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In last years, several approaches to develop an effective Computer-Aided-Diagnosis

(CAD) system for Parkinson’s Disease (PD) have been proposed. Most of these methods

have focused almost exclusively on brain images through the use of Machine-Learning

algorithms suitable to characterize structural or functional patterns. Those patterns

provide enough information about the status and/or the progression at intermediate

and advanced stages of Parkinson’s Disease. Nevertheless this information could be

insufficient at early stages of the pathology. The Parkinson’s ProgressionMarkers Initiative

(PPMI) database includes neurological images along with multiple biomedical tests.

This information opens up the possibility of comparing different biomarker classification

results. As data come from heterogeneous sources, it is expected that we could include

some of these biomarkers in order to obtain new information about the pathology. Based

on that idea, this work presents an Ensemble Classification model with Performance

Weighting. This proposal has been tested comparing Healthy Control subjects (HC)

vs. patients with PD (considering both PD and SWEDD labeled subjects as the same

class). This model combines several Support-Vector-Machine (SVM) with linear kernel

classifiers for different biomedical group of tests—including CerebroSpinal Fluid (CSF),

RNA, and Serum tests—and pre-processed neuroimages features (Voxels-As-Features

and a list of definedMorphological Features) fromPPMI database subjects. The proposed

methodology makes use of all data sources and selects the most discriminant features

(mainly from neuroimages). Using this performance-weighted ensemble classification

model, classification results up to 96% were obtained.

Keywords: Machine Learning, ensemble, SVM (Support-Vector-Machine), Parkinson’s Disease, SPECT (Single

Photon Emission Computerized Tomography), biomarkers, PPMI (Parkinson’s Progression Markers Initiative)
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1. INTRODUCTION

Parkinson’s Disease (PD) is defined as a chronic, degenerative
and neurological disorder that affects the motor system.
The origins or triggers that makes appear the PD are still
unknown. Several studies have demonstrated this is related to
the destruction of pigmented neurons in the substantia nigra
(Zetterström et al., 1997; Kordower et al., 2013). Its most
frequent symptoms are: tremor, rigidity and bradykinesia, but
also cognitive alterations, lack of emotion expressiveness (Pohl
et al., 2017) and autonomy problems (Fauci et al., 2008).

One of the most extended tools for PD diagnosis is the use of
I123-Ioflupane SPECT (Single Photon Emission Computerized
Tomography) images (Neumeyer et al., 1991; Sixel-Döring et al.,
2011). These images, also known as FP-CIT or DaTSCAN, make
use of the Iodine-123-fluoropropyl-carbomethoxy-3-beta-(4-
iodophenyltropane) radio-ligand which presents a high binding
affinity for presynaptic dopamine transporters (DAT) in the
brain. As a marked reduction in dopaminergic neurons in the
striatal region is the most significative feature of PD, DaTSCAN
images give us a quantitative measure of the spatial distribution
of the transporters in the striatum. This information is used in
the differentiation of Healthy Control (HC) subjects vs. patients
with Parkinson’s Disease (PD) (Marek et al., 2001).

However, medical images are not the only effective biomarker
that could be used in the diagnosis of PD. In recent years,
several works have stated the relation between neurodegenerative
disorders and different Biomedical Tests (BT) (Andersen et al.,
2017; Dukart et al., 2017; Santiago and Potashkin, 2017). As
Handels et al. (2017) points out in its study of Mild Cognitive
Impairment (MCI), although some biomarkers could be used for
classification purposes (increasing their accuracy in many cases),
it is not easy to determine wheter significant improvements are
clinically relevant. In fact, we can easily find works with opposing
views on the use of biomarkers (Farotti et al., 2017; Mollenhauer
et al., 2017) as predictive indicators of PD progression. However,
the recent emergence of datasets with biomarkers data and
neuroimages has opened up possibilities for the analysis in
searching the origins and triggers of the PD progression.

Recently, there has been an increasing interest toward

the application of multivariate analysis strategies, such as
those based on Machine Learning (ML), to describe between-

group differences, in terms of discrimination ability between
populations and beyond classical statistical analysis. One of the

major problems of ML algorithms is the overfitting problem
in high dimensional settings (d) with a small sample size (l),
where the designed classifiers are inevitably over-adjusted to the
training set. Unfortunately, in neuroscience this situation is the
rule rather than the exception, since the dimensionality of each
observation (millions of variables) in relation to the number of
available samples (hundreds of acquisitions) implies a high risk
of overfitting. This risk can be also explained in terms of the high
probability of the training set to be separable by a given surface
in high dimensional spaces (Górriz et al., 2017a). The solution to
this problem is multi-fold. This situation could be overcome by
increasing l in resampling methods (i.e., boosting; Hastie et al.,
2001) and bagging (Breiman et al., 1984), or by decreasing d

using feature extraction and selection (FES) approaches (Ramírez
et al., 2009; Segovia et al., 2010, 2012; Górriz et al., 2017b). In
addition, to preserve complex models from overfitting, some
solutions can be adopted that are well-established on cross-
validation methods. In this sense, several authors have studied
numerous accuracy estimationmethods using complex classifiers
and cross-validation strategies (Efron, 1983; Kohavi, 1995), i.e.,
leave-one-out cross-validation.

