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Abstract: The high prevalence of obesity is a serious public health problem in today’s world.
Both obesity and insulin resistance favor the development of metabolic syndrome (MetS), which is
associated with a number of pathologies, especially type 2 diabetes mellitus, and cardiovascular
diseases. This serious problem highlights the need to search for new natural compounds to be
employed in therapeutic and preventive strategies, such as oleanolic acid (OA). This research aimed
to systematically review the effects of OA on the main components of MetS as well as oxidative
stress in clinical trials and experimental animal studies. Databases searched included PubMed,
Medline, Web of Science, Scopus, EMBASE, Cochrane, and CINAHL from 2013 to 2019. Thus,
both animal studies (n = 23) and human clinical trials (n = 1) were included in our review to assess
the effects of OA formulations on parameters concerning insulin resistance and the MetS components.
The methodological quality assessment was performed through using the SYRCLE’s Risk of Bias
for animal studies and the Jadad scale. According to the studies in our review, OA improves
blood pressure levels, hypertriglyceridemia, hyperglycemia, oxidative stress, and insulin resistance.
Although there is scientific evidence that OA has beneficial effects in the prevention and treatment of
MetS and insulin resistance, more experimental studies and randomized clinical trials are needed to
guarantee its effectiveness.
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1. Introduction

The increasing prevalence of overweight and obesity entails a serious global public health problem.
It has been estimated that 39% of the world population over the age of 18 years is overweight, and 13%
is obese, according to World Health Organization (WHO) data (2016) [1]. Furthermore, 18% of children
and adolescents (5–19 years old) are either overweight or obese [1,2]. This situation is alarming because
obesity and insulin resistance are two of the most important factors leading to metabolic syndrome
(MetS) [3]. MetS consists of a set of cardiometabolic anomalies that lead to the development of type
2 diabetes mellitus (T2DM) and of cardiovascular disease (CVD) [4,5]. Nevertheless, MetS is also
associated with other clinical conditions such as oxidative stress, hypertension, dyslipidemia, hepatic
steatosis, non-alcoholic fatty liver disease, and impaired glucose tolerance, among others [6].

According to the WHO [5], insulin resistance is the main pathophysiological factor underlying
MetS. It is characterized by a diminished tissue response to the cell activity of insulin [6], which implies
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a reduction in glucose uptake in adipocytes and muscle cells, an increase in hepatic glucose production,
and altered lipid metabolism in the liver and adipose tissue [7]. Various studies highlight the relationship
of insulin resistance to obesity and inflammation. Obesity-associated hyperplasia and hypertrophy
of adipose tissue cause an increase in proinflammatory cytokines [8], such as tumor necrosis factor
alpha (TNF-α) and interleukin-6 (IL-6) [9]. These proinflammatory cytokines, which have a negative
effect on insulin signaling, are regulated by nuclear transcription factor kappa B (NF-kB), one of the
pathways that activates oxidative stress [10].

The various definitions of MetS proposed by organizations such as the WHO, the European Group
for the Study of Insulin Resistance (EGIR), and the National Cholesterol Education Program—Adult
Treatment Panel III all underline that central MetS components are abdominal obesity, insulin resistance,
hypertension, and dyslipidemia [3,5]. In this same line, in 2006, the International Diabetes Federation
(IDF) defined MetS as “central obesity plus any two of the following four factors: raised triglycerides,
reduced HDL cholesterol, raised blood pressure, and raised fasting plasma glucose.” Accordingly,
the treatment and prevention of MetS should not only be envisaged as a whole, but each MetS
component should also be considered individually.

The high prevalence of obesity and MetS because of sedentary and generally unhealthy life
styles [1,2] makes the application of pharmacological interventions necessary, which have the tendency
to be expensive for the health care systems. In addition, some of these drugs have several side effects
that adversely affect the quality of life. In this sense, therapeutic properties of bioactive compounds
are increasingly being studied [11,12]. It has been reported that oleanolic acid (OA), a naturally
occurring pentacyclic triterpenoid, found at a high content in the leaves and fruit of the olive tree,
among other plants [13], has various interesting pharmacological properties for the prevention and
treatment of MetS and insulin resistance, such as anti-inflammatory, anti-oxidant, hypolipidemic,
antidiabetic, anti-atherosclerotic [10,13,14] and antihypertensive [14,15] effects. The mechanisms of
action that support these properties have been studied by different authors. OA is a selective Takeda
G-protein-coupled receptor 5 (TGR5) agonist, whose activation have beneficial effects on glucose
homeostasis, proinflammatory cytokines and body weight [16]. Furthermore, other authors refer that
OA could suppresses the NF-kB and activate the nuclear factor erythroid 2–related factor 2 (Nrf2)
signaling pathways, both having important roles on the inflammatory status in insulin resistance [10,17].

Consequently, as a bioactive compound, OA has potential to be considered for the development
of new and alternative therapeutic strategies for insulin resistance and MetS. Therefore, this study
was aimed to systematically review the effects of OA formulations on the components of MetS and on
proinflammatory cytokines and antioxidant enzymes as oxidative stress biomarkers in human subjects
and animal models.

2. Materials and Methods

2.1. Databases and Search Strategy

In June 2019, a systematic review was performed in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines [18]. The objective was
to systematically identify the clinical trials and experimental studies in animals that have evaluated
the effects of OA on insulin resistance and the various MetS components to date. For this purpose,
we conducted a bibliographic search with a time filter from January 2013 until June 2019 in the following
five electronic databases: Medline, Web of Science, Scopus, EMBASE, Cochrane and CINAHL. PubMed
search engine was also consulted.

The search terms were based on the following descriptors in the Medical Subject Headings (MeSH):
oleanolic acid, metabolic syndrome, insulin resistance, obesity, hypertension, and inflammation. The
search strategy used in all of the databases was Oleanolic acid AND (“metabolic syndrome” OR
“insulin resistance” OR obesity OR hypertension OR inflammation).
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2.2. Selection of Papers. Eligibility Criteria

The studies were selected in two phases. In the first phase, all titles and abstracts were read and
analyzed in order to select the most potentially relevant studies, based on the following inclusion
criteria: (1) oleanolic acid administration, (2) focus on insulin resistance and/or MetS components,
(3) clinical trials in humans and experimental studies on animals, (4) articles published in English, and
(5) access to the full text. In doubtful cases, the complete text of the article was analyzed.

In the second phase, we analyzed the full text of the articles selected in the previous phase in
order to determine their eligibility. The articles excluded in this phase had one of the following criteria:
(1) secondary studies, (2) no use of OA or use of an OA derivative, (3) combined administration of
OA with another bioactive compounds, or (4) research based on the molecular study of OA and its
biological activity. This selection process was performed by two independent reviewers (A.F-A. and
J.S-R.), though a third reviewer (J.S.P.) was also consulted in doubtful cases.

2.3. Data Extraction

After selecting the studies for the qualitative synthesis of this systematic review, the next step
was to extract the data. Data extracted both from the clinical trial and the animal studies were the
following: authors and publication year, subjects, sample size, type of intervention, duration of the
intervention, dosage used, and outcomes obtained (hypertension, lipid profile, hyperglycemia, insulin
resistance, and inflammatory and oxidative stress biomarkers). Data extraction was performed by two
independent reviewers (E.G-J. and M.C-R.), though a third reviewer (J.M.C.) was consulted in cases
of doubt. Each of the results measured was described in a narrative form. A meta-analysis of the
animal studies included was ruled out because of the heterogeneous nature of the studies, especially in
reference to their design and the animal species used in these studies.

2.4. Risk of Bias and Methodological Quality Assessment

To reduce inter-examiner bias, two independent reviewers (A.F-A. and J.S-R.) performed the
methodological quality assessment and analyzed the risk of bias of all the studies included in this
review. When there was any doubt, a third reviewer (J.S.P.) was consulted. The methodological quality
assessment of the animal intervention studies was performed by using the SYRCLE’s Risk of Bias
(RoB) tool [19], whereas the Jadad scale was used to evaluate the methodological quality of the clinical
trial [20].

SYRCLE’s RoB tool was elaborated by the Systematic Review Centre for Laboratory Animal
Experimentation (SYRCLE) [19] for assessing the methodological quality of experimental studies of
animals and is based on the Cochrane Collaboration RoB tool. SYRCLE’s RoB tool contains 10 items,
five of which (i.e., items 1, 3, 8, 9, and 10) coincide with those of the Cochrane RoB tool because they
are applicable to animal experiments. The remaining items were adapted to the characteristics of
animal experimentation studies. These items assess six types of bias: selection bias, performance bias,
detection bias, attrition bias, reporting bias and another bias. In SYRCLE’s RoB tool each of the 10 items
is rated to a “yes” (low risk of bias), a “no” (high risk of bias), or “unclear” (insufficient information to
evaluate risk of bias).

The Jadad scale [20] is a five-item tool used for reporting risk of bias of clinical trials and each of
its items assess randomization, method of randomization, double-blinding, method of blinding and
reporting of withdrawals, respectively. The Jadad score for ranges from 0 to 5, 0 being the lowest level
of quality and 5 the highest.

