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Abstract: New particles beyond the Standard Model might be produced with a very high

boost, for instance if they result from the decay of a heavier particle. If the former decay

hadronically, then their signature is a single massive fat jet which is difficult to separate

from QCD backgrounds. Jet substructure and machine learning techniques allow for the

discrimination of many specific boosted objects from QCD, but the scope of possibilities is

very large, and a suite of dedicated taggers may not be able to cover every possibility — in

addition to making experimental searches cumbersome. In this paper we describe a generic

model-independent tagger that is able to discriminate a wide variety of hadronic boosted

objects from QCD jets using N -subjettiness variables, with a significance improvement

varying between 2 and 8. This is in addition to any improvement that might come from a

cut on jet mass. Such a tagger can be used in model-independent searches for new physics

yielding fat jets. We also show how such a tagger can be applied to signatures over a wide

range of jet masses without sculpting the background distributions, allowing to search for

new physics as bumps on jet mass distributions.
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1 Introduction

Jet tagging algorithms have become an essential tool to explore the high energy frontier

at the Large Hadron Collider (LHC). New physics processes are expected to involve the

production of highly-boosted top quarks, W/Z, and Higgs bosons, which in their hadronic

decay give rise to a ‘fat jet’ J where the decay products are highly collimated. In order to

distinguish such jets from the background jets resulting from quarks and gluons, generically

denoted as ‘QCD jets’, several jet substructure analysis techniques have been developed [1–

13]. These are extensively used in searches for W ′ → tb [14, 15], tt̄ resonances [16], diboson

resonances [17–20], vector-like quarks [21, 22], dark matter produced in association with

gauge bosons [23, 24] and new light bosons [25].

Experimental analyses carried out by the ATLAS and CMS collaborations use dedi-

cated taggers in addition to the jet mass, to search for beyond the Standard Model (BSM)

scenarios that can give rise to boosted top quarks, W/Z, or Higgs bosons. For example,

shape variables such as the N -subjettiness ratio τ
(1)
21 [7] and the energy correlation function

D
(β=1)
2 [11] are very effective in distinguishing between QCD jets and two-pronged decays

from W/Z, and the performance can be further improved by using a more complete set

of jet substructure variables and a multivariate analysis [13]. As another example, the

subjettiness ratio τ
(1)
32 is used to identify jets from top quark decays. However, the inher-

ent drawback in this approach is that, while these dedicated taggers are efficient in the
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discrimination of top quarks and W/Z hadronic decays from QCD jets, they may not be

able to identify fat jets arising from the decay of BSM boosted particles.

New particles near the electroweak scale may exist and evade direct detection, for

example, if their couplings to quarks and gauge bosons are small. They can still be produced

in the decay of heavier particles and may have dominant decays into hadronic final states.

Examples of such cases are neutral (pseudo-)scalars in models with left-right symmetry [26]

and warped extra dimensional models with more than 2 branes [27, 28] (see also refs. [29,

30]). An explicit example of the limitations of dedicated jet taggers has been given in

ref. [31], by considering a new ‘stealth boson’ S with a mass in the 100 GeV range and

undergoing a cascade decay S → AA → bb̄bb̄ mediated by a lighter particle A. When S

is boosted, so that the four b quarks merge into a single jet, the τ
(1)
21 and D

(β=1)
2 variables

used to tag massive SM bosons would ‘see’ the resulting four-pronged fat jet as a QCD

jet. Consequently, new physics searches involving boosted hadronically-decaying W or

Z bosons, e.g. diboson resonance searches, can be relatively blind to the analogous new

physics processes (diboson-like resonances) involving one or two S particles of a mass

around MW,Z

It is highly desirable that ATLAS and CMS searches are not restricted to a few sim-

ple benchmark models, but rather cover as many new physics signatures as possible. A

broader scope for LHC searches becomes of the utmost importance given the absence of any

convincing hint of new physics beyond the SM, as we still do not know how new physics

may manifest at collider experiments. With that purpose, a generic ‘anti-QCD’ tagger

that distinguishes QCD jets not only from W/Z hadronic decays, but also from generic

BSM boosted objects, would be a useful tool. In this paper we address this problem and

provide a proof of concept that this kind of tool can be developed (see also ref. [32] which

pursues related ideas). With this goal, we perform a multivariate analysis using a neural

network (NN) that is trained to discriminate QCD jets from fat jets with two-, three- and

four-pronged structure, arising from the decay of relatively light boosted particles. Af-

ter describing our framework in section 2, we perform a simple analysis in section 3, to

demonstrate the discrimination power for several examples of fat jets from boosted new

particles against QCD jets. A comparison between the performance of generic and ded-

icated taggers is given in section 4. The decorrelation between the background rejection

with tagging based on jet substructure and the jet mass requires a slightly more sophisti-

cated analysis, which is presented in section 5. Our results are discussed in section 6. Some

appendices are devoted to additional details of our analysis. In appendix A we study the

dependence of the results on the number of input variables for the NNs. In appendices B

and C we discuss how the results change when we modify the signal flavour composition,

and the quark/gluon background composition, respectively. The dependence of the results

on the NN architecture is explored in appendix D. In appendix E we examine the issue

of whether the taggers only learn jet shapes or they also learn about different signal and

background kinematics. A related issue is the dependence of the results on the specific

model for hadronisation and showering; this is addressed in appendix F, where we compare

the results using two Monte Carlo simulation codes. Finally, in appendix G we study for

completeness the signals of light coloured boosted objects.
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2 Framework

Following ref. [13], we characterise the jet substructure by a set of generalised N -subjet-

tiness [10] variables

τ
(β)
N =

1

pT J

∑
i

pT i min
{

∆Rβ1i,∆R
β
2i, . . . ,∆R

β
Ni

}
, (2.1)

with i labelling the particles in the jet, pT i their transverse momenta, ∆RKi their lego-

plot distance to the axis K = 1, . . . , N and pT J the jet transverse momentum. As in

ref. [13], in the computation of these variables we use the axes defined by exclusive kT
algorithm [33, 34] with standard E-scheme recombination [35]. Ref. [13] proposed the

following basis of observables,{
τ
(1/2)
1 , τ

(1)
1 , τ

(2)
1 , . . . , τ

(1/2)
M−2 , τ

(1)
M−2, τ

(2)
M−2, τ

(1)
M−1, τ

(2)
M−1

}
, (2.2)

motivated by the requirement to be able to fully reconstruct the (3M − 4)-dimensional

phase space for a decay into M particles. They found that the discriminating power for

Z-jets versus gluon and quark jets was saturated by considering up to 4-body phase space.

Because we are interested also in higher pronged decays we explore a larger 17-dimensional

basis with M = 7. This specific choice is motivated in appendix A. It is likely that a

smaller, more carefully selected basis of substructure variables could be used with little

degradation in discrimination power, but in this work we do not attempt to optimise this.

We remark that, equivalently, a set of energy correlation functions [11] ECF(N, β) could

also be used, but the calculations are much more computationally-demanding when one

considers higher N , as is required for the identification of multi-pronged boosted jets.

