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1 Introduction

It is well known that regularization methods based on analytical continuation in a complex

dimension d face some problems in the presence of γ5 matrices and completely antisymmet-

ric ε tensors.1 The reason is that the usual properties of these objects in integer dimension

n are not consistent with the treatment of Lorentz tensors in dimensional regularization

(DReg) [2, 3]. Therefore, one has to give up some of these properties [4]. In particular,

a consistently-defined γ5 that approaches the standard γ5 as d → n cannot anticommute

with the Dirac matrices in DReg [4, 5]2 and there is no finite-dimensional complete set in

Dirac space — which is an obstacle, for instance, for Fierz reorderings and supersymmetry.

These complications are related to the fact that Lorentz covariants in complex dimension

d are treated as formal objects, in which the indices do not take actual values. Even if

quantities such as {γ5, γµ} are evanescent, i.e. they approach zero as d → n, due to the

poles at d = n in the loop integrals they leave a vestige in the renormalized functions after

minimal subtraction (MS).

A consistent set of rules in DReg to manipulate Lorentz tensors, including the ε tensor

and γ5 matrix, was proposed by Breitenlohner and Maison in [4]. They used the original

1See [1] for a review. We follow the conventions in that reference only to some extent.
2An anticommuting γ5 is often employed in DReg, nevertheless. Although this may be safe for many

calculations, as shown in [6], a well-defined renormalized theory requires a consistent unified treatment of

arbitrary diagrams and amplitudes. In particular, this is necessary to prove important properties of the

theory to all orders.
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definition of γ5 by t’Hooft and Veltman (tHV) [3]. Completed with these rules and MS

(or MS), DReg provides a consistent renormalization scheme. However, besides genuine

anomalies, spurious anomalies appear in some correlators of axial vector currents in QCD

and chiral gauge theories, including the Standard Model [7]. These pose no fundamental

problem, as it has been shown that they can be eliminated by an additional finite subtrac-

tion in a systematic way [8]. But such a correction represents a complication in explicit

calculations. This is the main reason for looking for alternatives to the tHV definition of

γ5. Furthermore, DReg explicitly breaks supersymmetry, so it is not a convenient method

in supersymmetric theories.

An alternative set of rules for Lorentz tensors and Dirac matrices, which define the orig-

inal version of regularization by dimensional reduction (ODRed), was proposed by Siegel

in [9] with the purpose of preserving supersymmetry. In this case, the ε tensor, the Dirac

gamma matrices and the γ5 matrix are the original n-dimensional objects and thus the

Dirac algebra is in principle performed in integer dimensions. The name of the method in-

dicates that when these objects are contracted with tensors associated to the dimensionally-

regularized integrals, they are projected into the formal d-dimensional Minkowski space.

But due to this projection, the conflict between the n-dimensional relations and the d-

dimensional Lorentz space reappears. In fact, Siegel himself showed in [10] that the set of

rules in ODRed is inconsistent. A consistent set of rules based on dimensional reduction

can be defined by giving up genuine n-dimensional relations that require giving explicit

integer values to the Lorentz indices [11]. This gives rise to the modern, consistent ver-

sion of dimensional reduction (DRed) [12]. Unsurprisingly, it does not manifestly preserve

supersymmetry [12, 13]. The four-dimensional helicity method (FDH) [14] is a variant of

DRed that treats external vector fields as strictly four dimensional [1]. For our purposes

we need not distinguish it from DRed. On the other hand, we will often refer to ODRed,

even if inconsistent, for comparison with the methods we are interested in.

In view of the unavoidable difficulties of the dimensional methods when applied to

chiral theories or chiral operators, it is reasonable to turn to methods defined in the fixed

dimension of interest (often n = 4). Indeed, none of the issues discussed above seems at

first sight to be relevant when the original dimension is kept fixed. However, in this paper

we show that this expectation is too näıve. It turns out that the formal treatment of

Lorentz tensors and Dirac space in certain efficient fixed-dimension methods shares many

properties with the one in dimensional methods. As a consequence, the same consistency

problems with ε and γ5 are found. Consistency can again be recovered by giving up some n-

dimensional relations. The resulting methods are not expected to preserve supersymmetry.

Of course, in explicit regularizations in fixed dimension n, such as a momentum ultra-

violet cutoff or those based on a modification of the Lagrangian, the n-dimensional Lorentz

and Dirac manipulations inside or outside loop integrals are well defined. The same is true

at the renormalized level in physical renormalization schemes defined by renormalization

conditions. However, when some a priori subtraction prescription is used (similar to MS

in DReg), the commutation of the usage of n-dimensional identities with the substrac-

tion of divergences needs to be checked. This is specially so in fixed-dimension methods

that directly provide renormalized amplitudes without explicit counterterms. Here we are
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interested in methods of this kind with the potential of satisfying the quantum action

principle [15], from which basic properties, such as Ward identities, follow to all orders.

We will generically refer to them as implicit methods. Specifically, we study in detail three

implicit methods: constrained differential regularization/renormalization (CDR)3 [16], con-

strained implicit regularization/renormalization (CIReg) [17] and four-dimensional regu-

larization/renormalization (FDR) [18]. These methods have been applied to one-loop and

multi-loop calculations in QCD [19–21], the Standard Model [22–24], supersymmetric mod-

els [25–27] and supergravity [28], among other theories. In all these examples, gauge in-

variance and supersymmetry, when relevant, have been preserved. We will also make some

comments about the four-dimensional formalism (FDF) [29] of FDH, which shares some

features with FDR.

The first of these methods, CDR, was originally defined in position space, as a gauge-

invariant version of differential renormalization [30], but it works equally well in momentum

space. Actually, its momentum-space version is implemented in FormCalc [31].4 CDR

gives renormalized expressions without any intermediate regularization, essentially by an

implicit subtraction of local singularities (polynomial in external momenta, in agreement

with Weinberg’s theorem). CIReg and FDR work in momentum space at the integrand

level. Both methods use straightforward partial-fraction identities to isolate the ultraviolet

divergences, with no external momenta in the denominators. The divergent parts are then

ignored, that is, subtracted. Again, no regularization is necessary. One difference between

them is that CIReg keeps physical masses in the divergent parts, while FDR does not, but

these include an auxiliary mass µ, which is introduced before the algebraic manipulations to

avoid artificial infrared divergences and taken to zero at the end.5 This scale is essential in

FDR and will be very relevant in the discussion below. Let us stress that, notwithstanding

its name, FDR can be used in the very same manner in any integer dimension. All three

methods can in principle deal as well with genuine infrared divergences, but only FDR has

been studied in detail in this context, both for virtual and real singularities [18, 23]. The

equivalences in non-chiral theories and at the one-loop level of CDR, CIReg (in a massless

scheme) and DRed have been established in [31, 33] and [34]. Concerning the preservation of

unitarity and locality in multi-loop calculations without counterterms, CDR and CIReg rely

on Bogoliubov’s recursive renormalization and Zimmermann’s forest formula [32, 35–38].

In the literature of FDR, sub-integration consistency is checked for different structures and

imposed by an extra finite subtraction of sub-diagrams [21]. A systematic implementation

of this idea should eventually be equivalent to the application of the forest formula. At

any rate, here we are concerned with the treatment of Lorentz tensors and Dirac matrices

in these fixed-dimension methods, and one-loop examples will be sufficient to illustrate our

main messages.

3Not to be confused with “conventional dimensional regularization”.
4FormCalc has the option of working in d or 4 dimensions, that is, in DReg or CDR. The latter is more

suitable for supersymmetric theories.
5CIReg can also be implemented without masses in divergent parts [32]. In this mass-independent

scheme, and in all cases in massless theories, the scale µ is introduced in CIReg as well, but only in denom-

inators.
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The paper is organized as follows. In section 2, we describe the treatment of Lorentz

tensors in DReg/DRed and in implicit methods. We stress the fact that, in order to pre-

serve basic properties of the integrals, the contraction of Lorentz indices cannot commute

with renormalization. We also explain how this requirement is implemented in the dif-

ferent methods. In section 3 we show a consequence of it: some identities that are valid

in standard n-dimensional spaces are spoiled by the renormalization process. Thus, us-

ing these identities leads to inconsistent results. In section 4 we study how the Dirac

algebra is affected by these potential inconsistencies. We find that implicit methods have

problems with the Dirac algebra in odd dimensions and with the γ5 matrix in even di-

mensions. These issues parallel the ones in dimensional methods. In section 5 we propose

a well-defined procedure that avoids inconsistencies in implicit methods. This procedure

is analogous to the one adopted in DRed. We discuss allowed simplifications within this

scheme, including shortcuts that have already been used in FDR. We give simple examples

in n = 2 and n = 4 in section 6 and conclude in section 7. An appendix collects functions

that appear in our explicit calculations. In order to keep the equations as short and simple

as possible, formulas are often given in n = 2. We work in Euclidean space and formal

generalizations of it.

2 Lorentz tensors and index contraction

In dimensional methods, the contraction of Lorentz indices in a tensorial integral does not,

in general, commute with regularization and renormalization. This comes from the simple

fact that the trace of the d-dimensional metric tensor is δµµ = d = n− ε 6= n. When it hits

a pole 1/ε in a divergent integral, the term linear in ε will give rise to a finite contribution,

which is not subtracted in MS and survives when ε is taken to zero.

