
Received July 27, 2018, accepted September 11, 2018, date of publication September 28, 2018, date of current version October 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2872777

JFML: A Java Library to Design Fuzzy Logic
Systems According to the IEEE Std 1855-2016
J. M. SOTO-HIDALGO 1, (Member, IEEE), JOSE M. ALONSO 2, (Member, IEEE),
GIOVANNI ACAMPORA3, (Senior Member, IEEE), AND J. ALCALA-FDEZ 4, (Member, IEEE)
1Department of Electronics and Computer Engineering, University of Córdoba, 14071 Córdoba, Spain
2Centro Singular de Investigación en Tecnoloxías da Información, University of Santiago de Compostela, 15782 Santiago, Spain
3Department of Physics Ettore Pancini, University of Naples Federico II, 80126 Naples, Italy
4DaSCI Research Institute, University of Granada, 18071 Granada, Spain

Corresponding author: J. M. Soto-Hidalgo (jmsoto@uco.es)

This work was supported in part by the XXII Own Research Program (2017) of the University of Córdoba, in part by the Spanish Ministry
of Economy and Competitiveness under Grants RYC-2016-19802 (Ramón y Cajal contract), TIN2017-84796-C2-1-R,
TIN2014-56633-C3-3-R, TIN2014-57251-P, and TIN2015-68454-R, in part by the Andalusian Government under Grant P11-TIC-7765,
in part by the Xunta de Galicia (accreditation 2016–2019), and in part by the European Union (European Regional Development Fund).

ABSTRACT Fuzzy logic systems are useful for solving problems in many application fields. However,
these systems are usually stored in specific formats and researchers need to rewrite them to use in new
problems. Recently, the IEEE Computational Intelligence Society has sponsored the publication of the IEEE
Standard 1855-2016 to provide a unified and well-defined representation of fuzzy systems for problems of
classification, regression, and control. The main aim of this standard is to facilitate the exchange of fuzzy
systems across different programming systems in order to avoid the need to rewrite available pieces of code
or to develop new software tools to replicate functionalities that are already provided by other software.
In order to make the standard operative and useful for the research community, this paper presents JFML,
an open source Java library that offers a complete implementation of the new IEEE standard and capability
to import/export fuzzy systems in accordance with other standards and software. Moreover, the new library
has associated a Website with complementary material, documentation, and examples in order to facilitate
its use. In this paper, we present three case studies that illustrate the potential of JFML and the advantages
of exchanging fuzzy systems among available software.

INDEX TERMS Fuzzy logic systems, IEEE std 1855-2016, fuzzy markup language, open source software,
IEC61131-7.

I. INTRODUCTION
Fuzzy Logic Systems (FLSs) [1], [2] are likely to be one of
the most important applications of the fuzzy set theory. FLSs
are an extension of the classical systems in which fuzzy sets
and fuzzy rules are used instead of the classical ones. Thanks
to their capacity to include a priori knowledge, to man-
age uncertainty and vagueness, and to represent systems for
which is not possible to obtain a mathematical model, FLSs
have been successfully applied to a wide range of problems
such as classification, control or regression [3]–[6] and in
different domain applications such as, for instance, mobile
robot navigation [7], medical diagnosis [8], non-linear rotary
chain pendulum [9], cement manufacturing plant [10], etc.

A high number of proposals on FLSs have been published
in the literature, however few researchers publish the software
and/or source code associated with their papers and many

inconsistencies are reported in the codes published in journals
and books. This issue, along with the high complexity of
some proposals, prevents the widespread use of FLSs [11].
In recent years, many software tools have been developed in
order to facilitate the use of FLSs to solve real-world applica-
tions. Although some of them are commercially distributed,
such the Fuzzy Logic Toolbox for Matlab [12] or the Fuzzy
Logic add-on for Mathematica [13], a high number of free
and open source software has been also developed by the
scientific community to work with FLSs, such as Juzzy [14],
FuzzyLite [15], or Fispro [16]. Notice that the open source
model makes it easier for researchers the application of FLSs
to new problems, which is crucial to extend FLSs to other
disciplines and industry [17].

Some of these software allow to read, design, and write
Mamdani type-1 fuzzy logic controllers [18] according to the

54952
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-4412-5449
https://orcid.org/0000-0003-3673-421X
https://orcid.org/0000-0002-6190-3575

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

part 7 of the standard IEC 61131 (IEC61131-7) published
by the International Electrotechnical Commission [19]. This
standard defines the Fuzzy Control Language (FCL) with
the aim of offering companies and developers a well-defined
common understanding of the basicmeanswithwhich to inte-
grate fuzzy control applications in control systems, as well as
the possibility of exchanging portable fuzzy control programs
across different programming systems. This standard has a
world-wide diffusion and is independent of system manu-
factures, which has many advantages: easy migration to and
from several hardware platforms from different manufactur-
ers, protection of investment at both training and application
levels, conformity with the requirements of the Machinery
Directive EN60204, and reusability of the developed
application.

Recently, the IEEE Computational Intelligence Soci-
ety (IEEE-CIS) has sponsored the publication of the new
standard for FLSs (IEEE Std 1855-2016) [20]. This stan-
dard defines a new W3C eXtensible Markup Language
(XML)-based language, named Fuzzy Markup Language
(FML) [21], that extends the advantages of IEC61131-7 to
other types of problems (e.g., classification or regression)
and includes four different types of type-1 fuzzy inference
systems: Mamdani and Assilian [18], Takagi-Sugeno-Kang
(TSK) [22], Tsukamoto [23], and AnYa [24]. The main aim
of this standard is to allow the exchange of FLSs across
different programming systems and software in order to avoid
the need to rewrite available pieces of code or to develop
new software tools to include functions or modules that
are available in other ones (increasing the usability of the
available software). Moreover, this standard provides several
extension mechanisms that ensure the viability of the specifi-
cation, allowing to include new elements such as type-2 and
intuitionistic fuzzy sets, new membership functions, and so
on, in the scheme of the standard. These extensions should be
forwarded to the IEEE 1855 committee for potential inclusion
in a future release.

In this paper we present JFML,1 a new open source Java
library that allows to design FLSs according to the IEEE Std
1855-2016 in order to make the standard operative and useful
for the research community. This library offers a complete
implementation of the four fuzzy inference systems enclosed
in the W3C XML Schema definition (XSD) of the standard:
Mamdani, TSK, Tsukamoto, and AnYa. Additionally JFML
includes a module to import/export FLSs in accordance with
FCL documents (the standard IEC 61131-7), the Predictive
Model Markup Language (PMML) [25], [26] and the propri-
etary format understood by the Matlab Fuzzy Logic Toolbox.

JFML has been designed following the hierarchical struc-
ture based on the concept of labeled tree used in the definition
of FML and it includes the extension methods considered in
the standard, facilitating the integration of changes in future
releases of the standard. This library makes use of the Java
Architecture for XML Binding (JAXB) to bind the XSD of

1http://www.uco.es/JFML

the standard and the Java representations, providing a fast
and convenient way for reading (unmarshalling) and writ-
ing (marshalling) FLSs according to the standard. Moreover,
the new library has associated a website in order to facilitate
the download of complementary material and documentation.
It also brings to the research community all the benefits
derived from working with open source software. Thanks to
the benefits provided by JFML and IEEE Std 1855-2016,
the community will have an open source software tool avail-
able for designing and sharing FLSs without any additional
porting task (hardware or software).

This paper is arranged as follows. Section II summarizes
the main features of the new IEEE Std 1855-2016. Section III
makes a brief review of other libraries available in the lit-
erature for designing FLSs. Section IV describes JFML, its
architectural components. Section V shows how JFML can
be used to design FLSs for problems from different areas.
Finally, in Section VI, some concluding remarks are made.