3. Results

3.1. Study Selection

The search strategy, implemented in the various databases and the PubMed search engine, with a
time filter from January 2013 until June 2019, produced the following 1661 results: 523 from the Web of
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Science, 382 from Scopus, 271 from Medline, 286 from EMBASE, 91 from PubMed, 101 from CINAHL,
and 7 from Cochrane. After the duplicated publications were eliminated, the titles and abstracts
of 733 articles were analyzed to ascertain whether they fulfilled the inclusion criteria. Full texts of
30 articles were then read in order to assess their suitability for the study. Finally, 24 of these articles
were included in the systematic review without carrying out an inverse search of the literature. Figure 1
shows the flow diagram of the selection and exclusion process of the research studies according to the
PRISMA system [18].

In the first phase of selection, four studies were excluded because of having not full-text
access [21–24]. It is also noteworthy that two randomized double-blind controlled trials that studied
the effects of virgin olive oils enriched with bioactive compounds, such as phenolic compounds and
different triterpenes on MetS and oxidative stress were found in the first phase of selection [25,26].
However, they were excluded because the aim of this systematic review is to evaluate the effects of OA
alone, without interactions with another bioactive compounds.
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3.2. Characteristics of the Animal Studies Selected

Table 1 summarizes the characteristics of the animal studies selected. In addition, this table includes
the results of these studies on the effect of OA on insulin resistance and MetS components. Of the
animal studies selected, the majority (n = 20) used rodents, particularly rats and mice. The experimental
animals in the remaining studies were quails (n = 1), rabbits (n = 1) and a mixed study of rabbits
and mice (n = 1). In the studies that used rats and mice, the largest sample size was n = 122 and the
smallest sample size was n = 18. The sample size in the study of quails was n = 120; in the study
of rabbits, n = 24; and in the mixed study, there were 32 rabbits and 56 mice. The minimum OA
dosage administered was 5 mg/kg and the maximum OA dosage was 250 mg/kg. The maximum
administration time period was 20 weeks, and the minimum time period was one week.

3.3. Characteristics of the Clinical Trial Selected

Table 2 summarizes the characteristics of the clinical trial selected.

3.4. Risk of Bias and Methodological Quality Assessment

According to the authors of the SYRCLE’s RoB tool, the risk of bias assessment should be presented
as a table or a figure that gives either the summary results of the assessment or the results of all
individual studies. They do not recommend calculating a summary score for each individual study
when using this tool since this inevitably involves assigning “weights” to specific domains in the tool,
and it is difficult to justify the weights assigned [19]. Accordingly, Table 3 presents the results obtained
with SYRCLE’s RoB tool for each study. In addition, the Jadad score is presented in Table 4.

3.5. OA Effects on Insulin Resistance and MetS Components in Animal Studies

3.5.1. Hypertension

Three studies were performed in hypertensive animal models [27–29]. Ahn et al. [27] reported
that the application of OA over a period of three months produced a significant decrease in systolic
blood pressure (SBP) in hypertensive rats in comparison to non-OA-treated hypertensive rats. In this
same line, the administration of OA by Bachhav et al. [28] to Nω-nitro-L-arginine methyl ester
(L-NAME)-induced hypertensive rats for four weeks significantly reduced SBP and the mean arterial
blood pressure (MAP). It also significantly increased urine volume and urine sodium excreted, as well
as non-significantly increased serum nitrate/nitrite (NOx) levels in comparison to the group of rats that
was only given L-NAME. Similarly, in a study conducted by Madlala et al. [29], the administration of
various doses of OA (30, 60, and 120 mg/kg) significantly reduced MAP from the third week until the
end of the intervention in OA-treated rats in comparison to the control group. Moreover, the results
obtained in this study indicated a significant increase in urine sodium excretion, but not in the volume
of urine excreted. Furthermore, in the study conducted by Gamede et al. [30], a reduction of the MAP
was observed in prediabetic rats. In summary, OA reduced SBP and MAP and increased urinary
excretion of sodium.
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Table 1. Characteristics and results of animal experimentation studies on the effect of oleanolic acid (OA) on insulin resistance and metabolic syndrome
(MetS) components.

Author/Year Subjects Sample Size (n) Intervention Dosage Duration Results

Ahn YM et al.
[27] (2017)

Hypertensive (HTA) and
normotensive rats 31 Oleanolic acid (OA)

by oral gavage 30 mg/kg/day 7 weeks (OA last
3 weeks) ↓ SBP (p < 0.001) in OA-treated HTA rats vs. HTA control

Bachhav SS et al.
[28] (2015)

L-NAME, during the
intervention, induced
hypertensive rats

34 Oral administration
of OA 60 mg/kg/day 4 weeks

↓ SBP (p < 0.001) and MAP (p < 0.05), ↑ urine excretion and urine
sodium vs. L-NAME control group; ↓ non-significant (ns) of body
weight and ↑ ns of serum NOx vs. L-NAME control group.

Madlala HP et al.
[29] (2015)

Normotense, DSS and
SHR rats 18 Oral administration

of OA
30, 60 and 120 mg/kg
twice every three days 9 weeks

↓MAP (p < 0.05), ↑ urine sodium excretion in DSS and SHR rats;
↓MDA in al tissues, and ↑ SOD and GSH-Px activities in liver and
kidney in DSS and SHR rats, only in OA60

Chen S et al. [31]
(2017)

HFD-fed mice and
diabetic db/db mice 20 Intraperitoneal

injection of OA 20 mg/kg b.w/day 4 weeks ↓ TG, TC, LDL, HDL (p < 0.05) in OA-treated diabetic mice vs.
non-OA-treated diabetic mice

Jiang Q et al. [32]
(2015) HFD-fed quails 120 OA via gavage 25, 50 and

100 mg/kg/day 10 weeks

↓ serum TG, TC, LDL and MDA, and ↑ HDL (4.05 ± 0.31 vs. 2.63 ± 0.52
mM, p < 0.05), NO (37.60 ± 9.15 vs. 29.49 ± 7.47 µM, p < 0.05), SOD,
CAT, GSH and GSH-Px vs. HFD control group, especially with
100 mg/kg of OA.

Luo H et al. [33]
(2017)

32 rabbits
32 C57BL/6J mice
24 LDLR−/−mice

88
OA administration to

animals fed with
atherogenic diet

10 (rabbits) and 25
(mice) mg/kg/day

12 weeks (last
5 weeks OA)

↓ TG, TC, LDL vs. non-OA-treated rabbits
↓ TG, LDL, ↑ HDL vs. non-OA-treated LDLR−/−mice
↓ TC, LDL vs. non-OA-treated C57BL/6J mice.

Pan Y et al. [34]
(2018) HFD-fed rabbits 24 OA via gavage 50 mg/kg/day 12 weeks (last

4 weeks OA)

↓ TG (p < 0.001), TC (p < 0.001), LDL (p < 0.05) and HDL (p < 0.01); ↓
serum levels of IL-1β, IL-6 (p < 0.001), and TNFα (p < 0.001) vs. HFD
control group.

Molepo M et al.
[12] (2018) Pups rats. 96 OA via oral gavage 60 mg/kg/day 16 weeks

(2nd week OA) ↓ saturated FFA, and ↑mono/polyunsaturated FFA vs. control group

Wang X et al.
[35] (2013)

Non-diabetic rats and
diabetic mice 34 Intraperitoneal

injection of OA 20 mg/kg/day 2 weeks

↓ FBG, and FSI; ↓ body weight (36.4 ± 2.3 vs. 41.7 ± 4.1 g); ↓ TG, TC,
LDL, FFA, IL-1β, IL-6, and TNFα, and ↑ HDL both in serum and ↓
liver;↓ AUC of IPGTT and IPITT. All changes (p < 0.05) vs.
non-OA-treated diabetic mice.

Li Y et al. [36]
(2014)

Fructose induced insulin
resistant rats 24 Oral administration

of OA 5 and 25 mg/kg/day 10 weeks
↓ FSI, HOMA-IR and Adipo-IR vs. non-OA-treated insulin resistant rats;
↓ AUC of FFA and ↓ non-significant of glucose in the OGTT vs.
non-insulin resistant rats. These changes (p < 0.05) only with OA 25 mg.

Lee ES et al. [37]
(2016)

Non-diabetic and
T2DM rats - OA via oral gavage 100 mg/kg/day 20 weeks ↓ Body weight vs. non-diabetic rats control group. ↑ Insulinemia,

HOMA-β and serum SOD, and ↓ TG vs. non-OA-treated diabetic rats.

Wang X et al.
[38] (2015) Diabetic mice 24 Intragastric

administration of OA 250 mg/kg/day 4 weeks
↓ FBG (p < 0.001), HOMA-IR (p < 0.05) and HDL (7.54 ± 0.82 vs.
9.02 ± 0.97 mM/l, p < 0.01), improved glucose AUC of OGTT and ↓
non-significant of FSI vs. control group
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Table 1. Cont.