This feature is shared by some methods in fixed dimension. In fact, we show next that

index contraction does not commute with renormalization in any implicit method that

i) replaces each overall-divergent integral by a unique finite expression, ii) does not modify

power-counting finite expressions, iii) preserves linearity and iv) satisfies the following two

properties: invariance under shifts of the integration momenta and numerator-denominator

consistency. Shift invariance is related to translational invariance and guarantees indepen-

dence of momentum routing. Numerator-denominator consistency requires that the ap-

plication of the kinetic operator to the propagator associated to some line in a Feynman

graph is equivalent to pinching of that line, that is, its contraction to a point. This is

necessary for a consistent treatment of the quadratic and interaction terms in perturbation

theory [4]. These two properties are desirable in a renormalization method, as they are

typically required in perturbative proofs of the quantum action principle. They need not

hold in arbitrary definitions of regularized or subtracted integrals, but they do in CDR,

CIReg and FDR, as explained below.

Shift invariance can be related to the vanishing of total derivatives with respect to

integration momenta:

0 =

[∫
dnk (f(k + p)− f(k))

]R
= pν

[∫
dnk

∂

∂kν
f(k)

]R
+O(p2). (2.1)
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Here, R indicates that the expression inside the corresponding brackets is renormalized,

i.e. subtracted and with any possible regulator or auxiliary parameter removed (except for

the unavoidable renormalization scale). We require that the operation [.]R be linear:

[aF + bG]R = a [F ]R + b [G]R , (2.2)

where a, b are numbers or external objects, such as external momenta. This holds in all

the methods we study in this paper. Consider the following two-dimensional integral:

fµν =

∫
d2k

∂

∂kµ

kν
k2 +m2

=

∫
d2k

(
δµν

k2 +m2
− 2

kµkν
(k2 +m2)2

)
(2.3)

According to (2.1), shift invariance requires [fµν ]R = 0, and thus, calling

Iµν =

∫
d2k

kµkν
(k2 +m2)2

, (2.4)

we have

[Iµν ]R =
1

2
δµν

[∫
d2k

1

k2 +m2

]R
=

1

2
δµν

([∫
d2k

k2

(k2 +m2)2

]R
+

[∫
d2k

m2

(k2 +m2)2

]R)
=

1

2
δµν

(
[Iαα]R + π

)
. (2.5)

That is, shift invariance forbids symmetric integration (in n dimensions). In the second

line we have used numerator-denominator consistency, (k2 + m2)/(k2 + m2) = 1. This

looks trivial in the formal equations above, but it is not so in methods that modify the

propagators at intermediate steps of the calculation. In the third line we have assumed that

integrals finite by power counting are not changed by renormalization. This assumption is

essential in the definition of dimensional regularization and also in the definition of CDR,

CIReg and FDR, as should already be clear from the brief explanations in the introduction.

We can rewrite (2.5) as

δµν [Iµν ]R = [δµνIµν ]R + π. (2.6)

So, we see that renormalization does not commute with index contraction if it commutes

with shifts of integration momenta and respects numerator-denominator consistency. This

is in fact the origin of trace anomalies [39] and also of chiral anomalies, as we shall see. The

same conclusion can be proven in arbitrary integer dimension n using similar arguments.
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Let us now examine how the different renormalization methods we are discussing re-

cover (2.5), and thus comply with (2.1). In the case of dimensional methods, we have

[Iµν ]R =

[∫
ddk

kµkν
(k2 +m2)2

]S
=

[∫
ddk

1

d
δµν

k2

(k2 +m2)2

]S
=

[∫
ddk

(
1

2
+
ε

4
+O(ε2)

)
δµν

k2

(k2 +m2)2

]S
=

[
1

2
δµν

∫
ddk

k2

(k2 +m2)2
+
(ε

4
+O(ε2)

)
δµν

(
2π

1

ε
+O(ε0)

)]S
=

1

2
δµν

(
[Iαα]R + π

)
, (2.7)

in agreement with (2.5). Here, S indicates MS followed by ε→ 0. Note that before the S

operation, δ is the Euclidean metric in d formal dimensions, which satisfies δµµ = d.

In CDR, the finite local terms in the renormalized value of the different overall-

divergent tensor integrals are fixed by requiring compatibility with shift invariance and

numerator-denominator consistency. Hence, [fµν ]R = 0 by construction and the extra local

term in the tensor integral is fixed just as in equation (2.6).

CIReg has the advantage of working at the integrand level. Tensor integrands are

expressed as simpler integrands plus total derivatives. Integrating the latter gives potential

surface terms, which are dropped by definition. So, shift invariance is enforced by the very

definition of the method. For instance, using the same relation as in (2.3),

[Iµν ]R =

[∫
d2k

(
1

2

δµν
k2 +m2

− 1

2

∂

∂kµ

kν
k2 +m2

)]R
=

1

2
δµν

[∫
d2k

1

k2 +m2

]R
=

1

2
δµν

(
[Iαα]R + π

)
. (2.8)

We see that the same local terms as in CDR are found, but in this case there is a simple

prescription to obtain them. Obviously [fµν ]R = 0 and (2.6) is satisfied. At this point, it

is important to make the following observation. We can also write

[Iαα]R =

[∫
d2k

(
1

k2 +m2
− 1

2

∂

∂kα

kα
k2 +m2

)]R
. (2.9)

Dropping the second term would contradict (2.8). Accordingly, CIReg does not drop

this sort of surface term when the index in the total derivative is contracted with a loop

momentum. Therefore, just as CDR, CIReg distinguishes by definition contracted and

non-contracted Lorentz indices. Note that the vanishing of the second term on the right

hand of (2.9) is not necessary for shift invariance: in (2.1) the index in the total derivative is

contracted with the index in the (external) momentum shift, so it can never be contracted

with the index of a loop momentum.
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In FDR, which also works at the integrand level, the extra local terms necessary for

shift invariance result automatically from the introduction of the scale µ, together with

some additional prescriptions. In this method,

[Iµν ]R =

[∫
d2k

kµkν
(k2 + µ2 +m2)2

]S
=

1

2
δµν

[∫
d2k

k2

(k2 + µ2 +m2)2

]S
=

1

2
δµν

[∫
d2k

k2 + µ2

(k2 + µ2 +m2)2
−
∫
d2k

µ2

(k2 + µ2 +m2)2

]S
=

1

2
δµν

(
[Iαα]R −

[∫
d2k

µ2

(k2 + µ2 +m2)2

]S)
=

1

2
δµν

(
[Iαα]R + π

)
. (2.10)

Several explanations are in order. The first step in FDR is the introduction of the scale

µ, as done in the first line of (2.10). The symbol [.]S in this case refers to the FDR

subtractions, followed by the limit µ→ 0 (outside logarithms). In the second line, we have

used the property of symmetric integration, which is allowed in this method after the scale

µ has been introduced. In the forth line we have used the so-called global prescription of

FDR, according to which the possible k2 in numerators inside [.]R should be also replaced

by k2+µ2, just as in the denominators. As emphasized in [18], this is necessary to preserve

numerator-denominator consistency. Finally, the integral in the second term of the fourth

line of (2.10) is finite and goes to zero as µ→ 0. However, a nonvanishing contribution is

found as shown in the last line, because FDR performs an oversubtraction, treating this

integral as divergent (for power counting, µ is counted like an integration momentum).6

In the FDR language integrals of this kind are called extra integrals. They play the same

role as the extra local terms in CDR, with the advantage that the necessary terms arise

directly from a simple and universal prescription, formulated without reference to specific

integrals. The result in (2.10) coincides with the one in the previous methods, as it should

to guarantee [fµν ]R = 0 and, thereby, shift invariance.

Let us summarize this section. Just as in dimensional renormalization, the contraction

of Lorentz indices does not commute with renormalization in the implicit methods we

are considering, which respect invariance under shifts of the integration momenta and

numerator-denominator consistency. In the latter methods, k2 and kµkν have to be treated

in a different manner by hand. This requires writing the diagrams in some normal form

that allows for a unique identification of tensors with contracted and uncontracted indices.

3 Relations in genuine integer dimension

Genuine n-dimensional identities (GnDI) spoil the uniqueness of the normal form and thus

can lead to inconsistencies in implicit methods, which parallel the ones in ODRed. By

6Note that µ is not present in the initial expressions, so this oversubtraction does not contradict condi-

tion ii) above.
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GnDI we mean equalities depending crucially on the fact that the Lorentz indices can take

n different integer values. Consider the determinant

Det(µ1 . . . µm; ν1 . . . νm) ≡

∣∣∣∣∣∣∣∣∣∣
δµ1ν1 δµ1ν2 . . . δµ1νm
δµ2ν1 δµ2ν2 . . . δµ2νm

...
...

...

δµmν1 δµmν2 . . . δµmνm

∣∣∣∣∣∣∣∣∣∣
. (3.1)

In standard algebra, this object vanishes when m > n, since it is then unavoidable to have

at least two identical rows, as the indices can take only n different values. However, this

is not necessarily true when used inside [.]R, because contracted and uncontracted indices

are treated differently if index contraction does not commute with renormalization. To

show this more explicitly, let us consider the case with n = 2 and m = 3. Requiring the

determinant (3.1) to vanish we have

0 = [0]R

?
= [Det(αµν;βρσ)p1µp2νp3ρp4σIαβ ]R

= (p1 · p3 p2 · p4 − p1 · p4 p2 · p3) [Iαα]R − p1µp3ρ p2 · p4 [Iρµ]R

+ p3ρp2ν p1 · p4 [Iρν ]R + p4σp1µ p2 · p3 [Iσµ]R − p2νp4σ p1 · p3 [Iσν ]R . (3.2)

If we now use (2.5), we find

0
?
= π(p1 · p4 p2 · p3 − p1 · p3 p2 · p4), (3.3)

which is obviously not true for general pi.

