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Abstract: The olive oil industry produces large volumes of wastes, which are also potential sources
of bioactive compounds by developing healthy and/or functional foods. Extraction of phenolic
compounds from the residues of the olive oil is mainly carried out with solvents. However, there is
currently a growing public awareness about the use of organic solvents in food processing, which has
pointed out the need for the application of clean technologies such as pressurized liquid extraction
(PLE). Therefore, the aim of this research was to optimize the phenolic compound extraction from olive
pomace by PLE, establishing the qualitative and quantitative phenolic profile by HPLC-ESI-TOF/MS.
The extraction design to recover phenolics from olive pomace demonstrates a great compositional
variability of PLE extracts obtained under different experimental conditions. Indeed, quantitative
results have pointed out the selectivity of PLE extraction when this technique is applied to the
treatment of olive pomace. PLE-optimized conditions showed higher total phenolic compound
content than conventional extraction (1659 mg/kg d.w. and 281.7 mg/kg d.w., respectively). Among
these phenolics, the quantity of secoiridoids and flavonoids in the optimized PLE extract was three
and four times higher than in conventional extracts. Furthermore, optimal PLE conditions allowed to
obtain an enriched hydroxytyrosol extract which was not detected in the conventional one.

Keywords: olive pomace; PLE; phenolic compounds; HPLC-DAD-ESI-TOF/MS

1. Introduction

The food industry produces large volumes of both solid and liquid wastes, which represent a
disposal and potentially environmental pollution problem. However, they are also potential sources of
bioactive compounds that can be recovered and used as valuable substances by developing healthy
and/or functional foods [1,2]. In this sense, the production of extra virgin olive oil (EVOO) is associated
with both the generation of large quantities of wastes and the loss of phenolic compounds during the
process by the partitioning between oil and by-products (olive mill waste water, olive pomace, storage
by-products, and filter cake) [3,4].
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The olive pomace, or “Orujo”, is the solid by-product produced from the three-phase decanter
process used in the olive oil industry. Olive pomace is composed of olive pulp, skin, stone and water.
Concerning its chemical composition, high phenolic content has been reported by several authors,
which reaches the level of 100 times higher than in EVOO [3,4].

Various studies have reported that olive oil consumption is associated with several health benefits,
including the reduction of risk factors of coronary heart disease, the prevention of several chronic
diseases (such as atherosclerosis), cancer, chronic inflammation, strokes, and other degenerative
diseases. These beneficial health effects have been attributed, in part, to phenolic compounds [4–6].

Olive pomace phenolic compounds are a complex mixture of components that include
hydroxytyrosol and tyrosol derivatives, iridoid precursors, secoiridoids and derivatives (oleuropein,
oleuropein aglycone, ligstroside and its derivatives), phenylpropanoids (verbascoside and its
derivatives), flavonoids (luteolin, apigenin, rutin, taxifolin and its derivatives), lignans (pinoresinol
and derivatives), and phenolic acids (gallic acid, caffeic acid, cinnamic acid, p-coumaric acid, ferulic
acid, vanillic acid, and shikimic acid) [7–10]. However, the concentration of these phenolic compounds
has been reported to be affected by both agronomic and technological process conditions such as type
of cultivar, ripening degree, different milling process, and edaphoclimatic factors [8,9].

For the extraction of olive phenolic compounds at laboratory-scale, different solvents have been
used, such as methanol/water, ethyl acetate, propanol, acetone, or acetonitrile, but the effects of these
compounds in humans and the environment are drawing attention. Thus, the industry has addressed
its research to obtain bioactive compound-enriched extracts using different processes. Some reported
methods for the extraction of phenolic compounds from olive oil wastes are: Solvent extraction [10–14],
hydrothermal extraction [15,16], high pressure–high temperature reactor [17] extraction with subcritical
water [18–21], microwave and ultrasound-assisted extraction [22,23], and absorbent resins or membrane
separation [24–26]. Nevertheless, the industrial interest has been addressed to develop new processes
based on more selective, environmentally-friendly, and cost-effective extraction techniques. Among
these technologies, microwave-assisted extraction (MAE), supercritical fluid extraction (SFE) using
CO2, and pressurized liquid extraction (PLE) have been applied to olive by-products [7,9].