Author/Year Subjects Sample Size (n) Intervention Dosage Duration Results

Gamede M et al.
[39] (2018)

HFHC diet induced
prediabetic rats 36 Oral administration

of OA 80 mg/kg/3days 12 weeks
↓ Body weight (p < 0.05), glycemia in the OGTT (p < 0.05), HOMA2-IR
(60.35 ± 2.05 vs. 128.26 ± 2.98, p < 0.05), HbA1c, ghrelin, hepatic and
muscular glycogen concentration vs. non-OA-treated prediabetic rats.

Gamede M et al.
[30] (2019)

HFHC diet induced
prediabetic rats 36 Oral administration

of OA Not mentioned 12 weeks

↓ Body weight (516.75 ± 8.28 vs. 679.75 ± 78.52 g), FBG, MAP, and
plasma levels of TG, LDL, IL-6 and TNF-α, ↑ plasma level of HDL
(1.88 ± 0.02 vs. 0.85 ± 0.04 mM/l), SOD and GSH-Px, and ↓ heart MDA
concentration vs. prediabetic control group. All changes p < 0.05

Djeziri FZ et al.
[40] (2018) HFD induced obese mice 18 Oral administration

of OA Not mentioned 16 weeks ↓ Glycemia in the IPGTT; and ↓ gene expression of IL-1β, IL-6,
and TNFα vs. HFD control group

Nakajima K et al.
[41] (2019)

STD, HFD or HGD-fed
mice 18 OA by oral gavage 20 and 40 mg/kg/day 1 week ↓ plasma octanoylated ghrelin levels and body weight gain in STD-fed

rats vs. non-OA-treated STD-fed rats

Su S et al. [42]
(2018)

PCBs-induced metabolic
disfunction in mice 40 Oral administration

of OA 50 mg/kg/3days 10 weeks

↓ FBG (132 ± 14 vs. 191 ± 16 mg/dl), HOMA-IR (1.02 ± 0.17 vs.
1.79 ± 0.35) and serum levels of TG, FFA, cholesterol and FSI (1.35 ± 0.41
vs. 2.8 ± 0.56 ng/dl); ↓ Glucose level in IPGTT and IPITT. All changes
(p < 0.05) vs. non-OA-treated PCBs-induced mice

Wang S et al. [43]
(2018) HFF diet-fed rats 36 OA and Nano-OA

by gavage 25mg/kg/day 12 weeks (last
6 weeks OA)

↓ BW, FBG and serum NO level, ↑ serum CAT activity in OA and
nano-OA groups. ↓ serum levels of FSI, TG and MDA, ↑ ISI and serum
SOD activity in nano-OA group. All changes (p < 0.05) vs. non-treated
insulin resistant rats.

An Q et al. [44]
(2017)

Streptozotocin-induced
diabetic rats. 18 Oleanolic acid 100 mg/kg/day 12 weeks (last

6 weeks OA)
↓ FBG, serum levels of IL-1β (p < 0,001), IL-6 (p < 0.05), and TNFα
(p < 0.01); ↑ serum NO level (p < 0.01) vs. non-OA-treated diabetic rats.

Matumba MG
et al. [45] (2019) Pups rats 40

Neonatal OA
administration by
orogastric gavage

60 mg/kg/day 16 weeks (2nd
week OA)

↑ Adiponectin (1,5 fold, p < 0.01); ↓ IL-6 (p < 0.01) and TNFα plasma
concentration; and ↓ gene expression of IL-6 (p < 0.0001) and TNFα
p < 0.0001) vs. non-OA-treated HF-fed rats

Nyakudya TT
et al. [46] (2018)

Pups rats. High fructose
to half of the rats 112 Neonatal OA

administration 60 mg/kg/day b.w. 16 weeks (2nd
week OA)

↓ AUC in the OGTT, and of the HOMA-IR index in the rats treated
with OA.

Nyakudya et al.
[47] (2018) Pups rats 112 Neonatal OA

administration 60 mg/kg/day b.w. 16 weeks (2nd
week OA)

↑ hepatic lipid content in male rats, and in terminal body mass in female
rats fed with HF as neonates and as a adults vs. OA-treated rats.

Nyakudya et al.
[48] (2019)

Pups rats in their second
postnatal week 30

Neonatal OA
administration by
orogastric gavage

60 mg/kg/day b.w. 1 week ↑ level of GSH and CAT activity, ↓MDA concentration in skeletal
muscle tissue vs. HF-fed rats.

Notes: All results referenced are statistically significant unless otherwise noted; SBP, systolic blood pressure; MAP, mean arterial blood pressure; L-NAME, Nω-nitro-L-arginine methyl
ester; NOx, serum nitrate/nitrite level; DSS, Dahl salt-sensitive; SHR, spontaneously hypertensive rats; MDA, malonaldehyde; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase;
HFD, high-fat diet; TG, triglycerides; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NO, nitric oxide; CAT, catalase; GSH, total glutathione; FFA,
free fatty acids; FBG, fasting blood glucose; FSI, fasting serum insulin; AUC, area under the curve; IPGTT, intraperitoneal glucose tolerance test; IPITT, intraperitoneal insulin tolerance test;
T2DM: 2 type diabetes mellitus; OGTT, oral glucose tolerance test; HFHC, high-fat high-carbohydrate; HOMA-IR and HOMA2-IR: insulin resistance index; STD: standard diet; HGD,
high-glucose diet; PCBs, polychlorinated biphenyls; HFF, High fat and fructose; BW, body weight; ISI, insulin sensitivity index; HF, high fructose. ↑means reduction/decrease, etc of the
results; and ↓means an increase.
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Table 2. Characteristics and results of the clinical trial on the effect of OA.

Author/Year Subjects Sample Size (n) Intervention Dosage Duration Results

Luo HQ et al. [49] (2018) Hyperlipidemic patients 15 Oleanolic acid Not mentioned 4 weeks
↓ TC, TG, LDL, glucose and FSI;

↑ HDL and Leptin; slight ↓ of HbA1c

Notes: TC, total cholesterol; TG, triglycerides; LDL, Low-density lipoprotein; HDL, High-density lipoprotein; FSI, fasting serum insulin; HbA1c, glycosylated hemoglobin A1c. ↑means
reduction/decrease, etc of the results; and ↓means an increase.

Table 3. SYRCLE’s RoB tool results for each study.

Items of the tool

A
hn

Y
M

et
al

.(
20

17
)[

27
]

B
ac

hh
av

SS
et

al
.(

20
15

)[
28

]

M
ad

la
la

H
P

et
al

.(
20

15
)[

29
]

C
he

n
S

et
al

.(
20

17
)[

31
]

Ji
an

g
Q

et
al

.(
20

15
)[

32
]

Lu
o

H
et

al
.(

20
17

)[
33

]

Pa
n

Y
et

al
.(

20
18

)[
34

]

M
ol

ep
o

M
et

al
.(

20
18

)[
12

]

W
an

g
X

et
al

.(
20

13
)[

35
]

Li
Y

et
al

.(
20

14
)[

36
]

Le
e

ES
et

al
.(

20
16

)[
37

]

W
an

g
X

et
al

.(
20

15
)[

38
]

G
am

ed
e

M
et

al
.(

20
18

)[
39

]

G
am

ed
e

M
et

al
.(

20
19

)[
30

]

D
je

zi
ri

FZ
et

al
.(

20
18

)[
40

]

N
ak

aj
im

a
K

et
al

.(
20

19
)[

41
]

Su
S

et
al

.(
20

18
)[

42
]

W
an

g
S

et
al

.(
20

18
)[

43
]

A
n

Q
et

al
.(

20
17

)[
44

]

M
at

um
ba

M
G

et
al

.(
20

19
)[

45
]

N
ya

ku
dy

a
T

T
et

al
.(

20
18

)[
46

]

N
ya

ku
dy

a
T

T
et

al
.(

20
18

)[
47

]

N
ya

ku
dy

a
T

T
et

al
.(

20
19

)[
48

]

1. Was the allocation sequence adequately generated and applied? ? ? ? ? + ? ? ? ? ? ? ? ? — ? ? ? ? ? ? ? + +
2. Were the groups similar at baseline or were they adjusted for
confounders in the analysis? + + + + + ? + ? ? + ? + + + + ? ? + ? ? + + +

3. Was the allocation to the different groups adequately
concealed during? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

4. Were the animals randomly housed during the experiment? ? + ? ? ? + ? ? + + + + ? ? ? ? ? ? ? ? ? + +
5. Were the caregivers and/or investigators blinded from
knowledge which intervention each animal received during
the experiment?

? ? + + ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? ?

6. Were animals selected at random for outcome assessment? ? ? ? ? ? + ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
7. Was the outcome assessor blinded? ? + ? ? + + ? + ? + ? + + + + + + + + + ? + +
8. Were incomplete outcome data adequately addressed? + ? ? ? ? + + + ? + ? + + + + ? + + + + ? + +
9. Are reports of the study free of selective outcome reporting? + + + + + + + + + + + + + + + + + + + + + + +
10. Was the study apparently free of other problems that could
result in high risk of bias? ? + ? ? ? + + ? ? + + + + ? ? ? ? ? ? ? ? ? ?