The values of these variables are used as the input to a NN trained to discriminate

quark/gluon jets from multi-pronged decays of boosted colour singlet particles. Quark and

gluon jets are obtained by generating the parton-level processes pp → Zg and pp → Zq,

with Z → νν, using MadGraph5 [36]. Event generation is followed by hadronisation

and parton showering with Pythia 8 [37]. The detector response is simulated with

Delphes 3.4 [38] using the CMS detector card. Jets are reconstructed using the anti-

kT algorithm [39] with radius R = 0.8, as implemented in FastJet 3.2 [40]. For the signal

we use fat jets resulting from the decay of neutral, colour-singlet particles into two, three

and four quarks. For these, we consider the six processes

pp→ Z ′ → S Z(→ νν) , S → uū and S → bb̄,

pp→ Z ′ → F Z(→ νν)ν , F → udd and F → ubb,

pp→ Z ′ → S Z(→ νν) , S → uūuū and S → bb̄bb̄, (2.3)

with S a scalar and F a fermion. These processes are generated with Protos [41] and, in

order to remain as model-agnostic as possible, we implement decays of S and F with a flat

matrix element, so that the decay weight of the different kinematical configurations only

corresponds to the two-, three- or four-body phase space. We will refer to these Monte

Carlo data as Model Independent (MI) data in the following. Our choice is motivated
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by the need to sample phase space without model prejudice. For example, any specific

choice of four-body decay topology, such as 1→ 1 + 1→ 2 + 2, combined with a choice of

masses for the intermediate particles, would only sample a part of four-body phase space,

which varies with those mass choices. Therefore, training on specific cascade modes would

introduce a model bias. Our choice to train on both light and b quarks is also with the same

aim, of making the tagger as model-agnostic as possible. Variations on this choice, either

removing final states with b quarks, or adding signal processes with gluons (e.g. S → gg)

in the training, are discussed in appendix B.

Several new physics signal processes are generated to test whether the NN correctly

identifies jets resulting from boosted multi-pronged particle decays, including some for

which it is not trained. We use seven such processes,

pp→W ′ →W Z(→ νν) , W → qq̄′ ,

pp→ Z ′ → H0
1 Z(→ νν) , H0

1 → gg ,

pp→ Z ′ → H0
1 Z(→ νν) , H0

1 → A0A0 ,

pp→ Z ′ → H0
1 Z(→ νν) , H0

1 → tt̄ ,

pp→ Z ′ → H0
1 Z(→ νν) , H0

1 →W+W− ,

pp→ Z ′ → H0
1 Z(→ νν) , H0

1 → ZA0 ,

pp→W ′ → H± Z(→ νν) , H± → tb , (2.4)

with H0
1 a heavy scalar and A0 a pseudo-scalar, H± a charged scalar and Z ′, W ′ additional

vector bosons. All these new particles arise, for example, in left-right models. We consider

hadronic decays of the top quarks, W/Z bosons and pseudo-scalars resulting from the H0
1

and H± decays.1 We note that for W and Z hadronic decays the jet shapes are very

similar, so for brevity we only consider the former. These processes are generated with

MadGraph5 implementing the relevant interactions [26] in FeynRules [43], and using

the universal Feynrules output [44] to interface with the event generator.

We treat the search for boosted BSM objects as a binary classification problem, with

quark and gluon jets labelled as background and jets originating from boosted massive

objects labelled as signal. Our NN classifiers are multilayer perceptrons, a simple fully

connected architecture that is well suited for use with unstructured input data. These are

implemented using Keras [45] with a TensorFlow backend [46]. We choose an architecture

with two hidden layers, the first containing 512 nodes and the second containing 32 nodes,

all using rectifier activation functions. (See appendix D for a few examples using alternative

NN architectures.) The output layer is a single node with sigmoid activation. The input

consists of the 17 τ
(β)
N variables, with some preprocessing applied. We use two kinds of

preprocessing which we discuss in more detail in section 3 and section 5 respectively. The

first is a simple standardisation of the inputs, which we find significantly improves the

training time, stability over variations of the initial seed, and discrimination performance

1When the W and Z bosons decay leptonically, the resulting jets have energetic leptons that can be

further used for background rejection [42]. Therefore, we restrict ourselves to the most difficult scenario of

fully hadronic decays.
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of the trained tagger for simple architectures like the ones used here. The second approach

relies on a more complicated transformation of the input data and allows a tagger to be

sensitive to signals over a broad range of masses, while decorrelating background rejection

from jet mass and pT .

Except where otherwise specified, we train on equal numbers of background and signal

events. Background is divided equally between quark and gluon jets (see appendix C for

variations in this choice). Signal training data is divided equally between the six categories

of MI events described in eqs. (2.3). 20% of this signal and background data is set aside

for validation. We choose binary cross entropy as the loss function to be optimised, using

the Root Mean Square Propagation (RMSProp) algorithm with a learning rate of 10−3.

Additionally, if the loss as measured on validation data does not improve over three epochs,

the learning rate is reduced by a factor of 10. Training is stopped after 100 epochs, or

when validation loss has not improved in five epochs. Typically, we find that training

in this manner takes several tens of epochs. We train five different copies of each NN

in the same way but with different starting seeds, and pick the one which has the best

performance as measured by area under the receiver operating characteristic (ROC) curve

with validation data. All machine learning calculations were performed with an Intel(R)

Core(TM) i5-6300U CPU @ 2.40 GHz with 8 GB of RAM. Our NNs take 1-10 minutes

to train.

3 A first approach to anti-QCD tagging

For this first simple analysis each of the N -subjettiness variables in eq. (2.1) is standardised

by a linear transformation,

τ
(β)
N → τ

std(β)
N = a

(β)
N + b

(β)
N τ

(β)
N , (3.1)

with a
(β)
N and b

(β)
N constant, so that the resulting τ

std(β)
N distribution for the QCD back-

ground (composed of equal parts of quark and gluon jets) has zero mean and unit standard

deviation. We consider three benchmarks for the jet transverse momentum pT J and mass

mJ , and for each one we also select the Z ′ resonance mass in eqs. (2.3) to yield MI data with

a pT J distribution close to the threshold and similar to the background (see appendix E).

One tagger is built in each case,

(a) Tagger ‘std500’: pT J > 500 GeV, mJ ∈ [65− 105] GeV, MZ′ = 1100 GeV.

(b) Tagger ‘std1000’: pT J > 1000 GeV, mJ ∈ [65− 105] GeV, MZ′ = 2200 GeV.

(c) Tagger ‘std1500’: pT J > 1500 GeV, mJ ∈ [350− 450] GeV, MZ′ = 3300 GeV.

