a high saturation magnetization and 

negligible hysteresis (see below). From the different available grades in the portfolio 

provided by BASF SE, HQ (mean diameter 1 μm) and EW (3 μm) grades were employed 

in this work. Their magnetization curves are shown in Fig. 4.1 together with the curve fit 

to the Fröhlich-Kennelly model (Eq. (3.24)). As expected, very small differences are 

observed between both grades. Only, a slightly larger saturation magnetization is 

observed for the largest particles that will be associated to a larger yield stress (see Sec. 

3.4.2). 
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Figure 4.1: First magnetization curve of the CI particles used in this dissertation. The 

line corresponds to the best fit according to the Fröhlich-Kennelly model (Eq. (3.24)) 

with 𝜇𝑖 = 9.0 ± 0.7 and 𝑀𝑠 = 1840 ± 40 kA/m. Inset: Complete magnetic curves (i.e. 

up and down curves) where the absence of hysteresis, remanence and coercivity can be 

seen. 

The CI powder was thoroughly dispersed in a carrier liquid to prepare a CMRF. In the 

case of low concentrations, the suspensions were prepared by manual dispersion with a 

spatula. However, in the case of high concentrations (above 20 vol%), the samples were 

dispersed through the use of a planetary mixer (Thinky ARE-310, USA) to guarantee 

homogeneity and the absence of air bubbles. The materials were used as received without 

further treatment and the suspensions were tested soon after their preparation because CI 

particles are prone to flocculate (especially in non-polar liquids) and settle down due to 

iron’s hydrophilic character, interfacial activity and density mismatch between the carrier 
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(~ 1 g/cm3) and the particles (~7.8 g/cm3). Every experiment was repeated at least three 

times with a fresh new sample. 

Several carrier fluids were used in this work depending on the specific requirements of 

the experiment to be carried out. From Chapter 5 to Chapter 8, the CMRF is investigated 

in the pre-yield regime and hence it was not expected that the fluid viscosity plays an 

important role. In this case, due to its hydrophilic character, glycerol 88 wt% (125 mPa·s, 

Scharlau) was used to favor particle stability against aggregation in the absence of the 

magnetic field. 

Samples tested during the design and the evaluation of the double-gap device (Chapter 9) 

were formulated using silicone oils of viscosities 350 mPa·s and 500 mPa·s (Sigma 

Aldrich). These are nonpolar liquids with good chemical stability and very low surface 

tension what makes them useful to calibrate the new device. As a counterpart, a weak 

flocculation was seen in the absence of the magnetic field but without any measurable 

effect when the field was applied. 

Finally, when dealing with MRFs containing nanoparticles, a careful choice of the carrier 

fluid was done to guarantee their kinetic stability. In this sense, milli-Q water was used 

in Chapter 10 due to the versatility of this carrier to stabilize colloids using a wide range 

of well-established mechanisms such as electrostatics and steric interactions. In its turn, 

mixtures of micro- and nanoparticles employed in Chapter 11 and Chapter 12 were 

dispersed in polyalphaolefin oil (6.4 mPa·s, Synfluid, Chevron-Philips) with 1-octanol 

(Sigma Aldrich) as a surfactant following a protocol previously described in the literature 

[3]. 

 

Figure 4.2: Schematics (not at scale) of the Anton Paar MRD 70/1T magnetocell. This 

includes the commercial ferromagnetic spacer ring of thickness 1.29 mm. 𝑅 stands for 

the radius of the ferromagnetic yoke. This is exactly the same as the radius of the rotor 

in our particular setup 𝑅𝑟 = 10.0 mm. 

The rheological experiments were carried out in isothermal conditions (25 ºC) in a MCR 

501 stress-controlled rheometer (Anton Paar, Austria) equipped with a rotational plate-

plate geometry. Although different modifications were done in this geometry according 

to the experiment, in its more basic configuration, the plate radii were 𝑅𝑟 = 10.0 mm 
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while the (single-)gap ℎ between the plates was chosen in the range [0.3, 1] mm. Both 

shearing surfaces were sandblasted to avoid wall-slip (see at the end of this section). The 

rotor (upper plate) was made of titanium while the stator (bottom one) was made of brass 

and was 1.7 mm thick. The rheometer was equipped with the Anton Paar MRD 70/1T 

magnetocell in order to apply magnetic fields, parallel to the flow gradient direction, 

during the tests. A sketch of the Anton Paar MRD 70/1T magnetocell is plotted in Fig. 

4.2. As shown, the magnetic circuit is axisymmetric and consists of a cylindrical 

ferromagnetic core with an air gap (thickness 𝐻) where the sample and the plates are 

placed. The upper yoke of the magnetic circuit is drilled (bore radius 𝑅𝑏) to accommodate 

the rotor plate shaft. Further details about the magnetic circuit geometry can be found in 

Ref. [4]. 

The electromagnetic circuit is fed with a current source generating magnetic fields up to 

a measured maximum of around 550 kA/m just on the top of the stator plate (see Fig. 

4.3a). In Fig. 4.3b, the FEM simulated radial profile of the magnetic field at this height is 

plotted for different feeding currents. On the one hand, a positive field gradient is 

observed close to the center of the geometry (𝑟 𝑅𝑟⁄ = 0) due to the aforementioned bore 

through the upper yoke. This is more clearly observed at high fields (currents). On the 

other hand, a negative field gradient appears at the rim of the plate (𝑟 𝑅𝑟⁄ = 1.0) due to 

the yoke edge effects. The presence of any gradient is typically a shortcoming in rheology 

unless it would be carefully taken into account, what is not always simple. Otherwise, as 

the whole sample is not under the same macroscopic conditions, ensemble/volume 

averages are invalidated (see Sec. 3.4) and the rheological characterization cannot be done 

properly. In the case of magnetic suspensions, the presence of a magnetic field gradient 

is responsible for a gradient in the particle concentration as well. Indeed looking at Eq. 

(3.46), it can be deduced that non-homogeneous fields act over the particle dipole through 

so-called magnetophoretic forces. For fields with small gradients and linear materials they 

read as follows [5]: 

 �⃗�𝑀𝐴𝑃 =
1

4
𝜇0𝜇𝑟,𝑐𝜋𝛽𝑑

3∇𝐻𝑒𝑥𝑡
2  (4.1) 

Note that the approximated expression for a non-linear material can be also found in Ref. 

[5] although it is not qualitative different. Equation (4.1) shows that magnetophoretic 

force drags the particles towards regions where the field intensity is maximum (𝑟 𝑅𝑟⁄ ~ 

0.7 according to Fig. 4.3b) if 𝛽 > 0 (i.e. CMRFs) or towards regions where it is minimum 

(geometry center and rim) if 𝛽 < 0 (i.e. IFFs). Furthermore, this particle (field-gradient 

induced) migration is not instantaneous and therefore introduces transient effects in the 

measurement as well [4]. In view of Fig. 4.3b, an applied field strength of 265 kA/m was 

chosen as a safe value in order to sufficiently magnetize the samples still preventing the 

appearance of too large concentration gradients. Another route will be later explored to 

study the influence of higher (saturating) fields, minimizing the appearance of 

concentration gradients, in the rheological response of MRFs. 

Of course, magnetic field gradients can be avoided substituting the magnetic circuit by a 

pair of Helmholtz coils. However, the field generated is of only tens of kA/m, they occupy 

a lot of space and are difficult to cool down. Alternatively, the magnetic circuit can be 

kept and make changes in the geometry of the cell. In this sense, a twin-gap device with 

ferromagnetic tools was proposed [6]. Among other advantages, this device can partially 

reduce the lack of homogeneity created by the upper bore. This concept has been 

generalized in Chapter 9 leading to a double-gap device. This device is more versatile as 
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well as capable to reduce even further the magnetic field gradient within the sample 

volume. 
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Figure 4.3: (a) Experimentally measured and FEM simulated magnetic field on the top 

of the rheometer stator plate as a function of the feeding current. (b) FEM simulated 

magnetic field (z-component) profile along the normalized cell radius at different 

feeding currents. 

Three kinds of geometries; single-gap, double-gap and twin-gap devices have been used 

in this dissertation depending on the strength of the applied magnetic field. In this chapter 

we will focus our attention only in the single-gap device. The double-gap device will be 

extensively described in Chapter 9 and the twin-gap device is just a particular case of the 

double-gap device (when both gaps are the same). 

With these geometries, the characterization of CMRFs was done through stress versus 

shear rate curves (i.e. the rheograms). To obtain the static yield stress, the rheograms were 

performed in stress-controlled mode (also called stress ramp experiment). The experiment 

was always preceded by other two intervals: pre-shear and structuration steps. In the pre-

shear step, a large shear rate (usually 100 s-1 during 30-60 s) was imposed in the sample 
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to erase its previous mechanical history. After the pre-shear, the sample was let to 

structure at rest (in the absence of flow) under a magnetic field. 

In most of the cases, at the beginning of the structuration step (i.e. the second interval) 

the magnetic field was suddenly applied (typically during 60 s) and then kept constant 

during the rheological experiment. As it was pointed in Sec. 3.4.1, imposing the magnetic 

field in this way leads to non-equilibrium structures: particles usually get kinetically 

arrested in metastable states consisting of fibrous and interconnected aggregates in the 

field direction (i.e. the total force acting over the particles is zero but they are not in the 

energetic ground state). In the case that the particles were required to aggregate in the 

minimum energy state configuration (i.e. the BCT equilibrium structure), the field was 

gradually increased in a stepwise way till the final desired field was reached [7]. The key 

behind this method is that each step is split in two parts: in the first one the field 

corresponding to the current step is applied to structure the sample while in the second 

one the field is switched off to allow particles to diffuse conforming to a more stable 

configuration. Once the final step has been reached, the field was maintained during the 

rest of the experiment. 

As previously stated, the static yield stress was inferred from steady shear rheograms in 

stress controlled mode. However, bearing in mind the definition for the static yield stress 

provided in Sec. 3.4.2 it can be deduced that this is not the most suitable technique to 

measure it. Instead, creep-recovery tests should be used [8]. In these tests a constant shear 

stress 𝜏1 ≠ 0 is imposed during some time and then it is removed 𝜏1 = 0 during another 

time interval. Throughout this two-step process the shear strain is recorded and according 

to its behavior once the stress is removed, in the second step, it can be said that: (i) 𝜏1 <
𝜏0 if the sample recovers its initial shape (the strain comes back to zero) or (ii) 𝜏1 > 𝜏0 if 

the sample strain keeps at a finite value corresponding to its plastic deformation or flow. 

By changing the value of 𝜏1, the rheological response of the material can be mapped and 

with a large enough number of measurements, it is possible to assess the frontier value 

between the pre-yield and post-yield regimes, i.e., the yield stress [9].  

Unfortunately, creep-recovery tests are very time-consuming as they provide upper and 

bottom limits for the yield stress. In addition, a reasonably large amount of sample is 

needed because every test needs to be carried out with fresh new samples to avoid 

mechanical history effects. Alternatively to the creep-recovery tests, the yield stress can 

also be identified from critical points (maximum stress level) during sample flow. 

Examples of these methods are the stress growth test, evaluation of the stress during time 

while the sample is sheared at a given (small) shear rate, and amplitude sweeps in 

oscillatory tests. Although faster than creep-recovery tests, the other two methods are 

dependent on the particular imposed shear rate and frequency [10]. 

More frequently, the yield stress is evaluated from steady shear rheograms. With current 

rheometers, it is possible to perform such a rheogram in both strain (so called shear) or 

stress controlled modes. Undoubtedly, the shear mode is the more reproducible one but 

not the most suitable: in this test the shear rate is imposed, to increase linear or 

logarithmically, and the stress is evaluated for each shear rate. Typical curves show a 

stress plateau for small shear rates (usually below 10-2 s-1) in log-log representation that 

is identified with the yield stress and usually evaluated by fitting the experimental curve 

to a plastic constitutive equation (e.g. Bingham, Casson or Herschel-Bulkley). At this 

point, nevertheless, it has to be taken into consideration that any stress measured during 

a shear controlled test does not correspond to a static yield stress since the sample is 
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always flowing. Thus, the obtained yield stress is usually identified with the dynamic 

yield stress as it is independent on the shear rate but implies flow. 

On the other hand, in stress controlled mode, the stress is the imposed magnitude while 

the shear rate is the measured one. This is the most appropriate mode in the case of yield 

stress fluids. Again, the stress can be incremented linearly or logarithmically [11]. Only 

applied stresses above the yield stress should provoke non-zero shear rates. For materials 

with a high yield stress, as soon as the applied stress overcomes the yield point, the shear 

rate experiences a sudden jump, usually one or two orders of magnitude, indicating the 

onset of flow. In this dissertation, static yield stress was identified with the experimental 

point previous to the aforementioned jump. In those cases where the material exhibits a 

small yield stress, the breakage of the sample is more gradual. For that samples the yield 

stress was evaluated through the tangent method: fitting the pre- and post-yield regimes 

with two lines and finding the crossover point [12]. 

Clearly, the yield stress obtained from stress controlled tests depends on how small the 

steps in the stress are (i.e. the number of measured points per decade if a logarithmic ramp 

is used as in our case). The smaller the step size, the more accurate the measurement. 

However, this also results in longer tests that may be influenced by particle sedimentation 

and/or heating problems. In this dissertation, rheograms in the stress controlled mode 

were used by setting 15 points per decade and 5 s per point. 

The description above has been done in terms of the shear stress/shear rate that the 

rheometer applies or measures. However, strictly speaking, a rheometer cannot directly 

impose or measure the stress/strain state of any material under any condition. Instead, the 

rheometer imposes/measures the total force (and/or the torque) and the velocity at the 

confining walls. From these quantities, the total stress �̃� and the velocity �⃗� fields in the 

bulk are obtained from continuity and Cauchy momentum equations for incompressible 

materials: 

 ∇ ∙ �⃗� = 0 (4.2) 

 
𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗� =

1

𝜌
(∇ ∙ �̃� + 𝑓𝑒𝑥𝑡) (4.3) 

where 𝜌 is the sample density. As it is known, Eqs. (4.2) and (4.3) need a constitutive 

relationship relating the stress and the (gradient of) velocity fields to be solved. However, 

both fields refer, in this case, to a sample whose constitutive expression is, a priori, totally 

or partially unknown (remember, for example, that theoretical results shown in Sec. 3.4 

for CMRFs deal only with shear strain and were incomplete). To overcome this issue, 

rheometers are designed in such a way that their geometry and operation mode creates 

very simple velocity fields that can be solved without the necessity to tackle Eqs. (4.2) 

and (4.3) directly. These flows are known as viscometric ones and are developed under 

laminar and stationary conditions, negligible inertia and in the absence of secondary flows 

[13]. 

In the case of a rotational plate-plate rheometer, the kinematics are conventionally 

imposed by rotating the upper plate at a swirl velocity Ω (do not confuse Ω with the 

vorticity vector Ω⃗⃗⃗ in Sec. 3.1.1) while the bottom plate remains at rest during the test. In 

addition, since the geometry is axisymmetric, the flow field is independent on the 

azimuthal coordinate 𝜑. Hence, if the dimensions of the geometry (𝑅𝑟, ℎ) and the swirl 

velocity (Ω) are small enough so that viscometric conditions apply, the velocity field (in 
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cylindrical coordinates) of the fluid confined between the shearing plates is simply 

reduced to: 

 �⃗�(𝑟, 𝑧) =
𝑟𝑧Ω

ℎ
�̂� (4.4) 

noting that the flow direction is �̂�, the velocity gradient direction is �̂� and the neutral 

direction is �̂�. With this, it can be seen that the shear rate is not homogeneous in the 

shearing gap. Instead, it linearly increases with the radius as follows: 

 �̇�(𝑟) = 2𝐸𝜑𝑧 =
𝑟Ω

ℎ
 (4.5) 

Introducing the flow field given by Eq. (4.4) in Eqs. (4.2) and (4.3), the continuity reduces 

to the identity while Cauchy equation simplifies to (by components): 

 0 =
𝜕𝑡𝑟𝑟
𝜕𝑟

+
𝑡𝑟𝑟 − 𝑡𝜑𝜑

𝑟
 (4.6) 

 0 =
𝜕𝑡𝜑𝑧

𝜕𝑧
 (4.7) 

 0 =
𝜕𝑡𝑧𝑧
𝜕𝑧

 (4.8) 

From Eq. (4.7) it can be deduced that 𝑡𝜑𝑧 = 𝜏(𝑟) is just a function of the radial position. 

The torque 𝑀 (do not confuse with the first moment �̃� due to the hydrodynamic force of 

Sec. 3.1) experienced by the rheometer head consists of the torque exerted by the sample 

on each surface element of the rheometer plate (see red surface 𝑆𝑏 in Fig. 4.2): 

 𝑀 = �̂� ∙ ∫ 𝑟 × (�̃� ∙ �̂�)𝑑𝑠
𝑆𝑏

= ∫ 𝑟𝜏(𝑟)𝑑𝑠
𝑆𝑏

= 2𝜋∫ 𝑟2𝜏(𝑟)𝑑𝑟
𝑅𝑟

0

 (4.9) 

At this stage, it would seem that no further insight can be obtained as the function 𝜏(𝑟) is 

unknown and the constitutive 𝜏(�̇�) equation is unknown as well. Nevertheless, this 

problem can be partially circumvented if the integral is written in terms of the shear rate 

instead of the radial position (Weissenberg-Rabinowitsch-Mooney, WRM, method) [14]. 

Taking into consideration Eq. (4.5), the torque can be expressed as: 

 𝑀 = 2𝜋∫ (
ℎ�̇�

Ω
)

2

𝜏(�̇�)
ℎ

Ω
𝑑�̇�

�̇�𝑅𝑟

0

= 2𝜋
𝑅𝑟

3

�̇�𝑅𝑟
3
∫ �̇�2𝜏(�̇�)𝑑�̇�
�̇�𝑅𝑟

0

 (4.10) 

where �̇�𝑅𝑟 = �̇�(𝑅𝑟) = 𝑅𝑟Ω ℎ⁄  is the shear rate at the rim of the upper plate. The previous 

integral is a definite one and thus it does not depend on the functional form of 𝜏(�̇�) but 

on the value of �̇�𝑅𝑟. Passing the multiplicative factor to the LHS, deriving respect �̇�𝑅𝑟 and 

applying the Leibnitz rule one arrives to: 

 

𝑑

𝑑�̇�𝑅𝑟
(
𝑀�̇�𝑅𝑟

3

2𝜋𝑅𝑟
3
) =

1

2𝜋𝑅𝑟
3
(�̇�𝑅𝑟

3
𝑑𝑀

𝑑�̇�𝑅𝑟
+ 3𝑀�̇�𝑅𝑟

2 )

=
𝑑

𝑑�̇�𝑅𝑟
(∫ �̇�2𝜏(�̇�)𝑑�̇�

�̇�𝑅𝑟

0

) = �̇�𝑅𝑟
2 𝜏(�̇�𝑅𝑟) 

 

 

(4.11) 
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Finally, noting 𝜏𝑅𝑟 = 𝜏(�̇�𝑅𝑟) as the stress at the rim of the upper plate and bearing in mind 

that the relationship between �̇�𝑅𝑟 and Ω is linear, thus log Ω = const. + log �̇�𝑅𝑟  , the Eq. 

(4.11) can be rearranged as: 

 𝜏𝑅𝑟 =
𝑀

2𝜋𝑅𝑟
3
(3 +

�̇�𝑅𝑟
𝑀

𝑑𝑀

𝑑�̇�𝑅𝑟
) =

𝑀

2𝜋𝑅𝑟
3
(3+

𝑑 log𝑀

𝑑 logΩ
) (4.12) 

As it can be seen, Eq. (4.12) allows computing the shear stress at the rim, regardless of 

the functional form of 𝜏(𝑟) or 𝜏(�̇�), just evaluating how the torque changes with the swirl 

velocity. Remember that the torque and swirl velocity are experimentally accessible 

magnitudes. Some comments on Eq. (4.12) are as follows: 

 For Newtonian fluids, the resistance to flow is constant (i.e. independent on the 

shear rate), then a linear relationship holds between 𝑀 and Ω. Therefore, the 

logarithmic derivative in Eq. (4.12) is 1 and the stress-torque conversion reduces 

to 𝜏𝑅𝑟 = 2𝑀 (𝜋𝑅𝑟
3)⁄ . 

 For a yield stress fluid, just during yielding, the stress (torque) is constant, i.e. 

shows a plateau versus the shear rate (swirl velocity), thus the logarithmic 

derivative is 0 and therefore 𝜏𝑅𝑟 = 3𝑀 (2𝜋𝑅𝑟
3)⁄ . 

 For a power law fluid, 𝜏 = 𝑚�̇�𝑛 (being 𝑚 and 𝑛 constants), the logarithmic 

derivative is just the flow index 𝑛, and thus 𝜏𝑅𝑟 = (3+ 𝑛)𝑀 (2𝜋𝑅𝑟
3)⁄ . 

The application of the WRM method has been possible thanks to the simplicity of the 

single-gap plate-plate geometry (integration only over 𝑆𝑏 in Fig. 4.2) and the simple flow 

field (Eq. (4.4)). In other geometries, for example in the double-gap geometry, the 

resulting integrals cannot be solved so easily. In those cases, the stress-torque conversion 

can be approximated by supposing that the sample behaves, at least in a given shear rate 

range, as a power law fluid [15] and then identifying its flow index with the logarithmic 

derivative of the torque-swirl velocity curve at that shear rate range. 

Of course, the WRM correction is not needed if the geometry is capable to create a 

homogeneous shear rate field within the sample volume. In this case, the shear stress 

would be constant and the integral relating the torque and the stress would be 

straightforward to solve. Examples of this kind of geometries are the concentric cylinders 

(with small gap) and the cone-plate device. However, only the parallel plate configuration 

is of interest in magnetorheology: (i) It is challenging to superimpose homogeneous 

magnetic fields in the gradient direction in concentric cylinders. (ii) It is challenging to 

interpret the stress data in a cone-plate geometry because the gap changes in the radial 

direction. 

In addition to the torque, modern rheometers can also measure the normal force exerted 

by the sample on the upper tool in the 𝑧 direction (i.e. the thrust). This force is related to 

the total stress over 𝑆𝑏 (Fig. 4.2) as follows: 

 

𝐹𝑧 = −�̂� ∙ ∫ �̃� ∙ �̂�𝑑𝑠
𝑆𝑏

= −∫ 𝑡𝑧𝑧(𝑟)𝑑𝑠
𝑆𝑏

= −2𝜋∫ [−𝑝(𝑟) + 𝜎𝑧𝑧(𝑟)]𝑟𝑑𝑟
𝑅𝑟

0

 

 

 

(4.13) 

Here, the dependence 𝑡𝑧𝑧(𝑟) has been deduced from Eq. (4.8) and the total stress tensor 

has been split in the isotropic pressure 𝑝 and its deviatoric part �̃�. The main problem with 
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the previous expression is that it depends on the pressure, which does not play any role 

in the rheology of incompressible materials. Because of this, it is convenient to define the 

first 𝑁1 and second 𝑁2 normal stress differences: 

 𝑁1 = 𝑡𝜑𝜑 − 𝑡𝑧𝑧 = 𝜎𝜑𝜑 − 𝜎𝑧𝑧 (4.14) 

 𝑁2 = 𝑡𝑧𝑧 − 𝑡𝑟𝑟 = 𝜎𝑧𝑧 − 𝜎𝑟𝑟 (4.15) 

With this, 𝑡𝑧𝑧(𝑟) can be written as a function of only 𝑁1 and 𝑁2. Combining Eq. (4.15) 

and Eq. (4.6) to eliminate 𝑡𝑟𝑟 we arrive to [14]: 

 
𝑑𝑡𝑧𝑧
𝑑𝑟

=
𝑑𝑡𝑟𝑟
𝑑𝑟

+
𝑑𝑁2
𝑑𝑟

=
𝑁1 + 𝑁2

𝑟
+
𝑑𝑁2
𝑑𝑟

 (4.16) 

Equation (4.16) can be integrated to recover 𝑡𝑧𝑧 (but as a function of 𝑁1 and 𝑁2, or 

equivalently, as a function of the diagonal deviatoric stress components according to Eqs. 

(4.14) and (4.15)): 

 

𝑡𝑧𝑧(𝑅𝑟) − 𝑡𝑧𝑧(𝑟) = ∫ 𝑑𝑡𝑧𝑧

𝑅𝑟

𝑟

= ∫
𝑁1 +𝑁2

𝜍
𝑑𝜍

𝑅𝑟

𝑟

+∫ 𝑑𝑁2

𝑅𝑟

𝑟

= 𝑁2(𝑅𝑟) − 𝑁2(𝑟) + ∫
𝑁1 + 𝑁2

𝜍
𝑑𝜍

𝑅𝑟

𝑟

= 𝑡𝑧𝑧(𝑅𝑟) − 𝑡𝑟𝑟(𝑅𝑟) − 𝑁2(𝑟) + ∫
𝑁1 + 𝑁2

𝜍
𝑑𝜍

𝑅𝑟

𝑟

 

 

 

 

(4.17) 

If the surface tension is negligible and the velocity profile (Eq. (4.4)) is not distorted at 

the free surface (no edge effects), the shape of the sample between the parallel plates is 

cylindrical. This implies 𝑡𝑟𝑟(𝑅𝑟) = 0 as the ambient pressure balances the deviatoric 

normal stress 𝜎𝑟𝑟 at that boundary. Thus, solving for 𝑡𝑧𝑧(𝑟): 

 𝑡𝑧𝑧(𝑟) = 𝑁2(𝑟) − ∫
𝑁1 + 𝑁2

𝜍
𝑑𝜍

𝑅𝑟

𝑟

= 𝑁2(𝑟) − 𝑢(𝑟) (4.18) 

Next, this expression has to be substituted into Eq. (4.13). If we focus first in the latter 

term 𝑢(𝑟) and integrating by parts: 

 

2𝜋∫ (∫
𝑁1 +𝑁2

𝜍
𝑑𝜍

𝑅𝑟

𝑟

) 𝑟𝑑𝑟
𝑅𝑟

0

= 2𝜋∫ 𝑢(𝑟)𝑟𝑑𝑟
𝑅𝑟

0

= 2𝜋 [
𝑟2

2
𝑢(𝑟)]

0

𝑅𝑟

+ 2𝜋∫
𝑟2

2

𝑁1 + 𝑁2
𝑟

𝑑𝑟
𝑅𝑟

0

 

 

 

(4.19) 

Bearing in mind that 𝑢(𝑅𝑟) = 0 due to its definition and knowing that a square bracket 

[𝑓(𝑥)]𝑎
𝑏 stands for 𝑓(𝑏) − 𝑓(𝑎), it can be seen that this square bracket is zero. Therefore, 

substituting Eq. (4.18) in Eq. (4.13) we obtain: 

 

𝐹𝑧 = −2𝜋∫ 𝑡𝑧𝑧(𝑟)𝑟𝑑𝑟
𝑅𝑟

0

= −2𝜋∫ (𝑁2 −
𝑁1 + 𝑁2

2
) 𝑟𝑑𝑟

𝑅𝑟

0

= 𝜋∫
𝑁1 −𝑁2

2
𝑟𝑑𝑟

𝑅𝑟

0

 

 

 

(4.20) 
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Again, the dependence of 𝑁1(𝑟) − 𝑁2(𝑟) is not known, but changing the variable from 𝑟 

to �̇�(𝑟) (Eq. (4.5)), as it was done in the WRM method during the calculation of 𝜏𝑅𝑟, we 

arrive to: 

 𝑁1(𝑅𝑟) − 𝑁2(𝑅𝑟) =
𝐹𝑧
𝜋𝑅𝑟2

(2 +
𝑑 log𝐹𝑧
𝑑 logΩ

) (4.21) 

Equations (4.5), (4.12) and (4.21) constitute the basis to obtain the material functions of 

any sample using a rotational rheometer with parallel plates. These equations relate the 

stress and strain states of the sample (just in a point, in particular, the rim of the upper 

plate) to three experimentally accessible magnitudes: the torque, the swirl velocity and 

the normal force. In addition, Eqs. (4.5), (4.12) and (4.21) show how the geometrical 

dimensions (𝑅𝑟, ℎ) can be modified in order to expand the range of measurable stresses 

and shear rates as any rheometer is always limited by minimum detectable values. In the 

rheometer used in this dissertation: 𝑀𝑚𝑖𝑛 = 1 nN·m, Ω𝑚𝑖𝑛 = 1.7·10-7 s-1 and 𝐹𝑧,𝑚𝑖𝑛 = 

0.01 N. 

It is worth to remark that Eqs. (4.5), (4.12) and (4.21) are strictly valid only under 

viscometric flow conditions. Otherwise corrections have to be taken into account [14,16]. 

Deviations from viscometric flows typically come from secondary flows or instrument 

inertia (negligible in this dissertation as the system is usually interrogated near to the yield 

point) and surface tension effects (also negligible in comparison to the magnetostatic 

contribution for MRFs). Next, only the slip phenomena will be revisited as it is expected 

to strongly affect yield stress measurements.  

In the previous analyses, it has been supposed that the shearing walls are in full contact 

with a homogeneous sample whose material functions are well defined. Thus, by 

continuity of the total stress and the no-slip condition, the shear stress and the shear rate 

in the sample are unambiguously linked to the rheometer’s applied/measured torque and 

swirl velocity through Eqs. (4.5) and (4.12). However, due to the discrete nature of any 

particle-based suspension, the initial supposition does not have to be fulfilled. Actually, 

a particle-depleted region appears close to the shearing surfaces [17]; i.e. the rheometer 

walls are not in contact to a homogeneous sample but to a (carrier) liquid layer whose 

viscosity is (infinitely) smaller than the (yield stress) suspension. Consequently, the stress 

applied/measured by the rheometer is translated to/comes from only the strain within the 

depletion layer while the bulk suspension barely suffers any deformation; it just slips over 

the rheometer walls. 

This introduces a mismatch between the shear rate field presumably imposed/measured 

by the rheometer walls (which is given by Eq. (4.5)) and the one that really occurs within 

the sample. Artifacts derived from this mismatch are known as ‘wall-slip effects’ and are 

not negligible especially when determining the yield stress. Wall-slip effects are typically 

manifested by gap-dependent rheograms and/or a quasi-Newtonian behavior in the pre-

yield regime (i.e. the apparent absence of a yield stress). 

There are several explanations for the appearance of a depletion layer and it is not clear 

which one plays the major role. Some examples are steric repulsion, shear gradients, 

competition between particle-particle and particle-wall interactions, etc. [18]. 

Nevertheless, several methods have been proposed to prevent or correct wall-slip 

phenomena. More traditional ones, e.g. the classical work from Yoshimura and 

Prud’homme [19] or using a vane geometry, do not seem to be the more appropriate ones 



85 

 

in magnetorheology due to the involved changes in the geometry that make more difficult 

to properly control/apply the magnetic field [20]. 

Alternatively, the use of texturized/rough plates (to trap particles and aggregates at the 

asperities of the plates) and/or ferromagnetic ones (to enhance particle-wall interactions) 

have shown to be very effective against wall-slip [20-23]. In this dissertation, all 

experiments were done in the absence of wall-slip using ferromagnetic plates or brass 

texturized ones (containing a pattern with 16 radial grooves of 250 µm depth and 250 µm 

width). If none of the previous geometries are specified, then, the experiment was carried 

out, by default, with sandblasted plates with a mean roughness of 𝑅𝑎 = 0.323 ± 0.012 

µm (measured with white light confocal microscopy). 

4.2 Simulations 

As it was seen in Chapter 3, any time that a multibody system is to be studied, the use of 

simulations is practically mandatory. In this dissertation, MRFs were simulated by means 

of two well-known numerical methods. On the one hand, one-way Discrete Element 

Method (DEM) simulations were performed in the SimPARTIX® software package 

(https://www.simpartix.com) to study the flow behavior of dilute MRFs. On the other 

hand, MRFs in the pre-yield regime were modeled as a periodic 3D lattice with the Finite 

Element Method implemented by COMSOL Multiphysics® software 

(https://www.comsol.com). In addition, the latter was also used to solve magnetic and 

flow field distributions created in the rheometer. 

In this section an overview of DEM and FEM simulations is given. For further details 

about the specific simulation parameter choice, boundary conditions, mesh size, etc. we 

refer to the corresponding dissertation chapters. 

4.2.1 Discrete Element Method 

The one-way coupling scheme was already introduced in Sec. 3.1. In short, this considers 

that only the fluid can exert a drag force over the particles, but the latter do not influence 

the flow field. As a consequence, the fluid flow can be solved in a first step and then 

introduce its influence in the particle dynamics through the drag force. The case studied 

in this dissertation (Chapter 10) considers that the MRF is under a simple shear flow. 

Thus, it is not even necessary to numerically solve the flow field; this is simply given by 

�⃗�(𝑧) = �̇�𝑧�̂�. 

The particle dynamics problem was tackled using DEM [24,25]. This method, together 

with other classical ones (e.g. Molecular Dynamics, Dissipative Particle Dynamics or 

Brownian Dynamics) [26], pursues a Lagrangian description of the particulate systems. 

The MRF is considered as a large number 𝑁 of particles that interact with each other, 

with the surrounding fluid and with the confining boundaries (if applies). These 

interactions are supposed to be known analytically (what in most of the cases implies a 

strong approximation to real interactions) at any time. Therefore each particle dynamics 

can be solved by integrating its law of motion [27]. In DEM, the equation to be integrated 

is the Newton’s second law. 

In our simulations, MMA is assumed (see Sec. 3.2.1) with saturated dipoles. Therefore, 

the dipole strength is fixed but its direction is governed by the Newton’s second law for 

the angular motion where only the magnetic torque �⃗⃗�𝑚 (Eq. (3.47)) is regarded (see 

https://www.simpartix.com/
https://www.comsol.com/
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below). Because of the MMA, the magnetic particle-particle interaction is reduced to the 

dipolar one �⃗�𝑑 (Eq. (3.46)). 

In Secs. 3.1 and 3.2, we considered that the particles interact mainly through 

magnetostatics and hydrodynamic forces. According to the latter, contacts between 

particles are impossible to occur because the hydrodynamic (lubrication) forces between 

two approaching spheres diverges as they go closer and closer. As a result, no further 

interactions would have to be included. However, this ideal picture is broken when short-

range interactions (e.g. van der Waals forces always present in real systems) or particle 

roughness appear. What is more, our simulations do not account for lubrication theory 

neither, thus, a contact-repulsive force is needed in order to prevent particle overlapping. 

Currently, the level of understanding of real contact forces is very poor. Pioneering 

publications on the modeling of MRFs using DEM-like simulations, e.g. Ref. [28], 

implemented a contact-repulsive force using an exponential function of the interparticle 

distance simply because this functional form yielded structures that closely ‘resembled’ 

those experimentally observed. On the contrary, in DEM simulations contact forces are 

traditionally supposed to come from particle deformation during contact. The 

deformation is typically approximated by a spring whose elongation is equal to the 

particle overlapping (i.e. elastic Hertzian contacts) [29]. In our DEM simulations we use 

the Hertzian contact approximation: 

 �⃗�𝑟𝑒𝑝 =
1

3

𝐸

1− 𝜈2
√𝑑ℎ𝛼𝛽

3
�⃗⃗�𝛼𝛽

𝑅𝛼𝛽
 (4.22) 

where �⃗⃗�𝛼𝛽 = 𝑟𝛼 − 𝑟𝛽, ℎ𝛼𝛽 = 𝑑 − 𝑅𝛼𝛽 is the particle overlapping, 𝐸 and 𝜈 are the particle 

Young’s modulus and Poisson’s ratio respectively. Note that only when there is 

overlapping (ℎ𝛼𝛽 > 0) repulsion forces can be evaluated. It is worth mentioning that the 

Hertzian contact is introducing another force scale, in this case 𝐹𝑟𝑒𝑝~𝐸𝑑
1/2. Nevertheless, 

for the parameters used in this dissertation, repulsion-to-magnetic and repulsion-to-

hydrodynamic forces ratios are, in the worst cases, around 106 and 1011 respectively. 

Therefore, it can be seen that a hard sphere potential is properly simulated to avoid 

particle overlapping and consequently 𝐹𝑟𝑒𝑝 should not modify, by itself, the rheology of 

the system [30]. 

Finally, in the computation of the drag -hydrodynamic- force, the Stokes’ law (Eq. (3.21)) 

is used. Bearing in mind the other previous interactions, the equations of motion for the 

translational and the rotational degrees of freedom of a particle 𝛼 are given by: 

 𝑚
𝑑2𝑟𝛼
𝑑𝑡2

= 3𝜋𝜂𝑐𝑑 (
𝑑𝑟𝛼
𝑑𝑡

− �⃗�) + ∑(�⃗�𝑑 + �⃗�𝑟𝑒𝑝)

𝑁

𝛽≠𝛼

 (4.23) 

 𝐼
𝑑2𝜗𝛼
𝑑𝑡2

= �⃗⃗�𝑚 (4.24) 

where 𝜗𝛼 is the particle orientation, �⃗� is the flow field in simple shear flow as stated at 

the beginning of this section and the summation runs over 𝛽 particles that are closer to 

the particle 𝛼 than a cutoff distance. 
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Once the forces and torques are computed over all particles at a given time, their position 

and velocity �⃗⃗�𝛼 = 𝑑𝑟𝛼 𝑑𝑡⁄  in the next time step are obtained by the explicit time 

integration of Eqs. (4.23) and (4.24) using a velocity Verlet scheme [31]: 

 𝑟𝛼(𝑡 + Δ𝑡) = 𝑟𝛼(𝑡) + �⃗⃗�𝛼(𝑡)Δ𝑡 +
�⃗�𝛼(𝑡)Δ𝑡

2

2𝑚
 (4.25) 

 �⃗⃗�𝛼(𝑡 + Δ𝑡) = �⃗⃗�𝛼(𝑡) +
(�⃗�𝛼(𝑡) + �⃗�𝛼(𝑡 + Δ𝑡)) Δ𝑡

2𝑚
 (4.26) 

where �⃗�𝛼 is the total force (i.e. RHS of Eq. (4.23)) acting over particle 𝛼. Analogous 

expressions are used for rotational degrees of freedom just substituting translational 

magnitudes (𝑟𝛼, �⃗⃗�𝛼, �⃗�𝛼, 𝑚) by rotational ones (𝜗𝛼, �⃗⃗⃗�𝛼, �⃗⃗�𝑚, 𝐼). In Eqs. (4.25) and (4.26), 

the integration time step is adaptively computed to guarantee convergence of the 

numerical scheme and also to save computational effort. To get the first goal, Δ𝑡 must be 

short enough in comparison to the smaller time scale of the problem. In our simulations, 

this scale is usually controlled by the Hertzian repulsion giving a characteristic time per 

collision of [27,32]: 

 𝑡𝑐𝑜𝑙~3.21(
3

2

(1− 𝜈2)𝑚

𝐸√𝑑
)

2/5

𝑢𝑛
−1/5

 (4.27) 

where 𝑢𝑛 is the relative normal velocity of the colliding particles at the beginning of the 

collision, that is, when ℎ𝛼𝛽 = 0. With this, a time step was chosen so that shortest collision 

in the simulation is tracked around 50 steps. 

It is worth noting that 𝑡𝑐𝑜𝑙 goes down as 𝑢𝑛 increases. This is a great inconvenience when 

studying MRFs in the pre-yield regime with DEM-like methods (see Sec. 3.4.2) since 

particles in this stage move at a very short timescale (Eq. (3.60)). The problem has to be 

overcome using a very small fixed Δ𝑡 which leads to a high computational effort. In 

Chapter 8, a computation scheme without this shortcoming, but restricted to the pre-yield 

regime, is proposed as an alternative to DEM-like methods. 

Regarding the values that 𝑟𝛼 can reach, particles are placed in a tetragonal simulation box 

whose volume 𝑉 is chosen according to the simulated MRF volume fraction 𝑉 =
𝑁𝜋𝑑3 (6𝜙)⁄ . Periodic boundary conditions are imposed in boundaries normal to the flow 

and vorticity direction. This is equivalent to replicate the particle configuration, at each 

time step, at the four sides of the explicitly simulated box. Particles in these replicated 

boxes are usually called ‘image-particles’ and, although their motion is not solved since 

they are just a replica of the original particles, they are also taken into account when the 

total force and/or the local field are computed over an original particle (if they are inside 

the aforementioned cutoff distance). 

On the contrary, boundaries normal to the gradient/applied field direction mimic the 

rheometer walls by placing there an array of non-magnetic ‘wall-particles’ having the 

same characteristics (𝑑, 𝑚, 𝐸, 𝜈) than MRF ones but without an associated dipole. ‘Wall-

particles’ move with a prescribed translational velocity in order to meet the velocity of 

the flow field at their position and are not allowed to rotate. Thus, their equations of 

motion are not solved. In this way, MRF particles can interact with ‘wall-particles’ only 

through contact forces. This constitutes a step forward in the particle-wall model 

traditionally used in MR simulations. This traditional model considers walls as perfect 
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surfaces and consists in imposing a no-slip condition to the MRF particles as well, that 

is, it is supposed that any particle close enough to the walls will stick to them acquiring 

their tangential velocity (the normal velocity is still given by the equations of motion). 

Clearly, this is an idealization that do not have to be of interest in all MRF simulations 

(e.g., it completely neglects ‘wall-slip’ phenomena). In its turn, the use of ‘wall-particles’ 

allows a more realistic treatment based on physical interactions and only a slight increase 

in the computational effort [33].  

As initial conditions, all MRF particles are at rest, randomly distributed and oriented. As 

soon as the simulation starts, the shear rate and the magnetic field are applied. During 

time evolution, the shear stress coming from particle interaction is computed according 

to Eq. (3.57). For these simulations, it reads as follows: 

 〈𝑥�̃�〉𝑧𝑦 = −
1

𝑉
∑(𝑟𝛼 ∙ �̂�) ((�⃗�𝑑 + �⃗�𝑟𝑒𝑝) ∙ �̂�)

𝑁

𝛼

 (4.28) 

The system is let to reach a stationary state and only when this is reached, 〈𝑥�̃�〉𝑧𝑦 is 

averaged also over time to obtain the total shear stress: 

 𝜏 = 𝜂𝑐�̇� + 〈𝑥�̃�〉𝑧𝑦 (4.29) 

Note that Eq. (4.29) is the same as Eq.(3.66) excluding the hydrodynamic interactions 

that are not accounted for in this one-way coupling scheme. 

4.2.2 Finite Element Method 

In most cases, physical magnitudes are not governed by simple laws that are analytically 

solvable under any circumstance. On the contrary, they usually come from partial 

differential equations, PDEs, that relate the physical magnitude (dependent variable) to 

its changes (derivatives) with time and space (independent variables). 

In addition, to be well-posed, these physical magnitudes are not only given by their PDEs 

but also by a number of boundary conditions (as many as the order of the PDE). 

Therefore, even when the PDE is simple, e.g. a linear one, complex boundary conditions 

can make the problem analytically unsolvable. Examples of these situations have already 

appeared in this text: Maxwell equations together with their continuity ones at 

magnetic/non-magnetic interphases (Eqs. from (3.32) to (3.37)) or Stokes (Eq. (3.11)) 

and Navier-Stokes (Eq. (3.2)) equations together with the no-slip condition (Eq. (3.3)) 

and the continuity equation (Eq. (3.1)). 

As it has been shown in Chapter 3, attempts to analytically solve these equations always 

require elaborated developments that are limited by (very often strong) assumptions and 

that eventually needs a numerical technique to provide the final solution. Alternatively, 

previous PDEs can be solved numerically from the beginning, obtaining complete 

solutions although a not so deep insight in comparison to analytical studies. In this 

dissertation, the numerical resolution of PDEs was addressed using FEM, in particular, 

to solve the magnetic field distribution inside the MRF microstructure (from Chapter 5 to 

Chapter 7) and the magnetic field distribution and flow fields within the rheometer cell 

(Chapter 9). 

Due to the different nature of these scenarios, in this section we will not focus on any of 

them in particular. Instead we will just highlight the main steps in FEM computations in 

order to understand their advantages and limitations. Further details on the 
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implementation and particularization to magnetostatic problems or their use as a CFD 

tool can be found elsewhere [34,35]. 

For the sake of simplicity, we consider only stationary problems ruled by one PDE with 

a scalar solution. Let us note 𝒜(∙) the PDE operator of 𝑚-th order (i.e. the highest 

derivate in 𝒜 is of order 𝑚) defined in a given volume 𝑉, 𝑔 a constraint function given 

by the PDE and ℬ(∙) the set of boundary conditions to be met in the volume boundary 𝑆. 

To solve the PDE consists in finding a function 𝑓 (dependent only on the position) that 

fulfills: 

 𝒜(𝑓) = 𝑔 (4.30) 

in any point of 𝑉 and 

 ℬ(𝑓) = 0 (4.31) 

in any point of 𝑆. Due to obvious reasons, this formulation is called pointwise or strong 

form. However, it can be shown that it is equivalent to the weak form that states the 

solution 𝑓 also fulfills: 

 ∫ 𝑢𝒜(𝑓)𝑑𝑉
𝑉

+∫ 𝑢ℬ(𝑓)𝑑𝑆
𝑆

= ∫ 𝑢𝑔𝑑𝑉
𝑉

 (4.32) 

for any function 𝑢 (dependent also on the position).  

FEM starts from the weak from and, in its more common formulation (i.e. the Galerkin 

method), it approximates 𝑓 and 𝑢 by finite expansions: 

 𝑓~∑𝜀𝑖𝜓𝑖

𝑛

𝑖=1

 (4.33a) 

 𝑢~∑𝜖𝑖𝜓𝑖

𝑛

𝑖=1

 (4.33b) 

where 𝑛 stands for the total number of degrees of freedom, 𝜓𝑖 are known functions (called 

shape or basis functions) and 𝜀𝑖 and 𝜖𝑖 are unknown constants (independent on the 

position) coefficients. 

Substituting Eqs. (4.33) in Eq. (4.32), supposing that both 𝒜 and ℬ are linear and 

rearranging we arrive to: 

 

∑𝜖𝑗 [∑(𝜀𝑖∫ 𝜓𝑗𝒜(𝜓𝑖)𝑑𝑉
𝑉

+ 𝜀𝑖∫ 𝜓𝑗ℬ(𝜓𝑖)𝑑𝑆
𝑆

)

𝑛

𝑖=1

𝑛

𝑗=1

−∫ 𝜓𝑗𝑔𝑑𝑉
𝑉

] = 0 

 

 

(4.34) 

As no particularization has been done on the function 𝑢, the 𝜖𝑗 coefficients are arbitrary 

and hence, the only way that Eq. (4.34) holds is by equating each square bracket to zero 

or: 
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 ∑𝜀𝑖 (∫ 𝜓𝑗𝒜(𝜓𝑖)𝑑𝑉
𝑉

+∫ 𝜓𝑗ℬ(𝜓𝑖)𝑑𝑆
𝑆

)

𝑛

𝑖=1

= ∫ 𝜓𝑗𝑔𝑑𝑉
𝑉

 (4.35) 

for 𝑗 = 1, 2, …, 𝑛. This can be written in a more compact form as: 

 �̃�𝜀 = �⃗⃗� (4.36) 

where 𝜀 is the degrees of freedom vector while �̃� and �⃗⃗� are the so-called stiffness matrix 

(note that its dimension is 𝑛 × 𝑛) and constraints vector, respectively: 

 𝐾𝑖𝑗 = 𝐾𝑗𝑖 = ∫ 𝜓𝑗𝒜(𝜓𝑖)𝑑𝑉
𝑉

+∫ 𝜓𝑗ℬ(𝜓𝑖)𝑑𝑆
𝑆

 (4.37) 

 𝑏𝑗 = ∫ 𝜓𝑗𝑔𝑑𝑉
𝑉

 (4.38) 

Since the basis functions 𝜓𝑖 are chosen by the user, and 𝒜, ℬ and 𝑔 are given by the 

PDE, all terms in �̃� and �⃗⃗� are known. Thus, with FEM, it is possible to pass from solving 

a PDE to solving a system of 𝑛 algebraic equations with 𝑛 uknowns (𝜀1, … , 𝜀𝑛). In 

particular, FEM reduces the initial problem to another one where the hardest numerical 

step is the inversion of the stiffness matrix. 

Till now, nothing has been said about the basis functions 𝜓𝑖. Indeed, according to the 

weak formulation, any kind of function can be chosen whenever it can expand the solution 

𝑓. In the practice, this entails two basic requirements. Firstly, as a solution of Eq. (4.30), 

𝑓 is 𝑚 times derivable and thus, each 𝜓𝑖 should be also 𝑚 times derivable. Secondly, 𝑓 

must meet the boundary conditions, Eq. (4.31), and as it is going to be expressed as a 

linear combination of 𝜓𝑖, the combination of these latter must fulfill Eq. (4.31) as well. 

The first condition can be easily met by choosing 𝜓𝑖 as polynomials (of degree 𝑚 or 

higher in order not to artificially impose that the solution has zero (𝑚 +1)-th derivatives). 

Nevertheless, a linear combination of these functions is rarely able to agree with the 

boundary conditions as well, especially, taking into consideration that the boundary 𝑆 can 

have a complex shape. For this reason, both 𝑉 and 𝑆 are split in small and simpler 

subdomains, called elements, yielding a mesh where it should be more feasible to fulfill 

the boundary conditions. 