PLE is considered as an advanced technology which uses liquid solvents at elevated temperature
and pressure, improving the extraction performance as compared to those techniques carried out
at room temperature and atmospheric pressure. The use of solvents at temperatures above their
atmospheric boiling point improves the solubility and mass transfer properties [27]; moreover, it
provides several advantages compared to the conventional technologies, showing better selectivity,
extraction time reduction, and lower toxic organic solvent use [18–21]. Moreover, it is a technique
effective not only as a laboratory tool, but also for agri-food industries [9].

Due to the above, the aim of this research was to: (a) Optimize the phenolic compound extraction
from olive pomace by pressurized liquid extraction, (b) characterize the complete profile of phenolic
compounds by HPLC-DAD-ESI-TOF/MS, and (c) quantify individual phenolics to determine an
alternative methodology to recover bioactives from olive pomace.

2. Results and Discussion

2.1. Qualitative Characterization of Olive Pomace Phenolic Compounds Obtained by PLE

A central composite design for the extraction of olive pomace (OP) by PLE (OP-PLE) was carried
out. Table 1 includes the tentative identification of phenolic compounds from olive pomace performed
by HPLC-DAD-ESI-TOF/MS. Figure 1 shows the HPLC chromatogram. The phenolic compounds of OP
were identified considering their retention times (Rt), UV-Vis spectrum, and MS spectrum. According
to the chemical structure, phenolic compounds were classified in phenolic alcohols, secoiridoids,
flavonoids, and lignans. Concerning phenolic alcohols, hydroxytyrosol and oxidized hydroxytyrosol
were characterized in the analyzed samples. With regard to secoiridoids and derivatives, a total of
seven compounds were identified: Oleoside, loganic acid, secoiridoid derived, D-OH-EA, hydroxy
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D-oleuropein aglycone, demethyl oleuropein, and an aldehydic form of decarboxymethyl elenolic
acid. In addition, two flavonoids (luteolin and luteolin-7-glucoside) and two lignans (pinoresinol
and acetoxypinoresinol) were also detected. A non-phenolic polar compound was also identified
as quinic acid. Most of these compounds have been previously described in olive oil and olive
by-products [4,8,19,23,27,28].

2.2. Quantitative Characterization of Olive Pomace Phenolic Compounds Obtained by PLE

Table 2 shows the quantitation of individual phenolic compounds for each treatment of PLE
system. The total phenolic content (PC) of OP-PLE extracts ranged from 241.1 to 1141.3 mg/kg d.w
OP. Figure 2 includes the total phenolic compounds and the total content in secoiridoids, phenolic
alcohols, flavonoids, and lignans. Secoiridoids reached the major concentration, ranging from 103.4
to 517 mg/kg d.w OP (42.9–57.6%, respectively). The highest amounts of secoiridoids were obtained
for secoiridoid derivative (m/z 407), hydroxy oleuropein (m/z 555), and oleuropein (m/z 539). With
regard to phenolic alcohols, hydroxytyrosol (m/z 153) and oxidized hydroxytyrosol (m/z 151) were
identified and quantified. Their concentrations ranged from 0 to 675.6 mg/kg d.w OP. The highest
phenolic alcohol contents were obtained in conditions T4, T5, and T12, where the higher temperature
and water content, the higher the phenolic alcohol content. This result could be explained because the
high extraction temperature and water content in solvent extraction could generate the hydrolysis of
secoiridoids into phenolic alcohols and acidic moieties. These results agree with those reported by [29].

Table 1. Tentative identification of phenolic compounds and their derivatives in olive pomace by
HPLC-DAD-ESI-TOF/MS.