In the first two cases, the MI data used for training is generated with boosted particle

masses MS,F = 80 GeV, and in the last case with masses of 400 GeV. The jet mass mJ

and transverse momentum pT J used here are of the ungroomed jet, for reasons that we

specify at the end of this section. The number of events used for the training is collected

in table 1.
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std500 std1000 std1500

Training sample size 284,016 249,206 144,884

Validation sample size 71,004 62,302 36,220

Table 1. Training sample sizes for std taggers.

The std500 and std1000 taggers are used to investigate the discrimination power for

jets coming from BSM boosted particles with a mass around the W mass. We use two

regimes of pT J (pT > 500 GeV and pT > 1000 GeV) to check the differences, and the

extent to which the results are specific — or not — to a kinematical region. For each

benchmark, a NN is trained and validated with MI and QCD data, and is then tested on

a number of boosted jet topologies,2

W → qq̄′ ,

H0
1 → gg , MH0

1
= 80 GeV ,

H0
1 → A0A0 → bb̄bb̄ , MH0

1
= 80 GeV , MA0 = 30 GeV ,

H0
1 → A0A0 → bb̄bb̄ , MH0

1
= 80 GeV , MA0 = 15 GeV ,

H0
1 → A0A0 → uūuū , MH0

1
= 80 GeV , MA0 = 30 GeV , (3.2)

setting the parent Z ′ resonance mass responsible for the processes in eq. (3.2) to 1100 GeV

and 2200 GeV for the pT > 500 GeV and pT > 1000 GeV test samples respectively (the

pT distributions of the QCD and signal jets generated in this way are very similar, see

appendix E). The third and fourth line in eq. (3.2) are two examples of the stealth boson S

in ref. [31]. The results for the ROC curves giving the signal efficiency versus background

rejection are presented in figure 1. To better illustrate the effect of the tagging on the

signal-to-background significance S/
√
B, we define significance improvement as the factor

multiplying the luminosity-dependent ratio S/
√
B due to the tagging, and indicate the

lines (in dashed gray) that correspond to a significance improvement of 1, 2, 4 and 8. For

comparison we also include the efficiency curve for the dedicate tagger τ
(1)
21 , applied to fat

jets from W bosons. Several comments are in order.

1. The taggers perform better for jets with light quarks, either from W bosons or from

stealth bosons decaying to four u quarks.

2. For W bosons the anti-QCD taggers represent a significant improvement over the

dedicated tagger τ
(1)
21 , as also observed in ref. [13].

3. The discriminating power of the std1000 tagger, when applied to all jet topologies,

outperforms the discriminating power of τ
(1)
21 when applied to W bosons.

4. Although the discrimination power of the taggers is worse for the two stealth boson

examples giving four b quarks, it is far better than the one that would be achieved

2We consider here colour-singlet new particles, as they are the most likely ones that could be mainly

seen from the decay of a heavier one, and not from their direct production. An example of the application

of the tagger to a coloured particle is presented in appendix G.
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Figure 1. Signal efficiency versus background rejection for the anti-QCD std500 (left) and std1000

(right) taggers. Significance improvement due to shape-variable tagging is indicated by the dashed

grey contours. Also indicated is the efficiency curve for τ
(1)
21 for hadronic W decay (dashed blue).

with τ
(1)
21 , which is specifically designed for W bosons and actually may reduce the

S/
√
B ratio for this type of signals [31].

5. The taggers have a good discrimination for fat jets from H0
1 → gg, for which they

are not trained.

The std1500 tagger is used to test the performance at higher jet masses and also the ability

to distinguish more complex boosted signatures,

H0
1 →WW → qq̄′qq̄′ , MH0

1
= 400 GeV ,

H0
1 → gg , MH0

1
= 400 GeV ,

H0
1 → tt̄→WbWb̄,→ qq̄′bqq̄′b̄ , MH0

1
= 400 GeV ,

H± → tb̄/t̄b→Wbb̄→ qq̄′bb̄ , MH± = 400 GeV ,

H0
1 → A0A0 → bb̄bb̄ , MH0

1
= 400 GeV , MA0 = 80 GeV ,

H0
1 → ZA0 → qq̄bb̄ , MH0

1
= 400 GeV , MA0 = 160 GeV , (3.3)

using a Z ′/W ′ resonance mass of 3300 GeV. These topologies include a 1→ 1 + 1→ 1 + 3

asymmetric cascade decay (tb), a 1→ 1+1→ 2+2 cascade decay with different intermediate

particle masses (ZA0) and even six-pronged fat jets (tt̄) for which the tagger is not trained.

The ROC curves are presented in figure 2. As in the previous cases, the discrimination

power is best for jets with light quarks, with a significance improvement up to a factor of 8

for WW . In addition, it is very good for the rest of signals except for a resonance decaying

to gg, for which it is not trained. The performance for tt̄ is remarkable, especially if one

considers that the tagger is trained with up to four-pronged MI data, and a merged tt̄ jet

has six quarks.

The significance improvement from the tagging of shape variables adds to that gained

from a jet mass cut. For illustration, we show in table 2 the significance improvement for
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Figure 2. Signal efficiency versus background rejection for the std1500 anti-QCD tagger. Signifi-

cance improvement due to shape-variable tagging is indicated by the dashed grey contours.

the signals that is achieved with the cuts mJ ∈ [65, 105] GeV for pT J > 500 (1000) GeV,

as in the std500 (std1000) tagger, and mJ ∈ [350, 450] GeV for pT J > 1500 GeV, as

in the std1500 tagger. The full significance improvement that can be achieved by the

combination of jet mass and shape variables is obtained by multiplying the numbers in

table 2 using the ungroomed jet mass with those that can be read from figures 1 and 2.

The improvement is modest at low mJ because the ungroomed jet mass distribution for

QCD events is large there.

Finally, let us comment about our choice for ungroomed jet masses and pT J . There

are several methods [47–50] to improve signal mass resolution by removing soft particles

within the jet. This also tends to improve signal and background separation by shift-

ing the mass spectrum of QCD jets to lower values. However, the results depend on the

choice of algorithm and set of parameters, and choices that are optimised for boosted SM

particles are often not satisfactory for complex and massive multi-pronged jet topologies

such as those considered in this paper. To make this more precise, we compare the sig-

nificance improvement coming from jet mass cut in table 2, between ungroomed jets and

jets trimmed [49] with the parameters Rsub = 0.2, fcut = 0.05, commonly used for massive

vector bosons W/Z. This algorithm and parameter choice work well for W bosons, as can

be observed from table 2, but is too aggressive for many of the multi-pronged boosted

objects for which this groomer can signficantly broaden and shift the signal peak. For

example, for stealth bosons with pT J > 500 GeV (row 3, top panel in table 2) this groomer

degrades the mass resolution. For all the complex signals from H0
1 and H± decays with

masses M = 400 GeV (lower panel, table 2), this degradation is more pronounced. Jet

pruning [48] and soft drop [50] have a similar performance [31]. In any case, the selection

of a grooming algorithm and parameter choice that works well for generic BSM objects is

another interesting and unrelated issue, which deserves a dedicated study.
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pT J > 500 GeV pT J > 1000 GeV

ungroomed trimmed ungroomed trimmed

W 1.54 2.13 1.52 2.24

H0
1 → gg 1.48 1.67 1.50 1.96

H0
1 → A0A0 (30) [b] 1.48 1.46 1.46 1.83

H0
1 → A0A0 (15) [b] 1.43 1.65 1.44 1.86

H0
1 → A0A0 (30) [u] 1.51 1.64 1.54 1.92

pT J > 1500 GeV

ungroomed trimmed

H0
1 →WW 2.64 2.55

H0
1 → gg 2.74 2.49

H0
1 → tt̄ 2.43 1.33

H± → tb̄/t̄b 2.37 1.99

H0
1 → A0A0 (80) [b] 2.53 2.34

H0
1 → ZA0 (160) 2.39 2.07

Table 2. Enhancement of the significance S/
√
B due to the jet mass cuts mJ ∈ [65, 105] GeV (top),

mJ ∈ [350, 450] GeV (bottom), with mJ either the ungroomed or trimmed jet mass.