Each mesh element is parametrized by a group of points (its vertices, edge midpoints, 

faces centers…) called nodes, 𝑟𝑖. Related to each node, a basis function 𝜓𝑖 is chosen as a 

piecewise polynomial, of degree 𝑚, that is defined over a small support. This support 

only spreads over all those adjacent elements that share the point 𝑟𝑖 as a node and becomes 

zero at any other node: 𝜓𝑖  (𝑟𝑗) = 𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the Kronecker delta. Evaluating the 

approximate solution expansion, Eq. (4.33a), in one particular node it becomes easy to 

understand the meaning of the degrees of freedom: 

 𝑓(𝑟𝑖)~∑𝜀𝑗𝜓𝑗  (𝑟𝑖)

𝑛

𝑗=1

=∑𝜀𝑗𝛿𝑖𝑗

𝑛

𝑗=1

= 𝜀𝑖    (4.39) 

The value for the degree of freedom 𝜀𝑖 resultant from solving Eq. (4.36) is just the 

approximated solution at the node 𝑟𝑖. On the other hand, if the expansion is evaluated in 

a point 𝑟 contained in an element, but that it is not a node, only those basis functions 
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defined at the element nodes will contribute to the final value of 𝑓(𝑟) (because only these 

functions have a support that contains the point 𝑟, the rest are zero there). 

Furthermore, the use of piecewise functions greatly simplifies the computation of �̃� as 

only those terms including basis functions whose supports overlap each other are different 

from zero. A typical example of this kind of basis function with order 𝑚 = 1 and 1D is 

the triangular one: 

 𝜓𝑖(𝑥) = Τ(𝑥 − 𝑥𝑖) =

{
 
 

 
 
𝑥 − 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1

if 𝑥𝑖−1 ≤ 𝑥 < 𝑥𝑖

𝑥𝑖+1 − 𝑥

𝑥𝑖+1 − 𝑥𝑖
if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

0 otherwise

   (4.40) 

As it can be seen, 𝜓𝑖 is non-zero only in the 1D elements (i.e. segments) that share the 

node 𝑥𝑖 as a limit: the segment [𝑥𝑖−1, 𝑥𝑖] and the segment [𝑥𝑖 , 𝑥𝑖+1]. Therefore, given (for 

example) 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], 𝑓(𝑥) = 𝜀𝑖Τ(𝑥 − 𝑥𝑖) + 𝜀𝑖+1Τ(𝑥 − 𝑥𝑖+1). 

From the previous discussion, it can be noticed that the use of 𝑛 piecewise functions in 

the expansion of Eq. (4.33a) really implies to define a series of 𝑛 nodes that discretize the 

space 𝑉 in elements where the solution is approximated by a polynomial function. Then, 

it is clear to deduce that closer nodes yield results that are more accurate: by splitting the 

whole domain 𝑉 in very small elements, it is expected the change of 𝑓 in one of them to 

be smooth, and therefore, easy to approximate by a simple polynomial. 

Of course, a compromise must always be reached since the larger the number of nodes 

also implies the larger the stiffness matrix dimension and thus the higher computational 

cost required to solve the system of Eq. (4.36). Because of this, regular meshes (i.e. where 

all elements have the same size) are rarely used. Instead, the element size is adapted 

according to the expected gradient of the solution: finer elements are used in regions of 

large gradients while coarser elements are used to discretize the regions where changes 

of 𝑓 are expected to be small. In the best scenario, these gradients are only anticipated but 

their values are not known. Therefore, the use of FEM simulations always involves a 

convergence study where the mesh is made finer and finer up to a point when the solution 

becomes weakly dependent on the mesh and remains below a desired tolerance. 

The description above constitutes the basics of FEM. Once all inputs of �̃� and �⃗⃗� have 

been calculated, it is necessary just to solve numerically Eq. (4.36) or equivalently to 

compute �̃�−1. To do so, several well-known techniques are available. On the one hand, 

there exist direct methods (e.g. LU factorization) that depend weakly on the mesh but use 

a large amount of memory, typically 𝒪(𝑛2)- 𝒪(𝑛3) in 3D. On the other hand, there exist 

indirect methods (e.g. Newton-Raphson) with smaller memory requirements,  ~𝒪(𝑛), but 

whose convergence depends on the initial seed and also on the quality of the mesh (i.e. 

how well the nodes and basis functions adapt to real gradients of the solution). 

It must be reminded again that the explanation above concerns stationary and linear 

problems whose solution is a scalar 𝑓. However, FEM can be applied equally to time-

dependent and non-linear PDEs that couple different magnitudes. 

Time dependency is accounted for by allowing 𝜀𝑖 = 𝜀𝑖(𝑡) but keeping 𝜓𝑖 = 𝜓𝑖(𝑟). As a 

result, a different matrix expression from Eq. (4.36) is obtained: 



92 

 

 �̃�
𝑑𝜀

𝑑𝑡
+ �̃�𝜀 = �⃗⃗�   (4.41) 

where �̃� is called the mass matrix and is computed similarly to �̃�. Note that �̃� and �⃗⃗� could 

have change slightly their definition in the time-dependent problem but the new 

definitions can be obtained following the same steps done to get Eqs. (4.37) and (4.38). 

Equation (4.41) can be integrated by numerical methods, for example using Runge-Kutta 

methods, or discretized (in time) by finite difference schemes. Alternatively, to save 

computational effort, finite differences can be applied directly to the original PDE to get 

rid of the time derivative and then apply FEM as in a stationary problem. 

In the case that the original PDE contains non-linear terms 𝑞(𝑓), for example, non-linear 

constitutive equations in magnetostatic problems or the convective term in fluid flow 

ones, these PDE are frequently linearized with the Newton method: 𝑞(𝑓) = 𝑞(𝑓∗) + 𝑓 ∙
𝑞′(𝑓∗) where 𝑓∗ is guesstimated value of the solution and the prime stands for the 

differentiation with respect to 𝑓. As a consequence, in these kind of problems both the 

stiffness matrix and constraints vector depend on the solution, �̃� = �̃�(𝜀) and �⃗⃗� = �⃗⃗�(𝜀), 
restricting Eq. (4.36) resolution to iterative methods only [36]. 

Finally, if a set of PDEs couples several magnitudes: 𝑓1, …, 𝑓𝑙; (for example, pressure 

and velocity components in incompressible fluids or the previous ones together with the 

temperature for the compressible case) then each of these magnitudes must be expanded 

in a series of basis functions that depending on the PDEs can be of the same degree or 

not: 

 𝑓𝑖  ~∑𝜀𝑖,𝑗𝜓𝑖,𝑗

𝑛𝑖

𝑗=1

   (4.42) 

In addition, the same mesh or a specific one can be used for each magnitude according to 

the problem behavior and magnitude gradients. The total number of degrees of freedom 

will be 𝑛 = 𝑛1 +⋯+ 𝑛𝑙 increasing the computational effort because of the higher 

stiffness matrix dimension. 
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Abstract 

Undoubtedly, the yield stress is the most relevant rheological property of a 

magnetorheological (MR) fluid. However, available analytical and simulation 

methodologies to compute the magnetostatic interparticle interactions that govern the 

yield stress, fail at large particle concentrations and large strain levels. In this 

communication we propose a 3D finite element methodology (FEM), to compute the 

yield stress, that grounds on a reduced magnetic field formulation and periodic boundary 

conditions. This approach takes into account multibody and multipolar interactions and 

satisfactorily simulates large concentrations and strains. Experiments are also carried out 

in a torsional magnetorheometer for a wide range of MR formulations. Experimental 

results obtained are in very good agreement with FEM simulations. 

5.1 Introduction 

Magnetorheological (MR) fluids are typically constituted by dispersion of micronsized 

magnetizable iron particles in a carrier fluid. In the quasistatic regime (no-flow), their 

rheological properties are strongly determined by field-induced magnetostatic 

interparticle interactions. In particular, when the magnetic field strength and/or particle 

concentration are large enough, the composite exhibits a field-dependent yield stress and 

viscoelasticity [1,2]. 

Frequently, magnetostatic interparticle interactions are estimated using the mean 

magnetization approximation where each particle is assimilated by a point dipole at its 

center that is proportional to the particle volume and magnetization level [3,4]. However, 

this approximation is only strictly valid under two circumstances: (1) particles are far 

apart from each other so that they feel a homogeneous field, and (2) particle magnetization 

is fully saturated so multipolar terms disappear. Nevertheless, in practice, the magnetic 

field strength applied is large enough for the particles to approach up to physical contact 

and small enough for the particles not being fully saturated [3]. 

Improvements to get a more accurate estimation of the magnetic interactions between 

particles involve, for instance, the use of multipolar expansion methods and capacitance 

matrices techniques [5,6]. However, these approaches are only applicable in the case of 
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linear magnetic materials and do not consider magnetic saturation. In this context, Finite 

Element Method (FEM) simulations are of great interest because they provide a solution 

to this non-linear multibody and multipolar problem by directly solving Maxwell’s 

equations in the simulation domain when continuity equations for electromagnetic fields 

are applied. 

Previous studies on MR fluids using FEM can be classified into two groups. On the one 

hand, we identify those studies that compute magnetic interparticle forces between two 

isolated particles [7-9]. On the other hand we find studies that compute the yield stress 

(and the storage modulus) of an ensemble of particles arranged in an infinite chain or 

cubic lattice [10-13]. Interestingly, common to all previous studies, the external magnetic 

field is introduced in the model via Boundary Conditions (BCs), i.e. the magnetic field is 

prescribed at a BC. Of course, this is not a problem for low particle concentrations but it 

is definitely an issue for large particle concentrations of interest in applications because 

of multibody contributions. Furthermore, another complication arises because the 

computational domain must be deformed when shearing the composite and hence the 

mirror symmetry BCs are lost and the magnetic field direction is not aligned with the 

lattice anymore. In view of these two disadvantages, available FEM simulation 

methodologies are rigorously limited to low concentrations and small strain levels 

[12,13]. In this communication, a method is proposed that is based on a reduced 

formulation of the magnetic field with periodic BCs to overcome these limitations. 

5.2 Numerical analysis 

The magnetic field distribution is calculated in the static state. Taking into consideration 

that there are not free current densities, it can be seen from Ampere’s law that the 

magnetic field strength is derivable from a scalar potential: 

 �⃗⃗⃗� = −∇𝑉 (5.1) 

In the case of interest in this work, the total magnetic field has two contributions: (i) a 

homogeneous background field (the external magnetic field) and (ii) a perturbation due 

to the presence of the magnetizable particles. Therefore, Eq. (5.1) can be rewritten as 

follows: 

 �⃗⃗⃗� = �⃗⃗⃗�𝑒𝑥𝑡 − ∇𝑉𝑝 (5.2) 

where �⃗⃗⃗�𝑒𝑥𝑡 = 𝐻𝑒𝑥𝑡�̂� is the external applied field and 𝑉𝑝 is the perturbation scalar 

potential. The main advantage of this reduced field formulation is that the external 

magnetic field is set in the model as a domain property (and not a boundary one). In other 

words, the magnetic field strength/direction is not imposed at the boundaries. 

Next, Eq. (5.2) is coupled with Gauss law for the magnetic field flux density �⃗⃗�: 

 ∇ ∙ �⃗⃗� = 𝜇0∇ ∙ (𝜇𝑟 �⃗⃗⃗�) = 0 (5.3) 

Here 𝜇𝑟 is the relative magnetic permeability of the materials involved (𝜇𝑟𝑐 for the 

continuous media and 𝜇𝑟𝑝 for the dispersed phase). In a typical MR fluid the carrier is 

non-magnetic (i.e. 𝜇𝑟𝑐 = 1) while the dispersed particles are magnetic (i.e. 𝜇𝑟𝑝 > 1). 

Unless otherwise stated, the non-linear magnetization of the particles is modeled here 

assuming isotropic materials that follow the Fröhlich-Kennelly constitutive equation: 
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 𝜇𝑟𝑝 = 1+
(𝜇𝑖 − 1)𝑀𝑠

𝑀𝑠 + (𝜇𝑖 − 1)𝐻
 (5.4) 

In the evaluation of Eq. (5.4) we take 𝜇𝑖 ≡ 𝜇𝑟𝑝𝑖 = 1000 as the initial permeability of the 

particles and 𝑀𝑠 = 1600 kA/m as the saturation magnetization of the particles. 

Finally, Eqs. (5.2) and (5.3) are numerically solved via FEM using the COMSOL 

Multiphysics software. 

In order to demonstrate the capability of this methodology, next we focus first in the 

simplest case. This corresponds to single-particle width chains, that is, particles arranged 

in a tetragonal lattice with lateral distance 𝑤 between them (Fig. 5.1a). In this 

configuration, the computational domain can be chosen as the unit cell of the lattice. Its 

height ℎ is given by the particle diameter 𝑑 whereas the width of the simulation box 𝑤 is 

given by the particle volume fraction 𝜙 as follows 𝑤 = √𝑑2𝜋 6𝜙⁄ . It is important to note 

that the use of a simple tetragonal lattice at high particle concentrations is not justified. 

However, it will be demonstrated below, that the Body Centered (BCT) lattice gives very 

similar results. 

Periodic or mirror symmetries can be imposed as BCs if the lattice is not strained. 

However, when the lattice is sheared at an angle 𝜃 normal to the field direction (for 

example in 𝑦 direction according to Fig. 5.1), the chains in the lattice undergo an affine 

deformation. As a consequence, the tetragonal lattice becomes a monoclinic one whose 

tilt angle 𝜃 verifies 𝛾 = tan𝜃 (Fig. 5.1b). In this configuration, mirror symmetries at the 

boundaries are not applicable and only periodic BCs can be imposed. 

In both tetragonal and monoclinic lattices, a mirror symmetry exists along 𝑥 direction. As 

a result, the computational domain can be reduced to one half of the lattice unit cell (Fig. 

5.1d). As it can be seen, since periodic BCs are used, shear straining the lattice is reduced 

to straining the computational domain/unit cell (see dotted box in Fig. 5.1c). 

Once the magnetic field distribution is obtained in the whole computational domain, the 

magnetostatic interaction force is calculated from Maxwell’s stress tensor �̃�: 

 �̃� = 𝐵�̃� − 𝛿
𝐵𝐻

2
 (5.5) 

where 𝛿 is the unit diagonal tensor. Here, the force on the lower half of the lattice due to 

the upper half is computed by integrating �̃� over the red plane in Fig. 5.1d. 

In order to calculate the shear stress, only the force in the shear direction is needed. The 

force in the shear direction 𝐹𝑦 is computed as follows: 

 𝐹𝑦 = ∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆

 (5.6) 

where �̂�𝑇 is the transposed unit vector in the y direction and �̂� = �̂� is the unit vector 

normal to the integration surface. Note that in the infinity, the averaged field in x- and y-

direction are zero and therefore there is not any contribution to the force coming from the 

rest of the surface which encompasses the lower half of the lattice. 

Once the magnetic force 𝐹𝑦 is calculated for every strain, the shear stress 𝜏 can be obtained 

dividing the force in the shear direction by the surface area of application, 𝜏 = 2𝐹𝑦 𝑤2⁄ , 

where the factor 2 in this expression comes from the fact that only one half of the unit 
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cell is simulated. In this way, a shear stress versus strain curve is obtained and the yield 

stress, 𝜏0, is identified as the maximum of this curve. 

 

 

 

Figure 5.1: (a) The particles are arranged in a tetragonal lattice under the presence of a 

magnetic field. (b) The tetragonal lattice becomes a monoclinic one if a shear strain 𝛾 =
tan𝜃 is applied in the 𝑦 direction. (c) To transform a tetragonal lattice into a monoclinic 

one is equivalent to strain the original unit cell (plotted in dashed lines). (d) 

Computational domain used to simulate the monoclinic lattice. Mirror symmetries are 

applied in boundaries normal to �̂�. Periodic BCs are imposed in the rest of boundaries. 

The surface used to integrate Maxwell’s stress tensor is plotted in red (see text). 

(a) (b)

(c)

(d)
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5.3 Results and discussion 

The consistency of the simulation methodology was tested first in the magnetic saturation 

regime. For this aim, FEM simulations were carried out imposing a particle magnetization 

�⃗⃗⃗� = 𝑀𝑠�̂�. Furthermore, numerical calculations were performed modeling a monoclinic 

lattice of point dipoles with the same primitive vectors as the simulated lattice used in 

FEM calculations. The dipole strength was chosen to be �⃗⃗⃗� = 𝜋𝜇0𝜇𝑟𝑐𝑑
3𝑀𝑠 6⁄ �̂� with 

𝜇𝑟𝑐 = 1, and a cutoff distance of 𝑟𝑐𝑢𝑡 = 160𝑑 was used (note that computations with 

larger cutoff distances, till 460𝑑, only differ by 10-4 %). 

Results corresponding to these two methods are plotted in Fig. 5.2. Fig. 5.2a shows the 

scaled shear stress as a function of the strain for FEM simulations (black squares) and 

numerical calculations (red circles). As observed, there is a very good agreement between 

the two methods. 

Energy calculations constitute another alternative to validate FEM simulations. The idea 

behind is that the tetragonal lattice (𝜃 = 0) corresponds to the lowest particle energetic 

state in comparison with the monoclinic lattice for any 𝜃 > 0. Therefore, when the 

tetragonal lattice is strained a shear stress appears to recover the most favorable energetic 

state. 

The free energy per unit volume of the lattice 𝐹 can be calculated as 𝐹 = 𝐹0 −𝑊, where 

𝐹0 is the free energy per unit volume in the absence of a magnetic field and 𝑊 is the 

magnetic energy per unit volume [14]: 

 𝑊 =
1

𝑉𝑐𝑒𝑙𝑙
∫ (∫ �⃗⃗�𝑑�⃗⃗⃗�′

�⃗⃗⃗�

0

)
𝑉𝑐𝑒𝑙𝑙

𝑑𝑣 (5.7) 

The inner integral in Eq. (5.7) depends on the magnetic constitutive equation of the 

materials within the lattice. Therefore, for those points within the cell that are occupied 

by the carrier fluid (non-magnetic material) the integral yields the familiar form of 

magnetic energy for a linear medium: ∫ �⃗⃗�𝑑�⃗⃗⃗�′
�⃗⃗⃗�

0
= 𝐵𝐻/2. On the other hand, as stated 

before, particles were modeled as a non-linear isotropic material (see Eq. (5.4)). As a 

result, the inner integral for those regions occupied by the particles reads as follows: 

 

∫ 𝐵𝑑𝐻′
𝐻

0

= 𝜇0∫ 𝜇𝑟𝑝𝐻
′𝑑𝐻′

𝐻

0

= 𝜇0 {
𝐻2

2
+ 𝐻𝑀𝑠 −

𝑀𝑠
2

𝜇𝑖 − 1
ln [1+ (𝜇𝑖 − 1)

𝐻

𝑀𝑠
]} 

 

 

(5.8) 

Finally, from classical electromagnetism, the relation between shear stress and magnetic 

energy is simply given by: 

 𝜏 = −
𝜕𝑊

𝜕𝛾
 (5.9) 

In Fig. 5.2b we show a direct comparison between scaled yield stresses as identified as 

the maximum in stress vs. strain curves obtained from Maxwell’s stress tensor integration 

and energy differentiation. Data contained in Fig. 5.2b cover both linear and non-linear 

regimes. As observed, there is a good agreement between both calculation methodologies. 
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Figure 5.2: (a) Scaled shear stress versus shear strain in the saturated regime for 𝜙 = 

0.2. Black squares correspond to FEM simulations for permanently magnetized particles 

in the �̂� direction. Red circles correspond to the numerical calculations for a lattice of 

magnetic dipoles. (b) Scaled yield stress calculated by differentiating the energy density 

(𝑦-axis) versus the scaled yield stress calculated by integrating Maxwell’s stress tensor 

(𝑥-axis) for 𝜙 = 0.2. The stress data are scaled by 𝐻𝑒𝑥𝑡
2  if 𝐻𝑒𝑥𝑡 < 160 kA/m and by 𝑀𝑠

2 

if 𝐻𝑒𝑥𝑡 ≥ 160 kA/m. 

Now that the FEM simulations are tested for saturation and using the free energy approach 

we move on to show the results. Simulated scaled shear stress versus shear strain data are 

shown in Fig. 5.3 for 𝜙 = 0.2 and 𝑑 = 1 µm. In Fig. 5.3a we show data for low magnetic 

field strengths where the particles operate in the linear magnetostatic regime (𝜏 ∝ 𝐻𝑒𝑥𝑡
2 ), 

while in Fig. 5.3b we show data for large magnetic field strengths where the particles 

operate in the saturation magnetostatic regime (𝜏 ∝ 𝑀𝑠
2). The fact that the curves do not 

collapse with the field was expected in view of the appearance of saturated regions at the 

poles. 

In the linear magnetization regime, our simulations for 𝜙 = 0.2 give a one order of 

magnitude larger stress level if compared to previous FEM simulations (cf. solid line). 

This discrepancy is expected to be due to inappropriate boundary conditions imposed in 

previous simulations [12,13] and the difference is expected to be even larger for larger 
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particle concentrations. Note that in previous FEM simulations reported in the literature, 

it is the external magnetic vector potential 𝐴𝑒𝑥𝑡 that is imposed on the boundary. Hence, 

the shear stress level is significantly below our FEM simulations because the boundary 

gets closer to the particles when the concentration and/or strain increases. 
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Figure 5.3: Scaled shear stress as a function of shear strain for different applied external 

magnetic fields and 𝜙 = 0.2. (a) In the low field regime the shear stress is scaled by 

𝐻𝑒𝑥𝑡
2 . (b) In the saturated regime the shear stress is scaled by 𝑀𝑠

2. Solid lines correspond 

to numerical calculations from Ref. [12]. 

Regarding the saturated regime, Fig. 5.3b demonstrates a much better agreement between 

our FEM simulations and those by previous authors (cf. solid line). This is coherent with 

the fact that the particular way to impose the external field (either using boundary 

conditions, Ref. [12], or reduced field formulation, this communication) is irrelevant in 

saturation. 

An important observation from the inspection of Fig. 5.3 is that the stress becomes 

negative when the strain is large enough because 𝐹𝑦 changes sign. A geometrical analysis 

gives a critical strain value for the crossover of 𝛾𝑐 = √𝜋 24𝜙⁄  in good agreement with 

our simulations (cf. vertical arrow in Fig. 5.3). This observed sign reversal occurs in 
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striking contrast to previous simulations in the literature where the stress tends to zero but 

is always positive -independently of the strain- (see Ref. [12]). The reason for this is that 

in previous FEM simulations reported in the literature the strain deformation is simplified 

by an elongation of the chains followed by the rotation of the elongated chains at an angle 

𝜃 = atan 𝛾 (e.g. see Refs. [12,13]). However, this method is not truly equivalent to a real 

strain because in practice, the magnetization vector within every particle is aligned with 

the external magnetic field and not with the chain axis. At this point it is important to 

remark that an affine deformation is not expected to occur in real experiments on MR 

fluids essentially because the structures become unstable above the yielding point. 
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Figure 5.4: Yield stress as a function of the external magnetic field strength for 

concentrated carbonyl iron suspensions. Solid symbols: Experiments from Ref. [3]. 

Open symbols: Experiments from this communication. Open squares: glycerol 88 wt% 

with 125 mPa·s, open circles: silicone oils with 464 mPa·s and open triangles: silicone 

oils with 971 mPa·s. Solid lines: Simulations following Ref. [12]. Dashed lines: FEM 

simulations from this communication for tetragonal lattices. Dash-dotted lines: FEM 

simulations from this communication for BCT lattices. 

In Fig. 5.4 we show FEM simulated yield stresses at different magnetic fields and particle 

concentrations (dashed lines). In the same figure, these results are plotted together with 

experiments [3] (solid symbols) and simulations [12] (solid lines) from the literature. 

Solid symbols correspond to HQ grade carbonyl iron (BASF SE) suspensions in a silicone 

oil of viscosity 20 mPa·s (Sigma Aldrich). These data are taken directly from Ref. [3] 

(see Fig. 6a in Ref. [3]). Additionally, new experiments were performed in order to 

demonstrate the applicability of the model with other different carriers. Open symbols in 

Fig. 5.4 correspond to 50 vol% HQ iron suspensions in carriers of different viscosities 

and chemical characteristics (open squares: glycerol 88 wt% with 125 mPa·s, open 

circles: silicone oils with 464 mPa·s and open triangles: silicone oils with 971 mPa·s). 

The fact that the experimental yield stresses do not depend on the particular carrier 

composition, for a given particle concentration, demonstrates that the experimental yield 

stress is solely driven by magnetostatic interactions and is therefore comparable to FEM 

calculations. To be consistent, both FEM simulations shown in Fig. 5.4 were carried out 

using the magnetization curve of the carbonyl iron powder as measured in a Squid 

magnetometer. As observed, a very good agreement is found between experiments 

(symbols) and our 3D FEM simulations (dashed lines). Simulations from the literature 

(solid lines) are clearly below the experiments again suggesting that the boundary 
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conditions typically used in the literature are not correct and that the elongation + rotation 

decomposition is not appropriate. For completeness, in Fig. 5.4 we also include FEM 

calculations for BCT packings in 30, 40 and 50 vol% MR fluids (see dash-dotted lines). 

The results are very similar to tetragonal lattices hence suggesting that the particular 

packing does not play a key role in the yielding process. 

5.4 Conclusions 

In conclusion, we propose a methodology that is capable to precisely compute 

magnetostatic interparticle interactions in model MR fluids for large particle loadings and 

strain levels. The method is based on periodic BCs and a reduced field formulation. The 

results are tested against numerical calculations in the magnetic saturation regime and 

energy minimization principles. Also, 3D simulation data are compared to yield stress 

experiments in concentrated MR fluids (above 10 vol%) and simulations available in the 

literature. There is a surprisingly good agreement between experiments and 3D FEM 

simulations. Although the results given in this letter are limited to the case of tetragonal 

and BCT lattices, the model can be easily extended to other lattices. 
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Abstract 

The yielding behavior of magnetorheological fluids is revisited through the use of finite 

element method calculations on model structures and carefully conducted experiments in 

a magnetorheometer. Model structures investigated in this work are monoclinic lattices 

with simple and body centered bases. From the simulation point of view we emphasize 

the influence of the interparticle gap separation. From the experimental point of view we 

elucidate the importance of the magnetic field application and the occurrence of slip at 

the confining surfaces. Simulations demonstrate that the yield stress 𝜏0 scales with the 

interparticle center-to-center distance ℎ as 𝜏0 〈𝑀〉2⁄ ∝ ℎ−6 where 〈𝑀〉 is the particle 

magnetization. A good agreement is found when the simulated yield stresses are 

compared with the experimental ones, independent of the particular packing and 

interparticle gap. 

6.1 Introduction 

Soft matter is generally constituted by structured multi-phased materials in out-of-

equilibrium configurations. Understanding their mechanical behavior, and in particular, 

the appearance of a yield stress is challenging [1]. In this context, the use of model 

systems may help to rationalize the analysis of more complex ones. A particularly 

interesting model system is a non-Brownian colloidal suspension, constituted by only 

two-phases, where the dispersed particles are preassembled in a lattice and whose 

interactions can be externally controlled through magnetic fields. 

Magnetorheological (MR) materials are ‘smart’ magnetic-field responsive two-phase 

systems that exhibit a dramatic rheological change under the presence of a magnetic field 

[2-8]. When the field is applied, the dispersed particles become magnetized and interact 

via magnetostatic interparticle forces giving rise to an apparent yield stress and a non-

negligible storage modulus. Most previous simulation works assume dipolar 

magnetostatic interactions between the particles [9-11] and the influence of multipole 

interactions has been scarcely investigated [12-14]. Among the different techniques 

employed to calculate multipole magnetostatic interactions in magnetorheology, Finite 

Element Method (FEM) is undoubtedly the most widely used [14-23]. 

Traditionally two different approaches are followed in the literature when dealing with 

FEM simulations. In a first set of publications, the computational domain encloses one or 

two particles in an attempt to determine the interaction between: (i) isolated particles or 

infinitely long single-particle width chains [24] or (ii) doublets of particles [25]. This 



106 

 

approach is especially useful to study the influence of surface roughness, interparticle 

distance, particle shape, and magnetic properties of the particles. In these simulations an 

external homogeneous magnetic field is introduced in the model through the boundary 

conditions, meaning the magnitude and direction of the magnetic field vector in one of 

the boundaries of the computational domain are assumed to match the external magnetic 

field. As a consequence, a compromise must be reached when choosing the domain size. 

Ideally, it must be large enough for the external magnetic field boundary condition to be 

valid but also small enough to reach sufficiently large particle volume fractions, which is 

often the case in MR fluid applications. 

In a second set of publications the computational domain is the unit cell of a particle-

based lattice with periodic boundary conditions. Tetragonal lattices are typically used 

[26,27]. However, axisymmetric domains are also employed in other publications 

[13,28]. This second approach is especially useful to calculate the yield stress and storage 

modulus in quasi-static conditions. In these simulations, mirror symmetries are also used 

and the external magnetic field is again introduced as a boundary condition. Two major 

complications arise in these particular simulations. The first drawback is a limitation in 

the maximum particle loading that can be achieved. The reason for this is that the size of 

the computational box reduces when the concentration increases and therefore the 

external magnetic field cannot be rigorously fixed at the boundary. The second limitation 

appears when the lattice is sheared and the unit cell loses its mirror symmetries in the 

boundaries, and the external magnetic field is no longer aligned with the lattice. 

In brief, major problems regarding the simulation of the yield stress of MR composites 

with traditional FEM approaches are related to imposing the external magnetic field as a 

boundary condition close to the particle and properly modeling a true shear strain without 

losing lattice symmetries. These problems limit the traditional simulation strategies to 

small concentration and small shear strains. In this context, a novel FEM simulation 

methodology has been recently proposed for the calculation of the shear stress for all 

achievable particle loadings and strain levels [29]. In the present manuscript we use this 

model to study the influence of interparticle separation and thoroughly compare the 

simulation predictions with new carefully conducted experiments in a wide range of 

magnetic field strengths and particle concentrations. Note that the interparticle separation 

distance is crucial in practical applications where carbonyl iron particles are oxidized on 

their surface and magnetic core-core contact is prevented [17]. 

6.2 Simulation model 

The methodology is based on a reduced magnetic field formulation to calculate multipolar 

contributions with periodic boundary conditions in order to compute multibody 

interactions. The essentials of this model are summarized below. For more details see 

Morillas and de Vicente [29]. 

The total magnetic field is decomposed into two contributions for the external magnetic 

field to be set as a domain property instead of a boundary property: (i) a homogenous 

background field (the external magnetic field) and (ii) a perturbation due to the presence 

of the magnetizable particles: 

 �⃗⃗⃗� = �⃗⃗⃗�𝑒𝑥𝑡 − ∇𝑉𝑝 (6.1) 
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Here �⃗⃗⃗�𝑒𝑥𝑡 = 𝐻𝑒𝑥𝑡�̂� is the external applied field and 𝑉𝑝 is the perturbation magnetic scalar 

potential. 

Next, the magnetic field distribution is calculated in the steady state, in the absence of 

free current densities, by numerically solving: 

 �⃗⃗⃗� = −∇𝑉 (6.2a) 

 ∇ ∙ �⃗⃗� = 𝜇0∇ ∙ (𝜇𝑟 �⃗⃗⃗�) = 0 (6.2b) 

To solve Eq. (6.2) via FEM we used COMSOL Multiphysics software. Here �⃗⃗� is the 

magnetic induction, 𝜇0 is the permeability of vacuum, and 𝜇𝑟 is the relative magnetic 

permeability of the particle and carrier fluid phases. Unless otherwise stated, we used the 

Fröhlich-Kennelly equation to calculate the magnetic permeability of the particles. As 

typically done in the literature, we assumed 𝜇𝑖 = 1000 as their relative initial permeability 

and 𝑀𝑠 =  1600 kA/m as their saturation magnetization. However, the experimental 

magnetization curve will be used when comparing with the experiments (see Figs. 6.9-

6.11). 

In Fig. 6.1 we show the computational domains used in this work, which consists of unit 

cells in two model structures. In Fig. 6.1a we show the simplest possible unit cell for a 

tetragonal lattice that evolves into a monoclinic lattice upon shearing an amount 𝛾 in an 

affine deformation. This lattice, which we will refer to as the simple basis (SB), 

corresponds to a set of single-particle width chains aligned with the field direction with a 

constant lateral distance 𝑤𝑠 between them (see Fig. 6.1a). Its height ℎ𝑠 is dictated by the 

particle diameter ℎ𝑠 = 𝑑 (𝑑 =  1 μm through this work), whereas its width 𝑤𝑠 is a function 

of the particle volume fraction 𝜙𝑝 as follows 𝑤𝑠 = (𝑑
2𝜋 6𝜙𝑝⁄ )

1/2
. Since periodic 

boundary conditions are used, shear straining the lattice is equivalent to straining the 

computational domain/unit cell. 

In Fig. 6.1b we show the computational domain used to model the same monoclinic lattice 

but with a ‘body centered’ basis (BCB). The reason why this structure is worth 

investigating is that, at least for magnetic dipoles in the non-strained state, a BC tetragonal 

lattice is the most favorable arrangement from an energetic point of view (i.e. it is the 

minimum energy configuration) [30]. As it can be seen, the BCB is shifted vertically a 

given distance from the center of the unit cell (in particular a distance of 𝑑/4 in Fig. 6.1b). 

This is mandatory due to computational requirements: if the central particle of the basis 

were in the center of the unit cell there would be two tangential points at the contact points 

between the central particle poles and top/bottom boundaries of the computational 

domain. These two singularities would make it not possible to properly mesh the 

computational domain. In this context, please note that in the tetragonal case (non-

strained; 𝛾 = 0) regardless of the basis, a contact point appears between the poles of the 

particles. Therefore, the case 𝛾 = 0 is not studied in this work. Nevertheless, due to the 

symmetry of the problem, it can be stated that in this configuration the force in the strain 

direction is zero. 

Bearing in mind that in the BCB there are two magnetic particles per unit cell, the height 

of the BCB is given by ℎ𝑏𝑐 = 𝑑 while its width is still a function of the particle volume 

fraction as follows 𝑤𝑏𝑐 = (𝑑2𝜋 3𝜙𝑝⁄ )
1/2

. It is also worth to note here that not all strains 

can be evaluated in the BCB. Under affine deformation particles displace horizontally 

with constant 𝑧 values, therefore at large enough particle volume fractions and strains the 
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particles in the compression axis will eventually reach the central particle. At this stage, 

larger strains are not simulated because the interpenetration of the particles is not allowed. 

Following geometrical arguments, it can be seen that for a given particle volume fraction 

above 𝜙𝑝 = 0.35 the maximum allowable strain is 𝛾𝑚𝑎𝑥 = √𝜋 3𝜙𝑝⁄ − √3 − 𝜋 3𝜙𝑝⁄ . If 

𝜙𝑝 < 0.35 particles at the unit cell corners will not touch the central particle for any strain. 

 

Figure 6.1: Computational domains used to simulate a monoclinic lattice with tilt angle 

𝜃 = atan 𝛾 in: (a) simple basis SB and (b) body centered basis BCB. Mirror symmetries 

are applied in boundaries normal to �̂�. Periodic boundary conditions are imposed in the 

rest of boundaries. To compute the force, the Maxwell’s stress tensor is integrated on 

the red surface. 

Once the magnetic field strength distribution is computed in the simulation cell, the 

interparticle force in the shear direction is determined by integration of the Maxwell’s 

stress tensor over a closed surface 𝑆: 

(a) Simple basis (SB)

(b) Body centered basis (BCB)



109 

 

 𝐹𝑦 = ∫ �̂�𝑇 ∙ (𝐵�̃� − 𝛿
𝐵𝐻

2
) ∙ �̂�𝑑𝑠

𝑆

 (6.3) 

where 𝛿 is the unit diagonal tensor, �̂�𝑇 is the transposed unit vector in the 𝑦 (shear) 

direction and �̂� the unit vector normal to the integration surface. Due to the boundary 

conditions used in this work, the integration surface 𝑆 can be reduced to a surface that 

intersects the lateral planes at the same height. In the case of the SB, the shadowed red 

plane highlighted in Fig. 6.1a can be chosen. However, in the BCB this plane is no longer 

useful because it crosses the central particle. Therefore, the surface employed in this work 

is represented by the red surface shown in Fig. 6.1b. Essentially, it is the same plane as 

the SB but it includes a spherical surface surrounding the bottom half of the central 

particle. 

Having determined the magnetic interparticle force 𝐹𝑦 for each strain, the shear stress 𝜏 

is obtained by simply dividing the force in the shear direction by the surface area as 

follows: 

 𝜏 = 2
𝐹𝑦

𝑤2
 (6.4) 

Note that the factor 2 in Eq. (6.4) comes from the fact that only one half of the unit cell 

is simulated. Using this simulation model, a shear stress versus strain curve can be 

obtained and the yield stress 𝜏0 is identified as the maximum of this curve. 

6.3 Experiments 

Experiments were carried out in suspensions prepared by dispersion of carbonyl iron 

particles in a mixture of water:glycerol (30:70 wt%) of viscosity 10 mPa·s at different 

particle concentrations (𝜙𝑝 = 0.5, 1, 5 and 10 vol%). Iron particles were kindly provided 

by BASF SE (HQ grade – mean diameter 1 μm) and glycerol was purchased from 

Scharlau (88 wt%). 

The magnetization curve of the iron particles was determined in a Squid magnetometer 

(Quantum Design MPMS XL) at room temperature (the full magnetization versus field 

curve is, for example, published in Ref. [31]). From this curve, the initial magnetic 

permeability and saturation magnetization of the particles was obtained. In particular, 

these carbonyl iron particles have an initial relative magnetic permeability around 5 and 

a saturation magnetization of 1600 kA/m. 

Rheological tests were carried out in a commercial magnetocell device (MRD70, 

MCR501 Anton Paar) in plate-plate configuration (1 mm gap) and isothermal conditions 

(25 ºC). The maximum magnetic field strength achieved was 265 kA/m. Steady shear 

flow tests were carried out according to the following protocol: First, the sample was 

redispersed (2 min stirring with a spatula + 2 min ultrasounds sonication bath + 2 min 

stirring with a spatula). Next, the sample was loaded on the rheometer base and the upper 

plate was displaced downwards until the plate separation reached the programmed gap. 

Then, the magnetic field was applied. Finally, a stress controlled ramp was imposed (15 

pts./decade) concurrently with the applied magnetic field. 

In an attempt to be as close as possible to the equilibrium configurations, we carefully 

controlled the way to superimpose the magnetic field on the suspensions. For this, two 

cases were considered. In the first case, a magnetic field of strength 𝐻𝑒𝑥𝑡 was suddenly 
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applied (fast field ramp) and the sample was allowed to structure during 1 min before the 

stress ramp starts. In the second case, the magnetic field strength was incrementally 

increased from 0 to 𝐻𝑒𝑥𝑡 for a stepwise sweep consisting of 16 steps of 10 seconds each 

(slow field ramp). Each step was split in two parts: during the first 7 seconds a magnetic 

field of strength 𝑛𝐻𝑒𝑥𝑡/17 (where 𝑛 is the number of the step in the sweep) is applied to 

aggregate the particles, next, the magnetic field is switched off in the last 3 seconds of the 

step to allow the particles to conform by diffusion. In the step number 17 a magnetic field 

strength 𝐻𝑒𝑥𝑡 is applied during 7 seconds and kept constant during the stress ramp test. 

This particular protocol was inspired by previous works [32-34] and, in principle, should 

allow the particles to reach an equilibrium configuration. 

In order to identify the importance of any possible wall slip occurring between the sample 

and the confining plates, we used surfaces with different roughness and/or texture. 

Experiments were conducted with sandblasted plates with a surface roughness of 𝑅𝑞 = 

0.410 ± 0.016 µm and 𝑅𝑎 = 0.323 ± 0.012 µm. Also, texturized surfaces were used with 

radial grooves of 250 m depth and 250 m width. In these latter experiments, bottom 

and upper plates contained a pattern of 16 radial grooves. 

Once the stress ramp test is finished, the steady shear flow curve is obtained. Typically, 

shear stress versus shear rate curves exhibited a very sharp transition from a quasi-solid 

to a purely viscous regime. The yield stress (corrected by the Weissenberg–

Rabinowitsch–Mooney formula [35]) is taken here as the last data point before the sudden 

jump in shear rate. Only in those cases where the particle volume fraction and magnetic 

field strengths were very small, the transition was smoother and therefore the yield stress 

was obtained using the tangent method [36,37]. 

6.4 Results and discussion 

6.4.1 Stress-strain curves: influence of interparticle gap 

Simulated shear stress versus shear strain curves are shown in Fig. 6.2 for a particle 

concentration of 𝜙𝑝 = 0.2 in a single-particle width chain structure (SB). In these figures, 

we show the influence of the magnetic field strength (𝐻𝑒𝑥𝑡 = 4 – 4000 kA/m) and 

interparticle gap separation (Δ = 0 and Δ = 0.015𝑑). In all cases, a maximum in the 

curves is clearly observed that corresponds to the yielding point of the structures. 

The influence of a gap between the particles (Δ), its effect on particle magnetization and 

on the axial magnetic force have been previously studied for isolated chains [38]. That 

work demonstrated how increasing the gap reduces the magnetic field magnitude and 

magnetization in the polar regions of the particles, and therefore the magnetostatic 

interaction force decreases. The simulation methodology used in the present work is 

capable to predict the influence of interparticle gap in the yield stress by simply changing 

the dimensions of the simulation unit cell as follows: 

 ℎ = 𝑑 + Δ   (6.5a) 

 𝑤 = √
ℎ2𝜋

𝐶𝜙𝑝
 (6.5b) 

Here 𝐶 = 6 or 3 depending on the SB or BCB basis, respectively. Note that, the lateral 

separation between chains is also affected by the interparticle gap. Keeping the particle 
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volume fraction constant, 𝑤 increases with Δ. Therefore, when an interparticle gap is 

considered, 𝜙𝑝 stands for the volume fraction of a suspension based on core-shell particles 

with core diameter 𝑑 and shell thickness Δ/2. Note that this particular configuration is 

closer to the experiments where magnetizable particles are typically oxidized on their 

surface [17]. As a result of the core-shell structure, the magnetic volume fraction 𝜙𝑚 is 

not exactly the same as the particle volume fraction 𝜙𝑝. The two volume fractions are 

related through 𝜙𝑚 = 𝜙𝑝(𝑑 ℎ⁄ )3. 
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Figure 6.2: Scaled shear stress versus strain curves for 𝜙𝑝 = 0.2 and different applied 

external magnetic fields in a single-particle width chain structure (SB). a) Small fields, 

∆= 0. b) Large fields, ∆= 0. c) Small fields, ∆= 0.015𝑑. d) Large fields, ∆= 0.015𝑑. 

The shear stress is scaled by 𝜇0𝐻𝑒𝑥𝑡
2 2⁄  and 𝜇0𝑀𝑆

2 2⁄  for small and large fields 

respectively. a) and b) are adapted from Ref. [29]. 

In Figs. 6.2a and 6.2c we show results for low magnetic fields, while in Figs. 6.2b and 

6.2d we show results for high magnetic fields. It can be clearly seen that the shear stress 

is dramatically reduced for even small changes of Δ in the case of the smaller magnetic 

fields (compare Figs. 6.2a and 6.2c). In the case of saturating fields the influence of Δ is 

less important (compare Figs. 6.2b and 6.2d). This finding can be explained taking into 

consideration that in the saturated regime, saturated regions within the particles act as 

dipoles, whose interaction is of longer range than multipolar interactions. A small 

separation between these regions is not supposed to significantly affect the shear stress in 

the saturation regime. 

As expected, in the low field regime (see Fig. 6.2a), a scaling of the stress by 𝐻𝑒𝑥𝑡
2  fails 

regardless of the field strength when Δ = 0 at low strains. This was expected because the 

particles are so close that their polar regions saturate. Conversely, this scaling is 
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appropriate for fields up to 40 kA/m when Δ = 0.015𝑑 (see inset in Fig. 6.2c). This 

observation reinforces the previous reasoning: if an interparticle gap exists, the multipolar 

terms do not play a major role, therefore field enhancement will be reduced along with 

the magnetization. As it was pointed out by Ref. [13], if the saturation magnetization is 

not reached, magnetic interaction increases proportionally with 𝐻𝑒𝑥𝑡
2 , explaining the good 

fitting to this scaling in Fig. 6.2c with Δ ≠ 0 and low fields. 

The dependence of the yield stress on the interparticle gap is more clearly seen in Fig. 

6.3. In this figure we show the scaled yield stress as a function of ℎ = 𝑑 + Δ. Although 

still valid, the aforementioned scaling does not give any insight into the influence of the 

local magnetic field on the yield stress. With this in mind, two normalizations are 

evaluated in Fig. 6.3. In Fig. 6.3a, the yield stress is scaled by the particle magnetization 

evaluated at the internal magnetic field within the particle 𝐻𝑖𝑛𝑡 (i.e. the external field plus 

the demagnetization field) under the assumption that the particle is isolated. This kind of 

scaling should be insensitive to the nonlinear magnetic behavior, however it yields a good 

collapse only at large ℎ values when magnetic cores are far enough from each other thus 

avoiding a noticeable coupling between the magnetization of the cores. Multipolar effects 

can still be seen at small gaps giving rise to a yield stress enhancement in the linear 

magnetic field regime. 
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Figure 6.3: Scaled yield stress as a function of the distance between centers ℎ = 𝑑 + Δ 

for different external fields in a simple basis at 𝜙𝑝 = 0.2. In a) the yield stress is scaled 

using the particle magnetization at its internal magnetic field 𝐻𝑖𝑛𝑡 while in b) the yield 

stress is scaled using the true magnetization as obtained from the magnetization average 

over the particle volume 〈𝑀〉. 

In an attempt to improve the overlapping, in Fig. 6.3b we scale the yield stress by the true 

particle magnetization, in other words, including the magnetization enhancement due to 

the field originated by the surrounding particles. As observed, a better collapse can be 

seen for all simulated fields. Magnetization values used in the construction of Fig. 6.3b 

come from the volume average of the magnetization at the particle volume. The fact that 

the data do not collapse at the two smallest fields is due to the existence of multipole 

effects. 

Finally, it is worth to note that in the saturation regime (800-4000 kA/m) both kinds of 

scalings yield the same result for the yield stress. This was expected because only in this 

case the magnetization is constant and uniform within the particle, independent of local 

field effects. With this in mind, the yield stress scales with the center-to-center distance 
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as a power law function with exponent -6. This behavior can be easily understood taking 

into consideration that the dipolar forces scale as ℎ−4 and therefore 𝜏0 ∝ 𝐹0 𝑤2⁄ ∝ ℎ−6. 

6.4.2 Minimum energy configuration: comparison between simple and body 

centered bases 

As stated previously, the equilibrium structure for a MR fluid under a DC uniaxial 

magnetic field is expected to be a BC tetragonal lattice. However, as far as we know, this 

statement has only been demonstrated for interacting dipoles [30]. Hence, our first goal 

was to compare the magnetic energy of SB and BCB in linear and saturation regimes. 

Note that, a direct comparison between SB and BCB in a tetragonal lattice (non-strained 

state) is only possible when Δ ≠ 0. Otherwise, a tangential point between particles in 

contact would not allow the domain to mesh. To circumvent this problem, a monoclinic 

lattice will be simulated and the energy related to the tetragonal lattice should be inferred 

in the limit where 𝛾 = 0. The cell magnetic energy density 𝑊 will be calculated similar 

to Ref. [29]: 

 𝑊 =
1

𝑉𝑐𝑒𝑙𝑙
∫ (∫ �⃗⃗�𝑑�⃗⃗⃗�′

�⃗⃗⃗�

0

)
𝑉𝑐𝑒𝑙𝑙

𝑑𝑣 (6.6) 
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Figure 6.4: Scaled cell magnetic energy density for SB (filled symbols) and BCB 

(empty symbols). 𝜙𝑝 = 0.2. a) Small fields, ∆= 0. b) Large fields, ∆= 0. c) Small fields, 

∆= 0.015𝑑. b) Large fields, ∆= 0.015𝑑. 

In Fig. 6.4 we show 𝑊 for 𝜙𝑝 = 0.2 in the absence (Δ = 0) and presence of an interparticle 

gap (Δ = 0.015𝑑) with different magnetic fields in the case of SB and BCB. In Figs. 6.4a 

and 6.4c we show the results for low fields while in Figs. 6.4b and 6.4d we show results 

for high fields. As observed, regardless of the field strength, no differences are found 
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between the two kinds of bases. This observation can be understood bearing in mind that 

for small and moderate concentrations, the lateral distance between chains in the lattice 

with BCB is too large for the vertical misalignment between the particles to play a role. 
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Figure 6.5: Scaled cell magnetic energy density for SB (filled symbols) and BCB 

(empty symbols). 𝜙𝑝 = 0.5. a) Small fields, ∆= 0. b) Large fields, ∆= 0. c) Small fields, 

∆= 0.015𝑑. b) Large fields, ∆= 0.015𝑑. 

Data for low fields reported in Fig. 6.4a are normalized by 𝜇0𝐻𝑒𝑥𝑡
2 . Similar to what 

happens to the shear stress, the normalization by 𝐻𝑒𝑥𝑡
2  works properly only for small fields 

and sufficiently large strains to avoid the magnetic saturation at the polar regions of the 

particles. Figure 6.4b shows that in the saturated regime, a reduced energy −𝑊 +
𝜇0𝐻𝑒𝑥𝑡

2 2⁄ + 𝜙𝑚𝜇0𝑀𝑠𝐻𝑒𝑥𝑡 is found to be normalized by 𝜇0𝑀𝑠
2. This points out that in this 

regime, the total energy can be split in three contributions: particle interaction 

(proportional to 𝜇0𝑀𝑠
2), external magnetic field (𝜇0𝐻𝑒𝑥𝑡

2 2⁄ ), and particle-external field 

interaction (𝜇0𝜙𝑚𝑀𝑠𝐻𝑒𝑥𝑡). 

