
RESEARCH ARTICLE

Visual evoked potentials in offspring born to

mothers with overweight, obesity and

gestational diabetes

Francisco J. Torres-Espı́nola1,2, Staffan K. Berglund1,3, Salomé Garcı́a4, Miguel Pérez-
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Abstract

Background

Overweight, obesity, and gestational diabetes (GD) during pregnancy may negatively affect

neurodevelopment in the offspring. However, the mechanisms are unclear and objective

measures of neurodevelopment in infancy are scarce. We hypothesized that these maternal

metabolic pathologies impair cortical visual evoked potentials (cVEPs), a proxy for visual

and neuronal maturity.

Design

The PREOBE study included 331 pregnant women stratified into four groups; normal weight

(controls), overweight, obesity, and GD (the latter including mothers with normal weight,

overweight and obesity). In a subsample of the offspring at 3 months (n = 157) and at 18

months (n = 136), we assessed the latencies and amplitudes of the P100 wave from cVEPs

and calculated visual acuity.

Results

At 3 months of age, visual acuity was significantly poorer in offspring born to GD mothers. At

18 months of age, there were no differences in visual acuity but infants born to GD mothers

had significantly longer latencies of cVEPs when measured at 15’, and 30’ of arc. The group

differences at 30’ remained significant after confounder adjustment (mean [SD] 121.0 [16.0]

vs. 112.6 [7.6] ms in controls, p = 0.007) and the most prolonged latencies were observed in
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offspring to GD mothers with concurrent overweight (128.9 [26.9] ms, p = 0.002) and obesity

(118.5 [5.1] ms, p = 0.020).

Conclusions

Infants born to mothers with GD, particularly those with concurrent overweight or obesity,

have prolonged latencies of visual evoked potentials at 18 months of age, suggesting that

this maternal metabolic profile have a long lasting, non-optimal, effect on infants´ brain

development.

Introduction

The rates of overweigh and obesity have experienced exceptional growth and become an

increasing public health problem. Following this epidemic, numerous studies are currently

exploring how these metabolic pathologies affect human health.[1] One important research

field is the studies exploring the effect of overweight and obesity on pregnant women and their

offspring. It is known, that increased maternal weight before pregnancy, and rapid weight gain

during pregnancy, both constitute risk factors for development of gestational diabetes (GD)

and other gestational complications in the mother. [2] Furthermore, these conditions have

also been associated with impaired growth and neurodevelopment of the offspring, even at

long term. Early programmed adverse effects on body composition, metabolic, and mental

performance have been suggested.[3–12] However, these associations have been difficult to

confirm or reproduce, since precise and objective methodologies for neurodevelopment

assessment during infancy are scarce.

Measurement of cortical visual evoked potentials (cVEPs) is a neurophysiological technique

that can provide objective information about the function of the visual system in infants and

children too young to communicate visual symptoms or cooperate in the standard assessments

of visual function.[13] cVEPs have been suggested as a promising measure for the neurological

evaluation of visual function, and also a proxy for general neurodevelopment. The latencies of

the cVEP are closely correlated to the process of neuronal myelination that occurs during the

first 1–2 years of postnatal life.[14–16] Some studies have reported that infants born to moth-

ers with diabetes mellitus type I and type II have impaired latencies and amplitudes of cVEPs.

[17, 18] However, we found no previous studies exploring, the separated effect of overweight,

obesity and GD in patient without pre-gestational diabetes.

The objective of this study was to explore the cVEPs in offspring born to mothers with over-

weight, obesity and GD, and compare to children born to healthy normal weight controls. We

hypothesized that these maternal metabolic alterations would negatively affect the cVEPs in

the offspring at 3 and 18 month of age.

