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ABSTRACT: Background: Mendelian randomization is
a method for exploring observational associations to find
evidence of causality.
Objective: To apply Mendelian randomization between
risk factors/phenotypic traits (exposures) and PD in a
large, unbiased manner, and to create a public resource
for research.
Methods: We used two-sample Mendelian randomization
in which the summary statistics relating to single-nucleotide
polymorphisms from 5,839 genome-wide association

studies of exposures were used to assess causal relation-
ships with PD. We selected the highest-quality exposure
genome-wide association studies for this report
(n = 401). For the disease outcome, summary statistics
from the largest published PD genome-wide association
studies were used. For each exposure, the causal effect on
PD was assessed using the inverse variance weighted
method, followed by a range of sensitivity analyses. We
used a false discovery rate of 5% from the inverse variance
weighted analysis to prioritize exposures of interest.
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Results: We observed evidence for causal associations
between 12 exposures and risk of PD. Of these, nine
were effects related to increasing adiposity and
decreasing risk of PD. The remaining top three expo-
sures that affected PD risk were tea drinking, time spent
watching television, and forced vital capacity, but these
may have been biased and were less convincing. Other
exposures at nominal statistical significance included
inverse effects of smoking and alcohol.
Conclusions: We present a new platform which offers
Mendelian randomization analyses for a total of 5,839

genome-wide association studies versus the largest
PD genome-wide association studies available
(https://pdgenetics.shinyapps.io/MRportal/). Along-
side, we report further evidence to support a causal
role for adiposity on lowering the risk of PD. © 2019
The Authors. Movement Disorders published by Wiley
Periodicals, Inc. on behalf of International Parkinson
and Movement Disorder Society.

Key Words: Mendelian randomization; Parkinson’s dis-
ease; public resource; risk factor

Although monogenic forms of Parkinson’s disease
(PD) are responsible for approximately 5% of cases, the
vast majority of disease is considered to be sporadic and
attributable to a range of genetic and nongenetic risk fac-
tors.1 Total heritability estimates for PD are 22% to
27%, with approximately one-third of this explained by
genome-wide association studies (GWAS) and a substan-
tial proportion of genetic risk still to be discovered.2-5

The remainder of PD risk comes from environmental
factors,4,5 aging,6,7 and stochastic events.8

Mendelian randomization (MR) is an epidemiologi-
cal method that can be used to provide support for
causality between a modifiable exposure/risk factor/
phenotypic trait (henceforth collectively termed expo-
sure) and a disease outcome.9 Put simply, genetic var-
iants (usually single-nucleotide polymorphisms
[SNPs]) that explain variation in an exposure can be
used as proxies to determine how a change in that
exposure might influence a disease outcome. A ratio
of the genetically estimated change in the exposure
and the genetically estimated change in the outcome
using the same individual SNP is calculated and then
the ratios are pooled across all SNPs that are inde-
pendently associated with the exposure of interest.
The pooled ratio is an estimate of change in the out-
come for a given change in the exposure, as long as
certain instrumental variable assumptions are upheld
(see Supporting Information).
A common approach to MR involves the use of

summary statistics from published GWASes of expo-
sures and the summary statistics of a GWAS of an out-
come; an approach known as two-sample
MR. Recently, the summary statistics from GWAS for
a large range of exposures have been curated in MR
Base (http://www.mrbase.org), which enables targeted
(hypothesis-driven) exploration of causal associations
or hypothesis-generating approaches to MR.10 We
have undertaken two-sample MR for a wide range of
exposures and PD. The principal goal was to provide
a new resource for the research community to add
causal insights to associations arising from traditional
epidemiological approaches and to support the pursuit
of new interventions to reduce the risk of PD.

MATERIALS AND METHODS
Exposure Data

MR Base is an online resource which, at the time of
the analysis, contained summary results from 7,956
GWASes across multiple exposures, encompassing a
wide range of physiological characteristics and disease
phenotypes. MR Base was accessed on January
14, 2019. Each exposure was tested separately to deter-
mine whether it altered risk of PD. All analyses were per-
formed using the R package, TwoSampleMR (version
3.2.2; https://github.com/MRCIEU/TwoSampleMR).
The instrumental variables used for each binary expo-
sure consisted of the per-allele log-odds ratio (or the beta
estimate for continuous exposures) and standard errors
for all independent GWAS significant SNPs.
We used the following stringent criteria for any expo-