4 Dedicated versus generic taggers

It is naturally expected that a NN jet tagger trained on a specific signal will achieve a

better discrimination for that signal than a generic tagger, but it will also have a worse

performance than the generic tagger on other types of signals. In order to quantify these

statements, we have trained two dedicated taggers:

(a) Tagger ‘std1000 W’: pT J > 1000 GeV, mJ ∈ [65−105] GeV, MZ′ = 2200 GeV, trained

on W → qq̄′ and the QCD background.

(b) Tagger ‘std1500 WW’: pT J > 1500 GeV, mJ ∈ [350 − 450] GeV, MZ′ = 3300 GeV,

trained on H0
1 →WW → qq̄′qq̄′, with MH0

1
= 400 GeV and the QCD background.

We show our results in figure 3. On the left panel we can observe that the dedi-

cated tagger std1000 W has a slightly better discrimination power than the generic tagger

std1000 for the W bosons it is trained on, but somewhat worse for four-pronged stealth

bosons. We find that for final states with W bosons, the performance loss by using a

generic tagger is rather small, and is more than compensated by the broader sensitivity to

new physics signals. On the right panel it is apparent that the dedicated tagger is signif-

icantly better than the generic tagger for the H0
1 → WW signal it is trained on, but it is

considerably worse for other signals. Firstly, even though this tagger is specifically trained

on a four-pronged signal (WW ), its performance on a different four-pronged signal (ZA0)
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Figure 3. Performance of dedicated taggers (dashed lines) compared to generic taggers (solid

lines). Left: a dedicated W -tagger is tested on three signatures at the W -mass. Right: a dedicated

400 GeV WW -tagger is tested on three 400 GeV signatures.
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Figure 4. Comparison of generic taggers (solid) to selected τ -ratios (dashed, dotted), for several

boosted signals. Left: the generic tagger std1000 is compared to τ
(1)
21 (dashed) for W and two

stealth boson signatures, and also with τ
(1)
42 (dotted) for the latter. Right: the generic tagger

std1500 is compared to τ
(1)
43 for WW and ZA, and τ

(1)
63 for tt̄.

is even worse than with the generic multi-pronged tagger. This fact illustrates that there

can be large differences between signals even if they happen to share the same number

of prongs, and justifies our choice to train on MI data rather than specific signal models.

Secondly, the sensitivity to tt̄ is completely degraded by using the dedicated WW tagger,

which actually deteriorates rather than enhances sensitivity to this signal.

Generic multivariate taggers are also found to discriminate the various signals from the

QCD background better than the simple τ -ratios that have commonly been used in new

physics searches. In the left panel of figure 4 we compare the performance of the std1000

generic tagger (solid lines) to those of τ
(1)
MN = τ

(1)
M /τ

(1)
N ratios (dashed) which have been

selected for each signal. For W -discrimination we compare with τ
(1)
21 and for four-pronged
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stealth boson signatures we also use τ
(1)
42 , which has also been used for boosted hadronic

H → WW ∗ discrimination by the CMS collaboration [53]. In all the three cases, the

performance of the generic tagger is much better, but this is especially apparent for stealth

bosons, in agreement with previous results [31]. In the right panel we do the comparison

for more massive jets using the std1500 tagger and various selected τ -ratios. Only for a

tt̄ signal, for which this tagger is not trained, the performances are comparable.

Altogether, the comparison of generic taggers with dedicated ones and simple τ -ratios

is very illustrative. For jet masses around the weak boson masses, there is a remarkable

improvement for non-W signals with respect to a W -dedicated tagger, keeping nearly the

same performance for W bosons, and in all cases, quite an improvement over τ
(1)
MN . For

heavier jet masses, the advantage of a generic tagger is still the broader sensitivity, though

the performance of a dedicated tagger can be significantly better.

5 Mass decorrelation

It is desirable, although not compulsory, that a tagger based on jet substructure is decor-

related from the jet mass, in the sense that the tagging efficiency for the background has

little dependence on mJ . When this happens, the jet tagging does not shape the mJ dis-

tribution of the SM background [52]. This allows for data-driven background estimation

using jet mass sidebands, and for the application of bump-hunting strategies on a jet mass

distribution. The NNs described in the previous sections, when combined with a choice of

threshold on the NN output, act as cuts in the 17-dimensional τ
(β)
N space. The distribution

of QCD events in τ
(β)
N -space varies with both jet mass and pT , which is illustrated in the

first two columns of figure 5. The left column shows a few two-dimensional distributions

(there are 136 in total, for the 17 variables considered) in the original τ
(β)
N variables, for

three intervals of mJ . The middle column corresponds to the same distributions, but for

the rescaled variables τ
std(β)
N which were used as NN inputs in the previous section. The

efficiency of the tagger (with fixed threshold) on QCD events will necessarily vary with jet

mass and pT , and will result in a sculpting of jet mass distributions in ways that depend

sensitively on the mass and pT of the jets on which it was trained.

In order to build a tagger with an efficiency on QCD jets not varyingly strongly with

jet mass or pT , there are three obvious possibilities. The simplest one is to apply to the

NN output the approach utilised already in [25]. In this case, the threshold on the NN

output would be adjusted with jet mass and pT , in such a way that background rejection

is fixed. This approach has many advantages (first and foremost being simplicity), but

a tagger used in this way that is optimised for signal discrimination at one mass will

tend to have suboptimal performance for signals at different masses as the shapes of the

input distributions vary, and the tagger might sculpt signal shapes and shift signal mass

peaks. It might be required that a suite of taggers are trained, optimised at different mass

points. This problem could be ameliorated if a basis of variables is found which are only

weakly correlated with jet mass and pT . A second approach, to be adopted in this section,

involves preprocessing the τ
(β)
N variables in such a way that the QCD distributions of the

transformed input variables no longer exhibit strong dependence on mass or pT . This will

introduce greater complexity in an experimental analysis which grows with the number of
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Figure 5. N-subjettiness variables for QCD, plotted in three mass windows and with three different

levels of processing. Green: 35 GeV < mJ < 40 GeV, blue: 80 GeV < mJ < 85 GeV, orange:

265 GeV < mJ < 275 GeV. Left column: bare τ variables. Middle column: standardised τ

variables, as described in section 3. Right column: standardised also along principal component

axes. Each row is a different pair of τ variables.

input variables, but will have the advantage that a single tagger can be used with good

signal discrimination over a wide range of masses and pT . A third possibility would be to

build a tagger that can learn to vary the region of τ
(β)
N -space to cut as a function of jet

mass. This was achieved in ref. [51] using an adversarial strategy designed to maintain

mass decorrelation on QCD jets. This would leave open the question, however, of how

to sample signal masses in training, in such a way that the tagger is not biased towards

particular signal masses.