Methods

Study design and participants

The PREOBE study is a prospective mother-child cohort study, conducted between 2007 and

2012 (registered in www.ClinicalTrials.gov) with the purpose of studying the effects on preg-

nancies and offspring of PRE-gestational OBEsity, overweight and GD. The design of the

study has been published elsewhere.[19] In brief, 331 pregnant women with singleton preg-

nancies and age between 18 and 45 years were included between 12 to 20 weeks of pregnancy

(occasionally until 34 weeks). The mothers were stratified into four different groups based on
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their calculated pre-gestational body max index (BMI) and GD condition: Healthy normal

weight group (18.5 kg/m2�BMI<25 kg/m2; n = 132), overweight group (25 kg/m2�BMI<30

kg/m2; n = 56), obese group (BMI�30 kg/m2; n = 64), and GD group (BMI�18.5 kg/m2;

n = 79). The group allocation was performed at 34 weeks of gestation where all mothers with

GD diagnosed at any stage of pregnancy were allocated to the GD-group, independently of

BMI. Consequently, after such re-distribution, the GD included 23 with overweight, 24 with

obesity, and 32 with normal weight.

The exclusion criteria were: simultaneous participation in any other research study or any

of the following diseases; pre-gestational diabetes, hypertension or preeclampsia, fetal intra-

uterine growth retardation, maternal infection during pregnancy, hypo/hyperthyroidism,

hepatic diseases and renal disease), and vegan diet. In the present analyses, another 2 cases

were excluded after delivery due to congenital disorder in the offspring (Fig 1).

Ethical statement

The research was approved by the Bioethical Committees for Clinical Research of the Clinical

University Hospital San Cecilio and the Mother-Infant University Hospital of Granada. An

Fig 1. Study profile. 1 Of the 331 included mothers, 21 dropped out of the study before delivery and another 73 before the first neurodevelopmental follow up

at 3 months of age. 2 Two mother-child pairs were excluded after delivery due to congenital disorders. 3 Seventeen mother–child pairs at 3 months and six at 6

months did not show up at the assessments but remained in the study for later visits, those are described as “not attending”.

https://doi.org/10.1371/journal.pone.0203754.g001
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ethical approval was also obtained by the Research Bioethical Committee of the University of

Granada. Written informed consent was obtained from all mothers and/or tutors at their off-

spring follow-up study entry.

Data collection

As a part of the original study design, information regarding maternal age, pre-gestational

weight, maternal educational level, parity, smoking habits during pregnancy, marital status

and maternal intelligence quotient (IQ) were obtained at inclusion and all mothers were

assessed at 24, at 34 weeks, and at delivery, including measures of iron status and glucose. We

also registered information regarding the newborn child, including gestational age, sex,

anthropometrics and cord blood laboratory status.[19]

In the present neurodevelopmental follow up study, the mother–infant pairs were called

back for follow-up visits at 3, 6 and 18 months of age including cVEPs (3 and 18 months),

neuropsychological testing (6 and 18 months), anthropometric measures and health question-

naires. The three preterm babies were assessed at corrected age.

Cortical visual evoked potentials

At 3 months of age we were able to evaluate cVEPs in 157 infants (Fig 1). Apart from the two

excluded cases (congenital disorder), 73 participants dropped out after delivery, 17 infants

remained in the study but their parents decided not to participate the follow up at 3 months,

and 61 cases came to the evaluation but the cVEP measure failed because the child could not

be calmed. In one of the cases at 3 months, we only registered latencies and in another one

only the amplitudes, resulting in 156 cases analyzed for each outcome. Moreover, at 18 months

of age, another 38 had dropped out and successful measures of cVEP were performed in 136 of

the 197 infants assessed (S1 Table). The reasons for drop out during the follow up period

between delivery and 18 months was not monitored in detail and most drop outs did not

declare their reasons.