In Fig. 6.5 we show results for 𝜙𝑝 = 0.5. For this higher concentration, the BCB is clearly 

energetically more favorable than the SB both in the low and high field regime for any 

simulated strain. Furthermore, taking into consideration that the energy derivative is the 

shear stress (with opposite sign) and knowing that the shear stress is zero in the non-

strained state, it could be inferred that the energy will not decrease sharply as the strain 

approaches 𝛾 = 0. Consequently, it is expected that the energy in the BCB remains below 

the SB even in the non-strained state indicating that the former is a more stable 

configuration. 

In Figs. 6.4c, 6.4d, 6.5c and 6.5d, the magnetic energy density is represented for Δ =
0.015𝑑. It can be seen that, for low magnetic fields, the existence of an interparticle gap 

prevents the saturation of the poles thus extending to smaller strains the interval where 
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the normalization by 𝐻𝑒𝑥𝑡
2  is successful. For large fields, the incorporation of an 

interparticle gap does not have a remarkable effect in the normalization because even 

without it, magnetostatic interactions are dominated by dipolar ones. As it was expected, 

for both linear and saturated magnetic regimes, the magnetic interaction along the chains 

is attractive and therefore the existence of an interparticle gap increases the energy of the 

system. 
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Figure 6.6: Scaled shear stress versus strain curves for 𝜙𝑝 = 0.5, ∆= 0 and different 

applied external magnetic fields. Top row: SB. Bottom row: BCB. The shear stress is 

scaled according to the low field regime (𝐻𝑒𝑥𝑡
2 , left column) and saturated regime (𝑀𝑠

2, 

right column). 

As demonstrated in Figs. 6.4 and 6.5, the particular preassembly of the particles, in SB or 

BCB, is critical only at high concentrations when the distance between neighboring 

chains is small. Consequently, in Fig. 6.6 the shear stress versus strain curves are 

represented for both bases only when 𝜙𝑝 = 0.5. Surprisingly, in the low field regime, 

although the BCB is energetically more favorable, a lower yield stress is exhibited if 

compared to the SB (compare Figs. 6.6a and 6.6c). This can be understood analyzing the 

yield strain, that is, the strain corresponding to the maximum stress. It can be seen that in 

the BCB the yield strain is lower than in the SB hence hampering the shear stress to reach 

higher values. This is related with the particle arrangement within the unit cell. For the 

BCB, as the strain is increased, the particles located in the compression axis get closer to 

the central particle hence generating a force that is opposed to the strain direction 

therefore reducing the shear stress. The effect of neighboring particles can also be 

appreciated in the strain at which the shear stress changes its sign. In the SB this point is 

independent of the magnetic field and can be simply obtained from geometrical 

arguments. In the BCB this reasoning is not true. Note that in a real system a negative 

stress is not observed. 
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Another important observation comes from a close look to Fig. 6.6b. It is observed that 

contrary to intuition, the shear stress values do not saturate at high magnetic fields (i.e. 

the stress slightly decreases at high fields). This behavior is observed with and without 

an interparticle gap but only at high volume fractions (compare Figs. 6.6b and 6.7b). A 

similar observation has also been reported by other authors [16]. The reason for this could 

be in the magnetic behavior of the particles. In our case, the magnetizable particles are 

modeled as non-linear isotropic materials. The magnetization vector components are not 

related to each other; while the 𝑧 component could be saturated for sufficiently large 𝐻𝑒𝑥𝑡 
values (note that 𝐻𝑧 = 𝐻𝑧,𝑝 + 𝐻𝑒𝑥𝑡), the 𝑦 and 𝑥 components could not saturate because 

they only depend on the respective components of �⃗⃗⃗�, which do not have a contribution 

from the external magnetic field 𝐻𝑒𝑥𝑡 that always points in the 𝑧 direction. In Fig. 6.6d 

we show that the stress monotonically increases with the field strength. This was expected 

and, in fact, for fully saturated particles one gets the same curve as that shown in Fig. 

6.6d for 4000 kA/m. As observed, a larger field strength is needed for the stress to level 

off in the BCB. 

Similar to what happened for the smaller volume fraction investigated, the influence of 

the interparticle gap is very strong for small fields (see Figs. 6.7a and 6.7c), reducing the 

shear stress one order of magnitude. For saturating fields (see Figs. 6.7b and 6.7d), the 

shear stress decreases, which is expected because the magnetic cores are more separated 

inside each chain. 
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Figure 6.7: Scaled shear stress versus strain curves for 𝜙𝑝 = 0.5, ∆= 0.015𝑑 and 

different applied external magnetic fields. Top row: SB. Bottom row: BCB. The shear 

stress is scaled according to the low field regime (𝐻𝑒𝑥𝑡
2 , left column) and saturated 

regime (𝑀𝑠
2, right column). 



117 

 

6.4.3 Comparison with experimental data 

In Fig. 6.8 we show the most representative experimental results for conventional MR 

fluids subjected to field strengths of 265 kA/m. Higher fields can be achieved in this 

experimental setup, however the resulting field is not homogeneous in the sample volume 

giving rise to magnetophoretic forces and concentration gradients that influence shear 

stress measurements [39-41]. Experimental data in the magnetic saturation regime have 

been recently reported by Ref. [41]. 
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Figure 6.8: Typical experimental rheograms to show the influence of plate texturization 

and magnetic field application. Particle volume fraction 5 vol%. External magnetic field 

strength 265 kA/m. a) slow field ramp for sandblasted and texturized plates, b) fast field 

ramp for sandblasted and texturized plates, c) sandblasted plates for slow field ramp and 

fast field ramp, d) texturized plates for slow field ramp and fast field ramp. All 

experimental data shown in this figure were corrected using the Weissenberg–

Rabinowitsch–Mooney correction. 

In Fig. 6.8a we show results corresponding to the slow field ramp for sandblasted and 

texturized plates. The yield stress obtained in the case of texturized plates is clearly larger 

than in sandblasted plates. This suggests that wall slip, if exists, is smaller in the case of 

texturized plates than in sandblasted plates. In Fig. 6.8b we show results corresponding 

to the fast field ramp for sandblasted and texturized plates. Again, texturized plates give 

larger stress values if compared to sandblasted plates. In Fig. 6.8c we show results 

corresponding to the sandblasted plates for slow field ramps and fast field ramps. For the 

gap investigated in this work (1 mm), slow field ramps are typically associated to wall 

slip in contrast to fast field ramps. This explains why in this case (fast field ramps) the 

yield stress is higher. For completeness, in Fig. 6.8d we show results corresponding to the 

texturized plates for a slow field ramp and a fast field ramp. In this case, we observe that 

both slow and fast field ramps yield similar results. To summarize, wall slip is found to 
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occur also with sandblasted plates. Only when texturized plates are used the wall slip is 

completely prevented and the application of slow or fast field ramps does not make a 

difference. 

In Fig. 6.9 we show the yield stress obtained from experiments (symbols) and simulations 

(SB and BCB depicted by thin and thick lines, respectively). Experimental data for 

concentrations below 20 vol% correspond to measurements with texturized plates and 

fast field ramps. As demonstrated in Fig. 6.8, this particular configuration avoids the 

occurrence of wall slip and provides the most reproducible results. Experimental data for 

concentrations above 20 vol% are taken from Ref. [42]. As observed, a reasonably good 

agreement exists between experiments and both the SB and BCB simulation cases for all 

the concentrations investigated. Simulations using the BCB yield results that (in the worst 

case) only differ by 12% with the SB simulations. Deviations at high magnetic fields may 

come from the stronger opposition of the kinetically arrested field-induced structures to 

relax towards more energetically favorable states. 
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Figure 6.9: Comparison of the yield stress obtained from simulations with SB (thin 

lines) or BCB (thick lines) and experiments (symbols). Experimental data for 

concentrations above 20 vol% are taken from Ref. [42]. Experimental data for 

concentrations below 20 vol% are measured in this work. They correspond to texturized 

parallel plates and fast field ramps. All experimental data shown in this figure were 

corrected using the Weissenberg–Rabinowitsch–Mooney correction. In the simulations 

we used the experimental magnetization curve for the carbonyl iron particles. 

From the simulation data shown in Fig. 6.9 it can be concluded that the yield stress 

follows a power law relationship with the external field 𝐻𝑒𝑥𝑡 and volume fraction 𝜙𝑝: 

 𝜏0 = {
𝐴𝐻𝑒𝑥𝑡

𝑎 𝜙𝑝
𝛼 𝜙𝑝 ≤ 0.1

𝐵𝐻𝑒𝑥𝑡
𝑏 𝜙𝑝

𝛽
𝜙𝑝 > 0.1

 (6.7) 

The best fitting parameters were 𝐴 = 0.66 ± 0.06, 𝑎 = 2.071 ± 0.015, 𝛼 = 0.9746 ± 

0.0011, 𝐵 = 0.62 ± 0.11, 𝑏 = 2.00 ± 0.03, and 𝛽 = 0.749 ± 0.011. Note that 𝐻𝑒𝑥𝑡 must 

be expressed in kA/m to get 𝜏0 in Pa. As expected, in the linear regime the external 

magnetic field exponent is close to 2. With regards to the volume fraction dependence, 

the yield stress increases almost linearly in the diluted regime. This observation is in good 

agreement with mechanical models based on isolated chains [43,44]. For higher 
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concentrations the yield stress levels off in agreement with Ref. [45] and the slope 

decreases. 

Regarding the interparticle gap effect, simulations described in the Secs. 6.4.1 and 6.4.2 

using the Fröhlich-Kennelly constitutive equation (𝜇𝑖 = 1000 and 𝑀𝑠 = 1600 kA/m) 

showed yield stress differences as large as 80% with only a small gap of Δ = 0.015𝑑 (see 

Figs. 6.2, 6.6 and 6.7). However, when the experimental magnetization curve for the 

carbonyl iron powder is used in the simulations (𝜇𝑖~ 5), these differences are reduced to 

20% for the most unfavorable case, small fields and large concentrations (results not 

shown here for brevity). For sufficiently large fields, when the particles are fully saturated 

and dipolar interactions govern, the differences are reduced even further to only 8%. 

Overall, the existence of an interparticle gap is especially important at low fields, and in 

this case, a precise estimation of the particle initial permeability is needed. 

From an experimental point of view, it is difficult to assess the influence of the 

interparticle gap in the yield stress especially taking into consideration the microparticles 

used in this work (bare magnetic carbonyl iron cores of 1 µm diameter). Generally 

speaking, interparticle gaps always occur due to polydispersity, roughness, and surface 

oxidation. In addition, the interparticle gap is not expected to be the same in all contact 

points, therefore the choice of this parameter in the simulation model is not 

straightforward. Although the inclusion of a gap could make simulations fit better to the 

experiments, we think that a deeper study on this topic should be done by using well 

defined core-shell particles. In summary, the good agreement between experiments and 

simulations, with Δ = 0 as shown in Fig. 6.9, demonstrates that the effect of the 

interparticle gap is negligible for the MR fluids with low initial permeability that are 

investigated in this work. 

The simulated yield strain (associated to the yield stress) is shown in Fig. 6.10 with lines. 

Thin lines correspond to SB and thick lines correspond to BCB. Consistent with the 

discussion above, and similarly to Fig. 6.9, the experimental magnetization curve for the 

carbonyl iron particles is used and the interparticle gap is neglected (Δ = 0). Together 

with the simulation data we also show experiments from the literature using dynamic 

oscillatory shear tests (from Fig. 7d in Ref. [45]). In particular, in Fig. 6.10 we include 

what Ref. [45] denotes the ‘crossover strain’. The ‘crossover strain’ is defined as the strain 

at which both storage and loss moduli have the same value 𝐺′ = 𝐺′′ and it is related to 

the onset of flow of the MR fluid. As observed from Fig. 6.10, the simulations give the 

correct order of magnitude for particle volume fractions below 10 vol%. In this regime 

the chains do not see each other and the yield strain is dictated by the relative positions 

of the particles within individual chains. As a result, the volume fraction dependence is 

negligible below 10 vol%. 

For higher concentrations (above 10 vol%), the particle chains are closer and interchain 

interactions develop. Simulations predict a decrease in the yield strain that can be 

interpreted from a geometric point of view. As the particle volume fraction increases, the 

critical strain associated with the stress reversal (change in sign) decreases [29]. 

Therefore, the stress versus strain curve has to reach its maximum (i.e. the yield stress) at 

smaller yield strains before becoming negative. Contrary to simulations, experiments 

exhibit two different trends. For the smallest fields investigated, the yield strain decreases 

with the volume fraction in good agreement with the simulations. However, for the largest 

fields investigated, the yield strain increases with the volume fraction. According to Ref. 

[45], this behavior originates from the fact that, at high concentrations, there exist 

connections between aggregates (inter-connections) and between particles forming each 
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aggregate (intra-connections). The latter are stronger than the former so when the MR 

fluid undergoes a stress, the resulting strain is not homogeneous but smaller inside the 

aggregates. As a result, larger strains are needed to yield. This discrepancy between 

simulations and experiments at high loadings can be understood bearing in mind that, in 

simulations, due to the use of periodic boundary conditions and affine deformation, (i) 

the strain is the same in the whole lattice and (ii) the particles are placed in a periodic 

lattice (i.e. there are not aggregates). Consequently, a distinction between inter- and intra-

connections is not appropriate. 
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Figure 6.10: Comparison of the yield strain obtained from simulations with SB (thin 

lines) or BCB (thick lines) and experiments (symbols). Experimental data are taken 

from Ref. [45]. In the simulations we used the experimental magnetization curve for the 

carbonyl iron particles. 

6.4.4 Universal Master Curve 

In this section we aim to explore the consistency of the current simulations in the frame 

of the universal master curve proposed by Ref. [42] for steady shear. 

Because of its non-Brownian character, the steady shear flow behavior of MR fluids can 

be collapsed on a master curve if the dimensionless viscosity 𝜂 𝜂∞⁄  (i.e. the ratio between 

the shear viscosity and the high shear viscosity) is plotted as a function of the Mason 

number Mn〈𝑀〉, which is the ratio between hydrodynamic and magnetostatic forces 

[25,42]: 

 Mn〈𝑀〉 =
72𝜂𝑐�̇�

𝜇0𝜇𝑐𝑟〈𝑀〉2
 (6.8) 

Here 〈𝑀〉 is the particle magnetization, 𝜇𝑐𝑟 is the carrier fluid relative magnetic 

permeability, and 𝜂𝑐 is the viscosity of the carrier fluid. Depending on the constitutive 

equation of the MR fluid, different master curves can be constructed. However, a very 

simple curve that provides a very good fit to the experimental data in a wide range of field 

strengths and concentrations is the Casson model [46]: 
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Here Mn〈𝑀〉
∗

 is a critical Mason number that determines the transition from the 

magnetostatic controlled regime to the hydrodynamic one [42]: 

 Mn〈𝑀〉
∗ =

72𝜏𝑦

𝜇0𝜇𝑐𝑟〈𝑀〉2
𝜂𝑐
𝜂∞

 (6.10) 

where 𝜏𝑦 is the dynamic yield stress (dependent on the particle magnetization and particle 

volume fraction). Note that, in line with Eq. (6.9), if Mn〈𝑀〉
∗

 is known then the flow curve 

of any MR fluid collapses on a single master curve when it is plotted versus 

Mn〈𝑀〉
∗

Mn〈𝑀〉⁄ . 
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Figure 6.11: Particle volume fraction dependence of the critical Mason number Mn〈𝑀〉
∗

. 

Squares: experiments on conventional MR fluids (CMRFs) in the linear magnetostatic 

regime. Triangles: experiments on inverse ferrofluids (IFFs). Stars: MD simulations. 

Circles: FEM simulations from the present work. Experiments were carried out under 

stress control. Squares, triangles and stars are obtained from Ref. [42]. The line 

corresponds to Mn〈𝑀〉
∗ = 0.25𝜙1.03. 

Using particle-level molecular dynamics (MD) simulations, Ref. [47] obtained a best-

fitting expression Mn〈𝑀〉
∗ = 0.25𝜙1.03 that satisfactorily predicted the steady shear flow 

behavior of inverse ferrofluids (IFFs). However, this equation failed to explain the 

experimental results for MR fluids with concentrations above 5 vol% (see Fig. 5 in Ref. 

[42]). In this concentrated regime, the discrepancies between experiments and MD 

simulations are expected to come from both the Stokes’ drag and dipolar approximations. 

The first issue can be partially circumvented by supposing that the high shear rate 

viscosity is given by a Quemada-like expression: 𝜂𝑐 𝜂∞⁄ = (1− 𝜙 𝜙0⁄ )2 with 𝜙0 = 0.64 

as the maximum packing fraction [47]. With regards to the second issue, several 

approaches have been used to solve magnetostatic multipolar interactions [14,23] 

generally involving a high computational cost and simplifications (e.g. very small number 

of particles in 2D systems). 
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Taking into consideration the good correspondence between experiments and FEM 

simulations in Fig. 6.9, we computed Mn〈𝑀〉
∗

 through Eq. (6.10) using the static yield 

stress, instead of the dynamic yield stress, and 〈𝑀〉 as obtained by the magnetization 

average over the particle volume. In Fig. 6.11 we plot the field averaged Mn〈𝑀〉
∗

 as 

obtained from the FEM simulations (circles). Together with FEM simulations we also 

plot MD simulations data (stars) and experimental results for conventional MR fluids in 

the linear regime (squares) and IFFs (triangles) extracted from Fig. 5 in Ref. [42]. As 

expected, FEM simulations agree better than MD simulations with the experimental data 

for conventional MR fluids at the higher particle loadings. 

Another important observation is that FEM simulations strongly overestimate the 

experimental data of conventional MR fluids in the dilute regime reported by Ref. [42]. 

In view of the results presented in this manuscript, the disagreement at low concentrations 

may come from the existence of wall slip. Note that the experiments by Ref. [42]. were 

not carried out with texturized plates. 

6.5 Conclusions 

The yielding behavior of MR fluids is revisited using Finite Element Method calculations 

on preassembled structures and carefully conducted experiments in a torsional 

magnetorheometer. On the one hand, a reduced field formulation is used that allows us to 

explore the influence of different packings (e.g. simple and body centered bases) and 

interparticle gaps (e.g. due to surface oxidation of iron microparticles). On the other hand, 

experiments are conducted in texturized geometries and near-to-equilibrium field 

configurations. 

Independent of the field strength, the minimum energy configuration corresponds to the 

BC configuration in contrast to the simple basis. However, the influence of the particular 

packing arrangement on the yield stress is only relevant for very high particle 

concentrations (𝜙𝑝~ 0.5). Compared to the simple basis, BC packings give a smaller yield 

stress in the linear regime because of geometrical constrains in an affine deformation. 

Simulations reveal that the existence of an interparticle gap Δ does not play a role in the 

saturation regime. However, there is a remarkable influence of the interparticle gap at low 

magnetic field strengths. The yield stress dramatically decreases as the interparticle gap 

increases. In this context, the interparticle gap effect becomes more important with larger 

initial magnetic permeability of the particles. Finally, the yield stress 𝜏0 scales with the 

interparticle center-to-center height ℎ as 𝜏0 〈𝑀〉2⁄ ∝ ℎ−6 where 〈𝑀〉 is the particle 

magnetization. 

Similar to other colloidal suspensions and physical gels, magnetorheological experiments 

demonstrate that wall slip and sedimentation may play a crucial role in the determination 

of the yield stress for MR fluids. To avoid wall slip and sedimentation it is recommended 

to use texturized surfaces and fast field ramps, respectively. Overall, experiments 

demonstrate a reasonably good agreement with simulations (there are no free fitting 

parameters) independent of the particular packing and interparticle gap. 

Finally, compared to MD simulations, FEM simulations are in much better agreement 

with experimental data of conventional MR fluids at high particle volume fractions. This 

demonstrates the importance of multipolar magnetostatic interactions and suggests that 

the static yield stress is very close to the dynamic yield stress at high loadings. 
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Abstract 

Traditionally, Finite Element Method Magnetostatics (FEMM) simulations used in 

magnetorheology consider that the shearing affine deformation of the particle lattice can 

be divided in two motions: first, an elongation, and second, a rotation of the elongated 

structure. This allows reducing the magnetostatic problem to an axisymmetric one with a 

smaller computational cost. However, supposed symmetries also impose, without any 

physical reason, that both the magnetic field direction and particle magnetization are 

aligned with the chain axis for any strain. The first assumption leads to an incorrect 

interchain interaction while the second one neglects the magnetization rotation during the 

strain process. In this letter we analyze the limitations within these classical assumptions 

under the frame of a recently proposed reduced field formulation that is capable to truly 

simulate large shear strains and concentrations in model structures [Compos. Part B: Eng. 

160 626-31]. 

7.1 Introduction 

Conventional magnetorheological (MR) fluids are suspensions of micronsized 

magnetizable carbonyl iron particles in liquid carriers. Under the presence of magnetic 

fields the particles magnetize and form field-directed structures [1-3]. Ginder and 

coworkers were probably the first to report on the importance of the local magnetic 

saturation of the particles in the rheological response of MR fluids using Finite Element 

Method Magnetostatic (FEMM) simulations [4-6]. Their work gave an explanation to the 

sub-quadratic power law and high field saturation that is observed in the yield stress of 

MR fluids. The latter observation is in clear contrast to their electrorheological 

counterparts where the maximum yield stress is achieved at the dielectric breakdown [7]. 

The starting point in classical FEMM simulations of interest in magnetorheology is a 

preassembled structure subjected to an external/applied field (in the 𝑧 direction). The 

simulations assume that the field-induced structure has a cylindrical symmetry oriented 

with the applied field regardless the strain (i.e. axisymmetric model) bounded by a mirror 

symmetry. These simplifications imply also some consequences from a physical point of 

view. 
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Firstly, the particle magnetization �⃗⃗⃗� is supposed to be aligned with the chain axis and 

therefore with the relative position vector joining two particles 𝑖 and 𝑗 in a chain �⃗⃗�𝑖𝑗 =

𝑟𝑖 − 𝑟𝑗. As a result, the magnetostatic interaction between particles in the chain is always 

attractive and only the elongational contribution to the stress is taken into consideration. 

However, magnetic interaction is anisotropic, that is, it does not only depend on the 

interparticle distance |�⃗⃗�𝑖𝑗| but also on the relative orientation between �⃗⃗⃗� and �⃗⃗�𝑖𝑗. Thus, 

using an axisymmetric model completely neglects the real misalignment between �⃗⃗⃗� and 

�⃗⃗�𝑖𝑗 and with this the rotational contribution to the stress as well. 

Secondly, due to the mirror symmetry at the external boundary of the computational 

domain, the magnetic field here is supposed to be collinear with the chain axis. This is 

equivalent to surround the explicitly simulated chain with a magnetic body capable to 

cancel the radial component of the magnetic field. In the non-strained state the mirror 

symmetric boundary condition is fulfilled. However as soon as the system is sheared that 

symmetry is lost and the interchain interactions incorrectly accounted for. 

As a consequence of the assumed cylindrical and mirror symmetries, it is not surprising 

that these simulations underestimate the experimental yield stress data (e.g. see Fig. 7.1 

below). Recently, a novel FEMM simulation methodology [10] has been proposed to 

overcome the shortcomings of the classical model. This new approach is based on a 

reduced field formulation, which does not need to impose the magnetic field vector on 

any boundary, and periodic boundary conditions, which simplifies the simulation of the 

shearing deformation of a particle lattice. With this new approach interchain interactions 

are correctly simulated in truly sheared lattices where there is not any restriction regarding 

the orientation of the particle magnetization vector. 

In Fig. 7.1 we compare the yield stress as obtained using the method proposed by Ref. [4] 

(in solid lines) and the method proposed by Ref. [10] (in dashed lines). Together with 

simulations we also include experimental data obtained in a magnetorheometer. Note that 

in order for the comparison to be appropriate, the experimental magnetization curve of 

the carbonyl iron powder was used in the two simulations. As observed, Ginder and 

Davis’ simulations [4] underestimate the experimental data, especially, at high volume 

fractions. However, simulations proposed in Ref. [10] are in better agreement with 

experiments. 

In the following sections the differences between Ginder and Davis’ and Morillas and de 

Vicente’s FEMM analyses are discussed in detail in 3D geometries and supposing the 

Fröhlich-Kennelly constitutive equation for the magnetic particles (initial permeability: 

1000, saturation magnetization: 1600 kA/m) [11]. In particular we will address 

differences on: (i) how to compute interparticle forces, (ii) how to shear strain the lattice 

without keeping particle magnetization aligned with chain axis and (iii) how to impose 

the external field in the model without supposing the total field direction and thus 

modifying real interchain interactions. Next, we will thoroughly analyze each one. 

Note that, none of the simulations proposed in Refs. [4] nor [10] take into account the 

real structures present in a MR fluid under a simple shear kinematics; they work with a 

highly symmetric arrangement of particles in order to accurately resolve magnetic 

interactions. To compute true magnetic forces in realistic structures, more complex 

numerical methods must be implemented in order to couple magnetostatic interactions 

(solved by FEMM) with particle motion through Newton’s second law (solved by 

Molecular Dynamics like methods) [12,13]. However, the computational cost of these 
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numerical schemes only allows simulating very small systems with tens of particles 

(below 50) in two dimensions, therefore moving away from concentrated MR fluids that 

are of interest in current applications. 
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Figure 7.1: Yield stress 𝜏0 as a function of the applied magnetic field strength 𝐻𝑒𝑥𝑡. 
Points: experiments from Refs. [8] (𝜙 = 0.005, 0.01, 0.05 and 0.1) and [9] (𝜙 = 0.2, 

0.3, 0.4 and 0.5). Solid lines: simulation method proposed by Ref. [4]. Dashed lines: 

simulation method proposed by Ref. [10] supposing a simple monoclinic lattice. Both 

sets of simulations were performed taking into consideration the experimental 

magnetization curve of the iron powder used in the experiments. Experimental data 

were all corrected using the Weissenberg-Rabinowitsch-Mooney equation. a) low 

particle concentrations. b) large particle concentrations. 

7.2 Computation of the interparticle forces 

On the one hand, in Ginder and Davis’ simulations [4], the total force exerted by the upper 

half of a chain on its lower half is computed by integrating the ‘reduced’ Maxwell stress 

tensor over the plane that halves the chain (see Eq. (1) in Ref. [4]). The term ‘reduced’ 

was used in that paper because only the field perturbation coming from the particles �⃗⃗⃗� −
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�⃗⃗⃗�0 was considered in the tensor. Here �⃗⃗⃗� was the total magnetic field and �⃗⃗⃗�0 denoted an 

effective applied field computed as an average along the cell height (see Eq. (2) in Ref. 

[4]). However, according to classical electromagnetism theory, there is not any reason to 

use a reduced field instead of the total field in the computation of the forces [14,15]. 

Moreover, the Maxwell stress tensor has to be integrated over a closed surface in order to 

yield the force acting on the encompassed magnetic body. Nothing is said about this issue 

in Ref. [4]. 

On the other hand, in Ref. [10] the total force exerted by the upper part of the lattice on 

the lower one is computed by using the total field �⃗⃗⃗� (regarded as a background field 

identified with the external one �⃗⃗⃗�𝑒𝑥𝑡 plus the field coming from the particles) and a closed 

surface 𝑆. This surface is sketched with red dashed lines in Fig. 7.2 for a lattice that is 

strained at an angle 𝜃 = atan 𝛾 in the 𝑦 direction. As it can be seen, the surface 𝑆 is 

composed by: 

 𝑆𝑡: A top plane with unit normal vector �̂� halving the unit cell (Fig. 7.2a). 

 𝑆𝑏: A bottom plane with unit normal vector −�̂� (Fig. 7.2c). 

 𝑆𝑙: Two lateral planes, tilted according to the strain 𝛾 with unit normal vectors 

±�̂�2 = ±(�̂� − 𝛾�̂�) √1+ 𝛾2⁄  that coincide with the lateral boundaries of the unit 

cell (Figs. 7.2a and 7.2b). �̂�2 will be later a basis vector of a coordinate system 

(see below, Fig. 7.3). The associated cell boundaries are defined as periodic walls. 

 𝑆𝑓: Two front planes with unit normal vectors ±�̂�. These planes are not shown in 

Fig. 7.2 for the sake of clarity but they coincide with the front and rear boundaries 

of the unit cell. The associated cell boundaries are defined as mirror symmetric 

planes. 

As will be demonstrated below, only the integration over the top and bottom planes (𝑆𝑡 
and 𝑆𝑏) are needed to be carried out to compute the total force. 

First, the integration of the Maxwell stress tensor over each 𝑆𝑙 plane gives a value that is 

different from zero. However, because the two planes are defined as periodic walls, the 

results of the integrations are the same but with opposite sign (note that their unit normal 

vectors have opposite direction). Second, the integration over 𝑆𝑓 is also zero because these 

planes are defined as mirror symmetries and as a result, the 𝑥 component of the magnetic 

field strength and flux density is zero 𝐻𝑥 = 𝐵𝑥 = 0. Third, the integration over 𝑆𝑡 is 

straightforward once the magnetic field is computed on the surface. Fourth, the 

integration over 𝑆𝑏 is more elaborate. Since we are interested in the total force acting over 

the bottom half of the lattice, the tilted lateral planes and the frontal ones should go down 

till the end of the lattice (pointed with a horizontal solid line in Figs. 7.2b). Once the 

planes exit the lattice, any horizontal position below the lattice bottom boundary can be 

used to close the surface. However, it should be remembered that near to the end of the 

lattice the magnetic field distribution is not known (i.e. FEMM solution is only valid in 

the bulk of the lattice, where a large number of particles surround the explicitly simulated 

one). A solution to this problem is to lengthen lateral and frontal planes till a distance that 

is large enough to see the lattice as a homogeneous body (body 1 in Figs. 7.2c). Note that, 

although they go out from the lattice, lateral and frontal planes are still periodic and mirror 

symmetric respectively. Therefore, the integration over them does not contribute to the 

total force. 

When the lattice is seen as a homogeneous body, the magnetic field can be theoretically 

calculated by solving a typical electromagnetism boundary problem (Figs. 7.2c) with two 
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homogeneous media (1 and 2) separated by an interface with unit normal vector �̂� (�̂� =
−�̂� in Figs. 7.2c). Through this interface, the normal component of the magnetic flux 

density and the tangential component of the magnetic field strength are preserved through 

the continuity equations (i.e. 𝐵1,𝑛 = 𝐵2,𝑛 and 𝐻1,𝑡 = 𝐻2,𝑡). 

 

 

 

Figure 7.2: Sketch of a monoclinic lattice sheared at an angle 𝜃. Its unit cell is plotted 

with black dashed lines. (a) In the bulk of the lattice. (b) At the bottom row of the 

lattice. (c) Far away from the lattice where it is seen as a continuous and homogeneous 

(grey) medium. Red dashed lines show the surface over which the Maxwell stress tensor 

is integrated. 

In addition, since the lattice is considered as a continuous and homogeneous medium, the 

magnetic flux density and magnetic field strength inside the lattice can be identified with 

their volume averages over the unit cell: �⃗⃗�1 = 〈�⃗⃗�〉, �⃗⃗⃗�1 = 〈�⃗⃗⃗�〉 being �⃗⃗� and �⃗⃗⃗� the fields 

obtained using FEMM simulations. Thus, with this identification and knowing the 

(a)

(b)

1

2

(c)
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orientation of the lattice interface, previous continuity conditions for each field 

component can be solved yielding the magnetic flux density and magnetic field strength 

far away from the lattice, just at the plane 𝑆𝑏 where the Maxwell stress tensor needs to be 

integrated to close the total surface 𝑆. Note that, identifying the values of �⃗⃗�1 and �⃗⃗⃗�1 with 

the corresponding average values in the lattice, no demagnetization effects are 

considered. This agrees with the picture of an infinite (unbounded) lattice created by the 

periodic conditions imposed in the FEMM unit cell. 

As an example, in the particular case of a lattice that is placed in a non-magnetic media 

with �̂� parallel to the external magnetic field strength �⃗⃗⃗�𝑒𝑥𝑡 (aligned with the 𝑧 direction), 

the boundary condition problem yields: 

 �⃗⃗�2 = 𝜇0(〈𝐻𝑥〉�̂� + 〈𝐻𝑦〉�̂�) + 〈𝐵𝑧〉�̂� (7.1a) 

 �⃗⃗⃗�2 =
�⃗⃗�2
𝜇0

 (7.1b) 

where, in addition, 〈𝐻𝑥〉 = 〈𝐻𝑦〉 = 0 due to the symmetries of the problem. Bearing this 

in mind, the shear force 𝐹𝑦 in the 𝑦 direction is computed using the Maxwell stress tensor 

�̃� = 𝐵�̃� − 𝛿 𝐵𝐻 2⁄  (where 𝛿 is the unit diagonal tensor) as follows: 

 

𝐹𝑦 = ∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆

= ∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆𝑡

−∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆𝑏

= ∫ 𝐻𝑧𝐵𝑦𝑑𝑠
𝑆𝑡

−∫ 𝐻2,𝑧𝐵2,𝑦𝑑𝑠
𝑆𝑏

= ∫ 𝐻𝑧𝐵𝑦𝑑𝑠
𝑆𝑡

−∫ 〈𝐵𝑧〉〈𝐻𝑦〉𝑑𝑠
𝑆𝑏

= ∫ 𝐻𝑧𝐵𝑦𝑑𝑠
𝑆𝑡

 

 

 

 

 

(7.2) 

where �̂�𝑇 is the transposed unit vector in the (shear) 𝑦 direction. In Eq. (7.2) it has already 

been taken into consideration that the contributions from 𝑆𝑙 and 𝑆𝑓 are null. The shear 

force in the 𝑥 direction 𝐹𝑥 can be computed in a similar way. However, 𝐹𝑥 = 0 because 

of the symmetry of the lattice for all cases investigated in this manuscript. 

Finally, the normal force 𝐹𝑧 in 𝑧 direction is calculated as follows: 

 

𝐹𝑧 = ∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆

= ∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆𝑡

−∫ �̂�𝑇 ∙ �̃� ∙ �̂�𝑑𝑠
𝑆𝑏

= ∫
1

2
(𝐻𝑧𝐵𝑧 − 𝐻𝑥𝐵𝑥 − 𝐻𝑦𝐵𝑦)𝑑𝑠

𝑆𝑡

−∫
1

2
(𝐻2,𝑧𝐵2,𝑧 − 𝐻2,𝑥𝐵2,𝑥 − 𝐻2,𝑦𝐵2,𝑦)𝑑𝑠

𝑆𝑏

= ∫
1

2
(𝐻𝑧𝐵𝑧 − 𝐻𝑥𝐵𝑥 − 𝐻𝑦𝐵𝑦)𝑑𝑠

𝑆𝑡

−∫
〈𝐵𝑧〉

2

2𝜇0
𝑑𝑠

𝑆𝑏

 

 

 

 

 

 

 

 

(7.3) 

As observed in Eqs. (7.2) and (7.3), this route yields different expressions for the 

interparticle forces in comparison to those used in Ref. [4] (see their Eq. (1)). However, 
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both approaches contain an averaged field: while in Ref. [4] the effective applied field �⃗⃗⃗�0 

is proposed as an estimation of the background field (note that in Ref. [10], thanks to its 

reduced formulation, the background field is exactly �⃗⃗⃗�𝑒𝑥𝑡), in Ref. [10] the averaged field 

is introduced as the magnetic field far away from the lattice. In the following, the method 

proposed in Ref. [10] will be used to compute the interparticle forces. 

7.3 Elongation + rotation versus a true shear strain 

A very common approximation when shear straining an isolated chain of particles is its 

elongation followed by a rotation (e.g. Refs. [4,5,16]). This approximation effectively 

mimics the actual deformation for very small strains but fails in the case of intermediate 

and large strains [10]. In their article, Ginder and Davis [4] used this decomposition 

because it allows them to keep the computational domain axisymmetric during the 

elongation stage. At a certain strain level 𝛾 the chain is rotated at an angle 𝜃 = atan 𝛾 and 

the force along the chain axis, 𝐹𝑎𝑥𝑖𝑠, is projected in the shear direction multiplying by a 

factor sin 𝜃. Finally, as the chain is tilted, the field aligned with its axis is not the external 

one but its projection, and therefore the results have to be corrected by a factor cos 𝜃. As 

a consequence, in the simulations proposed by Ref. [4] the chain rotation is accounted for 

by a factor sin 𝜃 cos 𝜃 = 𝛾 (1+ 𝛾2)⁄  (see Eq. (3) in that work). 

In this section the shear stress coming from, first, elongating and, then, rotating the chain 

is compared with that obtained from a true shearing motion. In the first set of simulations, 

the elongation + rotation kinematics is performed on a rectangular simulation box (see 

black box in Fig. 7.3a) with height ℎ = 𝑑√1+ 𝛾2 and width 𝑤 = √𝜋𝑑3 6𝜙ℎ⁄  using a 

reduced field formulation and periodic boundary conditions. Here, 𝑑 is the particle 

diameter and 𝜙 is the particle volume fraction. This simulation approach is the 3D 

analogue of the axisymmetric computational domain used by Ref. [4]. As a result of the 

imposed periodic boundary conditions, the final system is a tetragonal lattice with vectors 

�⃗�1 = 𝑤�̂�, �⃗�2 = 𝑤�̂� and �⃗�3 = ℎ�̂� (see Fig. 7.3a, note that mirror symmetries would yield 

the same lattice as �⃗⃗⃗�𝑒𝑥𝑡 is aligned with the chain axis). Once the magnetic field 

distribution is solved for different strain levels 𝛾, the normal force in the lattice (i.e. along 

the chain axis direction) is computed using Maxwell stress tensor (Eq. (7.3)) and corrected 

by the same factor used by Ref. [4] sin 𝜃 cos 𝜃 = 𝛾 (1+ 𝛾2)⁄  to account for the eventual 

rotation. 

The true shear strain is modelled following Ref. [10]. The resultant lattice in this case is 

a monoclinic one (of simple basis) with lattice vectors �⃗⃗�1 = 𝑤′�̂�, �⃗⃗�2 = 𝑤′�̂� and �⃗⃗�3 =

ℎ′(𝛾�̂� + �̂�) = ℎ′√1+ 𝛾2�̂�3 with 𝑤′ = 𝑑√𝜋 6𝜙⁄  and ℎ′ = 𝑑 the lateral and vertical 

interparticle distances respectively (see Fig. 7.3b). 

In Fig. 7.4 we show the shear stress 𝜏 versus shear strain 𝛾 curves for different volume 

fractions 𝜙 and external magnetic field strengths 𝐻𝑒𝑥𝑡 (in the linear, left, and saturation, 

right, regimes) using the 3D extension of the classical elongation + rotation 

decomposition approach as described by Ref. [4] (solid squares in Fig. 7.4) and truly 

shearing the system as described by Ref. [10] (lines in Fig. 7.4). 

Note that the symbols included in Fig. 7.4 are limited to a maximum strain level 𝛾𝑚 =

√𝜋2 (36𝜙2) − 1⁄  in view of the unit cell dimensions (ℎ and 𝑤) due to geometrical 

constrains (i.e. particle overlapping). For 𝛾 > 𝛾𝑚 the particles overlap and therefore the 
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analysis by Ref. [4] is not applicable. However, it is worth to remark that particle 

overlapping is avoided in the method proposed by Ref. [10]. 

      

      

Figure 7.3: Unit cells and generated lattices using periodic (black lines) and mirror 

symmetry (yellow lines) boundary conditions. (a) Tetragonal lattice under elongation 

according to Ref. [4]. (b) Monoclinic lattice generated from (a), when it is not 

elongated, by affine shear deformation. (c) Same than (a) but explicitly rotating the 

external magnetic field. (d) Tetragonal lattice rotated together with the {�̂�1, �̂�2, �̂�3} basis 

(its unit cell is highlighted with magenta dashed lines). 

In view of Fig. 7.4, the two methods provide very similar results in the linear regime for 

low and moderate concentrations. This result was expected at low strain levels. However, 

the fact that the two methods (decomposition D and true T) also provide similar data for 

large strains is striking. An explanation for this can be given if shear stress 𝜏 is written in 

terms of the traction force orientation 𝛽 = 𝐹𝑦/𝐹𝑧 and traction force norm 𝑡 =

√𝐹𝑦2 + 𝐹𝑧2 𝐴⁄  (where 𝐴 = 𝑤2 or 𝑤′2 in the decomposition and true method respectively) 

as 𝜏 = 𝑡𝛽/√1+ 𝛽2. In Sec. 7.5, both traction orientation and norm are plotted for the 

different cases studied in this work. Note that, in the decomposition method proposed by 

Ref. [4], the traction orientation is the same as the applied strain 𝛽𝐷 = 𝛾 (see Figs. 7.5a, 

7.5c and 7.5e). When the applied strain 𝛾 is small, the traction norm simulated by the two 

methods is very similar 𝑡𝐷 = 𝑡𝑇 (see Figs. 7.5b, 7.5d and 7.5f) and we can distinguish 

two scenarios: low and high fields. For small field strengths, the true traction orientation 

(a) (b)

(c) (d)
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is equal to the applied strain 𝛾 and consequently it is also equal to the traction orientation 

as obtained by decomposition (𝛽𝑇 = 𝛾 = 𝛽𝐷). Therefore the stress predicted by the 

decomposition method 𝜏𝐷 and the true one 𝜏𝑇 are the same 𝜏𝐷 = 𝜏𝑇. However, as the 

strain is increased 𝑡𝑇 < 𝑡𝐷 and 𝛽𝑇 > 𝛽𝐷 so it is possible that both effects balance 

themselves and then 𝜏𝐷 = 𝜏𝑇. 
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Figure 7.4: Shear stress 𝜏 versus strain 𝛾 curves under different external magnetic fields 

(left column-linear regime, 𝐻𝑒𝑥𝑡 = 8 kA/m; right column-saturation regime, 𝐻𝑒𝑥𝑡 = 

1600 kA/m) and volume fractions (top row 3 vol%, middle row 20 vol% and bottom 

row 50 vol%). Squares: elongating + rotating the lattice according to Ref. [4]. Triangles: 

elongating the lattice & rotating the field. Circles: elongating + rotating the lattice & 

rotating the field. Lines: truly straining the lattice. Letters in brackets inside the graphs 

legends correspond to the different cases shown in Fig. 7.3. The vertical dashed line 

corresponds to the maximum strain 𝛾𝑚 that can be simulated before particle overlapping 

occurs. 
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On the other hand, for large field strengths 𝛽𝑇 > 𝛾 = 𝛽𝐷 even at small strains (see Figs. 

7.5a, 7.5c and 7.5e) and therefore 𝜏𝐷 < 𝜏𝑇 (see Fig. 7.4). This observation was already 

pointed out by Ref. [17]. In that paper, using a dipolar approach (valid in saturation), the 

shear modulus (in dilute systems and at low strain) was analytically calculated for isolated 

chains. They proved that the contributions from elongation and particle dipole rotation 

are of the same order of magnitude in the saturation regime (where the particle 

permeability is close to 1). The observations by Ref. [17] are in good qualitative 

agreement with our observations at low strains where the true stress is approximately 

twofold the one obtained by decomposition. This would explain the disagreement: for 

low strains this elongation + rotation simulations (points) fail as they do not account 

explicitly for rotation. For high strains in addition to the previous failure, shearing the 

chain is not well approximated by its elongation + rotation deformation. 

In order to ascertain what is the range of applicability of the referred elongation + rotation 

approximation, the previous simulations were repeated using the same computational 

domain and boundary conditions (and thus, simulating the same tetragonal lattice) but, as 

the lattice is elongated, the external magnetic field is rotated accordingly to the applied 

strain: �⃗⃗⃗�𝑒𝑥𝑡 = 𝐻𝑒𝑥𝑡�̂�3 (see Fig. 7.3c). Note that, in this case, mirror symmetries cannot be 

applied due to the misalignment between the external field and the chain axis. In this way, 

the field rotation is directly implemented in the FEMM simulations and deviations from 

the true shear simulations are only expected to come from the failure of the elongation + 

rotation geometrical approximation. In this case, since the chain axis is not parallel to the 

external field it is not necessary to project the normal force nor the field. Instead, the force 

in the direction normal to the external magnetic field (−�̂�2 see Fig. 7.3c) is computed by 

integration of the appropriate Maxwell stress tensor components: 

 𝐹𝑒2 = ∫ −�̂�2
𝑇 ∙ �̃� ∙ �̂�𝑑𝑠

𝑆

 (7.4) 

Results from this set of simulations are plotted (triangles) in Fig. 7.4 as well. For the 

smallest fields there is also a reasonably good agreement. More importantly, for the 

largest fields the collapse is significantly improved, especially at small volume fractions. 

This is also expected because the elongation + rotation approximation is only appropriate 

for small concentrations (i.e. isolated chains). Overall, Fig. 7.4 suggests that the 

elongation + rotation approximation is only applicable for small strains (below 𝛾 = 0.2). 

To conclude this section, from Fig. 7.4 it can be inferred that the correction proposed by 

Ref. [4] to take into consideration the rotation of the chain (i.e. the prefactor cos 𝜃) is not 

accurate enough to satisfactorily implement the elongation + rotation approximation. 

Even though using that prefactor the magnetic field is projected in the chain axis direction, 

hence reducing particle interaction (cos 𝜃 < 1), a key point here is the misalignment 

between the external field (and particle magnetization) and the chain axis, which cannot 

be achieved in Ginder and Davis’ axisymmetric model [4]. 

7.4 Boundary conditions: fixing magnetic potential vs 

periodic BCs and reduced field formulation 

Another difference between Ginder and Davis’ approach [4] and the method proposed by 

Ref. [10] is the way to introduce the external magnetic field. Thanks to the reduced field 

formulation, in Ref. [10], the external magnetic field is imposed as a domain property. 
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On the other hand, the approximation by Ref. [4] employs the magnetic vector potential 

and fixes its value along an external boundary. As a consequence, the total magnetic field 

is not fixed anywhere, however its direction is always parallel to the chain axis in the 

external boundary (i.e. mirror symmetry). 

In this section, we study the influence of the way the field is applied on the shear stress 

versus shear strain curve. In order not to couple this problem with the elongation + 

rotation approximation, the shear strain of the chains will be implemented by shear 

straining the computational domain and applying periodic conditions only on top and 

bottom walls of the unit cell (black lines in Fig. 7.3d). Finally, in the sheared walls the 

total magnetic field direction is fixed along them to align this field with the chain axis as 

it is done in Ref. [4] (mirror symmetries-yellow lines in Fig. 7.3d). To sum up, taking into 

consideration the computational domain used by Ref. [10], periodic boundary conditions 

are imposed in both top and bottom walls while the rest of boundaries are defined as 

mirror symmetries. 

Since the shear motion is achieved by tilting the computational domain its dimensions are 

ℎ′ and 𝑤′. By replicating the unit cell with the new imposed boundary conditions it can 

be seen that the new lattice vectors are (see Fig. 7.3d): 

 𝑐1 = 𝑤′�̂� (7.5a) 

 𝑐2 =
𝑤′

√1+ 𝛾2

�̂� − 𝛾�̂�

√1+ 𝛾2
 (7.5b) 

 𝑐3 = ℎ′(𝛾�̂� + �̂�) (7.5c) 

However, they can be written in a simpler form using another basis {�̂�1, �̂�2, �̂�3} where 

�̂�1 = �̂� and �̂�2 and �̂�3 were already defined in Secs. 7.2 and 7.3 respectively, thus: 

 𝑐1 = 𝑤′�̂�1 (7.6a) 

 𝑐2 =
𝑤′

√1 + 𝛾2
�̂�2 (7.6b) 

 𝑐3 = ℎ�̂�3 (7.6c) 

In this new basis it can be clearly seen that the resultant lattice is a tetragonal one (with a 

unit cell represented by the magenta dashed box in Fig. 7.3d) similar to that used in the 

Sec. 7.3 (compare definitions of both lattice vectors sets) but with the following 

differences: 

 While in the first tetragonal lattice {�⃗�1, �⃗�2, �⃗�3} both (𝑥 and 𝑦) lateral dimensions 

adjust to keep the volume fraction constant during elongation, in the second one 

{𝑐1, 𝑐2, 𝑐3} the dimension along the 𝑥 direction is fixed. 

 ‘Shearing’ the first tetragonal lattice simply implies to elongate it, however in the 

second one, in addition to elongation, the lattice undergoes through a rotation 𝜃 =
atan 𝛾 (note that the versors �̂�2 and �̂�3 rotate around the 𝑥 axis). 

Up to now, all boundary conditions used have an influence on the magnetic field direction 

but nothing has been said about its magnitude. To work in similar conditions to Ref. [4] 

(without fixing the total magnetic field magnitude anywhere) the reduced field 

formulation will be used again imposing only the external magnetic field parallel to the 

chain axis (i.e. �⃗⃗⃗�𝑒𝑥𝑡 ∥ �̂�3). 
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As the chain axis is aligned for every strain with the lateral boundaries, this condition is 

equivalent to rotate the external magnetic field an angle 𝜃 = atan 𝛾. This means that, for 

each strain, the lattice and the external field rotate the same angle and the problem reduces 

to the first one where chains are only elongated in the field direction (but remembering 

that only one dimension of the computational domain changes to keep the volume fraction 

constant). In Fig. 7.4, the shear stress curves obtained with this method (red open circles) 

are plotted together with previous results. It can be observed that, although both kinds of 

tetragonal lattices are elongated in different ways, this does not introduce noticeable 

changes in the shear stress versus strain curve. For strain levels below 𝛾 = 0.2 differences 

in the unit cell width are smaller than 2% while for large strains the width of the 

computation box is already large enough so that boundary conditions (which are the same 

in both lattices) do not influence the final solution. 

Finally note that, as it was stated before, the whole lattice is rotated while it is strained. 