In neuroimage, multiple Computer-Aided-Diagnosis (CAD)
systems have been developed for automatic diagnosis of
Parkinson’s Disease (Illan et al., 2012; Martinez-Murcia et al.,
2014; Augimeri et al., 2016; Segovia et al., 2017b). Most of
these systems consist in taking the information collected from
medical images: VAF (Voxels-As-Features), textural patterns or
morphological features extraction among others. Then, usingML
techniques such as Support-Vector-Machines (SVM), Artificial
Neural Networks (ANN), Classification trees, Bayesian classifiers,
or Kernels; they classify whether a patient is probably suffering
the disease, or not, even in its early stages.

Joining these two ideas, we have wondered how to implement
an ensemble classification method (Segovia et al., 2014; Badoud
et al., 2016) mixing information from clinical tests markers
with patterns extracted from images. With this aim, we
propose a robust system which combines multiple heterogeneous
data sources and weights those that are more discriminative.
Mathematically, this work also answers how combinations affects
to the final classification and even if multiple sources give us
a real significative hint like relationship between heterogeneous
sources. We believe that combinations of new promising
biomarkers will give us information about indicative factors of
Parkinson’s Disease progression and diagnosis even when the
disease have not clearly manifested yet.

For all individual classifications carried out in this work per
feature category (note that none of the classifiers mixes data
from heterogeneous information sources), we have made use of
linear SVM classifiers (Vapnik, 1998). Additional experiments
were also performed using K-Nearest Neighbor (KNN) classifiers
(Blanzieri and Melgani, 2008). As the linear SVM showed better
results, they were selected as our reference classifiers.

2. MATERIALS AND METHODS

2.1. PPMI Dataset
Data used in the preparation of this article were obtained
from the Parkinson’s Progression Markers Initiative (PPMI)
database (www.ppmi-info.org/data). For up-to-date information
on the study, visit www.ppmi-info.org. PPMI—a public-private
partnership—is funded by the Michael J. Fox Foundation for
Parkinson’s Research and funding partners, including all partners
listed on www.ppmi-info.org/fundingpartners.

Informed consents to clinical testing and neuroimaging prior
to participation of the PPMI cohort were obtained, approved
by the institutional review boards (IRB) of all participating
institutions. The PPMI obtained written informed consent from
all study participants before enrolled in the Initiative. None of the
participants were taking any PD medication when they enrolled
in the PPMI.
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TABLE 1 | Demographics.

Subjects Number Sex [Male—Female] Age [Mean (Std)]

HC 194 129—65 53.04 (2.27)

PD 168 103—65 53.14 (2.37)

SWEDD 26 17—9 53.21 (2.30)

The inclusion criteria adopted in the PPMI cohort study
are available in http://www.ppmi-info.org/wp-content/uploads/
2014/06/PPMI-Amendment-8-Protocol.pdf. This diagnostical
procedure also includes a confirmation step based on imaging but
this is not the only test to label a subject. To avoid the possible
circularity in results, we have decided not to compare only HC
vs. PD patients in our study but HC vs. non-HC subjects instead.

2.2. Demographics and Descriptive
Statistics of Participants
For this work, we have retrospectively selected the baseline
(BL) data available of 388 participants in the PPMI cohort
study including Healthy Control subjects (HC), patients with
Parkinson’s Disease (PD) and those with PD whose scans have
no evidence of dopaminergic deficit (SWEDD) (Wyman-Chick
et al., 2016). As SWEDD and PD subjects are both considered as
patients with Parkinson’s Disease, we have included both of them
in the same group (PD+SWEDD).

Demographics of all participants have been included in
Table 1.

2.3. Image Preprocessing
2.3.1. Spatial Normalization
All DaTSCAN images have been spatially registered using
the SPM (Statistical Parametric Mapping) tool. Specifically,
for this work, we have used the SPM12 software package
available from: www.fil.ion.ucl.ac.uk/spm/software/spm12/. Its
documentation and manuals are also available from this website.
Once registration was performed, it was checked that matching
between voxels and anatomical structures was unaltered. After
being co-registered and averaged, each cerebral image was
reoriented into a standard image grid. Obtained images had a
dimension of 79× 95× 78 voxels and a voxel size of 2.0× 2.0×
2.0 mm.

2.3.2. Intensity Normalization
Full dataset from the PPMI was used to normalize intensity of
each image. An intensity normalization method based on the α-
Stable distributions as described in Salas-Gonzalez et al. (2009),
Castillo-Barnes et al. (2017) was used for that. This approach has
shown itself to be more effective for homogenizing information
from SPECT images than other approaches, like the currently
widely used intensity normalization based on Binding Ratio or
the equivalent Gaussian model, as was demonstrated in Salas-
Gonzalez et al. (2013).

Mathematically, intensity normalization based on α-Stable
distributions uses a linear transformation as presented in
expression (1) with a and b as follows in (2):

Y = aX + b (1)

a =
γ ∗

γ
b = µ∗ −

γ ∗

γ
µ (2)

where γ ∗ and µ∗ represent the mean of γ (dispersion) and µ

(location) parameters, respectively, that are computed for the
whole database.

In short, steps to perform intensity normalization using the
α-Stable distribution schema can be summarized as follows:

• Step 1: A mask is applied to source images in order to consider
only voxels in the brain outside the striatum (Brahim et al.,
2015). This will reduce the computational load without losing
too much accuracy.