Infants’ cVEPs were recorded in a partially darkened room (mean background light 0.15 ft-

Lamberts; dark adaptation for 20 minutes) in awake condition (without sedation). Two caps of

two different sizes (38–42 cm at six months and 42–46 cm at eighteen months) with electrodes

placed according to the 10–20 system were used (Electro-Cap International including: Fz as ref-

erence, O1, Oz and O2 as actives [Oz on inion, O1 3cm on the left and O2 3 cm on the right]

and Cz as ground electrode). [20] cVEPs were obtained in a quiet room under controlled con-

ditions while the participants were aware, alert and placed at the same height as the stimulation

screen. If the baby did not keep attention, then the test stopped and only began when attention

came back. The cVEPs in infants were registered using a Schwarzer topas EMG System,

(NATUS, California, USA). The visual stimulus was a reversal pattern of black and white

checkerboard (contrast 100%) generated on a CRT monitor. Stimulus were performed in a

shape of binocular frequencies at 2˚, 1˚, 30 ’, 15’ and 7½’. The average luminance was 39 kcd/

m2 and the investment rate was 2.1. Responses were amplified with filter from 1.5 Hz to 100

Hz. As outcome in the present paper we used the P100 wave latencies and amplitudes as sug-

gested by McCulloch and Skarf.[13] Visual acuity was calculated using linear regression

between amplitudes and visual angle (transformed to cycles per minutes).[21] Only cases with

a regression coefficient above 0.5 were included in the analyses.

Neurodevelopmental testing

At 6 and 18 months of age, infants’ neurodevelopment were assessed by using the Bayley Scales

of Infant Development, Third Edition (BSID-III). All infants were examined by the same
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trained psychologist (FJTE). The infant evaluation by BSID-III is performed across five

domains: cognitive skills, receptive language, expressive language, fine motor, and gross motor
development and a parental questionnaire to evaluate socioemotional development. [22]

Statistical method

All statistical analyses were performed using the SPSS statistical software package for Windows

(version 22.0; IBM SPSS Inc., Chicago, IL, USA). Continuous and normally distributed vari-

ables were displayed as mean and standard deviation (SD). Differences between the four

groups in cVEP were explored using unadjusted analysis of variance (ANOVA) as well as con-

founder adjusted analyses using multivariate analyses of covariance (ANCOVA). The con-

founder introduced in the models were gestational age at birth and sex, due to a significant

correlation to at least one cVEP outcome and maternal age and maternal education due to sig-

nificant group differences. The significance level was set to p<0.05. This study was originally

powered based on outcomes during pregnancy.[19]

Results

Table 1 shows the background and baseline characteristics of the mothers and their offspring

in all 157 infants evaluated at 3 months, including comparison of these characteristics between

groups. We observed significant differences between the study groups in maternal age and

there was a non-significant trend of higher educational levels in the control group and in the

overweight group compared to the other two. Three cases were born preterm, one born to an

obese, one to an overweight, and one born to diabetic mother. No severe complications such

as asphyxia were recorded in the analyzed infants.

The results of the cVEPs performed at 3 and 18 months, including a comparison between

the four PREOBE-groups are presented in Table 2. At 18 months of age, there were significant

group differences in the latencies of P100 at 1˚ (p = 0.033) and at 30’ of arc (p = 0.003). A simi-

lar trend was observed at 15’ (p = 0.053) and 7½’ of arc (p = 0.059). The post hoc analyses dem-

onstrated significantly prolonged latencies in children born to GD mothers compared to those

of normal weight mothers in the waves P100 at 30’ of arc (Bonferroni adjusted p-value for

infants born to GD vs. normal weight = 0.002) and P100 at 15’ of arc (Bonferroni adjusted p-

value = 0.042). In confounder adjusted analyses (Pb-value in Table 2), the overall group differ-

ences remained significant with regard to the latencies obtained at 30’ of arc (p-value for

ANOVA = 0.007) and the post hoc test for difference between GD-group and controls. Fur-

thermore, a similar significant group difference in the adjusted model was found regarding the

latencies of P100 at 7½’ of arc (p-value for ANCOVA = 0.044).