II. IEEE STANDARD 1855-2016 FOR FUZZY
MARKUP LANGUAGE
The IEEE Std 1855-2016 is the first standard sponsored
by the IEEE-CIS [27]. It was approved by the Standards
Board of the IEEE Standards Association on January 2016.
This standard defines an W3C XML-based language called
FML with the aim of offering developers a well-defined
common understanding of the basic means with which to
design FLSs for different types of problems that can be
exchanged across different programming systems and soft-
ware (improving their interoperability), avoiding the need
of recoding available codes and of developing new software
tools to replicate functions or modules that are available in
other ones (improving the usability of the available software).

Let us summarize some issues related to the IEEE Std
1855-2016 which are needed to understand the rest of the
manuscript.

1) FML labeled trees. The elements (e.g., variables and
rules) of FLSs are represented by a connected acyclic
graph with different levels of granularity. In this graph,
nodes and edges are associated with labels which
describe their properties. As it is illustrated in Fig. 1,
there are three kinds of node: rectangles represent struc-
tural nodes; round rectangles correspond to attributes;
and ellipses are text nodes. The root node is named
‘‘FLS’’. It is connected with other two nodes: ‘‘KB’’
depicts the knowledge base and ‘‘RB’’ depicts the rule
base. In addition, KB child nodes are related to fuzzy
variables while RB child nodes correspond to rules.
Accordingly, FLSs are represented by labeled trees
which fit the hierarchical nature of FML.

2) FML schema. This schema is represented in a XSD file
and it can be visualized/interpreted as a labeled tree
where all nodes have at least two attributes: (1) the
node name; and (2) the network address. The attribute
network address allows developers to represent a

VOLUME 6, 2018 54953

http://www.uco.es/JFML

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

FIGURE 1. Example of FML labeled tree.

distributed FLSs in which the components can be
located in different network addresses. For example,
FLSs defined for applications in the Internet of Things.

3) FML synthesis. The standard suggests the use of eXten-
sible Stylesheet Language Translators for translating
FLSs described in FML into general purpose program-
ming languages such as Java or C/C++.

4) FML conformance. Two levels are considered:

• A strictly conforming FML means the document
which describes the FLS strictly complied with the
FML schema. In consequence, it guarantees fully
interoperability nomatter the hardware platform or
programming language considered.

• A conforming FML admits the use of extensions,
e.g., customized elements. In consequence, fully
interoperability is not guaranteed.

The IEEE Standard 1855-2016 considers four type-1 FLSs:
Mamdani [18], TSK [22], Tsukamoto [23], and AnYa [24].
Let us briefly introduce them. The interested reader is kindly
referred to [28] for a thorough introduction to fuzzy sets and
systems.

1) Mamdani fuzzy systems. The FLSs introduced by
Zadeh [29] were first developed by Mamdani and
Assilian [18]. IF-THEN rules relate n inputs and 1 out-
put:

Ri : IF X1 is Ai1,h AND . . . AND Xn is Ain,m
THEN Y is Bio (1)

The antecedent of rule Ri is a conjunction of linguistic
propositions (Xk is Aik,j) where k ∈ [1, n], and Aik,j is
the j − th linguistic term defined for the k − th input
variable Xk . Bio is the o − th linguistic term defined
for the output Y . Given a universe of discourse U ,
each linguistic term is characterized by a fuzzy set
A = {(x, µA(x))|x ∈ U}, where µA(x) ∈ [0, 1] is the
membership function (MF) which characterizesA inU .
The Mamdani inference mechanism is usually called
min-max because conjunction (AND) and implication
(THEN) are normally implemented by the t-norm min-
imum, and the output accumulation is done by the
maximum. Anyway, notice that Mamdani rules admit
other operations, not only minimum and maximum.
In addition, the defuzzification stage transforms an
inferred fuzzy set into a single crisp value by means
of a defuzzification method.

2) Takagi-Sugeno-Kang fuzzy systems. These FLSs are
known as TSK systems [22]. The consequent of Ri
(Eq. 1) is now a function fi that for first order TSK is as
follows:

fi(X1, . . . ,Xn) = p1X1 + · · · + pnXn + c (2)

Accordingly, TSK systems can describe non-linear sys-
tems with a small number of rules. However, the inter-
pretation of functional rule outputs is usually harder
than the interpretation of fuzzy outputs in Mamdani
systems.

3) Tsukamoto fuzzy systems [23]. These FLSs define
fuzzy rules in a similar way to Mamdani except for
the definition of the consequents where the use of
monotoneMFs is imposed. Thus, the inferred output of
each rule is a crisp value determined by the conjunction
of the antecedents. Moreover, the output aggregation
and defuzzification stages are usually computed as in
TSK systems.

4) Angelov-Yager fuzzy systems. These FLSs are called
AnYa systems [24]. The rule base comprises a set
of IF-THEN rules where the consequent part can be
the same as in Mamdani or TSK systems. However,
the antecedent part changes radically. Rule antecedents
are represented by ‘‘Data Clouds’’ which are free of
logical connectives, non-parametric and based on rela-
tive data density. Moreover, AnYa clouds are described
by the similarity among the associated set of data
samples. The membership degree to a cloud is inter-
preted by local and global density measures. The main
advantage of AnYa systems is that they can be seen as
networks of related data clouds.

This standard provides a wide variety of MFs and fuzzy
operators, among other components (see [20] for more infor-
mation). However, researchers may need to use other ele-
ments to design their FLSs that are not included in the current
definition of the scheme. For example, other fuzzy sets (e.g.,
type-2 or intuitionistic), fuzzy inference mechanisms, new
MF shapes, among others. In order to ensure the viability
of the specification, this standard provides several extension
mechanisms that allow to utilize extended files without errors
or loss of functionality. This kind of extensions should be
forwarded to the IEEE 1855 committee for potential inclusion
in future releases of the standard.

III. RELATED WORK
There is well-known commercial software for designing
FLSs, e.g., the Fuzzy Logic Toolbox for Matlab [12] or the
Fuzzy Logic add-on for Mathematica [13]. However, the rel-
evance of free and open source software is growing in the
scientific research community [30].
In this section, we give a global overview on fuzzy systems

software. We take as starting point the review on free and
open source software that was previously carried out by the
IEEE-CIS Task Force on Fuzzy Systems Software (FSS) of
the Fuzzy Systems Technical Committee (FSTC) [31]. It is

54954 VOLUME 6, 2018

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

FIGURE 2. Overview on fuzzy systems software. On the top, statistics related to all types of software. On the bottom, details on libraries.

worthy to note that this review came along with a thematic
website2 with complementary material. It is linked from the
FSTCwebsite3 as the reference website for FSS. This website
presents a two-level taxonomy with the aim of facilitating
the review of existing software. The first level deals with the
software purpose. Three categories are considered (General
Purpose, Specific Applications, and Fuzzy Languages). For
each of them, the second level provides four lists of soft-
ware paying attention to the type of software (Code, Library,
Toolbox, and Suite). Moreover, links to other related websites
as well as a bibliography compilation of related papers are
also provided. It is note worthy this website is maintained
and periodically updated by the Chair and Vice-chair of the
IEEE-CIS Task Force on FSS.