Consequently, the interface referred in Sec. 7.2 splitting both homogeneous media will 

also rotate. Indeed, its normal vector is parallel to the tilted surfaces of the unit cell �̂� =
−�̂�3. Consequently, the value of the magnetic field (and its flux density) far away from 

the lattice will depend on the strain and will be given by continuity equations. In 

particular: 

 𝐵2,𝑥 = 𝜇0〈𝐻𝑥〉 (7.7a) 

 𝐵2,𝑦 =
𝜇0(〈𝐻𝑦〉 − 𝛾〈𝐻𝑧〉) + 𝛾

2〈𝐵𝑦〉 + 𝛾〈𝐵𝑧〉

1+ 𝛾2
 (7.7b) 

 𝐵2,𝑧 =
𝜇0(𝛾

2〈𝐻𝑧〉 − 𝛾〈𝐻𝑦〉) + 𝛾〈𝐵𝑦〉 + 〈𝐵𝑧〉

1+ 𝛾2
 (7.7c) 

and �⃗⃗⃗�2 = �⃗⃗�2 𝜇0⁄ . 

From this section it can be concluded that the use of mirror symmetries as lateral boundary 

conditions (that is, aligning the total magnetic field at the boundaries with the chain axis) 

completely fails in simulating a shear strain motion. Nonetheless, at least, the use of 

mirror symmetries results in a tetragonal lattice (that elongates and rotates) and therefore 

includes multibody interactions. At this point, it is worth to remark that, although Ginder 

and Davis’ method [4] applies these particular boundary conditions, their model is 

axisymmetric. Thus, the simulated geometry will not mimic a true lattice for high 

concentrations (small interchain distance) when lateral interactions are expected to play 

a role. 

In summary, classical axisymmetric FEMM simulations have, as main advantage, a 

reduced computational cost. However, in this manuscript it has been demonstrated that 

their predictions are solely right at small field strengths (in the linear regime) and small 

shear strains (𝛾 < 0.2). In this particular small-field and small-strain operation regime, 

magnetostatic interactions are multipolar, directed along the chain axis and dictated by 

the interparticle distance. As a result, interchain interactions are satisfactorily captured 

and the rotational contribution to the stress is negligible in comparison to the elongational 

one. Nevertheless, for large field strengths and strain levels, the classical axisymmetric 

FEMM simulations fail to describe the true strain process because the interchain 

interactions and the rotational contributions are not satisfactorily captured. In this large-

field and large-strain operation regime the model proposed by Morillas and de Vicente 

[10] should be used. 
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7.5 Appendix 
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Figure 7.5: Traction force orientation 𝛽 = 𝐹𝑦/𝐹𝑧 (left column-dashed line) and norm 

𝑡 = √𝐹𝑦2 + 𝐹𝑧2 𝐴⁄  (right column-points) for different volume fractions (top row 3 vol%, 

middle row 20 vol% and bottom row 50 vol%) and magnetic field strengths according 

to Ginder and Davis’ axysimmetric approach [4]. Results from truly shearing the lattice 

are also plotted with solid and dotted lines. 
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Abstract 

Understanding magnetorheology in saturating fields is crucial for success in high torque 

applications. In this manuscript we use numerical computations, analytical developments 

and experimental data (using a double-gap magnetocell) to study the saturation behavior 

of model magnetorheological fluids for different particle loadings. Numerical 

calculations demonstrate a non-linear dependence of both shear and normal stresses with 

particle concentration in contrast with analytical predictions. These predictions are in very 

good agreement with numerical calculations at low volume fractions when the interchain 

interactions can be safely neglected. Numerical calculations for the (yield) shear stress 

overestimate experimental data for small and medium concentrations. However, a 

reasonably good qualitative agreement is found for the larger particle loadings. Normal 

stresses are extraordinarily sensitive to the particular microstructure; experiments suggest 

sample dilatation in good agreement with simulations in lattices with a body centered 

(BC) basis. 

8.1 Introduction 

Magnetorheological (MR) fluids of interest in mechanical applications are prepared by 

dispersion of magnetizable carbonyl iron particles in a Newtonian oily phase. The 

importance of these materials stems from the fact that their rheological properties can be 

externally controlled through the superposition of magnetic fields; an apparent yield 

stress appears if the field strength is large enough. The reason for this is the formation of 

particle-based columnar structures in the field direction that are capable to transfer the 

torque between the confining surfaces. The maximum strength of any MR fluid is attained 

at saturating fields (i.e. sufficiently large field strengths for the magnetization of the 

particles to saturate) [1-4]. 

In saturation, the magnetized particles can be simply replaced by a fixed magnetic dipole 

moment placed at its center. With this, the theoretical description of the rheological 

behavior of a MR fluid is strongly simplified [5,6]. However, performing experiments in 

saturation is not straightforward; in order to saturate the particles an electromagnetic 

circuit must be used and, as a result, the field inhomogeneity within the sample typically 

increases. Just recently, it has been demonstrated that using a double-gap magnetocell it 

is possible to measure the rheological properties of MR fluids in homogeneous saturating 

fields [7]. 
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Apart from increasing the external magnetic field strength, the other simplest route to 

enhance the MR effect is to increase the particle volume fraction [8,9]. As a result, it is 

of great interest to ascertain the influence of particle loading in the rheological behavior 

of saturated MR fluids. Several attempts have been reported in the literature for low 

volume fractions that predict a linear dependence [10]. However, increasing the particle 

loading strongly complicates the analysis because multibody interactions come into play. 

In this manuscript we perform numerical calculations to compute the shear and normal 

stresses in model preassembled structures. The results are then compared to analytical 

calculations that are valid for low volume fractions. Finally, experiments are carried out 

in a double-gap magnetocell device to measure shear stress and normal stress differences 

at saturation for a wide range of particle concentrations. 

8.2 Preassembled structures: numerical calculations 

In this section we compute shear and normal stresses in preassembled structures subjected 

to a simple shear deformation 𝛾 = tan𝜃 in the 𝑦 direction under an external field that is 

applied in the 𝑧 direction (see Fig. 8.1). At rest, in the undistorted state, the particles are 

preassembled in a tetragonal lattice. For simplicity, in the body text of this manuscript we 

will restrict the analysis to simple tetragonal lattices. However, the same approach used 

here can be extended to other more complex lattices. In particular, in Sec. 8.7 we show 

the derivation for the body centered (BC) basis. 

 

Figure 8.1: Schematics of the particle arrangement. Simulated lattice under a strain 𝛾 =

tan𝜃 and an external applied magnetic field �⃗⃗⃗�𝑒𝑥𝑡. Only the particles sheet at 𝑥 = 0 is 

plotted. Dashed lines determine the origin of the coordinate system. The upper (source) 

region of the lattice is represented with dotted circles while the bottom (field) region is 

represented with empty circles. In this sketch, the vector �⃗⃗� joins the (0,3,2) source 

particle with the (0,0,-3) field particle. Due to the lattice symmetry, only the force acting 

over the red field particles needs to be computed. The sign criteria is represented by the 

black trapezium: blue (red) arrows represent positive field-driven shear (normal) 

stresses acting on the microstructure. 

When sheared at a given strain level 𝛾 we assume that the particles undergo an affine 

deformation and therefore the particles rearrange in a monoclinic lattice. Consequently, 

F
ield

 reg
io

n
S

o
u

rce
reg

io
n



142 

 

for any applied strain, the particle position vector 𝑟 can be written in terms of the lattice 

unit vectors (see Fig. 8.1): 

 �⃗�1 = 𝑤�̂� (8.1a) 

 �⃗�2 = 𝑤�̂� (8.1b) 

 �⃗�3 = ℎ(𝛾�̂� + �̂�) (8.1c) 

Here ℎ = 𝑑 is the vertical distance between two consecutive particles along a chain (i.e. 

the particle diameter 𝑑), 𝑤 = ℎ√𝜋 6𝜙⁄  is the horizontal distance between chains (i.e. the 

width of the lattice unit cell) and 𝜙 is the particle volume fraction. Note that 𝜙 remains 

constant during the straining motion because the volume of the unit cell is conserved. It 

is also worth to note that magnetic-non magnetic, core-shell, composite particles can also 

be simulated following this approach by simply making ℎ > 𝑑. 

The magnetic field inside the lattice is the summation of the external applied field plus 

the perturbation due to the magnetized particles. Under strong enough external fields, the 

total field will be dominated by the external one and therefore, under the assumption of 

isotropic magnetizable particles, the latter will fully saturate in the external field direction. 

As a result, the particles can be substituted by point dipoles of strength �⃗⃗⃗� = 𝑀𝑠𝑉𝑚�̂� where 

𝑀𝑠 is the saturation magnetization and 𝑉𝑚 is the magnetic volume of the particles (𝑉𝑚 =
𝜋𝑑3 6⁄  for spherical particles). With this assumption, a field (𝑓) particle experiences a 

dipolar force due to a source (𝑠) particle through: 

 �⃗�𝑓𝑠 =
3𝜇0

4𝜋𝑅4
[2�⃗⃗⃗�(�⃗⃗⃗� ∙ �̂�) + 𝑚2�̂� − 5( �⃗⃗⃗� ∙ �̂�)

2
�̂�] (8.2) 

Here 𝜇0 is the permeability of vacuum and �⃗⃗� is the position vector of the field particle 

with respect to the source particle (see Fig. 8.1). �⃗⃗� can be written in terms of the position 

vector of the field and source particles as follows: 

 𝑟𝑓 = 𝑙𝑓�⃗�1 +𝑚𝑓�⃗�2 + 𝑛𝑓�⃗�3 (8.3a) 

 𝑟𝑠 = 𝑙𝑠�⃗�1 +𝑚𝑠�⃗�2 + 𝑛𝑠�⃗�3 (8.3b) 

 
�⃗⃗� = 𝑟𝑓 − 𝑟𝑠 = (𝑙𝑓 − 𝑙𝑠)𝑤�̂� + [(𝑚𝑓 −𝑚𝑠)𝑤 + (𝑛𝑓 − 𝑛𝑠) 𝛾ℎ]�̂�

+ (𝑛𝑓 − 𝑛𝑠)ℎ�̂� 
(8.3c) 

where (𝑙,𝑚, 𝑛) are the (integer) ‘coordinates’ of the field and source particles within the 

lattice. 

Shear/normal stresses in the lattice can be obtained from the total force experienced (in 

the shear/normal direction) by the field region of the lattice due to the source region 

divided by the total surface area of the interface separating both regions. The choice 

between field and source regions will depend on the internal stress which is pursued. In 

the case of stresses acting over a plane with normal vector �̂�, the field region will be the 

bottom region (that is, 𝑛𝑓 ≤ 0) and the source region will be the upper region (𝑛𝑠 > 0) 

(see Fig. 8.1). 

Moreover, due to the translational symmetry of the lattice in 𝑥 and 𝑦 directions, the 

shear/normal stress can also be calculated from the total shear/normal force, due to all the 

particles contained in the source region (𝑛𝑠 > 0), acting on all the particles contained in 

one arbitrary chain (for simplicity: 𝑙𝑓 = 𝑚𝑓 = 0). In particular, the shear/normal stress 
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can be obtained dividing the force acting on those particles in the chain that belong to the 

field region (𝑙𝑓 = 𝑚𝑓 = 0, 𝑛𝑓 ≤ 0) by the area per chain 𝑤2 (see red highlighted circles 

in Fig. 8.1). 

Through this section and the next one (Sec. 8.3), only shear (𝜏𝑧𝑦) and normal (𝜎𝑧𝑧) 

stresses, both acting over the plane with normal vector �̂�, are considered. However, in 

Sec. 8.8 the computation of the normal stress 𝜎𝑦𝑦 (acting over a plane with normal vector 

�̂�) is addressed in the non-strained state as well. As it will be seen later, this quantity is 

also necessary to compute the thrust developed by MR fluids under the presence of a 

magnetic field. 

At this point, it must be remarked that periodic dipole lattice models have already been 

employed in the literature to study MR elastomers (e.g. see Refs. [11] or [12] and 

references therein). However, those works are based on an energetic approach that 

requires, at least, a differentiation to obtain the stress (and therefore the viscoelastic 

moduli). Moreover, in the energetic approach only the generalized force related to the 

generalized coordinate is accessible. In this way, only shear stresses are computable when 

the lattice is shear strained while only normal stresses are computable when the lattice is 

elongated. Since the simulations presented in this work are directly based on forces 

computation, they do not have the aforementioned shortcomings and thus are more 

versatile. In particular, the methodology presented here is capable to provide both shear 

and normal stress information under a shearing motion. 

Finally, to keep the model as simple as possible, we only considered magnetostatic 

interparticle forces between non-deformable spheres prepositioned in periodic arrays. 

Other contact and colloidal forces were neglected in the analysis (e.g. Brownian, 

dispersion, electrostatic and gravitational). Torque effects on the shear strained lattice 

were not considered in the analyses. For the experimental field strength used in this work, 

torque effects on yield and normal stresses are below 6% and 10%, respectively. As a 

result, they do not seem to play a crucial role in the mechanical behavior of the system. 

Moreover this torque contribution is difficult to be assessed from an experimental point 

of view. 

8.2.1 Shear stress 

To compute the shear stress 𝜏𝑧𝑦 = 𝜏 for a given applied strain 𝛾 we need to calculate, for 

every field particle, the projection of the force �⃗�𝑓𝑠 along the shear direction (�̂�) as follows: 

 

 

𝐹𝑧𝑦 = ∑ ∑ �⃗�𝑓𝑠 ∙ �̂�
𝑛𝑠>0

∀ 𝑙𝑠,𝑚𝑠 
𝑛𝑓≤0

𝑙𝑓=𝑚𝑓= 0

= ∑ ∑
3𝜇0𝑚

2

4𝜋

𝑅𝑦

𝑅5
(5
𝑅𝑥

2 + 𝑅𝑦
2

𝑅2
− 4)

𝑛𝑠>0

∀ 𝑙𝑠,𝑚𝑠 
𝑛𝑓≤0

𝑙𝑓=𝑚𝑓= 0

 

 

 

(8.4) 

where the subscripts 𝑧 and 𝑦 just remind that the force 𝐹𝑧𝑦 has 𝑦 direction and is related 

to a plane with normal vector �̂�. From Eqs. (8.3) and (8.4) we conclude that if the particles 

in the lattice are directly touching, that is ℎ = 𝑑, each component of the vector �⃗⃗� is 

proportional to 𝑑 and hence the force scales with ∝ 𝑑2. As a consequence, since the stress 
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is computed dividing the force by the surface area 𝑤2 ∝ 𝑑2, the dependence of the stress 

with the diameter of the particles is lost. Note that this statement is applicable not only to 

shear stresses but also to normal stresses (see below). 

As it was pointed out previously, the total shear force is computed by summation of the 

force component, along the shear direction, acting on each field particle in a chain 

(0,0, 𝑛𝑓) due to all source particles in the source region (𝑙𝑠, 𝑚𝑠, 𝑛𝑠). Ideally, the 

summation should go through all possible combinations of 𝑛𝑓, 𝑙𝑠, 𝑚𝑠 and 𝑛𝑠 with 𝑛𝑓 ≤ 0 

and 𝑛𝑠 > 0. Of course, this yields an infinite number of combinations because the lattice 

is unbounded. However, as it is typically done in the literature, a cutoff distance 𝑟𝑐𝑢𝑡 is 

introduced taking advantage of the fact that the dipolar interaction decreases with the 

distance. Therefore, for a given field particle, only those source particles fulfilling 𝑅 <
𝑟𝑐𝑢𝑡 will eventually contribute to the total force. As a result, 𝑛𝑓 runs from 0 till the closest 

integer to −𝑟𝑐𝑢𝑡/ℎ: for smaller 𝑛𝑓 the cutoff sphere (i.e. sphere of radius 𝑟𝑐𝑢𝑡) is placed 

completely inside the field region of the lattice and therefore no source particles are 

accounted for. Through this work, a cutoff distance of 𝑟𝑐𝑢𝑡 = 160ℎ is used. It is important 

to note that this value is large enough for not to have any size effect on the shear stress 

calculations shown in this manuscript (differences with larger cutoff distances below 

0.02%). The process explained above is repeated for different strain levels in order to 

construct the shear stress versus shear strain curve and eventually determine the 

maximum (yield) shear stress. 

In view of the method employed to compute the shear stress, a positive (negative) shear 

stress implies that the bottom half of the lattice (i.e. field region) feels a force in the same 

(opposite) direction as the applied strain. Using Newton’s third law, the upper half of the 

lattice (i.e. the source region) feels a force in opposite (same) direction as the strain that 

compensates, in mechanical equilibrium, the external shear force imposed by the 

rheometer. Note that in modern plate-plate torsional rheometers the torque sensor is 

attached to the upper movable plate so one has experimental access to the stresses acting 

on the upper part of the lattice (see Fig. 8.1). From now on, the sign for the stresses 

represented in the figures are those corresponding to the structures and not to the 

rheometer’s plate. 

8.2.2 Normal stress 

In contrast to shear stress calculations described in Sec. 8.2.1, the normal stress 𝜎𝑧𝑧 cannot 

be computed by simply projecting the magnetostatic force acting on the field particles �⃗�𝑓𝑠 

along the magnetic field direction (i.e. 𝑧 direction) using 

 

𝐹𝑧𝑧 = ∑ ∑ �⃗�𝑓𝑠 ∙ �̂�
𝑛𝑠>0

∀ 𝑙𝑠,𝑚𝑠 
𝑛𝑓≤0

𝑙𝑓=𝑚𝑓= 0

= ∑ ∑
3𝜇0𝑚

2

4𝜋

𝑅𝑧
𝑅5
(5
𝑅𝑥

2 + 𝑅𝑦
2

𝑅2
− 2)

𝑛𝑠>0

∀ 𝑙𝑠,𝑚𝑠 
𝑛𝑓≤0

𝑙𝑓=𝑚𝑓= 0

 

 

 

(8.5) 

and the cutoff radius 𝑟𝑐𝑢𝑡 introduced in Sec. 8.2.1. Calculations using Eq. (8.5) give larger 

normal stresses than expected because the dipoles outside the cutoff sphere are not 

considered. To illustrate this issue we will use the decomposition employed by Lorentz 

to calculate the local field [13-16]. According to this, the total magnetic field at any field 

point of an unbounded dipole lattice can be decomposed in two parts: Firstly, a discrete 
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(dis) region contribution coming from near source dipoles inside the so-called Lorentz’s 

sphere. Secondly, a continuous (cont) region contribution arising from the dipoles outside 

the Lorentz’s sphere. Source dipoles outside the Lorentz’s sphere are so far away from 

the field point that the interdipole distance in the source region is negligible and therefore 

they truly act as a continuous medium. This continuous contribution comes from a 

uniformly magnetized continuous body containing a spherical cavity (the Lorentz’s 

sphere) inside. It does not depend on the radius of the Lorentz’s sphere and, thus, 

regardless of the size for the discrete region, the continuous contribution needs to be 

computed. 

The Lorentz’s sphere can be identified with the cutoff sphere previously introduced in the 

shear stress computation (see Sec. 8.2.1): only those dipoles inside the sphere are 

considered in a discrete way when the total field/force is computed over a field dipole. 

Therefore, similar to Lorentz’s approach where the total field is given by a discrete 

contribution plus a continuous contribution, it is expected that Eq. (8.5) (i.e. the discrete 

contribution) will not provide the total normal force. In addition to discrete source 

particles within the cutoff sphere, any field particle will feel the force due to the rest of 

source particles outside the cutoff sphere (Fig. 8.2a). 

Similar to Lorentz’s model, source particles outside the cutoff sphere are so far away from 

the field particle that they are seen as a continuum (in the following, the continuous 

region). In addition, since the field particles are truly magnetic dipoles, the continuous 

region should act over them through a force coming from the magnetic field gradient it 

generates �⃗⃗�𝑐𝑜𝑛𝑡 as follows [16]: 

 �⃗�𝑐𝑜𝑛𝑡 = ∇(�⃗⃗⃗� ∙ �⃗⃗�𝑐𝑜𝑛𝑡) = (�⃗⃗⃗� ∙ ∇)�⃗⃗�𝑐𝑜𝑛𝑡 = 𝑚
𝜕�⃗⃗�𝑐𝑜𝑛𝑡
𝜕𝑧

 (8.6) 

In Eq. (8.6) it has been already taken into consideration that field dipoles are constant and 

aligned with the external magnetic field (i.e. in the 𝑧 direction). 

As the continuous region is based on constant dipoles (all of them having the same 

magnitude and direction), this region is uniformly magnetized �⃗⃗⃗�𝑐𝑜𝑛𝑡 = 𝜙𝑀𝑠�̂� and the 

magnetic field it creates only depends on the magnetic charge surface density 𝜌𝑠 =

�⃗⃗⃗�𝑐𝑜𝑛𝑡 ∙ �̂� where �̂� is the normal vector of the boundary surface delimiting the continuous 

region. 

In view of Fig. 8.2, it can be seen that 𝜌𝑠 is distributed along a flat plane (with a hole of 

radius 𝜌0, Fig. 8.2b) and the inner surface of a spherical cap (of radius 𝑟𝑐𝑢𝑡 and maximum 

polar angle 𝜃𝑓, Fig. 8.2c). Therefore, it is possible to compute �⃗�𝑐𝑜𝑛𝑡 following the next 

steps: (i) Calculate the magnetic field distribution created by the plane with a circular hole 

�⃗⃗�𝑐𝑜𝑛𝑡,𝑝. Bearing in mind the axial symmetry of the geometry, only �⃗⃗�𝑐𝑜𝑛𝑡 along the 

symmetry axis (i.e. the dash-dotted line in Figs. 8.2b and 8.2c) is needed. (ii) Calculate 

𝜕�⃗⃗�𝑐𝑜𝑛𝑡,𝑝 𝜕𝑧⁄  at the position of a field dipole and introduce it in Eq. (8.6). (iii) Repeat step 

(ii) for all field dipole positions and add their contribution to the discrete normal force 𝐹𝑧𝑧 
(Eq. (8.5)). (iv) Repeat all the previous steps for the field due to the spherical cap surface 

�⃗⃗�𝑐𝑜𝑛𝑡,𝑐. 

At this stage it is easy to understand why the continuous region does not contribute to the 

shear stress calculations described in Sec. 8.2.1. The reason for this is that the continuous 

region is magnetized in the same direction than the symmetry axis: the surface density 𝜌𝑠 
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is axisymmetric. As a direct consequence, the 𝑦 component of �⃗⃗�𝑐𝑜𝑛𝑡 along this axis is 

null and thus, according to Eq. (8.6), the continuous region does not contribute to the 

shear stress. 

 

 

 

Figure 8.2: (a) According to Lorentz’s model, a given field particle (black circle) will 

feel the force due to all source particles inside the cutoff sphere (dotted particles) plus a 

contribution from the continuous region (grey region) based on those source particles 

outside the cutoff sphere. As the continuous region is uniformly magnetized, its 

contribution will depend on its surface density distributed along its boundary surface 

(dotted line). This surface is axisymmetric and can be split in a flat plane with a hole of 

radius 𝜌0 (b-red dotted line) and the inner surface of a spherical cap of radius 𝑟𝑐𝑢𝑡 and 

maximum polar angle 𝜃𝑓 (c-red dotted line). 

Alternatively to steps (i)-(iv), it is worthwhile to note that in view of Newton’s third law, 

it would also be possible to compute the force acting on the continuous region due to the 

field dipoles (see Sec. 8.8). The advantage is that the field due to magnetic dipoles (in the 
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field region) is simpler to calculate and the differentiation in Eq. (8.6) is not needed. 

Furthermore, this is possibly more convenient in non-axisymmetric problems where the 

magnetization is not aligned with the axis and the continuous source region is expected 

to contribute to both shear and normal stresses. 

In Secs. 8.2.2.1 and 8.2.2.2, the force due to the continuous region is computed following 

the aforementioned steps (i)-(iv). Through these sections, field points (i.e. the points 

where the magnetic field is to be computed) will be denoted with 𝑟 while source surface 

density positions will be denoted with 𝑟′ (Figs. 8.2b and 8.2c). 

8.2.2.1 Normal stress created by the plane with a hole 

In view of Fig. 8.2b it can be seen that 𝑟′ = 𝜌′(cos𝜑′ �̂� + sin𝜑′ �̂�), 𝑟 = 𝑧�̂� and �̂� = −�̂�. 

Therefore, the field �⃗⃗�𝑐𝑜𝑛𝑡,𝑝 created by the flat plane with the 𝜌0 radius hole is given by: 

 

�⃗⃗�𝑐𝑜𝑛𝑡,𝑝 =
𝜇0
4𝜋
∫𝜌𝑠(𝑟

′)
𝑟 − 𝑟′

|𝑟 − 𝑟′|3
𝑑𝑠′

= −
𝜇0
4𝜋
∫ ∫ 𝜙𝑀𝑠

𝑧�̂� − 𝜌′(cos𝜑′ �̂� + sin𝜑′ �̂�)

(𝑧2 + 𝜌′2)
3
2

𝜌′𝑑𝜌′𝑑𝜑′
∞

𝜌0

2𝜋

0

= −
𝜇0𝜙𝑀𝑠

2

𝑧�̂�

(𝜌0
2 + 𝑧2)

1/2
 

 

 

 

 

(8.7) 

Hence, substituting Eq. (8.7) in Eq. (8.6) (i.e. differentiating and multiplying by the dipole 

strength) we get: 

 �⃗�𝑐𝑜𝑛𝑡,𝑝 = −
𝜇0𝜙𝑀𝑠

2𝜋𝑑3

12

𝜌0
2

(𝜌0
2 + 𝑧2)

3/2
�̂� (8.8) 

In addition, the radius of the hole depends on the position of the field point through 𝜌0
2 +

𝑧2 = 𝑟𝑐𝑢𝑡
2  (see Fig. 8.2b). Substituting this relationship in Eq. (8.8) and dividing by the 

area per chain 𝑤2 = 𝑑2 𝜋 6𝜙⁄  one gets the correction to the normal stress due to the plane 

with the hole corresponding to one field particle located at 𝑧: 

 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑝 = −

𝜇0𝜙
2𝑀𝑠

2

2

𝑑

𝑟𝑐𝑢𝑡
(1 − (

𝑧

𝑟𝑐𝑢𝑡
)

2

) (8.9) 

For the lattices considered in this work, the vertical position of the field particles is given 

by 𝑧 = 𝑛𝑓𝑑. Thus, the contribution due to all field particles is: 

 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑝 = −

𝜇0𝜙
2𝑀𝑠

2

2

𝑑

𝑟𝑐𝑢𝑡
∑ (1− (

𝑛𝑓𝑑

𝑟𝑐𝑢𝑡
)

2

)

0

𝑛𝑓=−𝑟𝑐𝑢𝑡 𝑑⁄

 (8.10) 

Interestingly, in contrast to the local field correction proposed by Lorentz, the normal 

stress correction does depend on the cutoff distance (see Eq. (8.10)). However, it should 

be remembered that, according to Lorentz’s model, this cutoff distance must be large 

enough to approximate the source region as a continuum, thus in the previous summation, 

𝑛 = 𝑟𝑐𝑢𝑡 𝑑⁄  must tend to infinity. Taking the limit 𝑛 → ∞, Eq. (8.10) simplifies as 

follows: 
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𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑝 = −

𝜇0𝜙
2𝑀𝑠

2

2
lim
𝑛→∞

1

𝑛
∑ (1− (

𝑛𝑓

𝑛
)

2

)

0

𝑛𝑓=−𝑛

= −
𝜇0𝜙

2𝑀𝑠
2

2
∫(1− 𝑥2)𝑑𝑥

1

0

= −
𝜇0𝜙

2𝑀𝑠
2

3
 

 

 

(8.11) 

8.2.2.2 Normal stress created by the cap surface 

In Fig. 8.2c we show the coordinate system employed to compute the normal stress 

contribution from the spherical cap surface. Note that the origin is displaced with respect 

to the coordinate system used through Sec. 8.2: 𝑟′ = 𝑟𝑐𝑢𝑡(sin 𝜃′ cos 𝜑′ �̂� +
sin 𝜃′ sin𝜑′ �̂� + cos 𝜃′ �̂�), 𝑟 = 𝑧�̂� and �̂� = −𝑟′/𝑟𝑐𝑢𝑡. In principle, the same protocol used 

for the plane with a hole can be repeated here, however, computing the field created by 

the spherical cap surface just at its center (where the field particle is placed) leads to a 

cumbersome integral. In this case it is easier to calculate, first, the 𝑧 derivative of �⃗⃗�𝑐𝑜𝑛𝑡,𝑐  
and then integrate this result for the whole cap surface. This is valid as the integration is 

done over source coordinates 𝑟′ while derivation is done with respect of field coordinates 

𝑟 and both sets of coordinates are independent: 

 

𝜕�⃗⃗�𝑐𝑜𝑛𝑡,𝑐
𝜕𝑧

=
𝜇0𝜙𝑀𝑠𝑟𝑐𝑢𝑡

2

2
�̂� ∫

cos 𝜃′ sin 𝜃′ (−𝑟𝑐𝑢𝑡
2 + 3𝑟𝑐𝑢𝑡

2 cos2 𝜃′)

(𝑟𝑐𝑢𝑡
2 + 𝑧2 − 2𝑧𝑟𝑐𝑢𝑡 cos 𝜃′)

5 2⁄
𝑑𝜃′

𝜃𝑓

0

+
𝜇0𝜙𝑀𝑠𝑟𝑐𝑢𝑡

2

2
�̂� ∫

cos 𝜃′ sin 𝜃′ (2𝑧2 − 4𝑧𝑟𝑐𝑢𝑡 cos 𝜃
′)

(𝑟𝑐𝑢𝑡
2 + 𝑧2 − 2𝑧𝑟𝑐𝑢𝑡 cos 𝜃′)

5 2⁄
𝑑𝜃′

𝜃𝑓

0

 

 

 

 

 

(8.12) 

where the azimuthal coordinate has already been integrated. Evaluating the derivative at 

the field particle position 𝑧 = 0 and integrating we arrive to: 

 

𝜕�⃗⃗�𝑐𝑜𝑛𝑡,𝑐
𝜕𝑧

]
𝑧=0

=
𝜇0𝜙𝑀𝑠

2𝑟𝑐𝑢𝑡
�̂� ∫

1

8
(2 sin 2𝜃′ + 3 sin 4𝜃′)𝑑𝜃′

𝜃𝑓

0

= −
𝜇0𝜙𝑀𝑠

2𝑟𝑐𝑢𝑡
�̂� (

3

4
cos4 𝜃𝑓 −

1

2
cos2 𝜃𝑓 −

1

4
) 

 

 

(8.13) 

Multiplying Eq. (8.13) by the dipole strength, and in view of Eq. (8.6), the force 

experienced by the field dipole under the spherical cap of maximum angle 𝜃𝑓 is obtained: 

 �⃗�𝑐𝑜𝑛𝑡,𝑐 = −
𝜇0𝜙𝑀𝑠

2𝜋𝑑3

12𝑟𝑐𝑢𝑡
�̂� (

3

4
cos4 𝜃𝑓 −

1

2
cos2 𝜃𝑓 −

1

4
) (8.14) 

Looking at Fig. 8.2c, it can be seen that 𝜃𝑓 is related to the vertical position of the field 

particle 𝑧 (now, this vertical position is referred to the original coordinate system of the 

lattice) through cos 𝜃𝑓 = 𝑧 𝑟𝑐𝑢𝑡⁄ . Substituting cos 𝜃𝑓 = 𝑧 𝑟𝑐𝑢𝑡⁄  in Eq. (8.14) and dividing 

by 𝑤2 we get the correction due to the spherical cap surface for every field particle: 
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 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑐 = −

𝜇0𝜙
2𝑀𝑠

2

2

𝑑

𝑟𝑐𝑢𝑡
(

3

4
(
𝑧

𝑟𝑐𝑢𝑡
)

4

−
1

2
(
𝑧

𝑟𝑐𝑢𝑡
)

2

−
1

4
) (8.15) 

Finally, following the previous reasoning to consider all field particles: 

 

𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑐 = −

𝜇0𝜙
2𝑀𝑠

2

2
lim
𝑛→∞

1

𝑛
∑ (

3

4
(
𝑛𝑓

𝑛
)

4

−
1

2
(
𝑛𝑓

𝑛
)

2

−
1

4
)

0

𝑛𝑓=−𝑛

= −
𝜇0𝜙

2𝑀𝑠
2

2
∫(

3

4
𝑥4 −

1

2
𝑥2 −

1

4
) 𝑑𝑥

1

0

=
2𝜇0𝜙

2𝑀𝑠
2

15
 

 

 

 

 

 

(8.16) 

8.2.2.3 Total normal stress 

The total normal stress is obtained by summation of the different contributions. First, the 

discrete contribution that is computed numerically through all source dipoles inside the 

cutoff sphere 𝜎𝑧𝑧
𝑑𝑖𝑠 according to Eq. (8.5). Second, the continuous contribution from the 

plane containing the circular hole 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑝

 (Eq. (8.11)). Third, the continuous contribution 

from the cap surface 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑐

 (Eq. (8.16)): 

 
𝜎𝑧𝑧 = 𝜎𝑧𝑧

𝑑𝑖𝑠 + 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡 = 𝜎𝑧𝑧

𝑑𝑖𝑠 + 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡,𝑝 + 𝜎𝑧𝑧

𝑐𝑜𝑛𝑡,𝑐

= 𝜎𝑧𝑧
𝑑𝑖𝑠 −

𝜇0𝜙
2𝑀𝑠

2

5
 

 

(8.17) 

As observed in Eq. (8.17), the continuous contribution 𝜎𝑧𝑧
𝑐𝑜𝑛𝑡 = −𝜇0𝜙

2𝑀𝑠
2 5⁄  tends to 

reduce the normal stress (𝜎𝑧𝑧
𝑐𝑜𝑛𝑡 < 0), it is especially important at high volume fractions 

(∝ 𝜙2) and independent on the strain since all source particles outside the cutoff sphere 

have been substituted by a continuous medium. Similar to what happened with the shear 

stress 𝜏, if ℎ = 𝑑, all terms in Eq. (8.17) are independent on the diameter of the particles 

𝑑. 

At this stage, it is important to remark that computed forces in Eq. (8.17) act over the 

bottom half of the lattice (i.e. field region). Hence, a positive normal stress 𝜎𝑧𝑧 
(equivalently a force) implies that this part of the lattice is suffering an upwards force. 

Due to Newton’s third law, the upper part of the lattice will feel the same force but in 

opposite direction, that is, downwards. Consequently, for positive normal stresses the 

lattice is under compression (see Fig. 8.1). 

8.3 Single-particle width chains: analytical model 

It is straightforward to obtain analytical expressions for shear 𝜏 and normal 𝜎𝑧𝑧 stresses 

if the particles are arranged within single-particle width chains and the interaction 

between particles from different chains is neglected. In this section we show a simple way 

to compute the shear and normal stress. The results, analytically obtained, are expected 

to match the numerical calculations in the case of low volume fractions where the 

interchain interactions can be neglected. Note that a similar approach has been used by 

Refs. [17-19]. 
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Since only one chain is considered in the analysis, the vector joining the source dipole 

with the field dipole is given by 𝑙𝑓 = 𝑙𝑠 = 𝑚𝑠 = 𝑚𝑓 = 0, hence Eq. (8.3) is reduced to: 

 �⃗⃗� = −𝑅 (
𝛾�̂� + �̂�

√𝛾2 + 1
) (8.18a) 

 𝑅 = |𝑛𝑓 − 𝑛𝑠|ℎ√𝛾2 + 1 (8.18b) 

8.3.1 Shear stress 

The force exerted by all the source dipoles (located in the upper half of the chain) on the 

field dipoles (located in the lower half of the chain) in the shear direction will be given 

by Eq. (8.4) for the particular case of an isolated chain. Therefore, substituting Eq. (8.18) 

in Eq. (8.4) we get: 

 

𝐹𝑧𝑦 = ∑ ∑
3𝜇0𝑚

2

4𝜋𝑅4
√

𝛾2

1+ 𝛾2
(4− 5

𝛾2

1+ 𝛾2
)

𝑛𝑠>0𝑛𝑓≤0

=
3𝜇0𝑚

2

4𝜋
√

𝛾2

1+ 𝛾2
(4− 5

𝛾2

1+ 𝛾2
) ∑ ∑

1

𝑅4

𝑛𝑠>0𝑛𝑓≤0

=
3𝜇0𝑚

2

4𝜋ℎ4

𝛾(4− 𝛾2)

(1+ 𝛾2)7/2
∑ ∑

1

|𝑛𝑓 − 𝑛𝑠|
4

𝑛𝑠>0𝑛𝑓≤0

 

 

 

 

 

(8.19) 

where the double summation is given by the Zeta Riemann function as follows: 

 ∑ ∑
1

|𝑛𝑓 − 𝑛𝑠|
4

𝑛𝑠>0𝑛𝑓≤0

=∑
𝑖

𝑖4
𝑖

=∑
1

𝑖3
𝑖

= 𝜉(3)~1.202 (8.20) 

Substituting Eq. (8.20) in Eq. (8.19) we arrive to: 

 𝐹𝑧𝑦 =
3𝜇0𝑚

2𝜉(3)

4𝜋ℎ4

𝛾(4− 𝛾2)

(1+ 𝛾2)7/2
=

3𝜇0𝑚
2𝜉(3)

4𝜋ℎ4
𝑓(𝛾) (8.21) 

In view of Eq. (8.21), the yield stress corresponds to the maximum of 𝐹𝑧𝑦 which is 

obtained for 𝛾0 =  0.389 with 𝑓(𝛾0) = 0.914. Note that for saturated dipoles considered 

here, the yield strain 𝛾0 does not depend on the number of particles in the chain (i.e. there 

are not multibody effects for 𝛾0): as it can be seen in Eq. (8.19) all information regarding 

the length of the chain is contained in the double summation which is a constant with no 

effects on the critical point where the maximum of 𝐹𝑧𝑦 appears. Therefore, a doublet of 

saturated dipoles has the same 𝛾0 than a longer chain. 

Next, the yield stress is simply calculated dividing 𝐹𝑧𝑦 by the surface area per chain in the 

tetragonal/monoclinic lattice 𝑤2. With this, using ℎ = 𝑑 and 𝑚 = 𝑀𝑠 𝜋𝑑
3 6⁄  we arrive 

to:  

 𝜏0 =
3𝜇0𝑚

2𝜉(3)

4𝜋ℎ4𝑤2
𝑓(𝛾0) =

𝜉(3)𝑓(𝛾0)

8
𝜇0𝑀𝑠

2𝜙~0.137𝜇0𝑀𝑠
2𝜙 (8.22) 

where the particle volume fraction 𝜙 is related to the surface area per chain through 

ℎ𝑤2 = 𝜋𝑑3 6𝜙⁄ . Equation (8.22) can be obtained using an energetic approach as well 
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(instead of the force approach followed in this section). In Sec. 8.9 we show the derivation 

of Eq. (8.22) using the energetic method. 

A similar result for the yield stress was obtained in Ref. [20] (see Eq. (9) in that paper) 

with the only difference of the prefactor; 0.086 instead of 0.137. This discrepancy comes 

from the axisymmetric model used in that work which is also revisited in Sec. 8.9. 

8.3.2 Normal stress 

In this section we aim to determine the normal stress 𝜎𝑧𝑧 generated on the chain when it 

is subjected to a shearing deformation. Therefore, introducing Eq. (8.18) in Eq. (8.5): 

 

𝐹 𝑧𝑧 = ∑ ∑
3𝜇0𝑚

2

4𝜋𝑅4
√

1

1+ 𝛾2
(2 − 5

𝛾2

1+ 𝛾2
)

𝑛𝑠>0𝑛𝑓≤0

=
3𝜇0𝑚

2

4𝜋ℎ4

2− 3𝛾2

(1+ 𝛾2)7/2
∑ ∑

1

|𝑛𝑓 − 𝑛𝑠|
4

𝑛𝑓>0𝑛𝑐≤0

=
3𝜇0𝑚

2𝜉(3)

4𝜋ℎ4

2− 3𝛾2

(1+ 𝛾2)7/2
 

 

 

 

 

(8.23) 

Evaluating the force 𝐹 𝑧𝑧 for a strain level 𝛾 = 0, dividing by the surface area per chain 

𝑤2 and substituting ℎ = 𝑑 and 𝑚 = 𝑀𝑠 𝜋𝑑
3 6⁄  we obtain the following expression for the 

normal stress: 

 𝜎𝑧𝑧(𝛾 = 0) =
3𝜇0𝑚

2𝜉(3)

2𝜋ℎ4𝑤2
=
𝜉(3)

4
𝜇0𝑀𝑠

2𝜙~0.3𝜇0𝑀𝑠
2𝜙 (8.24) 

Note that in this analytical development, the double summation in Eq. (8.23) takes into 

consideration all particles along the chain. Therefore it is not necessary to introduce a 

cutoff distance nor to correct the previous expression with the continuous contribution 

𝜎𝑧𝑧
𝑐𝑜𝑛𝑡 used in Sec. 8.2.2. Note also that Eq. (8.24) is exactly the last contribution described 

in Ref. [21] (see Eq. (43) in that paper) for the electrorheological analogues. 

8.4 Experiments 

Rheological experiments were conducted to measure shear and normal stresses at 

saturation. For this purpose, a recently developed double-gap magnetocell was used [7]. 

With this geometry it is possible to reach saturating fields with sufficiently accurate field 

homogeneity. In particular, the ferromagnetic Tool #2 described in Ref. [7] was 

employed. 

Samples used in this work were conventional MR fluids based on EW grade carbonyl 

iron microparticles (BASF SE) dispersed at different volume fractions (from 0.05 to 0.5) 

in glycerol 88 wt% (125 mPa·s, Scharlau). These iron microparticles have a saturation 

magnetization of 𝑀𝑠 =1600 kA/m that is reached for external fields of approximately 

1000 kA/m. This particular value for the saturation magnetization will be used in the 

equations contained in Secs. 8.2 and 8.3. Similar values for the saturation magnetization 

have been reported in the literature for carbonyl iron particles [22,23]. 

The yield stress was evaluated through stress-controlled rheograms. The experimental 

protocol was: (i) pre-shear interval (30 s at a shear rate of 33 s-1) to erase the previous 

mechanical history of the sample, (ii) application of an external magnetic field of 1002 
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kA/m (experimentally measured in the gap without sample) during 1 min at rest, (iii) still 

in the presence of the field, a stress log ramp (15 points per decade) is applied. From these 

tests, the yield stress is identified with the data point immediately previous to the sample 

breakage. 

Different from shear stress, normal stresses cannot be measured directly. Instead, the 

rheological accessible magnitude in a plate-plate torsional geometry is the thrust 𝑡 exerted 

by the sample over the upper plate. This can be related to the first 𝑁1 and second 𝑁2 

normal stress differences through: 

 𝑁1 − 𝑁2 =
𝑡

𝜋𝑟𝑝2
(2 +

𝑑 ln 𝑡

𝑑 ln �̇�
) (8.25) 

where 𝑁1 = 𝜎𝑦𝑦 − 𝜎𝑧𝑧, 𝑁2 = 𝜎𝑧𝑧 − 𝜎𝑥𝑥, �̇� is the magnitude of the shear rate tensor (i.e. 

the applied shear rate) and 𝑟𝑝 the plate radius. 

To measure the normal stress differences, the double-gap magnetocell device was also 

employed but only filling the bottom gap in the geometry. The same previous protocol 

was used simply changing step (iii). In this case, while the magnetic field is applied, the 

thrust 𝑡 on the upper plate is recorded as the strain is increased from 0 to 0.5 at a shear 

rate of 0.001 s-1. For this small value, it can be shown that logarithmic derivative in Eq. 

(8.25) is close to zero [2]. 

8.5 Results and discussion 

8.5.1 Shear stresses 

In Fig. 8.3 we show the shear stress 𝜏 versus shear strain 𝛾 results for a range of volume 

fractions (𝜙 = 0.05 - 0.5). Figure 8.3a contains calculations for the simple basis while 

Fig. 8.3b contains calculations for the BC basis. Lines in Fig. 8.3a (Fig. 8.3b) correspond 

to numerical calculations for saturated dipoles obtained as described in Sec. 8.2.1 (Sec. 

8.7). Symbols correspond to Finite Element Method simulations using a recently 

developed model by Ref. [24] for the particular case of perfectly aligned saturated dipoles 

in the field direction. As expected, a very good agreement is found indicating that the 

chosen cutoff distance 𝑟𝑐𝑢𝑡 is large enough to properly model an unbounded lattice. As 

observed, for sufficiently large particle volume fractions, calculations for the BC basis 

provide larger stresses than the simple basis. This is related to the more energetically 

stable configuration provided by the BC basis, only noticeable at the high volume 

fractions when interchain interactions are not negligible. In all cases, the curves shown in 

Fig. 8.3 clearly exhibit a well defined peak that is associated to the yield point (𝜏0, 𝛾0). 
Note that in the BC basis, large strains are not allowed at the highest volume fraction 

(𝜙 = 0.5) [25] since they would imply particle penetration. 

In Fig. 8.4, the yield stress 𝜏0 is shown as a function of the volume fraction 𝜙. A linear 

relationship is found for very small particle loadings. This is a general observation that is 

applicable for non-saturating fields as well. There are many references in the literature 

supporting this observation (e.g. Refs. [26-28] and references therein). However, for very 

large particle concentrations the yield stress exhibits a maximum (at approx. 0.4 for the 

simple basis and 0.45 for the BC basis). A maximum in the yield stress has also been 

reported in experiments using inverse ferrofluids [8] and theoretical analyses 

(macroscopic models in Ref. [8] and microscopic models, which incorporate interchain 

interactions, in Ref. [29]). Interestingly, the dipolar approximation applies in previous 
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publications where a maximum in the yield stress is observed. In contrast, when 

multipolar magnetostatic interactions need to be considered, the maximum in the yield 

stress does not appear [24,25]. In that case, a nearly linear dependence is obtained which 

is also supported experimentally [8,24,25]. 
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Figure 8.3: Shear stress 𝜏 as a function of the applied shear strain 𝛾 for different volume 

fractions 𝜙. Numerical calculations are plotted with lines while results using FEM 

simulations for saturated dipoles as proposed in Ref. [24] are plotted with symbols. (a) 

Simple basis (see Sec. 8.2.1). (b) BC basis (see Sec. 8.7). 

Together with simulation data we also show the analytical prediction (Eq. (8.22)) 

obtained in Sec. 8.3.1. As observed, this expression is in very good agreement with the 

simulations for sufficiently small volume fractions. This is better appreciated in Fig. 8.4b 

where we show the data in log-log scales. As expected, the analytic expression does not 

show a maximum because interchain interactions are not taken into account. 

Experimental data obtained in this manuscript are also included in Fig. 8.4 as blue up 

triangles. As it can be seen, experiments are always below simulations except at the 

highest concentrations where they tend to level off at a plateau that is reasonably close to 

the simple basis prediction. In this figure, we also include experimental results for the 
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same iron microparticles dispersed in silicon oil (see green down triangles in Fig. 8.4, 

from Ref. [7]). Comparing up and down triangles we conclude that no significant 

differences can be observed pointing out that the carrier fluid is not playing a main role 

(as anticipated in the pre-yield regime) and that magnetic saturation is reached. Deviations 

between experiments and numerical/analytical calculations are expected because of 

strong/ideal assumptions in the calculations: periodic arrangement at an energy minimum, 

homogeneous strain in the sample, etc. 
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Figure 8.4: Yield stress 𝜏0 dependence on particle volume fraction 𝜙 according to 

simulations for simple (black squares) and BC (red circles) bases, analytical calculation 

for low concentrations (black line) and experiments (triangles). Blue up triangles 

correspond to experiments from this manuscript. Green down triangles correspond to 

experiments by Ref. [7] for a magnetic field strength of 979 kA/m. (a) lin-lin 

representation. (b) log-log representation. 

In Fig. 8.5 we show the volume fraction dependence of the yield strain 𝛾0. As expected 

from Sec. 8.3.1, for small volume fractions, when the lateral interactions between chains 

are negligible, the yield strain is practically constant and equal to 0.389 independently of 

the basis (see black dashed line in Fig. 8.5). A very similar value (0.39) was found in Ref. 
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[30] for a chain of magnetic droplets at high magnetic fields. When the volume fraction 

increases the yield strain goes down. In the simple basis, this trend can be explained taking 

into consideration that the shear stress changes its sign at a critical strain 𝛾𝑐 which also 

depends on the volume fraction (see Fig. 8.3a): 𝛾𝑐 = √𝜋 (24𝜙)⁄  [24]. When the periodic 

lattice is strained, the shear stress versus strain curves are expected to show periodicity as 

well. Thus, under the assumption that the stress versus strain curves can be approximated 

by simple sine waves, its period should be 2𝛾𝑐 and the point where the maximum (i.e. 

yield stress) is reached should be 𝛾𝑐 2⁄ = √𝜋 (96𝜙)⁄ . This dependence is plotted with a 

magenta dotted line in Fig. 8.5 and seems to be in good agreement with simulation results 

at high volume fractions. This observation reveals that the periodic behavior in the shear 

stress-strain curve is not that simple and other harmonics must be considered. As observed 

in Fig. 8.5, the BC basis accommodates larger shear strains before sample breakage. 
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Figure 8.5: Yield strain 𝛾0 dependence on particle volume fraction 𝜙 according to 

simulations in simple (black squares) and BC (red circles) bases, analytic value for low 

concentrations (black dashed line) and approximation at high concentrations (magenta 

dotted line) only valid for simple basis. (a) lin-lin representation. (b) log-log 

representation. 
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Experimental shear strain data corresponding to the yield point are shown together with 

numerical calculations for simple and BC bases in Table 8.1. First, it is worth to note a 

significant error in the experimental determination. Only for the smallest particle 

concentrations (𝜙 = 0.05 and 0.1) there is an acceptable agreement between experiments 

and simulations. For larger concentrations clear deviations between experiments and 

numerical calculations exist that demonstrate the strong sensitivity of the yield strain to 

the particle microstructure [31]. We would like to remark here that deviations still exist 

when comparing with yield strains obtained from LAOS experiments as proposed in Ref. 