To further explore the differences observed in latencies of P100 at 30’ of arc at 18 months of

age between infants from the GD group and those from normal weight group, we stratified the

diabetic group based on the maternal pre-gestational BMI. Each subgroup of infants born to

GD mothers (normal weight, overweight and obese) was compared to the control group with

mean (SD) of 112.6 (7.6) ms. We found, in confounder adjusted analyses, the most prolonged

latencies in those babies born to overweight (128.9 (26.9) ms, p = 0.002 vs. controls) and obese

(118.5 (5.1) ms, p = 0.020) diabetic mothers, while the normal weight diabetic group did not

differ significantly (116.6 (6.1) ms, p = 0.140).

Visual acuity could only be assessed in a subsample of the study (Table 3). For those, there

was a significant group difference in visual acuity at 3 months of age (p = 0.014). The post hoc

test showed that the vision was significantly lower in infants born to GD mothers compared to

controls with a logMAR mean difference of 0.19 (95% CI: 0.07–0.31). At 18 months, there

were no differences in visual acuity.
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In secondary analyses we used linear regression to assess the relationship between dichoto-

mized cVEP measures (using a median [P50] or third quartile split [P75]), and the 3 main

scores of the Bayley III test at 18 months (language, motor function and cognitive function). All

analyses were adjusted for gestational age and infant sex. The regression models revealed sig-

nificant correlations to composite cognitive scores at 18 months: latencies of wave P100 at 30’

of arc above P75 measured in infants at 3 months of age, correlated significantly to lower cog-

nitive composite score at 18 months (adjusted, unstandardized regression coefficient R [95%

CI]: -4.5 [-9.00; -0.069], p = 0.047); and, at 18 months of life, amplitudes of wave P100 at 30’ of

arc above P50 correlated significantly to higher cognitive scores (adjusted, unstandardized

regression coefficient R [95% CI]: 3.915 [0.209; 7.620], p = 0.039). No correlations were

observed between cVEPs and motor or language scores.

Discussion

In this study, we explored the influence of being born to a mother with overweight, obesity or

GD during pregnancy on the brain development using cVEPs as a proxy. While there were no

Table 1. Baseline and background characteristics of the mother-child pairs who participated in the cVEPs follow up at 3 months of age (n = 157), including group

comparisons among the four PREOBE-groups.

Normal weight Overweight Obese Gestational Diabetes p

n = 51 n = 27 n = 30 n = 49

Maternal Glucose at 24 weeks (mg/dl) 80.64±19.16 91.54±16.03 88.08±17.13 101.31±27.83� 0.004

Maternal Glucose at 34 weeks (mg/dl) 86.21±20.41 89.65±21.28 91.93±17.27 95.01±23.93 0.278

Maternal Glucose at delivery (mg/dl) 80.09±20.04 91.50±24.37 95.85±34.06 98.24±34.23� 0.028

Maternal Ferritin at 24 weeks (ng/ml) 23.05±17.25 19.71±12.25 33.73±27.10 25.39±17.83 0.061

Maternal Ferritin at 34 weeks (ng/ml) 18.04±15.37 13.50±7.13 16.04±8.66 21.24±16.47 0.109

Maternal Ferritin at delivery (ng/ml) 27.56±16.12 26.28±17.55 17.05±6.92� 31.23±16.08 0.014

Maternal Age (y) 31±7 33±4 30.50±8 34±6� <0.001

Maternal educational level Primary/Secondary 44.9% 55.6% 73.3% 65.3% 0.058

University/Doctor 55.1% 44.4% 26.7% 34.7%

Marital Status Single/Separated 2% 0% 6.7% 0% 0.291

Married/Cohabitating 95.9% 100% 90% 100%

Others 2% 0% 3.3% 0%

Maternal IQ (points) 111±15 104±21 106±22 104±20 0.177

No of siblings 0 59.2% 59.3% 40.3% 55.1% 0.534

�1 40.8% 40.3% 56.7% 44.9%

Smoking no 83.7% 87% 96% 93% 0.335

yes 16.3% 13% 4% 7%

Birth weight (g) 3277±398 3353±482 3468±541 3278±407 0.253

Birth HC (cm) 34.61±1.39 34.6±1.21 34.50±1.64 34.63±1.35 0.987

Gestational Age at birth (wk) 40±1 39±3 40±6 39±5 0.569

Cord Blood Glucose (mg/dl) 68.77±20.90 64.00±19.42 70.16±26.40 73.61±20.85 0.468

Cord Blood Ferritin (ng/ml) 182.41±103.99 177.30±97.45 187.72±90.28 181.26±112.46 0.994