Peak Tentative Identification Molecular Formula Rt (min) m/z

1 Quinic acid C7H12O6 3.3 191.0561
2 Oxidized hydroxytyrosol C8H8O3 6.0 151.0401
3 Unknown 1 C16H26O11 8.3 393.1428
4 Vanillic acid C8H8O4 10.2 167.0350
5 Oleoside/secologanoside or isomer 1 C16H22O11 10.5 389.1114
6 Loganic acid C16H24O10 10.7 375.1318
7 Unknown 2 C15H26O9 10.8 349.1526
8 Hydroxytyrosol C8H10O3 11.0 153.0557
9 Secoiridoid derived C17H28O11 11.2 407.1604

10 Decarboxylated form of hydroxyl elenolic acid C10H14O5 11.9 213.0768
11 Hydroxylated product of decarboxymethyl elenolic acid C9H12O5 12.1 199.0618
12 Unknown 3 C8H8O3 13.5 151.0401
13 Oleoside/secologanoside or isomer 2 C16H22O11 14.1 389.1089
14 Unknown 4 C9H12O4 14.3 183.0663
15 Unknown 5 C16H26O10 16.3 377.1493
16 Hydroxy oleuropein C25H32O14 17.0 555.1719
17 Demethyl oleuropein C24H30O13 17.5 525.1614
18 Aldehydic form of decarboxymethyl elenolic acid C10H16O5 18.2 215.0925
19 Luteolin-7-O-rutinoside C27H30O15 19.5 593.1510
20 Unknown 6 C36H42O14 19.6 685.2469
21 Luteolin-7-glucoside C21H20O11 20.1 447.0933
22 Unknown 7 C38H26O8 21.1 609.1555
23 Unknown 8 C38H26O6 21.9 577.1657
24 Oleuropein C25H32O13 22.9 539.1770
25 Luteolin-7-glucoside or isomer C21H20O11 20.1 447.0933
26 Pinoresinol C20H22O6 24.0 357.1344
27 Acetoxypinoresinol C22H24O8 24.5 415.1390
28 Unknown 9 C31H36O11 25.3 583.2123
29 Unknown 10 C31H36O12 25.6 583.2123
30 Ligstroside C25H32O12 26.3 523.1821
31 Naringenin (Internal standard) C15H12O5 28.9 271.0893
32 Luteolin C15H10O6 30.1 285.0405
33 Apigenin C15H10O5 31.7 269.0451
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Table 2. Phenolic compound content in experimental design by olive pomace extracts obtained under different PLE extraction conditions.

Tentative Identification

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
108 ◦C 50%

EtOH
108 ◦C 50%

EtOH
108 ◦C 100%

EtOH
164 ◦C 10%

EtOH
176 ◦C 50%

EtOH
51 ◦C 90%

EtOH
108 ◦C 50%

EtOH
40 ◦C 50%

EtOH
164 ◦C 90%

EtOH
108 ◦C 50%

EtOH
51 ◦C 10%

EtOH
108 ◦C 0%

EtOH

(mg/kg d.w.)

Quinic acid 127.5 ± 6.9 137.2 ± 3.4 145.8 ± 0.9 217.8 ± 11.5 231.6 ± 1.3 71.4 ± 1.1 118.7 ± 0.9 56.3 ± 1.4 215.5 ± 10.9 107.3 ± 0.0 68.4 ± 0.8 89.2 ± 2.8

Oxidized hydroxytyrosol 94 ± 9 100 ± 7 - 458 ± 27 148.4 ± 0.5 - 176 ± 4 - - 131.3 ± 0.0 10.3 ± 0.7 363 ± 12
Oleoside/secologanoside or isomer 1 61 ± 1 60 ± 2 44.5 ± 0.6 12.6 ± 0.4 32.1 ± 0.5 28.6 ± 0.9 61.7 ± 0.8 10.2 ± 0.1 77.9 ± 0.6 49.1 ± 0.0 32 ± 1 44 ± 2

Loganic acid - - 8.3 ± 0.3 9.0 ± 0.4 6.9 ± 0.2 11.1 ± 0.2 - 8.4 ± 0.2 6 ± 1 - 12.8 ± 0.4 8.6 ± 0.6
Hydroxytyrosol 28 ± 2 24 ± 1 51 ± 2 218 ± 1 258 ± 5 - 23 ± 1 - 55 ± 3 22.4 ± 0.0 - 6.9 ± 0.0

Secoiridoid derived 98.9 ± 0.5 95 ± 1 67 ± 1 119 ± 3 143 ± 4 74.2 ± 0.3 100 ± 2 62.0 ± 0.2 84 ± 3 97 ± 4 83.3 ± 0.2 73 ± 2
D-OH-EA 2.9 ± 0.2 2.6 ± 0.1 1.7 ± 0.0 - - 6.8 ± 0.5 2.7 ± 0.2 - - 0.6 ± 0.0 1.7 ± 0.2 -