Notes: + (low risk of bias);—(high risk of bias)? (item not reported, unknown risk of bias). 1–3 considers selection bias; 4–5 performance bias; 6–7 detection bias; 8 attrition bias; 9 reporting bias;
and 10 other biases

Table 4. Jadad score results for the clinical trial selected.

Authors (Year) Randomization Method of Randomization Double Blinding Method of Blinding Dropouts/Withdrawals Jadad Score

Luo HQ et al. (2018) [49] No No No No Yes 1
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3.5.2. Lipid Profile and Obesity

In a study performed by Chen et al. [31], the administration of OA over a four-week period
produced a significant decrease in serum levels of triglycerides (TG), total cholesterol (TC), LDL,
and HDL in diabetic mice in comparison to non-OA-treated diabetic mice.

One mixed-animal study and two trials that used non-rats/mice animal models assessed the effects
of OA on high-fat diet (HFD)-induced atherosclerosis [32–34]. In the study conducted by Jiang et al. [32],
it was reported that all OA-treated quails fed along with a HFD for 10 weeks experienced a significant
reduction in TG, TC, and LDL, as well as a significant increase in HDL and nitric oxide (NO) serum
levels. The experimental study conducted by Luo et al. [33] for 12 weeks was performed on rabbits,
LDL receptor knockout (LDLR−/−) mice, and C57BL/6J mice. Only the experimental groups of these
animal models received OA in the last five weeks of the study. The OA-treated rabbits showed a
significant reduction in TG, TC, and LDL levels, with a slight increase in HDL levels. OA-treated
(LDLR−/−) mice experienced a significant decrease in TG and LDL levels, as well as a significant
increase in HDL compared to the HFD control group. Finally, the OA-treated C57BL/6J mice not only
showed a significant reduction in TC and LDL levels but also no changes in their HDL and TG levels
in comparison to non-OA-treated HFD mice. At the end of their study, Pan et al. [34] reported that
there was a significant reduction in TG, TC, LDL, and HDL levels in the OA-treated rabbits.

The administration of OA to diabetic mice by Wang et al. [35] showed a significant decrease
of TG, TC, LDL, and free fatty acids (FFA) serum levels and a significant increase of HDL levels in
comparison to non-OA-treated diabetic mice. Similarly, in the study conducted by Gamede et al. [30],
OA significantly reduced body weight, TG, and LDL plasma levels, and also led to a significant increase
of HDL levels in prediabetic rats in comparison to non-OA-treated prediabetic rats.

Molepo et al. [12] administered OA to neonatal rats fed with a HF diet and observed a
decrease of saturated FFA, and an increase of mono/polyunsaturated FFA. OA administration by
Nakajima et al. [41] significantly reduced the plasma levels of octanoylated ghrelin levels and the body
weight gain in comparison to non-OA-fed rats.

Therefore, according to the results reported, OA improved lipid profile, as evidenced by the
decrease in serum levels of TG, TC, and LDL. However, regarding serum HDL levels, some studies
reported an increase, while others reported a decrease.

3.5.3. Hyperglycemia and Insulin Resistance

Wang et al. [35] showed that, after administrating OA to diabetic mice, body weight, fasting
blood glucose (FBG), and fasting serum insulin (FSI) decreased significantly. The results of the glucose
area under the curve (AUC), obtained from the intraperitoneal glucose tolerance test (IPGTT) and
intraperitoneal insulin tolerance test (IPITT) (both performed after the intervention), were significantly
lower in diabetic OA-treated mice than in those that had not received OA. Similarly, in the study
performed by Li et al. [36] in fructose-induced insulin-resistant rats treated with OA, an oral glucose
tolerance test (OGTT) was performed on the eighth day of the intervention, and it was observed that
the AUC for FFA was significantly lower, whereas AUC for glucose experienced a slight decrease.
Moreover, they also found a significant reduction of the homeostatic model assessment of insulin
resistance (HOMA-IR) and the adipose tissue insulin resistance (Adipo-IR) scores in comparison to
non OA–treated insulin-resistant rats.

Lee et al. [37] administered OA for 20 weeks to type 2 diabetic rats and observed a significant
increase in the homeostasis model assessment of β-cell function (HOMA-β) and insulinemia in
comparison to non-OA-treated type 2 diabetic rats. Furthermore, the OA-treated rats were found to
have a slightly lower glucose AUC after the IPGTT and the intravenous insulin tolerance test (IVITT).
Similarly, a study performed on diabetic mice by Wang et al. [38] showed that OA administration
significantly reduced FBG, HOMA-IR, and serum HDL levels as well as non-significantly reduced FSI
in comparison to the control group. Moreover, there was a significant improvement in glucose AUC.
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Two similar studies were conducted by Gamede et al. [30,39] in high-fat high-carbohydrate
(HFHC) diet-induced prediabetic rats. In both studies, rats were administered OA after prediabetes
induction. During OA administration, the rats continued to receive either an HFHC diet or a normal
diet. In the first study [39], both OA-treated groups experienced a significant reduction in body weight,
in glycemia in the OGTT test and in the HOMA2-IR and HbA1c indexes as well as a reduction in the
hepatic and muscle glycogen concentration in comparison to the non-OA-treated prediabetic rats. In the
other study [30] a reduction of FBG was observed in comparison to non-OA-treated prediabetic rats.

Djeziri et al. [40] showed that after administrating OA for 16 weeks to HFD-induced obese mice,
a signification reduction in glycemia levels at 15, 30, 60, and 120 min after the administration of glucose
was observed in the IPGTT test in comparison to non-OA-treated HFD-induced obese mice. In addition,
from six week until the end of the intervention, the increase in body weight of the OA-treated mice
was significantly lower than the HFD control group.

Su et al. [42] administered OA to polychlorinated biphenyls (PCBs)-induced metabolic disfunction
mice and observed a significant decrease of FBG, FSI, HOMA-IR, adipocyte size, and serum levels of TG,
FFA, and TC. It was also observed a significant decrease of glycemia in the IPGTT and IPITT tests. In the
study performed by Wang et al. [43] in high fat and fructose (HFF) diet-fed rats, OA administration
reduced significantly body weight, FBG, FSI, and serum levels of NO and TG, as well as increased the
insulin sensitivity index (ISI).

OA administration by An et al. [44] to diabetic rats with a carotid artery injury showed a significant
reduction of levels of FBG and a significant increase of serum NO level in comparison to non-OA-treated
diabetic rats with the same injury.

Two studies performed by Nyakudya et al. [46,47] assessed the protective long-term effects of
neonatal intake of OA in rats. These animals were administered OA, a high-fructose (HF) solution,
or OA combined with the HF solution during their second week of life. From postnatal day 56 until
the end of the experiment, half of each group received either distilled water or a fructose-rich solution.
At the end of the first experiment [46], a significant increase in glucose in the OGTT test was observed
in both administration periods in comparison to all of the OA-treated female rats. Moreover, both HF
solution-fed male and female rats had a significant higher HOMA-IR index than their respective
OA-fed male and female rats in both periods. In the another study [47], a significant increase of hepatic
lipid content in male rats, and a significant raise in terminal body mass in female rats fed with a HF
solution, was observed in both periods in comparison to their respective OA-treated rats.

In summary, the reported results showed that OA improved the AUC of glucose and insulin in the
glucose tolerance tests, decreased the serum levels of FBG and FSI and reduced the HOMA-IR index.

3.5.4. Inflammatory and oxidative stress biomarkers. Antioxidant enzymes

In the studies conducted by Pan et al. [34], Wang et al. [35] and An et al. [44], the administration
of OA led to significant decreases in serum levels of IL-1β, IL-6, and TNFα. Similarly, a reduction of
plasma levels of IL-6 and TNFα was observed by Gamede et al. [30]. In agreement with these results,
a significant reduction in the gene expression of IL-1β and IL-6 in liver and adipose tissue, as well as of
TNFα in adipose tissue of mice was observed by Djeziri et al. [40]. In addition, Matumba et al. [45]
administered OA to neonatal rats fed with a high fructose (HF) diet, and they observed a decrease of
IL-6 and TNFα plasma levels and a reduction of their gene expression at the end of the experiment.
An increase of plasma level of adiponectin was also observed by these authors [45]. In summary, OA
was able to decrease both the serum levels and gene expression of the proinflammatory cytokines
IL-1β, IL-6, and TNFα.