Let us consider a set of τ
std(β)
N calculated using QCD jets selected within a certain jet

mass and pT bin. Arranging the 17 τ
std(β)
N variables into a 17-dimensional vector ~τ std, we
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define the following transformation for the τ
std(β)
N (in that bin)

~τ std → ~τ PCA = R−1SR~τ std (5.1)

with R and S being 17 by 17 square matrices. R is a rotation matrix that diagonalises the

symmetric covariance matrix calculated from this τ -set. This matrix induces a rotation

into a basis aligned with the principal component axes of the dataset. In this basis, all

pairs of variables are linearly uncorrelated. This is equivalent to choosing a basis whose

axes lie along the principal axes of a rigid body formed out of this distribution. We

then standardise the data along these axes, so that along each principal axis the standard

deviation of the data is 1. This is the action of the diagonal matrix S. We then invert the

principal axis rotation with the action of R−1.3 In practice, data should be binned according

to jet mass and pT , and a transformation matrix Mi = R−1i SiRi must be determined for

each bin i. Alternatively, one could define the PCA rescaling as a continuous function

of pT and mJ which could be fitted to binned data. In the third column of figure 5 we

plot τPCA distributions for QCD. Firstly, it can be seen that much of the variation in

these distributions with jet mass has been eliminated by the transformation. Second, thin

directions have been stretched and fat directions have been squashed, as can be seen most

clearly in the third row. This fact can aid in the training of the NN.

Therefore, the PCA tagger involves two different tasks:

1. To set up a transformation map between τ and τPCA, which requires a binning of

MC data for the QCD background in mJ and pT J . This map is used both when

training the NN (with signal and background events) and when applying the tagger

to test data.

2. To train the NN using τPCA variables in some interval of mJ and pT J , which might

only be a subset of the entire domain of the transformation map.

In order to test whether a tagger trained on input data with this preprocessing will

sculpt QCD jet mass distributions, we generate as test data 1,081,834 QCD jets (evenly

split between gluon and quark jets) with pT > 1000 GeV, and with no mass cut. The jet

mass distribution for this data is given by the solid black lines in figure 6. For the PCA

preprocessing of the τ
(β)
N variables, we bin the data by jet mass with variable bin sizes (as

indicated by the bin widths in figure 6), in order to have similar numbers of events in each

bin, and define a PCA transformation for each bin calculated from this data in that bin.

An additional sample of QCD jets, generated in the same manner as above, is set aside

for use in training two new taggers. These taggers are trained on the τPCA values of QCD

and MI data selected only in a mass window, indicated by the shaded boxes in figure 6,

to investigate if they will sculpt the QCD jet mass distribution around those windows and

3The reason for applying R−1 is as follows. R has a permutation ambiguity, and it is natural to choose

this so that the eigenvectors are ordered by the corresponding eigenvalues of the covariance matrix. However,

if there is an eigenvalue crossing between two adjacent bins, this will cause a discontinuity in the rescaling

matrix SR which would spoil mass decorrelation. The action of R−1 removes the permutation ambiguity

from the ~τ PCA.

– 13 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
3

PCA1000 80 PCA1000 200 PCA500 80

Training sample size 108,958 71,466 126,372

Validation sample size 27,238 17,866 31,592

Table 3. Training sample sizes for PCA taggers.

if they will still be sensitive to new physics signals outside of those windows. The cuts

implemented on the training data and the parameters for the generation of the MI training

data for these taggers are

(a) Tagger ‘PCA1000 80’: pT J > 1000 GeV, mJ ∈ [65 − 105] GeV, MZ′ = 2200 GeV,

MS = 80 GeV.

(b) Tagger ‘PCA1000 200’: pT J > 1000 GeV, mJ ∈ [170 − 230] GeV, MZ′ = 2200 GeV,

MS = 200 GeV.

The sizes of the event samples used for training these taggers are given in the first two

columns of table 3. The solid coloured lines in the first two rows of figure 6 indicate the

jet mass distribution for the QCD test sample after selection by the taggers at varying

thresholds. We find that there are no new spurious features introduced by application of

either tagger.

In order to test the sensitivity of these taggers to boosted resonance signals at different

masses we simulate the following two signals,

H0
1 → A0A0 → bb̄bb̄ , MH0

1
= 100 GeV , MA0 = 40 GeV ,

H0
1 →WW → qq̄′qq̄′ , MH0

1
= 200 GeV , (5.2)

resulting from the decay of a 2.2 TeV resonance. The dashed lines in figure 6 indicate the

results when these signals are injected into the QCD test sample, re-weighted to correspond

to 1.2% and 0.7% of the size of the QCD sample, respectively. We see that both taggers

not only succeed in not sculpting the QCD jet mass distribution, but they are also sensitive

to BSM boosted objects outside of the mass range in which they were trained.

We also wish to test the effect of using a tagger in a pT region in which it was not

trained. We therefore generate QCD data in the range 500 GeV < pT < 1000 GeV, binned

in jet mass in the same way as the pT > 1000 GeV data above. The τ distributions of this

data determine the PCA transformations for data falling into these bins. We also generate

MI data on which to train the following tagger,

(c) Tagger ‘PCA500 80’: pT J > 500 GeV, mJ ∈ [65− 105] GeV, MZ′ = 1100 GeV, MS =

80 GeV.

The size of the event samples used for the training is given in the third column of table 3.

This tagger is then applied to the data described above in the pT > 1000 GeV bins. The

results are shown in the third row of figure 6. We find that the performance of the tagger

is not greatly sensitive to the pT and mass spectrum of jets used to train the tagger, so

long as the data has been properly standardised along the principal component axes.

– 14 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
3

101

102

103

104
PCA1000 80

pT > 1000 GeV

101

102

103

104

N
u

m
b

er
of

ev
en

ts
/

G
eV PCA1000 200

50 100 150 200 250 300

Jet Mass / GeV

101

102

103

104
PCA500 80

Figure 6. Jet mass distributions for pT > 1000 GeV, selected with three taggers at various

thresholds. Top: PCA1000 80 tagger. Middle: PCA1000 200 tagger. Bottom: PCA500 tagger. The

solid lines correspond to the QCD jet background, and the dashed lines to the background plus

injected signals. The shaded boxes show the jet mass intervals for which each tagger is trained.