Hydroxy D-oleuropein aglycone 70 ± 1 70 ± 2 12.1 ± 0.2 - - 3.8 ± 0.1 73 ± 2 1.1 ± 0.0 9.9 ± 0.5 61 ± 2 3.3 ± 0.4 66 ± 3
Hydroxy oleuropein 123 ± 2 125 ± 4 22.3 ± 0.7 25.5 ± 0.9 62 ± 3 2.3 ± 0.3 105 ± 2 0.4 ± 0.0 33.6 ± 0.3 101.6 ± 0.1 6.6 ± 0.5 133 ± 1
Demethyl oleuropein 19.7 ± 0.6 19.5 ± 0.8 21.6 ± 0.9 - - - 15.3 ± 0.5 - 20.9 ± 0.5 10.9 ± 0.1 - 5.0 ± 0.5

Aldehydic form of decarboxymethyl elenolic acid 9.4 ± 0.7 9.5 ± 0.8 3.2 ± 0.2 - - - - 5.1 ± 0.1 - 7.6 ± 0.0 8.8 ± 0.1 3.0 ± 0.1
Luteolin-7-glucoside 19.2 ± 0.6 10.0 ± 0.9 21.0 ± 0.3 - - 2.6 ± 0.3 8.3 ± 0.3 - 35 ± 1 37.5 ± 0.0 - -

Decarboxymethyl oleuropein aglycon 19.1 ± 0.8 18.1 ± 0.7 10 ± 1 - - 0.5 ± 0.0 13.9 ± 0.6 - 4.9 ± 0.1 12 ± 3 - 4.8 ± 0.3
Oleuropein 80.0 ± 0.3 81 ± 5 79 ± 1 15 ± 1 63.2 ± 0.9 15.2 ± 0.3 67.5 ± 0.7 6.0 ± 0.3 113 ± 3 60.0 ± 0.3 3.7 ± 0.2 56 ± 2
Pinoresinol 11.4 ± 0.5 10.9 ± 0.3 10.7 ± 0.8 3.7 ± 0.3 - 7.8 ± 0.2 8.3 ± 0.4 4.6 ± 0.0 10.9 ± 0.0 6.9 ± 0.0 - 1.4 ± 0.0

Acetoxypinoresinol 33.6 ± 0.5 37.8 ± 0.8 30.1 ± 0.5 28.9 ± 0.2 17.6 ± 0.2 33.7 ± 0.8 28.0 ± 0.4 29.3 ± 0.4 27.5 ± 0.3 25 ± 1 17.8 ± 0.4 23 ± 1
Ligstroside 32 ± 1 31 ± 1 29.4 ± 0.5 - 8.5 ± 0.4 19.8 ± 0.4 24.4 ± 0.1 10.2 ± 0.3 24.0 ± 0.4 22.1 ± 0.3 - 19.4 ± 0.5

Luteolin 66 ± 1 68 ± 2 127.5 ± 0.8 34 ± 1 67.4 ± 0.7 71 ± 1 74.0 ± 0.5 41.0 ± 0.6 158 ± 1 67.9 ± 0.0 3.1 ± 0.0 12.7 ± 0.1
Apigenin - - - - - 17.4 ± 0.2 - 6.5 ± 0.2 6.9 ± 0.3 0.5 ± 0.0 - -

Secoiridoids (mg/kg) 517 ± 1 511 ± 10 299 ± 2 182 ± 5 315.7 ± 0.5 162 ± 3 463.1 ± 0.4 103 ± 1 375 ± 3 422.5 ± 0.1 153 ± 1 413 ± 6
(%) 57.6 ± 0.2 56.8 ± 0.9 43.7 ± 0.4 15.9 ± 0.4 30.4 ± 0.0 44.3 ± 0.7 51.5 ± 0.0 42.9 ± 0.5 42.4 ± 0.4 51.4 ± 0.0 60.5 ± 0.5 45.4 ± 0.7