sure GWAS to be included in our analysis: (1) the
GWAS had to report SNPs with P values <5.0 × 10–8

for their association with a given exposure; (2) these
SNPs or their proxies (linkage disequilibrium R2 value
> = 0.8) had to be present in both the exposure and
outcome (PD) data sets; and (3) these SNPs were inde-
pendent signals that were generated through a process
called “clumping.” In order to “clump,” index SNPs
were identified by ranking exposure associations from
the smallest to largest P value (but still with a cut-off
value of P = 5 × 10–8). Clumped SNPs were those in
linkage disequilibrium (LD) with index SNPs (R2

threshold of 0.001) or within 10,000 kb physical dis-
tance. Hence, each index SNP represented a number of
clumped SNPs that were all associated with or near to
the index SNP, and the index SNPs were all indepen-
dent of one another (according to the stringent parame-
ters defined here). A total of 5,839 exposure GWASes
surpassed these criteria and were tested against the out-
come. Then, we further expanded our filtering
approach as follows: (4) in order to use MR sensitivity
analyses designed to identify pleiotropy and its effects,
each GWAS had to include a minimum of 10 associated
SNPs; (5) the number of cases was >250 for GWASes
of a binary exposure or > 250 individuals for GWASes
of a continuous exposure; and (6) both the exposure
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and the outcome data were drawn from European
populations. A total of 401 exposures met our filtering
criteria (7% of 5,839), consisting of 175 published
GWASes and 226 unpublished GWASes from the UK
Biobank (UKB; www.ukbiobank.ac.uk). For UKB
GWASes, some of the exposures are reported in an
ordinal fashion, but treated as continuous when calcu-
lating betas for the effect allele at each SNP. This means
that some of the effect estimates that arise are difficult
to interpret quantitatively, both in the GWAS and in
the subsequent MR analysis.

Outcome Data
Summary statistics from the largest, published PD

GWAS meta-analysis involving 26,035 PD cases and
403,190 controls of European ancestry were used as
the outcome data for the primary analysis. Recruitment
and genotyping quality-control procedures were
described in the original report.11

A newer PD GWAS included a total of 37,688 cases,
1,417,791 controls, and 18,618 “proxy cases” from
the UKB (individuals that reported having a parent with
PD).2 However, there was substantial overlap in control
subjects between each of the UKB exposures and the
Nalls and colleagues 2019 meta-analysis, which can, in
turn, lead to bias in causal effect estimates. For this rea-
son, we repeated the analyses using only 5,851 clini-
cally diagnosed PD cases and 5,866 matched controls
as the outcome, after excluding UKB samples and self-
reported PD cases and controls. Finally, we used an ear-
lier PD GWAS as the outcome that included 13,708
cases and 95,282 controls.12

MR Analyses
Harmonization was undertaken to rule out strand

mismatches and to ensure alignment of SNP effect sizes.
Wald ratios were calculated for each clumped SNP in
the exposure GWAS by dividing the per-allele log-odds
ratio (or beta) of that variant in the PD GWAS data by
the log-odds ratio (or beta) of the same variant in the
exposure data.
First, the inverse-variance weighted (IVW) method

was implemented to examine the relationship between
the individual exposures and PD. In this method, the
Wald ratio for each SNP was weighted according to
its inverse variance and the effect estimates were meta-
analyzed using random effects. This approach is equiv-
alent to plotting SNP-exposure/SNP-outcome associa-
tions on scatter plot and fitting a regression line (IVW
regression), which is constrained to pass through the
origin. The slope of the linear regression represents the
pooled-effect estimate of the individual SNP Wald
ratios.13 For the purpose of demonstrating the use of
this new platform, we used a false discovery rate
(FDR)-adjusted P value of <0.05 to define exposures

of interest as showing potential evidence of a causal
effect. The IVW estimate is valid when the three core
assumptions that underpin MR are upheld (see
Supporting Information). However, simulation studies
show that up to 90% of MR analysis may be affected
by pleiotropy, which, in turn, may bias the IVW esti-
mate.14 Effects of pleiotropy for each analysis were
studied by first looking for evidence of heterogeneity
in the SNP Wald ratios and then undertaking a range
of sensitivity analyses, each with different underlying
assumptions.
Heterogeneity in the IVW estimates was tested using