We have identified and analyzed 128 different pieces of
software. The interested reader is kindly referred to the
FSS website for further details on each single software.
Let us summarize here the main results (see Fig. 2). Most
software is released as toolboxes (60%) or libraries (26%).
No matter the type of software (look at the three pie charts
on the top of Fig. 2), Java (35%), C++ (19%), and Mat-
lab (17%) are the main programming languages. However,
regarding only libraries (pay attention to the bottom left pie
chart in Fig. 2), the three most used languages are: Java,
37% (e.g., Juzzy [14], jFuzzyLite [15] or jFuzzyLogic [32]);
C++, 18% (e.g., FuzzyLite [15] or FFLL [33]); and R, 15%
(e.g., FRBS [34] or SAFD [35]).

With respect to the application purpose, most software is
for general purpose (52%). This percentage is larger (70%)

2http://sci2s.ugr.es/es/fss
3http://cis.ieee.org/fuzzy-systems-tc.html

regarding only libraries. General purpose software allows to
read, design, and write FLSs that can be applied to different
problems in relation to all research areas addressed by the
fuzzy community (e.g., clustering, classification, or regres-
sion). In addition, there is software ready to deal with
different types of fuzzy sets (type-1 FLSs but also their exten-
sions, e.g., type-2 or intuitionistic fuzzy sets). For example,
Juzzy [14] is a Java library intended not only for type-1 FLSs,
but also for Interval and General type-2 FLSs. Moreover, it is
especially designed to take advantage of the parallel comput-
ing capabilities of Java architectures. IT2FLS [36]–[39] is a
toolbox for Interval type-2 FLSs. The main advantages of this
toolbox are the capacity to develop complex systems and the
flexibility that permits the user to extend the availability of
functions for working with Interval type-2 FLSs. On the other
hand, paying attention to software for specific purpose, it is
easy to appreciate how control and education are the main
specific applications.

Some software (8%) follows a standard language (FCL or
PMML [25], [26] which stands for Predictive Model Markup
Language) to facilitate interoperability with other software.
This percentage achieves 21% in case of considering only
libraries. Actually, we have found six libraries (see Table 1
where they are listed from the newest to the oldest) which are
ready to compile, read, design, and write FLSs in accordance
with a standard language. Most of these libraries (4/6) are
aimed for control applications and therefore they adopted
FCL in accordance with the IEC 61131-7 norm.

As far as we know, pyfuzzy [41] was the first general
purpose library, written in Python, for designing FLSs. It pro-
vides developers with a framework to work with fuzzy sets
and process them with operations of fuzzy logic. Authors

VOLUME 6, 2018 54955

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

TABLE 1. Libraries for designing FLSs in accordance with a standard.

were aware of the need to provide interoperability with other
software and they adopted FCL which was the only standard
language for fuzzy systems available at that moment, even
though it was thought only for control applications.

Later, Cingolani and Alcala-Fdez developed
jFuzzyLogic [32]. It is a Java library to design fuzzy logic
controllers in accordance with FCL. The latest release is
available in GitHub to make easier maintenance and update.
This library has partial code synthesis to C++ and can be
parallelized. jFuzzyQt [40] is the clone of jFuzzyLogic in
C++/Qt.

In addition, Rada-Vilela developed FuzzyLite [15] for
designing fuzzy logic controllers in C++. This library is fully
self-content (i.e., it does not rely on any external library) and
carefully designed for effective and efficient operation, even
with embedded control systems. It has multiple code syn-
thesizers (including code conforming to the FCL standard)
and parallelization capabilities. Notice that jFuzzyLite is the
clone of FuzzyLite for Java and Android.

In the case of FRBS [34], authors chose PMML instead
of FCL because their interest was more in machine learning
tasks (mainly classification and regression) than in solving
control problems. PMML is an XML-based predictive model
interchange format which has become the de facto standard
for data mining and machine learning algorithms (e.g., logis-
tic regression and feed-forward neural networks). FRBS is
an R package which implements various learning algorithms
based on fuzzy rule-based systems for dealing with classifi-
cation and regression tasks. It also allows to construct fuzzy
models defined by human experts.

Nowadays, there is not any software ready to read, design,
and write FLSs in accordance with the IEEE Standard
1855-2016. As we have previously explained, this standard
extends the advantages of the IEC61131-7 norm to other
types of problems apart from control (e.g., classiification or
regression) with the aim of allowing the exchange of FLSs
across different programming systems and software, avoiding
the need of recoding or developing new pieces of software to
replicate functionalities already provided by other software.
Based on these requirements, we have developed the library
JFML. In the next section we will describe JFML in detail.

IV. JFML
This library is developed in Java. This language is one of
the most used in the development of open source fuzzy

software (see Section III) and enables JFML to be used on
the most used platforms and operating system since Java
Virtual Machine is platform independent. JFML follows a
strict object-oriented approach and a modular design based
on the same labeled tree structure that FML uses to represent
FLSs, allowing developers to extend JFML without changing
the language grammar. This software is distributed as open
source software under the terms of the GNU Public License
GPLv3 and it is hosted in the public hosting GitHub,4 which
offers different tools (e.g., bug tracker or mailing) in order
to make use of the advantages of the open source model.
Moreover, JFML has a web page associated5 with a com-
plete documentation and a good variety of examples. In the
following, we will explain the main characteristics of JFML:
main classes, binding with the FML XSD, extensibility, and
interoperability with other software.

A. JFML CORE
FML-based FLSs are generated from a set of semantic tags.
They allow representing the components of a classical FLS
making use of a labeled tree structure, in which each XML
tag, XML attribute and value of an attribute are represented by
an element, attribute and text node, respectively. The relations
between XML elements and attributes are represented by the
connections of the tree (see Fig. 1, section II). JFML follows
strictly the FMLXSD. Fig. 3 shows the main class diagram of
this library, which will be explained below in order to provide
the reader with an overview of the possibilities of the library.

FIGURE 3. Main class diagram of JFML.

1) FuzzySystemType CLASS
FuzzySystemType is the top-level class of the class diagram
and it allows representing the four FLSs enclosed in the
scheme of the standard: Mamdani, Tsukamoto, TSK and
AnYa. Each object of this class has a unique name and a
network address to define the location of the FLS in a com-
puter network system (this attribute is also included in other

4https://github.com/sotillo19/JFML
5http://www.uco.es/JFML

54956 VOLUME 6, 2018

https://github.com/sotillo19/JFML
http://www.uco.es/JFML

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

FIGURE 4. Main class diagram for the definition of a KB.

subclasses with the same aim), and consists of one element
KnowledgeBase and of a list of elements FuzzySystemRule-
Bases that represent the KB and the RBs of the system,
respectively. Notice that, a FLS can contain more than one
RB and they can be of different type. By default, RBs of the
system are evaluated in the order in which they are located in
the list but this order can be modified. Accordingly, we can
define FLSs in different sub-hierarchies.

2) KnowledgeBaseType CLASS
This class represents the KB of the FLS, containing the
definition of the input and output variables of the system.
Each object of this class consists of a list with one or several
elements of the class KnowledgeBaseVariable, which repre-
sents a variable of the system in an abstract way. This class
only contains the basic operations that we can apply to all the
variables, while the definition of each variable and its specific
operations are delegated to the subclasses (see Fig. 4). They
are introduced as follows.

The FuzzyVariableType class represents a fuzzy variable
that can be part of the antecedent or consequent of the rules
in Mamdani RBs. It can also be part of the antecedent of
the rules in Tsukamoto and TSK RBs, and part of the con-
sequent of the rules in AnYa RBs. Each object of this class
contains information about the domain, type (input or output),
the scale used to measure the variable, the default value for
this variable when no rule has been fired, the accumulation
(also called combination in the standard), defuzzification

methods usedwhen this variable is involved in the consequent
of the rules, and a list with the linguistic terms of the variable.