Phenolic alcohols (mg/kg) 122 ± 4 124 ± 1 51.1 ± 0.5 676 ± 11 407 ± 7 - 199 ± 2 - 55 ± 3 153.7 ± 0.0 10.3 ± 0.8 370 ± 3
(%) 13.6 ± 0.5 13.8 ± 0.6 7.5 ± 0.1 59 ± 1 39.1 ± 0.6 - 22.2 ± 0.2 - 6.3 ± 0.4 18.7 ± 0.0 4.1 ± 0.3 40.7 ± 0.3

Flavonoids (mg/kg) 85.7 ± 0.5 78 ± 2 148 ± 2 34 ± 1 67.4 ± 0.7 91.3 ± 0.1 82.3 ± 0.9 47.5 ± 0.3 199.9 ± 0.0 105.9 ± 0.0 3.1 ± 0.0 12.7 ± 0.1
(%) 9.6 ± 0.1 8.7 ± 0.1 21.7 ± 0.3 3.0 ± 0.1 6.5 ± 0.1 24.9 ± 0.0 9.1 ± 0.1 19.7 ± 0.1 22.6 ± 0.0 12.9 ± 0.0 1.2 ± 0.0 1.4 ± 0.0

Lignans (mg/kg) 45 ± 2 49 ± 1 41 ± 1 33 ± 2 17.6 ± 0.2 41.5 ± 0.9 36.3 ± 0.8 33.9 ± 0.4 38.4 ± 0.1 32 ± 1 17.8 ± 0.3 25 ± 1
(%) 5.0 ± 0.2 5.4 ± 0.1 6.0 ± 0.2 2.9 ± 0.2 1.7 ± 0.0 11.3 ± 0.2 4.0 ± 0.1 14.1 ± 0.2 4.3 ± 0.0 3.9 ± 0.2 7.1 ± 0.1 2.7 ± 0.1

Total phenolic compounds (mg/kg) 897 ± 3 890 ± 12 685 ± 9 1141 ± 10 1039 ± 11 366 ± 2 900 ± 18 241 ± 7 885 ± 9 821.0 ± 0.1 252 ± 3 910 ± 2
(%) 100 100 100 100 100 100 100 100 100 100 100 100

EtOH: Ethanol; d.w.: Dry weight.
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Flavonoids ranged from 3.1 to 199.9 mg/kg d.w OP (1.2–22.6%), luteolin being the flavonoid
recovered in major amount in all the treatments. Concerning lignans, different amounts of pinoresinol
and acetoxypinoresinol were quantitated in the extracts. Acetoxypinoresinol was the main phenolic,
whose concentration ranged from 17.6 to 48.7 mg/kg d.w OP (1.7–6%).

The results showed that although the phenolic compound profile was similar for all treatments
of the OP-PLE design, the phenolic compound content was different among runs. This behavior is
characteristic of the PLE method, which presents differences in the selectivity of extraction [15].
The extraction factors such as temperature and water-ethanol ratio have been associated with
the dielectric constant. Thus, the lower the dielectric constant, the higher the flavonoids content
(r2 = 0.7336). However, no correlation was found between the dielectric constant and each phenolic
group. It is important to consider that oxidized hydroxytyrosol (m/z 151), hydroxytyrosol (m/z 153),
hydroxylated product of decarboxymethyl elenolic acid (m/z 199), hydroxy oleuropein (m/z 555), and
luteolin-7-O-rutinoside (m/z 593) were identified in OP-PLE. These phenolic compounds have been
reported to form by the oxidation reactions and/or hydrolysis of complex polyphenols [29].

2.3. Optimization of Recovering Phenolic Compounds from Olive Pomace by PLE Using Response Surface
Methodology (RSM)

When characterizing the profile of phenolic compounds of the different treatments by PLE, the
occurrence of hydroxytyrosol was observed in some extracts of olive pomace. Hydroxytyrosol presents
comparative advantages over other polyphenols in olive residues, due to its higher antioxidant capacity
and biological effects such as prevention of heart disease, tumor, and antithrombotic effect, among
others [18,30]. In addition, the European Food Safety Agency (EFSA) approved health claims associated
with consumption of hydroxytyrosol. In this context, the hydroxytyrosol content and its derivatives
were used as response variables for the experimental design of olive pomace extracts by PLE.