• Step 2: For each image, we compute the histogram of selected
voxels in the previous step and fit an α-Stable distribution. We
obtain α, β , γ , and δ parameters of each image.

• Step 3: Once having all the α-Stable distributions, calculate the
γ ∗ and δ∗ parameters as mean of all γ and δ parameters.

• Step 4: Get a and b values following expression (2).
• Step 5: Apply the linear transformation presented in (1).

A comparison between original and intensity-normalized images
is presented in Figure 1.

2.3.3. Region of Interest (ROI)
In this work, we considered striatum area and non-striatum area
as significative regions for both intensity normalization and VAF
classification purposes.

To get a realistic map from the striatum, a
segmentation/extraction process was carried out for each
image using the AAL (Automated Anatomical Labeling)
template (Tzourio-Mazoyer et al., 2002). Thus, we selected
regions that compose the striatum according to labels from this
template.

2.4. CSF, Plasma, RNA, and Serum
Biomarkers
The PPMI study cohort includes four groups of non-genetic
BT: Cerebrospinal-Fluid (CSF), Plasma, RNA, and Serum

tests. All tests can be downloaded from the PPMI website
(www.ppmi-info.org/access-data-specimens/download-data/),
specifically from the Biospecimen_Analysis_Results.
csv.

Following this idea, one of the objectives of this work is
to check if one or more groups of tests can be used, in
combination with neuroimaging, to get better classification
results. Unfortunately, the PPMI database does not include
all tests for each subject. Some tests, specially those referred
to Plasma, are not populated enough to avoid small sample
size problems. As a simple solution, we have considered
only these tests present for a large amount of patients. The
list of BT from the Biospecimen_Analysis_Results.
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FIGURE 1 | Comparison between intensity normalizated images using the α-Stable normalization procedure (Up) and their respective original versions (Down).

TABLE 2 | List of biomedical tests (BT) included in the PPMI database.

Group Test name Units Populated Group Test name Units Populated

CSF Aβ-42 pg/ml Yes RNA GLT25D1 Ct Yes

CSF CSF α-synuclein pg/ml Yes RNA GUSB Counts Yes

CSF CSF hemoglobin ng/ml No RNA HNF4A Ct(∗) No

CSF p-τ181P pg/ml Yes RNA HSPA8 Ct(+) Yes

CSF Total-τ pg/ml Yes RNA LAMB2 Ct(+) Yes

Plasma Apolipoprotein A1 mg/dL No RNA MON1B Counts No

Plasma EGF ELISA pg/mL No RNA PGK1 Ct(+) Yes

Plasma HDL mg/dL No RNA PSMC4 Ct(+) Yes

Plasma LDL mg/dL No RNA PTBP1 Ct(∗) No

Plasma Total cholesterol mg/dL No RNA RPL13 Counts Yes

Plasma Triglycerides mg/dL No RNA SKP1 Ct Yes

RNA ALDH1A1(+) Ct Yes RNA SNCA-007 Counts Yes

RNA APP Ct(∗) No RNA SNCA-3UTR Counts Yes

RNA C5ORF4 Ct(∗) No RNA SNCA-E3E4 Counts Yes

RNA COPZ1 Ct(∗) No RNA SNCA-E4E6 Counts Yes

RNA DHPR Counts Yes RNA SOD2 Ct(∗) No

RNA DJ-1 Counts Yes RNA SRCAP Counts Yes

RNA EFTUD2 Ct(∗) No RNA UBC Counts Yes

RNA FBXO7-001 Counts Yes RNA UBE2K Ct(+) Yes

RNA FBXO7-005 Counts Yes RNA WLS Ct(∗) No

RNA FBXO7-007 Counts Yes RNA ZNF160 Ct(∗) No

RNA FBXO7-008 Counts Yes RNA ZNF746 Counts Yes

RNA FBXO7-010 Counts Yes Serum PD2 peptoid op. density No

RNA GAPDH Ct(∗+) Yes Serum Serum IGF-1 op. density Yes

(+)Tests with two separated repeats.
(∗)Test results in terms of average and standard deviation.

csv file and those populated enough are summarized in
Table 2.

More specific information about each BT like definitions,
its units or extraction procedures are also described at
the Biospecimen Analysis Methods section from the
https://ida.loni.usc.edu/ website.

2.5. Morphological Features
Several morphological features were extracted from DaTSCAN
images. Then, its performance was compared to a VAFmodel that
uses the striatum region as reference. This set of features provides

us another classifier for our ensemble model and makes it more
robust against missclassifications. Besides, relevant information
about structural or functional shapes may be indicative of PD
progression (Garg et al., 2015) so it was considered important to
include them in this work.

The morphological features obtained from normalized
DaTSCAN images are:

• Intensity means - Mean values of intensity in the striatum
region. It is a 1-by-9 length vector corresponding with:
the average intensity of full/left-hemisphere/right-hemisphere
voxels in the striatum region, the average intensity of the 1%
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FIGURE 2 | CoM computed for several HC subjects (green) and PD patients (red) in their left/right hemisphere striatum region (A). Projections of the N most intense

voxels obtained from a patient: Axial view (B) and coronal view (C).