6 Discussion

The generic anti-QCD taggers we have developed in this work provide an alternative to

usual taggers in LHC searches for new physics in the boosted regime, with the main advan-

tage being their broad sensitivity to multi-pronged boosted signatures. This feature is of

great interest as we do not yet know how new physics might manifest at the LHC. Indeed,

new relatively light particles beyond the SM might exist and be produced with very high

boosts, for instance if they result from the decay of a heavier particle. If these particles

decay hadronically then their signature is a single massive fat jet which might be difficult

to separate from QCD backgrounds with existing tools.

A generic anti-QCD tagger entails a compromise between a high rejection of the QCD

background and a broad sensitivity to a variety of signals. As we have shown, a dedicated

tagger has a better performance for the specific signal it is trained on, but it can be rather

blind to other types of signals. In particular,

1. For jet masses around the weak boson masses, there is a remarkable improvement for

BSM boosted signals (exemplified by stealth bosons) with respect to a W -dedicated

tagger analogous to the one in ref. [13], while keeping nearly the same performance

for W bosons. Both for W and stealth bosons, the generic tagger provides quite an

improvement over the simple ratio τ
(1)
21 often used in experimental analyses.
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2. For heavier jet masses of a few hundreds of GeV, the advantage of a generic tagger

is still the sensitivity to several multi-pronged signals, though the performance of a

dedicated tagger can be significantly better.

In either case, final states involving several b quarks are harder to distinguish from the

QCD background than those involving light quarks, but b tagging could also be used as an

additional independent tool. Overall, we observe that searches for new resonances would

greatly benefit from a generic tagger for hadronic boosted objects, perhaps complement-

ing dedicated ones. (Dedicated taggers also have their place in specific analyses where

one is not interested in other possible signatures, for example in tt̄ measurements in the

boosted regime.)

A simple application of a generic tagger of this kind would be an extension of the exist-

ing searches for diboson resonances, which search for a resonance bump in a di-jet invariant

mass distribution. The use of a generic tagger would allow to search for resonances decay-

ing to a boosted SM boson and a boosted BSM boson. In this case, leptonic decays could

be selected for the SM boson and the recoiling fat jet might be selected in a series of broad

mass windows after selection by a generic tagger trained in each window. Alternatively,

hadronic decays could also be selected for the SM boson, using standard tagging criteria.

One recent example is given by ref. [54], which looks for XH decays of a heavy resonance,

selecting H → bb̄ for the Higgs boson and a two-pronged decay X → qq̄ for X, with a set

of overlapping mass windows for the new particle X and a standard tagger D
(β=1)
2 . In this

case, a generic tagger could be used to provide sensitivity not only to X → qq̄ but to other

topologies as well. A search could also be carried out for di-BSM bosons, requiring both

bosons to have similar mass, and doing a scan over a series of broad mass windows.

Going beyond the discrimination of various signals against the QCD background, it

may also be desirable to have a fixed background rejection as a function of the jet mass,

for example to allow for data-driven background estimation using jet mass sidebands, and

for the application of bump-hunting strategies on a jet mass distribution. This is a solved

problem, and can be achieved by applying existing decorrelation techniques to the NN

output. However, doing this in such a way as to also maintain good sensitivity to signals

over a broad range of masses with a single tagger and without signal-mass bias is a more

difficult problem. We have demonstrated that an approach based on standardising along the

principal component axes gives satisfactory results in simulation, which is implemented by

building a ‘transformation map’ in the two-dimensional plane of mJ and pT J , using Monte

Carlo simulation of the QCD background. This map relates the N -subjettiness variables

τ
(β)
N to the PCA-scaled ones τ

PCA(β)
N , which are the inputs to the tagger. This relation

varies with the jet mass and pT and, in practice, it is enough to consider suitable bins in

mJ and pT J . This can be considered as an extension of the approach which has already

been taken in a CMS search for light resonances decaying to quark pairs [25] to decorrelate

the jet substructure tagger from the jet mass. In our case, the tagger is trained at some

given mJ and pT J intervals, and it can be subsequently applied outside these intervals by

using the map of transformations between τ
(β)
N and τ

PCA(β)
N for other values of mJ and

pT J . As figure 6 demonstrates, this procedure is quite effective. And, in particular, one
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does not need to train the tagger with various new physics signals at different jet masses

and transverse momenta; only the QCD background prediction needs to be known in order

to determine the transformations from τ
(β)
N to τ

PCA(β)
N at that jet mass and transverse

jet momentum.

Although the number of variables (17×17 for the correlation matrix) used here for the

transformation map of PCA-scaled taggers seems a formidable task for an experimental

analysis, let us point out that a simpler approach will suffice. First, a five-body tagger

nearly has the same performance, as seen in appendix A, which reduces the number of

variables to 11× 11. Second, some optimisation by reducing the number of variables may

be performed too, without sacrificing the performance. Indeed, in this work our goal

has been to provide a proof of concept that anti-QCD taggers can be built, leaving the

optimisation for future analyses.

Either in its simplest versions (as in section 3) with standardised input, or in its

mass-decorrelated versions (as in section 5) with PCA scaling, a generic anti-QCD tagger

is a novel tool, whose implementation seems feasible, and which could greatly benefit

experimental analyses. The final goal is quite ambitious: to enlarge the scope of new

physics searches with SM boosted objects, so as to be sensitive to new physics yielding

BSM boosted objects. This will constitute a leap forward in new physics searches at the

energy frontier, and is well worth the effort.
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A How much information is in a multi-pronged jet?

The number of N -subjettiness observables that provide additional information on the sub-

structure of multi-pronged jets is found empirically, as in ref. [13], by training different

taggers with M = 2, 3, . . . in eq. (2.1) and comparing the ROC lines obtained for the sig-

nals of interest. In that reference, for two-pronged jets it was found that the results do not

improve beyond M = 4. Because we also consider three- and four-pronged jets, we have

found it is enough to consider M = 7. For illustration, we show in figure 7 the performance

of different versions of the std1000 tagger taking M = 2, . . . , 7, applied to a stealth boson

signal H0
1 → A0A0 → bb̄bb̄ with MH0

1
= 80 GeV, MA0 = 30 GeV. For a given M , the

input to the NN for the corresponding tagger is a 3M − 4 dimensional vector, as defined

in ref. [13]. The ROC curves indicate that the performance saturates before M = 7.
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Figure 7. Signal efficiency versus background rejection for different versions of the std1000 tagger

taking M = 2, . . . , 7 in eq. (2.1).

B Effect of signal composition on training

The shape of a jet from a heavy quark such as a b quark is in general different from that of

gluons and light quarks. We have included light and b quark jets in our MI data earlier, in

an attempt to capture all possible shapes, but for simplicity we have not included gluons.