This simple example is sufficient to prove the main assertion of this paper: Using GnDI

before renormalization can lead to inconsistencies in implicit methods. The origin of this

issue is the non-commutation of index contraction with renormalization. The difficulties

with γ5, discussed in the next section, are a direct consequence of it.

In dimensional methods, it is clear that the determinant (3.1) does not vanish if δ is the

d-dimensional metric, so obviously the second equality in (3.2) is invalid. However, an n-

dimensional metric δ̄ (δ̃) is introduced in DReg (DRed), with δ̄µµ = δ̃µµ = n. The relation

between the n-dimensional and d-dimensional metrics is different in DReg and DRed:

δµν δ̄νρ = δ̄µρ, (DReg); (3.4)

δµν δ̃νρ = δµρ, (DRed). (3.5)

Let us define

Det(µ1 . . . µm; ν1 . . . νm) ≡

∣∣∣∣∣∣∣∣∣∣
δ̄µ1ν1 δ̄µ1ν2 . . . δ̄µ1νm
δ̄µ2ν1 δ̄µ2ν2 . . . δ̄µ2νm

...
...

...

δ̄µmν1 δ̄µmν2 . . . δ̄µmνm

∣∣∣∣∣∣∣∣∣∣
. (3.6)

– 8 –
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For n = 2, in DReg we have

0 = [0]R

=
[
Det(αµν;βρσ)p1µp2νp3ρp4σIαβ

]R
= (p1 · p3 p2 · p4 − p1 · p4 p2 · p3)

[
δ̄αβIαβ

]R − p1µp3ρ p2 · p4 [Iρµ]R

+ p3ρp2ν p1 · p4 [Iρν ]R + p4σp1µ p2 · p3 [Iσµ]R − p2νp4σ p1 · p3 [Iσν ]R . (3.7)

This expression does vanish. The difference with (3.2) is that δ̄αβkµkν 6= k2 if k is a

d-dimensional vector. Then, [
δ̄αβIαβ

]R
= δαβ [Iαβ ]R . (3.8)

Note that δ is the same as δ̄ outside [.]R. We see that the rules in DReg are perfectly consis-

tent in our example: Det(αµν;βρσ) does not vanish in d dimensions while Det(αµν;βρσ)

can be safely set to zero in n = 2.

Things are very different with δ̃. Due to (3.5) and the fact that the integration mo-

mentum k is a d-dimensional vector (in the sense explained above), we find δ̃αβkµkν = k2.

Hence, if we define D̃et just as in (3.6) but with δ̄ → δ̃, and if we treat δ̃ as the genuine

n-dimensional metric, as done in ODRed, we recover (3.2) and the inconsistency (3.3).

The root of the problem in this case is apparent: the relation (3.5) projects n-dimensional

objects into d-dimensions, which invalidates the GnDI used for the former.

Note that in ODRed, the inconsistencies arise at the regularized level, due to the

incompatibility of the dimensional reduction rule (3.5) with GnDI. In implicit methods, the

GnDI are also dangerous before the identification and distinction of the different tensors.

But they can be safely used afterwards: in CDR, after the (non-trivial) trace-traceless

decompositions; in CIReg, after rewriting tensor integrals and eliminating surface terms

by generalizations of (2.8); and in FDR, after the addition of µ2 in numerators, according

to the global prescription.

It will prove useful to mimic DReg and introduce in implicit methods a genuinely

n-dimensional metric δ̄, with the properties7

δ̄µν δ̄νρ = δ̄µνδνρ = δ̄µρ, (implicit)

δ̄µµ = n. (3.9)

The distinguishing property of the metric δ̄ with respect to δ is that, by definition,[
δ̄µνT...µ...ν...

]R
= δµν [T...µ...ν...]

R , (3.10)

for any tensor T . In general, (3.10) is different from [T...µ...µ...]
R. In other words, for

renormalization purposes δ̄µνkµkν = k̄2 is not to be treated as k2 but as if the indices

were not contracted. For instance, in FDR, no µ2 is added to k̄2. (But once the µ2 shifts

have been performed, one can write k̄2 = k2.) Because δ̄ commutes with renormalization,

Det(µ1µ2µ3; ν1ν2ν3) vanish for n = 2, just as in DReg. But importantly, in expressions such

7δ̄ and δ here play the same role as δ̄ and δ, respectively, in DReg, except for the fact that in the latter

method δµµ = d.
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as (2.3), it is still the ordinary metric δ of the formal n-dimensional space that appears.

Otherwise, shift invariance or numerator-denominator consistency would be spoiled, as we

have seen. If E is either the ε tensor or an external tensor, then we can substitute at any

moment one metric by the other one,

E...µ...δµν = E...µ...δ̄µν , (3.11)

since the metrics appearing here will never contract two internal momenta, as long as GnDI

are not employed. We can also use δ̄ in dimensional reduction, with the properties in (3.9)

and (3.5), supplemented with

δ̄µν δ̃νρ = δ̄µρ (DRed). (3.12)

Actually, this is the key to the formulation of DRed in [12]. In section 5 we will comment

on the structure of the spaces with these different metrics.

The example we have examined may look quite contrived, but identities of this kind

are often used to simplify expressions in the presence of completely antisymmetric tensors

εµ1...µn . This object can be defined formally by its rank and its antisymmetric character.

Note that the definition is dimension-specific: even if we do not assign values to the indices,

ε is only defined with n indices. The relations∑
π∈Sn+1

sign(π)εµπ(1)...µπ(n)δµπ(n)ν = 0 (3.13)

and

εµ1...µnεν1...νn = Det(µ1 . . . µn; ν1 . . . νn) (3.14)

are GnDI. They can lead to inconsistencies when used inside [.]R. For instance, (3.13) in

n = 2 implies

0
?
= [(εµνδρα − εµρδνα + ενρδµα)Iµα]R

= περν , (3.15)

where we have used (2.5). One might be tempted to avoid some ambiguities by defining

the left-hand side of (3.14) by its right-hand side, and in this way eliminate products of

two ε tensors until one at most remains in a given factor. This definition is ill-defined. For

instance, in a product εµ1ν1εµ2ν2εµ3ν3εµ4ν4 , it is possible to apply (3.14) to three different

pairs of pairs of ε tensors. The result with each choice is formally different and can give

rise to different index contractions. Hence, when multiplied by a divergent integral, the

result after renormalization may depend on how the four ε tensors have been paired. This

is analogous to the ODRed inconsistency pointed out in [10]. On the other hand, no

inconsistencies arise in any of the methods from GnDI such as (3.13) or (3.14) when the

metric δ̄ is used instead of δ.
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4 Dirac algebra

The Dirac matrices γµ transform as vectors under Lorentz transformations. In dimen-

sional methods, they cannot have explicit n-dimensional form, since the Lorentz indices

do not take explicit integer values. They are defined as a formal representation of the

Clifford algebra:

{γµ, γν} = 2δµν1, (DReg), (4.1)

{γµ, γν} = 2δ̃µν1, (DRed). (4.2)

Trace identities follow in each case from these definitions, the ciclicity of the trace (which

we assume throughout the paper) and the value of the trace of the identity, which in both

methods can be taken to be tr1 = n. Because of the projection rule (3.5), even if the Dirac

algebra looks n-dimensional in DRed, this can be effectively changed by contractions with

the integration momenta. In fact, the relation /k/k= k2 is necessary to preserve numerator-

denominator consistency. Implicit methods also treat Lorentz tensors in a formal way, as

we have seen, so the Dirac matrices are naturally defined by

{γµ, γν} = 2δµν1, (implicit), (4.3)

where of course δ here is (formally) n-dimensional.

The formal treatment of the Dirac algebra in all of these methods suffers from a

fundamental problem when n is odd. This can be checked most easily in DReg [40].

First, (4.1) and the cyclicity of the trace imply

dtr(γµ) = tr(γµγαγα) = tr(γαγµγα) = 2tr(γµ)− tr(γµγαγα) = (2− d)tr(γµ). (4.4)

Hence, unless d = 1, tr(γµ) = 0. Similar manipulations for a product of an odd number m

of Dirac matrices lead to

(d−m)tr(γµ1 . . . γµm) = 0. (4.5)

Therefore, tr(γµ1 . . . γµm) = 0 unless d = m. Analytical continuation in d then requires all

these products to vanish identically for all d. But this is incompatible with the fact that

the product of n Dirac matrices in n fixed odd dimensions is proportional to the ε tensor, a

property that should be recovered after renormalization. To solve this problem, one must

break the d-dimensional Lorentz covariance of the Dirac algebra changing δ by δ̄ in (4.1),

as proposed in [40]. This is consistent with (3.4) but compromises numerator-denominator

consistency. On the other hand, even if the definition (4.2) is employed in DRed, the

problem reappears when the indices in the initial trace are contracted with integration

momenta, due to the projection rule (3.5).