FIGURE 3 | General diagram of work.

most intense full/left-hemisphere/right-hemisphere voxels in
the striatum region, the average intensity of the 1% less intense
full/left-hemisphere/right-hemisphere voxels in the striatum
region.

• Center of mass (CoM) - Given a particles system, the center
of mass of that system is defined as the unique point where
the weighted relative position of the distribuited mass sums
to zero. In other words, the distribution of particles mass is

balanced around the center of mass and the average of the
weighted position coordinates of the distribuited mass defines
its coordinates. In this work, the same idea has also been used
to define a center of intensities instead of mass. To do this,
given the relative position (x, y, z) of the distributed intensities
I(x, y, z) of all N-voxels which forms the striatum, we have
calculated the exact point where sum of all intensities sums to
zero respect that point. N has been obtained as the number of
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voxels that conforms the striatum region according to the AAL
template. Center of mass has been computed by expression
(3) where I(xi, yi, zi) represents intensity of the i-th voxel with
i = 1, 2, . . . ,N in the (xi, yi, zi) position.

CoM =

∑N
i=1(xi, yi, zi) ∗ I(xi, yi, zi)

∑N
i=1 I(xi, yi, zi)

(3)

Due to striatum shape, center of mass has been calculated
for each left hemisphere (LH) and right hemisphere (RH) as
shown in Figure 2.

• Projections - As explained and performed in Segovia et al.
(2017a), given a DaTSCAN image, we have projected the N
most intense voxels in the three directions (x, y, and z). Thus,
we obtained three two-dimensional images corresponding to
axial projection (calculated as the maximum in the z-axis
direction), coronal projection (calculated as the maximum
in the y-axis direction) and sagital projection (calculated as
the maximum in the x-axis direction). For each image as
illustrated in Figure 2, we calculated the following features:

− Area - Number of voxels in the left/right hemisphere
projection.

− Eccentricity - Ratio of the distance between the center of
the ellipse [with general expression as presented in (4)] and
each focus to the length of the semimajor axis a.

(x− x0)
2

a2
+

(y− y0)
2

b2
= 1 (4)

− Major axis length - Length (in voxels) of the major axis
(2a) of the ellipse that has the same normalized second
central moments as the region.

− Minor axis length - Length (in voxels) of the minor axis
(2b) of the ellipse that has the same normalized second
central moments as the region.

− Orientation - Angle between the major axis of the ellipse
and the x-axis.

• Volumes - A HC subject is expected to present the striatum
region highly illuminated and approximately homogeneous.
For this reason, counting the number of voxels which exceed
an intensity threshold may indicate whether a patient meets
these specifications. We have calculated the number of voxels
which exceeds a certain threshold. This threshold is defined
as the 10, 20, 30%,... up to 100% of the averaged intensity value
registered at the 1%most intense voxels in the striatum region.
This measure is expected to be indicative of how quick DATs
decrease in the striatum.

2.6. Ensemble Classification
Ensemble classification refers to the process of combining
classifiers in order to provide a single and unified classification to
an unseen instance (Rokach, 2010). There are two major ways for
classifying new instances: fusion and selection. The first approach
combines the output of several classifiers whereas selection only
selects the output of a single member following a specified and

previously defined criterion. In this paper, we have worked with
the fusion approach for two reasons: several classifiers were
available and none of them affects any individual response of each
other.

Assuming that the output of each classifier i is a k-long vector
pi,1, · · · , pi,k, where the term pi,j represents the support that
instance x belongs to class j according to the classifier i and it
can be assumed (5).

k
∑

j=1

pi,j = 1 (5)

In a weighting method, classification results of all members
are combined using weights that indicate its effect on the
final classification. These weights can be fixed or dynamically
determined. A commonly accepted way for this is considering
that the weight of each classifier (wi) is proportional to its
accuracy performance (αi) on a validation set (Opitz et al., 1996)
as follows in (6):

wi =
(αi)

∑T
j=1(αj)

(6)

Once the weights for each classifier are computed, classes with
the highest score are selected by means of expression (7), where
yk(x) represents the classification of the k’th classifier and g(y, c)
is an indicator function defined as (8).

Class(x) = argmax
ci ∈ dom(y)

(

∑

k

wig(yk(x), ci)
)

(7)

g(y, c) =

{

1 y = c

0 y 6= c
(8)

Since the weights are normalized and summed up to 1, it is
possible to interpret the sum in Equation (7) as the probability
that xi is classified into cj.

When several classifications (but not all) present low
accuracies, a sum of several missclassifications can be comparable
to good ones. In that case, we need a method that will be able to
weight more high scores classifications. To do that, we have used
aWindowing technique consisting in increasing the contribution
of classifiers with high accuracy rates. This technique is calculated
by expression (9), where f (αi) will be a linear, cuadratic or
exponential function (among others) as reflected in (10).

w(wi) =

{

f (αi) αi ≥ 0.5

0 αi < 0.5
(9)

Linear f (αi) = aαi + b

Cuadratic f (αi) = aα2
i + bαi + c

Exponential f (αi) = a e(bαi) + c

(10)
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FIGURE 4 | Ensemble classification flowchart for an experiment with N balanced subjects.