A number of authors showed an increase of serum superoxide dismutase (SOD)
activity [30,32,37,42,43]. In addition to SOD, Jiang et al. [32] and Gamede et al. [30] also reported an
increase in glutathione peroxidase (GSH-Px) activity. Moreover, the administration of OA in the study
conducted by Madlala et al. [29] decreased malonaldehyde (MDA) concentration in the heart, liver,
and kidney and increased the activities of SOD and GSH-Px in the liver and kidney. In this same line,
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a reduction of heart MDA concentration was found in the study of Gamede et al. [30], as well as a
decrease of serum MDA in the studies conducted by Jiang et al. [32] and Wang et al. [43]. Furthermore,
Jiang et al. [32], Su et al. [42], and Wang et al. [43] also showed an increase of serum catalase (CAT)
activity. Moreover, Nyakudya et al. [48] administered OA to neonatal rats fed with a HF diet and
observed a decrease of MDA concentration, as well as an increase of CAT activity by the end of the
study. Accordingly, OA increased the activity of antioxidant enzymes and decreased MDA levels.

3.6. Hypolipidemic Effects of OA in Human Patients

In a study performed by Luo et al. [49], OA administration for four weeks to hyperlipidemic
patients elicited a decrease of TC, TG, LDL, glucose, and FSI serum levels, as well as an increase of
leptin serum levels. A slight decrease of HbA1c (%) and a slight increase of HDL was also observed.

4. Discussion

The aim of this systematic review was to investigate the effects of OA on parameters concerning
on components of Mets, including central obesity, lipid profile, blood pressure, hyperglycemia, as wells
as insulin resistance and/or oxidative stress biomarkers. The findings provided in this study derive
mostly from experimental studies in animals, while only one non-randomized clinical trial in humans
was included. The main findings of this study are (i) OA administration improves the hypertensive
status, (ii) the disturbance of the lipid profile in hyperlipidemic and metabolic dysfunction situations is
attenuated by OA, (iii) OA reduces the oxidative stress status, and (iv) the insulin resistance condition
is improved by the action of OA. Taken together, these findings suggest that OA has potential to be a
new or alternative therapeutic strategy to the insulin resistance and metabolic syndrome treatments.

In this review, some studies showed that OA improves hypertension, one of the Mets components.
More specifically, in the studies of Ahn et al. [27] and Bachhav et al. [28], there was a significant
reduction of SBP. Additionally, a significant decrease of MAP was reported by Bachhav et al. [28],
Madlala et al. [29], and Gamede et al. [30]. This improvement in hypertension could be due to the
reported hypotensive effect of OA, probably by the modulation of the renin-angiotensin-aldosterone
system and the synthesis of atrial natriuretic peptide [27,50], since Bachhav et al. [28] and
Madlala et al. [29] showed that OA increased the quantity of urine sodium excreted [27,50]. Another
possible hypotensive mechanism of action of OA could be the increase of the production of nitric oxide
(NO), a vasodilator factor that is diminished in endothelial disfunction induced by cardiovascular
risk factors such as hypertension, obesity, diabetes, and dyslipidemia [15]. This is in agreement
with the increase of serum NO levels produced by the action of OA reported by Bachhav et al. [28],
Jiang et al. [32], and An et al. [44]. However, Wang et al. [43] reported the opposite, which might be
explained by the fact that they studied rats [43] fed with a high fat and fructose diet. High fructose
diets are closely linked to a higher oxidative stress status [51], which increases NO through enhancing
inducible nitric oxide synthase (iNOS) expression [52,53].

With regard to the lipid profile, the significant reduction in TG and LDL serum levels [30–35], as well
as the significant increase in HDL serum levels [30,32,33,35] observed in animal studies [30,32,33,35]
suggest that OA could prevent oxidative stress-induced CVD, since low HDL levels and high
LDL levels in obesity caused an overproduction of reactive oxygen species (ROS), especially in
obesity-induced oxidative stress [54]. However, in the studies carried out by Chen et al. [31],
Pan et al. [34], and Wang et al. [38], OA significantly decreased serum HDL levels. These differences
found in HDL serum levels might be explained by the different animal models or clinical contexts
studied, as well as the different OA dosage applied. Interestingly, the decrease in serum levels of TG
and LDL in hyperlipidemic patients treated with OA reported by Luo et al. [49] is consistent with all
the results obtained in animals. However, the slight increase of HDL serum levels in hyperlipidemic
patients is only in agreement with the results from animal studies by Gamede et al. [30], Jiang et al. [32],
Luo et al. [33], and Wang et al. [38].
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Dysregulation of adipokines plays a main role in the association between insulin resistance and
oxidative stress [55]. Matumba et al. [45] showed that OA enhanced adiponectin plasma concentrations,
which could result on greater insulin sensitivity [56] due to its insulin-sensitizing properties through
enhancing hepatic IRS-2 expression [57]. In the present review, we found that OA increased serum
leptin levels in hyperlipidemic patients [49], an adipokine that favors the synthesis of proinflammatory
cytokines [54]. This result of OA in leptin serum levels might be due to an impairing leptin signaling
in hyperlipidemic conditions [58]. Although the mechanism by which OA reduces body weight is
not yet clear, two of the studies that reported a decrease in body weight also observed a reduction of
ghrelin levels (Gamede et al. [39] and Nakajima et al. [41]). Ghrelin has been shown to induce body
weight gain through increasing food intake [59].

On the other hand, the reduction of plasma levels of FFA [12,35,42] as well as the lower
Adipo-IR index [36] caused by the action of OA, might imply an increase of insulin secretion
because chronic exposure to elevated levels of FFA leads to ROS overproduction [60] and thus to
impaired insulin signaling and beta-cell failure [54,55]. In this line, the literature supports that
OA increases insulin biosynthesis and secretion [10], which is in accordance with the increased
insulin levels and HOMA-β index [37], as well as the reduced FSI levels [35,36,38,43]. In addition,
Li et al. [33], Wang et al. [35], Su et al. [37], and Nyakudya et al. [40] reported an improvement
in the HOMA-IR index, whereas Gamede et al. [41] reported an improvement of the HOMA-2 IR
index. These findings might be explained by the availability of OA to modulate insulin signaling
pathways such as glycogen synthase (GS)/glycogen phosphorylase (GP) signaling pathway [61,62]
or the insulin receptor substrate 1 (IRS1)-glucose transporter 4 (GLUT4) pathway via NF-κB [17].
Interestingly, a synthetic-biology-inspired therapeutic strategy based on OA-triggered short human
glucagon-like-peptide 1 (GLP-1) expression through TGR5 pathways has been successfully developed
and applied in hepatogenous diabetic mice [63]. Nonetheless, according to the literature, OA improves
beta-cell function through increasing insulin biosynthesis and secretion and also improves glucose
tolerance [10]. This idea coincides with different studies included in our review that reported
improvements of glucose tolerance both in glucose [35,36,38–40,42,46] and in insulin [35,42] tolerance
tests, as well as reductions of FBG [30,35,38,42–44].

It is noteworthy that the decrease in both serum levels [30,34,35,44,45] and gene expressions [40,45]
of proinflammatory cytokines reported in our review, probably due to the modulatory effect of OA
on NF-kB [17], could result in an improvement of insulin secretion and beta-cell function because
proinflammatory cytokines, whose levels are higher in obese individuals, have an important role in the
development of insulin resistance [8–10]. Moreover, [17,30,34,35,40,44,45].

The ability of OA to alleviate oxidative stress and to improve pancreatic beta-cell function could
also be related to the increase of SOD [29,30,32,37,42,43], GSH-Px [29,30,32], and CAT [32,42,43,48]
activities, as well as the reduction of MDA [29,30,32,43,48]. Since OA might activate the transcription
factor Nrf2, which increases the transcription of antioxidant enzymes (SOD, CAT, and GSH-Px),
the aforementioned variations observed in the antioxidant enzymes might be explained by a possible
activation of Nrf2 by OA [9,10].

Therefore, OA has potential effects on the components of MetS and insulin resistance. However,
the results reported in our review have shown that OA has inconsistent effects on serum levels
of HDL and NO, since they are increased in some studies and decreased in others. In this sense,
these parameters should be further investigated, and the animal models and clinical situations studied
should be standardized to better understand the effects of OA. Thus, a better understanding of the
effects of OA may allow more randomized controlled trials to be carried out.

This study has some strengths and limitations. One of its strengths is the use of the PRISMA 2009
checklist, one of the most prestigious sets of guidelines for the reporting of systematic reviews [18].
Another strength is the use of the SYRCLE’s Risk of Bias (RoB) tool and the Jadad scale for assessing
the methodological quality of the animal studies and the clinical trial included, respectively. Moreover,
the initial selection of studies, data extraction, and the evaluation of the studies finally included in
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our review were performed by two independent reviewers, who consulted a third reviewer when
there was any doubt in order to reduce the risk of subjectivity [64,65]. Furthermore, a wide number
of databases were consulted. This review has some limitations, such as that unpublished material
sources were not consulted, which might have resulted in a selection bias [66]. Another limitation is
the presence of only one clinical trial and its non-randomized design.