Presented in this way, the inconsistency in odd dimensions looks like a specific problem

of the analytical continuation in d. However, it turns out that implicit methods also treat

the Dirac algebra inconsistently when the dimension n is odd. Let us show it for the case

– 11 –
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n = 3, for definiteness. In three dimensions,8

tr(γµγνγρ) = 2εµνρ. (4.6)

Then, from (4.2) and the cyclicity of the trace,

tr(γµγνγργσγτ ) = −tr(γνγµγργσγτ ) + 2δµνtr(γργσγτ )

= tr(γµγνγργσγτ ) + 2 (δµνtr(γργσγτ )− δµρtr(γνγσγτ ) + δµσtr(γνγργτ )

− δµτ tr(γνγργσ))

= tr(γµγνγργσγτ ) + 4 (δµνερστ − δµρενστ + δµσενρτ − δµτ ενρσ) , (4.7)

which in view of (3.13) looks fine at first sight. However, as we have seen in the previous

section the combination of ε tensors and deltas in the last line needs not vanish inside [.]R

when two of the indices are contracted with the integration momenta of a divergent integral.

Therefore, the result of the calculations can be ambiguous.

From now on, we will assume that the dimension n is even, unless otherwise indicated.

One of the most important limitations of not being able to employ GnDI is the absence

of a finite complete set in Dirac space. In ordinary n-dimensional space, the antisymmet-

ric products

[µ1 . . . µm] =
1

m!

∑
π∈Sm

sign(π)γµπ(1) · · · γµπ(m)
, m = 1, . . . , n, (4.8)

together with the identity 1, form a linearly independent complete set of the space of

2n/2 × 2n/2 complex matrices.9 In the formal n-dimensional space, the Dirac matrices

cannot be understood as matrices of any specific dimension, so completeness must be

defined also in a formal way. As shown in [41], many useful relations can be proven using

only formal manipulations. The matrices [µ1 . . . µm] are orthogonal with respect to the

trace bilinear form. Then, a string of Dirac gamma matrices

Sα1...αm = γα1 . . . γαm (4.9)

can always be written as

Sα1...αm = aα1...αm
0 1 + aα1...αm

µ [µ] + · · ·+ aα1...αm
µ1...µm [µ1 . . . µm], (4.10)

with (n-independent) coefficients given by

aα1...αm
µ1...µk

=
1

nm!
tr (Sα1...αm [µk . . . µ1]) . (4.11)

Therefore, B = {1, [µ1], [µ1µ2], . . . } is a countable Hamel basis of the formal Dirac space,

defined as the set of arbitrary linear combinations of strings of the form (4.9) (including

8Lorentz covariance guarantees that this trace is proportional to the ε tensor. The numerical factor

can be determined by agreement with the usual algebraic result, for instance using the Pauli matrices as a

representation of the 3-dimensional Dirac algebra.
9We are discussing the case of even n. For odd n, the set {[µ1 . . . µm],m = 1, . . . (n−1)/2} is a complete

set of 2(n−1)/2 × 2(n−1)/2 matrices.

– 12 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
9

the case with m = 0, S = 1). The main difference with a genuine n-dimensional space is

that the objects [µ1 . . . µm] do not vanish for m > n, so the space is infinite-dimensional.

For instance, in formal n-dimensional space we have

Sµνρ = δµνγρ − δµργν + δνργµ + [µνρ], (4.12)

which is valid for any even n, including n = 2. Using the mentioned GnDI, in n = 2 we

could instead simplify this expression to

Sµνρ = δµνγρ − δµργν + δνργµ. (4.13)

But as stressed already many times, such simplifications are dangerous before renormal-

ization.

The standard Fierz identities in n dimensions can be derived using the completeness

of {1, [µ1], . . . , [µ1 . . . µn]}. Similarly, in the formal n-dimensional space one can derive

Fierz identities from the completeness of B. However, the Fierz reorderings in this case

involve in general an infinite number of terms, just as in DReg [42], which makes them

less useful. Moreover, the invariance under supersymmetry transformations of the action

of supersymmetric theories relies on genuine n dimensional Fierz identities (and also on an

anticommuting γ5). In fact, as shown in [11–13], the supersymmetry Ward identities are

violated when relevant GnDI are not fulfilled.

In even dimensions, Weyl spinors can be defined from Dirac spinors by chiral projectors

constructed with γ5.
10 Several definitions of γ5 are in principle possible in the methods we

are considering. First, it can be defined formally by the basic property

{γAC
5 , γµ} = 0, (4.14)

where the label AC has been introduced to distinguish this definition from the one we

favor below. This simple definition is consistent, as has been proven in [12] by explicit

construction. Unfortunately, in all the methods we consider, it is incompatible with the

correct n-dimensional value of odd-parity traces. This fact is well known in DReg [4, 5].

In n = 2, for example, after renormalization we would like to recover the standard value

tr(γ5γµγν) = −2εµν . (4.15)

On the other hand, using (4.14) and the DReg rules in tr(γAC
5 γµγνγργρ), it follows that

d(d− 2)tr(γAC
5 γµγν) = 0, (4.16)

which shows that tr(γAC
5 γµγν) vanishes identically and (4.15) cannot be recovered in the

limit d → 2. DRed faces the same situation when the free indices in the initial trace are

contracted with integration momenta, due to the projection rule (3.5) [5]. Once again, this

issue appears as well in implicit methods. Indeed, (4.14) and (4.15) imply

tr(γAC
5 γµγνγργσ) = tr(γAC

5 γµγνγργσ)− 2ενρδµσ + 2εµρδνσ − 2εµνδρσ. (4.17)

10We call this object γ5 for any integer dimension n. Because in this paper we never write Lorentz indices

with explicit integer values, no confusion with γµ should arise.
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Again, in spite of GnDI (3.13) and as shown in (3.15), −ενρδµρ + εµρδνσ − εµνδρσ can be

nonzero inside [.]R, which then leads to a contradiction.11 In the same way it can be shown

that tr(γAC
5 γµ1 . . . γµn) = 0 for any even n. This is certainly not what one would want in

an n-dimensional method and it shows that the definition (4.14) does not provide a correct

regularization of arbitrary diagrams in a chiral theory. Note that other traces with one

γAC
5 matrix also vanish, since they must be antisymmetric and there is no Lorentz-covariant

completely antisymmetric tensor of rank m 6= n. This can be proven more explicitly by

relating them to tr(γAC
5 γµ1 . . . γµn), and can be extended to traces with an odd number of

γAC
5 matrices if (γAC

5 )2 = −1, a property which is required to form chiral projectors.

This problem of γAC
5 reappears in a more subtle form in open fermion lines. To see

this, assume for a moment that γAC
5 belongs to the formal Dirac space, as defined above.

Then, using the completeness of B, we would find

γAC
5 =

1

n
tr(γAC

5 )1 +
1

2n
tr(γAC

5 [νµ])[µν] +
1

24n
tr(γAC

5 [σρνµ])[µνρσ] + . . .

= 0. (4.18)

Therefore, if γAC
5 is to be nontrivial, it cannot belong to the formal Dirac space.12 But

then, the eventual projection into the standard Dirac space of genuine n-dimensional space,

which is a subset of the former, will annihilate it. So, to recover standard Dirac strings with

γ5 matrices, one needs to replace by hand γAC
5 by γ5 after renormalization. It does not seem

obvious to us that this ad hoc replacement in multi-loop amplitudes will respect unitarity.

An alternative definition of γ5 is to generalize its explicit definition in genuine n di-

mensions in terms of the Dirac matrices:

γ5 =
1

n!
εµ1...µnγµ1 · · · γµn . (4.19)

This is akin to the original tHV definition in DReg [3] and is the definition we will use in the

following, unless otherwise indicated. Note that, even if we are not restricting the indices

to have n different values, this object is n-dimensional in the sense that it contains n Dirac

matrices. Furthermore, in view of (3.11), we can write (4.19) in the alternative form

γ5 =
1

n!
εµ1...µn γ̄µ1 · · · γ̄µn , (4.20)

where γ̄µ = δ̄µνγν . Like any other explicit definition, (4.19) does not introduce any consis-

tency issues by itself. The non-trivial question is which familiar properties of the γ5 can

be proven without using dangerous GnDI. The most important of these properties is the

anticommutation with the Dirac matrices, but from the discussion above it is clear that this

property cannot hold for the definition (4.19) in any of the methods we are discussing.13

11This argument in even dimensions is almost identical to the one above in odd dimensions. Taking into

account that the usual candidate for γ5 is proportional to the identity in odd dimensions, we see that the

origin of the inconsistencies is essentially the same in odd and even dimensions.
12This is apparent in the explicit construction of [12].
13The fact that γ5 does not anticommute with the Dirac matrices has already been observed in FDR [18]

and CIReg [43, 44].
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Indeed, for n = 2, for instance, (4.19) and (4.2) give

tr(γ5γµγνγργσ) + tr(γµγ5γνγργσ) = −4 (δµνερσ − δµρενσ + δµσενρ) (4.21)

This expression vanishes when it accompanies finite integrals. However, using (3.15) we get

[(tr(γ5γµγνγργσ) + tr(γµγ5γνγργσ)) Iµσ]R = 4περν (4.22)

In the same vein, let us point out that some of the explicit trace expressions of odd-parity

products of Dirac matrices in the literature have been simplified with the help of the