Cochran’s Q test, quantified using the I2 statistic, and
displayed in forest plots. Heterogeneity in the IVW esti-
mate may indicate that alternative pathways exist from
some of the SNPs to the outcome (known as horizontal
pleiotropy), which can violate the third MR
assumption,15 but as long as overall heterogeneity is
balanced it does not necessarily bias the pooled IVW
estimate.16 After calculation of the IVW estimates, three
sensitivity analyses were applied to evaluate the core
assumptions of MR. These rely on instruments con-
taining multiple SNPs (in this case a minimum of
10 SNPs per exposure).17

MR-Egger was used, in which the regression line
fitted to the data is not constrained to pass through the
origin and a nonzero intercept indicates whether there
is a net horizontal pleiotropic effect which may bias the
IVW estimate.18 The weighted median (WM) MR
method gives consistent effect estimates under the
assumption that no more than 50% of the weight of
the MR effect estimate comes from invalid
(e.g., pleiotropic) SNPs, where weight is determined by
the strength of their association with the exposure.19

Finally, IVW radial analysis was performed as a com-
plementary method to account for SNPs acting as het-
erogeneous outliers and to determine the effect of
resulting bias on the IVW estimate.16

Exploring Directionality, Single SNP Effects,
and Reverse Causality

For effect estimate directionality, odds ratios were
scaled on a standard deviation increase in genetic risk
for the exposure from that population mean. We evalu-
ated the possibility that the overall estimate was driven
by a single SNP using leave-one-out (LOO) analyses for
each of the exposures associated with PD. Finally, we
tested for reverse causation by using SNPs tagging the
independent loci described in the latest PD GWAS as
exposure instrumental variables and exposure GWASes
as the outcomes. Note that this analysis measures the
causal effect of genetic liability toward PD on each of
the exposures included in the main analysis, which is
independent of PD actually occurring (in a case-control
setting such as this).
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RESULTS

The PD MR Research Portal is hosted at https://
pdgenetics.shinyapps.io/MRportal/. Here, we explore
some of the top results to assist users in understanding

how to interpret these data (see Fig. 1 for flowchart of
analysis).
Of the 401 exposures that survived the filtering pro-

cess, we found 12 exposures with potentially causal
effects on PD (i.e., IWV FDR-adjusted P values <0.05;

FIG. 1. Flowchart of analysis. The PD MR Research Portal is an interactive tool where the user can explore causal associations across multiple expo-
sures. (1) The inclusion criteria used include (i) GWASes with associated SNPs with P values <5.0 × 10–8; (ii) SNPs present in both the exposure and
outcomes (Chang and colleagues 2017 as the primary analysis, Nalls and colleagues 2019 with only clinically diagnosed cases, and Nalls and col-
leagues 2014) data sets or when not present their LD proxies (R2 value: > = 0.8); and (iii) independent SNPs (R2 < 0.001 with any other associated SNP
within 10 Mb), considered as the most stringent clumping threshold used when performing MR analyses. A total of 5,839 GWASes surpassed this
criteria and were tested against the three outcomes. (2) Then, we further expanded our filtering approach as follows: (iv) each GWAS had to include a
minimum of 10 associated SNPs in order to use MR sensitivity analyses designed to identify pleiotropy; (v) the number of cases had to be >250 for
each GWAS of a given binary exposure or > 250 individuals for each GWAS of a given continuous exposure; and (vi) the exposure and the outcome
data sets were drawn from European populations. A total of 401 exposures surpassed our filtering approach consisting of 175 published GWASes and
226 unpublished GWASes from the UKB (www.ukbiobank.ac.uk). [Color figure can be viewed at wileyonlinelibrary.com]
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see Table 1 and Supporting Information Fig. S1 for for-
est plots displaying individual SNP-level estimates and
pooled estimates). Of these exposures, nine were mea-
sures of adiposity that implied an inverse causal effect
of increase adiposity and a lowering of PD risk. Three
additional exposures met the FDR-adjusted P-value
threshold for a possible causal effect: time spent
watching television (inverse), tea drinking (positive),
and forced vital capacity (FVC; positive). In each case,
to explore the possibility that results were biased
because of the violation of core MR assumptions, we
looked for heterogeneity in the individual Wald ratios
and performed the three additional MR sensitivity ana-
lyses (see Table 2 for heterogeneity analyses and
Table 1 for sensitivity analyses).
The eight direct adiposity GWASes all contained