[9]. 

Volume 

fraction 𝜙 

Experimental yield 

strain 

Simulated yield strain 

for a simple basis 

(± 0.015) 

Simulated yield strain 

for a BC basis 

(± 0.015) 

0.05 0.44 ± 0.07 0.375  0.390  

0.1 0.34 ± 0.03 0.375  0.375  

0.2 0.50 ± 0.06 0.345  0.375  

0.3 0.020 ± 0.010 0.300  0.360  

0.4 0.036 ± 0.016 0.270  0.345  

0.5 0.0044 ± 0.0021 0.255  0.315  

Table 8.1: Experimental and simulated yield strain 𝛾0 data for different volume 

fractions 𝜙. Experimental values correspond to the data point just before sample 

breakage. 

8.5.2 Normal stresses 

In Figs. 8.6a and 8.6b we show the calculations for the normal stress 𝜎𝑧𝑧 (in simple and 

BC bases, respectively) as a function of the strain 𝛾 at different particle concentrations 𝜙. 

Together with the numerical calculations we also show FEM calculations following Ref. 

[32]. As expected, a very good collapse is obtained. It is worthwhile to emphasize that 

normal stresses as obtained by FEM come from the application of Maxwell’s stress tensor 

in the unit cell [32] without the necessity to introduce any continuous region correction. 

This is so because in FEM simulations all the information related to the source particles 

is taken into account by directly solving Maxwell’s equations together with periodic 

conditions at the unit cell boundaries. 

At 𝛾 = 0, regardless of the basis, 𝜎𝑧𝑧(𝛾 = 0) > 0 for the studied volume fractions. A 

priori, this would mean that the sample is under compression pulling the rheometer’s 

plates. When the start-up test is initiated, the normal stress 𝜎𝑧𝑧 decreases (in clear contrast 

to shear stress calculations, see Fig. 8.3) and the sample relaxes. 

As observed, the normal stress 𝜎𝑧𝑧 is strongly sensitive to the particular microstructure 

(compare Fig. 8.6a and Fig. 8.6b). For a simple basis the normal stress is positive and 

decreases with the strain before the sample breakage (see vertical arrows in Fig. 8.6a). 

However, for the most concentrated systems in the BC basis the normal stress reverses 

sign before sample breakage (see vertical arrows in Fig. 8.6b). As a result, the structure 

would push apart the rheometer’s plates before the flow onset. 
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The fact that the lattice is under compression (pull together the plates of the rheometer) 

or dilatation (push the plates apart) along the field direction does not depend only on the 

normal stress 𝜎𝑧𝑧. Instead, it is the difference 𝑁1 − 𝑁2 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 − 2𝜎𝑧𝑧 which dictates 

the sign of the thrust developed by the lattice. Thus, it is necessary to compute normal 

stresses also in the shear (𝜎𝑦𝑦) and vorticity (𝜎𝑥𝑥) directions. For simplicity, in the 

following, we restrict our discussion to the non-strained state, 𝛾 = 0. In this case, due to 

the symmetries of the tetragonal lattice 𝜎𝑥𝑥 = 𝜎𝑦𝑦 and therefore 𝑁1 − 𝑁2 =

2(𝜎𝑦𝑦 − 𝜎𝑧𝑧). The computation of 𝜎𝑦𝑦 in the non-strained state is addressed in Sec. 8.8 

using the method proposed in Sec. 8.2. 
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Figure 8.6: Normal stress 𝜎𝑧𝑧 as a function of the applied shear strain 𝛾 for different 

volume fractions 𝜙. Results from the numerical calculations are plotted with lines while 

the results from FEM simulations proposed in Ref. [32] are plotted with symbols. 

Vertical arrows correspond to the yield strain 𝛾0 as obtained from Fig. 8.3. (a) Simple 

basis. (b) BC basis. 

In Fig. 8.7a we show the simulated normal stresses, 𝜎𝑧𝑧(𝛾 = 0) and 𝜎𝑦𝑦(𝛾 = 0), as a 

function of the particle volume fraction 𝜙 for simple and BC bases. Normal stresses in 

the field direction 𝜎𝑧𝑧(𝛾 = 0) for the BC basis (red solid circles) remain below those of 
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the simple basis (black solid squares) and the maximum shifts towards smaller 

concentrations. Interestingly, in the BC basis the normal stress 𝜎𝑧𝑧(𝛾 = 0) reverses sign 

for concentrations above 𝜙 = 0.53. 

Results for 𝜎𝑦𝑦(𝛾 = 0) are also plotted in Fig. 8.7a with solid green triangles (simple 

basis) and solid blue diamonds (BC basis). In the simple basis, independent on the volume 

fraction, the normal stress in the shear direction is negative, as expected taking into 

consideration that the dipolar interaction is repulsive when the particles are aligned 

normal to their dipole direction (see Sec. 8.8 for a discussion on the sign of 𝜎𝑦𝑦). Similar 

to what happened to 𝜎𝑧𝑧(𝛾 = 0), the BC basis shows a more complex behavior, especially 

at high concentrations where 𝜎𝑦𝑦(𝛾 = 0) becomes positive (that is, the lattice tends to 

stretch along the field direction). 

Open squares and circles in Fig. 8.7a correspond to simulated 𝜎𝑧𝑧(𝛾 = 0) that do not 

include the continuous region correction (so-called ‘uncorrected’ values; that is, results 

from Eq. (8.5) for the simple basis and Eq. (8.29) for the BC basis). As it can be seen, the 

correction plays a crucial role for medium and high concentrations regardless of the basis. 

Firstly, if the correction is not included in the simple basis, differences of 20% at 𝜙 = 0.2 

and increasing till 117% at 𝜙 = 0.5 are found. In fact, the correction is responsible for 

the appearance of a maximum in 𝜎𝑧𝑧(𝛾 = 0) (cf. black solid squares in Fig. 8.7a). 

Secondly, if the correction is not included for the BC basis, 𝜎𝑧𝑧(𝛾 = 0) would always be 

positive and similar to the level achieved in the simple basis. Uncorrected normal stresses 

in the simple basis monotonically increase with the particle concentration in contrast to 

BC results where the maximum is already seen. 

Uncorrected values of the normal stress in the shear direction 𝜎𝑦𝑦(𝛾 = 0) are also shown 

in Fig. 8.7a (see open triangles, Eq. (8.30), and diamonds, Eq. (8.31)). Simple basis results 

are always negative (contributing to sample compression in the field direction). On the 

contrary, a change in sign is found in the BC basis near to the maximum packing. 

In Fig. 8.7a we also show the analytical prediction according to the micromechanical 

model as a solid straight line (Eq. (8.24)) for 𝜎𝑧𝑧(𝛾 = 0). As expected, the analytical 

prediction is in very good agreement with the simulations in simple and BC bases at low 

concentrations. This correspondence can be seen clearer in Fig. 8.7b where log-log scales 

are used. The symbol code is the same than in Fig. 8.7a but now the original negative 

values are plotted with lighter colors. For high concentrations, the normal stress increases 

(in absolute value) very sharply as it goes closer to the maximum packing fraction. 

In Fig. 8.7c we better appreciate the volume fraction dependence of 𝜎𝑦𝑦(𝛾 = 0) in the 

dilute regime. Again, in this figure dark (light) symbols stand for the positive (negative) 

values of 𝜎𝑦𝑦(𝛾 = 0) previously plotted in Fig. 8.7a. Clearly, for small volume fractions 

𝜎𝑦𝑦(𝛾 = 0) is orders of magnitude smaller than 𝜎𝑧𝑧(𝛾 = 0). Looking at the dilute regime 

(approx. 𝜙 < 0.1), uncorrected 𝜎𝑦𝑦(𝛾 = 0) values (open symbols) suggest a dependence 

on 𝜙2 that cancels out with the continuous region contribution 𝜎𝑦𝑦
𝑐𝑜𝑛𝑡 (that exactly depends 

on 𝜙2 but has opposite sign, Eq. (8.35)). As it can be seen, corrected values (solid 

symbols) alternate between positive (dark color) and negative values (light color) 

pointing that 𝜎𝑦𝑦(𝛾 = 0) is zero and those small deviations are due to numerical errors. 

The fact that 𝜎𝑦𝑦(𝛾 = 0) = 0 was expected in the dilute regime because of the absence 

of lateral interactions. 
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Figure 8.7: (a) Normal stresses at zero strain in the field and shear direction, 𝜎𝑧𝑧(𝛾 = 0) 
and 𝜎𝑦𝑦(𝛾 = 0), versus particle volume fraction 𝜙 according to numerical simulations 

in simple basis (black squares and green triangles) and BC basis (red circles and blue 

diamonds). Simulations without the continuous region correction are plotted with open 

symbols. Analytical calculation for normal stress in the field direction at low 

concentrations is plotted with a black line. (b) and (c) log-log representation for normal 

stresses at zero strain in the field and shear direction respectively (original negative 

values are plotted with lighter colors). 
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Once both normal stresses in the field (𝜎𝑧𝑧) and shear (𝜎𝑦𝑦) directions are known, 

(𝑁1 −𝑁2) 2⁄  can be computed. Results are shown in Fig. 8.8 as a function of the volume 

fraction. In this figure, negative 𝑁1 − 𝑁2 values (i.e. 𝜎𝑧𝑧 > 𝜎𝑦𝑦) indicate a compressed 

state in the field direction (i.e. the lattice would pull from the plates of the rheometer) 

while positive values are related to a stretched state pushing the plates apart. As expected, 

at small volume fractions, (𝑁1 − 𝑁2) 2⁄  is controlled by 𝜎𝑧𝑧(𝛾 = 0) being independent of 

the kind of basis (compare Figs. 8.7b and 8.8b). Consequently, the analytical prediction 

derived in Eq. (8.24) is a good estimator of the stress state. As the volume fraction 

increases, the simple basis keeps in the compressed state while the BC basis dilates for 

volume fractions above 0.47. 
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Figure 8.8: Normal stress difference at zero strain (𝑁1 − 𝑁2) 2⁄  versus particle volume 

fraction 𝜙 according to numerical simulations in simple (squares) and BC (circles) 

bases. Also plotted with a line is the analytical approximation for low concentrations 

(Eq. (8.24)). The maximum normal stress difference measured while straining the 

sample in start-up tests is plotted with triangles and the related value, once corrected 

using the Maxwell stress jump [𝜎𝑀], with stars. (a) lin-lin representation. (b) log-log 

representation (negative values are plotted with lighter colors). 
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The experimental normal stress difference (𝑁1 − 𝑁2) 2⁄  is also plotted in Fig. 8.8 

(maximum value during start-up test) with triangles. For all explored concentrations, a 

positive thrust is measured. This experimental observation is in striking contrast with the 

simulation results that predict a negative normal stress difference (i.e. 𝑁1 − 𝑁2 < 0) at 

low volume fractions. It is also important to note that in contrast to the calculated shear 

stresses, the normal stresses are very sensitive to the particular microstructure showing 

opposite tendencies depending on the basis and concentration. 

The model proposed in this manuscript supposes infinite (unbounded) lattices. This 

approximation seems reasonable taking into consideration the great difference between 

particles-sample typical length scales (1 μm-1 mm). However the current model neglects 

boundary effects such as demagnetization charges or discontinuities in the Maxwell stress 

tensor at the interfaces. The latter has shown to be a non-negligible positive contribution 

to the thrust:  [𝜎𝑀] = 𝜇0𝜙
2𝑀𝑠

2 2⁄  [33]. If we subtract [𝜎𝑀] from the experimental 

(𝑁1 −𝑁2) 2⁄  data we get the stars shown in Fig. 8.8. At this point, it must be said that the 

previous definition for [𝜎𝑀] is valid in the case of samples placed between non-magnetic 

plates while those used in the current experiments were ferromagnetic. Interestingly, 

thrust measurements were repeated using a titanium geometry giving no significant 

differences with respect to the ferromagnetic tools. 

As observed in Fig. 8.8, corrected experimental data have the same sign as the 

simulations. However, experimental values are clearly smaller (in absolute value) than 

the simulations and only at the highest concentrations lie between the simple and the BC 

bases. The explanation for this could be that the microstructure evolves during the start-

up test forming highly packed aggregates that better resemble a lattice with a BC basis. 

At this point it is worth to note that the literature on this topic is not conclusive at all. A 

vast majority of experimental publications dealing with MR fluids [2,34-36] and 

anisotropic (i.e. field oriented) MR elastomers [37-39] report a positive normal stress 

difference. However, other publications found the opposite trend in similar MR 

elastomers [40,41]. From a theoretical point of view, a positive normal stress in the field 

direction 𝜎𝑧𝑧, implying negative thrusts, appears when the field-induced structures are 

aligned with the field (see for instance Refs. [21,31,42] for isolated chains and [43] for 

particle lattices). In contrast, a positive normal thrust is reported when the structure 

contains defects (e.g. introducing wavy chains [44], no-percolating elongated aggregates 

[38,45], or shape effects due to demagnetization fields in Ref. [12]). 

8.6 Conclusions 

We investigate the influence of the particle concentration on field-induced shear and 

normal stresses of magnetorheological (MR) fluids at rest and under standard shearing 

flows in the magnetic saturation regime. Both shear and normal stresses are well 

described by analytical expressions in the dilute regime. However, for larger particle 

concentrations (above 10 vol% in the case of carbonyl iron) a numerical approach is 

needed. Two tetragonal and monoclinic lattice arrangements are investigated in this 

manuscript: simple and BC bases. Numerical calculations are found to be in good 

agreement with Finite Element Calculations described in Ref. [24]. 

Shear stress versus shear strain curves exhibit a well-defined maximum that is associated 

to the yield stress (𝜏0). More importantly, a maximum is found when the yield stress is 

represented as a function of the particle concentration. Numerical calculations slightly 

overestimate the experimental results due to defects in the experimental field-induced 
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structures that may be far from energy minimum configurations. Some work is currently 

being done in this direction. 

Finally, calculated normal stress differences (𝑁1 − 𝑁2) at zero strain (in a tetragonal 

lattice) are always negative in simple basis but show a sign reversal in the BC basis at 

large concentrations. Similar to shear stresses, simulated normal stress differences 

overestimate experimental results again. 
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8.7 Appendix A: force calculations for a body centered BC 

basis 

The analysis described in Sec. 8.2 assumes that there is only one magnetic particle linked 

to each node (𝑙,𝑚, 𝑛) of the lattice. Consequently, resulting arrangements are the 

tetragonal (𝛾 = 0) or monoclinic (𝛾 ≠ 0) lattices with the simple basis. However, it is 

possible to adapt these simulations to cover other bases as well. In particular, in this 

appendix we show the results for the body centered (BC) basis. The BC basis has shown 

to be a more favorable configuration, from an energetic point of view, than the simple 

basis [25,46]. 

The BC basis consists of two particles, one particle (A) placed at the lattice nodes and 

another particle (B) displaced from the nodes a quantity �⃗� =
[𝑤𝑏𝑐�̂� + (𝑤𝑏𝑐 + ℎ𝛾)�̂� + ℎ�̂�] 2⁄ . Here, 𝑤𝑏𝑐 2⁄  is the lateral distance between chains based 

on A and B particles, 𝑤𝑏𝑐 is the lateral distance between chains of the same kind of 

particles and ℎ = 𝑑 is the vertical distance between particles along the chain (regardless 

of its kind). As it happens in the simple basis, since the lattice is isotropic in the 𝑥 and 𝑦 

directions, 𝑤𝑏𝑐 can be obtained from the particle volume fraction as 𝑤𝑏𝑐 = ℎ√𝜋 3𝜙⁄ . 

Taking this into consideration, the particle position in the lattice can still be written in 

terms of the lattice vectors (Eq. (8.1)) as follows: 

 𝑟𝐴,− = 𝑙−�⃗�1 +𝑚−�⃗�2 + 𝑛−�⃗�3 (8.26a) 

 𝑟𝐵,− = 𝑟𝐴,− + �⃗� (8.26b) 

Here, the hyphen – denotes that each particle A or B can act as a field or source particle. 

As a consequence, up to three kinds of vectors, joining source and field particles, must be 

considered: 

 �⃗⃗�𝐴𝐴 = �⃗⃗�𝐵𝐵 = 𝑟𝐴,𝑓 − 𝑟𝐴,𝑠 = 𝑟𝐵,𝑓 − 𝑟𝐵,𝑠 = �⃗⃗� (8.27a) 

 �⃗⃗�𝐴𝐵 = 𝑟𝐵,𝑓 − 𝑟𝐴,𝑠 = �⃗⃗� + �⃗� (8.27b) 

 �⃗⃗�𝐵𝐴 = 𝑟𝐴,𝑓 − 𝑟𝐵,𝑠 = �⃗⃗� − �⃗� (8.27c) 

where �⃗⃗� given by Eq. (8.3). Once we know the particle position, it is possible to compute 

both shear and normal stresses following the same reasoning described in Sec. 8.2, but 



163 

 

bearing in mind that for each allowed combination of 𝑛𝑓, 𝑙𝑠, 𝑚𝑠 and 𝑛𝑠 there will be two 

field particles (one of kind A and another of kind B) and two source particles (again of 

kinds A and B). Thereby, the shear force in the BC basis is computed as follows: 

 

𝐹𝑧𝑦 =
3𝜇0𝑚

2

4𝜋
∑ ∑ [2

𝑅𝑦

𝑅5
(5
𝑅𝑥

2 + 𝑅𝑦
2

𝑅2
− 4)

𝑛𝑠>0

∀ 𝑙𝑠,𝑚𝑠 
𝑛𝑓≤0

𝑙𝑓=𝑚𝑓= 0

+
𝑅𝐴𝐵,𝑦

𝑅𝐴𝐵
5

(5
𝑅𝐴𝐵,𝑥

2 + 𝑅𝐴𝐵,𝑦
2

𝑅𝐴𝐵
2

− 4)

+
𝑅𝐵𝐴,𝑦

𝑅𝐵𝐴
5

(5
𝑅𝐵𝐴,𝑥

2 + 𝑅𝐵𝐴,𝑦
2

𝑅𝐵𝐴
2

− 4)] 

 

 

 

 

(8.28) 

The first term in the square brackets stands for the interaction between AA and BB 

particles (note the prefactor 2) while the second and third terms correspond to AB and 

BA interactions, respectively. Similar to the analysis for the simple basis, in the previous 

summation only source particles within the cutoff distance 𝑟𝑐𝑢𝑡 are accounted for. In the 

same way, the discrete contribution to the normal force is given by: 

 

𝐹𝑧𝑧 =
3𝜇0𝑚

2

4𝜋
∑ ∑ [2

𝑅𝑧
𝑅5
(5
𝑅𝑥
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2

𝑅2
− 2)

𝑛𝑠>0
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5
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2

𝑅𝐴𝐵
2

− 2)

+
𝑅𝐵𝐴,𝑧

𝑅𝐵𝐴
5

(5
𝑅𝐵𝐴,𝑥

2 + 𝑅𝐵𝐴,𝑦
2

𝑅𝐵𝐴
2

− 2)] 

 

 

 

 

(8.29) 

The contribution to the normal stress from the continuous region remains unchanged 

because any information on the internal microstructure is lost. Note also that when the 

force is computed over all field particles, in the case of the BC basis, this force should be 

twice the force than the simple basis case because there are two particles per node 𝑛𝑓. 

However, the area per chain in the BC basis is also twice the area per chain in the simple 

case 𝑤𝑏𝑐
2 = 2𝑤2 and therefore the normal stress correction does not change. 

Using the analogous expressions for the shear and normal stresses, the analysis described 

in the body text for the simple basis can now repeated for the BC basis. 

8.8 Appendix B: computation of the normal stress in the 

shear direction at zero strain 

Internal stresses do not only depend on the force direction, but also on the plane over 

which they are applied. In Sec. 8.2 this plane was chosen to be normal to the field direction 

�̂�, and thus, only the shear 𝜏𝑧𝑦 and normal 𝜎𝑧𝑧 stresses were computed. 

In this appendix we sketch the main steps to compute the normal stress in the shear 

direction 𝜎𝑦𝑦. The reason for this is that 𝜎𝑦𝑦 is necessary in the evaluation of the thrust 

developed by the lattice (see Eq. (8.25)). The discussion here will focus only in the non-

strained state and consequently, due to the symmetries of the tetragonal lattice, the results 

will be equally valid for the vorticity direction 𝜎𝑥𝑥. 
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The computation of the total force in the shear direction is done following the same 

reasoning described in Sec. 8.2.1 but bearing in mind that this force is going to be applied 

over a plane with normal vector �̂�. If this imaginary plane is supposed to go through the 

origin of coordinates, it will split the lattice in two halves, one on the left based on 

particles with 𝑦 ≤ 0 and another on the right based on particles with 𝑦 > 0. 

The choice of field and source particles is arbitrary. However, to be consistent with Sec. 

8.2, field particles will be in the left half (𝑚𝑓 ≤ 0 according to Eq. (8.3)) while source 

particles will be on the right half (𝑚𝑠 > 0 in Eq. (8.3)) as it is sketched in Fig. 8.9a. Taking 

this into consideration, the total force in the shear direction is given by the analogous 

expression to Eq. (8.4) for a simple basis: 

 

𝐹𝑦𝑦 = ∑ ∑ �⃗�𝑓𝑠 ∙ �̂�
𝑚𝑠>0

∀ 𝑙𝑠,𝑛𝑠 
𝑚𝑓≤0

𝑙𝑓=𝑛𝑓= 0

= ∑ ∑
3𝜇0𝑚

2

4𝜋

𝑅𝑦

𝑅5
(5
𝑅𝑥

2 + 𝑅𝑦
2

𝑅2
− 4)

𝑚𝑠>0

∀ 𝑙𝑠,𝑛𝑠 
𝑚𝑓≤0

𝑛𝑓=𝑚𝑓= 0

 

 

 

(8.30) 

In the case of a BC basis, starting from Eq. (8.28), we arrive to: 

 

𝐹𝑦𝑦 =
3𝜇0𝑚

2

4𝜋
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𝑅𝑦

𝑅5
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2
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𝑚𝑓≤0

𝑙𝑓=𝑛𝑓= 0

+
𝑅𝐴𝐵,𝑦

𝑅𝐴𝐵
5

(5
𝑅𝐴𝐵,𝑥

2 + 𝑅𝐴𝐵,𝑦
2

𝑅𝐴𝐵
2
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+
𝑅𝐵𝐴,𝑦

𝑅𝐵𝐴
5

(5
𝑅𝐵𝐴,𝑥

2 + 𝑅𝐵𝐴,𝑦
2

𝑅𝐵𝐴
2

− 4)] 

 

 

 

 

(8.31) 

In both bases, the summation over source indexes should be run only over source particles 

inside the cutoff sphere. Finally, it is also necessary to remind that the unit area per 

particle in the shear direction is ℎ𝑤 (ℎ𝑤𝑏𝑐 for BC case) instead of 𝑤2 (𝑤𝑏𝑐
2  for the BC 

case). 

Taking into consideration that the field region is the left half of the lattice (𝑚𝑓 ≤ 0), a 

positive value of the force implies a stretched state where both halves of the lattice tend 

to join together. 

Similar to what happens to 𝜎𝑧𝑧, Eqs. (8.30) and (8.31) need to be corrected by the 

continuous region contribution. This region is still uniformly magnetized, �⃗⃗⃗�𝑐𝑜𝑛𝑡 =
𝜙𝑀𝑠�̂�, and therefore its action over field particles will depend on the magnetic charge 

surface density 𝜌𝑠 distributed over its boundary surface. This surface is sketched in Fig. 

8.9b and can be decomposed in the same way as in the 𝜎𝑧𝑧 case: flat plane with hole of 

radius 𝜌0 plus a spherical cap surface of radius 𝑟𝑐𝑢𝑡 and maximum polar angle 𝜃𝑓. 

However, now the flat plane is not charged because the magnetization is parallel to the 

boundary surface: 𝜌𝑠 = −�⃗⃗⃗�𝑐𝑜𝑛𝑡 ∙ �̂� = 0. Consequently, source density positions will be 

given only by the cap surface 𝑟′ = 𝑟𝑐𝑢𝑡(sin 𝜃
′ cos 𝜑′ �̂� + cos 𝜃′ �̂� − sin 𝜃′ sin𝜑′ �̂�). With 

this notation, the normal vector to the cap surface is �̂� = −𝑟′/𝑟𝑐𝑢𝑡 and the surface density 

is 𝜌𝑠 = �⃗⃗⃗�𝑐𝑜𝑛𝑡 ∙ �̂� = 𝜙𝑀𝑠 sin 𝜃′ sin𝜑′. 



165 

 

         

Figure 8.9: (a) Source and field regions used to compute the normal stress in the shear 

direction. A field particle (black circle) will feel the force due to all source particles 

inside the cutoff sphere (dotted circles) plus a contribution from the continuous region 

(grey region). (b) The continuous region contribution is due to only the cap surface 

(dotted red line). 

Note that 𝜌𝑠 depends on 𝜑′ and thus it is not axisymmetric. Due to this fact, the use of 

Eq. (8.6) to derive 𝜎𝑦𝑦
𝑐𝑜𝑛𝑡 can lead to a complex computation. As it was noted in Sec. 8.2.2, 

in these cases, it is easier to compute the force exerted by each field dipole over the source 

density and eventually change the sign of the resultant force by means of Newton’s third 

law. As the surface density is based on punctual charges, the force over a differential 

element of the surface will be given by �⃗�𝑑 = 𝜌𝑠�⃗⃗�𝑑 where the sub index 𝑑 means that the 

force is due to a dipole (not due to the continuous region) and �⃗⃗�𝑑 is the field created the 

field dipole: 

 �⃗⃗�𝑑 =
𝜇0𝑚

4𝜋

3𝑟𝑧
′𝑟′ − |𝑟′|2�̂�

|𝑟′|5
 (8.32) 

Integrating over the whole surface of the cap, the total force exerted over the continuous 

region by a field dipole is obtained as follows: 

 

�⃗�𝑑 = ∫𝜌𝑠�⃗⃗�𝑑𝑑𝑠
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(8.33) 

As it can be seen, Eq. (8.33) gives the force exerted by a field dipole from which the 

spherical cap has a maximum polar angle of 𝜃𝑓. This amplitude will depend on the field 

dipole position. From Fig. 8.9b, and using trigonometric relationships it can be proved 
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Field region Source region
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’

Continuous

region
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that sin 𝜃𝑓 = (1− 𝑦2 𝑟𝑐𝑢𝑡
2⁄ )

1/2
 where 𝑦 is the distance between the field dipole and the 

source region. Changing the sign of �⃗�𝑑 (to compute the force exerted by the continuous 

region over the field dipole), substituting the magnitude of the dipole 𝑚 and dividing by 

the unit area ℎ𝑤 one gets the correction to the normal stress for one field particle located 

at 𝑦: 

 𝜎𝑦𝑦
𝑐𝑜𝑛𝑡 =

3𝜇0𝜙
2𝑀𝑠

2

16

𝑤

𝑟𝑐𝑢𝑡
(1 − (

𝑦

𝑟𝑐𝑢𝑡
)

2

)

2

 (8.34) 

In the simple tetragonal lattice, field particles are placed at 𝑦 = 𝑚𝑓𝑤 (following the same 

reasoning shown in Sec. 8.7, results are also valid for BC basis), thus adding the 

correction for all field particles and taking the continuum limit 𝑛 = 𝑟𝑐𝑢𝑡 𝑤⁄ → ∞ we get: 
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(8.35) 

8.9 Appendix C: energetic approach to determine the shear 

stress versus strain curve 

In this section, we derive the analytical expressions for the force/shear stress versus strain 

curve (Eq. (8.21)) and yield stress versus volume fraction curve (Eq. (8.22)) for an 

isolated chain using an energetic approach. 

We start from the magnetic interaction energy between two dipoles 𝑖 and 𝑗 separated a 

distance 𝑅 in a chain tilted an angle 𝜃 [20,47]: 

 𝑈 =
𝜇0𝑚

2

4𝜋𝑅3
(1− 3 cos2 𝜃) (8.36) 

Taking into consideration Eq. (8.18), Eq. (8.36) can be written as a function of the shear 

strain 𝛾 as follows: 
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𝜇0𝑚

2
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𝛾2 − 2

(1+ 𝛾2)5/2 
 

 

 

(8.37) 

Therefore, the total magnetic energy of the system is the summation over all the pairs of 

particles in the chain: 

 

𝑈𝑡𝑜𝑡 =∑∑
𝜇0𝑚

2
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(8.38) 
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It is important to note that the indexes in the summations contained in Eq. (8.38) run 

differently than in Eq. (8.19). In Eq. (8.19) we computed the force due to the upper half 

of the chain on the lower half of the chain. In that case, field particles are those with 𝑛𝑓 ≤ 

0 while source particles are those with 𝑛𝑠 > 0. On the other hand, in Eq. (8.38) we are 

computing the total energy of the chain and accordingly, it is not necessary to distinguish 

between field or source dipoles: all particles belonging to the chain are sources 

independently of their position. Thus, 𝑖 runs along the whole chain (positive and negative 

𝑖 values). For a given 𝑖 value, 𝑗 must be larger than 𝑖 to avoid counting twice the same 

pair of particles. 

In Eq. (8.38), the inner summation corresponds to 𝑖 < 𝑗 < ∞ or equivalently (by 

subtracting 𝑖) 0 < 𝑗 − 𝑖 < ∞, hence the inner summation is simply: 

 ∑
1

|𝑖 − 𝑗|3
𝑗>𝑖

= ∑
1

|𝑖 − 𝑗|3
𝑗−𝑖>0

= ∑
1

|𝑗 − 𝑖|3
𝑗−𝑖>0

= 𝜉(3) (8.39) 

Obviously, if we carry out the summation within 𝑈𝑡𝑜𝑡 over all the particles we obtain an 

infinite energy because there is an infinite number of particles in the system. Thus, it is 

more convenient to use the energy density 𝑢𝑡𝑜𝑡 as follows: 
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(8.40) 

In Eq. (8.40) we have considered that the surface area associated to a chain is given by 

𝑤2 and its total length is 𝐿𝑡𝑜𝑡 = ∑ ℎ𝑖 . 

From classical electromagnetism, the resulting stress upon shearing the chain is given by: 

 𝜏 =
𝜕𝑢𝑡𝑜𝑡
𝜕𝛾

=
𝜇0𝑚

2𝜉(3)

4𝜋ℎ4𝑤2

3𝛾(4− 𝛾2)

(1+ 𝛾2)7/2 
=

3𝜇0𝑚
2𝜉(3)

4𝜋ℎ4𝑤2
𝑓(𝛾) (8.41) 

where 𝑓(𝛾) is the same function previously found with the force calculation provided in 

Sec. 8.3.1 (see Eq. (8.21)). Consistently, using this energetic approach we obtain the same 

value for the yield stress only by evaluating 𝑓(𝛾) at its maximum and substituting 𝑚 =
𝑀𝑠 𝜋𝑑

3 6⁄ , ℎ = 𝑑 and ℎ𝑤2 = 𝜋𝑑3 6𝜙⁄  in Eq. (8.41): 

 𝜏0 =
𝜉(3)𝑓(𝛾0)

8
𝜇0𝑀𝑠

2𝜙~0.137𝜇0𝑀𝑠
2𝜙 (8.42) 

Note that this energetic approach was also followed in Ref. [20] although the final result 

differs by the numerical factor in Eq. (8.42). This discrepancy comes from the 

axisymmetric model used in that work. According to this, shearing a chain is 

approximated by its elongation for a constant volume fraction. Therefore, the vector 

joining two dipoles, 𝑖 and 𝑗, within the elongated chain (�⃗⃗�𝑒𝑙) and the area per chain (𝑤𝑒𝑙
2 ) 

are given by [20]: 

 �⃗⃗�𝑒𝑙 = −𝑅𝑒𝑙�̂� (8.43a) 

 𝑅𝑒𝑙 = |𝑖 − 𝑗|𝑑√𝛾2 + 1 (8.43b) 
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 𝑤𝑒𝑙
2 =

𝜋𝑑2

6𝜙√1+ 𝛾2
 (8.44) 

Note that in this axisymmetric approximation, �⃗⃗�𝑒𝑙 is always directed along the chain 

(compare to the true shear strain in Eq. (8.18)) and both vertical separation between two 

consecutive particles ℎ𝑒𝑙 = 𝑑√𝛾2 + 1 and 𝑤𝑒𝑙
2  depend on the strain, while in a true shear 

strain deformation these quantities are constant (ℎ = 𝑑,  𝑤2 = ℎ2𝜋/6𝜙) in coherence 

with an affine deformation. In addition, since the chain axis is collinear with the dipoles 

of the particles during the whole strain, the interaction energy between any two dipoles 

within the chain is obtained from Eq. (8.36) making 𝜃 = 0: 

 𝑈𝑒𝑙 = −
𝜇0𝑚

2

2𝜋𝑅𝑒𝑙
3

 (8.45) 

Summing over all pairs of dipoles in the chain and dividing by its total volume as it was 

done previously for a true shear strain deformation, it can be shown that the magnetic 

energy density for the whole chain is: 

 𝑢𝑒𝑙,𝑡𝑜𝑡 =
𝑈𝑒𝑙,𝑡𝑜𝑡

𝐿𝑒𝑙,𝑡𝑜𝑡𝑤𝑒𝑙
2
= −

𝜇0𝑚
2𝜉(3)

2𝜋ℎ𝑒𝑙
4 𝑤𝑒𝑙

2
 (8.46) 

and the corresponding shear stress: 

 𝜏𝑒𝑙 =
𝜕𝑢𝑒𝑙,𝑡𝑜𝑡
𝜕𝛾

= −
𝜇0𝑚

2𝜉(3)

2𝜋

𝜕

𝜕𝛾
(

1

ℎ𝑒𝑙
4 𝑤𝑒𝑙

2
) =

9𝜇0𝑚
2𝜉(3)𝜙

𝜋2𝑑6
𝑔(𝛾) (8.47) 

where 𝑔(𝛾) = 𝛾/(1+ 𝛾2)5/2. The maximum of this function corresponds to 𝛾𝑒𝑙,0 = 0.5. 

Substituting 𝛾𝑒𝑙,0 and 𝑚 = 𝑀𝑠 𝜋𝑑
3 6⁄  in Eq. (8.47) one arrives to Eq. (9) of Ref. [20]: 

 𝜏𝑒𝑙,0 =
4

55/2
𝜉(3)𝜙𝜇0𝑀𝑠

2~0.086𝜙𝜇0𝑀𝑠
2 (8.48) 

Comparing Eqs. (8.42) and (8.48), it can be seen how neglecting particle dipole rotation 

during the shear straining motion can underestimate the yield stress in nearly 40%. This 

issue was previously pointed out by [48] for the case of the shear modulus where the 

difference reached 50%. 
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Abstract 

A double-gap (DG) magnetorheological (MR) cell is designed, constructed and validated 

using Finite Element Method Magnetostatics (FEMM) simulations, Computational Fluid 

Dynamics (CFD) calculations and experimental data with Newtonian fluids and 

conventional MR fluids for a range of particle concentrations and external magnetic field 

strengths. This new cell is a generalization of the twin-gap (TG) device. It is capable to 

reach very large magnetic field strengths and shear rates avoiding normal force overload. 

More importantly, it is optimized for magnetic field homogeneity.  

9.1 Introduction 

Conventional magnetorheological (MR) fluids are dispersions of non-Brownian 

magnetizable particles in non-magnetic liquid carriers. In the absence of magnetic fields 

MR fluids behave as traditional dispersions [1]. However, under the presence of magnetic 

fields the particles aggregate forming mesostructures in the field direction giving rise to 

the appearance of a yield stress [2-9]. 

The rheological characterization of MR fluids is typically carried out in torsional 

rheometers using parallel plates ‘pp’ (in contrast to cone-plates ‘cp’ and concentric 

cylinders ‘cc’ configurations) [10]. The ‘pp’ geometry exhibits some advantages from 

both theoretical and practical points of view. In the ‘pp’ geometry, field-induced 

structures, under sufficiently large fields, have the same length. Additionally, the 

superposition of a magnetic field is not a very complicated task. In the late 90’s the 

magnetic fields were simply generated through the use of open coils surrounding the disks 

[11-14]. In this setup the maximum magnetic fields achieved were of the order of 10 

kA/m and their homogeneity, within the sample volume, was very good (below 10%). 

Later, early this century, electromagnetic circuits were implemented in the design in an 

attempt to achieve larger field strengths (≈ 100 kA/m) sacrificing the field homogeneity 

[15-22]. When using electromagnetic circuits, the hole in the upper yoke unavoidably 

contributes with a field strength reduction (approximately 10% in the Anton Paar 

magnetocell). Also, the measurable yield stress is limited by the saturation in the normal 

force transducer of the device (in commercial rheometers it is typically of the order of 50 

N). Independently of the setup employed to generate the magnetic field, in a ‘pp’ 

configuration, the maximum shear rates are limited to ≈ 1000 s-1 before sample loss due 

to centrifugal forces. To overcome some of these problems, Laun et al. [23] came up with 

a twin-gap (TG) design using ferromagnetic tools. The advantages of this device are a 
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larger maximum magnetic field (up to 1.5 T) with improved homogeneity, a larger 

maximum shear rate (up to 10000 s-1) and normal force compensation. 

In an attempt to improve the TG setup, in this manuscript we study a generalization of 

this design by allowing the two shear gaps to be different in size. This ‘double-gap’ (DG) 

design is validated using Finite Element Method Magnetostatic (FEMM) calculations, 

Computational Fluid Dynamics (CFD) simulations and experimental tests in a torsional 

rheometer. Interestingly, this new cell is capable to generate very homogeneous saturating 

magnetic fields and therefore, for the first time, allows us to interrogate MR fluids in the 

magnetic saturation regime. 

9.2 Materials and methods 

Carbonyl iron microparticles used in this work were kindly provided by BASF SE, 

Germany. In particular, we used the EW grade carbonyl iron powder. Silicone oils 

(SO350 with viscosity 𝜂𝑆𝑂350 = 0.3406 Pa·s and SO500 with viscosity 𝜂𝑆𝑂500 = 0.4642 

Pa·s at 25 ºC) were obtained from Sigma-Aldrich and used without further purification. 

MR fluids were prepared by vigorous dispersion of the iron microparticles in the oils 

using a centrifugal mixer. 

Rheological tests were carried out in a commercial magnetorheometer (MCR501, Anton 

Paar, SE Germany) with the MRD 70/1T field generator (Anton Paar, SE Germany) 

attached to the rheometer base. Three different geometries were studied: (i) conventional 

single-gap (SG), (ii) twin-gap (TG) and (iii) double-gap (DG) magnetocells. In SG tests 

we used the commercial non-ferromagnetic (titanium) rotor with a lower brass disk and 

a spacer ring [19,20]. In TG and DG tests we used ferromagnetic plates of two different 

materials: soft iron (RS Amidata) and Mumetal (Magnetic Shield Corporation). The 

magnetic properties of these materials are shown in Sec. 9.9.1 (see Fig. 9.11). Geometrical 

details of the plates employed in the experiments are included in Table 9.1. 

 Radius (𝑅𝑟) Thickness (ℎ𝑟) Material 

Tool #1 9.972 mm 1.44 mm Titanium 

Tool #2 7.950 mm 2.36 mm Soft iron 

Tool #3 8.010 mm 1.04 mm Soft iron 

Tool #4 7.995 mm 2.34 mm Mumetal 

Tool #5 8.075 mm 3.05 mm Soft iron 

Table 9.1: Geometrical characteristics of the rotating plates employed in the rheological 

experiments. 

The DG magnetocell was a modification of the commercial Anton Paar MRD 

magnetocell. A schematics of the DG magnetocell is depicted in Fig. 9.1. As observed, it 

closely resembles the TG device designed by Laun et al. [23] (see Fig. 2 in their paper) 

with two major differences: (i) The sample rests directly on top of the surface of the 

bottom yoke (the original brass disk is removed). (ii) The two shear gaps (bottom and up) 

are not necessarily the same size (ℎ𝑏 ≠ ℎ𝑢). 

Laboratory experiments were performed in three different steps as follows: first, the 

sample was preconditioned at a constant shear rate of approximately 100 s−1 for 30 s to 

prevent the particles from settling and to erase the mechanical history. Second, the 
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magnetic field was suddenly applied in the gradient direction and the suspension was left 

to equilibrate for 1 min in order to aggregate the particles. Finally, a steady shear test was 

carried out still in the presence of a magnetic field. All tests were performed at 25 °C. 

 

Figure 9.1: Schematics of the double-gap (DG) magnetocell. This design is a 

modification of the Anton Paar MRD 70/1T magnetocell. This includes the commercial 

ferromagnetic spacer ring of thickness 1.29 mm. 

Numerical simulations were carried out to compute the magnetic field distribution 

(strength and homogeneity) in the magnetocells and the shear stress acting on the rotating 

plate. For this aim we used COMSOL Multiphysics. In the first case, the magnetic field 

distribution was obtained by solving Maxwell’s equations in the stationary state (i.e. 

FEMM simulations). The axisymmetric computational domain is sketched in Fig. 9.1, it 

is based on the magnetic circuit (yokes), non-/magnetic rotor, sample region and coils 

through feeding current flows. The particular magnetic properties of each piece were 

taken into consideration in these simulations. The whole device was placed within a large 

external (cylindrical) box where boundary conditions were defined. In particular, the 

normal component of the magnetic field on each boundary (top, bottom and lateral 

cylindrical wall) was set to be zero. The size of the box was prescribed at a distance to 

sufficiently remove any size effects but still be manageable for calculations. A height of 

2.3ℎ𝑚𝑐 and a radius of 2𝑟𝑚𝑐 (being ℎ𝑚𝑐 and 𝑟𝑚𝑐 magnetocell’s height and radius) was 

used; a larger simulation box did not give different results (e.g. differences are below 

0.1% for a box size of 4.6ℎ𝑚𝑐 × 4𝑟𝑚𝑐). The mesh was generated in a similar way; 

simulations were carried out for finer and finer meshes until no significant difference was 

observed in the results. The mesh density changed depending on the computational 

domain region. The densest mesh was located within the gap between yokes (mesh 

element size ~ 0.1 mm) while it became coarser as it went away from that place (0.5 mm 

in the yokes, 2 mm in the coil windings and 14 mm in the external cylinder next to its 

boundaries). 

In the second case, Cauchy and continuity equations were solved again in stationary state 

(i.e. CFD simulations) within an axisymmetric domain enclosing the sample (yellow 

region in Fig. 9.1). The fluid domain was discretized using a structured regular mesh with 

a mean element size of 0.055 mm. The finer mesh was close to the rotor corner (element 

size of 0.01 mm). More details about these CFD simulations are provided in Sec. 9.5. 

2.5 mm

10.0 mm
Shaft

Rotor

Rotor top surface

Rotor bottom surface

Surface of the bottom yoke

Coil windings

Non-magnetic housing

4.7 mm 

Sample

3.0 mm
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9.3 Magnetic field strength and homogeneity 

In this section, FEMM simulations are carried out to find the operation conditions that 

guarantee field homogeneity in the shearing cell. Simulations are always done in empty 

cells (i.e. without sample) in order for the results not to depend on the particular material 

tested. 

Figure 9.2 shows the magnetic flux density in the rotor axis direction 𝐵𝑣 as a function of 

the solenoid current for an empty gap in a SG device using the commercial titanium plate 

(Tool #1). Both experimental measurements and FEMM simulations are shown together 

for three different radial positions. This figure clearly demonstrates the consistency of the 

simulations and a noticeable magnetic field gradient in the radial direction that has been 

reported in the past to promote the migration of the particles to the rim of the plate 

[20,24,25]. As observed, the inhomogeneity in the field is more pronounced the larger the 

current (i.e. close to saturation). 
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Figure 9.2: Vertical component of the magnetic flux density 𝐵𝑣 in the empty gap as a 

function of solenoid current 𝐼 for three different radial positions (𝑟 = 0.0, 7.0 and 9.5 

mm) in the SG device. Solid symbols: Experimental data; Open symbols + line: FEMM 

simulations. The magnetic flux density in the empty gap was measured directly on top 

of the lower yoke by means of a Hall probe (FW Bell STH17-0404 with a strip of 1 mm 

thickness, 4 mm breadth and 101 mm length). The sensitive area of the probe is located 

at a distance of 0.85 mm from the strip tip. Simulation data reported in the figure 

exactly correspond to the actual position of the probe. 

FEMM simulations for the new magnetocell device are shown in Fig. 9.3. These 

particular simulations correspond to a ferromagnetic (soft iron) plate (𝑅𝑟 = 7.95 mm; 

ℎ𝑟 = 1 mm) placed in the middle of the gap between the two yokes (ℎ𝑏 = ℎ𝑢 = 1.85 mm 

in TG configuration). As observed, the radial profile is quite flat in the region of interest 

occupied by the sample. However, in the flat region, the flux density in the bottom shear 

gap is clearly higher than the upper one by 13 % for 5 A, 19 % for 3 A and 48 % for 1 A 

(cf. Fig. 9.3). This was expected (because of the central bore in the upper yoke) but it is 

obviously undesirable. The maximum fields achieved are of the order of 1 T (similar to 

the TG device [23]). 
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Figure 9.3: Simulated radial flux density norm profiles for a TG device in the middle of 

the shear gaps for three different solenoid currents (1, 3 and 5 A). Bottom gap: solid 

lines; upper gap: dashed lines. Numerical simulations correspond to 𝑅𝑟 = 7.95 mm, 

ℎ𝑟 = 1 mm and ℎ𝑏 = ℎ𝑢 = 1.85 mm. 

Apart from achieving a large magnetic field strength in the shear gaps, averaged field 

homogeneity must also be ensured. A dimensionless number that quantifies the change 

in the magnetic field (𝐶𝑀𝐹) within the volume occupied by the fluid (Σ) is given by: 

 𝐶𝑀𝐹 =
�̅�𝑏 − �̅�𝑢

�̅�𝑢
 (9.1) 

where �̅� = ∫ 𝐵(𝑟, 𝑧)𝑑𝑠
 

Σ
Σ⁄  is the average magnetic flux density and 𝐵 is the magnetic 

field norm. In Eq. (9.1), �̅�𝑏 stands for the average magnetic flux density in the volume 

occupied by the fluid in the lower shear gap (i.e. for 𝑟 < 𝑅𝑟; see bottom hatched region 

in Fig. 9.3). On the other hand, �̅�𝑢 represents the average magnetic flux density in the 

volume occupied by the fluid in the upper shear gap (i.e. for 𝑅𝑏 < 𝑟 < 𝑅𝑟; see upper 

hatched region in Fig. 9.3). Simulations on the radial dependence of the magnetic flux 

density gradient are shown in Sec. 9.9.2 (see Fig. 9.12). 

The simplest way to reduce 𝐶𝑀𝐹 consists in displacing the plate upwards (increasing 

ℎ𝑏/decreasing ℎ𝑢) in order to compensate the field reduction due to the central bore in the 

upper yoke. By doing so, the average flux densities (�̅�𝑏 and �̅�𝑢) are also modified. Figure 

9.4 demonstrates the impact of displacing the plate in the vertical direction in both 

magnetic flux density �̅� and homogeneity 𝐶𝑀𝐹. Figure 9.4a shows the dependence of �̅�𝑏 

and �̅�𝑢 with ℎ𝑏 for different solenoid currents 𝐼. As observed, for a given current level, 

�̅�𝑏 > �̅�𝑢 for low ℎ𝑏 (in agreement with Fig. 9.3). However, upon increasing ℎ𝑏 the 

averaged fields tend to approach each other until �̅�𝑏 = �̅�𝑢 at a crossover field value �̅�𝑥 ≡
�̅�𝑏 = �̅�𝑢. In Fig. 9.4b we show the dependence of �̅�𝑥 with 𝐼. Obviously, the magnetic 

flux achieved increases with the current. The black solid line in Fig. 9.4b corresponds to 

a linear fit. Finally, in Fig. 9.4c we show 𝐶𝑀𝐹 as a function of ℎ𝑏 for different currents 

𝐼. These curves demonstrate that the homogeneity is improved when ℎ𝑏 increases as 

otherwise expected. The optimal value slightly decreases with the current and is 

approximately ℎ𝑏 = 3.5 mm. 
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Figure 9.4: a) Average magnetic flux density �̅� variation in the bottom gap �̅�𝑏 (closed 

symbols) and upper gap �̅�𝑢 (open symbols) vs bottom gap thickness ℎ𝑏 for different 

solenoid currents 𝐼. b) Crossover field value �̅�𝑥 as a function of 𝐼. The straight solid line 

is the best fitting linear regression equation to the data. c) Homogeneity (𝐶𝑀𝐹) in the 

DG magnetocell for different vertical positions of the plate (specified by bottom gap 

thickness ℎ𝑏) at a range of 𝐼 values. The vertical dashed line in a) and c) corresponds to 

the TG case (ℎ𝑏 = ℎ𝑢 = 1.85 mm). Simulations correspond to 𝑅𝑟 = 7.95 mm and ℎ𝑟 = 

1 mm. 
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Up to now, we have assumed that the plate has a prescribed thickness of ℎ𝑟 = 1 mm. 

However, apart from increasing the solenoid current (cf. Fig. 9.4b), a simple way to 

increase �̅�𝑥 consists in increasing ℎ𝑟 (i.e. reducing the magnetic reluctance of the circuit). 