GnDI (3.13). To avoid inconsistencies, only the complete expressions derived from (4.19)

and (4.2) or (4.3) should be used before renormalization. The nonvanishing anticommutator

{γ5, γµ} can be written in a simple form using δ̄. First, observe that in n = 2,

0 = (γµγνγρ)(εµν δ̄ρα − εµρδ̄να + ενρδ̄µα)

= −εµρ(γµγργ̄α + γ̄αγργµ)

= {γ5, γ̄α}. (4.23)

From this, similarly to DReg, we find

{γ5, γα} = 2γ5γ̂α, (4.24)

where we have introduced the evanescent metric δ̂ = δ − δ̄, which has trace δ̂µµ = 0, to

write the evanescent matrix γ̂µ = δ̂µνγν = γµ − γ̄µ, and used the fact that this matrix

commutes with γ5. Indeed, in n = 2,

[γ5, γ̂α] = [γ5, γβ ](δβα − δ̄βα)

=
1

2
εµν [γµγν , γβ ](δβα − δ̄βα)

= −2εβµγµ(δβα − δ̄βα)

= 0, (4.25)

due to (3.11). The proof of (4.24) can be generalized to arbitrary even n. Let us also note

in passing the useful relations

{γ̄µ, γ̄ν} = {γ̄µ, γν} = 2δ̄µν ,

{γ̂µ, γ̂ν} = {γ̂µ, γν} = 2δ̂µν ,

{γ̄µ, γ̂ν} = 0, (4.26)

which follow from the definitions of the involved objects. Similarly, δ̄ can be used to show

that γ25 = −1 in any even n. In n = 2, for example,

γ5γ5 =
1

4
εµνερσγµγνγργσ

=
1

4
(δ̄µρδ̄νσ − δ̄µσ δ̄νρ)γµγνγργσ

= −1. (4.27)

In the second line we have used the GnDI (3.14), involving only the ε tensors. In the last

one, (4.2) and (3.9).
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5 A consistent procedure in implicit fixed-dimension methods

In even dimension n, the inconsistencies of ODRed can be avoided simply by forbidding

the use of GnDI before renormalization, as proposed in [11, 13]. That is, the n-dimensional

space to be used in DRed is not the genuine n-dimensional Euclidean space (GnS), but a

quasi-n-dimensional space (QnS). Similarly to the case of quasi-d-dimensional space (QdS)

in DReg [45], QnS can be defined explicitly as an infinite-dimensional vector space endowed

with a metric δ̃, which satisfies δ̃µµ = n [12]. The relation with QdS is given by the direct-

sum structure QnS=QdS ⊕ QεS. Dirac matrices in the three spaces have been explicitly

constructed in [12], following [45].

We propose here to define implicit methods in the same QnS. In this case, there is

no need to embed QdS in it, so the setup is simpler. The metric can be called δ without

confusion, in agreement with our notation thus far. Forbidding GnDI is actually not

sufficient in fixed dimension, since the discrimination of Lorentz tensors is not automatic.

As anticipated above, we need to specify some normal form of the expressions to uniquely

identify the different tensor structures.14 Following [4], we propose to simplify arbitrary

Feynman diagrams with the following algorithm, which leads to a unique normal form:

(i) All γ5 are substituted by their tHV definition (4.19).

(ii) All Dirac matrices are removed from denominators.

(iii) Dirac traces are computed using trAB = trBA, (4.3) and tr1 = n.

(iv) Products of Dirac gammas are decomposed into sums of antisymmetric combinations

as in (4.10) and (4.11).

(v) All possible contractions are performed, using δµνV...ν... → V...µ... for arbitrary ten-

sors V .

(vi) δµµ is replaced by n.

As we work in QnS from the start, GnDI cannot be applied. Indeed, if GnDI were allowed,

the resulting expression would not have unique form, which could eventually translate into

different renormalized results. There are however exceptions to this prohibition, which are

discussed below. After performing the algebraic manipulations in steps (i–vi), the diagram

will be a sum of terms that contain ε tensors, metrics with free indices, antisymmetric

arrays of gamma functions, external momenta, possible background tensors and a tensor

(multi-dimensional) integral T . In this way, the different integrals T that appear in a

given diagram are determined. They are then to be renormalized as prescribed in the

different methods. After this, there is no harm in using GnDI. In particular, they can

and should be used after subtraction to simplify the final results. Note in particular

that, because the final antisymmetric combinations of Dirac matrices [α1 . . . αm] are not

14As a matter of fact, some standard form is also required in the dimensional methods to display explicitly

all the d dependence and thus be able to apply MS or MS without ambiguities.
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touched by renormalization, only the combinations with m ≤ n need to be included in the

decomposition of step (iv).

Sometimes selected GnDI can be used to simplify expressions from the very beginning,

as long as one is sure that they will not change the contractions of indices in the loop

integrals T . One simple example in n = 2 is using εµνεµν = 2. More generally, we

can simplify the calculations significantly using the metric δ̄, defined above. The rules

it obeys, (3.9), can be understood as the consequence of the structure QnS = GnS ⊕ X,

with δ, δ̄ and δ̂ = δ − δ̄ the metrics in QnS, GnS and the extra space X, respectively.

Remember that the defining property of δ̄ in implicit methods is that it commutes with

renormalization. In expressions related to loop integrals, such as (2.3), or in the traces of

Dirac matrices, it is still the ordinary metric δ of QnS that appears, to comply with shift

invariance and numerator-denominator consistency. The idea here is to allow for GnDI

that involve only δ̄, the ε tensor and external momenta or fields. Then, δ̄ can appear

as the result of these GnDI. Using such GnDI spoils the uniqueness of the normal form.

However, the resulting expressions have the same renormalized value, thanks to (3.10). As

a straightforward illustration in n = 2,

[εµνενρIµρ]
R = εµνενρ [Iµρ]

R

= 2δµρ [Iµρ]
R

=
[
2δ̄µρIµρ

]R
. (5.1)

In the next section we give simple examples that illustrate how the calculations can be

simplified with the help of δ̄ and related objects.

The same simplifications are valid also in DRed with a tHV γ5 [12]. The only difference

is that in this method four different spaces are used, related by QnS=QdS ⊕ QεS and

QdS=GnS⊕Q(−ε)S. Then, we can identify the extra space in fixed dimension with X =

Q(−ε)S⊕QεS. The relations between the metrics in (3.5) and (3.9) are those implied by

this hierarchical structure, with δ̃, δ and δ̄ the metrics in QnS, QdS and GnS, respectively.

We have already pointed out that GnDI can be safely used after tensor identification.

Indeed, after that step, δ behaves as δ̄. This is specially relevant to FDR, as in this method

some useful shortcuts exist to identify tensors from the very start. As a salient example, in

one-loop diagrams with fermion lines that do not have indices contracted with the ones in

other fermion lines, it is easy to see that the correct µ2 shifts can be obtained by shifting the

(Euclidean) integration momenta as 1//k → 1/(/k± iµ), with opposite signs for /k separated

by an even number of γ matrices and equal signs for those separated by an odd number of γ

matrices. For this, it is important that terms with odd powers of µ do not contribute after

the limit µ→ 0. We can easily generalize this rule to spinor chains that contain γ5 matrices:

because, according to its definition (4.19), γ5 contains an even number of γ matrices in even

dimension, the γ5 matrices should just be ignored in the determination of the signs. This

approach allows, for instance, to use an anticommuting γ5 before evaluating Dirac traces.

The results are unique and agree with the ones obtained from the normal form or with

the δ̄ formalism. When one Lorentz index is contracted between different fermion lines, a

similar, more complicated rule can be found that gives the right µ2 [46]. Modifications may
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also be necessary in diagrams that contain both Dirac traces and derivative interactions.

To the best of our knowledge, no general prescription exists to treat any diagram in this

way. A very similar idea is used in FDF. In this dimensional method, the necessary µ2

are obtained from the extra-dimensional components of integration momenta and a set of

selection rules for the extra-dimensional space (see also [47]). Then, GnDI are valid and

γ5 anticommutes with the Dirac matrices. Comparing with the situation in FDR, it seems

that in order to comply with the quantum action principle the method will require some

refinements for multi-loop calculations.

The consistent procedure for implicit methods in QnS can in principle be applied to

multi-loop calculations. A careful rigorous discussion goes well beyond the scope of this

paper, but let us sketch how the renormalization of a Feynman diagram could proceed.

First, the diagram is expressed in its normal form, following the steps above. Allowed

GnDI involving δ̄ can be optionally used. Then, each tensor integral T is treated with

Bogoliubov’s recursive R-operation [35, 36] (or equivalently its solution, Zimmermann’s

forest formula [37]), in order to guarantee locality and unitarity of the renormalized theory.

To do this, a subtraction operator, which selects the singular part of a primitively divergent

(sub)graph Γ of T , can be defined without any explicit regularization as KΓ = R̃Γ−Γ [38].

Here, R̃Γ is Γ with its (overall) divergence subtracted. Then, K is applied according to

Bogoliubov’s formula.

This systematic method has been used in differential renormalization [38] and in

CIReg [32], but only in non-derivative scalar theories, which have a simple tensor structure.