>200 SNPs and were highly correlated with one
another. The strongest causal effects were observed for
arm fat percentage, which was measured using tissue
impedance (https://biobank.ctsu.ox.ac.uk/crystal/field.
cgi?id=23119). A unit increase in arm fat percentage
(right and left) yielded a pooled odds ratio (OR) of
0.65 (95% confidence interval [CI]: 0.54–0.79; FDR
adjusted P = 0.005) and a pooled OR of 0.66 (95% CI:
0.54–0.79; FDR adjusted P = 0.01), respectively.
Although the individual Wald ratios showed significant
heterogeneity (arm fat percentage [right] Q = 314.8;
P = 7.01 × 10–6; arm fat percentage [left] Q = 399.38;
P = 3.93 × 10–11), the sensitivity analyses did not sug-
gest significant bias in the causal effect estimate from
the IVW analysis (see Table 2 for heterogeneity ana-
lyses and Table 1 for sensitivity analyses). In general,
all effect estimates for the adiposity exposures
supported a protective effect of increased adiposity on
risk of PD (ORs ranged between 0.62 and 0.77; see
Table 1).
Another adiposity exposure called “impedance of right

leg” surpassed the IVW FDR-adjusted P-value threshold.
As described above, impedance is the method by which
percentage fat is calculated, with higher impedance indic-
ative of higher fat percentage (https://biobank.ctsu.ox.ac.
uk/crystal/field.cgi?id=23107). Given the results for adi-
posity, we expected that a unit change in impedance
would result in a lowering of PD risk. In contrast to the
results for adiposity, the impedance exposure gave rise
to an IVW OR of 1.25 (95% CI: 1.10–1.42; FDR
adjusted P = 0.032). There was significant heterogeneity
in the individual Wald ratios (Q = 428.4; P = 7.25 × 10–7),
but the sensitivity analyses did not suggest bias in the
IVW effect estimate (see Table 2 for heterogeneity ana-
lyses and Table 1 for sensitivity analyses). We sought to
explain why the direction of effect for impedance was
different to that for percentage fat, when it was
expected that it should be the same. Genetic correla-
tions between impedance and percentage fat were run
(see Supporting Information Table S1), and in all cases
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the genetic association between the two exposures was
negative.
The “tea drinking” exposure was captured by an

instrument containing 35 SNPs. The IVW OR was 1.74
(95% CI: 1.26–2.39; FDR adjusted P = 0.025), and
there was no significant heterogeneity in the individual
Wald ratios (Q = 41.3; P = 0.181). The sensitivity ana-
lyses did not imply bias in the IVW estimate. Of note,
coffee intake was not causally associated with increased
risk of PD (OR, 1.37; P = 0.197), but similar to the tea
drinking exposure, the direction of effect was also not
consistent with the recognized negative observational
effect.
“Time spent watching television” was inversely

linked to PD risk in the IVW analysis (OR, 0.46; FDR
adjusted P = 0.013), suggesting that more time spent
watching television caused a lower risk of
PD. However, the MR Egger sensitivity analysis gave a
very different pooled effect estimate (OR, 0.85;
P = 0.870), suggesting that the IVW result may have
been biased by directional pleiotropy. The intercept
term can be used to test for net directional pleiotropy
(here it was –0.007; P = 0.542), but this test is generally
underpowered. The difference in the slope from the
IVW analysis and the MR Egger analysis is shown
graphically in Supporting Information Figure S2, and
suggests that, in the presence of directional pleiotropy,
the IVW effect for time spent watching television may
be overestimated. From the other scatter and forest
plots, it is clear that for the adiposity exposures, that
the slope (or magnitude of effect) the MR Egger regres-
sion is greater than the IVW slope (effect), which sug-
gests that in the presence of directional pleiotropy, the
IVW may be underestimated.
“Forced vital capacity” showed a positive causal

effect on PD risk that was similarly observed in the sen-
sitivity analyses (see Table 1). However, the effects
appeared to be largely driven by two SNPs known to
be pleiotropic for PD (see below).
The LOO analysis showed that none of the results