The TsukamotoVariableType class represents an output
variable which can be part of the consequent of the rules
in Tsukamoto RBs. The objects of this class contain the
same information as the FuzzyVariableType objects, but the
membership functions of their linguistic terms can only be
monotone functions.

The TskVariableType class represents an output variable
which can be part of the consequent of the rules in TSK RBs.
Each object contains information about the type (input or
output), the scale used to measure the variable, the default
value for this variable when no rule has been fired, the accu-
mulation method, and a list of objects of the TskTermType.
Each TskTermType object can be involved in the consequent
of TSK rules and it represents a constant value (zero-order
TSK system) or a linear function of the inputs (one-order TSK
system).

The AnYaDataCloudType class represents a data cloud that
can be part of the antecedent of the rules in AnYa RBs. Each
object contains a list of datums that represents a sub-set of
previous data samples with common properties. Notice that,
each datum is defined as only one double value in the standard
but it can be extended to consider datum objects with more
values.

TheAggregatedFuzzyVariable class represents a new fuzzy
variable in which linguistic terms are defined by means of the
aggregation of linguistic terms of other variables. Each object
of the class contains a list of AggregatedFuzzyTerm objects,

VOLUME 6, 2018 54957

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

FIGURE 5. Main class diagram for the definition of RBs.

which makes use of AND (a t-norm) and OR (a t-conorm)
operators to generate the new terms of the variable from two
or more terms of other variables. This class allows defining
variables and rules in a flexible way.

3) FuzzySystemsRuleBase CLASS
This class represents a RB of the FLS in an abstract way.
It only contains the basic operations that we can apply to all
the type of rules, while the definition of the rule sets and
its specific operations are delegated to the subclasses (see
Fig. 5). They are introduced as follows.

The RuleBaseType class represents a RB in which the
consequent and antecedent of the rules only have fuzzy vari-
ables. Each object of this class contains information about
the activation method, the AND and OR methods used by
default for all rules, and a list with the fuzzy rules. This
class is extended by the classes MamdaniRuleBaseType and
TsukamotoRuleBaseType to generate RBs with Mamdani and
Tsukamoto rules, respectively. Both of them contain a list
of FuzzyRuleType objects. Notice that the rules of the Mam-
daniRuleBaseType object involve FuzzyVariableType vari-
ables in the antecedent and consequent, and the rules of the
TsukamotoRuleBaseType objects involve FuzzyVariableType
variables in the antecedent and TsukamotoVariableType vari-
ables in the consequent in order to assure the use of monotone
membership functions in the consequent of the rules.

The TskRuleBaseType class represents a TSK RB. The
objects of this class contain the same information as the Rule-
BaseType objects together with a list of TskFuzzyRuleType
objects. Each TskFuzzyRuleType object involves FuzzyVari-
ableType variables in the antecedent and TskVariableType
variables in the consequent of the rules.

The AnYaRuleBaseType class represents AnYa RBs. Each
object of this class contains the activation method and a list of
AnYaRuleType objects. Each AnYaRuleType object involves
AnYaDataCloudType variables that represent the data cloud
used in the antecedent, and FuzzyVariableType or TskVari-
ableType variables in the consequent of the rules. Notice that,
this type of rules can use the same consequent as theMamdani
and TSK rules (see section II).

Each antecedent element in the rules (AntecedentType)
contains one or more clause connected through AND/OR
operators. For each rule, we can select the specific connector
along with the related t-norm/t-conorm. On the other hand,
the consequent elements (ConsequentType and TskConse-
quentType) contain one element THEN, representing the
THEN-part of a rule, and an optional element ELSE, repre-
senting the ELSE-part of a rule. Both elements can also con-
tain one or multiple clauses, thus allowing the representation
of FLSs with multiple outputs. Moreover, we can indicate a
weight for each rule to define the importance of the rule in
the inference.

It should be noted that JFML implements all the t-norms
(7), t-conorms (7), accumulation methods (7), defuzzifica-
tion methods (4), membership functions (14), and activation
methods (7) defined in the standard.

B. BINDING WITH THE FML XSD
The W3C XML-based nature of FML allows to convert the
FML description of FLSs into source code (e.g., in C/C++,
Java or Python) making use of any library for XML pro-
cessing. For example, developers can use the eXtensible
Stylesheet Language Translators (XSLTs)6 to design parsers
that allow to convert FML descriptions into source pro-
grams for different programming systems. To accomplish
this, JFML uses the Java Architecture for XML Binding
(JAXB) that allows developers to access and process W3C
XML data without having to know about W3C XML orW3C
XML processing. JAXB includes a binding compiler to bind
the XSD for a FML document into the set of Java classes
for JFML and provides a package for performing operations
such as unmarshalling (reading), marshalling (writing), and
validation. When an unmarshalling operation is performed,
a tree of instances of the Java classes produced by the binding
compiler is created from an XML document. Let us show in
an illustrative example how to unmarshal a FML document
using JFML:
// Creating a new file Java object
File xml = new File("./XMLFiles/TipperMamdani1.xml");

// Loading a FLS from an FML document
FuzzyInferenceSystem tipper = JFML.load(xml);

A marshalling operation is the opposite to unmarshalling.
This operation creates an FML document from a tree of
instances of the Java classes. Let us consider a simple exam-
ple of how tomarshal a developed FLS into a FML document:
// Creating a new file Java object
File tipper = new File("./XMLFiles/TipperMamdani1.xml");

// Writting the developed FLS into an FML document
JFML.writeFSTtoXML(tipper, tipperXMLFile);

C. EXTENSIBILITY
The language defined in the standard can be extended
using custom methods (called according to the pattern

6https://www.w3.org/Style/XSL/

54958 VOLUME 6, 2018

https://www.w3.org/Style/XSL/

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

custom_name) to include new values for attributes (e.g., new
fuzzy operators or defuzzification methods) without requir-
ing to modify the language grammar. JFML includes custom
methods for all the elements indicated in the XSD of the stan-
dard, enabling a way to extend the library conforming to this
standard. In order to show a simple example, JFML includes
the center of gravity singleton as a custom defuzzification
method (called custom_COGS) for the FuzzyVariableType
class. Moreover, the modular design of JFML based on the
same labeled tree structure as FML allows to accommodate
future changes in the standard design modifying only the
corresponding part in the library.

D. IMPORT/EXPORT MODULES
JFML includes a module with classes to read FLSs from
FCL or PMML documents, and to write a FLS designed
with JFML into a FCL or PMML document. Moreover,
this library also includes a module to read FLSs designed
with the Matlab Fuzzy Logic Toolbox and to export FLSs
designed with JFML to the Matlab toolbox. The aim of these
modules is to make easier the interoperability of the library
with other well-established software, such as jFuzzylogic,
FuzzyLite, pyfuzzy, FRBS, among others. Notice that these
classes extend the classes Import and Export, which repre-
sents import/export parsers in an abstract way. Since these
classes only contain the most common and basic operations
of a parser, they must be extended in case of developers
requiring more complex parsers to import/export FLSs in
other formats.

V. CASE STUDIES
Users and developers can find several examples for problems
of classification (for the problems Iris and Tao), regression
(for the problems Inverted Pendulum, Tipper and Japanese
Diet Assessment) and control (for a fuzzy controller to man-
age a mobile robot) in the folders src/jfml/test and Examples
provided with the JFML package and in the associated web-
site. For each example, the website provides: the Java code
needed to design the related FLSs in JFML; the Java code
to read FLSs from FML documents; the Java code to make
inference with a new input sample; and the FML documents
related to the FLSs designed with JFML.