In more complicated theories, it is essential to treat tensor integrals consistently. To do

this, in calculating R̃Γ for a tensor Γ ⊂ T , the Lorentz indices in Γ that are contracted with

indices in T\Γ should be treated as uncontracted free indices. This is a necessary condition

to preserve invariance under shifts of the integration momenta in Γ that are proportional

to the integration momenta in T\Γ. We will not try to prove here that it is also a sufficient

condition for shift invariance of the final renormalized multi-loop integrals. This issue has

been addressed in particular examples in CIReg [48] and FDR [21]. We believe that the

so-called extra-extra integrals that are introduced in FDR to impose sub-integration con-

sistency are equivalent to the contribution of (sums of) forests with the tensor rule above.

They are also related to the DRed contributions of ε scalars associated to virtual vector

bosons, which renormalize independently.

Finally, we should stress that, even if implicit methods as treated in this section are

consistent and preserve shift invariance and numerator-denominator consistency, some par-

ticular Ward identities based on GnDI may be broken. This is the origin of chiral anoma-

lies and of the breakdown of supersymmetry. Also vectorial Ward identities associated

to gauge invariance can be broken in the presence of the tHV γ5, giving rise to spurious

anomalies that must be eliminated with additional finite counterterms. We will give an

example of this in the next section. In this regard, these methods are not better or worse

than DReg.
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6 Examples

We will present simple off-shell calculations for non-exceptional momenta in the Euclidean

region, such that no infrared divergences can arise.

6.1 Vector and axial currents in two dimensions

Let us consider a free massless Dirac fermion in Euclidean space of dimension n = 2,

with Lagrangian

L = ψ̄/∂ψ. (6.1)

This Lagrangian is invariant under global vector (V) and axial (A) transformations. The

corresponding, classically conserved Noether currents are

jµ = ψ̄γµψ, (6.2)

j5µ = ψ̄γµγ5ψ, (6.3)

respectively.15 We want to calculate the correlation functions of two of these currents.

The three distinct possibilities are Πµν(p) = 〈jµ(p)jν(−p)〉, Π5
µν(p) = 〈jµ(p)j5ν(−p)〉 and

Π55
µν(p) = 〈j5µ(p)j5ν(−p)〉. The classical Ward identities are

pµΠµν(p) = pνΠµν(p) = 0, (6.4)

pµΠ5
µν(p) = 0, (6.5)

pνΠ5
µν(p) = 0, (6.6)

pµΠ55
µν(p) = pνΠ55

µν(p) = 0. (6.7)

A useful GnDI in n = 2 is γµγ5 = εµαγα. This can be proven, for instance, using the

complete set in GnS Dirac space. The correlation functions can be calculated exactly at

one loop. Before doing it, we can anticipate the form of the correlators. In fact, the

previous GnDI implies j5µ = εµαjα, so the three correlators are algebraically related:

Π5
µν(p) = εναΠµα, (6.8)

Π55
µν(p) = δµνΠαα −Πνµ. (6.9)

In the second of these equations we have also used the GnDI (3.14) for n = 2. From this, we

can easily conclude that the Ward identities (6.4)–(6.7) cannot be satisfied simultaneously.

Indeed, dimensional analysis and the fact that the longitudinal piece is finite imply

Πµν(p) = X

(
pµpν
p2
− aδµν

)
, (6.10)

where both X and a are numbers. X is fixed by the result of a finite integral, while a is

regularization dependent and can be modified with a local finite counterterm. In order to

15Because this current will always be an external operator in our calculations, nothing would change

should we write instead j5µ = −ψ̄γ5γµψ or the average of these two definitions.
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fulfill (6.4), we need a = 1. Then, we see that (6.5) is also satisfied but (6.6) and (6.7) are

not. Instead, we have the anomalous identities

pνΠ5
µν(p) = Xεµνpν , (6.11)

pµΠ55
µν(p) = −Xpν . (6.12)

It should be noted that all the GnDI we have employed involve external tensors only.

Therefore, we expect that these results hold in consistent regularization and renormaliza-

tion schemes that respect (6.4), including the method proposed in the previous section.

Let us now check this by explicit computation. We will use FDR for definiteness and

because it allows us to compare with the rule that allows to identify the tensor integrals

a priori, before computing the trace. We have checked that all the results are identical in

CDR and CIReg and also in DRed and FDF. Because no δαα arises from the Dirac matrices,

the results in DReg are identical as well in these examples. The only contributing diagram

to the VV correlator gives

Πµν(p) = −
[∫

d2k

4π2
tr

(
γµ

1

/k − /p
γν

1

/k

)]R
. (6.13)

Performing the trace, we find

Πµν(p) = − [4Bµν(p)− 2δµνBαα(p)]R , (6.14)

where

Bαβ(p) =

∫
d2k

4π2
(k − p)αkβ
(k − p)2k2

. (6.15)

Note that (6.14) is written in normal form. In FDR, we have

[Bαβ(p)]R =

[∫
d2k

4π2
(k − p)αkβ

[(k − p)2 + µ2][k2 + µ2]

]S
=

1

4π

{
δαβ

(
1− 1

2
log

p2

µ2

)
−
pαpβ
p2

}
, (6.16)

whereas

[Bαα(p)]R =

[∫
d2k

4π2
(k − p)αkα + µ2

[(k − p)2 + µ2][k2 + µ2]

]S
= δαβ [Bαβ(p)]R − 1

4π

= − 1

4π
log

p2

µ2
. (6.17)

The extra local term in the second equality comes, just as in (2.10), from the oversubtracted

integral proportional to µ2, which is added to the numerator in the first line, according to

the global prescription. Combining everything, we find

Πµν(p) =
1

π

(
pµpν
p2
− δµν

)
, (6.18)
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which agrees with (6.10) with X = 1/π and a = 1. As expected in a method that respects

shift invariance and numerator-denominator consistency, the vector Ward identity (6.4) is

satisfied. The very same result is recovered if we directly write

Πµν(p) = −
[∫

d2k

4π2
tr

(
γµ

1

/k − /p+ iµ
γν

1

/k + iµ

)]S
, (6.19)

as the same µ2 term appears after the trace is evaluated.

Let us next compute the VA correlator:

Π5
µν(p) = −

[∫
d2k

4π2
tr

(
γµ

1

/k − /p
γνγ5

1

/k

)]R
= − [tr (γµγαγνγ5γβ)Bαβ ]R . (6.20)

To evaluate the trace without ambiguities, we simply use the definition of γ5 (4.19). Then,

refraining from using (3.13), we have

tr (γµγαγνγ5γβ) = 2 (−εβνδαµ + εµνδαβ − εανδβµ + εβαδµν − εµαδβν − εβµδαν) , (6.21)

from which the normal form is readily obtained. Note that only the second term on the

right-hand side of (6.21) gives rise to Bαα, with contracted indices. Using (6.16) and (6.17),

we get

Π5
µν(p) =

1

π
ενα

(
pµpα
p2
− δµα

)
, (6.22)

which agrees with (6.8). The vector Ward identity (6.5) and the anomalous axial one (6.11),

with X = 1/π, follow. Observe that a different result, with the anomaly in the µ index,

would have been obtained had we anticommuted the γ5 with 1//k. In fact, we can directly

evaluate the left-hand side of (6.11):

pνΠ5
µν(p) = −

[∫
d2k

4π2
tr

(
γµ

1

/k − /p
(/p− /k + /k)γ5

1

/k

)]R
= 0− 2

[∫
d2k

4π2
tr

(
γµ

1

/k − /p
/̂kγ5

1

/k

)]R
, (6.23)

where the non-vanishing, evanescent term comes from the anticommutator {/k, γ5},
see (4.24). Using the relation

/̂k/k = k2 − k̄2 = µ2, (6.24)

an extra integral appears which gives the result (6.11).

Again, the same result can be obtained writing

Π5
µν(p) = −

[∫
d2k

4π2
tr

(
γµ

1

/k − /p+ iµ
γνγ5

1

/k + iµ

)]S
. (6.25)

As explained in the previous section, the presence of γ5 should be obviated in assigning

the relative signs of the iµ shifts. After writing (6.25), GnDI are allowed, and in particular
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we can anticommute γ5 with the Dirac matrices. The origin of the anomaly can then be

tracked to the extra integral arising from

{γ5, /k − iµ} = −2iµγ5, (6.26)

which is closely related to (4.24).

Finally, let us calculate the AA correlator,

Π55
µν(p) = −

[∫
d2k

4π2
tr

(
γµγ5

1

/k − /p
γνγ5

1

/k

)]R
= − [tr (γµγ5γαγνγ5γβ)Bαβ ]R . (6.27)

First note that if we used γAC
5 , we would immediately find Π55

µν = −Πµν , at odds with (6.9).

But in our method we should not anticommute before the µ shift. The consistent result is

obtained by using the definition (4.19) for the two γ5. Then we need to evaluate a trace

with eight Dirac matrices, contract with Bαβ and use (6.16) and (6.17). The computation

is not difficult and gives the expected result, (6.9). A faster procedure is to make use

of (4.24) and γ25 = −1 to write

tr
(
γµγ5(/k − /p)γνγ5/k

)
= −tr

(
γµ(/k − /p)γν/k + 2γµ/̂kγν/k

)
. (6.28)

From this and (6.24) we easily obtain

Π55
µν(p) = −Πµν + 4δµν

[∫
d2k

4π2
µ2

(k2 + µ2)2

]S
= −Πµν −

1

π
δµν

= − 1

π

pµpα
p2

. (6.29)

Once again, the same extra integral and therefore the same result are obtained by shifting

the denominators with the prescribed signs,

Π55
µν(p) = −

[∫
d2k

4π2
tr

(
γµγ5

1

/k − /p+ iµ
γνγ5

1

/k + iµ

)]S
. (6.30)

After this shift, which automatically performs the correct tensor identification, all the

standard properties of γ5 can be safely employed to simplify the calculation. Note that the

very same procedure is followed in FDF.