described for the 12 exposures were explained by a sin-
gle SNP in each of the instruments (Supporting Infor-
mation Table S2). The most precisely estimated Wald
ratio for most of the adiposity exposures (seven of
eight) came from a single SNP in the FTO gene
(rs11642015), but dropping this SNP from the analyses
did not affect the overall results. Similarly, the most
precisely estimated Wald ratio in the impedance instru-
ment was for a different SNP in the FTO gene
(rs62048402), but again dropping this SNP did not
affect the overall results. Importantly, and in support of
the observations relating to negative genetic correlation
between percentage fat and impedance described above,
the direction of the Wald ratio for the FTO SNP in adi-
posity exposures was negative and for impedance was
positive.
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For tea drinking, the two Wald ratios with the
greatest influence on the pooled effect estimates came
from SNPs rs4410790 and rs2472297 (located in the
AHR and CYP1A2 gene loci respectively), which are
known to be strongly associated with caffeine con-
sumption.20 Leaving either SNP out from the analysis
did not change the overall result, but the pooled effect
estimate weakened when rs4410790 (AHR) was
removed (the OR 1.74 changed to 1.61). In the forced
vital capacity analysis, SNPs rs1991556 and
rs13146142 were most precisely estimated and
appeared to influence the magnitude of the causal
effect. Closer examination revealed that rs1991556 is
in the MAPT locus and rs13146142 is in the LCORL
locus, and both are known to be associated with PD,
likely biasing the causal effect of FVC on PD.2,12

The reverse causation analyses revealed no clear evi-
dence that a liability toward PD was causally linked
with any of the 12 exposures, but this analysis was
restricted to only 18 of the 43 PD GWAS significant
hits and may have been underpowered (Supporting
Information Table S3).
Of interest, the next seven exposures with the stron-

gest associations in the IVW analysis, but not surpass-
ing the FDR-adjusted P-value threshold, were four
adiposity traits (all showing a negative causal effect),
current tobacco smoking (negative causal effect),
increased alcohol intake (negative causal effect), and
increased education (having a college or university
degree; positive causal effect). The FDR-adjusted
P values for each of these were < 0.1 and unadjusted
P values were all <0.004.
Finally, we used clinically diagnosed cases (and con-

trols) from the 2019 PD GWAS dataset as the outcome
(Supporting Information Table S4). Given the smaller
sample size, none of the MR analyses surpassed an
FDR-adjusted P value, but the top hit was a marker of
adiposity (hip circumference). When an even earlier
iteration of the PD GWAS was used (~13.5k cases and
~95k controls),12 there were 11 exposures that sur-
passed the FDR-adjusted P-value threshold and all
11 were related to adiposity (Supporting Information
Table S5).

DISCUSSION

We envisage the PD MR Research Portal being a
valuable and evolving resource for the global research
community, which will be updated as new data emerge.
It should be used to provide evidence to support, and,
over time, evidence against, causality when undertaking
observational studies or pursuing interventions aimed
at reducing the risk of PD. Clearly, there are too many
associations presented in the portal to explore each one
in detail. So, for the purpose of demonstrating the tool,

we undertook a data-driven approach to identify those
exposures with the strongest causal signals.
We have previously reported an inverse causal associ-

ation between body mass index (BMI) and risk of PD—

a genetically estimated 5 kg/m2 higher BMI was associ-
ated with a reduced risk of PD (IVW OR = 0.82).21

Here, we found further evidence to support an inverse
relationship between increased adiposity and PD, given
that eight of the top 12 exposures were measures of
adiposity. These exposures were objectively and quanti-
tatively ascertained, and each GWAS identified >200
SNPs that were associated with increased adiposity.
The results of the IVW analyses and all sensitivity ana-
lyses were broadly consistent. Impedance (the ninth adi-
posity exposure in the analysis) gave rise to a causal
effect opposite to that of increasing the other adiposity
exposures, which was initially unexpected. The differ-
ence in the direction of effect may be because the equa-
tion that links percentage fat and impedance requires
adjustment for height and weight, which would not
have been done routinely in the impedance GWAS.22

Of note, although BMI was not one of the top
12 exposures, the causal effect of BMI on PD was also
negative in this analysis (OR, 0.81; P = 0.037), using
the same BMI instrument that we have previously pub-
lished on.21,23 In that earlier analysis, we included sim-
ulations that indicated that the protective effect was
unlikely to be explained by survival bias (i.e., people
with higher BMI dying of other diseases before they
would usually be diagnosed with PD). The relationship
between BMI and adiposity with risk of PD clearly war-
rants further study, especially given uncertainty in the
role of BMI arising from traditional observational
studies.21,24