In this appendix we show how the results are affected if (i) one doesn’t include b quarks in

the training data, or (ii) if one also includes gluons. For each case, we train taggers with

the MI data set modified — for case (i) we use the subset of processes in eq. (2.3) that do

not involve b quark in final state, while for case (ii) we use all the processes in eq. (2.3) and

in addition we add the process H0
1 → gg. In all cases, we continue to use equal numbers of

events for each of the three or seven categories of training signal data. We perform these

studies in two kinematic regimes corresponding to those used for the std1000 and std1500

taggers in section 3:

(a) pT J > 1000 GeV, mJ ∈ [65− 105] GeV, MZ′ = 2200 GeV, and

(b) pT J > 1500 GeV, mJ ∈ [350− 450] GeV, MZ′ = 3300 GeV,

We test the performance of the taggers on the signal processes

H0
1 → gg , MH0

1
= 80 (400) GeV ,

H0
1 → A0A0 → bb̄bb̄ , MH0

1
= 80 (400) GeV , MA0 = 30 (160) GeV ,

H0
1 → A0A0 → uūuū , MH0

1
= 80 (400) GeV , MA0 = 30 (160) GeV . (B.1)

The masses indicated for H0
1 and A0 correspond to cases (a) and (b) respectively. The

results are shown in figure 8 (top panel for b quarks and bottom panel for gluons).

Focusing first on the case of inclusion of b quarks in the training data, we find that

for decays with only light (u) quarks in the final state inclusion of b quark MI data has no

effect on tagging performance. For other decays which include b quarks or gluons in the
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Figure 8. Top: effect of b quarks on training, on various test signals. Solid lines correspond to

standard choice of MI data for training, and dashed lines correspond to MI data without b quarks

in the final state for training. Bottom: effect of gluons on training, on various test signals. Solid

lines correspond to standard choice of MI data for training while dashed lines correspond to MI

data as well as gluons in the final state for training.

final state, taggers trained with b quarks do marginally better. Secondly, for the case when

(gg)-jets are added to the training data, we find that including this process marginally

improves the discrimination power for (gg)-jets in both kinematic regimes studied. For

other processes that have b or u quarks in the final state, the inclusion of these jets in

training has a negligible effect on the performance.

C Background composition: effect of quark to gluon ratio

For simplicity, in the training of our taggers and their testing on Monte Carlo data, we

have assumed that the background is composed of equal parts of quarks and gluons. This

is obviously not the case in a real analysis, in which the relative ratio will depend not only

on the final state considered, but also on the energies involved. In this appendix we explore

how sensitive the results are to the precise ratio of quarks and gluons.
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Figure 9. Effect of QCD quark to gluon ratio in training and test data. The performance of

the different taggers (solid, dashed and dotted lines) is shown for several signals (in rows) and for

different choices of quark to gluon ratios in the background test data (in columns).

We focus on pT J > 1000 GeV, mJ ∈ [65, 105], as considered for the std1000 tagger,

and train three taggers on the MI data in eq. (2.3) and the QCD background, with three

ratios of quarks and gluons: nq = 10ng, nq = ng, nq = 0.1ng, corresponding to the

solid, dashed and dotted lines in figure 9. We test these taggers for several signals, with

a background composed of the same three ratios of quarks and gluons: nq = 10ng (left

column), nq = ng (middle column), nq = 0.1ng (right column). The signal processes
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considered are

H0
1 → gg , MH0

1
= 80 GeV ,

H0
1 → A0A0 → uūuū , MH0

1
= 80 GeV , MA0 = 30 GeV ,

H0
1 → A0A0 → bb̄bb̄ , MH0

1
= 80 GeV , MA0 = 30 GeV . (C.1)

The main conclusion of this comparison is that the results actually do not depend much on

the precise background composition, as seen from a glance at figure 9. In some cases the

relative performance of the three taggers is as expected: for example, for the second process

in (C.1) above, the tagger is (marginally) better when the background composition is the

same in training and testing. But this is not the case for the third process in (C.1). For

example, for nq = 0.1ng, the tagger trained with the ‘inverse’ ratio nq = 10ng is slightly

better. This suggests that changing the background composition also affects the way in

which the tagger learns what is signal and what is background.

D NN architecture

The choice of architecture in any NN problem merits its own study. Throughout this

paper we have used an architecture that gives robust results against variations in its depth

(number of nodes in a hidden layer) and breadth (number of hidden layers). In this

appendix we show that the results are very insensitive to variations on this choice. Apart

from the architecture considered for our results in sections 3–5 (two fully connected hidden

units with 512 nodes and 32 nodes respectively, henceforth referred as 512-32), we consider

here two more architectures — 1024-32 and 512-512-32, in a self explanatory notation.

We consider the mass and pT J ranges used in the definition of the std1000 and std1500

taggers, and train two taggers on the MI processes in eqs. (2.3), with Z ′ masses chosen as in

section 3, and the QCD background. We test the first tagger on stealth bosons with masses

MH0
1

= 80 GeV, MA0 = 30 GeV, and the second tagger with masses MH0
1

= 400 GeV,

MA0 = 160 GeV. The results are shown in figure 10. We see practically no difference in

the performance as the NN architecture is varied.

E Is the tagger learning shape or kinematics?

Although it has been shown that the taggers can efficiently discriminate various multi-

pronged signals from the QCD background, a question remains whether this discrimination

is solely based on jet shapes or there is also some effect from the different kinematics of

the signals and the background. For example, we have already mentioned that the heavy

Z ′ and W ′ resonance masses have been chosen in such a way that the pT J distributions

are similar to the background, but still there are some differences, which can be seen in

figure 11 (left), between the distributions of the QCD background and two sample signals,

W and stealth bosons. The same can be said about the jet mass, shown in the right panel:

while the background distribution is rather flat, the signals concentrate around and slightly

above the input resonance mass.
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Figure 10. Performance of the taggers for different network architectures.
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Figure 11. Transverse momentum (left) and jet mass (right) of the QCD background and two of

the signals used to test the std1000 tagger.

We have tested the effect of the different pT J and mJ dependence by considering the

discrimination of these two signals with reweighted distributions, using the std1000 tagger.

(The reweighting of the signals makes them have the same two-dimensional (pT J ,mJ) signal

distributions as the background.) With this purpose, a two-dimensional binning in pT J
and mJ is applied, with 25 GeV bins in pT J and 5 GeV bins in mJ . The ranges of these

variables are restricted to pT J ∈ [1000, 1250] GeV and mJ ∈ [75, 105] GeV, in order to

avoid the appearance of a few events with too large weights that might bias the results.

As can be seen from figure 11, still within those intervals there is significant variation of

these two variables.