The situation in n = 4 is completely analogous, except for the fact that in that case the

VA correlator studied here vanishes and the axial anomaly manifests itself in the familiar

triangular diagrams. These have been calculated in DReg [3], DRed [49], CDR [50, 51],

FDR [18], CIReg [43] and FDF [52]. These calculations show that, as long as no GnDI

is used before tensor identification, the vector Ward identities are automatically preserved

and the anomaly is localized in the axial current.
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6.2 Axial vertex Ward identity in four dimensions

As an example with an open fermion chain, we consider the correlation function Γ5
µ(p1,p2) =

〈j5µ(p1+p2)ψ̄(−p1)ψ(−p2)〉1PI (with the Legendre transform applied only to the elementary

fields) in four-dimensional16 massless QED, that is,

L =
1

4
FµνFµν +

1

2
∂µAν∂µAν + ψ̄ /Dψ, (6.31)

with Dµ = ∂µ − ieAµ. As manifest in (6.31), we work in the Feynman gauge. There is no

anomaly associated to this correlator, i.e. the theory can be renormalized in such a way

that the Ward identity

(p1 + p2)µΓ5
µ(p1, p2) = e (γ5Σ(p1)− Σ(p2)γ5) (6.32)

is satisfied, with Σ(p) = 〈ψ̄(p)ψ(−p)〉1PI. However, it is known that this identity is not

satisfied in DReg with the tHV definition of γ5 [3]. The reason is that the GnDI /pγ5 =

(/k + /p)γ5 − γ5/k, which is needed in the combinatorial proof, does not hold for a non-

anticommuting γ5. The Ward identity can be recovered by adding a finite gauge-invariant

counterterm. This is a necessity if the axial symmetry is gauged.

It is clear that the Ward identity (6.32) will also be violated in versions of DRed and

implicit methods that employ the γ5 definition in (4.19). Let us check this explicitly by

one-loop calculations. Again, we use FDR for definiteness, but exactly the same results

are found in CDR, CIReg and also in DRed and FDF in MS. The results in DReg are

quantitatively different in this case. Σ and Γ5
µ in the following are understood to be the

one-loop contributions to the corresponding correlation functions.

The fermion self-energy is given by

Σ(p) = −ie2
∫

d4k

(2π)4
γα

1

/k
γα

1

(k − p)2
. (6.33)

It has no potential ambiguity of the kind we are discussing. The result in FDR is easily

found to be

Σ(p) = i
e2

(4π)2
/p

(
2− log

p2

µ2

)
. (6.34)

Let us now compute the axial vertex Γ5
µ, which at one loop is given by

Γ5
µ(p1, p2) = −ie3

[∫
d4k

(2π)4
γα

1

/k − /p2
γµγ5

1

/k + /p1
γα

1

k2

]R
= −ie3 [Sαβµ5καCβκ(p1, p2)]

R , (6.35)

with

Cαβ(p1, p2) =

∫
d4k

(2π)4
(k − p2)α(k + p1)β
k2(k − p2)2(k + p1)2

. (6.36)

16The corresponding diagrams in n= 2 are finite by power counting and have no ambiguities.

– 23 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
9

Substituting γ5 by its definition (4.19),

Sαβµ5κα =
1

4!
ενρστSαβµνρστκα. (6.37)

Next decompose Sαβµνρστκα as in (4.10). Since the index α is contracted, there are con-

tributions proportional to [µ1 . . . µm] with m = 1, 3, 5, 7. As pointed out before, these

combinations can be factored out of [.]R, so the ones with m = 5, 7 can be directly set to

zero, as in four genuine dimensions. Then, we contract indices with the resulting metrics

and use the CIReg results

[Cαβ(p1, p2)]
R =

1

(4π)2

{
δαβ
4

[
3− p22ξ0,1 − p21ξ1,0 − log

(p1 + p2)
2

µ2

]
+ [(ξ0,2 − ξ0,1) (p1)α(p1)β − ξ1,1(p1)α(p2)β + (p1 
 p2, ξm,n 
 ξn,m)]

−(p1)β(p2)α (ξ0,0 − ξ0,1 − ξ1,0)
}
, (6.38)

[Cαα(p1, p2)]
R =

1

(4π)2

[
2− (p1 + p2)

2

2
ξ0,0 −

1

2
log

p22
µ2
− 1

2
log

p21
µ2

]
, (6.39)

which in this massless case (and also in the massive case in the mass-independent version of

CIReg) exactly coincide with the FDR ones. The functions ξn,m ≡ ξn,m(p2, p1) are defined

in the appendix. Importantly, the last integral includes the shift k2 → k2 + µ2 in the

numerator. The final result is

Γ5
µ(p1, p2) = −i e3

(4π)2

[
γµγ5

[
3− (p1 + p2)

2ξ0,0 + p22ξ0,1 + p21ξ1,0 − log
p21
µ2
− log

p22
µ2

+ log
(p1 + p2)

2

µ2
)

]
+ 2
{
/p2γ5

[
pµ1 (2ξ1,1 − ξ0,1 − ξ1,0 − ξ0,0) + 2pµ2 (ξ0,1 − ξ0,2)

]
+ (p1 
 p2, ξm,n 
 ξn,m)

}
− 2 (ξ0,0 + ξ0,1 + ξ1,0) εδµαβp

α
2 p

β
1γ

δ

]
. (6.40)

An equivalent procedure that simplifies the Dirac algebra is to anticommute the γ5 to the

right, using (4.24). This leads to

Γ5
µ(p1, p2) = −ie3

[
(2δ̄ρκ − δρκ)SαβµραCβκ(p1, p2)

]R
. (6.41)

Decomposing Sαβµρα and using the rules (3.9) and (3.10), we find again (6.40). Even more

easily, the same result can be found fixing the µ terms from the very beginning with the

same rule used above,

Γ5
µ(p1, p2) = −ie3

[∫
d4k

(2π)4
γα

1

/k − /p2 + iµ
γµγ5

1

/k + /p1 + iµ
γα

1

k2

]S
(6.42)

After this, γ5 can be safely anticommuted with the Dirac matrices (and commuted with µ).

Let us note again that this same prescription is used in FDF, so the result will be identical

in that method. Even if the last procedure looks simpler, it should be noted that it is less

universal than the other ones, as we have pointed out in the previous section.
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The result (6.40) does not satisfy the Ward identity (6.32). Instead, using the relations

in the appendix we find

(p1 + p2)µΓ5
µ(p1, p2) = e (γ5Σ(p1)− Σ(p2)γ5)− 2i

e3

(4π)2
(/p1 + /p2)γ5. (6.43)

To isolate the origin of the extra local term, we can compute the left-hand side of (6.43)

directly. For instance, using the expression in (6.42),

(p1+p2)µΓ5
µ(p1,p2)

=−ie3
[∫

d4k

(2π)4
γα

1

/k−/p2+iµ
(/p1+/k+iµ+/p2−/k−iµ)γ5

1

/k+/p1+iµ
γα

1

k2

]S

= e(γ5Σ(p1)−Σ(p2)γ5)−ie3
[∫

d4k

(2π)4
γα

1

/k−/p2+iµ
(2iµγ5)

1

/k+/p1+iµ
γα

1

k2

]S
. (6.44)

It can be checked that the extra integral above gives the extra local term on the right-hand

side of (6.43). The axial symmetry can be restored by canceling this term with a finite

counterterm proportional to ψ̄ /Bγ5ψ, where Bµ is a source coupled to j5µ.

Our results are consistent with the ones in [52], where Γ5
µ is calculated for massive

on-shell fermions in FDH with a tHV γ5 and FDF, which give the same result, and in FDH

with γAC
5 , which differs by a local term. In the context of dimensional methods, it has

been observed that identity (6.32) and similar Ward identities can be preserved by moving

all γ5 to one end of open fermion lines before regularization and renormalization [53]. The

reason is that, by doing this, the γ5 does not interfere with the necessary identity in the

combinatorial proof. This is not quite the same as using γAC
5 , as the γ5 matrices are not

allowed to be anticommuted to an arbitrary position. This trick works equally well in

implicit methods and it has actually been advocated in FDR [18]. Observe, nevertheless,

that this procedure goes beyond the basic idea in these methods of substituting the bare

expressions, in the form obtained from the Feynman rules, by their renormalized value. A

previous non-trivial manipulation is performed. Then, one needs to check that this does

not interfere with unitarity or with the quantum action principle in multi-loop calculations.

7 Conclusions

In the last decade, there has been a renewed interest in alternative methods to perform

perturbative calculations in quantum field theory (see [1] for a recent review). This has

been motivated by the increasing complexity of the computations required to match the

sensitivity of present and future experiments and by the development of new techniques

for on-shell scattering amplitudes, based on unitarity and analyticity. The most efficient

methods are either variations of dimensional regularization or implicit methods in fixed

dimension, which act directly on the bare integrals, often at the integrand level, and do

not need to keep track of counterterms. Besides other possible advantages, the latter could

be expected to handle more easily chiral theories, such as the Standard Model, since the

concept of chirality is dimension specific. In this paper we have examined this issue in
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implicit fixed-dimension methods such as CDR, CIReg and FDR. We have shown that,

somewhat counterintuitively, the difficulties one has to address in these methods are very

similar to the ones in dimensional methods. They can be dealt with in a similar manner.