Table 3 summarizes the experimental conditions (independent variables values: Ethanol content
and extraction temperature) and response variables (hydroxytyrosol, hydroxy D-oleuropein aglycone,
hydroxy-oleuropein, demethyloleuropein, decarboxymethyl oleuropein aglycone, and oleuropein
content and yield). RSM was used to optimize each response variable considering linear, quadratic,
and cross-product interactions of the independent variables at the 95% confidence level. The analysis
of the variance (ANOVA) for the extraction of phenolic compounds from OP by PLE is shown in
Table 4. Non-significant terms were removed from the equation, but when quadratic or cross-product
interactions of the independent variables were significant, the linear forms of independent variables were
considered in the quadratic equation, because they are fundamental elements of the mathematical model.

The hydroxytyrosol content ranged from 0 to 258.3 mg/kg (Table 3). The linear, quadratic, and
cross-product forms of ethanol content (E) and extraction temperature (T) were significant on the
hydroxytyrosol content. The model explained 78.8% of the variability in hydroxytyrosol content (R2

adj. d.f., Table 4).
The quadratic regression equation describing the effect of the independent variables on the

hydroxytyrosol content was the following (Equation (1)):

Hydroxytyrosol =
−6.13428− 1.65454× T + 2.0509× E + 0.0187878× T2

+0.0178529× T × E− 0.00503415× E2
(1)
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Table 3. Phenolic compound content and yield of experimental design.

Treatments HyTy Hydroxy
D-Ole aglyc

Hydroxy-
Ole

Demethyl
Ole

Decarboxy
methyl Ole aglyc Oleuropein Yield

Temperature (◦C) Ethanol (%) (mg/kg d.w.) (%)

T1 108(0) 50(0) 28 ± 2 70 ± 1 123 ± 2 19.7 ± 0.6 19.1 ± 0.8 80.0 ± 0.3 10.2
T2 108(0) 50(0) 24 ± 1 70 ± 2 124 ± 4 19.5 ± 0.8 18.1 ± 0.7 81 ± 5 13.3
T3 108(0) 100(α) 51 ± 2 12.1 ± 0.2 22.3 ± 0.7 21.6 ± 0.9 10 ± 1 79 ± 1 5.5
T4 164(1) 10(-1) 218 ± 11 - 25.5 ± 0.9 - - 15 ± 1 21.7
T5 176(α) 50(0) 258 ± 5 - 62 ± 3 - - 63.2 ± 0.9 25.7
T6 51(-1) 90(1) - 3.8 ± 0.1 2.3 ± 0.3 - 0.5 ± 0.0 15.2 ± 0.3 3.7
T7 108(0) 50(0) 23 ± 1 73 ± 2 105 ± 2 15.3 ± 0.5 13.9 ± 0.6 67.5 ± 0.7 10.7
T8 39(-α) 50(0) - 1.1 ± 0.0 0.4 ± 0.0 - - 6.0 ± 0.3 5.9
T9 164(1) 90(1) 55 ± 3 9.9 ± 0.5 33.6 ± 0.3 20.9 ± 0.5 4.9 ± 0.1 113 ± 3 11.8
T10 108(0) 50(0) 22.4 ± 0.0 61 ± 2 101.6 ± 0.1 10.9 ± 0.1 12 ± 3 60.0 ± 0.3 11.0
T11 51(-1) 10(-1) - 3.3 ± 0.4 6.6 ± 0.5 - - 3.7 ± 0.2 6.1
T12 108(0) 0(-α) 6.9 ± 0.0 66 ± 3 133 ± 1 5.0 ± 0.5 4.8 ± 0.3 56 ± 2 9.5

T: Treatments; d.w.: Dry weight; HyTy: Hydroxytyrosol; Hydroxy D-Oleuropein aglycone: Hydroxy D-oleuropein aglycone; Hydroxy-Ole: Hydroxy-oleuropein; Demethylole:
Demethyloleuropein; decaboxymethyl Ole aglyc: Decarboxymethyl oleuropein aglycone.
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Table 4. Analysis of variance (ANOVA) for the olive pomace extracts obtained by PLE.

Source Sum of
Squares d.f. Mean

Square F-Ratio p-Value R2 R2 adj.
d.f.