Sex Boy 46.9% 40.7% 60.7% 55.1% 0.416

Girl 53.1% 59.3% 39.3% 44.9%

Infant type of feeding Breast-fed 57.1% 53.8% 37.9% 42.6% 0.426

Infant formula 18.4% 19.2% 13.8% 19.1%

Mixed 24.5% 26.9% 48.3% 38.3%

Data are mean ± Standard Deviation and p-values for unadjusted overall group effect using ANOVA for means and Chi-square test for proportions.

�Values significantly different from the normal weight group in a Bonferroni adjusted post hoc test. HC: head circumference.

https://doi.org/10.1371/journal.pone.0203754.t001
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significant differences in latencies and amplitudes obtained in the offspring of non-diabetic

overweight or obese women compared to controls, children born to mothers with GD had sig-

nificantly poorer visual acuity at 3 months and prolonged latencies of cVEPs at 18 months of

age. The difference was most pronounced in the subgroups of gestational diabetic mothers

who were also overweight or obese, suggesting a negative interaction of these two risk factors.

In a secondary analysis we observed that short latencies at 3 months and high amplitudes at 18

Table 2. Amplitudes and latencies of infant’s P100 visual evoked potentials (cVEPs) at 3 and 18 months of age in children born to mothers with pre-pregnancy over-

weight, obesity or gestational diabetes compared to those born to healthy normal weight pregnant women (controls).

Normal Weight Overweight Obesity Gestational Diabetes pa pb

Latencies at 3 mo (ms) n = 51 n = 27 n = 30 n = 49

P100–2� of arc 115.01±13.94 112.57±8.52 117.66±12.85 117.81±13.71 0.316 0.648

P100–1� of arc 119.55±15.10 117.86±10.32 121.08±13.04 123.09±14.80 0.403 0.799

P100–30’ of arc 125.99±15.18 124.39±15.00 129.13±17.27 130.70±16.69 0.305 0.660

P100–15’ of arc 136.72±19.05 136.36±15.27 140.40±17.89 143.12±15.76 0.272 0.685

P100–7 ½’ of arc 147.70±21.18 145.91±13.43 147.75±16.26 154.67±15.63 0.481 0.811

Amplitudes at 3 mo (Hz)
P100–2� of arc 21.19±12.01 22.77±11.69 23.64±17.79 26.92±13.90 0.246 0.224

P100–1� of arc 21.95±11.16 21.66±10.02 21.58±15.29 24.94±13.88 0.554 0.511

P100–30’ of arc 18.14±9.34 18.15±8.74 16.53±11.32 21.09±11.56 0.254 0.326

P100–15’ of arc 15.16±8.98 15.56±7.06 14.50±8.65 15.63±8.09 0.958 0.834

P100–7 ½’ of arc 8.30±6.22 9.37±6.18 13.60±10.18 9.86±6.39 0.182 0.116

Latencies at 18 mo (ms) n = 47 n = 31 n = 22 n = 36

P100–2� of arc 106.24±5.76 105.80±7.65 108.08±13.96 109.77±11.26 0.316 0.340

P100–1� of arc 108.66±6.79 109.00±7.20 108.31±6.09 113.10±9.54 0.033 0.079

P100–30’ of arc 112.57±7.64 114.71±7.79 113.69±6.00 120.98±16.03� 0.003 0.007

P100–15’ of arc 119.17±9.11 120.51±13.27 121.67±9.11 126.28±12.82� 0.053 0.088

P100–7 ½’ of arc 127.09±9.52 132.68±10.98 126.91±11.70 132.37±5.27 0.059 0.044

Amplitudes at 18 mo (Hz)
P100–2� of arc 22.49±12.43 20.11±10.61 19.63±10.37 21.22±13.08 0.776 0.949