This section shows three case studies that illustrates the
potential of JFML and the advantages of the exchange of
FLSs across different software available. The first case is
focused on the development of a FLS for the Tipper problem.
The second case shows how developers can import and use
a fuzzy controller for mobile robotics defined according to
the standard IEC 61131-7. The last case is focused on a
fuzzy rule-based classification system (FRBCS), i.e. a FLS
for classification, for the Tao problem.

A. TIPPER FUZZY SYSTEM
The Tipper problem consists of computing the right tip in a
restaurant. It considers two inputs (food and service) and one

output (tip). In the rest of this section we explain how to build
and evaluate a Mamdani FLS with JFML for this problem.

Firstly, we create an empty KB:
FuzzyInferenceSystem tipper =

new FuzzyInferenceSystem("tipper - MAMDANI");
KnowledgeBaseType kb = new KnowledgeBaseType();
tipper.setKnowledgeBase(kb);

Secondly, we define the inputs and output. Food is charac-
terized by 2 linguistic terms (rancid, delicious) in the range
[0, 10]. Service comprises 3 linguistic terms (poor, good,
excellent) in the same range. Tip is defined by 3 linguistic
terms (cheap, average, generous) in the range [0, 20]. For
example, the ‘‘service’’ variable is created and added to the
KB as follows:
FuzzyVariableType service =

new FuzzyVariableType("service", 0, 10);
FuzzyTermType poor = new FuzzyTermType("poor",

FuzzyTermType.TYPE_leftGaussianShape,
(new float[] 0f, 2f));

service.addFuzzyTerm(poor);
FuzzyTermType good = new FuzzyTermType("good",

FuzzyTermType.TYPE_gaussianShape,
(new float[] 5f, 2f));

service.addFuzzyTerm(good);
FuzzyTermType excellent = new FuzzyTermType("excellent",

FuzzyTermType.TYPE_rightGaussianShape,
(new float[] 10f, 2f));

service.addFuzzyTerm(excellent);
kb.addVariable(service);

The definition of the output variable includes setting fuzzy
operators in addition to defining linguistic terms:
FuzzyVariableType tip = new FuzzyVariableType("tip",0,20);
tip.setAccumulation("MAX");
tip.setDefuzzifierName("COG");
tip.setType("output");

Then, we can create a rule base which relates inputs and
output. For example, the rule ‘‘IF food is rancid AND service
is very poor THEN tip is cheap’’ with rule weight (RW)
equals 1.0 is created as follows:
MamdaniRuleBaseType rb = new MamdaniRuleBaseType("rb1");
FuzzyRuleType rule1 =

new FuzzyRuleType("rule1", "or", "MAX", 1.0f);
AntecedentType ant1 = new AntecedentType();
ant1.addClause(new ClauseType(food, rancid));
ant1.addClause(new ClauseType(service, poor, "very"));
rule1.setAntecedent(ant1);
ConsequentType con1 = new ConsequentType();
con1.addThenClause(tip, cheap);
rule1.setConsequent(con1);
rb.addRule(rule1);

Then, the ‘‘tipper’’ system can be written in an XML docu-
ment according to the IEEE std 1855-2016 making use of the
marshal methods provided by the JAXB API. It asserts that
the document is valid according to the XSD of the standard:
File tipperXML=new File("./XMLFiles/TipperMamdani1.xml");
JFML.writeFSTtoXML(tipper, tipperXML);

Finally, we can assign values to the input variables, evalu-
ate the system, and print results with the following code:
KnowledgeBaseVariable input1 = fs.getVariable("food");
KnowledgeBaseVariable input2 = fs.getVariable("service");
input1.setValue(2);
input2.setValue(1);
fs.evaluate();
KnowledgeBaseVariable output = fs.getVariable("tip");

VOLUME 6, 2018 54959

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

float value = output.getValue();

System.out.println("RESULTS");
System.out.println(" (INPUT): "

+input1.getName() + "="+input1.getValue()
+", "+input2.getName() + "="+input2.getValue());

System.out.println("(OUTPUT):"+output.getName()+"="+value);
System.out.println(fs.toString());

The related outcome shown in standard output stream is as
follows:
RESULTS
(INPUT): food=2.0, service=1.0
(OUTPUT): tip=7.2561355

*food - domain[0.0, 10.0] - input
rancid - triangular [a: 0.0, b: 2.0, c: 5.5]
delicious - rightLinear [a: 5.5, b: 10.0]

*service - domain[0.0, 10.0] - input
poor - leftGaussian [c: 0.0, sigma: 2.0]
good - gaussian [c: 5.0, sigma: 4.0]
excellent - rightGaussian [c: 10.0, sigma: 2.0]

*tip - domain[0.0, 20.0]
- Accumulation:MAX; Defuzzifier:COG - output

cheap - triangular [a: 0.0, b: 5.0, c: 10.0]
average - triangular [a: 5.0, b: 10.0, c: 15.0]
generous - triangular [a: 10.0, b: 15.0, c: 20.0]

RULEBASE:

*mamdani - rulebase1: OR=MAX; AND=MIN; ACTIVATION=MIN
RULE 1: rule1 - (1.0)
IF food IS rancid OR service IS very poor

THEN tip IS cheap [weight=1.0]
...
(the rest of the rules are omitted for the sake of space)

Moreover, an excerpt of the XML document generated
according to the IEEE std 1855-2016 is as follows:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<fuzzySystem xmlns="http://www.ieee1855.org"name="tipper-
MAMDANI">

<knowledgeBase>
<fuzzyVariable name="food" scale="" domainleft="0.0"
domainright="10.0" type="input">
<fuzzyTerm name="rancid" complement="false">
<triangularShape param1="0.0" param2="2.0"
param3="5.5"/>

</fuzzyTerm>
<fuzzyTerm name="delicious" complement="false">
<rightLinearShape param1="5.5" param2="10.0"/>

</fuzzyTerm>
</fuzzyVariable>

...
(the rest of the document is omitted for the sake of space)

B. ROBOT FUZZY CONTROL SYSTEM
In mobile robotics, fuzzy controllers are commonly consid-
ered for producing the so-called wall-following behavior,
which is frequently used to explore unknown indoor environ-
ments and to navigate between two points in a map. These
controllers are in charge of preserving a suitable distance
from the robot to the wall while the robot moves as fast as pos-
sible, avoiding abrupt changes in the trajectory movements
and velocity. In [32], the authors designed a wall-following
fuzzy controller according to the standard IEC 61131-7. It is
made up of four input variables (distances to the right (RD)
and left walls (DQ); orientation regarding to the wall (O);
and velocity (V)) and two output variables (linear accelera-
tion (LA) and angular velocity (AV)). The corresponding file
(robot.fcl) is available as one of the examples provided with
the software jFuzzyLogic.

FIGURE 6. The robot moving in a corridor.

Figure 6 shows the robot we used in the experiments. In
order to use with JFML the same fuzzy controller previ-
ously developed by jFuzzyLogic, the first step is to import
the controller by means of the FCL parser provided by the
ImportFCL class:
FuzzyInferenceSystem fs;
ImportFCL fcl = new ImportFCL();
fs=fcl.importFuzzySystem("./XMLFiles/robot.fcl");

Then, we can assign values to the input variables and
evaluate the FLS, dually as it was done in the previous case
study. Moreover, the imported FLS can be easily stored into
an XML file as follows:
File xmlFile = new File("./XMLFiles/RobotMamdani.xml");
JFML.writeFSTtoXML(fs, xmlFile);

The corresponding Java code to import, to evaluate
and to marshal the wall-following controller (RobotImport-
FCL.java) together with the generatedXMLfile (RobotMam-
dani.xml) are available in the folders Test and XMLFiles of
the JFML package, respectively.