As a result, the goal now is, given ℎ𝑟, to determine ℎ𝑏 in order to generate the largest 

field possible for the same averaged �̅�𝑥 value in the two shear gaps. With this in mind, 

we performed an extensive set of simulations for plates having different thicknesses ℎ𝑟 

at different vertical positions ℎ𝑏. The results are contained in Fig. 9.5. In Fig. 9.5a we 

show �̅�𝑏 and �̅�𝑢 as a function of ℎ𝑏 for different ℎ𝑟 values and a constant 𝐼 = 5 A. The 

data demonstrate that the crossover point �̅�𝑥 is more quickly achieved for the thicker 

plates when displacing the plate upwards. Also, �̅�𝑥 can reach an astonishingly large value 

of ≈ 1.7 T when ℎ𝑟 = 3 mm, which is a very large field specially taking into account that 

we are simulating empty gaps. In Fig. 9.5b we show 𝐶𝑀𝐹 as a function of ℎ𝑏 for different 

ℎ𝑟 values and a constant 𝐼 = 5 A. These data clearly show that the homogeneity is 

achieved for smaller ℎ𝑏 values when ℎ𝑟 increases. 
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Figure 9.5: a) Average magnetic flux density �̅� variation in the bottom gap �̅�𝑏 (closed 

symbols) and upper gap �̅�𝑢 (open symbols) vs bottom gap thickness ℎ𝑏 for different 

plate thickness ℎ𝑟 at a solenoid current of 𝐼 = 5 A. b) Field homogeneity (𝐶𝑀𝐹) 

corresponding to the data shown in (a), calculated with Eq. (9.1). The radius of the plate 

is 𝑅𝑟 = 7.95 mm. 
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A more detailed analysis on the influence of ℎ𝑟 is shown in Fig. 9.6. In particular, in Fig. 

9.6a we show ℎ𝑏,𝑥 values corresponding to the crossover (𝐶𝑀𝐹 = 0) versus ℎ𝑟 for three 

different currents (𝐼 = 0.5 A, 3 A and 5 A) while in Fig. 9.6b we show �̅�𝑥 as a function 

of ℎ𝑟 for three different currents (𝐼 = 0.5 A, 3 A and 5 A). It is important to note that the 

maximum ℎ𝑟 value simulated in this work corresponds to ℎ𝑟 = 3 mm. This upper limit in 

ℎ𝑟 is of practical interest. Due to geometrical constrictions, thicker plates would be too 

close to the lower and upper yokes and therefore direct contact would be possible because 

of the tolerances in the misalignment of the tools. 
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Figure 9.6: a) ℎ𝑏,𝑥 values corresponding to the crossover (𝐶𝑀𝐹 = 0) versus ℎ𝑟 for three 

different currents (𝐼 = 0.5 A, 3 A and 5 A). b) �̅�𝑥 as a function of ℎ𝑟 for three different 

currents (𝐼 = 0.5 A, 3 A and 5 A). 

From the previous discussion, it could be inferred that the ferromagnetic upper plate 

should not feel any force when placed at ℎ𝑏,𝑥 because, in this particular case, the condition 

for magnetic field homogeneity is accomplished (i.e. 𝐶𝑀𝐹 = 0). However, although in 

this case the fields match in upper and bottom gaps, the magnetic field along the shaft of 

the upper plate is not the same as in the shear gaps and therefore, the upper plate 

experiences an effective magnetic field gradient responsible for a non-negligible normal 

force (also in the absence of sample). Nevertheless, even in the most unfavorable 

conditions (i.e. 𝐼 = 5 A), this normal force remains below the rheometer’s normal force 

limit (50 N). Simulations on the normal force acting on the plate are shown in Sec. 9.9.3 

(see Fig. 9.13). Overall, DG and TG geometries are capable to balance normal forces 

developed by the sample (due to their double gap). However, the upper plate still suffers 

an external magnetic body force (also without sample) hence contributing to a non-

negligible normal force. 

In summary, results shown up to now demonstrate that there are essentially three routes 

to match the magnetic flux density in both shear gaps. They involve tuning: (i) the current 

𝐼, (ii) the thickness of plate ℎ𝑟 and (iii) the vertical position of the plate ℎ𝑏. 

9.4 Analytical calculation of the shear rate and shear stress 

The total torque 𝑀 acting on the rotor surfaces due to the confined fluid mainly consists 

of three contributions: On the one hand, a contribution from the bottom and upper shear 

gaps (𝑀𝑏 +𝑀𝑢) and on the other hand, a contribution from the cylindrical (i.e. lateral) 

shear gap (𝑀𝑐) (see solid thick red lines in Fig. 9.1): 
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 𝑀 = 𝑀𝑏 +𝑀𝑢 +𝑀𝑐 (9.2) 

Strictly speaking, the torque coming from the rotor shaft surface should also have been 

taken into account (see dashed thick red line in Fig. 9.1). However, this contribution can 

be neglected (see below). 

In the analysis we considered the case of a power-law fluid. The reason for this is that 

this particular constitutive equation serves as a bridge between Newtonian and yield stress 

fluids of interest in this work. Note also that MR fluids typically behave as power-law 

fluids in a very wide range of shear rates. In the case of power-law fluids the shear stress-

shear rate relationship is given by: 

 𝜏 = 𝑚�̇�𝑛 (9.3) 

where 𝑚 is the flow consistency index and 𝑛 is the flow behavior index. Accordingly, 

Newtonian fluids correspond to 𝑛 = 1 while yield stress fluids correspond to 𝑛 = 0. 

No matter the constitutive equation of the fluid, for viscometric flows, the shear rate in 

the bottom, upper and cylindrical shear gaps can be expressed as a function of the angular 

velocity of the plate Ω and geometrical dimensions as follows: 

 �̇�𝑏(𝑟) =
𝑟Ω

ℎ𝑏
;   �̇�𝑅𝑟,𝑏 ≡ �̇�𝑏(𝑅𝑟) =

𝑅𝑟Ω

ℎ𝑏
 (9.4a) 

 �̇�𝑢(𝑟) =
𝑟Ω

ℎ𝑢
;   �̇�𝑅𝑟,𝑢 ≡ �̇�𝑢(𝑅𝑟) =

𝑅𝑟Ω

ℎ𝑢
 (9.4b) 

 �̇�𝑐 =
2Ω

1− 𝛽
 with 𝛽 = (

𝑅𝑟
𝑅
)

2

 (9.4c) 

The torque acting on the rotating plate due to a power-law fluid can be computed by 

integration: 

 

𝑀 = ∫ 𝑟𝜏𝑑𝑆

total
surface

= ∫ 𝑟𝑚[�̇�𝑏(𝑟)]
𝑛𝑑𝑆

bottom
surface

+ ∫ 𝑟𝑚[�̇�𝑢(𝑟)]
𝑛𝑑𝑆

upper

surface

+ ∫ 𝑟𝑚(�̇�𝑐)
𝑛𝑑𝑆

lateral
surface

 

 

 

 

 

 

(9.5) 

Using cylindrical coordinates and substituting the expressions for the shear rates (Eq. 

(9.4)) in Eq. (9.5) we arrive to: 

 

𝑀 = ∫ 𝑟𝑚(
𝑟Ω

ℎ𝑏
)
𝑛

𝑟𝑑𝜑𝑑𝑟 + ∫ 𝑟𝑚 (
𝑟Ω

ℎ𝑢
)
𝑛

𝑟𝑑𝜑𝑑𝑟

𝑅𝑟

𝑅𝑏

𝑅𝑟

0

+∫ 𝑅𝑟𝑚(
2Ω

1 − 𝛽
)
𝑛

𝑅𝑟𝑑𝜑𝑑ℎ

ℎ𝑟

0

 

 

 

 

(9.6) 
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Here 𝑅𝑏 is the radius of the axis hole (see Fig. 9.1). Hence, after integration of Eq. (9.6), 

the following theoretical expression is obtained for the total torque: 

 

𝑀 = 2𝜋𝑚 [(
𝑅𝑟Ω

ℎ𝑏
)
𝑛 𝑅𝑟

3

3+ 𝑛
+ (

Ω

ℎ𝑢
)
𝑛 𝑅𝑟

3+𝑛 − 𝑅𝑏
3+𝑛

3 + 𝑛

+ (
2Ω

1− 𝛽
)
𝑛

𝑅𝑟
2ℎ𝑟] 

 

 

(9.7) 

For convenience, the total torque can be expressed as a function of the rim shear stress in 

the bottom gap 𝜏𝑅𝑟,𝑏 = 𝑚�̇�𝑅𝑟,𝑏
𝑛 = 𝑚(𝑅𝑟Ω ℎ𝑏⁄ )𝑛 as follows: 

 

𝑀 = 𝜏𝑅𝑟,𝑏
2𝜋𝑅𝑟

3

3+ 𝑛
[1 + (

ℎ𝑏
ℎ𝑢
)
𝑛

(1 − (
𝑅𝑏
𝑅𝑟
)

3+𝑛

) + (3

+ 𝑛)
ℎ𝑟ℎ𝑏

𝑛

𝑅𝑟
𝑛+1

(
2

1− 𝛽
)
𝑛

] 

 

 

(9.8a) 

 

𝜏𝑅𝑟,𝑏 =
(3+ 𝑛)𝑀

2𝜋𝑅𝑟
3

[1 + (
ℎ𝑏
ℎ𝑢
)
𝑛

(1 − (
𝑅𝑏
𝑅𝑟
)

3+𝑛

) + (3

+ 𝑛)
ℎ𝑟ℎ𝑏

𝑛

𝑅𝑟
𝑛+1

(
2

1 − 𝛽
)
𝑛

]

−1

 

 

 

(9.8b) 

In the particular case of Newtonian fluids (𝜏 = 𝜂�̇�, 𝑛 = 1), Eq. (9.8) can be written as a 

function of the rim shear stress in the bottom gap 𝜏𝑅𝑟,𝑏 = 𝜂�̇�𝑅𝑟,𝑏 = 𝜂 𝑅𝑟Ω ℎ𝑏⁄  as follows: 

 𝑀 = 𝜏𝑅𝑟,𝑏
𝜋𝑅𝑟

3

2
[1+

ℎ𝑏
ℎ𝑢
(1− (

𝑅𝑏
𝑅𝑟
)

4

) +
8ℎ𝑟ℎ𝑏

𝑅𝑟
2(1− 𝛽)

] (9.9a) 

 𝜏𝑅𝑟,𝑏 = 𝑀
2

𝜋𝑅𝑟
3
[1 +

ℎ𝑏
ℎ𝑢
(1 − (

𝑅𝑏
𝑅𝑟
)

4

) +
8ℎ𝑟ℎ𝑏

𝑅𝑟2(1− 𝛽)
]

−1

 (9.9b) 

Similarly, in the particular case of yield stress fluids (𝜏 = 𝜏𝑦 = const., 𝑛 = 0), Eq. (9.8) 

is written as follows: 

 𝑀 = 𝜏𝑦
2𝜋𝑅𝑟

3

3
[2 − (

𝑅𝑏
𝑅𝑟
)

3

+ 3
ℎ𝑟
𝑅𝑟
] (9.10a) 

 𝜏𝑦 =
3𝑀

2𝜋𝑅𝑟
3
[2− (

𝑅𝑏
𝑅𝑟
)

3

+ 3
ℎ𝑟
𝑅𝑟
]

−1

 (9.10b) 

Neglecting the lateral surface contribution (i.e., the last term in Eq. (9.10)) we arrive to: 

 𝑀 = 𝜏𝑦
2𝜋𝑅𝑟

3

3
[2 − (

𝑅𝑏
𝑅𝑟
)

3

] (9.11a) 

 𝜏𝑦 = 𝑀
3

2𝜋𝑅𝑟
3
[2− (

𝑅𝑏
𝑅𝑟
)

3

]

−1

 (9.11b) 

Note that in the particular case of MR fluids, the stress acting on the lateral surface can 

be safely neglected because the magnetic field, and therefore the field-induced (stress-

bearing) structures, are collinear with the vorticity direction. 
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9.5 Numerical calculation of the shear rate and shear stress 

The fluid flow was solved using non-Newtonian Computational Fluid Dynamics (CFD). 

In a typical simulation for a power-law fluid the constitutive equation is prescribed (Eq. 

(9.3), imposing 𝑚 and 𝑛) and the simulations performed at a range of angular speeds Ω. 

Cauchy (in the stationary state) and Continuity equations apply with appropriate 

boundary conditions for the fluid flow: 

 𝜌(�⃗⃗� ∙ ∇)�⃗⃗� = ∇ ∙ [−𝑃𝐼 ̿ + 𝜏̿] + 𝜌�⃗� (9.12a) 

 𝜌∇ ∙ �⃗⃗� = 0 (9.12b) 

where 𝜌 is the density, �⃗⃗� is the flow velocity, 𝑃 is the pressure, �⃗� represents body 

accelerations acting on the continuum (in the simulations contained in this work �⃗� = 0), 

𝐼 ̿is the identity tensor and 𝜏̿ is the viscous stress tensor for the simulated fluid in laminar 

flow: 

 𝜏̿ = 𝜂�̿̇� (9.13) 

Here, the shear rate �̿̇� is given by �̿̇� = ∇�⃗⃗� + (∇�⃗⃗�)𝑇, the shear viscosity is 𝜂 = 𝑚�̇�𝑛−1 and 

the magnitude of the shear rate tensor is �̇� = (�̿̇�: �̿̇�)
1/2

2⁄ . 

The boundary conditions for the velocity and pressure are as follows: 

 �⃗⃗�𝑤𝑎𝑙𝑙 = 0 (9.14a) 

 𝑢𝜃 = Ω𝑟 (9.14b) 

 𝑓0 = 0 (9.14c) 

Equation (9.14a) prevents slip at the housing wall and yokes’ surfaces, Eq. (8.14b) 

imposes the rotation of the upper plate and finally Eq. (9.14c) sets the normal force to 

zero in the small open gap between rotor shaft and the upper yoke. 

Once the velocity �⃗⃗� and pressure fields 𝑃 are computed, the viscous stress tensor 𝜏̿ is 

calculated from Eq. (9.13) and, finally, the torque 𝑀 is calculated by integration as 

follows: 

 𝑀 = �̂� ∙ ∫ 𝑟 × 𝜏̿ · 𝑑𝑠 (9.15) 

Here, the cross symbol ‘×’ denotes a vector product and �̂� is the unit vector in the vertical 

(axis) direction. The previous integral is done over all rotor’s surfaces, that is, (dashed 

and solid) thick red lines in Fig. 9.1. This means that we are also including the surface of 

the rotor shaft, which had not been considered in the analytical derivation of Eq. (9.8). 

Nevertheless, data do not change significantly if the integration is carried out only over 

the solid thick red lines (the differences are below 1.4%). 

9.6 Experimental validation with Newtonian fluids 

First, we compare the analytical predictions with numerical simulations for a DG 

geometry with different ℎ𝑏. In Fig. 9.7 we compare the radial dependence of the reduced 

shear rate (γ̇/Ω) acting on the lower surface of the rotating plate for a Newtonian liquid 

https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Body_force
https://en.wikipedia.org/wiki/Body_force
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(with viscosity 1 Pa·s) for a small angular velocity (1 s-1). The agreement between the 

analytical calculations and numerical simulations is very good for 𝑟 < 6 mm. However, 

as expected, the theoretical prediction (Eq. (9.4a), solid line) underestimates the simulated 

shear rate (symbols) at the rim of the plate because of the edge effects. At this point it is 

worth to note that a very good agreement was also found for power law fluids (results not 

included here for brevity). 
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Figure 9.7: Reduced shear rate (�̇� Ω⁄ ) as a function of the radial distance (𝑟) acting on 

the lower surface of the plate for an angular speed of Ω = 1 s-1. In the simulation of the 

DG geometry we assumed a Newtonian fluid with a viscosity of 1 Pa·s, 𝑅𝑟 = 7.95 mm 

and ℎ𝑟 = 1 mm. Solid lines correspond to the theoretical prediction (Eq. (9.4a)). 

 

Experiments were also carried out with Newtonian fluids. In Fig. 9.8 we compare 

experimental data with predictions on two silicone oils (SO350 and SO500) for TG and 

DG geometries. On the one hand, in Figs. 9.8a and 9.8b we show the torque data 𝑀 as a 

function of the angular velocity Ω. Symbols correspond to experimental raw data for 𝑀 

and Ω as obtained directly from the rheometer. The solid lines correspond to CFD 

calculations (Eq. (9.15)). As observed a reasonably good agreement is found between 

experiments and simulations in both TG and DG devices. On the other hand, in Figs. 9.8c 

and 9.8d, we show the shear viscosity 𝜏𝑅𝑟,𝑏 �̇�𝑅𝑟,𝑏⁄  as a function of the shear rate �̇�𝑅𝑟,𝑏 at 

the rim in lin-log representation. Solid symbols correspond to experimental data as 

obtained after manipulation of the raw torque and angular velocity data using Eqs. (9.9b) 

and (9.4a), respectively. For completeness, in Figs. 9.8c and 9.8d we also include open 

symbols corresponding to experimental measurements in a single-gap (SG) geometry 

(‘pp’ and ‘cp’ give the same results for Newtonian fluids). These figures demonstrate that 

the conversion from torque/angular velocity to shear stress/shear rate is done properly 

even when the contribution due to rotor shaft is omitted in the analytical calculation. The 

slight shear thinning that is observed at low shear rates in TG and DG geometries may be 

due to surface tension torque and/or finite precision and roughness at the edge of these 

geometries [26]. 
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Figure 9.8: Validation of the TG and DG devices with two Newtonian silicone oils 

(SO350 and SO500). First row: comparison between numerical (lines) and experimental 

(symbols) torque 𝑀 versus angular speed Ω curves in TG (a) and DG (b) geometries. 

Second row: comparison between experimental constitutive curves obtained with single 

gap (SG) geometry and both TG (c) and DG (d) geometries. In the TG case 𝑅𝑟 = 7.950 

mm, ℎ𝑟 = 2.36 mm and ℎ𝑏 = ℎ𝑢 = 1.17 mm while in the DG case 𝑅𝑟 = 7.950 mm, 

ℎ𝑟 = 2.36 mm, ℎ𝑏 = 1.60 mm and ℎ𝑢 = 0.74 mm. Experiments in SG tests were carried 

out for a gap of 300 µm. 

9.7 Experimental validation with MR fluids 

In this section we start with the analysis of conventional MR fluids. In this manuscript, 

the conventional MR fluids are prepared by dispersion of 20 vol% carbonyl iron particles 

in a silicone oil. In the absence of magnetic fields, these suspensions are expected not to 

exhibit a yield stress. However, in practice the iron particles are slightly aggregated and 

the suspensions do not behave as perfect Newtonian fluids in the sense that the stress is 

not truly proportional to the shear rate. As a result, the application of Eq. (9.9b) is 

questionable. To circumvent this problem we consider that the MR fluids behave as 

power-law fluids with a shear rate-dependent flow behavior index 𝑛. With this, the 

conversion from torque to shear stress can be simply carried out using Eq. (9.8b) with a 

local flow behavior index given by 𝑛 = 𝑑 log(𝑀) 𝑑 log(Ω)⁄ . 

A three step process was followed to compute the shear stress and shear rate in the DG 

cell: (i) First the local flow index 𝑛 was computed in the range of angular velocities Ω 

explored. (ii) Then the shear rate at the bottom of the rotor γ̇𝑅𝑟,𝑏 was obtained from Ω 
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using Eq. (9.4a). (iii) Finally, the shear stress at the bottom rim 𝜏𝑅𝑟,𝑏 was calculated from 

the torque 𝑀 and local flow behavior index 𝑛 using Eq. (9.8b). 

In Fig. 9.9 we compare predictions with experimental data on 20 vol% EW carbonyl iron 

based MR fluids in SG, TG and DG geometries in the absence of a magnetic field. Black 

squares correspond to experimental data in the commercial SG device. They were 

obtained using the Weissenberg-Rabinowitsch-Mooney (WRM) correction [27]. Red 

circles and blue triangles correspond to TG and DG results, respectively. They were 

obtained using the protocol described in the paragraph above. Finally, red and blue lines 

correspond to TG and DG results supposing Newtonian fluids (Eq. (9.9b)). As observed, 

there is not much difference between using the local flow behavior index in Eq. (9.8b) or 

the Newtonian approximation (Eq. (9.9b)) because the suspensions are only slightly shear 

thinning. As expected, the rheograms for the suspensions do not depend on the particular 

geometry employed. 
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Figure 9.9: Flow curves (stress versus shear rate) corresponding to 20 vol% EW iron 

particles dispersed in silicone oil (SO350) in the absence of magnetic fields. Symbols 

correspond to experimental data using single-gap SG (ℎ𝑏 = 1.6 mm; due to sample 

wettability and large shear gap, a brass ring was employed to maintain the sample in 

place during the measurements), twin-gap TG (𝑅𝑟 = 7.950 mm, ℎ𝑟 = 2.36 mm and 

ℎ𝑏 = ℎ𝑢 = 1.17 mm) and double-gap DG (𝑅𝑟 = 7.950 mm, ℎ𝑟 = 2.36 mm, ℎ𝑏 = 1.6 

mm and ℎ𝑢 = 0.74 mm) devices. Solid lines correspond to the predictions for TG and 

DG geometries under the assumption that the suspension behaves as a Newtonian fluid 

(Eq. (9.9b)). 

The next step was to superimpose a magnetic field to the MR fluid in order to induce 

particle-particle magnetostatic interactions and therefore an apparent yield stress in the 

suspensions. In this manuscript we are interested in saturating (and homogeneous) 

magnetic fields. This point guarantees the applicability of Eq. (9.11b) to compute the 

shear stress from the torque acting on the plate. In Fig. 9.10a we show 𝜏𝑅𝑟,𝑏 as a function 

of �̇�𝑅𝑟,𝑏 under magnetic fields where the homogeneity condition is fulfilled (𝐶𝑀𝐹 = 0; 

i.e. same averaged field in the upper and bottom shear gaps; see Sec. 9.3). Experimental 

stress data shown in Fig. 9.10a do not significantly change with the shear rate suggesting 

that the suspension behaves as a plastic-like material with a yield stress. This validates 
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the use of Eq.(9.11b) in the computation of the stress from the torque. As expected, the 

stress increases with the magnetic field strength. 
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Figure 9.10: a) Experimental shear stress vs shear rate data evaluated at the bottom rim 

of the DG device with �̅�𝑥 = �̅�𝑢 = �̅�𝑏. The plate used had a radius 𝑅𝑟 =7.950 mm and a 

thickness  ℎ𝑟 = 2.36 mm. Black squares: 𝐼 = 4 A,  ℎ𝑏 = 1.6 mm, ℎ𝑢 = 0.74 mm and 

�̅�𝑥 = �̅�𝑏 = �̅�𝑢 = 1.23 T. Red circles: 𝐼 = 5 A,  ℎ𝑏 = 1.52 mm, ℎ𝑢 = 0.82 mm and �̅�𝑥 =
�̅�𝑏 = �̅�𝑢 = 1.40 T. These magnetic flux densities correspond to simulations without 

sample in the cell (i.e. external fields). b) Yield stress as a function of the external 

magnetic field strength 𝐻 as obtained using the SG (solid symbols) and DG devices 

with different soft iron plates (open symbols-Tool #2, filled half up-Tool #3, filled half 

down-Tool #5) and Mumetal plate (crossed symbols-Tool #4) using Eq. (9.11b). Also 

included are the simulation data following [28] (solid lines). Experiments in SG tests 

were carried out for a gap of 300 µm. 

The apparent yield stress 𝜏𝑦 can be obtained from Fig. 9.10a by extrapolation of the shear 

stress to low shear rates. In Fig. 9.10b we show the resulting 𝜏𝑦 data as a function of the 
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magnetic field strength 𝐻 together with experiments on the same MR fluids but using the 

commercial SG device. Open symbols correspond to the DG device (Tool #2) while solid 

symbols correspond to the SG device. Even though SG data suggest that 𝜏𝑦 is close to 

saturation for 𝐻 ≈ 300 kA/m, experiments performed with DG cell provide a clearly 

larger yield stress. This suggests that the saturation observed in the SG tool may be an 

artifact, possibly due to slippage and/or particle migration because of nonuniformity in 

the magnetic field distribution [24,25]. 

In principle, in order to fully cover the interval between SG measurements (solid symbols) 

and DG measurements (open symbols) new tests should be carried out for smaller 

solenoid currents. However, from the inspection of Fig. 9.6a it is clear that for smaller 

currents (𝐼 < 4 A), the rotor employed in the experiments (Tool #2 from Table 9.1) cannot 

provide the desired field homogeneity 𝐶𝑀𝐹 = 0 for a practical upper gap height ℎ𝑢. In 

this context, note that ℎ𝑢 must be sufficiently large in order to prevent physical contact 

between the rotor plate and the upper yoke. To solve this issue, and in view of Sec. 9.3, a 

thinner plate can be used. In this sense, we repeated previous experiments with a plate 

with ℎ𝑟 = 1 mm (Tool #3) that creates a field around 0.9 T if the bottom gap is ℎ𝑏 = 3 

mm and the current is 𝐼 = 5 A (see Fig. 9.6a). Yield stresses measured with this plate are 

shown in Fig. 9.10b with filled half up symbols. 

All the discussion exposed until now supposes that the rotor is made of soft iron. 

However, other magnetic materials can be employed as well. To show this, a Mumetal 

plate (Tool #4) was also used in this work. This material has a lower magnetic response 

(see Fig. 9.11) and allows to work with smaller and still homogeneous magnetic fields by 

properly choosing ℎ𝑏 (checked again by FEMM simulations). Experimental data obtained 

with the Mumetal plate are plotted in Fig. 9.10b with crossed symbols. Interestingly, both 

data points coming from Tools #3 and #4 satisfactorily bridge SG and DG measurements. 

Finally, as it was pointed out in Fig. 9.6b, the highest achievable magnetic field with this 

DG device is 1.7 T for a 3 mm thickness rotor. Yield stress data obtained with this plate 

(Tool #5) is shown also in Fig. 9.10b with filled half down symbols. Note that in this case, 

most concentrated samples (30 and 40 vol%) could not be measured as the developed 

torque overcomes the maximum allowed by the rheometer (230 mN·m). In Fig. 9.10b we 

also include FEMM numerical predictions in preassembled structures (plotted with solid 

lines) following the methodology proposed in Ref. [28]. Briefly, in a first step, the 

particles are preassembled in infinite monoclinic lattices. Then, these lattices are tilted, 

according to the applied strain, by simulating the lattice unit cell and imposing periodic 

boundary conditions. The yield stress is computed from the maximum of stress versus 

strain curves using the Maxwell stress tensor. In these simulations, the magnetic 

properties of the particles are taken into account by explicitly introducing their 

magnetization curve (see Fig. 9.11) as a magnetostatic constitutive equation (for more 

details please see Ref. [28]). As observed in Fig. 9.10b, FEMM simulation results are in 

qualitatively good agreement with experiments. 

9.8 Conclusions  

A major challenge in magnetorheology is to obtain reliable data in the magnetic saturation 

regime at the same time the magnetic field distribution remains homogeneous within the 

sample volume. Available commercial devices are capable to reach fields of the order of 

1 T but the price to be paid is the generation of field gradients that artifact the 
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measurements; typically the yield stress levels off earlier than expected (i.e. at smaller 

magnetic field strengths) in view of the magnetization curves of the materials involved. 

The double-gap device described in this work is capable to generate highly homogeneous 

fields by appropriately choosing the plate thickness and gap size. The device has been 

fully characterized using magnetostatic and fluid dynamics simulations. Additionally, 

experiments on Newtonian fluids demonstrate that the shear stress calculation is correct. 

Finally, experiments on conventional MR fluids are reported for the first time in magnetic 

saturation. These experiments are in good agreement with FEMM simulations in 

preassembled structures. 
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9.9 Supplementary material 

The Supplementary Material contains the magnetization curves for all materials 

investigated in this manuscript. It also includes additional information on the magnetic 

field homogeneity, field gradients and normal forces generated in the DG device. 

9.9.1 Magnetic properties of the materials 
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Figure 9.11: Magnetic flux density 𝐵 versus magnetic field strength 𝐻 for different 

magnetic materials used in this work: Squares.- carbonyl iron microparticles, Circles.- 

commercial yoke MRD device from [24], Up triangles.- soft iron plate (soft iron, 

without losses, from the material library in COMSOL Multiphysics’ AC/DC Module) 

and down triangles.- Mumetal plate (from supplier datasheet). 
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In order to perform the FEMM numerical simulations, the (magnetic) constitutive 

equations of the different materials must be introduced in the model. Figure 9.11 shows 

the BH curves for the different materials employed. 

9.9.2 Magnetic field homogeneity in the radial direction 

In the main text, the magnetic field homogeneity was discussed in terms of the averaged 

fields over the bottom and upper shear gaps. However, nothing was said about the 

magnetic field profile (i.e. the radial dependence) in the shear gap. 

As demonstrated in the manuscript (see Fig. 9.2), the SG device suffers from an important 

magnetic field gradient (i.e. the field changes with the radial position) that is responsible 

for undesirable particle migration within the gap. This feature can be better seen in Fig. 

9.12 where the gradient in the radial direction of the magnetic field is directly plotted 

(black line). Clearly, the magnetic field is not constant along radial position and increases 

as we move outwards to the rim. On the other hand, the DG device shows a much flatter 

profile as it is inferred from its nearly zero gradient up to 𝑟 𝑅𝑟⁄ = 0.6. 

It is also important to note that, in both cases (SG and DG), the field gradient cannot be 

fully prevented at the rim due to edge effects originated by the bottom yoke and the rotor 

(this last one only applies in the DG device). 
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Figure 9.12: Magnetic field radial gradient normalized by its value at 𝑟 = 0 mm as a 

function of the normalized radial position in SG (Tool #1) and DG (Tool #2) devices. 

𝐼 = 5 A. In DG case, ℎ𝑏 = 1.6 mm fulfilling that 𝐶𝑀𝐹 = 0. 

9.9.3 Normal forces acting on the upper plate 

In the main text we discuss the shear force (torque) generated on the upper plate by field-

induced particulate structures. However, the presence of a magnetic field itself also 

generates a normal force acting on the rotating plate despite the fact that the volume-

averaged fields in the upper and bottom shear gaps are matched. In practice, this normal 

force must remain below a certain level, which in the particular case of the Anton Paar 

MCR 501 rheometer is 50 N. In Fig. 9.13 we demonstrate that this normal force remains 

below 50 N whatever the plate thickness and intensity current investigated. 
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Figure 9.13: Normal force experienced by the soft iron rotor as a function of its 

thickness ℎ𝑟 for different applied currents. In all cases, vertical positions are ℎ𝑏,𝑥, that 

is, those fulfilling 𝐶𝑀𝐹 = 0 (see Fig. 9.6a). 
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Abstract 

Magnetic colloids were formulated by dispersion of magnetic oxide spheres in water. 

Their rheological behavior was investigated for a wide range of particle diameters 

covering in detail the magnetic single-multidomain transition and therefore spanning the 

gap between ferrofluids (FFs) and conventional magnetorheological fluids (MRFs). The 

magnetoviscous effect (i.e. the ratio between the viscosity increment under field and the 

viscosity value in the absence of field) was found to reach a maximum for a critical 

particle size in the single-multidomain transition region. The observations were explained 

in terms of magnetization changes with particle size. The results obtained are applicable 

to any magnetic material (not only iron oxides) and therefore constitute a new route to 

enhance MR effect. For very small particle sizes (in the superparamagnetic region) 

thermal motion plays a crucial role and the dimensionless viscosity scales with the Peclet 

number as expected for Brownian Hard Spheres. For larger particle sizes and 𝜆 > 1 the 

dimensionless viscosity scales with the Mason number and closely follows the Structural 

Viscosity Model under the Mean Magnetization Approximation.  

10.1 Introduction 

Magnetic colloids constituted by dispersions of a solid magnetic phase in a non-magnetic 

liquid carrier are traditionally classified in two groups in view of their rheological 

characteristics: ferrofluids (FFs) and magnetorheological fluids (MRFs) (see Fig. 10.1). 

On the one hand, FFs are formed by nanosized superparamagnetic (SP) particles, typically 

ferrites. Because of their small size, these particles are subjected to Brownian (thermal) 

motion and do not aggregate in spite of the fact that they are constituted by a single 

magnetic domain and hence magnetically interact even in the absence of magnetic fields 

[1]. On the other hand, MRFs are constituted by micronsized ferromagnetic particles, 

typically carbonyl iron. Because of their large size, these particles are not significantly 

affected by Brownian motion and are constituted by magnetic multidomains [2]. The 

critical size delimiting the borderline between these two well differentiated rheological 

behaviors is typically defined in the literature through the so-called λ ratio or coupling 

constant. The 𝜆 ratio is a measure of the importance of magnetostatic energy (∝ 𝑎3〈𝑀𝑝〉
2) 
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to the thermal energy (∝ 𝜅𝐵𝑇). Here, 𝑎 is the particle radius, 〈𝑀𝑝〉 is the mean 

magnetization of the particle, 𝜅𝐵 is the Boltzmann constant and 𝑇 is the absolute 

temperature. 

 

Figure 10.1: Schematics of the size region explored in this work bridging the gap 

between ferrofluids and magnetorheological fluids. Particle magnetization and variation 

of intrinsic coercivity with particle diameter. The particle size estimations correspond to 

magnetite. In the SP (ferromagnetic) region the anisotropy energy (𝐸𝑎) is smaller 

(larger) than the thermal energy (𝜅𝐵𝑇). 

Recent work involving both kinds of materials, FFs and MRFs, demonstrates the need to 

better explore the frontier between these two limiting scenarios. On the one hand, FFs 

with larger particles are desired for a stronger magnetic response in biomedical 

applications [3-6]. On the other hand, MRFs with smaller particles are required to 

minimize sedimentation in mechanical engineering applications [7]. 

From a rheological perspective, the behavior of FFs seems to be well understood [1,8,9]. 

Most publications suggest that there is not a shear rate dependence unless for concentrated 

FFs. Two regions are identified within the SP regime depending on whether Néel 

relaxation time (𝜏𝑁) or Brownian relaxation time (𝜏𝐵) governs: intrinsic SP (if 𝜏𝑁 < 𝜏𝐵) 

and extrinsic SP (if 𝜏𝐵 < 𝜏𝑁). According to Ref. [10], the transition from intrinsic to 

extrinsic SP occurs for diameters of 14 nm. However, the particular value is strongly 

dependent on the material. For dilute FFs in the intrinsic SP regime the viscosity increase 

under field is negligible because of the thermal fluctuation of the magnetic moments 

within the particles. However, for dilute FFs in the extrinsic SP regime (so-called 

Brownian FFs), a slight viscosity increase occurs under fields perpendicular to the 

vorticity due to the hindrance of physical particle’s rotation [11,12]. In concentrated 

ferrofluids there is typically a shear thinning behavior and in some cases the appearance 

of a yield stress. In this case, the formation of field-induced aggregates, involving the 
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largest particles in the size distribution are necessary to explain the magnetoviscous effect 

[13]. 

More recent work has mostly focused on MRFs with 𝜆 ≫ 1. Under this premise, 

magnetostatic potential energy of interaction overcomes thermal energy promoting the 

formation of field-guided structures. In the case of shearing flows under uniaxial DC 

fields, models based on single-particle width gap-spanning chains predict a negligible 

particle size effect on the apparent yield stress. This is because the shear stress is 

proportional to the horizontal force required to separate two particles under affine motion 

(∝ 𝑎2 in dipolar approximation) and to the number of chains per unit surface (∝ 𝑎−2). 

However, contrary to the theoretical expectation, some experimental works demonstrate 

that the larger the particle size the larger the yield stress under fields for 𝜆 ≫ 1 [14-17]. 

Up to now, there is not a commonly accepted explanation for this observation. In this 

manuscript we will give an explanation in terms of the mean magnetization increase with 

particle size. 

To the best of our knowledge, the borderline between FF and MRF behavior (i.e. the 

region for 𝜆 ≈ 1) has not been studied in the literature yet for dispersions of solid magnetic 

particles under a rheological perspective. In this manuscript we aim to explore the effect 

of particle size and magnetic field strength in this particular region. For this purpose we 

carefully prepare a wide range of highly monodisperse spherical magnetic particles 

having different diameters from 8 nm to 370 nm. This requires the use of different 

syntheses routes. These particles are then characterized in detail. Next, the particles are 

dispersed in water where the physicochemical conditions (and therefore the colloidal 

stability) can be easily controlled and finally the rheological properties of the suspensions 

are evaluated under magnetic fields. Results are then scaled using Peclet and Mason 

numbers for small and large particle sizes, respectively. 

10.2 Experimental 

10.2.1 Synthesis of the magnetic particles  

Magnetic particles used in this work are based on magnetic iron oxides -either maghemite 

or magnetite (γ-Fe2O3 or Fe3O4)- because of two reasons. On the one hand, because they 

are more stable to oxidation if compared to pure metals (Fe, Co and Ni). On the other 

hand, because of the versatility of the synthesis procedures. In particular, those used in 

this work are based on precipitation in aqueous media which is very simple if compared 

to thermal decomposition or multistep synthesis. We followed three direct methods 

starting from different iron oxidation states (Fe(II)+Fe(III), Fe(II) and Fe(III)) for the 

preparation of magnetic particles kinetically stable in aqueous media with sizes from 8 

nm to 370 nm. 

The smallest nanoparticles (8 nm and 12 nm) used in this work were obtained following 

a modification of Massart's coprecipitation protocol [18]. Briefly, magnetite particles 

were synthesized by adding 425 mL of an aqueous solution of FeCl3·6H2O (0.09 M) and 

FeCl2·4H2O (0.054 M) to 75 mL of alkaline medium. The particle size can be tuned by 

the nature of the alkaline medium, the addition rate, and the aging time [19]. Thus, fast 

addition rates (40 mL/s) and NH4OH (25 %) alkaline solutions were used to produce the 

8 nm particles. Slow addition rates (0.2 mL/s) over NH4OH (25 %) followed by a heating 

process at 90 ºC for 1 h were used to synthesize 12 nm particles (see Table 10.1). After 

every synthesis the magnetic particles were washed three times with distilled water and 
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collected with the help of a permanent magnet. Then, an optimized oxidizing (so-called 

acidic) treatment was carried out. This procedure is based on an oxidation-dispersion 

process previously reported in the literature [20,21]. Through a series of partial 

dissolution-recrystallization steps, we oxidized magnetite to maghemite (γ-Fe2O3). This 

step enhanced both the kinetic stability of the magnetic particles and their magnetic 

properties. It also reduced the size distribution to a polydispersity index (PDI) of around 

0.2. Note that the PDI is defined as the ratio between the standard deviation (σ) and the 

mean particle diameter as obtained by TEM (DTEM). Briefly, 300 mL of HNO3 (2M) were 

added to 500 mL of the dispersion produced previously, and the mixture was stirred for 

15 min. Then, the supernatant was removed by magnetic decantation and 75 mL of 

Fe(NO3)3 (1 M) and 130 mL of water were added to the magnetic particles. The mixture 

was heated to boiling temperature and stirred for 30 min. The particles were then cooled 

to room temperature and, by magnetic decantation, the supernatant was substituted by 

300 mL of HNO3 (2 M) and the solution stirred for 15 min. Finally, the magnetic particles 

were washed three times with acetone and redispersed in water. A rotary evaporator was 

used to remove any acetone waste as well as for concentrating the sample. 

Size 

(nm) 
Media 

Iron salt 

nature 
[Fe] (M) 

Base 

salt 

nature 

[OH-] 

(M) 

[OH-] 

excess 

(M) 

Oxidant 

reductant 

salt nature 

[NO3
-] 

(M) 

8 
100% H2O 

fast addition rate 
FeCl2/ FeCl3 

[Fe3+]=0.054 

[Fe2+]=0.09 
NH4OH 0.25 ⸺ ⸺ ⸺ 

12 
100% H2O 

slow addition rate 
FeCl2/ FeCl3 

[Fe3+]=0.054 

[Fe2+]=0.09 
NH4OH 0.25 ⸺ ⸺ ⸺ 

30 30% EtOH FeCl2 [Fe2+]= 0.05 NaOH 0.121 0.02 NaNO3 0.05 

43 100% H2O FeSO4 [Fe2+]= 0.2 NaOH 0.422 0.02 NaNO3 0.2 

84 100% H2O FeSO4 [Fe2+]=0.032 NaOH 0.067 0.001 NaNO3 0.1 

116 Ethylene glycol FeCl3 [Fe3+]=0.213 
CH3CO

ONa 
0.76 ⸺ 

Ethylene 

glycol 
⸺ 

370 25% EtOH FeSO4 [Fe2+]= 0.2 KOH 0.361 -0.043 KNO3 0.2 

Table 10.1: Synthesis conditions for the fabrication of the iron oxide nanoparticles. All 

concentrations correspond to the final concentration. 

To obtain particles with sizes from 30 to 370 nm we used a procedure consisting in the 

precipitation of an iron (II) salt (FeCl2 or FeSO4) in a basic media (NaOH or KOH) and 

in the presence of a mild oxidant (NaNO3 or KNO3) under stirring in an oxygen free 

atmosphere (glove box under nitrogen) giving rise to magnetite nanoparticles [22,23]. 

The reaction was carried out in a 500 ml double-walled reactor heated by means of a fluid 

set to 90 ºC using a thermostat recirculating bath. In a typical experiment, two solutions 

were prepared independently before the precipitation: (a) 200 ml of water containing OH- 

and NO3
- to obtain a final concentration of 0.2 M OH- and 0.02 M OH- excess. The 

hydroxyl ion excess concentration [OH-]excess was calculated using [OH-]excess = [OH-] − 

2[Fe2+] − 𝑛[H+] where 𝑛 is 1 or 2 depending on the monoprotic or diprotic character of 

the acid used to dissolve the iron salt [24]. (b) 50 ml of Fe2+ in 10-2 M of acid solution 

(H2SO4, HCl depending on the iron salt) to obtain a final concentration value of 0.2 M. 

The dissolution of Fe2+ was carried out in acid medium immediately before its use to 

prevent uncontrolled hydrolysis. The iron salt concentration was selected on the basis of 

previous results [4,22,24] (see Table 10.1). The iron (II) solution (b) was quickly added 

to the basic solution (a) under stirring, obtaining a final volume of 250 ml. When the 
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addition was completed the green rust formed initially was mechanically stirred for 15 

min. After this time, this reaction intermediate was aged at 90 ºC for 24 h without agitation 

to obtain magnetite nanocrystals. At the end of the synthesis the system was left to cool 

and the nanocrystals were separated by magnetic decantation followed by several 

washings with distilled water. The oxidation rate and, therefore, the average particle size, 

was controlled by changing the reaction conditions, such as the iron salt and base 

concentration (from 0.05 to 0.2 M and from 0.06 to 0.4 M, respectively), the nature of the 

iron, base and nitrate salt and the use of mixed solvents (water and different proportions 

of water/ethanol) (see Table 10.1). The stabilities of the different green rusts and the 

Fe(II) dehydration and oxidation processes are responsible for the differences in 

magnetite particles sizes [23]. 

The 116 nm sample was synthesized by a polyol method. In this process, a precursor 

compound is suspended in a liquid polyol. The suspension is stirred and heated to a given 

temperature that reaches the boiling point of the polyol. During this reaction, the iron salt 

becomes solubilized in the polyol, forms an intermediate, and is then reduced to form iron 

oxide nuclei that will then evolve to form the particles. Typically, 2.702 g of FeCl3 and 

0.75 g of trisodium citrate were first dissolved in ethylene glycol (47 mL), afterward 4.89 

g of sodium acetate was added with magnetic stirring [25]. The mixture is stirred 

vigorously for 30 min and then sealed in a Teflon-lined aluminium autoclave (125 mL 

capacity) and maintained at 200 °C for 10 h. It is then allowed to cool down to room 

temperature and the black product was washed 3 times with distilled water by 

centrifugation. 

10.2.2 Characterization of the magnetic particles 

Particle size and shape were determined by transmission electron microscopy (TEM) 

using a 200 keV JEOL-2000 FXII microscope. TEM samples were prepared by placing 

one drop of a dilute water suspension of magnetic particles on a copper grid covered with 

a perforated carbon film and allowing the solvent to evaporate slowly at room 

temperature. The mean particle size and distribution were evaluated by measuring the 

largest internal dimension of at least 300 particles. Afterwards, data were fitted to a log 

normal or Gaussian distribution to obtain the mean size (DTEM) and the standard deviation 

(σ) representative of the absolute error of the measurement. 

The crystal structure of the samples was identified by X-ray powder diffraction. The test 

was performed in a Bruker D8 Advance powder diffractometer using Cu Kα radiation 

with an energy-discriminator (Sol-X) detector. The patterns were collected between 10° 

and 70° in 2θ. The XRD spectra were indexed to an inverse spinel structure. The average 

crystallite size was calculated by Scherrer’s equation using the half width of the (311) X-

ray diffraction peak using the utilities of the automatic powder diffraction computer 

program (APD) from Phillips. The error in the crystallite sizes obtained by use of the 

Scherrer’s equation is ± 0.1 nm and is related to the instrumental line width of the 

diffractometer (Δ2θ = 0.11°). 

The magnetic characterization of the powders was carried out using a vibrating sample 

magnetometer (MagLabVSM, Oxford Instrument). Coercive field and saturation 

magnetization values were obtained from the hysteresis loops recorded at room 

temperature (290 K) after applying a magnetic field of ± 4000 kA/m. Saturation 

magnetization values were evaluated by extrapolation to infinite field the experimental 

results obtained in the high field range where the magnetization linearly decreases with 
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1 𝐻⁄ . Samples were prepared by packing the powder into pellets. The remnant field of the 

VSM is around 1 kA/m. 

10.2.3 Colloidal stability of the magnetic suspensions 

The magnetic particles were thoroughly dispersed in milli-Q water using a centrifugal 

mixer at a particle concentration of 𝜙 = 0.011  0.001 (1.1 vol%). We assumed a particle 

density of 5 g/cm3. A careful mixing protocol was especially important in the case of 

particles having intermediate sizes. 

The pH of the suspensions was measured using a Metrohm pH meter (model 713) and the 

electrokinetic properties of the suspensions were determined with a Zetasizer Nano ZS 

(Malvern instrument). In particular, we measured the conductivity, hydrodynamic 

diameter and electrophoretic mobility. The Zeta potential was calculated using the 

Smoluchowski formula. The turbidity of the suspensions was determined using a multiple 

light scattering technique (Turbiscan Classic MA 2000, Formulaction, France). In these 

experiments, the suspensions are placed inside a cylindrical plastic tube and scanned from 

the bottom to the top with a pulsed near-infrared light source. The light transmitted 

through the sample is measured using an optical sensor along the height of the cell during 

time. 

10.2.4 Colloidal suspension rheometry 

The rheological evaluation of the suspensions was carried out using parallel disks of 

diameter 20 mm and gap thickness of 300 µm in a MCR 501 stress-controlled Anton Paar 

rheometer with the MRD70/1T geometry. In this fixture, the magnetic field is applied 

perpendicular to the plates in the velocity gradient direction. External magnetic field 

strengths investigated ranged from 0.8 to 137 kA/m. All the tests reported in this 

manuscript were performed under isothermal conditions at room temperature. Shearing 

flow tests were carried out using the following procedure: (i) the sample was 

preconditioned at a constant shear rate of 100 s-1 for 20 s, (ii) the magnetic field was 

applied instantly and the suspension was left to structure for 20 s, (iii) the torque was 

logarithmically ramped at a rate of 5 points/decade from 10-4 to 102 mN·m with a 

measuring time of 5 seconds per data point. The tests where stopped if the shear rate 

exceeded 1000 s-1. All measurements reported in this work correspond to torques larger 

than 0.1 N·m and shear rates above 0.2 s-1. 

10.3 Theory and simulations 

10.3.1 Ferrofluid (FF) limit 

As stated in Sec. 10.1, FFs are dispersions of SP particles in a liquid carrier. In the dilute 

case, FFs are essentially Newtonian and the shear viscosity does not depend much on the 

shear rate. From a rheological perspective, the effect of magnetic field strength is 

negligible if the particles are intrinsically SP. Only in the case of extrinsic SP particles 

the viscosity slightly increases with the field as described by the rotational viscosity 

model [12]. Independently on the field strength, the rheological behavior of FFs should 

be scaled using the Peclet number similarly to Hard Sphere systems [26]: 

 Pe =
�̇�

𝐷0 𝑎𝐻
2⁄
=

6π𝜂c�̇�𝑎𝐻
3

𝜅𝐵𝑇
 (10.1) 
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Here, �̇� is the magnitude of the shear rate tensor, 𝐷0 is the diffusion coefficient of an 

isolated particle, 𝑎𝐻 is the hydrodynamic radius of the particles, 𝜂c is the viscosity of the 

carrier fluid (water), 𝜅𝐵 is Boltzmann constant and 𝑇 is the absolute temperature. In Eq. 

(10.1) only the translational diffusion is considered because it is expected to dominate 

over the rotational one. The Peclet number characterizes the importance of the shear rate 

compared to the natural relaxation time due to Brownian motion. 

10.3.2 Magnetorheological (MR) limit 

Under the Mean Magnetization Approximation, the rheological performance of 

conventional MRFs, constituted by magnetic particles in a non-magnetic liquid carrier, is 

governed by the so-called Mason number [27]: 

 Mn =
72𝜂𝑐�̇�

𝜇0𝜇𝑐𝑟〈𝑀𝑝〉
2
 (10.2) 

Here, 𝜇0 is the permeability of vacuum, 𝜇𝑐𝑟 is the relative permeability of the liquid 

carrier (𝜇𝑐𝑟~ 1 in the case of water) and 〈𝑀𝑝〉 is the mean magnetization of the particles. 