P100–1� of arc 24.56±12.62 21.78±12.53 22.70±13.43 23.49±15.31 0.838 0.892

P100–30’ of arc 21.77±10.60 19.90±12.80 18.24±11.16 20.17±12.58 0.704 0.850

P100–15’ of arc 19.83±10.28 18.93±10.66 15.66±11.93 19.75±12.21 0.534 0.592

P100–7 ½’ of arc 19.09±9.36 15.88±9.70 16.90±11.92 16.35±6.85 0.535 0.696

Data are mean ± Standard Deviation, pa-values for unadjusted overall group effect using ANOVA, and pb-values for overall group difference adjusted for gestational age

at birth, maternal age, infant sex and maternal education using ANCOVA.

�Values significantly different from the normal weight group in a Bonferroni adjusted post hoc test.

https://doi.org/10.1371/journal.pone.0203754.t002

Table 3. Estimated visual acuity at 3 and 18 months of age in children born to mothers with pre-pregnancy overweight, obesity or gestational diabetes compared to

those born to healthy normal weight pregnant women (controls).

Normal weight Overweight Obesity Gestational Diabetes p

n = 33 n = 12 n = 13 n = 29

Visual Acuity at 3 mo (logMAR) 1.03±0.28 1.09±0.17 1.16±0.19 1.22±0.20� 0.014

n = 21 n = 15 n = 10 n = 15

Visual Acuity at 18 mo (logMAR) 0.94±0.25 0.96±0.23 0.99±0.19 1.04±0.24 0.618

Data are mean ± Standard Deviation and p-values for overall group effect using ANOVA.

�Values significantly different from the normal weight group in a Bonferroni adjusted post hoc test.

https://doi.org/10.1371/journal.pone.0203754.t003
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months significantly correlated to higher Bayley III scores of cognition, supporting the clinical

relevance of cVEPs in assessing infant development.

Maternal diabetes and obesity are common example of early risk factors that may contrib-

ute to “early programming” of later health and disease as suggested by Barker. [23] These con-

ditions have been associated with poor neurodevelopment in several previous studies, even

though the mechanisms are unclear and causality is not yet shown.[17, 24–27] BeBoer et al.

[28] showed that offspring born to pregnant women with type I diabetes showed lower Bayley

II scores of motor- and cognitive development at 12 months of age. Ornoy et al. [29, 30] found

that children born to GD mothers had lower cognitive, gross motor and fine motor develop-

ment scores at 9 years of age; even more, they reported that they were more likely to develop

disorders of attention such as hyperactivity and impulsivity (ADHD). In the Avon Longitudi-

nal Study of Parents and Children (ALSPAC), Fraser et al. [31] concluded that GD is consis-

tently associated with lower cognitive development (a difference up to 5 points in IQ) and low

educational levels among the offspring. They also concluded that the exact mechanism behind

the association between diabetes and poor neurodevelopment is unclear. The suboptimal met-

abolic control during GD has been suggested to cause dysfunctions at the cortical level in the

brain; this hypothesis is partly supported by previous studies carried out in humans and ani-

mals.[32–36] Our results suggest a mechanism that includes impaired neuronal function, since

cVEPs are considered a proxy for neuron myelination (latencies) and visual acuity (ampli-

tudes),[37, 38] and are in agreement with studies reported by Brinciotti et al.[18, 39]

If the observation found in this study represents a true causal relationship, it suggests that

the hyperglycemic status of GD mothers, have contributed to the observed effects in the off-

spring, either directly during fetal life or by affecting their postnatal precondition. Since this is

an observational study, we can only speculate regarding such mechanisms: During the prenatal

phase, the hyperglycemic status of the GD mothers is transferred to the fetus. This was also

found in the present cohort where cord blood glucose levels were higher in the offspring to