Finally, let us explain how JFML can evaluate a
FML-based FLS through the command line. Developers have
to run the JFML.jar file with the following arguments: the
XML file that contains the FLS description, the number of
output variables that they want to infer, the names of the out-
put variables, and the list of pairs (input variable name / data
value). Then, JFML returns a summary of the tasks carried
out: (1) loading the FML file; (2) setting the input values;
and (3) running the fuzzy inference. In addition, the library
prints a brief description of the FLS, regarding both the
knowledge base and the rule base, including the activation
degree for each rule. The reader can find below an illustrative
example of how to evaluate RobotMamdani.xml file through
the command line with the inputs RD=0.2, DQ=0.25, O=20,
and V=0.25:
java -jar JFML.jar RobotMamdani.xml 2~la av rd 0.2
dq 0.25~o 20~v 0.25

1) Loading Fuzzy System from an XML file according to
the standard IEEE 1855
2) Setting input variables: rd=0.2, dq=0.25, o=20.0, v=0.25
3) Making fuzzy inference
RESULTS
(INPUT): rd=0.2, dq=0.25, o=20.0, v=0.25
(OUTPUT): la=0.034830566~av=0.054393604
4) Fuzzy System Description
FUZZY SYSTEM: robotIEEE1855
KNOWLEDGEBASE:

54960 VOLUME 6, 2018

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

FIGURE 7. Design of the FLS for the database Tao with the Fuzzy Logic Toolbox in Matlab.

*rd - domain[0.0, 3.0] - input
L - triangular [a: 0.0, b: 0.0, c: 1.0]
M - triangular [a: 0.0, b: 1.0, c: 2.0]
...(the rest of the variables are omitted by space)
RULEBASE:

*mamdani - rulebase1: OR=MAX; AND=MIN; ACTIVATION=MIN
RULE 1: 01 - (0.0) IF rd ...
... (the rest of the rules are omitted by space)

C. TAO FUZZY SYSTEM
Here, we consider the FLS for classification which was devel-
oped in [42] for the database Tao [43]. This is a synthetic
problem with two input variables (x1 and x2) and two classes
(C0 andC1). Moreover, a new input variable was created from
the addition of the two input variables (Sum(x1, x2)). This
FLS uses homogeneous fuzzy partitions with five triangular
fuzzy sets (Very Low, Low, Medium, High and Very High)
for the three input variables. With respect to the fuzzy rea-
soning mechanism, the minimum t-norm plays the role of
both the AND operator and the accumulation method, and
maximum t-conorm plays the role of both the OR operator
and the activation method. The RB of the FLS consists of
three Disjunctive Normal Form (DNF) rules with weights,
which are defined as follows:
• R1: If x1 is (Very High) Then Class is C1 (Weight = 1)
• R2: If Sum(x1, x2) is (High or Very High) Then Class is
C1 (Weight = 0.884)

• R3: If x1 is (Very Low or Low or Medium) and
Sum(x1, x2) is (Very Low or Low) Then Class is C0
(Weight = 0.908)

Let us consider that a user prefers to use the Fuzzy Logic
Toolbox for Matlab to design this FLS. To do this, a new
Mamdani Fuzzy Inference System (FIS) is created with the
AND and OR operators, the accumulation method, and the
activation method used in the FLS. Then, the three input
variables are added to the DB, including for each one the
five triangular fuzzy sets that were considered in the design.
Finally, the rules are added to the RB regarding the MFs
previously defined for each input variable. Notice that the
rules R2 and R3 can not be added to the RB. This is due

to the fact that Matlab toolbox does not allow us to select
several labels (connected by the OR operator in this case) for
a variable selected for the antecedent of the rule. Figure 7
shows the FIS design for the database Tao with the Matlab
toolbox.
In order to add the rules R2 and R3 to the RB, the FLS

generated with the Matlab toolbox is exported to a ‘‘.fis’’ file
to complete the design of the RB with JFML. To do this,
the first step is to create a new Java program in which the
library JFML is imported at the beginning. The second step
is to load in the program the designed FLS from the ‘‘.fis’’
file making use of the import options provided by JFML. The
third step is to create the missing terms related to the variables
x1 and Sumx1x2 that are required for rules R2 and R3. Notice
that the standard IEEE Std 1855-2016, and therefore also the
library JFML, provides an option called Circular Definition
that allows to define new MFs from those ones previously
defined for the terms of the variable. Then, the new terms
are created and added to the list of terms of the variables.
Finally, the fourth step is to generate the rules R2 and R3 and
add them to the RB. Figure 8 shows the Java code used to
implement the whole procedure described above and how to
evaluate new input values and write the FLS description to a
FML document.
This FLS can be used in the future by creating a new Java

program that reads the system from the FML document with
the unmarshalling option of JFML, assigns values to the input
variables and evaluates the system. Moreover, JFML allows
us to evaluate the FLS written in the FML document through
the command line. Developers have to run the JFML.jar file
with the following arguments: the FML document, the num-
ber of output variables, the name of the output variable, and
the list of pairs (input variable name / data value).
JFML will return a summary of the tasks carried out. For

instance, the following command can be used to evaluate the
FLS represented in the tao.xml file with the inputs x1 = 90,
x2 = 60, and Sumx1x2 = 150:
java -jar JFML.jar tao.xml 1 Class x1 90~x2 60~Sumx1x2 150

VOLUME 6, 2018 54961

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

FIGURE 8. Java code for the implementation of the FLS developed in [42] for the database Tao [43] in JFML.

VI. CONCLUSIONS
In this paper we have presented JFML, a new open source
Java library with license GPLv3 ready to design and to
use FLSs according to the IEEE Std 1855-2016. It offers a
complete implementation of the four fuzzy inference systems
enclosed in the W3C XML Schema definition (XSD) of the
standard: Mamdani, TSK, Tsukamoto, and AnYa. JFML has
been designed following the hierarchical structure based on
the concept of labeled tree used in the definition of FML
and it includes the extension methods considered in the stan-
dard, facilitating the integration of changes in future releases
of the standard. Additionally JFML includes a module to
import/export FLSs in accordance with FCL documents,
the Predictive Model Markup Language (PMML) and the
proprietary format understood by the Matlab Fuzzy Logic
Toolbox.

JFML uses the Java architecture JAXB to provide a fast and
convenient way for reading and writing FLSs according to
the standard. Moreover, JFML has a website associated with
a complete documentation and a good variety of examples.
In addition, it is hosted in the public hosting GitHub which
offers tools such as bug tracker ormailing. Notice that GitHub
looks with favor on exploiting all the advantages of the open
source model. JFML provides the research community with

a well-defined tool for designing and sharing fuzzy systems
without any additional, hardware and/or software, porting
task.

Three detailed case studies have been described in order
to illustrate the potential of JFML and the advantages of
JFML to exchange FLSs across different software. We have
first designed a FLS for the well-known tipper regression
problem. Then, we have designed a FLS for controlling the
wall-following behavior of a robot. Finally, we designed a
preliminary FLS for classification with the Matlab Fuzzy
Logic Toolbox and then we used JFML to enhance the design
and evaluate unknown input values. Accordingly, any avail-
able software that allows reading an FML document can also
read this system to perform other tasks. This mechanism for
exchanging information increases the usability of the avail-
able software and facilitates getting FLSs into widespread
real-world usage.

JFML is continuously updated and improved. We are
developing a graphic user interface as a new module in order
to facilitate the design and analysis of FLSs using JFML.
Finally, on the basis of the distributed computing capabilities
proposed in FML (i.e., a FLS can be distributed in computer
network environments), we will face Internet of Things (IoT)
challenges and we will extend opportunely the JFML library

54962 VOLUME 6, 2018

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

to enable fuzzy programmers to approach these novel scenar-
ios in a simple and direct way.