It is worth to remark that the Mason number Mn (Eq. (10.2)) is related to the Peclet 

number Pe (Eq. (10.1)) via Mn𝜆 = 2Pe 3⁄  with the λ ratio expressed as follows [27,28]: 

 𝜆 =
𝜋𝜇0𝜇𝑐𝑟𝑎

3〈𝑀𝑝〉
2

18𝜅𝐵𝑇
 (10.3) 

Here, 𝑎 is the radius of the magnetic core of the particle (typically 𝑎 ≲ 𝑎𝐻). 

The rheological behavior of conventional MRFs in a shearing flow is well described by a 

Casson plastic equation [28]. This equation is a limiting case of the Structural Viscosity 

Model proposed by Ref. [29] for 𝜂0 ≫ 𝜂∞. In dimensionless form, the Casson equation 

can be written as follows: 

 
𝜂

𝜂∞
= 1+ (

Mn

Mn∗
)
−1

+ 2 (
Mn

Mn∗
)
−1 2⁄

 (10.4) 

Here, 𝜂 is the shear viscosity, 𝜂∞ is the high shear viscosity, and Mn∗ is a critical Mason 

number that determines the transition from magnetostatic to hydrodynamic control of the 

suspension structure. Mn∗ is related to the apparent yield stress 𝜏𝑦 as follows: 

 Mn∗ =
72𝜏𝑦

𝜇0𝜇𝑐𝑟〈𝑀𝑝〉2
𝜂𝑐
𝜂∞

 (10.5) 

For dilute suspensions and low magnetic field strengths, the Mean Magnetization 

Approximation becomes exact. In this case 𝜂∞ ≈ 𝜂𝑐 and a linear relationship exists 

between Mn∗ and 𝜙 [27]: Mn∗ = 𝐴𝜙𝐵 where 𝐴 = 0.235 and 𝐵 = 0.972 (note that 〈𝑀𝑝〉 is 

a weak function of the volume fraction [27]). Using this expression for the particle 

concentration of interest in this work, 𝜙 = 0.011, we get Mn∗ = 0.003. 

10.3.3 Particle level simulations 

Simulations were performed to ascertain the role of the particle and magnetic moment 

rotation in the suspension viscosity. Two sets of DEM simulations [30] were performed 

in SimPARTIX software package (https://www.simpartix.com) by fixing or not the 

particle magnetic moment to the particle body. In addition, to decouple these results from 

https://www.simpartix.com/
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the effect of magnetization enhancement, in both sets of simulations, magnetic moment 

magnitude was constant 𝑚 = 𝑉𝑀𝑆 with 𝑀𝑆 = 497.76 kA/m. 

Firstly, as a control, the magnetic moment was supposed to be always aligned with the 

applied field and particle rotation was not considered. Therefore, only translational 

equations of motion for each particle are solved: 

 𝑚𝑝�̈�𝑖 = 𝑭𝑖 (10.6) 

Here 𝑚𝑝, �̈�𝑖 and 𝑭𝑖 are ith-particle’s mass, acceleration and total force acting on it 

respectively. In these simulations, particles interact with other particles, walls and carrier 

fluid through magnetic dipolar, Hertz repulsive and Stokes’ drag forces: 

 

𝒇𝑖𝑗
𝑚𝑎𝑔

=
3𝜇0
4𝜋

[
(𝒎𝑖 ∙ 𝒎𝑗)𝒓𝑖𝑗 + (𝒎𝑗 ∙ 𝒓𝑖𝑗)𝒎𝑖 + (𝒎𝑖 ∙ 𝒓𝑖𝑗)𝒎𝑗

𝑟𝑖𝑗
5

− 5
(𝒎𝑖 ∙ 𝒓𝑖𝑗)(𝒎𝑗 ∙ 𝒓𝑖𝑗)𝒓𝑖𝑗

𝑟𝑖𝑗
7

] 

 

 

(10.7a) 

 𝒇𝑖𝑗
𝑟𝑒𝑝 =

2

3

𝐸

1− 𝜈2
√
𝑎

2
ℎ𝑖𝑗

3/2 𝒓𝑖𝑗

𝑟𝑖𝑗
 (10.7b) 

 𝒇𝑖
𝑑𝑟𝑎𝑔

= −6𝜋𝜂𝑐𝑎(�̇�𝑖 − 𝒖(𝒓)) (10.7c) 

where 𝒎𝑖 = 𝑉𝑴𝑖 is the ith-particle dipole moment, 𝑉 its volume and 𝑴𝑖 its 

magnetization. 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗 is the relative position of ith-particle respect to jth-particle, 

𝐸 is the Young’s modulus, 𝜈 is the Poisson’s ratio, ℎ𝑖𝑗 = 2𝑎 − 𝑟𝑖𝑗 is the interpenetration 

distance during a contact and 𝒖(𝒓) is the background carrier fluid velocity. 

Secondly, in another set of simulations coercivity was also taken into consideration by 

solving, together with previous equations, the rotational degrees of freedom: 

 𝐼�̈�𝑖 = 𝑻𝑖 (10.8) 

Here 𝐼 is the inertia tensor of the particles, �̈�𝑖 is the angular acceleration of the ith-particle 

and 𝑻𝑖 = 𝒎𝑖 × 𝑩(𝒓𝑖) is the magnetic torque acting on it. Here 𝑩(𝒓𝑖) is the local magnetic 

induction [30] (the applied one plus contributions from surrounding particles dipoles) at 

the i-th particle position 𝒓𝑖: 

 𝑩(𝒓𝑖) = 𝑩0 +∑
𝜇0
4𝜋
[3
(𝒎𝑗 ∙ 𝒓𝑖𝑗)𝒓𝑖𝑗

𝑟𝑖𝑗
5

−
𝒎𝑗

𝑟𝑖𝑗
3
]

𝑗

 (10.9) 

In this set of simulations, magnetic moment has the same magnitude than in the previous 

one but, in contrast, its direction is governed by the rotation of the particle. 

Note that the purpose of these simulations is solely to investigate the difference between 

(i) a magnetic moment which is always aligned with the external field and (ii) a magnetic 

moment that is bound to an axis of the particle and, thus, causes a torque on the particle 

if not aligned with the external field. To focus on this property, the numerical model is 

otherwise chosen to be as simple as possible – only consisting of magnetic and repulsive 

interaction as well as fluid drag. Brownian motion is omitted and, thus, the simulations 

represent athermal suspensions in the limit of large λ ratios. In accordance to the neglect 

of Brownian motion the model particle size is chosen in the micron range. 



200 

 

Initially, 𝑁 =1000 particles of radius 𝑎 = 2.5 µm are randomly distributed (and also their 

magnetization randomly oriented if it applies) in a box of volume 𝑉 = 127.5 × 235 × 

235 µm3 (volume fraction of 1 vol%). At time 0, a magnetic induction 𝑩0 of 67 kA/m 

∙ 𝜇0 in the 𝑥-direction (to generate anisotropic aggregates) and a simple shear flow 

𝒖(𝒓) = �̇�𝑥�̂� are applied. The magnetic induction corresponds to the second largest 

magnetic field strength used in the experiments. Equations of motions are numerically 

integrated using a velocity Verlet scheme. 

The simulation box is bounded in the 𝑥-direction by two parallel walls also made of 

particles (same properties than the suspended ones) but without magnetic response and at 

a prescribed velocity to match fluid flow velocity 𝒖(𝒓) at these boundaries. In the rest of 

box limits, periodic boundary conditions are applied. In Table 10.2, we summarize the 

rest of simulation parameters. 

𝑉 Simulation box volume 127.5 × 235 × 235 µm3 

𝑁 Number of particles 1000 

𝜙 Volume fraction 0.01 

𝑎 Particle’s radius 2.5 µm 

𝜌 Particle’s density 7800 kg/m3 

𝐸 Young modulus 1 GPa 

𝜈 Poisson’s ratio 0.25 

𝑀𝑆 Particles’ saturation magnetization 497.76 kA/m 

𝐵0 Applied magnetic induction 67 kA/m ∙ 𝜇0 

𝑟𝑐𝑢𝑡 Cutoff distance for the magnetic force 8𝑎 = 20 µm 

𝜂𝑐 Carrier fluid’s viscosity 1 mPa·s 

Δ𝑡 Time step (adaptively calculated) ~ 7 ns 

Table 10.2: Simulation parameters. Only saturation magnetization is taken from 

magnetite. The remaining parameters are chosen, in a feasible range, to speed up 

simulations while preserving all relevant physical mechanisms. 

Once the system has reached a stationary state, the resulting shear stress is computed as 

follows: 

 𝜏 = 𝜂𝑐�̇� −
1

𝑉
∑(𝒓𝑖𝑗 ∙ �̂�)[(𝒇𝑖𝑗

𝑚𝑎𝑔
+ 𝒇𝑖𝑗

𝑟𝑒𝑝) ∙ �̂�]

𝑖,𝑗>𝑖

 (10.10) 

The first term in the RHS stands for viscous stress due to the background fluid while the 

second one comes from internal forces in the particles system (𝑖 index only runs over 

suspended, i.e. magnetic, particles). 
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10.4 Results and discussion 

10.4.1 Morphological and structural characterization of the particles 

A schematic of the experimental synthesis conditions used to obtain the particles is 

reported in Table 10.1. A dramatic change in particle size was observed depending on the 

synthesis method. The smallest nanoparticles were obtained by coprecipitation of 

Fe2+/Fe3+ salts and the difference in the particle size was achieved by slowing the base 

addition rate. On the other hand, magnetic nanoparticles with increasing diameters from 

30 nm up to 370 nm were synthesized by oxidative precipitation of a Fe2+ salt by 

controlling the iron salt concentration, which is related to the excess of Fe2+ or OH- in the 

initial reaction media (Table 10.1, Fig. 10.2) [24]. Thus, larger spherical particles of 370 

nm in diameter were obtained in Fe2+ excess. However, in excess of OH-, the largest 

magnetic particles were obtained using FeSO4, KOH and KNO3 while the smallest ones 

using FeCl2, NaOH and NaNO3 showing the effect of the counter ions in the particle 

growth process [23]. Finally, samples with 116 nm particle size were prepared by a polyol 

method. In this case each particle consists on aggregates of smaller cores. In view of Fig. 

10.2 particle shape also changes when changing the particle size. However, we do not 

expect any influence of the particle shape in the rheological behavior of the suspensions 

because the suspensions are very dilute (𝜙 = 0.011  0.001). 
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Figure 10.2: Micrographs and size histograms of the particles used in this work. 

X-ray diffractograms for the samples prepared in water and water/ethanol media are 

shown in Fig. 10.3. Independently on the iron salt precursor, the formation of crystalline 

magnetite particles was confirmed by the X-ray analysis. All peaks were assigned to a 
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spinel structure similar to magnetite (JCPDS 890691). Crystal sizes calculated from the 

(311) peak broadening were similar to the particle sizes obtained by TEM except for 116 

nm sample, revealing the formation mechanism of these particles by aggregation of much 

smaller subunits (Table 10.3). According to this, the diffraction peaks become broader as 

the particle size decreases except for 116 nm sample. 
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Figure 10.3: X-ray diffraction patterns for particles of different sizes. 

10.4.2 Magnetic properties of the particles 

-800 -600 -400 -200 0 200 400 600 800
-500

-375

-250

-125

0

125

250

375

500

M
 (

k
A

/m
)

H
0
 (kA/m)

D (nm)

 8

 12

 30

 43

 84

 116

 370

 

Figure 10.4: Magnetization curves at room temperature for different particle sizes. 

Figure 10.4 contains magnetization curves at room temperature. Very different behaviors 

were observed depending on the particle size. Hysteretic parameters are summarized in 

Table 10.3 for magnetic particles with different sizes. In general, it can be observed that 

saturation magnetization (𝑀𝑆) increases with increasing particle size from 308.1 to 496.6 

kA/m for 370 nm particles, a value close to the one reported for bulk magnetite [31] (see 

Fig. 10.5a). Although saturation magnetization is described as an intrinsic magnetic 

property, a reduction with the nanoparticle size, as this observed in our samples, is 
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frequently showed and may explain why some experimental works exhibit a larger yield 

stress for larger particle sizes also for 𝜆 ≫ 1 [14-17]. The reduction in 𝑀𝑆 is significant 

for particles smaller than 20 nm and accounts for the increase in surface/volume ratio as 

the nanoparticle size decreases [21]. Surface effects reducing the 𝑀𝑆 value are related to 

the presence of a disordered iron oxide surface layer around the particle, that seems to be 

the case here, or by the bonding of organic molecules when surfactants are present [32]. 

In the last case, 𝑀𝑆 could increase or decrease as the particle size decreases. 

Diameter 

(nm) 

TEM size 

(nm) 

XRD 

size 

(nm) 

Saturation 

magnetization 

𝑀𝑆 (kA/m) 

Coercive field 

𝐻𝐶 (kA/m) 

Initial magnetic 

susceptibility 𝜒𝑖 

8 8.3 (0.21) 8 308.1 2.1 3.9 

12 12.1 (0.19) 12 326.1 1.7 4.2 

30 30.4 (0.22) 31 445.4 3.9 5.8 

43 42.9 (0.17) 42 469.3 6.4 6.6 

84 84.4 (0.15) 81 496.1 8.5 5.9 

116 116.2 (0.21) 11 314.0 3.9 6.1 

370 369.7 (0.23) 348 496.6 4.4 2.9 

Table 10.3: Experimental results on mean particle diameters obtained by TEM and 

XRD and magnetic properties. Magnetic iron oxide density: 5 g/cm3 

Table 10.3 and Fig. 10.5a also shows the variation of the coercivity (𝐻𝐶) as a function of 

the nanoparticle size. This extrinsic property depends on the size, shape and interactions 

between the particles [33]. As expected, a maximum in the coercive field is observed that 

determines the transition between single- to multidomain behavior. In the single-domain 

region the magnetization of the particle is reversed through spin rotation. However, in 

the multidomain region, the magnetization is reversed through domain wall motion. In 

the curve we can identify up to four different regions. These regions are schematically 

represented in Fig. 10.1. 

1) The smallest nanoparticles (below 12 nm) showed a SP behavior with nearly zero 

coercivity and remanence. In this region the magnetic moment of the particles 

rotates continuously changing orientation because of the importance of thermal 

motion. 

2) For larger particles (above 12 nm), coercivity increases as ∝ −𝑎−3 2⁄ . In our 

particular case it goes from 1.7 kA/m (12 nm) up to 8.5 kA/m (84 nm). Similar 

observations have been reported in the literature for magnetite particles. An 

increase in coercivity, at room temperature, from 0 kA/m to 4 kA/m has been 

measured when the size is increased from 13 nm to 45 nm [34,35]. 

3) Then, the coercive field reaches a maximum for a particle size of approximately 

84 nm diameter. This result is in good agreement with theoretical calculations by 

[36] that predicted an upper (76 nm) and lower (50 nm) critical size for the 

maximum in the coercivity. The theoretical critical size for single- to multidomain 

transition for magnetite is typically around 100 nm [37]. 
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4) Finally, the coercive field decreases as ∝ 𝑎−1 to reach a value of 4.4 kA/m in the 

case of 370 nm particles. This low coercive field corresponds to a relatively small 

field energy to make the domains walls move. 

As expected, the variation of the initial susceptibility 𝜒𝑖 with particle size is similar to the 

coercivity (see Table 10.3). We observe an increase from 3.9 for 8 nm up to 6.6 for 43 

nm nanoparticles which can be due to the reduction in surface area when increasing the 

nanoparticle size. However, 𝜒𝑖 decreases for particles of 84 to 370 nm (𝜒𝑖 = 5.9 and 2.9, 

respectively). 
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Figure 10.5: a) Saturation magnetization (𝑀𝑆) and coercivity values (𝐻𝐶) at room 

temperature for particles with different sizes. b) Particle magnetization as a function of 

the particle diameter at different magnetic field strengths. 

More important than the initial susceptibility is the magnetization of the particles because 

it appears in the dimensionless numbers governing the rheological response (see Eqs. 

(10.2) and (10.3)) and because it incorporates a field dependence. As expected, the 

magnetization follows a similar trend to the coercivity. Experimental results are shown in 

Fig. 10.5b for different field strengths. Again, there is a critical particle size corresponding 

to the single- multidomain transition region. The smaller the particle size the lower the 
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magnetization as a result of the increasing importance of thermal motion. Above the 

critical size, particles contain magnetic domains and the net contribution is not zero under 

field. However, the magnetization is always smaller than the magnetization for particles 

below the critical size where a single domain exists. The point is that in multidomain 

particles the external field competes with the demagnetizing field and therefore the 

magnetization decreases. The observed maximum in the magnetization curve shown in 

Fig. 10.5b is closely related to the maximum in the coercive field. Importantly, these 

results are applicable whatever the material (being magnetically soft or hard). 

10.4.3 Colloidal stability 

Physico-chemical characteristics of the suspensions prepared are summarized in Table 

10.4. The two smallest particles exhibited a positive charge while the rest where 

negatively charged. According to DLVO theory [38], data contained in Table 10.4 suggest 

that in all suspensions studied, the particles are highly charged (Zeta potential larger than 

20 mV) and the suspensions should remain stable against flocculation. However, the 

hydrodynamic sizes of the particles in the transition between mono- and multidomain 

regions are clearly larger than the sizes observed in TEM. This is due to the formation of 

aggregates induced by remnant magnetostatic interactions that overcome electrostatic 

double layer repulsions. 

Diameter 

(nm) 
pH 

Electrophoretic 

mobility 

(µm·cm/V·s) 

Conductivity 

(mS/cm) 

Zeta 

potential 

(mV) 

Hydrodynamic/TEM 

diameter 

8 1.3 3.7 9.5 47.0 6.3 

12 1.5 3.1 3.5 39.5 5.3 

30 10.3 -2.9 0.603 -36.7 30.8 

43 9.7 -3.2 1.943 -41.3 19.1 

84 8.4 -3.3 0.189 -42.3 11.3 

116 4.1 -3.2 0.967 -40.7 1.5 

370 5.8 -1.6 0.007 -20.2 3.4 

Table 10.4: Physico-chemical properties of the magnetic colloids investigated in this 

work. The particle concentration was fixed at 𝜙 = 0.011. The last column stands for the 

ratio between the hydrodynamic diameter (measured with a Zetasizer Nano ZS) and the 

TEM diameter (second column in Table 10.3) 

Turbidity data confirm that suspensions in the transition region are not kinetically stable. 

Results are shown in Fig. 10.6 in the form of sediment height (ℎ ℎ0⁄ ) as a function of 

time. Here, ℎ is the height of the sediment-supernatant interface and ℎ0 is the initial height 

of the suspension. The transmission level remains constant as a function of time for the 

smaller and larger particles. This implies that the suspensions are fully stable and particles 

do not appreciably aggregate nor sediment in the time range investigated. However, 

suspensions prepared with particles in the single- multidomain transition region (30 - 84 

nm) were not stable and ℎ ℎ0⁄  decreased with time. A more appropriate way to quantify 

how unstable the suspensions are is through the calculation of the migration rate of the 

particles at the initial stage of the sedimentation process. Results are included as an inset 
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in Fig. 10.6. They demonstrate that, as expected, sedimentation is clearly important in the 

transition region. 
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Figure 10.6: Sediment height (ℎ ℎ0⁄ ) as a function of time for magnetic colloids in the 

single- multidomain transition region. Inset: migration rate as a function of particle size. 

10.4.4 Rheological behavior 

Field-induced gap-spanning structures are only expected when the 𝜆 ratio is sufficiently 

large. In Table 10.5 we show the calculated 𝜆 ratios for all the sizes explored at the 

different magnetic field strengths investigated. According to the 𝜆 = 1 criteria, only the 

largest particles under the presence of the largest fields result in the formation of field-

induced structures (MRF limit). Other samples should form loose chain-like structures 

that do not connect the shearing plates and therefore a yield stress would not be observed 

(FF limit). 

𝐻 
(kA/m) 

Diameter (nm) 

8 12 30 43 84 116 370 

0.8 3.03 × 10-5 1.13 × 10-4 3.35 × 10-3 0.014 0.14 0.20 0.57 

5.2 0.001 0.004 0.14 0.58 5.67 7.35 26.12 

11.9 0.005 0.02 0.69 2.84 26.55 31.26 149.19 

18.7 0.01 0.04 1.59 6.42 58.11 63.28 390.52 

39.0 0.03 0.13 5.66 21.89 183.95 171.17 1955.29 

66.9 0.07 0.25 11.92 44.66 356.65 301.36 6105.88 

136.9 0.13 0.48 20.19 74.66 608.80 513.79 21074.12 

Table 10.5: 𝜆 ratio for suspensions of magnetic particles having different sizes at 

different magnetic field strengths (𝐻). The Mean Magnetization Approximation is used 

in the calculation of the 𝜆 ratio. The shaded region corresponds to 𝜆 < 1, while the 

white region corresponds to 𝜆 > 1. 



207 

 

10
1

10
2

10
3

10
-1

10
1

10
3

10
5

10
7

 

 





H
=

0



H
=

0
 (

-)

Diameter (nm)

H
0
 (kA/m)

 0.80

 5.22

 11.94

 18.66

 39.00

 66.85

 136.87

 

Figure 10.7: Magnetoviscous effect, [𝜂(𝐻) − 𝜂(𝐻 = 0)] 𝜂(𝐻 = 0)⁄ , as a function of the 

particle diameter for a constant stress level (1.61 Pa) and for different magnetic field 

strengths. 
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Figure 10.8: Dimensionless viscosity (𝜂 𝜂∞⁄ ) as a function of Peclet number (Pe) for 

different particle diameters and 𝜆 < 1. Data correspond to �̇� > 0.2 s-1. A scaling is only 

observed in the superparamagnetic (SP) region (i.e. FF limit). 

The magnetoviscous effect is better quantified here using the relative viscosity as follows: 

 𝑀𝑉𝐸 =
𝜂(𝐻 ≠ 0) − 𝜂(𝐻 = 0)

𝜂(𝐻 = 0)
 (10.11) 

This number measures the influence of the magnetic field strength on the viscosity of 

magnetic colloids compared to the viscosity in the absence of a field. As observed in Fig. 

10.7, the 𝑀𝑉𝐸 experiences a maximum in a particle size that matches very well with the 

typical size where both the coercivity and the magnetization reaches a maximum (see Fig. 

10.5). Obviously, a larger magnetization of the particles must result in a larger field-

induced viscosity and therefore a larger 𝑀𝑉𝐸. This is an important result that 
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demonstrates another route for the enhancement of the MR effect; for a given magnetic 

field strength, the use of particle sizes in the transition from the single- to multidomain. 

Another convenient way to plot viscosity curves is through the use of the Peclet number 

Pe and Mason number Mn [27]. In Fig. 10.8 we show dimensionless curves as a function 

of Pe for 𝜆 < 1. Dimensionless viscosity curves do not collapse for all particle sizes as 

expected because magnetostatic interparticle forces predominate over thermal motion at 

intermediate and large sizes. However, in suspensions formulated with SP particles (8 

and 12 nm diameter, in the FF limit) the collapse is reasonably good. This was expected 

because in this size range these suspensions behave as nearly Brownian Hard Spheres. 
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Figure 10.9: Dimensionless viscosity (𝜂 𝜂∞⁄ ) as a function of Mason number (Mn) for 

different particle diameters. a) 𝜆 < 1, b) 𝜆 > 1. Data correspond to �̇� > 0.2 s-1. In the 

calculation of Mn the first magnetization curves were used for particles of diameters 30 

nm, 43 nm, 84 nm and 370 nm. In contrast, the Frohlich-Kennelly expression [31] was 

used for particles of diameters 8 nm, 12 nm and 116 nm. 

In Fig. 10.9 we show the scaling of the dimensionless viscosity curves with the Mason 

number Mn. For the calculation of Mn the mean magnetization of the particles 〈𝑀𝑝〉 was 
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taken from the magnetization of the powders (Fig. 10.4). As expected, the scaling is rather 

poor for 𝜆 < 1. However, for 𝜆 > 1 the collapse is rather good in agreement with the 

literature on dilute conventional MR fluids [27]. These results are also in good qualitative 

agreement with Ref. [39]. They suggested a scaling with Mn ∝ 𝜂𝑐�̇�/(𝜇0𝜇𝑐𝑟𝑀𝐻0) being 

𝑀 the magnetization of the ferrofluid (i.e. Langevin expression). This scaling is 

equivalent to Eq. (10.2) if we bear in mind that for dilute suspensions at reasonably small 

fields 𝑀 = 𝜙〈𝑀𝑝〉 and 〈𝑀𝑝〉 ≈ 3𝛽𝐻0 (see Fig. 10.11 in Sec. 10.6). 

Together with the experimental data, in Fig. 10.9b we also show the predictions according 

to the Casson model (Eq. (10.4)) with Mn∗ = 0.003. This critical Mason number Mn∗ is 

the one corresponding to the particular solids concentration employed in this work. As 

observed, the theoretical prediction (red solid line) is in reasonably good agreement with 

experiments suggesting that the Mean Magnetization Approximation is valid. 

To sum up, in the transition regime between FF and MRFs the scaling with Pe does not 

work. However the scaling with Mn is still reasonably good especially for the largest 

fields whenever 𝜆 > 1 independently of the particle size.  

At this point it is important to stress that the collapse observed in Fig. 10.9b for 𝜆 > 1 

also involves experimental data for particles in the borderline between FFs and MRFs. 

There are two important differences between these particles and those constituting FFs 

and MRFs: the magnetization of the particles is larger (see Fig. 10.5b) and the magnetic 

moment rotates together with the physical rotation of the particle (see Fig. 10.1). In view 

of Fig. 10.9b, it seems that the rheological behavior is dictated by the difference in the 

particle magnetization and that particle rotation does not play an important role. To 

demonstrate that indeed the particle rotation does not significantly contribute to the 

viscosity enhancement reported in Fig. 10.7, next we show simulation results for two 

systems where the magnetization is kept constant. 
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Figure 10.10: Simulated rheograms obtained using Eq. (10.10). Red circles symbols 

correspond to simulations where the magnetic moment is permanently aligned with the 

applied magnetic field (i.e. the particle does not rotate). Black squares correspond to 

simulations where the magnetic moment is fixed to the particle's body (i.e. the particle 

rotates). 
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Results are shown in Fig. 10.10 for different applied shear rates in the two simulated 

scenarios (without and with particle/moment rotation). No significant differences can be 

observed between both cases. This, together with the fact that experimental viscosity data 

already collapse in a master curve using the Mean Magnetization Approximation (Fig. 

10.9b), would suggest that coercivity influences the magnetoviscous effect only by 

increasing the magnetization level but not by introducing a new stress transfer mechanism 

based on fixing magnetic dipoles to the particles body. 

10.5 Conclusions 

We report the influence of particle size in a wide range of 𝜆 ratios around the mono-

multidomain transition region (i.e. 𝜆 = 1). The use of dilute suspensions (1.1 vol%) at 

low fields (below 140 kA/m) allows us to safely employ the Mean Magnetization 

Approximation. 

For the largest magnetic fields the magnetization of the particles increases with the 

particle size. This finding may serve as an explanation for the repeatedly reported yield 

stress enhancement with the particle size at large λ ratio (where Brownian motion does 

not play a role). 

For low magnetic fields, we demonstrate that depending on the particle size we can move 

from a FF dominated region to a MRF dominated region. A key point is the appearance 

of a maximum in the particle magnetization that is linked to the maximum in the coercive 

field. It is for the particle sizes corresponding to this maximum where the magnetoviscous 

effect also reaches a maximum. The physical reason for this is that single-domain 

particles in the transition region are easier to orient with the field than multidomain 

particles that need to be magnetized first and then oriented. 

Finally, the viscosity curves can be scaled with the Peclet number Pe for suspensions in 

the FF limit, and with the Mason number Mn for any suspensions with 𝜆 > 1. Particle 

magnetization governs the rheological behavior and not the fact that the magnetic moment 

is fixed to the particles. 
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10.6 Supplementary material 

According to the Mean Magnetization approximation, each particle in the magnetic 

colloid can be substituted by a point dipole placed at its center. The magnitude of this 

dipole is given by the particle volume times its magnetization level. 

In the limit of low volume fractions (i.e. isolated particles) and small applied fields, the 

particle magnetization can be written as 𝑀 = 3𝛽𝐻0 where 𝐻0 is the applied field, 𝛽 =
𝜒 (3+ 𝜒)⁄  the contrast factor and 𝜒 the particle susceptibility. 
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The ratio between the particle magnetization and the saturation magnetization (i.e. 

𝑀 𝑀𝑠⁄ = 3𝛽𝐻0 𝑀𝑠⁄ ) is plotted with lines in Fig. 10.11 for the different particles used 

through this work together with the results for conventional carbonyl iron particles (CIP). 

In the calculation of 3𝛽𝐻0 𝑀𝑠⁄  we used the experimental 𝜒 as obtained from the 

magnetization curves. It can be seen a linear dependence for all samples, at least for low 

fields, pointing out that 𝜒 is not a function of the applied field in this regime. 

In Fig. 10.11 we also plot with solid symbols the experimental data directly taken from 

the magnetization curves. Although these points are shifted upwards with respect to the 

isolated case (magnetization measurement is not carried out over isolated particles but 

over powder samples) they still exhibit a linear relationship hence validating the 

definitions given for the Mason number in the main text. 
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Figure 10.11: Mean magnetization of the particles scaled with the saturation 

magnetization of the particles as a function of the external magnetic field. As a 

reference, we also include data for carbonyl iron particles (HQ grade from BASF-SE) as 

obtained from the powder. Solid lines correspond to 3𝛽𝐻0/𝑀𝑆. 
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Abstract 

We demonstrate a new route to enhance the magnetorheological (MR) effect using 

bimodal suspensions in the single- multidomain limit. Experimental results are 

satisfactorily compared to 3D Finite Element Method simulations. The physical reason 

behind this enhancement is the coating of the larger particles by the smaller ones due to 

the remnant magnetization of the latter. 

11.1 Introduction 

Bimodal suspensions are particle mixtures having two well-differentiated size 

distributions. In the following, we will call 𝜎𝐿 to the mean particle diameter of the Large 

size distribution and 𝜎𝑆 to the mean particle diameter of the Small size distribution. 

At present, bimodal suspensions constitute a widely used approach to enhance MR effect 

or to minimize sedimentation. In general, for the MR effect to be sufficiently large, the 

largest particles in suspension must be in the range 𝜎𝐿 ≈ 10 µm [1]; otherwise Brownian 

motion disrupts the field-induced structures. With this in mind, previous works in this 

field can be classified in two limiting cases; either 𝜎𝐿/𝜎𝑆 ≈ 10 [2-11] or 𝜎𝐿/𝜎𝑆 ≈ 1000 

[12-17]. 

For 𝜎𝐿/𝜎𝑆 ≈ 10, experimental and simulation works demonstrate an on-state yield stress 

enhancement if compared to monomodal suspensions composed of either the small or 

large particles. Contrary to the intuition, particle level simulations suggest that the reason 

for this enhancement is not associated with an increase in particle packing within the 

aggregates but to the changes bimodality causes in the microstructure [7,10]. These 

bimodal suspensions suffer from important sedimentation problems because of the large 

particle sizes. 

For 𝜎𝐿/𝜎𝑆 ≈ 1000, experiments demonstrate that sedimentation is strongly mitigated 

because of the thermal convection of the nanoparticles that delay the sedimentation of the 

bigger ones. The price to be paid is that the on-state yield stress is substantially reduced 

(when the concentration of the small particles exceeds approx. 10 wt%) presumably 
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because of chain growth inhibition or inferior magnetic properties of the nanoparticles if 

compared to the microparticles [15]. 

In this letter we demonstrate that bimodal suspensions in the frontier (i.e. 𝜎𝐿/𝜎𝑆 ≈ 100) 

exhibit a significantly larger on-state yield stress if compared to their monomodal 

counterparts and at the same time sedimentation is significantly reduced. The explanation 

for this is that the smallest particles in the formulation have a size in the range between 

magnetic mono- and multidomains and therefore exhibit a remarkable remnant 

magnetization [18]. Because of this, the smallest particles surround the bigger ones 

increasing the on-state response and reducing the sedimentation. Finite Element Method 

calculations qualitatively explain the experimental observations. 

11.2 Experimental 

Both kinds of particles used in the formulation of the bimodal MR fluids were made of 

iron. The biggest ones (‘Large particles’) were a gift from BASF SE (EW grade, 

Germany). The smallest particles (‘Small particles’) were obtained from US Research 

Nanomaterials (Iron Nanopowder/Nanoparticles; Fe, 99.5 +%, 95-105 nm, metal basis). 

SEM observations were carried out to determine their morphological characteristics while 

Squid magnetometry was used to determine the magnetic characteristics of the particles 

(see Table 11.1). As observed, the magnetic properties are slightly superior for small 

particles at low fields (i.e. larger initial permeability); the contrary is true for large fields 

(i.e. smaller saturation magnetization). 

 Particles 

 Large Small 

Number average diameter (nm) 1327.4 111.64 

Weight average diameter (nm) 2642.8 206.99 

Volume average diameter (nm) 1729.3 137.87 

Polydispersity index (-) 1.991 1.854 

Initial magnetic permeability (-) 7.42 9.66 

Coercive field, 𝐻𝐶 (kA/m) 0.7 11 

Saturation magnetization, 𝑀𝑆 (emu/g) 204 176 

𝑁 (-) 446 286 

Table 11.1: Iron powders used in the formulation of the bimodal MR fluids. ‘Large’ 

stands for the carbonyl iron microparticles and ‘Small’ stands for the iron nanoparticles. 

𝑁 stands for the number of particles counted to evaluate the particle size. 

The particles were thoroughly dispersed at various mixing ratios in polyalphaolefin oil 

(PAO 2 cSt, dynamic viscosity 6.4 mPa·s, Synfluid, Chevron-Philips). To facilitate the 

processability of the MR fluids, a certain amount of 1-octanol was also added to the PAO 

(3.5 wt% in the total amount of PAO) [19]. 

Steady shear rheometry was carried out in a rotational rheometer (MCR501, Anton Paar). 

Magnetic fields were generated using a MRD70/1T magnetocell in parallel plate 
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configuration (20 mm diameter, 300 microns gap). Yield stresses were obtained using a 

carefully designed protocol. This protocol consisted in several stages: (Stage 1) a constant 

rim shear rate (�̇� = 100 s-1) was applied during 20 seconds. (Stage 2) the upper plate was 

stopped and a uniaxial DC magnetic field (147 kA/m) was suddenly applied for 60 s to 

structure the MR fluid. (Stage 3) a stress log-ramp was imposed to evaluate the yielding 

point similarly to [20]. The interval time employed to get every data within the full 

rheogram was 5 seconds. At least three independent measurements with fresh new 

samples were taken. Error bars in the figures correspond to the standard deviation of the 

different repetitions. 

To explore the sedimentation stability (in the absence of fields) a given volume of MR 

fluid was placed inside a cylindrical plastic tube and visually observed during time to 

determine the time evolution of sedimentation ratio 𝐻(𝑡) 𝐻0⁄  curves. Here 𝐻(𝑡) 
represents the height of the sediment/liquid interface (i.e. mudline) at a given time, 𝑡, and 

𝐻0 is the corresponding height value of the MR fluid at the beginning of the test 𝐻0 ≡
𝐻(𝑡 = 0). 

Penetration and redispersibility tests were carried out using a four-blade vane tool 

attached to the MCR 501 rheometer head coupling. The test consisted in slowly displacing 

the tool (1 mm/s) towards a fully sedimented suspension (i.e. one week after preparation) 

while recording the axial (normal) force acting on the vane. Once the vane was well inside 

the sample, a continuous torque ramp was initiated to determine the flow curve (from 

0.0001 mN·m to 0.5 mN·m). 

11.3 Simulations 

3D finite element method simulations were also carried out to compute the on-state yield 

stress in bimodal MR fluids. For this, the largest particles in the ensemble were arranged 

in a cubic network of infinite single particle-width chains aligned in the direction of the 

external magnetic field. Two possibilities were explored with regards to the spatial 

distribution of the smallest particles in the suspension under the presence of magnetic 

fields (see Fig. 11.1):  

Case 1.- On the one hand, due to their non-negligible remnant magnetization, the smallest 

particles could stick around the larger ones covering them with a layer of thickness 𝑑𝑆 

(i.e. core-shell supraparticles). The magnetic properties of the shell are therefore dictated 

by the magnetic properties of the smallest particles. 

Case 2.- On the other hand, due to their nanometric size, the smallest particles could 

remain properly dispersed within the carrier liquid, because of thermal/Brownian motion, 

hosting the largest particles. The magnetic properties of the carrier fluid are therefore 

given by the magnetic properties of the suspension of small particles (with volume 

concentration 𝜙). 

The magnetic field distribution was computed in the magnetostatic limit, without free 

currents, using COMSOL Multiphysics software. A reduced field formulation was 

employed to split the total magnetic field �⃗⃗⃗� into the external applied field �⃗⃗⃗�𝑒𝑥𝑡 and the 

perturbation due to the magnetic suspension �⃗⃗⃗�𝑝 = −∇𝑉⃗⃗⃗⃗⃗⃗𝑝. An important advantage of 

using the reduced field formulation is that it is not necessary to fix the magnetic field in 

any boundary of the computational domain and therefore the deformation of a unit cell is 

representative of the full lattice with periodic boundaries [21]. The dimensions of the unit 
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cell (𝐵ℎ, 𝐵𝑤) are a function of the large particle diameter 𝜎𝐿, and the concentration of 

small 𝜙𝑆 and/or large 𝜙𝐿 particles (see Fig. 11.1). Two scenarios were studied: 

Case 1.- In the first case, it is supposed that all small particles stick to the larger ones. 

Therefore, the thickness of the shell is given by 𝑑𝑆 = 𝜎𝐿(1 √8(1− 𝜙𝑟)
3⁄ − 1 2⁄ ) where 

𝜙𝑟 ≡ 𝜙𝑆/𝜙𝑇 and 𝜙𝑇 ≡ 𝜙𝑆 + 𝜙𝐿 . As a result, 𝐵ℎ = 𝜎𝐿 + 2𝑑𝑆 and 𝐵𝑤 =

√𝜋(𝜎𝐿 + 2𝑑𝑆)2 6𝜙𝑇⁄  in order to fulfill the condition that the magnetic concentration 

inside the cell is 𝜙𝑇. 

Case 2.- In the second case, as the small particles are supposed to remain suspended 

within the continuum phase, cell dimensions only depend on 𝜙𝐿 and on the diameter of 

the bare large particles 𝜎𝐿: 𝐵ℎ = 𝜎𝐿, 𝐵𝑤 = √𝜋𝜎𝐿
2 6𝜙𝐿⁄ . 

 

Figure 11.1: Two cases are considered for small iron particles. In the first one they are 

adhered to large iron particles due to their remnant magnetization. In the second case, 

small particles are well dispersed in suspension. Both cases were modeled in the on-

state using FEM simulations. A schematics of the computational domain is also 

represented: a strain 𝛾 = tan𝜃 is applied in the 𝑦 direction while the magnetic field is 

applied in the 𝑧 direction. Periodic Boundary Conditions are fixed in all boundary faces 

except in those faces perpendicular to 𝑥 direction, where Mirror Symmetry Boundary 

Conditions apply. 

The non-linear magnetic behavior of both populations of particles was accounted for by 

means of Fröhlich-Kennelly equation using experimental fitting parameters from the 

powders; initial permeability and saturation magnetization [22]. The magnetic properties 

of the suspensions of small particles were calculated using Maxwell-Garnett theory [23]. 

Assuming that all small particles inside the unit cell constitute a suspension, the 

relationship between the small particles concentration 𝜙𝑆 and the suspension 

concentration 𝜙 is given by:  
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C
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 𝜙 =
𝜙𝑠𝐵ℎ𝐵𝑤

2

𝐵ℎ𝐵𝑤2 − 𝜋𝜎𝐿
3 6⁄

=
𝜙𝑠

1− 𝜙𝐿
 (11.1) 

Once the magnetic field distribution is computed within the computational domain, the 

shear stress 𝜏 on the lower half of the lattice is calculated similarly to Refs. [21] and [24] 

by integrating the Maxwell stress tensor on the plane (normal to the external field 

direction) that halves the unit cell: 

 𝜏 =
2

𝐵𝑤2
∫𝐵𝑦𝐻𝑧𝑑𝑆 (11.2) 

Finally, the static yield stress 𝜏𝑦 is given by the maximum shear stress achieved as the 

strain level is increased. It is worth to remark that the affine deformation experienced by 

the cubic lattice under a simple shear flow is simply modeled here by shearing its unit 

cell (see Fig. 11.1). Due to the symmetries of the sheared cubic lattice, the computational 

domain can be reduced to one half of the unit cell. 

11.4 Results and discussion 

Figure 11.2a shows the results for the on-state yield stress, at a fixed large particles 

concentration of 𝜙𝐿 = 0.30, as a function of the concentration of small particles 𝜙𝑆. As 

observed, the yield stress increases upon increasing the concentration of small particles. 

This was expected because the total iron concentration 𝜙𝑇 ≡ 𝜙𝑆 +𝜙𝐿 is increasing. 

Interestingly, numerical simulations predict reasonably well the order of magnitude for 

the yield stress despite the simplifications in the model. Note that there are not free fitting 

parameters. Only in the case where the nanoparticles are coating the microparticles (Case 

1), the yield stress increases with 𝜙𝑆 in good qualitative agreement with the experimental 

results. Numerical simulations for microparticles dispersed in suspensions of small 

particles give a yield stress that monotonically decreases with 𝜙𝑆 in good agreement with 

previous experimental data reported in the literature for 𝜎𝐿/𝜎𝑆 ≈ 1000 [15]. The fact that 

the experimental yield stress increases faster than the numerical simulations for core-shell 

particles is expected because of the simplification in the microstructure. In practice the 

shell should be porous and asymmetric in the field direction (see Fig. 11.3). 

In Fig. 11.2b we show the on-state yield stress as a function of the relative concentration 

of small particles 𝜙𝑆 𝜙𝑇⁄  for a constant total concentration 𝜙𝑇 = 0.45. In this case the 

addition of small particles results in a significant increase in the yield stress: 

approximately, a twofold increase is obtained when 5% of the large size particles are 

replaced by smaller ones (cf. second experimental data point in Fig. 11.2b; 𝜙𝑆 𝜙𝑇⁄ = 

11%). The reason of this enhancement is presumably again the formation of a shell of 

small particles surrounding the larger ones (see below). This hypothesis is supported by 

simulation results although the increasing rate is clearly smaller than in the experimental 

case. Figure 11.2b also demonstrates that the hypothesis that nanoparticles remain well-

dispersed within the carrier fluid is not realistic; in this case the simulated yield stress 

decreases with 𝜙𝑆 in contrast to experiments. 

To get a better understanding of the internal structure of the aggregates we also performed 

microscopy observations. In Fig. 11.3 we show Scanning Electron Microscopy pictures 

of the micro and nanoparticles within a resin after gelation under DC magnetic fields (750 

mT). As observed, the larger particles are clearly surrounded by a shell of nanoparticles 

in good agreement with our hypothesis. 
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A useful way to visualize the importance of adding a second population of nanoparticles 

to the suspension of large particles is through the so-called effective enhancement, that is 

defined as follows: 

 
𝜏𝑦𝑏(𝜙𝑆 + 𝜙𝐿 = 0.45) − 𝜏𝑦𝑚(𝜙𝐿 = 0.45)

𝜏𝑦𝑚(𝜙𝐿 = 0.45)
 (11.3) 
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Figure 11.2: On-state yield stress of bimodal MR fluids as a function of: a) 

concentration of small particles 𝜙𝑆 for a constant volume fraction of large iron particles 

of 30 vol% (𝜙𝐿 = 0.30); b) fraction of small particles 𝜙𝑆 𝜙𝑇⁄  for a constant total 

volume fraction of solids of 45 vol% (𝜙𝑇 = 0.45). The external magnetic field strength 

is 147 kA/m. 

The effective enhancement directly compares the performance of bimodal suspensions 

𝜏𝑦𝑏 to monomodal ones 𝜏𝑦𝑚 having the same total concentration 𝜙𝑇 ≡ 𝜙𝑆 + 𝜙𝐿 = 0.45. 

Results are contained in Fig. 11.4. Here we clearly observe a remarkable increase in the 

effective enhancement for bimodal MR fluids containing small particles in striking 

contrast to monomodal MR fluids only containing large particles. Simulations 

considering core-shell supraparticles also show an enhancement of the yield stress 
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although its increase is not so significant. Again, the fact that the order of magnitude is 

well captured by numerical simulations suggests that major (interparticle) interactions 

involved are essentially magnetostatics. These are indeed the only interactions simulated 

in this work. However, other colloidal forces may influence the experimental data and are 

not considered in the simulations (e.g. van der Waals, friction, surface charges...). Also, 

the calculations shown here ground on very strong assumptions; the numerical 

calculations assume a perfect cubic lattice formed by the larger particles and that the shell 

of nanoparticles is a continuum of uniform thickness. However, a cubic lattice is never 

observed at these (large) concentrations and lateral/secondary connections between 

aggregates appear [25]. Furthermore, a magnetic field gradient is established upon the 

application of the field around the larger particles and therefore the nanoparticles 

concentration should be larger in the proximity of the polar regions of the larger particles. 

 

Figure 11.3: Scanning Electron Microscopy picture of the bimodal suspensions in a 

resin. The detail shows a large carbonyl iron microparticle surrounded by iron 

nanoparticles. Magnetic field density 750 mT. 

In view of Fig. 11.4, it is worth to note that the effective enhancement increases as a result 

of the fact that the nanoparticles, within the shell structure, have superior magnetic 

properties than bare microparticles at the magnetic fields investigated (see Table 11.1). 

Unrealistic results are found again if nanoparticles are well dispersed in the carrier fluid 

instead of covering the large particles. In this case, as the small size particles 

concentration increases, the magnetic field within the gap between larger particles is 

screened due to the increase in the magnetic permeability of the suspension of small 

particles. In addition, increasing small particles concentration, that is 𝜙𝑆, implies the 

reduction of 𝜙𝐿, and consequently, the contribution of surrounding large particles is 

diminished. 

The next step was to explore the sedimentation characteristics of the bimodal suspensions 

compared to the monomodal ones. Results are shown in Fig. 11.5 for three suspensions: 

(i) large particles at a 30 vol% concentration, (ii) large particles at a 35 vol% 

concentration and (iii) binary mixtures (30 vol% large L + 5 vol% small S). As observed, 

the sedimentation rate is significantly reduced when microparticles are replaced with 
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nanoparticles. The most tightly packed sediments are always those corresponding to 

monomodal MR fluids (see Table 11.2). As observed, bimodal suspensions give place to 

a higher sediment. Such a high sediment is the result of the formation of a not well 

compacted sediment. This is coherent with the fact that small and large particles are 

magnetically interacting and do not behave as non-Brownian hard spheres because in this 

case a particle mixture would give a more efficient packing. The observed slower 

sedimentation rate is coherent with the presence of more aggregates in suspension [16]. 
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Figure 11.4: Effective enhancement (%) as a function of the relative concentration of 

small particles 𝜙𝑆 𝜙𝑇⁄  for a constant total volume fraction of solids of 45 vol% (𝜙𝑇 = 

0.45). The external magnetic field strength is 147 kA/m. 
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Figure 11.5: Time evolution of the sedimentation ratio (𝐻 𝐻0⁄ ) for conventional MR 

fluids (30 vol% and 35 vol% large particles) and bimodal MR fluids (30 vol% large + 5 

vol% small). 

Finally, penetration tests demonstrate that sediments formed in bimodal mixtures are also 

easier to redisperse than monomodal ones. In bimodal suspensions, the mechanical work, 

for a penetration distance of 40 mm, was of only 1.83 mJ while the torque required for 
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redispersion (at 0.001 rpm) was of only 30 ± 2 N·m. It is worth to note that the 

monomodal suspensions formed a very compacted cake that could not be penetrated with 

our rheometer. 

MR fluid composition (L:S) Maximum packing fraction (vol%) 

30:0 54.9 

35:0 52.5 

30:5 43.8 

Table 11.2: Sedimentation characteristics of the bimodal MR fluids (Large:Small 

mixtures in vol%). 

Overall, bimodal MR fluids in the single- multidomain limit exhibit a significantly large 

MR effect (i.e. increase in the on-state yield stress) similar to bimodal suspensions in the 

range 𝜎𝐿/𝜎𝑆 ≈ 10 and good stability properties (i.e. reduced settling rate) similar to 

bimodal suspensions in the range 𝜎𝐿/𝜎𝑆 ≈ 1000. The key point is the coexistence of two 

particle populations having an induced and permanent magnetic moment, respectively. 

Finite element method simulations results suggest that a crucial point is the superior 

magnetic characteristics of the nanoparticles if compared to the microparticles. Hence, it 

can be speculated that the partial substitution of carbonyl iron microparticles by a small 

amount of very strong magnetic particles (e.g. iron alloys) in the single- multidomain 

region would provide an even stronger enhancement in the MR response. 
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Abstract 

In this manuscript we investigate the shear rheology, sedimentation stability and 

redispersibility characteristics of bimodal MR fluids with a Large-to-Small size ratio 

𝜎𝐿/𝜎𝑆 ≈ 100 where the small-size population of particles is in the single- multidomain 

limit (𝜎𝑆 ≈ 100 nm) to promote the formation of core-shell supraparticles (i.e. large 

particles surrounded by the smaller ones). We focus on the effect of mixing the two kinds 

of particles in different proportions while keeping either the large particles volume 

fraction or the total volume fraction constant. Five different nanoparticles, having 

different chemical composition and shape, are investigated in this work: barium ferrite, 

magnetite, iron, chromium dioxide and goethite. Results demonstrate that nanoparticles 

fill the voids between microparticles and this locally enhances the magnetic field. The on-

state yield stress and effective enhancement may increase or decrease depending on the 

magnetization of the nanoparticles as compared to that of the microparticles. An enhanced 

MR effect is experimentally observed, and also simulated with Finite Element Methods, 

when the magnetization of the nanoparticles is larger than that of the microparticles. 