GD mothers compared to the other groups.[19] It has been shown that the fetal pancreas

already at 20 weeks of gestational age is capable to respond to this hyperglycemia by increasing

insulin secretion and increase the fetal metabolism with up to 30%. Again, this was also likely

in the present cohort where cord blood insulin levels were higher in the GM group, even

though the differences did not reach statistical significance.[19] It is likely that this state of

hyperglycemia, hyperinsulinemia and enhanced metabolism, may have lay ground for a poorer

myelination process of the auditory system. For instance, an increased metabolism has been

associated with increased risk of fetal hypoxia that follow due to limited oxygen transport

through the placenta.[4, 40] With regard to postnatal mechanisms, GD increases the risk of

hypoglycemia in the newborn offspring, a condition that has been associated with impaired

neurodevelopment in previous studies and may also explain an impaired visual development.

[41] Unfortunately, we did not monitor postnatal glucose levels in the infants and such mecha-

nism cannot be further explored in the present dataset. Another possible mechanism behind

the impaired cVEPs is iron deficiency. It has been well shown that infants born to diabetic

mothers are at increased risk of iron deficiency,[42] which is correlated to impaired neurode-

velopment. In a subsample of the present cohort, we measured iron status in cord blood and

found no lower iron stores in infant born to the GD mothers.[19] Finally, it has been suggested

that infants born to diabetic mothers are at high risk of hypomagnesemia.[43] Magnesium

plays an important role in a wide variety of critical cellular processes including carbohydrate

metabolism. Magnesium depletion, particularly in the hippocampus, has been associated to

impaired cognitive development and cerebral palsy.[44] Unfortunately, maternal or infant

magnesium was not assessed in the present study and we could not analyze its impact on the

results.
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An interesting observation was that the differences in latencies, most likely correlating to

the degree of neuronal myelination, was not significant at 3 months but at 18 months. Neuro-

nal myelination is an ongoing process during the first two years of life and the results suggests

that the negative effect that follows GD has a negative impact on the myelination, also during

the postnatal brain development. However, the non-significant effect at 3 months may also

correlate to difficulties of assessing this outcome at such a low age.

The correlations observed between cVEPs and cognitive scores are similar to previous stud-

ies. Nelson et al. reported that cVEPs technique correlated to memory deficits in children.[35]

We have previously reported no significant differences in Bayley scores in the infants born to

GD mothers, but a trend of lower scores in the obese group at 18 months.[27] The cVEPs con-

stitute a more objective outcome with regard to neuron function and myelination, however, it

will require further long term follow-up trials to explore if cVEPs or Bayley scores in early life

are good predictors of long term cognitive development.

Due to its observational design, this study was limited with regard to exploring causative

correlations. Furthermore, it was limited by the large drop outs between delivery and 6 months

of age. However, we used an objective neurophysiological test in a large number of participants

and adjusted for several important sociodemographic confounders, making our observed cor-

relations relevant for the research field. Furthermore, the study was strengthened by the fact

that we could separately analyze the correlation to gestational diabetes and overweight, and

obesity respectively. Nevertheless, the observation about poor cVEPs in GD mothers’ offspring

requires confirmative and larger studies. Furthermore, it is relevant to further explore the

interaction with maternal overweight and obesity.

In conclusion, infants born to mothers with GD had less developed cVEPs at 18 months,

suggesting a suboptimal neurodevelopment. We hypothesize that the mechanism behind this

observation is a poor maternal metabolic control causing damage to the developing brain in

the fetus. Furthermore, our results suggest a negative interaction with maternal obesity/over-

weight indicating that the double burden of high pre-gestational BMI and GD causes increased

risk. Moreover, cVEPs measures correlated to the Bayley scores at 18 months of age, support-

ing the hypothesis that cVEPs are promising a proxy for cognitive development in infancy.
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