ACKNOWLEDGMENT
The authors want thank you to the community around JFML,
whose feedback and support have been of great importance
towards improving the library. The support of all themembers
of the IEEE-CIS Task Force on Fuzzy Systems Software is
especially acknowledged. They actively support all activities
carried out by the Task Force, being JFML one of the most
recent outcomes.

REFERENCES
[1] D. J. Dubois,Fuzzy Sets and Systems: Theory and Applications (Mathemat-

ics in Science and Engineering), vol. 144. NewYork, NY, USA: Academic,
1980.

[2] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications.
New York, NY, USA: Academic, 1980.

[3] X. Gu, F.-L. Chung, H. Ishibuchi, and S. Wang, ‘‘Imbalanced TSK fuzzy
classifier by cross-class Bayesian fuzzy clustering and imbalance learn-
ing,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 8, pp. 2005–2020,
Aug. 2017.

[4] Y. Li, S. Sui, and S. Tong, ‘‘Adaptive fuzzy control design for stochas-
tic nonlinear switched systems with arbitrary switchings and unmod-
eled dynamics,’’ IEEE Trans. Cybern., vol. 47, no. 2, pp. 403–414,
Feb. 2017.

[5] M. J. Gacto, M. Galende, and R. Alcalá, and F. Herrera,
‘‘METSK-HDe: A multiobjective evolutionary algorithm to learn accurate
TSK-fuzzy systems in high-dimensional and large-scale regression
problems,’’ Inf. Sci., vol. 276, pp. 63–79, Aug. 2014.

[6] R. Alcalá, M. Gacto, and J. Alcalá-Fdez, ‘‘Evolutionary data mining
and applications: A revision on the most cited papers from the last
10 years (2007–2017),’’Wires DataMining Knowl. Discovery, vol. 8, no. 2,
p. e1239, 2018.

[7] X. Xiang, C. Yu, L. Lapierre, J. Zhang, and Q. Zhang, ‘‘Survey on
fuzzy-logic-based guidance and control of marine surface vehicles and
underwater vehicles,’’ Int. J. Fuzzy Syst., vol. 20, no. 2, pp. 572–586,
2018.

[8] S. El-Sappagh, J. M. Alonso, F. Ali, A. Ali, J.-H. Jang, and K.-S. Kwak,
‘‘An ontology-based interpretable fuzzy decision support system for dia-
betes mellitus diagnosis,’’ IEEE Access, vol. 6, pp. 37371–37394, 2018.

[9] E. Aranda-Escolástico,M. Guinaldo,M. Santos, and S. Dormido, ‘‘Control
of a chain pendulum: A fuzzy logic approach,’’ Int. J. Comput. Intell. Syst.,
vol. 9, no. 2, pp. 281–295, 2016.

[10] H. Zermane and H. Mouss, ‘‘Internet and fuzzy based control system for
rotary kiln in cement manufacturing plant,’’ Int. J. Comput. Intell. Syst.,
vol. 10, no. 1, pp. 835–850, 2017.

[11] H. Thimbleby, ‘‘Explaining code for publication,’’ Softw., Pract. Exper.,
vol. 33, no. 10, pp. 975–1001, 2003.

[12] MathWorks. (2017). Fuzzy Logic Toolbox—R2017b. [Online]. Available:
https://www.mathworks.com/products/fuzzy-logic.html

[13] Wolfram. (2005). Fuzzy Logic. [Online]. Available: https://reference.
wolfram.com/legacy/v4/AddOns/Applications_FuzzyLogic.html

[14] C. Wagner, ‘‘Juzzy—A Java based toolkit for type-2 fuzzy logic,’’ in Proc.
IEEE Symp. Adv. Type-2 Fuzzy Log. Syst. (T2FUZZ), Apr. 2013, pp. 45–52.

[15] J. Rada-Vilela. (2017). Fuzzylite: A Fuzzy Logic Control Library. [Online].
Available: http://www.fuzzylite.com

[16] S. Guillaume and B. Charnomordic, ‘‘Learning interpretable fuzzy infer-
ence systems with FisPro,’’ Inf. Sci., vol. 181, no. 20, pp. 4409–4427, 2011.
[Online]. Available: http://www.inra.fr/mia/M/fispro/

[17] (1998). Open Source Initative. [Online]. Available: http://www.
opensource.org/docs/osd

[18] E. H. Mamdani and S. Assilian, ‘‘An experiment in linguistic synthesis
with a fuzzy logic controller,’’ Int. J. Man-Mach. Studies, vol. 7, pp. 1–13,
Jan. 1975.

[19] International Electrotechnical Commission Technical Committee
Industrial Process Measurement and Control, document IEC 61131,
Programmable Controllers, 2000.

[20] IEEE Standard for Fuzzy Markup Language, Standard 1855-2016,
2016, pp. 1–89. [Online]. Available: https://standards.ieee.org/
findstds/standard/1855-2016.html.

[21] G. Acampora, ‘‘Fuzzy Markup Language: A XML based language for
enabling full interoperability in fuzzy systems design,’’ in On the Power
of Fuzzy Markup Language, G. Acampora, V. Loia, C.-S. Lee, and
M.-H. Wang, Eds. Berlin, Germany: Springer, 2013,
pp. 17–31.

[22] T. Takagi and M. Sugeno, ‘‘Fuzzy identification of systems and its appli-
cations to modeling and control,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. SMC-15, no. 1, pp. 116–132, Feb. 1985.

[23] Y. Tsukamoto, ‘‘An approach to fuzzy reasoning method,’’ in Advances
in Fuzzy Set Theory and Applications, M. M. Gupta, R. K. Ragade, and
R. R. Yager, Eds. Amsterdam, The Netherlands: North Holland, 1979,
pp. 137–149.

[24] P. Angelov and R. Yager, ‘‘Simplified fuzzy rule-based systems using non-
parametric antecedents and relative data density,’’ in Proc. IEEEWorkshop
Evolving Adapt. Intell. Syst. (EAIS), Apr. 2011, pp. 62–69.

[25] A. Guazzelli, M. Zeller, W.-C. Lin, and G. Williams, ‘‘PMML: An
open standard for sharing models,’’ R J., vol. 1, no. 1, pp. 60–79,
2009.

[26] A. Guazzelli, W.-C. Lin, T. Jena, and J. Taylor, PMML in Action: Unleash-
ing the Power of Open Standards for DataMining and Predictive Analytics,
2nd ed. New York, NY, USA: Space Independent Publishing Platform,
2012.

[27] G. Acampora, B. Di Stefano, and A. Vitiello, ‘‘IEEE 1855: The first
ieee standard sponsored by ieee computational intelligence society,’’ IEEE
Comput. Intell. Mag., vol. 11, no. 4, pp. 4–7, Nov. 2016.

[28] E. Trillas and L. Eciolaza, Fuzzy Logic: An Introductory Course for Engi-
neering Students. New York, NY, USA: Springer, 2015.

[29] L. A. Zadeh, ‘‘Outline of a new approach to the analysis of com-
plex systems and decision processes,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-3, no. 1, pp. 28–44, Jan. 1973.

[30] S. Sonnenburg et al., ‘‘The need for open source software in
machine learning,’’ J. Mach. Learn. Res., vol. 8, pp. 2443–2466,
Oct. 2007.