5. Conclusions

In summary, from the data from studies in experimental animals assessed in the present systematic
review, we conclude that OA administration may improve hypertension, attenuate the disturbance
of the lipid profile in metabolic dysfunction situations, reduce oxidative stress status, and improve
insulin resistance. In reference to the non-randomized clinical trial assessed in the present work,
we conclude that OA may improve the hyperlipidemic status, as well as glycemia in hyperlipidemic
patients. These findings confirm the potential of the OA to be effectively used in the treatment of
the MetS and insulin resistance. However, there is need for performing further animal studies that
include all parameters involved in the development of insulin resistance and MetS in order to provide
a more in-depth understanding of the OA effects on these metabolic disorders. More importantly, it is
peremptory to conduct randomized clinical trials whose results will open the door to the possible use
of OA in humans as a therapeutic alternative or as a complement to conventional therapy.

Author Contributions: A.F.-A., E.G.-J. and J.S.-R. conceived and designed the review; A.F.-A., J.S.-R., and J.S.P.
contributed to the selection process and analysis of the risk of bias; E.G.-J., M.C.-R., and J.M.C. contributed to the
data extraction; A.F.-A. and E.G.-J. drafted the paper. All authors read and approved the final manuscript.

Acknowledgments: The results reported in the study are from the doctoral thesis of the main author and belong
to the Clinical Medicine and Health Public Programme (B 12.56.1) of the University of Granada, Spain. F.-A. Á
is granted with a pre-doctoral FPU grant (University of Granada, Spain). This work was also supported by a
research initiation fellowship of the University of Granada, Spain.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization Obesity and Overweight. Available online: https://www.who.int/news-room/

fact-sheets/detail/obesity-and-overweight (accessed on 20 June 2019).
2. Pan American Health Organization; World Health Organization PAHO/WHO|Obesity as a Precursor to

Diabetes. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=

6718:2012-obesity-as-precursor-diabetes&Itemid=39448&lang=en (accessed on 20 June 2019).
3. International Diabetes Federation IDF Consensus Worldwide Definition of the Metabolic Syndromeand

Tools. Available online: https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/60:
idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html (accessed on 20 June 2019).

4. Lira Neto, J.C.G.; de Almeida Xavier, M.; Borges, J.W.P.; de Araújo, M.F.M.; Damasceno, M.M.C.;
de Freitas, R.W.J.F. Prevalence of Metabolic Syndrome in individuals with Type 2 Diabetes Mellitus. Rev.
Bras. Enferm. 2017, 70, 265–270. [CrossRef] [PubMed]

5. McCullough, A.J. Epidemiology of the metabolic syndrome in the USA. J. Dig. Dis. 2011, 12, 333–340.
[CrossRef] [PubMed]

6. Weiss, R.; Bremer, A.A.; Lustig, R.H. What is metabolic syndrome, and why are children getting it? Ann. N.
Y. Acad. Sci. 2013, 1281, 123–140. [CrossRef] [PubMed]

7. Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814.
[CrossRef] [PubMed]

8. Pérez, M.R.; Medina-Gomez, G. Obesidad, adipogénesis y resistencia a la insulina. Endocrinol. y Nutr. 2011,
58, 360–369. [CrossRef] [PubMed]

9. Wu, K.C.; Cui, J.Y.; Klaassen, C.D. Beneficial Role of Nrf2 in Regulating NADPH Generation and Consumption.
Toxicol. Sci. 2011, 123, 590–600. [CrossRef] [PubMed]

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.paho.org/hq/index.php?option=com_content&view=article&id=6718:2012-obesity-as-precursor-diabetes&Itemid=39448&lang=en
https://www.paho.org/hq/index.php?option=com_content&view=article&id=6718:2012-obesity-as-precursor-diabetes&Itemid=39448&lang=en
https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/60:idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html
https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/60:idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html
http://dx.doi.org/10.1590/0034-7167-2016-0145
http://www.ncbi.nlm.nih.gov/pubmed/28403288
http://dx.doi.org/10.1111/j.1751-2980.2010.00469.x
http://www.ncbi.nlm.nih.gov/pubmed/21091931
http://dx.doi.org/10.1111/nyas.12030
http://www.ncbi.nlm.nih.gov/pubmed/23356701
http://dx.doi.org/10.1038/nm.4350
http://www.ncbi.nlm.nih.gov/pubmed/28697184
http://dx.doi.org/10.1016/j.endonu.2011.05.008
http://www.ncbi.nlm.nih.gov/pubmed/21778123
http://dx.doi.org/10.1093/toxsci/kfr183
http://www.ncbi.nlm.nih.gov/pubmed/21775727


J. Clin. Med. 2019, 8, 1294 14 of 16

10. Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical Basis of the Antidiabetic
Activity of Oleanolic Acid and Related Pentacyclic Triterpenes. Diabetes 2013, 62, 1791–1799. [CrossRef]
[PubMed]

11. Larsen, J.R.; Dima, L.; Correll, C.U.; Manu, P. The pharmacological management of metabolic syndrome.
Expert Rev. Clin. Pharmacol. 2018, 11, 397–410. [CrossRef]

12. Molepo, M.; Ayeleso, A.; Nyakudya, T.; Erlwanger, K.; Mukwevho, E. A Study on Neonatal Intake of
Oleanolic Acid and Metformin in Rats (Rattus norvegicus) with Metabolic Dysfunction: Implications on
Lipid Metabolism and Glucose Transport. Molecules 2018, 23, 2528. [CrossRef]

13. Guinda, A.; Rada, M.; Delgado, T.; Gutiérrez-Adánez, P.; Castellano, J.M. Pentacyclic Triterpenoids from
Olive Fruit and Leaf. J. Agric. Food Chem. 2010, 58, 9685–9691. [CrossRef]

14. Ayeleso, T.B.; Matumba, M.G.; Mukwevho, E. Oleanolic Acid and Its Derivatives: Biological Activities and
Therapeutic Potential in Chronic Diseases. Molecules 2017, 22, 1915. [CrossRef] [PubMed]

15. Rodriguez-Rodriguez, R. Oleanolic acid and related triterpenoids from olives on vascular function: Molecular
mechanisms and therapeutic perspectives. Curr. Med. Chem. 2015, 22, 1414–1425. [CrossRef] [PubMed]

16. Pols, T.W.H.; Noriega, L.G.; Nomura, M.; Auwerx, J.; Schoonjans, K. The bile acid membrane receptor TGR5
as an emerging target in metabolism and inflammation. J. Hepatol. 2011, 54, 1263–1272. [CrossRef] [PubMed]

17. Li, M.; Han, Z.; Bei, W.; Rong, X.; Guo, J.; Hu, X. Oleanolic Acid Attenuates Insulin Resistance via NF-κB to
Regulate the IRS1-GLUT4 Pathway in HepG2 Cells. Evid. Based Complement. Altern. Med. 2015, 2015, 1–9.
[CrossRef] [PubMed]

18. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic
reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [CrossRef] [PubMed]

19. Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W.
SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [CrossRef] [PubMed]

20. Jadad, A.R.; Moore, R.; Carroll, D.; Jenkinson, C.; Reynolds, D.M.; Gavaghan, D.J.; McQuay, H.J. Assessing
the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12.
[CrossRef]

21. He, W.-F.; Liang, L.-F.; Cai, Y.-S.; Gao, L.-X.; Li, Y.-F.; Li, J.; Liu, H.-L.; Guo, Y.-W. Brominated polyunsaturated
lipids with protein tyrosine phosphatase-1B inhibitory activity from Chinese marine sponge Xestospongia
testudinaria. J. Asian Nat. Prod. Res. 2015, 17, 1–6. [CrossRef]

22. He, W.-F.; Xue, D.-Q.; Yao, L.-G.; Li, J.; Liu, H.-L.; Guo, Y.-W. A new bioactive steroidal ketone from the South
China Sea sponge Xestospongia testudinaria. J. Asian Nat. Prod. Res. 2016, 18, 195–199. [CrossRef]

23. Liu, Y.L.A.Y.; Liu, Y. Editorial: Vascular Protection of Herbal Medicine: Roles and Mechanisms. Curr. Vasc.
Pharmacol. 2017, 15, 502. [CrossRef]

24. Jing, X.; Lin-hui, Z.; De-bin, W.; Xin, H.; Guang-Zhong, Y. Effect of oleanolic acid derivatives on improving
insulin resistance and its molecular mechanism. Chin. Pharmacol. Bull. 2014, 30, 1585–1589.