The only two conditions these expressions should match are:
f (αi) = 1 when αi = 1 and f (αi) = 0 when αi = 0.5, so (10)
can be rewritten as (11) assuming that a = 1 in the cuadratic and
the exponential cases.

Linear f (αi) = 2αi − 1

Cuadratic f (αi) = α2
i + 0.5αi − 0.5

Exponential f (αi) = e(0.9624αi) − 1.618

(11)

All individual classifications have been performed using an
SVM with linear kernel classifier. Different kernel functions or
similarity matrices were not considered necessary as in a multi-
modal analisys (Tong et al., 2017; Li et al., 2018). In this case, a
simple two-class (binary) classifier is considered as sufficient to
separate HC subjects from patients labeled as PD or SWEDD.

2.7. Validation
2.7.1. Cross-Validation Strategy
In order to validate results, dataset has been splited into two
groups: a training data group, which we use to train the
prediction model, and a test data group, that is then used to
measure the classifier’s performance through the cross-validation
strategy selected. Due to the reduced number of subjects available
for each classification, a leave-one-out cross-validation strategy

was selected instead of an N-fold cross-validation strategy
(Kohavi, 1995).

Classification results were analyzed considering the following
performance metrics: correct rate or accuracy (Acc), sensitivity
or true positive rate (Sens), specificity or true negative rate
(Spec) and precision (Prec) as defined in expression (12). TP is
the number of PD patients correctly classified (true positives),
TN is the number of healthy subjects correctly classified (true
negatives), FP is the number of healthy subjects classified as PD
(false positives) and FN is the number of PD patients classified as
healthy (false negatives).

Acc = TP+TN
TP+TN+FN+FP

Spec = TN
TN+FP

Sens = TP
TP+FN

Prec = TP
TP+FP

(12)

2.7.2. Permutation Tests
Non-parametric permutation tests, as referred to in Lehman
and Romano (2005), Good (2006), were performed to assess the
statistical significance of accuracy rates obtained for each group
of patients.

To compute the permutation test, first we have performed
a classification with the original labels (diagnoses) of the
observations from the PPMI database. This step has resulted in
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FIGURE 5 | Intensity distribution of the first 50 DaTSCAN images after

applying the α-Stable intensity normalization.

TABLE 3 | Welch’s U-Test analysis for CSF, Plasma, RNA, and Serum.

Type Welch’s U-Test most

significative p-value

Cases with (p− value < 0.05)

CSF 0.0017 CSF α-synuclein, p-τ181P, Total-τ

Plasma 0.4887 -

RNA 0.0052 ALDH1A1, GAPDH, PGK1

Serum 0.0756 -

a reference classification result: RAcc,Original. Then, following the
process detailed in Ernst (2004), we have randomly rearranged
the labels and computed this classification again. The process has
been repeated several times until obtaining the distribution of
classification results (RAcc,Permi ) for a large number of possible
rearrangements (n with 1 ≤ i ≤ n).

Focusing on histogram of all possible results, it would be
ideal that the accuracy rates were as far as possible from the
center of the distribution. This case means that the original labels
give us a better classification result than any other randomized
combination of tags and, consequently, our classifier has been
able to classify using only representative patterns from the
input data. On the contrary, if original labels had given us
a result near the central point of the histogram (in which
is suppposed to have got most of the cases), it would be a
sign that our classifier has not been able to find a significative
pattern. In this last case, missclassification mistakes would be
significant.

2.8. General Diagram
Diagram including all steps has been depicted in Figure 3.
Detailed flowchart showing the ensemble classificationmodel has
also been included in Figure 4. This flowchart is similar to the
presented in Dai et al. (2012) and consists in the use of two
classification loops:

TABLE 4 | List of experiments with all representative groups of cases, balanced,

and large enough.

Experiment No. subjects VAF Morp CSF RNA Serum

21,981 55 4 BT 34 BT 1 BT

voxels values results results result

1 334 X X X

2 150 X X X X

3 306 X X X X

4 148 X X X X X

5 150 X X X

6 148 X X X X

7 310 X X X

• First of all, preprocessed input features are splitted into two
parts: a training data set and a test data set.

• As we are using a leave-one-out cross-validation schema for
both external and internal loops, the first training data set
consists of N − 1 samples whereas the test set only presents
1 sample.

• The training set is used for two loops:

• A nested loop which gets the accuracies of several linear
SVM classifiers. It usesN−2 samples to obtain a data model
and makes a cross-validation with the remaining sample.
This will result into a wi weight obtained evaluating each
individual (VAF,Morp, and biomedical tests -CSF, Plasma,
RNA, and Serum-) classifier.

• An external loop that fits a model for each data source. This
schema uses the original training data with N − 1 samples
for fitting the model as reflected in Figure 4.

• Once all the models are created and evaluated on the Test
data, and when the nested loop returns the weights wi, the
ensemble classification is performed. For that, the main loop,
which also follows a leave-one-out validation schema, applies
the windowing technique proposed and obtains the fusion
parameters (accuracy, sensitivity, specificity, and precision)
using the remaining test sample.

Note that different kind of classifiers and cross-validation
schemas may be used instead of linear SVM classifiers and/or
leave-one-out due to the flexibility of our proposal.

3. RESULTS

The proposed methodology has been tested using 388 different
SPECT images (194 HC, 168 PD, and 26 SWEDD subjects) in
baseline (BL) as cited in Table 1.