The comparison between the ROC curves for the signals with the original and re-

weighted distributions, in both cases restricted to the mentioned pT J and mJ intervals, is

presented in figure 12. The left panel shows the results for W bosons, also including the

curves for τ
(1)
21 , and the right panel shows the results for stealth bosons. In both cases we

observe that the differences between the results with the original and re-weighted distri-

butions are very small. Also, the ROC curves without re-weighting (but with restricted

– 22 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
3

0.0 0.2 0.4 0.6 0.8 1.0

Signal efficiency

100

101

102

103

104
Q

C
D

re
je

ct
io

n
ra

te

std1000

1

2

4

8

pT ∈ [1000, 1250] GeV, m ∈ [75, 105] GeV

W

W reweighted

W (τ21)

W (τ21) reweighted

0.0 0.2 0.4 0.6 0.8 1.0

Signal efficiency

100

101

102

103

104

Q
C

D
re

je
ct

io
n

ra
te

std1000

1

2

4

8

pT ∈ [1000, 1250] GeV, m ∈ [75, 105] GeV

AA(30)[b]

AA(30)[b] reweighted

Figure 12. Comparison between signal efficiency versus background rejection for W boson (left)

and stealth boson (right) signals, with their original and with re-weighted pT J and mJ distributions.
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Figure 13. Signal efficiency versus background rejection for a variant of the std1000 tagger which

does not use τ
(2)
1 . The performance is identical to that of the std1000 tagger in figure 1.

pT J and mJ range) can be compared to those in figure 1 (right), to see that they are very

similar. Overall, it is found that the influence of kinematics in the tagger learning, if any,

is quite small.

Besides, we note that the variable τ
(2)
1 which is an input to our taggers is closely related

to (mJ/pT )2 [55]. From the discussions in section 5, it is our objective to avoid as much

as possible jet mass and pT being directly used as discriminating variables by the tagger.

One may wonder whether this variable should have been excluded from our set in eq. (2.2).

In order to test its influence on our results, we train a variant of the std1000 tagger on

all 7-body variables except τ
(2)
1 and compare its performance to the std1000 tagger in

figure 13; we find no effect on the tagger performance. This can be understood because

the leading dependence τ
(2)
1 ∼ (mJ/pT )2 is the same for all signals and backgrounds at a

given mass and pT J . Therefore, the standardisation of the inputs erases this dependence

to a very large extent.
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Figure 14. Comparison of results for anti-QCD taggers using Herwig and Pythia simulated showers,

for W bosons (left) and stealth bosons (right).

F Pythia versus Herwig

A serious challenge in the application of machine learning to jet physics in a real collider

experiment is the question of whether the distributions of substructure variables are cor-

rectly modelled by simulation, and whether the performance of the tagger is robust under

mismodelling. Designing approaches to bypass mismodelling fragility is an active area of

research [56–58], but beyond the scope of this work. In this appendix, we restrict ourselves

to investigating the variation of tagging performance when using data hadronised with

Pythia (as used for our results in sections 3–5) and Herwig.

We focus on pT J > 1000 GeV, mJ ∈ [65, 105], as used in the std1000 tagger, for

brevity. Two new taggers are trained on all processes in eqs. (2.3) and the background; one

of them is trained on data using Pythia and the other one with data using Herwig. We test

the performance of the two taggers on W bosons and stealth bosons with MH0
1

= 80 GeV,

MA0 = 30 GeV. This test data (both signal and background) is generated twice, once with

Pythia and once with Herwig. We show in figure 14 the results for in-sample tests (e.g. a

Pythia trained tagger tested on Pythia data) as well as out of sample tests (e.g. a Pythia

trained tagger tested on Herwig data).

We find that in general the performance is better on Pythia generated data than on

Herwig generated data, though for the most part this is largely independent of which

data the tagger was trained on. The exception is that the tagger trained on Pythia data

has significantly worse performance on the Herwig data for stealth bosons, compared to

the tagger trained on Herwig data. The differences between the Herwig and Pythia curves

appear to arise mostly from the different modeling of the higher-order τ
(β)
N , as suggested by

figure 15 (left). This figure shows the ROC curves corresponding to τ
(1)
1 and τ

(1)
4 alone for

the stealth boson signal, using Pythia and Herwig data. It is clearly seen that the differences

due to showering are much more pronounced for τ
(1)
4 . This argument is confirmed by the

study of the discriminating power of the τ
(1)
21 ratio in figure 15 (right). Both for W and

stealth bosons the discriminating power is similar using Pythia and Herwig data.
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Figure 15. Comparison of results for selected τ
(β)
N (left) and the τ

(1)
21 ratio (right) using Herwig

(H) and Pythia (P) simulated showers.

Because it is of the utmost importance that the performance of the tagger on QCD

data be very well understood, it might be best to train such a tagger with real QCD data,

and especially, test its performance directly on data in suitable control regions. Significant

uncertainties on signal efficiencies may remain, but these are less important than having

an accurate prediction for the background.

G Boosted coloured jets

In this paper we have focused on jets resulting from the boosted decays of colour-singlet

new particles, which might easily be missed in searches looking for their direct production

due to a small production cross section. Light coloured particles have large production cross

sections, and searches for signatures resulting from their direct pair production via QCD

are typically highly constraining. However, in ref. [59] it was noted that for some decays

of such particles, for example a vector-like quark (VLQ) decaying via a non-renormalisable

operator into three light quarks, there are no meaningful LHC constraints from direct

searches for these particles with masses between 100 GeV and 1000 GeV. For masses as

low as a few hundred GeV, passing the LHC thresholds for jet-based searches may require

these VLQs to be produced with high momentum, resulting in collimation of their decay

products into a fat jet. Therefore, and also for completeness, it is of interest to see if the

generic tagger which we have trained only on colour-singlet jets is sensitive also to these

coloured jets. Further, this is the only three-pronged signal which we test our tagger on.

We simulate the pair production of VLQs T T̄ with T → ccc̄ using an UFO file gen-

erously provided by the authors of ref. [59], setting the T mass to 400 GeV. We impose

a generation level cut HT > 3 TeV, where HT is the scalar sum of pT of the quark decay

products. The detector level selection is made in the same way as described for the sig-

nals used to test the tagger std1500 in section 3, selecting the hardest jet. In figure 16,

we show the performance of the generic tagger on this signal (solid line), as well as the

performance of a dedicated tagger trained to discriminate T -jets from QCD-jets. We find
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Figure 16. Signal efficiency versus QCD rejection for jets resulting from decays of 400 GeV vector-

like quarks T , decaying as T → ccc̄. Solid: generic std1500 tagger; dashed: dedicated tagger.

that the generic tagger has a moderate performance for this signal, with approximately

10% QCD efficiency at 50% signal efficiency. One might wonder if the sensitivity to such

signals is lost by training the generic tagger only on colour-singlet jets. However, the ded-

icated tagger has only marginally better performance, which suggests that the reason for

the moderate performance of the generic tagger is that this type of signal is intrinsically

hard to distinguish from QCD jets.

An outline of a possible search strategy for this signature could be as follows. Select

back-to-back dijet events passing some high pT threshold. Require the jet mass of the two

jets to be close to each other, and after applying a tagger at some threshold, look for a

bump in the average jet mass distribution of the two jets. This could either be a cut-and-

count analysis in relatively wide jet mass bins, or as a bump hunting shape analysis on a

smooth background distribution.
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