We found no evidence to support a protective effect
of coffee and tea drinking, and instead unexpectedly
found some evidence that tea drinking may increase the
risk of PD. Observational study associations between
caffeine-containing drinks (both coffee and tea) have
consistently suggested a negative association with PD,
and caffeine has been explored as a potentially thera-
peutic option for PD.4,25,26 Our results should not be
considered in isolation given a large body of observa-
tional evidence, which has been amassed from well-
conducted prospective studies using detailed dietary
questionnaires and long durations of follow-up.
Clearly, using a genetic instrument to capture a behav-
ior reported by a question in the UKB survey may be
flawed compared to the traditional approaches outlined
above. However, the current findings perhaps provide
some indirect support for the notion that negative asso-
ciations between caffeine consumption and PD may be
driven by reverse causation rather than a true protective
effect, and this warrants further study.
In contrast to tea drinking, there was some evidence

to support a true protective effect of smoking, which
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fell below the threshold to be discussed as a top result.
The remaining two exposures (time spent watching tele-
vision and forced vital capacity) that appeared to be
causally linked to PD should be regarded with caution.
Television watching failed in one of the sensitivity ana-
lyses and the effect of forced vital capacity appeared to
be driven, in part, by two recognized PD SNPs, render-
ing these two results potentially invalid.
Alongside a standard method used to pool ratio esti-

mates from individual SNPs (the IVW method), we also
demonstrated the use of three sensitivity analyses that
provide more valid estimates when core instrumental
variable assumptions have been violated (namely the
MR-Egger, WM, and radial methods).16,19 These
methods will allow researchers to further appraise the
validity of the instruments presented and whether IVW
estimates may be biased. In the current version of the
portal, we have provided the opportunity of undertak-
ing analyses with three different PD outcome data sets.
There was little qualitative difference in the “top MR
hits” across the three iterations of the PD outcome
data, particularly when comparing the larger data sets.
The portal also contains a huge number of exposures
that have been curated by MR Base. However, as
highlighted in this report and in a warning message in
the portal, we advise caution with the interpretation of
results for exposures that do not surpass considered fil-
tering criteria (for our criteria, this was 5,438 of 5,839
or 93% of exposures). These included GWASes for
which the case numbers were small and the number of
variants in the exposure instruments was too few to
permit the use of the sensitivity analyses.

Limitations
The general limitations of MR have been covered

extensively elsewhere,9 but include issues of statistical
power (large sample sizes are required for these ana-
lyses), selection bias (which may arise through popula-
tion stratification and is mitigated here by using only
European ancestry GWASes), survival bias (particularly
with age-related outcomes such as PD, which we have
discussed above), overlapping control groups (which
may bias effect estimates, but have been avoided here),
and violation in underlying MR assumptions (which
are tested by a range of sensitivity analyses). In most
instances, the variation in a given exposure that is
explained by genome-wide significant GWAS signals is
small (i.e., 0.5–8%), meaning that sample sizes often
need to be extremely large to detect causal effects using
this design. The resulting P values that arise from MR
hypothesis tests are often not small and, in the various
sensitivity analyses, often border on or exceed nominal
statistical significance. Given the approach, traditional
methods of adjusting for multiple comparisons
(i.e., Bonferroni or FDR correction) render many

potentially causal associations obsolete and limit the
conclusions that one can draw. In general, we recom-
mend using this tool to confirm or add to evidence to
associations identified in observational studies or
toward a particular intervention. It is generally rec-
ommended that emphasis should be placed on the con-
fidence intervals and consistency of point estimates
across the IVW estimate and the sensitivity analyses,
rather than just the P values per se. In addition, we rec-
ommend the calculation of F-statistics for determining
instrument strength and post-hoc power calculations,
particularly in the instance of null results.2,27 This is
particularly important when making claims of no evi-
dence to support a causal association (such as in some
of the reverse causation analyses presented in this arti-
cle). These additions, and others, are planned for future
versions of the portal.
For all analyses presented here, the outcome is “risk

of PD” because the outcome data come from a GWAS
of PD cases versus controls. In order to make causal
inferences about the effect of various exposures on dis-
ease progression, one would need to have an outcome
GWAS of PD progression. As mentioned in the Mate-
rials and Methods, an important source of bias in MR
studies can occur when there is overlap in the control
groups in the exposure and outcome data. For this rea-
son, all UKB data were removed from the outcome PD
GWAS summary statistics.
In summary, we present a new portal for use by the

research community that will help assess causality
where observational associations exist and prioritize
(or deprioritize) interventions aimed at reducing
risk of PD.
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