All images have been spatially normalizated and the intensity
normalization approach explained in section 2.3.2 has also been
applied. After intensity normalization, histograms of the intensity
values present an α-Stable distribution centered on location δ =

28.42 and with dispersion γ = 5.41. Representation of final
intensity distributions are shown in the Figure 5.
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TABLE 5 | Classification results (individual classifications using linear SVM classifiers).

Experiment Parameter VAF (%) Morp (%) CSF (%) RNA (%) Serum (%)

1 Accuracy 82.93 88.32 52.99 - -

Sensitivity 84.43 87.43 73.05 - -

Specificity 81.44 89.22 32.93 - -

Precision 81.98 89.02 52.14 - -

2 Accuracy 96.00 90.67 56.67 58.67 -

Sensitivity 96.00 90.67 74.67 58.67 -

Specificity 96.00 90.67 38.67 58.67 -

Precision 96.00 90.67 54.90 58.67 -

3 Accuracy 96.73 91.50 53.27 - 51.96

Sensitivity 96.08 91.50 70.59 - 24.18

Specificity 97.39 91.50 35.95 - 79.74

Precision 97.35 91.50 52.43 - 54.41

4 Accuracy 96.62 89.86 55.41 48.65 52.03

Sensitivity 95.95 89.19 74.32 47.30 24.32

Specificity 97.30 90.54 36.49 50.00 79.73

Precision 97.26 90.41 53.92 48.61 54.55

5 Accuracy 96.00 91.33 - 48.00 -

Sensitivity 96.00 92.00 - 49.33 -

Specificity 96.00 90.67 - 46.67 -

Precision 96.00 90.79 - 48.05 -

6 Accuracy 95.95 90.54 - 52.03 52.70

Sensitivity 94.59 89.19 - 50.00 18.92

Specificity 97.30 91.89 - 54.05 86.49

Precision 97.22 91.67 - 52.11 58.33

7 Accuracy 96.45 92.26 - - 52.58

Sensitivity 95.48 92.90 - - 23.87

Specificity 97.42 91.61 - - 81.29

Precision 97.37 91.72 - - 56.06

Striatum volume for VAF was calculated using the AAL
template including both caudate nucleus and putamen areas.
Nevertheless, for reasons of anatomical relationship with
the nigrostriatal pathway, the following structures were also
included: globus pallidus, thalamus, olfactory cortex, amygdala,
hippocampus, inferior temporal gyrus. Consequently, the final
volume considered as ROI contained N = 21, 981 voxels in total.

A total of 68 BT were processed from the
Biospecimen_Analysis_Results.csv file. Some
of these tests are given in terms of average and standard
desviation as reflected in Table 2. Despite of this, all values were
included as input features in a matrix utilized for classification.
Note that, due to the lack of some medical tests findings for some
patients, we have decided to restrict the number of BT under
study from 68 to 39.

To further reduce the number of experiments not providing
relevant information to the ensemble methodology, a rank
of features procedure based on the use of Welch’s U-Test
was performed for the biomedical tests. Thus, we have

estimated the significance of each biomarker according to its
most significative value (a minor p-value). As we can check
in Table 3, Plasma tests do not contribute to the possible
separation between classes in comparisson with the other
biomedical tests. This result, in addition to the small number
of Plasma features available, reinforces the idea of discarding all
combinations containing Plasma tests from posterior analyses.
Final experiments combining all representative groups of BT,
balanced and large enough, are presented in Table 4 where it was
also indicated the number of features considered for each data
source. Even in this point, the list of final biomarker features
could have been more reduced by ranking the features and
selecting those ones with a better performance. However, as there
were not much clinical information available for all the patients,
we finally decided using as many tests as possible and the feature
selection were performed only regarding to their number.

As represented in Figure 3, once data sources have been
properly pre-processed, the next step is to classify/diagnose
subjects through the ensemble classification model proposed.
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FIGURE 6 | Histograms of the accuracy rates achieved by using randomly generated label sets (1, 000 repetitions) and the proposed method. Red lines represent the

accuracy obtained for each group of tests. Experiment 1—CSF (A), Experiment 2—CSF (B), Experiment 2—Serum (C), Experiment 3—CSF (D), Experiment 3—RNA

(E), Experiment 5—RNA (F), Experiment 4—CSF (G), Experiment 4—RNA (H), Experiment 4—Serum (I), Experiment 6—RNA (J), Experiment 6—Serum (K), and

Experiment 7—Serum (L).

For that, the nested loop in Figure 4 consists of SVM with
linear kernel classifiers for VAF, Morp, CSF, RNA, Serum.
Then, in order to validate results of each classifier, a leave-
one-out validation strategy has been carried out. Individual
accuracy, sensitivity, specificity and precision are summarized in
Table 5. Note that for VAF, only voxels from Striatum area were
considered as input features.

For greater reliability, a non-parametric permutation test was
performed for all sets of medical biomarkers (CSF, RNA, and
Serum) to assess the statistical difference between accuracy rates
obtained using the SVM with linear kernel classifiers. 1, 000 sets
of random diagnostic labels (each of themwith the same lenght as
the original) were generated, then each classifier was trained with

these random labels and the accuracy estimated. Histograms of
p-value results were generated, and subsequently, compared to
SVM original results as shown in Figure 6.