The origin of these difficulties is the fact that contraction of Lorentz indices does not

commute with renormalization in these implicit methods. We have observed that this is

actually required to preserve both shift invariance and numerator-denominator consistency,

which are the crucial ingredients in the perturbative proof of the quantum action principle.

The latter leads to Ward identities of local and global symmetries in the renormalized

theory. But it turns out that this non-commutation property is incompatible with certain

identities, specific to the ordinary n-dimensional space in which a given theory is defined.

Hence, a näıve usage of these identities may lead to inconsistencies. The situation is similar

to the one in dimensional methods. And a way out is also to simply avoid using these

identities before renormalization. This statement can be made more formal by defining the

theory in an infinite dimensional space QnS, which only shares a few features with the real

n-dimensional space.

Working in QnS is necessary for consistency, but it brings about some complications

in theories with fermions. First, it turns out that the standard Dirac algebra cannot be

preserved in odd dimensions. Possible solutions to this problem will be investigated else-

where. Second, there is no finite complete set in Dirac space and hence the standard Fierz

identities do not hold. One consequence of this is that these methods break supersym-

metry. And third, we have argued that it is impossible to define a unique γ5 matrix that

anticommutes with the Dirac matrices and reduces to the standard γ5 after renormalization

(or in finite expressions). We have then proposed to use the standard explicit definition

with the antisymmetric ε tensor in terms of the Dirac matrices. This is similar to the

t’Hooft-Veltman definition in dimensional regularization and has the same consequences.

Axial anomalies are reproduced, but in addition some spurious anomalies emerge, which

should be removed a posteriori by local counterterms, added by hand. This is equivalent

to the direct use of an anticommuting γ5, when allowed [6].

In the implicit methods, it is also necessary to discriminate between different tensor

structures. To avoid ambiguities in this discrimination, we have proposed a systematic

renormalization procedure, in which the expressions to be renormalized are first put in

a certain normal form, using only relations valid in QnS. We have also suggested some

simplifications that make use of the decomposition QnS=GnS ⊕ X, where GnS is the

genuine n-dimensional space. The advantage of introducing this direct-sum structure is

that it allows to use standard identities in GnS at some steps of the calculations.

We have mostly studied renormalization of implicit fixed-dimension methods at the

one-loop level and have only made some suggestions about how our consistent procedure

should be extended to higher orders. Our suggestions seem related to the requirement of

sub-integration consistency in FDR. A more systematic analysis of this, and more generally

of renormalization to all orders, would be very interesting.

In the context of chiral theories, we have also reconsidered shortcuts that exist at

one loop and in simple higher-loop diagrams in FDR, which allow to discriminate the

tensor structures from the very beginning and obtain the same results in a more direct
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way. A generalization of these shortcuts to arbitrary diagrams would allow to reduce the

computational cost of heavy calculations. We think that the ideas in FDF can be helpful

in this regard.

Finally, we have treated chiral theories in a formalism with Dirac spinors and chiral

projectors. It would be interesting to see how our findings are translated to calculations

with Weyl spinors and in superspace [54].
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A Three-point functions

In this appendix, we collect the finite three-points functions used in the evaluation of the

axial vertex in four dimensions. We define the functions ξnm ≡ ξnm(p2, p1) as

ξnm(p2, p1) =

∫ 1

0
dz

∫ 1−z

0
dy

znym

Q(y, z)
, (A.1)

with

Q(y, z) = [µ2 − p22y(1− y)− p21z(1− z)− 2(p2 · p1)yz], (A.2)

and notice that these functions have the property ξnm(p2, p1) = ξmn(p1, p2). Using inte-

gration by parts [55], the relations below follow

p21ξ11 − (p2 · p1)ξ02 =
1

2

[
−1

2
log

(p1 + p2)
2

µ2
+

1

2
log

p22
µ2

+ p21ξ01

]
, (A.3)

p22ξ11 − (p2 · p1)ξ20 =
1

2

[
−1

2
log

(p1 + p2)
2

µ2
+

1

2
log

p21
µ2

+ p22ξ10

]
, (A.4)

p21ξ10 − (p2 · p1)ξ01 =
1

2

[
− log

(p1 + p2)
2

µ2
+ log

p22
µ2

+ p21ξ00

]
, (A.5)

p22ξ01 − (p2 · p1)ξ10 =
1

2

[
− log

(p1 + p2)
2

µ2
+ log

p21
µ2

+ p22ξ00

]
, (A.6)

p21ξ20 − (p2 · p1)ξ11 =
1

4

[
−1 + p22ξ01 + 3p21ξ10

]
, (A.7)

p22ξ02 − (p2 · p1)ξ11 =
1

4

[
−1 + p21ξ10 + 3p22ξ01

]
. (A.8)
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[26] J. Mas, M. Pérez-Victoria and C. Seijas, The β-function of N = 1 SYM in differential

renormalization, JHEP 03 (2002) 049 [hep-th/0202082] [INSPIRE].

[27] D.E. Carneiro, A.P. Baeta Scarpelli, M. Sampaio and M.C. Nemes, Consistent momentum

space regularization/renormalization of supersymmetric quantum field theories: the three loop

β-function for the Wess-Zumino model, JHEP 12 (2003) 044 [hep-th/0309188] [INSPIRE].
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[51] F. del Aguila and M. Pérez-Victoria, Differential renormalization of gauge theories, Acta

Phys. Polon. B 29 (1998) 2857 [hep-ph/9808315] [INSPIRE].

– 30 –

https://doi.org/10.1140/epjc/s10052-007-0437-x
https://arxiv.org/abs/0706.1210
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.1210
https://doi.org/10.1007/BF02392399
https://doi.org/10.1007/BF01773358
https://doi.org/10.1007/BF01773358
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,2,301%22
https://doi.org/10.1007/BF01645676
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,15,208%22
https://doi.org/10.1006/aphy.1994.1037
https://arxiv.org/abs/hep-th/9303044
https://inspirehep.net/search?p=find+EPRINT+hep-th/9303044
https://doi.org/10.1007/BF02748300
https://doi.org/10.1007/BF02748300
https://inspirehep.net/search?p=find+J+%22NuovoCim.,A23,173%22
https://doi.org/10.1142/S0217751X0501983X
https://arxiv.org/abs/hep-th/0404053
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404053
https://doi.org/10.1016/0550-3213(89)90077-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B319,253%22
https://inspirehep.net/search?p=find+J+%22Helv.Phys.Acta,65,1011%22
https://doi.org/10.1103/PhysRevD.94.065023
https://arxiv.org/abs/1606.01772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01772
https://doi.org/10.1140/epjc/s10052-018-5648-9
https://arxiv.org/abs/1706.01001
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01001
https://doi.org/10.1140/epjc/s10052-014-2864-9
https://arxiv.org/abs/1311.3551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3551
https://doi.org/10.1007/JHEP02(2012)029
https://arxiv.org/abs/1111.4965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4965
https://doi.org/10.1140/epjc/s10052-008-0614-6
https://arxiv.org/abs/0801.2703
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2703
https://doi.org/10.1016/0550-3213(82)90279-6
https://doi.org/10.1016/0550-3213(82)90279-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B206,473%22
https://doi.org/10.1016/S0370-2693(97)01279-3
https://arxiv.org/abs/hep-th/9709067
https://inspirehep.net/search?p=find+EPRINT+hep-th/9709067
https://arxiv.org/abs/hep-ph/9808315
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9808315


J
H
E
P
0
8
(
2
0
1
8
)
1
0
9

[52] C. Gnendiger and A. Signer, γ5 in the four-dimensional helicity scheme, Phys. Rev. D 97

(2018) 096006 [arXiv:1710.09231] [INSPIRE].

[53] E.-C. Tsai, Gauge Invariant Treatment of γ5 in the Scheme of ’t Hooft and Veltman, Phys.

Rev. D 83 (2011) 025020 [arXiv:0905.1550] [INSPIRE].

[54] H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman

rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1

[arXiv:0812.1594] [INSPIRE].

[55] O.A. Battistel and G. Dallabona, A systematization for one-loop 4D Feynman integrals, Eur.

Phys. J. C 45 (2006) 721 [INSPIRE].

– 31 –

https://doi.org/10.1103/PhysRevD.97.096006
https://doi.org/10.1103/PhysRevD.97.096006
https://arxiv.org/abs/1710.09231
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.09231
https://doi.org/10.1103/PhysRevD.83.025020
https://doi.org/10.1103/PhysRevD.83.025020
https://arxiv.org/abs/0905.1550
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1550
https://doi.org/10.1016/j.physrep.2010.05.002
https://arxiv.org/abs/0812.1594
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1594
https://doi.org/10.1140/epjc/s2005-02437-0
https://doi.org/10.1140/epjc/s2005-02437-0
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C45,721%22

	Introduction
	Lorentz tensors and index contraction
	Relations in genuine integer dimension
	Dirac algebra
	A consistent procedure in implicit fixed-dimension methods
	Examples
	Vector and axial currents in two dimensions
	Axial vertex Ward identity in four dimensions

	Conclusions
	Three-point functions