25. Sanchez-Rodriguez, E.; Biel-Glesson, S.; Fernandez-Navarro, J.R.; Calleja, M.A.; Espejo-Calvo, J.A.;
Gil-Extremera, B.; De La Torre, R.; Fito, M.; Covas, M.-I.; Vilchez, P.; et al. Effects of Virgin Olive
Oils Differing in Their Bioactive Compound Contents on Biomarkers of Oxidative Stress and Inflammation in
Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients 2019, 11, 561. [CrossRef] [PubMed]

26. Sánchez-Rodriguez, E.; Lima-Cabello, E.; Biel-Glesson, S.; Fernandez-Navarro, J.R.; Calleja, M.A.; Roca, M.;
Espejo-Calvo, J.A.; Gil-Extremera, B.; Soria-Florido, M.; De La Torre, R.; et al. Effects of Virgin Olive Oils
Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk
Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients 2018, 10, 626.
[CrossRef] [PubMed]

27. Ahn, Y.M.; Choi, Y.H.; Yoon, J.J.; Lee, Y.J.; Cho, K.W.; Kang, D.G.; Lee, H.S. Oleanolic acid modulates the
renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance
in rats. Eur. J. Pharmacol. 2017, 809, 231–241. [CrossRef] [PubMed]

28. Bachhav, S.S.; Bhutada, M.S.; Patil, S.P.; Sharma, K.S.; Patil, S.D. Oleanolic Acid Prevents Increase in Blood
Pressure and Nephrotoxicity in Nitric Oxide Dependent Type of Hypertension in Rats. Pharmacogn. Res.
2015, 7, 385–392.

29. Madlala, H.P.; Van Heerden, F.R.; Mubagwa, K.; Musabayane, C.T. Changes in Renal Function and Oxidative
Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in
Experimental Animals. PLoS ONE 2015, 10, e0128192. [CrossRef] [PubMed]

http://dx.doi.org/10.2337/db12-1215
http://www.ncbi.nlm.nih.gov/pubmed/23704520
http://dx.doi.org/10.1080/17512433.2018.1429910
http://dx.doi.org/10.3390/molecules23102528
http://dx.doi.org/10.1021/jf102039t
http://dx.doi.org/10.3390/molecules22111915
http://www.ncbi.nlm.nih.gov/pubmed/29137205
http://dx.doi.org/10.2174/0929867322666141212122921
http://www.ncbi.nlm.nih.gov/pubmed/25515513
http://dx.doi.org/10.1016/j.jhep.2010.12.004
http://www.ncbi.nlm.nih.gov/pubmed/21145931
http://dx.doi.org/10.1155/2015/643102
http://www.ncbi.nlm.nih.gov/pubmed/26843885
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
http://dx.doi.org/10.1186/1471-2288-14-43
http://www.ncbi.nlm.nih.gov/pubmed/24667063
http://dx.doi.org/10.1016/0197-2456(95)00134-4
http://dx.doi.org/10.1080/10286020.2015.1026334
http://dx.doi.org/10.1080/10286020.2015.1056521
http://dx.doi.org/10.2174/157016111506170928164646
http://dx.doi.org/10.3390/nu11030561
http://www.ncbi.nlm.nih.gov/pubmed/30845690
http://dx.doi.org/10.3390/nu10050626
http://www.ncbi.nlm.nih.gov/pubmed/29772657
http://dx.doi.org/10.1016/j.ejphar.2017.05.030
http://www.ncbi.nlm.nih.gov/pubmed/28514645
http://dx.doi.org/10.1371/journal.pone.0128192
http://www.ncbi.nlm.nih.gov/pubmed/26046776


J. Clin. Med. 2019, 8, 1294 15 of 16

30. Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. Plant-Derived Oleanolic Acid (OA) Ameliorates Risk Factors
of Cardiovascular Diseases in a Diet-Induced Pre-Diabetic Rat Model: Effects on Selected Cardiovascular
Risk Factors. Molecules 2019, 24, 340. [CrossRef]

31. Chen, S.; Wen, X.; Zhang, W.; Wang, C.; Liu, J.; Liu, C. Hypolipidemic effect of oleanolic acid is mediated by
the miR-98-5p/PGC-1β axis in high-fat diet–induced hyperlipidemic mice. FASEB J. 2017, 31, 1085–1096.
[CrossRef]

32. Jiang, Q.; Wang, D.; Han, Y.; Han, Z.; Zhong, W.; Wang, C. Modulation of oxidized-LDL receptor-1 (LOX1)
contributes to the antiatherosclerosis effect of oleanolic acid. Int. J. Biochem. Cell Boil. 2015, 69, 142–152.
[CrossRef]

33. Luo, H.; Liu, J.; Ouyang, Q.; Xuan, C.; Wang, L.; Li, T.; Liu, J. The effects of oleanolic acid on atherosclerosis
in different animal models. Acta Biochim. Biophys. Sin. (Shanghai) 2017, 49, 349–354. [CrossRef]

34. Pan, Y.; Zhou, F.; Song, Z.; Huang, H.; Chen, Y.; Shen, Y.; Jia, Y.; Chen, J. Oleanolic acid protects against
pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1–7) upregulation. Biomed.
Pharmacother. 2018, 97, 1694–1700. [CrossRef] [PubMed]

35. Wang, X.; Liu, R.; Zhang, W.; Zhang, X.; Liao, N.; Wang, Z.; Li, W.; Qin, X.; Hai, C. Oleanolic acid improves
hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol. Cell. Endocrinol.
2013, 376, 70–80. [CrossRef] [PubMed]

36. Li, Y.; Wang, J.; Gu, T.; Yamahara, J.; Li, Y. Oleanolic acid supplement attenuates liquid fructose-induced
adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt
signaling pathway in rats. Toxicol. Appl. Pharmacol. 2014, 277, 155–163. [CrossRef] [PubMed]

37. Lee, E.S.; Kim, H.M.; Kang, J.S.; Lee, E.Y.; Yadav, D.; Kwon, M.-H.; Kim, Y.M.; Kim, H.S.; Chung, C.H.
Oleanolic acid and N -acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress
and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol. Dial. Transplant. 2016, 31, 391–400.
[CrossRef] [PubMed]

38. Wang, X.; Chen, Y.; Abdelkader, D.; Hassan, W.; Sun, H.; Liu, J. Combination Therapy with Oleanolic Acid
and Metformin as a Synergistic Treatment for Diabetes. J. Diabetes Res. 2015, 2015, 1–12. [CrossRef] [PubMed]

39. Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. The Effects of Plant-Derived Oleanolic Acid on Selected
Parameters of Glucose Homeostasis in a Diet-Induced Pre-Diabetic Rat Model. Molecules 2018, 23, 794.
[CrossRef] [PubMed]

40. Djeziri, F.Z.; Belarbi, M.; Murtaza, B.; Hichami, A.; Benammar, C.; Khan, N.A. Oleanolic acid improves
diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie 2018, 152, 110–120.
[CrossRef]

41. Nakajima, K.; Maeda, N.; Oiso, S.; Kariyazono, H. Decreased Plasma Octanoylated Ghrelin Levels in Mice by
Oleanolic Acid. J. Oleo Sci. 2019, 68, 103–109. [CrossRef]

42. Su, S.; Wu, G.; Cheng, X.; Fan, J.; Peng, J.; Su, H.; Xu, Z.; Cao, M.; Long, Z.; Hao, Y.; et al. Oleanolic acid
attenuates PCBs-induced adiposity and insulin resistance via HNF1b-mediated regulation of redox and
PPARγ signaling. Free Radic. Boil. Med. 2018, 124, 122–134. [CrossRef]

43. Wang, S.; Du, L.-B.; Jin, L.; Wang, Z.; Peng, J.; Liao, N.; Zhao, Y.-Y.; Zhang, J.-L.; Pauluhn, J.; Hai, C.-X.; et al.
Nano-oleanolic acid alleviates metabolic dysfunctions in rats with high fat and fructose diet. Biomed.
Pharmacother. 2018, 108, 1181–1187. [CrossRef]

44. An, Q.; Hu, Q.; Wang, B.; Cui, W.; Wu, F.; Ding, Y. Oleanolic acid alleviates diabetic rat carotid artery injury
through the inhibition of NLRP3 inflammasome signaling pathways. Mol. Med. Rep. 2017, 16, 8413–8419.
[CrossRef] [PubMed]

45. Matumba, M.G.; Ayeleso, A.O.; Nyakudya, T.; Erlwanger, K.; Chegou, N.N.; Mukwevho, E. Long-Term
Impact of Neonatal Intake of Oleanolic Acid on the Expression of AMP-Activated Protein Kinase, Adiponectin
and Inflammatory Cytokines in Rats Fed with a High Fructose Diet. Nutrients 2019, 11, 226. [CrossRef]
[PubMed]

46. Nyakudya, T.T.; Mukwevho, E.; Erlwanger, K.H. The protective effect of neonatal oral administration of
oleanolic acid against the subsequent development of fructose-induced metabolic dysfunction in male and
female rats. Nutr. Metab. 2018, 15, 82. [CrossRef] [PubMed]