A one-sample t-test was also performed a posteriori. As shown
in Table 6, results rejected the null hypotheses. This means, the
data in each permutation test does not come from a normal
distribution with mean equal to the accuracy obtained by its
respective original classification.

Once nested loop is fully iterated, individual classications are
performed and the ensemble classification methodology can be
carried out.

Different ensemble classification approaches, most of
them based on Performance Weighting (PW), have been
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TABLE 6 | One-sample t-Test performed to discard the null hypotheses.

Experiment Type Null hypotheses p-value Confidence interval Stats

1 CSF Rejected ≈ 0 [0.4782 , 0.4847] tstat = −29.2183 sd = 0.0525

2 CSF Rejected ≈ 0 [0.4734 , 0.4821] tstat = −40.2423 sd = 0.0699

RNA Rejected ≈ 0 [0.4916 , 0.5001] tstat = −42.1418 sd = 0.0681

3 CSF Rejected ≈ 0 [0.4789 , 0.4855] tstat = −29.6297 sd = 0.0539

Serum Rejected ≈ 0 [0.4236 , 0.4416] tstat = −18.9669 sd = 0.1451

4

CSF Rejected ≈ 0 [0.4724 , 0.4816] tstat = −32.7918 sd = 0.0743

RNA Rejected ≈ 0 [0.4894 , 0.4979] tstat = 3.3227 sd = 0.0682

Serum Rejected ≈ 0 [0.3925 , 0.4141] tstat = −21.2206 sd = 0.1743

5 RNA Rejected ≈ 0 [0.4899 , 0.4983] tstat = 6.5119 sd = 0.0685

6 RNA Rejected ≈ 0 [0.4918 , 0.5005] tstat = −10.8945 sd = 0.0699

Serum Rejected ≈ 0 [0.3841 , 0.4048] tstat = −25.1350 sd = 0.1668

7 Serum Rejected ≈ 0 [0.4255 , 0.4435] tstat = −19.9518 sd = 0.1447

TABLE 7 | Classification results—Accuracy obtained from different ensemble methods.

Experiment Majority voting

(MV) (%)

Performance

weighting (PW) (%)

PW with linear

windowing (ax + b) (%)

PW with cuadratic windowing

(ax2 + bx + c) (%)

PW with exponential

windowing (aebx + c)

Hyperplane

distance (%)

1 85.63 85.63 88.02 88.32 85.63 86.83

2 88.67 94.67 94.67 94.67 94.67 91.33

3 85.62 95.75 95.42 96.08 95.75 93.79

4 83.11 93.92 94.59 95.27 89.86 88.51

5 93.33 93.33 96.00 96.00 94.00 92.67

6 77.70 93.24 94.59 95.27 95.27 90.54

7 85.68 92.76 93.88 94.27 92.53 90.61

performed as shown in Table 7. Final results including individual
classifications and the ensemble fusion method are presented in
Figure 7.

Although all classifications were performed using linear SVM
classifiers, as mentioned in the 1, a second battery of simulations
was also performed making use of K-Nearest Neighbor (KNN)
classifiers. Results of these simulations have been included as
Supplementary Material. Due to the worse classification rates
obtained with this kind of classifiers, their use was discarded.

Finally, to highlight the difference between sets of medical
tests (CSF, RNA, and Serum), image features and the ensemble
model that combines all of them; a further comparison was
performed by means of the Receiver Operating Characteristic
(ROC) curves (Zweig and Campbell, 1993) for the seven
experiments (see Figure 8).

4. DISCUSSION AND CONCLUSIONS

Despite the interest, many questions remain open surrounding
the topic of Parkinson’s Disease. As a general view (Meireles and
Massano, 2012), it is expected that combination of different data

sources will give us the necessary keys to determine precisely
which are the origins and predictive factors of PD.

Although medical science has begun to consider
neuroimaging analysis as the reference test in the diagnosis
of Parkinson’s Disease (Salvatore et al., 2014), results like VAF
analysis with an accuracy up to 95% in many studies are hardly
able to be improved even by employing advanced techniques
of Machine Learning. In these terms, this work presents many
significative strenghts: a robust classification methodology that
combines an effective intensity normalization technique based
on the use of α-Stable distributions; a classification schema
which maximizes models obtained for each group of markers; a
multimodal CAD system that combines multiple heterogeneous
data sources and an ensemble classifier that selects the most
reliable characteristics from input sources as indicated in
Tables 5, 7.

If we compare our final proposal (Performance Weighting

with Cuadratic Windowing) with the baseline method (Majority
Voting) as shown inTable 7, we obtain an averaged improvement

of 7.46%. This fact reinforces our main idea: if we use better

(more discriminative) biomarkers, ensemble classification rates
will increase. As it can be checked, biomedical tests with poor
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FIGURE 7 | Classification results considering Ensemble Classification. Experiment 1 (A), Experiment 2 (B), Experiment 3 (C), Experiment 4 (D), Experiment 5 (E),

Experiment 6 (F), and Experiment 7 (G).

classification rates in the internal cross-validation loop are
strongly penalized by the windowing technique so the final
classification (external loop) makes a poor use of them. In fact,
for this work, only image-based classifiers (VAF and Morp),
with averaged accuracies of 94.38 and 90.64%, respectively, have
proven to be good enough to the final ensemble classification.
Such importance is explained through the cuadratic windowing
method described in (11). For example, if we compare results

from experiment 2, CSF and RNA tests resulted in a weight of
wCSF = 0.10 and wRNA = 0.14, whereas VAF obtained a weight
of wVAF = 0.90 and Morp was wMorp = 0.77. As markers
based on image presented higher weights1, it results in a final
classification result similar to them.