[31] J. Alcalá-Fdez and J. M. Alonso, ‘‘A survey of fuzzy systems soft-
ware: Taxonomy, current research trends, and prospects,’’ IEEE Trans.
Fuzzy Syst., vol. 24, no. 1, pp. 40–56, Feb. 2016. [Online]. Available:
http://sci2s.ugr.es/fss/

[32] P. Cingolani and J. Alcalá-Fdez, ‘‘jFuzzyLogic: A robust and flexible
Fuzzy-Logic inference system language implementation,’’ Int. J. Com-
put. Intell. Syst., vol. 6, no. 1, pp. 61–75, 2013. [Online]. Available:
http://jfuzzylogic.sourceforge.net/html/index.html

[33] M. Zarozinski, ‘‘An open source fuzzy logic library,’’ in AI Game Pro-
grammingWisdom. NewtonCenter,MA,USA: Charles RiverMedia, 2002,
pp. 90–103. [Online]. Available: http://ffll.sourceforge.net/

[34] L. S. Riza, C. Bergmeir, F. Herrera, and J. M. Benítez, ‘‘FRBS:
Fuzzy rule-based systems for classification and regression in R,’’
J. Stat. Softw., vol. 65, no. 6, pp. 1–30, 2015. [Online]. Available:
http://www.jstatsoft.org/v65/i06/

[35] W. Trutschnig and A. Lubiano. (2015). SAFD: Statistical Analysis of Fuzzy
Data, R Package Version 1.0-1. [Online]. Available: https://CRAN.R-
project.org/package=SAFD

[36] J. R. Castro, O. Castillo, and P. Melin, ‘‘An interval type-2 fuzzy logic
toolbox for control applications,’’ in Proc. IEEE Int. Fuzzy Syst. Conf.,
London, U.K., Jul. 2007, pp. 1–6.

[37] J. R. Castro, O. Castillo, P. Melin, L. G. Martínez, S. Escobar, and
I. Camacho, ‘‘Building fuzzy inference systems with the interval type-
2 fuzzy logic toolbox,’’ in Analysis and Design of Intelligent Systems
Using Soft Computing Techniques, P. Melin, O. Castillo, E. Ramírez,
J. Kacprzyk, and W. Pedrycz, Eds. Berlin, Germany: Springer, 2007,
pp. 53–62.

[38] J. Castro, O. Castillo, P. Melin, and A. Rodríguez-Díaz, ‘‘Building fuzzy
inference systems with a new interval type-2 fuzzy logic toolbox,’’ in
Transactions on Computational Science I, M. Gavrilova and C. Tan, Eds.
Berlin, Germany: Springer, 2008, pp. 104–114.

[39] O. Castillo, P. Melin, and J. Castro, ‘‘Computational intelligence software
for interval type-2 fuzzy logic,’’ Comput. Appl. Eng. Educ., vol. 21, no. 4,
pp. 737–747, 2013.

[40] (2015). jFuzzyQt—C++ Fuzzy Logic Library. [Online]. Available:
http://jfuzzyqt.sourceforge.net/

VOLUME 6, 2018 54963

J. M. Soto-Hidalgo et al.: JFML: A Java Library to Design Fuzzy Logic Systems

[41] (2014). PyFuzzy—Python Fuzzy Package. [Online]. Available:
http://pyfuzzy.sourceforge.net/

[42] D. García, A. González, and R. Pérez, ‘‘A two-step approach of feature
construction for a genetic learning algorithm,’’ in Proc. IEEE Int. Conf.
Fuzzy Syst. (FUZZ-IEEE), Taipei, Taiwan, Jun. 2011, pp. 1255–1262.

[43] E. Bernadó, X. Llorà, J. M. Garrell, ‘‘XCS and GALE: A comparative
study of two learning classifier systems on data mining,’’ in Advances in
Learning Classifier Systems, P. Lanzi, W. Stolzmann, and S. Wilson, Eds.
Berlin, Germany: Springer, 2002, pp. 115–132.

J. M. SOTO-HIDALGO received the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of Granada, Spain, in 2004 and 2014,
respectively. Since 2007, he has been a member
with the Department of Computer Architecture,
Electronics and Electronic Technology, Univer-
sity of Córdoba, Spain, where he is currently
an Associate Professor. He has authored over
50 papers in international journals and confer-
ences. His research interests include softcomput-

ing applied to image processing and data sensors management.

JOSE M. ALONSO received the M.S. and Ph.D.
degrees in telecommunication engineering from
the Technical University of Madrid, Spain, in 2003
and 2007, respectively. He is currently a Post-
Doctoral Researcher with the Research Centre in
Information Technologies, University of Santiago
de Compostela. He has published over 85 papers
in international journals, book chapters, and peer-
review conferences. His research interests include
the development of free software tools, inter-

pretable fuzzy modeling, natural language generation, knowledge extraction
and representation, integration of expert and induced knowledge, data sci-
ence, and big data. He is the Secretary of the European Society for Fuzzy
Logic and Technology. He has been the Chair of the IEEE-CIS Task Force
on Fuzzy Systems Software since 2018, and an Associate Editor of the IEEE
Computational Intelligence Magazine.

GIOVANNI ACAMPORA received the master’s
and Ph.D. degrees in computer science with the
University of Salerno in 2003 and 2007, respec-
tively. He is currently an Associate Professor
in artificial intelligence and quantum computing
with the University of Naples Federico II and the
Working Group Chair of the IEEE 1855 Working
Group, IEEE Standards Association. He was the
Chair of Standards Committee at the IEEE Com-
putational Intelligence Society, the Hoofddocent

Tenure Track in Process Intelligence at the Eindhoven University of Technol-
ogy, the Secretary and Treasurer at the IEEE CIS Italian Chapter, a Research
Fellow at the University of Salerno, the Chair of the Task Force on Terminol-
ogy and Taxonomy IEEE CIS Standards Committee, IEEE Computational
Intelligence Society, and a Professor at UniPegaso. His papers include using
FML and fuzzy technology in adaptive ambient intelligence environments,
diet assessment based on type-2 fuzzy ontology and fuzzy markup language,
A Survey on Ambient Intelligence in Health Care, Fuzzy control interop-
erability and scalability for adaptive domotic framework, Interoperable and
adaptive fuzzy services for ambient intelligence applications, and A hybrid
evolutionary approach for solving the ontology alignment problem.

J. ALCALÁ-FDEZ received the M.Sc. and Ph.D.
degrees in computer science from the University
of Granada, Spain, in 2002 and 2006, respectively.
From 2005 to 2007, he was with the Department of
Computer Science, University of Jaèn. He is cur-
rently an Associate Professor with the Department
of Computer Science and Artificial Intelligence,
University of Granada, where he is also a member
of the Soft Computing and Intelligent Information
Systems Research Group. He has been the Chair

of the Software Fuzzy Systems Task Force and the Fuzzy Systems Tech-
nical Committee, IEEE Computational Intelligence Society, since 2011. He
has published over 60 papers in international journals, book chapters, and
conferences.

54964 VOLUME 6, 2018

	INTRODUCTION
	IEEE STANDARD 1855-2016 FOR FUZZY MARKUP LANGUAGE
	RELATED WORK
	JFML
	JFML CORE
	FuzzySystemType CLASS
	KnowledgeBaseType CLASS
	FuzzySystemsRuleBase CLASS

	BINDING WITH THE FML XSD
	EXTENSIBILITY
	IMPORT/EXPORT MODULES

	CASE STUDIES
	TIPPER FUZZY SYSTEM
	ROBOT FUZZY CONTROL SYSTEM
	TAO FUZZY SYSTEM

	CONCLUSIONS
	REFERENCES
	Biographies
	J. M. SOTO-HIDALGO
	JOSE M. ALONSO
	GIOVANNI ACAMPORA
	J. ALCALÁ-FDEZ