Bimodal MR fluids exhibit better penetration and redispersability response than the 

monomodal counterparts and dimorphic magnetorheological fluids based on nanofibers. 

12.1 Introduction 

Conventional magnetorheological (MR) fluids are suspensions of magnetizable particles 

in a non-magnetic liquid carrier. Under appropriate conditions (sufficiently large fields 

and concentrations) they exhibit a field-dependent apparent yield stress, 𝜏𝑦 = 𝜏𝑦(𝐻), as 

a result of the formation of field-induced structures [1-8]. 

Undoubtedly, the main characteristic of any MR fluid is the so-called MR effect (or turn-

up ratio). It can be described by a ‘relative’ yield stress, 𝑅𝑌𝑆, that measures the increase 

in the yield stress as the ratio between the yield stress increment under field and the yield 

stress value in the absence of the field: 

 𝑅𝑌𝑆 =
𝜏𝑦(𝐻 ≠ 0) − 𝜏𝑦(𝐻 = 0)

𝜏𝑦(𝐻 = 0)
 (12.1) 
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In view of Eq. (12.1), the off-state yield stress, i.e. the yield stress with no magnetic field 

applied 𝜏𝑦(𝐻 = 0), and the on-state yield stress, i.e. the yield stress with the magnetic 

field applied 𝜏𝑦(𝐻 ≠ 0), are both important in the MR performance. Most attempts 

reported in the literature to increase the on-state yield stress also result in an increase in 

the off-state yield stress carrying a penalty in the 𝑅𝑌𝑆 [9]. However, there exists a very 

simple way to decouple the off-state yield stress and the on-state yield stress. It consists 

in the use of bimodal suspensions. 

The idea behind the use of bimodal suspensions comes from classical studies on non-

Brownian conventional (i.e. non field-responsive) particle suspensions. In that particular 

case, the rheology is dictated by the hydrodynamics once the carrier fluid viscosity and 

particle volume fraction are known [10,11]. Interestingly, incorporating multimodal 

particles reduces the viscosity of the suspensions, because of particle packing arguments, 

while keeping the same total volume fraction. In the particular case of bimodal 

(Large/Small) suspensions, the viscosity is a function of the carrier fluid viscosity, total 

particle volume fraction 𝜙𝑇, relative fraction of small particles by volume 𝜙𝑆/𝜙𝑇, and 

the size ratio 𝜎𝐿/𝜎𝑆 (diameter of the large particles divided by the diameter of small 

particles). This viscosity reduction is more significant for large 𝜙𝑇 and large 𝜎𝐿/𝜎𝑆 

(within the non-Brownian regime). For a given 𝜙𝑇 and 𝜎𝐿/𝜎𝑆, the lowest viscosities are 

typically obtained for 𝜙𝑆/𝜙𝑇 ≈ 0.3 [12]. Note that in this manuscript 𝜙𝑆 is defined as 

𝜙𝑆 = 𝑉𝑆 𝑉𝑠𝑢𝑠⁄  where 𝑉𝑆 is the volume of small particles and 𝑉𝑠𝑢𝑠 is the total volume of the 

suspension, that is, the volume of small particles plus the volume of large particles plus 

the volume of the carrier liquid. 

12.2 Background 

A seminal work on the use of a bimodal distribution in magnetorheology is that of Foister 

[13]. In that patent, two highly polydisperse non-Brownian carbonyl iron powders (𝜎𝐿 = 

7.9 µm, 𝜎𝑆 = 1.25 µm, 𝜎𝐿/𝜎𝑆 ≈ 6.3) were mixed in different proportions 𝜙𝑆/𝜙𝑇 ∈ [0, 1]. 

The goal was to reduce the off-state viscosity of the MR fluid and hence to increase the 

𝑅𝑌𝑆. It was thought that the magnetic characteristics of the suspensions would, a priori, 

solely depend on the particle volume fraction, and not on the particle size distribution. As 

expected, for a given total concentration (𝜙𝑇 = 0.55) the off-state viscosity was 

monotonically reduced in nearly one order of magnitude adding small particles to the 

formulation. However, in contrast to the initial expectations, for a given 𝜙𝑇, the on-state 

yield stress was found to reach a maximum for 𝜙𝑆/𝜙𝑇 ≈ 0.1− 0.25, in disagreement with 

a weighted average mixing rule, hence suggesting that structural particle arrangements 

play a key role. In summary, compared to the monomodal counterparts, the 𝑅𝑌𝑆 in 

bimodal MR fluids could be significantly increased because both the off-state yield stress 

decreased and the on-state yield stress increased. 

12.2.1 Bimodal MR fluids with 𝝈𝑳/𝝈𝑺 ≈ 10 

In magnetorheology, magnetostatic forces between particles must overcome thermal 

forces coming from Brownian motion. This provides a lower limit for the typical size of 

the largest particles 𝜎𝐿. Also, a higher limit exists because of sedimentation issues. 

Overall, a preferred particle size is 𝜎𝐿 ≈ 10 µm. In view of the work by Foister [13], most 

of the following literature in this field concerned non-Brownian suspensions with 𝜎𝑆 ≈  
1 µm and therefore 𝜎𝐿/𝜎𝑆 ≈ 10. Most of these works provided similar observations to 

Foister [13] with bimodal suspensions giving place to larger yield stresses than 
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monomodal suspensions composed of either the small or large particles [14-23]. Although 

the observed off-state viscosity reduction is well understood in terms of particle packing 

characteristics, the on-state yield stress enhancement is still not well understood. Bearing 

in mind that the effect of relative particle sizes on the magnetostatic force magnitude 

cannot explain the enhancement in the on-state yield stress in bimodal suspensions [18], 

one may think that the use of bimodal suspensions would result in more efficiently packed 

aggregates which are therefore stronger and promote a larger yield stress (e. g. Ref. [20]). 

However, particle level simulations conclusively demonstrate that the enhanced on-state 

yield stress in bimodal suspensions is a result of the tendency of the smaller particles to 

induce the larger particles to form more chainlike structures. In summary, the 

enhancement is not associated with an increase in particle packing within the aggregates 

but to the changes polydispersity causes in the microstructure [18,21]. A common issue 

in non-Brownian bimodal suspensions with 𝜎𝐿/𝜎𝑆 ≈ 10 is that they suffer from important 

sedimentation because of the large particle size of the two populations. 

12.2.2 Bimodal MR fluids with 𝝈𝑳/𝝈𝑺 ≈ 1000 

Apart from the interest in enhancing the MR effect, a drawback of MR fluids is that they 

tend to settle rapidly because of the density mismatch between the particles and the 

carrier. In an attempt to improve the kinetic stability of the MR fluids, some researchers 

explored in the past the use of bimodal suspensions with 𝜎𝑆 ≈ 10 nm and therefore 

𝜎𝐿/𝜎𝑆 ≈ 1000 [24-33]. An important observation is that in this case, a portion of the 

particle population is Brownian and therefore the off-state viscosity reduction is not 

guaranteed despite the large size ratio. Investigations on the off-state properties of these 

bimodal MR fluids are scarce in the literature. Also, the theoretical description of these 

suspensions becomes strongly complicated because particle level simulations are 

precluded (involving two extraordinarily different length scales). Anyway, a generalized 

observation is that the settling problem becomes strongly mitigated presumably because 

of the thermal convection of nanoparticles that delays the sedimentation of the bigger 

ones [27,29,31]. However, after a slight initial increase (presumably due to the smaller 

particles filling the voids between microparticles which locally enhance the magnetic 

field [29,34]), the on-state yield stress is substantially reduced, (𝜙𝑆 𝜙𝑇⁄ ≈ 5 wt% when 

the total particle loading is 45 wt% [26], 𝜙𝑆 𝜙𝑇⁄ ≈ 7.5 wt% when the total particle loading 

is 60 wt% [28]), maybe because of chain-growth inhibition [18], despite the fact that the 

nanoparticles were observed to fill in the interparticle spaces between the larger particles 

in the chain-like structures locally rising the magnetic permeability and resulting in a 

higher magnetic flux density [29] or because of the inferior magnetic properties of the 

nanoparticles if compared to the microparticles [31,35]. 

12.2.3 Bimodal MR fluids with 𝝈𝑳/𝝈𝑺 ≈ 100 

As reviewed above, bimodal MR fluids have been traditionally studied in two clearly 

differentiated regimes depending on whether the 𝑅𝑌𝑆 is enhanced (𝜎𝐿/𝜎𝑆 ≈ 10) or the 

sedimentation is mitigated (𝜎𝐿/𝜎𝑆 ≈ 1000). Currently, to the best of our knowledge, there 

is only one work dealing with bimodal suspensions in the intermediate region (𝜎𝐿/𝜎𝑆 ≈ 

100) [34]. According to this publication, bimodal suspensions in this size range exhibit a 

large MR effect at the same time the sedimentation is reduced if compared to bimodal 

suspensions with 𝜎𝐿/𝜎𝑆 ≈ 10 or 𝜎𝐿/𝜎𝑆 ≈ 1000, respectively. The explanation for this is 

that nanoparticles in the single-multidomain limit exhibit a magnetic remanence (i.e. a 

permanent non-zero magnetic moment) that promotes their adsorption onto the bigger 

magnetic multidomain microparticles. When these nanoparticles exhibit superior 
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magnetic properties than the microparticles, the resulting core-shell particles interact 

stronger than bare microparticles. Concomitantly, the sedimentation is reduced because 

of the presence of a cloud of nanoparticles surrounding the big ones. 

In this manuscript we aim to get deeper in the previous publication by Morillas et al. [34] 

in order to better understand the gap between the two classical regimes: 𝜎𝐿/𝜎𝑆 ≈ 10 and 

𝜎𝐿/𝜎𝑆 ≈ 1000. With this aim, in this manuscript we study mixtures with different 

magnetic characteristics. In particular we employ three kinds of nanospheres: barium 

ferrite, magnetite and iron. The first material is a hard magnetic material while the last 

two ones are soft magnetic materials with different saturation magnetization. Results are 

also compared with previous work where micronsized particles are partially substituted 

by (magnetic and non-magnetic) nanofibers [35]. Two nanofibers are discussed: goethite 

and chromium dioxide; the last one exhibiting a very similar magnetic behavior to 

magnetite to decouple the influence of particle shape (see Fig. 12.1). 

12.3 Materials and methods 

12.3.1 Particulate materials 

 

Figure 12.1: EM micrographs of the particulate materials employed. a) CIP, b) 

BaFe12O19, c) Fe3O4 ,d) Fe, e) CrO2 and f) α-FeOOH. 

The micron-sized magnetic powder used in this work is a carbonyl iron powder (CIP) EW 

grade from BASF SE (Germany). This is a particularly fine grade that has been 

exhaustively investigated in the recent literature. Using larger CIPs does not affect the 

conclusions of this work as soon as the nanoparticles are in the single- multidomain limit. 

(a) CIP (b) BaFe12O19 (c) Fe3O4

(d) Fe (e) CrO2 (f) α-FeOOH
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Nano-sized magnetic powders were made of barium ferrite -BaFe12O19- (Sigma-Aldrich), 

magnetite -Fe3O4- (Sigma-Aldrich) and iron -Fe- (US Research Nanomaterials). For 

comparative purposes, we also used nanofibers of magnetic and non-magnetic character; 

chromium dioxide -CrO2- and goethite --FeO(OH)-, respectively (Sigma-Aldrich). 

SEM was used to determine the morphological characteristics of CIP. On the other hand, 

TEM was used to obtain the particle size distribution of the nanoparticles (BaFe12O19, 

Fe3O4 and Fe). Typical EM pictures of the dry nanoparticles are included in Fig. 12.1. 

These pictures clearly demonstrate the submicron size of the particles. 

The magnetic properties of the dry powders were measured with a vibrating sample 

magnetometer (MLVSM9 MagLab 9 T, Oxford Instruments) at room temperature. The 

results are shown Fig. 12.2. As observed, the particles exhibit a very different 

magnetization level in the range of magnetic field strengths investigated. In particular, 

the coercivity of CIP, BaFe12O19, Fe3O4, Fe, CrO2 and -FeOOH was measured to be 0.7 

kA/m, 1.1 kA/m, 5.6 kA/m, 11 kA/m, 50 kA/m and 0.02 kA/m, respectively. In Table 

12.1 we provide a detailed morphological and magnetic characterization of the particles 

used in this work. For the fields of interest here (147 kA/m in steady shear), the 

magnetization level decreased in the following order: Fe > CIP > Fe3O4  CrO2 > 

BaFe12O19 >> -FeOOH. 
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Figure 12.2: Magnetic hysteresis curves of the powders at room temperature. The inset 

represents the magnetization curves according to the Fröhlich-Kennelly model as fitted 

to the experimental ones. 

12.3.2 Preparation of the MR fluids 

First, several powder mixtures were prepared at various mixing ratios in polyethylene 

containers. These mixtures consisted in large carbonyl iron microparticles (CIP) and 

small nanoparticles from Table 12.1. Then, polyalphaolefin oil (PAO 2 cSt, Synfluid, 

Chevron-Philips) was added to the particles. In order to facilitate the processability of the 

MR fluids, a certain amount of 1-octanol was added to the PAO (3.5 wt% in the total 

amount of PAO). It has been previously reported that the addition of 1-octanol in the MR 

fluid formulation has a negligible effect on the on-state yield stress. However, it 

significantly improves the dispersability of the solids [36]. In this work we operate in the 
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widest solids concentration range possible. Higher concentration compositions do not mix 

properly due to the high surface area of the nanopowders. 

 Microparticles 
 

Nanoparticles 

Material 

CIP - 

Carbonyl iron 

spheres 

 BaFe12O19 - 

Barium 

ferrite 

Fe3O4  - 

Magnetite 

Fe - 

Nano 

iron 

CrO2 - 

Chromium 

dioxide 

-

FeOOH 

Goethite 

Shape Spheres 
 

Spheres Irregular Irregular Fibers Fibers 

Number average 

diameter (nm) 
1327.4 

 
54.50 156.54 111.64 * * 

Weight average 

diameter (nm) 
2642.8 

 
80.47 206.75 206.99 * * 

Volume average 

diameter (nm) 
1729.3 

 
62.76 173.73 137.87 * * 

PDI 1.991 
 

1.477 1.321 1.854 * * 

Initial 

susceptibility 𝜒𝑖  
6.42 

 
1.25 8.30 8.66 6.20 0.00** 

Saturation 

magnetization 

(emu/g) 

204 

 

21 89 176 93 1.3 

Coercive field 

(kA/m) 
0.7 

 
1.1 5.6 11 50 0.02 

𝑁 446 
 

343 298 286 * * 

Table 12.1: Morphological and magnetic characteristics of the micro- and nanoparticles 

employed in this manuscript to investigate the effect of mixing ratio in the on-state yield 

stress. The initial susceptibility (𝜒𝑖) is taken from the best fitting to the Frohlich-Kenelly 

equation (see Fig. 12.2). PDI stands for the polydispersity index. In the calculations we 

considered a number of particles N > 200. *Particles are clumped and overlap in 

electron microscopy pictures. Therefore they cannot be measured. **Goethite particles 

are non-magnetic (see Ref. [35]). 

12.3.3 Shear rheometry 

A stress controlled magnetorheometer (MCR501, Anton Paar) was used for the 

rheological characterization of the MR fluids. All tests were run at 25 ºC. 

Two kinds of simple shear experiments were conducted: 

(i) Steady shear flow tests were performed with a MRD70/1T magnetocell in plate-plate 

configuration (20 mm diameter, 300 microns gap) to ascertain the apparent yield stress 

of the MR fluids. Yield stresses were obtained using a carefully designed protocol. This 

protocol consists in several stages: (Stage 1) A constant rim shear rate (�̇� = 100 s-1) is 

applied during 20 seconds. (Stage 2) The upper plate is stopped and a uniaxial DC 

magnetic field (147 kA/m) is suddenly applied for 60 s to promote the structuration of the 

MR fluid. (Stage 3) A stress log-ramp is applied to evaluate the yielding point similarly 
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to Bombard et al. [35]. The interval time employed to get every data within the full 

rheogram was 5 seconds. At least three independent measurements with fresh new 

samples were taken. Error bars in the figures correspond to the standard deviation of the 

different repetitions. 

(ii) Small amplitude dynamic oscillatory tests were carried out using a Twin gap 

magnetocell from Anton Paar (15.867 mm diameter, 0.339 mm gap). This magnetocell 

allows us to achieve very strong magnetic fields (very close to the magnetic saturation) 

at the same time it minimizes wall slip. In these tests the magnetic field strength is 

logarithmically increased from 0 to 830 kA/m (external field in the measuring gap without 

sample) under the presence of a small-amplitude oscillatory shear deformation (strain 

amplitude 0.01%, frequency 10 rad/s). Similarly to Bombard et al. [35], the experimental 

protocol was as follows: (Stage 1) Precondition at a constant shear rate �̇� = 100 s-1 for 30 

s. (Stage 2) The suspension is left to equilibrate for 25 s at rest with the magnetic field 

off. (Stage 3) Constant dynamic-mechanical shear conditions are preset (both amplitude 

and frequency remain constant) and the external magnetic field was logarithmically 

increased. Again, experiments were repeated three times with fresh new samples. 

12.3.4 Sedimentation and redispersibility tests 

To explore the sedimentation stability (in the absence of fields) a given volume of MR 

fluid was placed inside a cylindrical plastic tube and visually observed during time to 

determine the time evolution of sedimentation ratio ℎ(𝑡) ℎ0⁄  curves. Here ℎ(𝑡) represents 

the height of the sediment/liquid interface (i.e. mudline) at a given time, 𝑡, and ℎ0 is the 

corresponding height value of the MR fluid at the beginning of the test ℎ0 = ℎ(𝑡 = 0). 

Penetration and redispersibility tests were carried out using a four-blade vane tool 

attached to a MCR 501 rheometer head coupling. The test consisted in slowly displacing 

the tool (1 mm/s) towards the sample while recording the normal force acting on the vane. 

Once the vane was well inside the sample, a continuous torque ramp was initiated to 

determine the flow curve (from 0.0001 mN·m to 0.5 mN·m). Tests were carried out when 

the MR fluid was completely sedimented (exactly one week after the preparation of the 

suspension). 

12.4 Results and discussion 

12.4.1 Effect of the addition of small particles to MR fluids with 𝝓𝑳 = 0.30 

First, experiments were carried out at a fixed large particles (CIP) concentration of 𝜙𝐿 = 

0.30 and the total particle concentration 𝜙𝑇 (= 𝜙𝐿 + 𝜙𝑆) was changed by varying the 

small particles concentration 𝜙𝑆. Results are summarized in Fig. 12.3. 

For small particles having quasi-spherical shape (i.e. BaFe12O19, Fe3O4 and Fe) the off-

state yield stress remained essentially constant at a low level (approximately 0.1-1 Pa) 

when 𝜙𝑆 < 5 vol% (see Fig. 12.3a). Above this particular concentration value, the off-

state yield stress increased sharply as a result of the formation of a percolating particle 

network. In the absence of magnetic fields the rheological behavior of these bimodal MR 

fluids was very similar, independently of the particular material employed, for a given 

𝜙𝑆. This suggests that the percolating structure is not driven by magnetostatic interparticle 

forces despite the fact that it may be expected a difference due to the coercive field. 
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In contrast to the trend exhibited by the off-state yield stress, the on-state yield stress 

exhibits an initial increase with small particles concentration up to 𝜙𝑆 = 5 vol% (see Fig. 

12.3b). This increase is quantitatively similar whatever the chemical composition of the 

particles. Above this concentration level, the yield stress increased with 𝜙𝑆 at a higher 

rate for Fe. The rate of increase of the yield stress above this concentration threshold was 

strongly dependent on the particular material employed and correlated very well with the 

magnetization level of the nanoparticles at the external magnetic field applied (Fe > Fe3O4 

> BaFe12O19). 
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Figure 12.3: Magnetorheology of bimodal MR fluids as a function of the concentration 

of small particles for a constant CIP volume fraction 𝜙𝐿 = 30 vol%. a) Yield stress as a 

function of the concentration of small particles 𝜙𝑆 in the off-state. b) Yield stress as a 

function of the concentration of small particles 𝜙𝑆 in the on-state (147 kA/m). c) 

Relative yield stress as a function of the concentration of small particles 𝜙𝑆. d) 

Enhancement (%) as a function of the concentration of small particles 𝜙𝑆. 

A more convenient way to quantify the MR effect is to use the relative yield stress 𝑅𝑌𝑆 

(see Fig. 12.3c). The 𝑅𝑌𝑆 remained at a very high level (approx. 106 %) for low 𝜙𝑆 

concentrations. However, for 𝜙𝑆 > 5 vol% the 𝑅𝑌𝑆 decreased in good agreement with the 

fact that the off-state yield stress increased at this concentration (see Fig. 12.3b). The 

arrow in Fig. 12.3c represents the 𝑅𝑌𝑆 for monomodal MR fluids (without nanoparticles). 

The fact that 𝑅𝑌𝑆 for monomodal MR fluids is slightly above the 𝑅𝑌𝑆 for bimodal MR 

fluids demonstrates that for the smallest concentration of nanoparticles studied in this 

work (1 vol%) the off-state yield stress of the bimodal MR fluids is already significantly 

larger than that of the monomodal suspensions (see Fig. 12.3a). This is coherent with the 

fact that the yield stress in monomodal MR fluids was below the torque resolution of the 

rheometer thanks to the addition of 1-octanol. 
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Finally, in Fig. 12.3d we also plot the yield stress ‘enhancement’ as a function of the small 

particles concentration. The enhancement represented in Fig. 12.3d was calculated as 

follows: 

 
𝜏𝑦𝑏(𝜙𝑆 + 𝜙𝐿) − 𝜏𝑦𝑚(𝜙𝐿 = 0.3)

𝜏𝑦𝑚(𝜙𝐿 = 0.3)
 (12.2) 

where 𝜏𝑦𝑏(𝜙𝑆 + 𝜙𝐿) corresponds to the yield stress of the bimodal suspension and 

𝜏𝑦𝑚(𝜙𝐿 = 0.3) stands for the yield stress of the monomodal suspension. As expected, the 

enhancement is larger the more magnetic are the small particles. Note, however, that this 

kind of representation is not appropriate when the nanoparticles are magnetic (see below). 

12.4.2 Influence of the relative fraction of small particles in MR fluids with 𝝓𝑻 = 

0.45 

In a second part of this study we explored the influence of the relative fraction of small 

particles by volume at a fixed total volume fraction 𝜙𝑇 = 45 vol%. 

In striking contrast to what happens in non-Brownian suspensions, the addition of small 

particles to the MR fluid formulation results in a significant increase in the off-state yield 

stress (see Fig. 12.4a). This increase is the result of interparticle colloidal interactions 

between small and large particles. Again, the fact that the curves are very similar whatever 

the material constituting the small particles suggests that these interactions are not of 

magnetic origin. Above 𝜙𝑆 𝜙𝑇⁄ ≈ 0.20 the off-state yield stress levels off; it is worth to 

note that we cannot achieve 𝜙𝑆 𝜙𝑇⁄ = 1 because of the presence of very strong 

interparticle interactions that result in a flocculated gap-spanning structure. 

As expected, the on-state yield stress strongly depends on the material employed (see Fig. 

12.4b). While BaFe12O19 contributes to a decrease of the yield stress with 𝜙𝑆 𝜙𝑇⁄ , Fe 

contributes increasing the on-state yield stress. On the other hand, for Fe3O4, the on-state 

yield stress remains essentially constant. There are two important contributions to the on-

state yield stress that explain these different trends: On the one hand, the small particles 

tend to fill the empty spaces between the large particles forming chain-like structures and 

locally increasing the magnetic permeability. On the other hand, the superior/inferior 

magnetic response of the nanoparticles compared to the microparticles at the particular 

field investigated also plays a role [31]. While BaFe12O19 nanoparticles have inferior 

magnetic properties than CIP microparticles, Fe nanoparticles have superior magnetic 

properties than CIP microparticles. This explains their different behavior. In the case of 

Fe3O4, it seems that the two contributions almost perfectly balance and therefore the yield 

stress remains essentially constant. In any case, the change in the on-state yield stress is 

quite modest whatever the particular material and as a result, the relative yield stress 

continuously decreases when adding nanoparticles (see Fig. 12.4c). 

In this case, a useful way to visualize the importance of adding a second population of 

nanoparticles to the suspension of large particles is through the so-called yield stress 

‘effective enhancement’, that is defined as follows: 

 
𝜏𝑦𝑏(𝜙𝑆 + 𝜙𝐿 = 0.45) − 𝜏𝑦𝑚(𝜙𝐿 = 0.45)

𝜏𝑦𝑚(𝜙𝐿 = 0.45)
 (12.3) 

The effective enhancement directly compares the performance of bimodal suspensions to 

monomodal ones of the same total concentration 𝜙𝑇 = 𝜙𝑆 + 𝜙𝐿 = 0.45. Results are 

contained in Fig. 12.4d. Here we clearly observe a remarkable increase in the effective 
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enhancement for bimodal MR fluids containing Fe nanoparticles in striking contrast to 

monomodal MR fluids only containing CIP. 
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Figure 12.4: Magnetorheology of bimodal MR fluids as a function of the fraction of 

small particles for a constant total volume fraction of solids of 𝜙𝑇 = 45 vol%. a) Off-

state yield stress as a function of the fraction of small particles (𝜙𝑆 𝜙𝑇⁄ ). b) On-state 

yield stress as a function of 𝜙𝑆 𝜙𝑇⁄  for an external magnetic field of 147 kA/m. c) 

Relative yield stress as a function of 𝜙𝑆 𝜙𝑇⁄ . d) Effective enhancement (%) as a 

function of 𝜙𝑆 𝜙𝑇⁄ . 

12.4.3 Study of 30 vol% large particles + 5 vol% small particles composites 

We now pay attention to 30 vol% CIP + 5 vol% nanoparticles composite MR fluids. These 

are chosen because they still exhibit a reasonably large MR effect (cf. Fig. 12.3c on the 

relative yield stress) before the off-state yield stress begins to increase (cf. Fig. 12.3a). 

These results will be compared with monomodal MR fluids having the same total volume 

fraction 𝜙𝑇 = 0.35. 

12.4.3.1 Magnetosweep tests under dynamic oscillatory shear 

Magnetosweep tests were carried out to investigate the influence of magnetic field 

strength in the linear viscoelastic properties of bimodal MR fluids. These results are 

shown in Fig. 12.5. A log-log representation is used in Fig. 12.5a to show the low field 

response while a lin-lin representation is used in Fig. 12.5b to better appreciate the high 

field response. 

As a general trend, bimodal MR fluids exhibit a larger low field storage modulus than 

their monomodal counterparts. This suggests the formation of a percolating structure at 
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rest. This low field plateau is expected to be related to off-state yield stress measurements 

and sedimentation tests. 

Regarding the high field region it is worth to remark the significantly larger storage 

modulus for bimodal MR fluids using iron when compared to monomodal ones at the 

same carbonyl iron concentration (𝜙𝑇 = 0.35). 
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Figure 12.5: Storage modulus versus magnetic field strength dependence for MR fluids. 

Strain amplitude 0.01%. Excitation frequency 10 rad/s. a) Log-log representation to 

visualize the low field region. b) Lin-lin representation to visualize the high field region. 

12.4.3.2 Sedimentation stability 

Figure 12.6 contains sedimentation data for the bimodal MR fluids (30:5) and other 

monomodal ones (30:0 and 35:0) for comparison. As expected, the MR fluids do not have 

long shelf lives; all MR fluids sediment in the course of a few days. However, it is clear 

that bimodal MR fluids exhibit a delayed sedimentation. 
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Figure 12.6: Time evolution of the sedimentation ratio (ℎ ℎ0⁄ ) for conventional MR 

fluids (30 vol% and 35 vol% carbonyl iron) and bimodal MR fluids (30 vol% carbonyl 

iron + 5 vol% nanoparticles). 

MR fluid 

Maximum 

packing 

fraction 

Maximum force peak 

(N) after penetrating a 

given distance (40 mm) 

Work (mJ) for a 

penetration distance 

of 40 mm 

Torque 

(Nm) at 

0.001 rpm 

30:0 CIP 0.549 * * * 

35:0 CIP 0.525 * * * 

30:5 BaFe12O19 0.443 0.137 4.15 32.2 

30:5 Fe3O4 0.490 0.094 2.51 34.7 

30:5 Fe 0.438 0.072 1.83 32.2 

30:5 CrO2 0.469 0.130 3.14 66.3 

30:5 -FeOOH 0.471 0.116 2.65 49.6 

Table 12.2: Sedimentation, penetration and redispersibility characteristics of the 

bimodal MR fluids. *The sediments formed were so compact that they could not be 

penetrated to a distance of 40 mm. 

In view of Fig. 12.6 we have to distinguish between the behavior at short and long times. 

With regards to short times, the sedimentation rate is significantly reduced when 

microparticles are replaced with nanoparticles. This is explained by the fact that small 

particles adhere onto the larger ones, forming an halo, and preventing the latter from close 

approach. On the other hand, the long time behavior is well described by the packing 

density of the sediment that in its turn gives valuable information on the dispersion 

quality. These results are included in Table 12.2. The most tightly packed sediments are 

always those corresponding to monomodal MR fluids. On the contrary, bimodal 
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suspensions give place to a higher sediment. Such a high sediment is the result of the 

formation of a loose sediment at the bottom of the tube. This is coherent with the fact that 

small and large particles are interacting and do not behave as non-Brownian hard spheres 

because in this case a particle mixture would give a more efficient packing. A slower 

sedimentation is also coherent with the presence of more aggregates in suspension [31]. 

Overall, the sedimentation stability of these bimodal MR fluids is similar to classical 

bimodal suspensions with 𝜎𝐿/𝜎𝑆 ≈ 1000. In the latter, the reduced settling is claimed to 

result from the effect of thermodynamic forces coming from nanoparticles and frictional 

forces between both populations. However, in our bimodal MR fluids where 𝜎𝐿/𝜎𝑆 ≈ 

100, thermodynamic forces are expected to be negligible and therefore the reduced 

settling is explained by the formation of clusters of big particles surrounded by small ones 

that possess a large single-domain magnetic moment and remanence [34]. 

12.4.3.3 Penetration and redispersibility 

Generally speaking, a porous (ill compacted) sediment is expected to be easy to penetrate 

and redisperse. However, the existence of strong interparticle interactions in the bimodal 

MR fluids obliges us to perform the tests. 

The penetration and redispersibility characteristics of the MR fluids are summarized in 

Table 12.2. The monomodal suspensions could not be penetrated with the rheometer; they 

were too stiff. On the other hand, all bimodal suspensions were penetrated. In particular, 

the easiest to penetrate was that of Fe. In good agreement with penetration tests, bimodal 

suspensions based on Fe also exhibited the smaller torque level for full redispersion. 

Other mixtures exhibited an intermediate behavior between monomodal CIP suspensions 

and CIP-Fe bimodal suspensions. 

12.4.4 Electron microscopy observations of structured bimodal MR fluids 

 

Figure 12.7: Scanning electron microscopy image corresponding to a big carbonyl iron 

microparticle surrounded by iron nanoparticles. 

Particle mixtures were structured in a resin under magnetic fields in order to get a deeper 

understanding on the microstructures formed. Then, the resin was cut and observed under 
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an Environmental Scanning Electron Microscope. Results for iron particles mixures are 

shown in Fig. 12.7. This picture demonstrates that big carbonyl iron microparticles are 

surrounded by a cloud of iron nanoparticles. This suggests that the cloud formation is 

driven by strong magnetostatic interparticle interactions between micro- and 

nanoparticles. The fact that the small size particles are in the single-multidomain region 

results in the existence of a remnant magnetization in the particles that drives their 

adsorption onto the bigger particles. 

12.4.5 Finite Element Method simulations 

In this section we aim to elucidate the contribution of magnetostatics to the yield stress 

(i.e. neglecting colloidal forces) using a Finite Element Methodology (FEM). 

First, we need to define the computational domain. For this, we consider a collection of 

core-shell supraparticles preassembled in single-particle width structures (i.e. a tetragonal 

lattice). In these simulations, the core mimics the CIP microparticles while the shell 

mimics the nanoparticles that surround each microparticle. Numerical simulations are 

performed on the lattice unit cell by imposing periodic boundary conditions in the 

magnetic field. 

The magnetic field is simulated for a range of strain levels by numerically solving 

Maxwell’s equations in COMSOL Multiphysics. A reduced field formulation is 

employed. According to this, the total magnetic field comes from two contributions: a 

homogeneous one (i.e. the applied external field, 147 kA/m) and a perturbation one due 

to the presence of the lattice. The magnetic constitutive equation of the different domains 

in the computational domain (core and shell) corresponds to the Fröhlich-Kennelly model 

as fitted to the experimental magnetization curves shown in Fig. 12.2. 

Once the magnetic field distribution is calculated in the unit cell, internal stresses in the 

lattice are computed using the Maxwell’s stress tensor. Finally, the yield stress is 

identified as the maximum shear stress when it is plotted as a function of the strain. For 

more details see Ref. [34]. 

Figure 12.8 contains the simulation results. On the one hand, in Figs. 12.8a and 12.8b we 

show the on-state yield stress and enhancement dependence on small particles 

concentration when CIP (large particles) concentration is fixed to 𝜙𝐿 = 30 vol%. On the 

other hand, in Figs. 12.8c and 12.8d we show the on-state yield stress and effective 

enhancement dependence on small particles concentration when the total solids 

concentration is fixed to 𝜙𝑇 = 45 vol%. Comparing Fig. 12.8 with Figs. 12.3 and 12.4 

we conclude that the simulations provide the right order of magnitude for the (on-state) 

yield stress. In agreement with the experiment, simulations demonstrate that the more 

magnetic the nanoparticles the larger the yield stress of the bimodal MR fluids for a given 

concentration. Both the yield stress and enhancement increase with small particles 

concentration if the nanoparticles are ‘sufficiently’ magnetic (i.e. their magnetization is 

larger than that of CIP at the prescribed field strength). 

This behavior is understood taking into consideration that for small applied fields, 

interparticles forces are dominated by multipolar terms, which are strongly enhanced for 

short distances between particles. As the small particles concentration increases the shell 

of the supraparticles gets thicker and consequently, the magnetic properties of the shell 

will play the major role in the magnetic interparticle interaction. Depending on magnetic 

properties of the shell (in relation to the core), the yield stress could be enhanced (shell 

magnetization larger than the core) or reduced (shell magnetization smaller than the core). 
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The previous discussion also points out that, in addition to magnetostatics, in the 

experiments, other colloidal forces play a role. Furthermore, for so highly concentrated 

suspensions, lateral interconnections between aggregates may also contribute making our 

simplified model a too bold one. 
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Figure 12.8: Finite element simulations of model structures for a constant CIP volume 

fraction 𝜙𝐿 = 30 vol% (a and b) and for a constant total volume fraction of solids of 

𝜙𝑇 = 45 vol% (c and d). a) and c) represent the on-state yield stress while b) and d) 

represent the effective enhancement (%). 

12.4.6 Comparison with bimodal MR fluids based on nanofibers 

For completeness, in Figs. 12.3 and 12.4 we also include experimental data from Bombard 

et al. [35] for bimodal MR fluids prepared with nanofibers. Two kinds of nanofibers are 

studied: non-magnetic (-FeO(OH)) and magnetic ones (CrO2). 

Figure 12.3a demonstrates that the addition of non-magnetic nanofibers (-FeO(OH)) to 

30 vol% CIP suspensions gives a similar off-state yield stress than using spherical 

nanoparticles, hence discarding the importance of the shape anisotropy of the 

nanoparticles. Note, however, that the off-state yield stress always remains below 20 Pa. 

In agreement with the previous discussion in Secs. 12.4.1 and 12.4.2, this observation 

again suggests that the off-state yield stress increase with the concentration of small 

particles is dominated by colloidal forces (i.e. dominated by the size of the nanoparticles 

and not their shape). In the case of magnetic nanofibers, the off-state yield stress is clearly 

above the results obtained for the other samples. This is something expected in view of 

the fact that these nanofibers exhibit an extraordinarily large coercive field (see Table 

12.1). In view of Fig. 12.3b, the on-state yield stress of the suspensions is very similar for 

the nanofibers and for the weakest magnetic nanoparticles, again suggesting that the 
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nanoparticle shape does not play an important role. This suggests that both nanofibers 

and nanoparticles form reasonably well-compacted shells surrounding the CIP 

microparticles. 

Special attention must be paid to the comparison between bimodal suspensions containing 

Fe3O4 and CrO2. The difference between these two nanomaterials is basically their shape 

anisotropy and coercivity. While Fe3O4 is roughly spherical in shape, CrO2 has an acicular 

shape. Also, Fe3O4 is significantly magnetically softer than CrO2. As observed in Fig. 

12.3a, CrO2 gives a larger off-state yield stress presumably because of the magnetically 

hard character (i.e. remnant magnetization) of the nanofibers. On the other hand, the 

observation of Fig. 12.3b demonstrates that the on-state yield stress is very similar for 

both bimodal suspensions for a small particles concentration below 15 vol%. This 

suggests that colloidal forces dominate this low concentration regime. However, the 

deviation observed for a concentration of 15 vol% suggests that CrO2 nanofibers interfere 

with the chain-like structure formed by CIP’s more strongly than their spherical Fe3O4 

counterparts. 

Both the relative and enhancement in the yield stress depicted in Figs. 12.3c and 12.3d 

can be interpreted as a consequence of the previous discussion; the relative yield stress of 

the magnetic nanofibers remains below the rest of the curves because of the large off-

state yield stress exhibited whatever the small particles concentration. On the other hand, 

the enhancement in the yield stress remains at a similar level than weakly magnetic 

spherical nanoparticles. Results for a constant total volume fraction of solids of 𝜙𝑇 = 45 

vol% are in qualitative agreement with the previous discussion for 𝜙𝐿 = 30 vol% (see 

Fig. 12.4); again, a similar trend is observed if compared to weakly magnetic spherical 

nanoparticles. 

Undoubtedly, the most remarkable difference between the use of nanofibers and 

nanospheres concerns the off-state behavior and, in particular, the sedimentation stability 

of the bimodal suspensions. A storage modulus above 1 kPa in the absence of fields is a 

clear indication of the formation of a gelled structure that percolates the available volume 

(cf. Fig. 12.5a). This is coherent with the slow sedimentation rate at the initial times 

observed in Fig. 12.6. However, for very long settling times the nanofibers clearly form 

stronger cakes than their spherical counterparts. 

12.5 Conclusions 

We demonstrate a new route to enhance magnetorheology. It consists in the use of 

bimodal suspensions, containing micro- and nanoparticles, where the smaller particles in 

dispersion have a typical size in the frontier from magnetic mono- to multidomains. In 

this particular size scale, the nanoparticles exhibit a sufficiently large coercive field for 

them to adhere onto the surface of the larger ones. 

In this manuscript we first demonstrate the importance of the magnetic characteristics of 

the nanoparticles. A remarkable enhancement is found when the nanoparticles have 

superior magnetic properties than the microparticles. This experimental observation is 

supported by Finite Element Method simulations. On the other hand, the enhancement is 

modest or even negligible when the nanoparticles are weakly magnetic (as compared to 

the CIPs). The sedimentation stability, penetration and redispersability characteristics of 

these bimodal suspensions also improve with respect to the monomodal counterparts; the 

suspensions settle more slowly, penetration is easier and redispersibility occurs at lower 

torque levels. Overall, the performance of these bimodal suspensions is still better than 
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that of dimorphic MR fluids based on nanofibers, independently of whether the 

nanofibers are magnetic or not. 

Finally, it is worth to note that in the experiments we have kept constant the 1-octanol 

concentration at the same time the concentration of small particles has been changed. Of 

course, this may have an effect because of the difference in surface area and therefore 

colloidal interparticle interactions. This aspect is worth to be studied in detail in a future 

investigation.  
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Conclusions 
Through this dissertation a model, based on the finite element method, has been proposed 

to compute the static yield stress in magnetorheology. In addition, the model has been 

experimentally validated using a novel magnetorheological device and extended to novel 

bimodal MRFs. The major conclusions read as follows: 

 Classic axisymmetric finite element methods do not properly simulate a true 

affine deformation under simple shear. Instead, they underestimate the yield stress 

for highly concentrated MRFs. 

 A new model is proposed for the prediction of the static yield stress. The model 

captures multipoles and non-linear effects (as it solves Maxwell’s equations 

without any approximations) as well as multibody effects (as it is based on 

periodic boundary conditions and a reduced field formulation) regardless of the 

external field strength and particle concentration. 

 Under the assumption of affine deformation, the model is capable to be used on 

any periodic structure and under any applied strain. 

 Independent of the field strength, a body-centered basis in a tetragonal/monoclinic 

lattice is energetically more favorable than a simple basis case. Nevertheless, 

differences in the yield stress between both bases only appear at particle 

concentrations well above 30 vol%. 

 Multibody effects start to play a role for concentrations around 10 vol% (when 

interactions between neighboring chains are no longer negligible). This leads to a 

reduction of the yield stress (it does not linearly increase with concentration any 

more) and eventually, at large concentrations (approx. 45 vol%), can be 

responsible for a maximum in the yield stress. 

 In the linear regime (small external field strengths), due to the relevance of 

multipoles and their short-range nature, the static yield stress is strongly 

dependent on the interactions between close particles. As a consequence: 

o Even small interparticle gaps in the field-induced chains dramatically 

decrease the static yield stress, especially if particles have a large relative 

permeability. 

o Classic models based on elongation + rotation of the chains offer an 

acceptable approximation to affine shear motion of diluted simple basis 

lattices. 

 In the saturated regime (high external fields), due to the presence of only long-

ranged dipolar interactions, the static yield stress shows a significant dependence 

on neighboring chain interactions: 

o Interparticle gaps along the field-induced chains only slightly reduce the 

static yield stress. 

o Classic models based on elongation + rotation of the chains completely 

fail in approximating the shearing motion and, thus, in the computation of 

the yield stress. 

o Analytical computations show that the conventional techniques imposing 

cutoff distances to the dipolar interaction do not necessarily capture 

multibody effects, in particular, when simulating unbounded particle 

arrangements. 
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o Proposed analytical computation is in perfect agreement with the model 

as it also takes into consideration multibody effects of long range origin. 

It is more efficient from a computational point of view although limited to 

the saturated regime. 

 Bearing in mind that the proposed model does not contain any free parameters and 

supposes structures with strong symmetries, the multipole, non-linear and 

multibody effects seems to be responsible for the good agreement between 

experiments and simulations (even in the post-yield regime where symmetric 

structures are clearly absent). 

 Conventional single gap geometries used in magnetorheometry can introduce 

errors in the yield stress measurements. Particularly, the onset of the yield stress 

plateau is underestimated at both a lower saturation stress and external field 

strength. Interestingly, a double gap magnetorheological setup is capable of 

performing measurements under homogeneous magnetic fields, also in the 

saturating regime, and recovering the theoretically predicted trends in the yield 

stress. 

 Yield stress measurements in the saturating regime demonstrate that the sudden 

application of a magnetic field would favor the sample structuration in a simple 

basis tetragonal lattice. However, normal stress measurements do not offer clear 

results highlighting their strong dependence on the finite sample size and internal 

structure defects. 

 MRFs based on permanently magnetized magnetic particles, with mid-range size 

between single and multidomain regimes, exhibit an enhanced MR response 

compared to classic FFs and CMRFs because of their superior magnetization. 

Their rheological behavior can be collapsed by the Mason number similarly to 

CMRFs. 

 Bimodal MRFs based on microparticles (primary population) and mid-range sized 

particles between the single and the multidomain regime (secondary population) 

show an enhanced yield stress, storage modulus and colloidal stability (lower 

sedimentation rate, easy to be redispersed and penetrated) in contrast to classic 

monomodal and bimodal MRFs. Both experiments and simulations demonstrate 

that the yield stress enhancement is a consequence of a secondary population with 

superior magnetic characteristics than the primary population.  
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Conclusiones 
En esta tesis se ha propuesto un modelo, basado en el método de elementos finito, para 

calcular el esfuerzo umbral estático en magnetorreología. Además, el modelo se ha 

validado experimentalmente usando una nueva celda magnetorreológica y se ha 

extendido a nuevos FMR bimodales. Las principales conclusiones se resumen como 

sigue: 

 Los modelos clásicos de elementos finitos basados en simetría axial no simulan 

correctamente la deformación afín. En su lugar, subestiman el esfuerzo umbral en 

FMR altamente concentrados. 

 Se ha propuesto un nuevo modelo para calcular el esfuerzo umbral. Captura los 

efectos multipolares y no lineales (dado que resuelve las ecuaciones de Maxwell 

sin ninguna aproximación) así como los efectos multicuerpo (pues está basado en 

condiciones de contorno periódicas y una formulación de campo reducida) 

independientemente de la intensidad de campo externo o la concentración de 

partículas. 

 Si se admite deformación afín, el modelo puede aplicarse en cualquier estructura 

periódica bajo cualquier grado de deformación. 

 Independientemente del campo aplicado, las redes tetragonales/monoclínicas con 

base centrada en el cuerpo son energéticamente más favorables que aquellas con 

base simple. De cualquier modo, las diferencias entre ambas bases solo aparecen 

a concentraciones de partículas muy por encima del 30 vol%. 

 Los efectos multicuerpo se han de tener en cuenta para concentraciones en torno 

al 10 vol% (cuando las interacciones entre cadenas vecinas no son despreciables). 

Dichos efectos producen une reducción en el esfuerzo umbral (que deja de ser 

proporcional a la concentración) y finalmente, a concentraciones altas 

(aproximadamente del 45 vol%), pueden ser responsables de la aparición de un 

máximo en el esfuerzo umbral. 

 En el régimen lineal (campos externos pequeños), debido a la importancia de los 

multipolos y su naturaleza de corto alcance, el esfuerzo umbral estático depende 

fuertemente de las interacciones entre partículas cercanas. Como consecuencia: 

o Incluso pequeños espacios entre las partículas que forman las cadenas 

inducidas por el campo aplicado originan caídas dramáticas en el esfuerzo 

umbral estático, especialmente si las partículas tienen una permeabilidad 

magnética relativa elevada. 

o Los modelos clásicos basados en la aproximación de elongación + rotación 

simulan aceptablemente la deformación afín en redes de base simple poco 

concentradas. 

 En el régimen de saturación (campos externos elevados), debido a la presencia de 

interacciones dipolares de largo alcance, el esfuerzo umbral estático muestra una 

marcada dependencia con las interacciones entre cadenas: 

o Los pequeños espacios entre partículas a lo largo de las cadenas reducen 

levemente el esfuerzo umbral. 

o Los modelos clásicos basados en la aproximación de elongación + rotación 

fallan completamente en simular la deformación de cizalla y, por tanto, en 

calcular el esfuerzo umbral. 
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o Se ha demostrado analíticamente que las técnicas de cálculo 

convencionales consistentes en aplicar una distancia de corte a la 

interacción dipolar no capturan necesariamente los efectos multicuerpo, 

en concreto, cuando se simulan redes infinitas de partículas. 

o El cálculo analítico propuesto está en perfecto acuerdo con el modelo de 

elementos finitos puesto que tiene en cuenta efectos multicuerpo de largo 

alcance. Desde un punto de vista computacional es más eficiente aunque 

limitado al régimen de saturación. 

 Teniendo en cuenta que el modelo propuesto no tiene ningún parámetro libre y 

supone estructuras muy simétricas, se deduce que los efectos multipolares, 

multicuerpo y no lineales son los principales responsables del buen acuerdo entre 

experimentos y simulaciones (incluso cuando el sistema fluye y claramente no 

hay estructuras periódicas presentes en el FMR). 

 Las celdas magnetorreológicas convencionales de un solo gap pueden introducir 

errores en la medida del esfuerzo umbral. En particular, comparado con las 

predicciones teóricas, se obtienen esfuerzos umbrales en saturación más bajos y a 

campos aplicados menores. Es interesante señalar que, sin embargo, el uso de una 

celda magnetorreológica de gap doble permite medir el esfuerzo umbral bajo 

campos muy homogéneos, incluso en saturación, recobrando así la tendencia 

teóricamente predicha. 

 Las medidas de esfuerzo umbral en saturación demuestran que la aplicación súbita 

del campo magnético favorecería la formación de redes tetragonales con base 

simple. Por el contrario, las medidas de esfuerzos normales no son concluyentes 

remarcando la fuerte dependencia de estos con el tamaño finito de la muestra y 

los defectos de su estructura interna. 

 Los FMR basados partículas permanentemente magnetizadas, con tamaños en la 

frontera entre los regímenes mono- y multidominio magnético, exhiben una 

respuesta MR mejorada en comparación con FF y CMRF clásicos debido al mayor 

nivel de magnetización de sus partículas. Su comportamiento reológico puede 

describirse en función del número de Mason tal y como ocurre con los CMRF. 

 Los FMR bimodales basados en micropartículas (población primaria) y partículas 

con tamaños en el límite entre los regímenes mono- y multidominio magnético 

(secundaria) muestran mejores esfuerzos umbrales, módulos de almacenamiento 

y estabilidad coloidal (sedimentan más lentamente y son más fáciles de 

redispersar) que los FMR monomodales y bimodales clásicos. Tanto medidas 

experimentales como resultados de simulación demuestran que la mejora en el 

esfuerzo umbral es consecuencia de las propiedades magnéticas superiores de la 

población secundaria en comparación con la primaria. 
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