1A further summary of weights obtained in our experiments have been included as

Supplementary Material.
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FIGURE 8 | ROC curves generated for each experiment: Experiment 1 (A), Experiment 2 (B), Experiment 3 (C), Experiment 4 (D), Experiment 5 (E), Experiment 6 (F),

and Experiment 7 (G). Area Under the Curve (AUC) parameters for all experiments have also been reflected in the curves.

For this study, results issued by the Welch’s U-Test are
consistent with the current state-of-the-art as reflected in
Gallegos et al. (2015), Klettner et al. (2016), Xu et al. (2017),
Hu et al. (2017), Vanle et al. (2017), and Abbasi et al. (2018),
particulary for CSF and RNA tests (CSF Alpha-synuclein, p-
τ181P, Total-τ , and GAPDH). We confirm this hypothesis
as we obtain better ensemble classification results when those
biomarkers are included in our multimodal experiments.
However, as the weights obtained from these biomedical tests
were rather small, the ensemble methodology has not been
able to take advantage of them. Only features with individual

classification rates equal to or above 50% are useful for
our classification purposes. Though it could be seen as a
disadvantage, discarding group of tests whose are not well-related
to the disease prognosis also decreases computation costs and
let us to center our focus on those biomedical tests that really
matter.

Experiments involving Serum tests presented high accuracy
rates. Nevertheless, they do not provide a reliable source of
information as reflected in ROC curves (Figure 8) with AUC
values for ensemble model substantially below single VAF or
Morp. A direct consequence of this fact may be the need to
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discard this type of tests defined by the PPMI in a previous phase
for future works.

In view of the obtained results, and as we can see in Figure 6

in relation to biomedical tests, no general conclusions can be
drawn for experiments that have presented p-values above 5%
significance level (none of the experiments presented a p-value
under 0.05 and only experiment 2, and experiment 4 with p-
values between 0.05 and 0.1). In comparison with Welch’s U-
Test in Table 3, RNA and CSF features with p-values below
0.05 should be enough to discern between PD and HC subjects.
However, this idea is not reflected in the permutation tests.
The main reason could be the small sample size of groups:
if distribution variance of accuracies increases, p-value is also
increased.

This CAD system can be used to determine an early diagnosis
or evolution of Parkinson’s Disease. Subjects information for
the last 5, 10, 15, or 20 years may be used to determine how
disease has progressed. In this sense, if we could work using
longitudinal information, we will face up to Parkinson’s Disease
from a different perspective: not only confirming if a subject
shows signs of suffering the neurological disorder but also if that
person may develop this pathology in the future.

Though there are not many works related to the use
of ensemble classification methodologies for the study of
neurodegenerative diseases, the use of Neural Networks or Tree-
Based Models with different kind of classifiers as ensemble
approaches are quite prominent. Works like presented in
Khan et al. (2016) and Li and Wang (2017) which made use
of datasets based on speech recordings were able to reach
accuracies up to 90%. Other works like (Challa et al., 2016)
also combine different imaging biomarkers with biomedical
tests to make a model of the disease. In this sense, we
could also cite the work presented in Latourelle et al. (2017)
which performs a longitudinal study of Parkinsonism based on
the use of different clinical, molecular and genetic data. The
small size of the dataset used in some of these studies and
the computation costs in several cases may be some of the
strongest disadvantages with respect to our proposal. Only the
proposal presented in Ramírez et al. (2018), for Alzheimer’s
Disease diagnosis, makes use of a multi-level robust ensemble
classification model.

One last point to close this section 4 has a close relation to
the most important problem we have had to face up: the lack of
all medical tests results for all patients. Although our study was
designed to work with the entire PPMI database, due to the lack

of all medical tests our experiments have not been able to count

on all subjects. In this sense, threemain ideas have been suggested
for future works:

• The inclusion of Missing Data (MD) techniques which are
already being implemented in fields like wireless networks or
data mining (Magán-Carrión et al., 2015).

• Add new promising biomarkers as referred on Saiki
et al. (2017) and Delgado-Alvarado et al. (2017) or study
relations between existing ones (Constantinides et al., 2017;
Fereshtehnejad et al., 2017).

• Include new image markers as stated in Saeed et al. (2017)
or make use of different image sources combined as done by
Segovia et al. (2017b).

• The design of a dynamic feature selection procedure for the
internal loop which may be also used by the external ensemble
loop.

In regarding to its easy adaptation, the proposed methodology
presented in this work can also be used for many other
databases such as ADNI (http://adni.loni.usc.edu/) or DIAN
(https://dian.wustl.edu/). Moreover, the extension of this
proposal with the inclusion of procedures for semi-supervised
learning or the use of data imputation techniques will face up
with the lack of complete tests.
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