47. Nyakudya, T.T.; Mukwevho, E.; Nkomozepi, P.; Erlwanger, K.H. Neonatal intake of oleanolic acid attenuates
the subsequent development of high fructose diet-induced non-alcoholic fatty liver disease in rats. J. Dev.
Orig. Heal. Dis. 2018, 9, 500–510. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/molecules24020340
http://dx.doi.org/10.1096/fj.201601022R
http://dx.doi.org/10.1016/j.biocel.2015.10.023
http://dx.doi.org/10.1093/abbs/gmx013
http://dx.doi.org/10.1016/j.biopha.2017.11.151
http://www.ncbi.nlm.nih.gov/pubmed/29793333
http://dx.doi.org/10.1016/j.mce.2013.06.014
http://www.ncbi.nlm.nih.gov/pubmed/23791844
http://dx.doi.org/10.1016/j.taap.2014.03.016
http://www.ncbi.nlm.nih.gov/pubmed/24704288
http://dx.doi.org/10.1093/ndt/gfv377
http://www.ncbi.nlm.nih.gov/pubmed/26567248
http://dx.doi.org/10.1155/2015/973287
http://www.ncbi.nlm.nih.gov/pubmed/25789330
http://dx.doi.org/10.3390/molecules23040794
http://www.ncbi.nlm.nih.gov/pubmed/29596390
http://dx.doi.org/10.1016/j.biochi.2018.06.025
http://dx.doi.org/10.5650/jos.ess18148
http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.003
http://dx.doi.org/10.1016/j.biopha.2018.09.150
http://dx.doi.org/10.3892/mmr.2017.7594
http://www.ncbi.nlm.nih.gov/pubmed/28944913
http://dx.doi.org/10.3390/nu11020226
http://www.ncbi.nlm.nih.gov/pubmed/30678182
http://dx.doi.org/10.1186/s12986-018-0314-7
http://www.ncbi.nlm.nih.gov/pubmed/30479649
http://dx.doi.org/10.1017/S2040174418000259
http://www.ncbi.nlm.nih.gov/pubmed/29792584


J. Clin. Med. 2019, 8, 1294 16 of 16

48. Nyakudya, T.T.; Isaiah, S.; Ayeleso, A.; Ndhlala, A.R.; Mukwevho, E.; Erlwanger, K.H. Short-Term Neonatal
Oral Administration of Oleanolic Acid Protects against Fructose-Induced Oxidative Stress in the Skeletal
Muscles of Suckling Rats. Molecules 2019, 24, 661. [CrossRef] [PubMed]

49. Luo, H.-Q.; Shen, J.; Chen, C.-P.; Ma, X.; Lin, C.; Ouyang, Q.; Xuan, C.-X.; Liu, J.; Sun, H.-B.; Liu, J.
Lipid-lowering effects of oleanolic acid in hyperlipidemic patients. Chin. J. Nat. Med. 2018, 16, 339–346.
[CrossRef]

50. Kim, H.Y.; Cho, K.W.; Kang, D.G.; Lee, H.S. Oleanolic acid increases plasma ANP levels via an accentuation
of cardiac ANP synthesis and secretion in rats. Eur. J. Pharmacol. 2013, 710, 73–79. [CrossRef]

51. Tappy, L.; Lê, K.-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiol. Rev. 2010,
90, 23–46. [CrossRef] [PubMed]

52. Morelli, N.R.; Scavuzzi, B.M.; Miglioranza, L.H.D.S.; Lozovoy, M.A.B.; Simão, A.N.C.; Dichi, I. Metabolic
syndrome components are associated with oxidative stress in overweight and obese patients. Arch. Endocrinol.
Metab. 2018, 62, 309–318. [CrossRef]

53. Mineo, C.; Deguchi, H.; Griffin, J.H.; Shaul, P.W. Endothelial and Antithrombotic Actions of HDL. Circ. Res.
2006, 98, 1352–1364. [CrossRef]

54. Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks:
Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [CrossRef] [PubMed]

55. Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J.
Diabetes 2015, 6, 456–480. [CrossRef] [PubMed]

56. Von Frankenberg, A.D.; Reis, A.F.; Gerchman, F. Relationships between adiponectin levels, the metabolic
syndrome, and type 2 diabetes: A literature review. Arch. Endocrinol. Metab. 2017, 61, 614–622. [CrossRef]
[PubMed]

57. Awazawa, M.; Ueki, K.; Inabe, K.; Yamauchi, T.; Kubota, N.; Kaneko, K.; Kobayashi, M.; Iwane, A.; Sasako, T.;
Okazaki, Y.; et al. Adiponectin Enhances Insulin Sensitivity by Increasing Hepatic IRS-2 Expression via a
Macrophage-Derived IL-6-Dependent Pathway. Cell Metab. 2011, 13, 401–412. [CrossRef] [PubMed]

58. De Melo, C.L.; Queiroz, M.G.R.; Fonseca, S.G.; Bizerra, A.M.; Lemos, T.L.; Melo, T.S.; Santos, F.A.; Rao, V.S.
Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates
visceral obesity in mice fed a high-fat diet. Chem. Interact. 2010, 185, 59–65. [CrossRef] [PubMed]

59. Nakajima, K.; Oiso, S.; Uto, T.; Morinaga, O.; Syoyama, Y.; Kariyazono, H. Triterpenes suppress octanoylated
ghrelin production in ghrelin-expressing human gastric carcinoma cells. Biomed. Res. 2016, 37, 343–349.
[CrossRef] [PubMed]

60. Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262.
[CrossRef]

61. Mukundwa, A.; Mukaratirwa, S.; Masola, B. Effects of oleanolic acid on the insulin signaling pathway in
skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. J. Diabetes 2016, 8, 98–108.
[CrossRef]

62. Li, W.; Wang, P.; Li, H.; Li, T.-Y.; Feng, M.; Chen, S. Oleanolic acid protects against diabetic cardiomyopathy
via modulation of the nuclear factor erythroid 2 and insulin signaling pathways. Exp. Ther. Med. 2017, 14,
848–854. [CrossRef]

63. Xue, S.; Yin, J.; Shao, J.; Yu, Y.; Yang, L.; Wang, Y.; Xie, M.; Fussenegger, M.; Ye, H. A Synthetic-Biology-Inspired
Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol. Ther. 2017, 25, 443–455.
[CrossRef]

64. De Vries, R.B.M.; Hooijmans, C.R.; Langendam, M.W.; Van Luijk, J.; Leenaars, M.; Ritskes-Hoitinga, M.;
Wever, K.E.; Ritskes-Hoitinga, M. A protocol format for the preparation, registration and publication of
systematic reviews of animal intervention studies. Evid. Based Preclin. Med. 2015, 2, 1–9. [CrossRef]

65. Buscemi, N.; Hartling, L.; VanderMeer, B.; Tjosvold, L.; Klassen, T.P. Single data extraction generated more
errors than double data extraction in systematic reviews. J. Clin. Epidemiol. 2006, 59, 697–703. [CrossRef]
[PubMed]

66. Beltrán, Ó.A. Revisiones sistemáticas de la literatura. Rev. Colomb. Gastroenterol. 2005, 20, 60–69.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/molecules24040661
http://www.ncbi.nlm.nih.gov/pubmed/30781794
http://dx.doi.org/10.1016/S1875-5364(18)30065-7
http://dx.doi.org/10.1016/j.ejphar.2013.04.005
http://dx.doi.org/10.1152/physrev.00019.2009
http://www.ncbi.nlm.nih.gov/pubmed/20086073
http://dx.doi.org/10.20945/2359-3997000000036
http://dx.doi.org/10.1161/01.RES.0000225982.01988.93
http://dx.doi.org/10.1089/met.2015.0095
http://www.ncbi.nlm.nih.gov/pubmed/26569333
http://dx.doi.org/10.4239/wjd.v6.i3.456
http://www.ncbi.nlm.nih.gov/pubmed/25897356
http://dx.doi.org/10.1590/2359-3997000000316
http://www.ncbi.nlm.nih.gov/pubmed/29412387
http://dx.doi.org/10.1016/j.cmet.2011.02.010
http://www.ncbi.nlm.nih.gov/pubmed/21459325
http://dx.doi.org/10.1016/j.cbi.2010.02.028
http://www.ncbi.nlm.nih.gov/pubmed/20188082
http://dx.doi.org/10.2220/biomedres.37.343
http://www.ncbi.nlm.nih.gov/pubmed/28003581
http://dx.doi.org/10.1016/j.bj.2017.06.007
http://dx.doi.org/10.1111/1753-0407.12260
http://dx.doi.org/10.3892/etm.2017.4527
http://dx.doi.org/10.1016/j.ymthe.2016.11.008
http://dx.doi.org/10.1002/ebm2.7
http://dx.doi.org/10.1016/j.jclinepi.2005.11.010
http://www.ncbi.nlm.nih.gov/pubmed/16765272
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Databases and Search Strategy 
	Selection of Papers. Eligibility Criteria 
	Data Extraction 
	Risk of Bias and Methodological Quality Assessment 

	Results 
	Study Selection 
	Characteristics of the Animal Studies Selected 
	Characteristics of the Clinical Trial Selected 
	Risk of Bias and Methodological Quality Assessment 
	OA Effects on Insulin Resistance and MetS Components in Animal Studies 
	Hypertension 
	Lipid Profile and Obesity 
	Hyperglycemia and Insulin Resistance 
	Inflammatory and oxidative stress biomarkers. Antioxidant enzymes 

	Hypolipidemic Effects of OA in Human Patients 

	Discussion 
	Conclusions 
	References