Hydroxytyrosol
A: Temperature 42324.8 1 42324.8 42324.85 0.0000∗ 88.473 78.8671

B: Ethanol 1623.56 1 1623.56 1623.56 0.0000∗
AA 14278.4 1 14278.4 14278.42 0.0000∗
AB 6511.91 1 6511.91 6511.91 0.0000∗
BB 409.411 1 409.411 409.41 0.0000∗

Lack-of-fit 9738.63 3 3246.21 3246.21 0.0000*
Pure error 94.9681 3 31.656

Total (corr.) 82912.1 11
Hydroxy D-oleuropein aglycone

A: Temperature 118.618 1 118.618 0.36 0.5704 86.4431 75.1457
B: Ethanol 523.819 1 523.819 1.59 0.2541

AA 10127.7 1 10127.7 30.75 0.0015∗
AB 25.1495 1 25.1495 0.08 0.7916
BB 1619.86 1 1619.86 4.92 0.0479*

Lack-of-fit 1016.74 3 338.913 1.64 0.3481
Pure error 1976.45 6 329.408

Total (corr.) 14578.9 11
Hydroxy-oleuropein

A: Temperature 3656.18 1 3656.18 3,.6 0.1065 80.7716 64.748
B: Ethanol 2401.14 1 2401.14 2.37 0.175

AA 17567.8 1 17567.8 17.31 0.0059∗
AB 2.34565 1 2.34565 0 0.9632
BB 3117.69 1 3117.69 3.07 0.1302

Lack-of-fit 4635.83 3 1545.28 6.46 0.0798
Pure error 6090.85 6 1015.14

Total (corr.) 31676.3 11
Demethyl oleuropein

A: Temperature 69.2627 1 69.2627 3.98 0.0929 89.4383 80.6369
B: Ethanol 239.089 1 239.089 13.76 0.0100∗

AA 461.585 1 461.585 26.56 0.0021∗
AB 109.428 1 109.428 6.3 0.0460∗
BB 6.55101 1 6.55101 0.38 0.5618

Lack-of-fit 52.3368 3 17.4456 1.01 0.4976
Pure error 104.287 6 17.3811

Total (corr.) 987.409 11
Decarboxymethyl oleuropein aglycone

A: Temperature 14.449 1 14.449 1.61 0.251 91.0723 83.6326
B: Ethanol 13.6533 1 13.6533 1.52 0.263

AA 425.539 1 425.539 47.53 0.0005∗
AB 7.32752 1 7.32752 0.82 0.4005
BB 81.121 1 81.121 9.06 0.0237∗

Lack-of-fit 7.96575 3 2.65525 0.25 0.8548
Pure error 53.7187 6 8.95311

Total (corr.) 601.709 11
Oleuropein

A: Temperature 5650.06 1 5650.06 38.15 0.0008∗ 93.7987 88.631
B: Ethanol 1826.83 1 1826.83 12.34 0.0126∗

AA 3976.57 1 3976.57 26.85 0.0021∗
AB 2987.01 1 2987.01 20.17 0.0041∗
BB 76.7892 1 76.7892 0.52 0.4985

Lack-of-fit 329.614 3 109.871 0.59 0.6639
Pure error 888.52 6 148.087

Total (corr.) 14328 11
Yield

A: Temperature 295.563 1 295.563 108.09 0.0000∗ 96.5258 93.6305
B: Ethanol 23.3825 1 23.3825 8.55 0.0265∗

AA 27.7676 1 27.7676 10.15 0.0189∗
AB 37.7949 1 37.7949 13.82 0.0099∗
BB 36.3875 1 36.3875 13.31 0.0107∗

Lack-of-fit 10.3376 3 3.44588 1.83 0.3165
Pure error 16.4071 6 2.73452

Total (corr.) 472.249 11

d.f.: degrees of freedom. ∗ Statistically significant.
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As it can be seen in surface graph (Figure 3), the hydroxytyrosol content was higher when high
extraction temperature and low ethanol content where applied. The hydroxy D-oleuropein aglycone
and hydroxy D-oleuropein ranged from 0 to 95 mg/kg and from 0.4 to 134.6 mg/kg, respectively
(Table 3). The effect of temperature and ethanol content quadratic forms were significant on hydroxy
D-oleuropein aglycone content, while the quadratic form of temperature was only significant on
hydroxy D-oleuropein content. In both response variables, the linear forms of temperature and ethanol
content were considered in the quadratic equations. The model explained 75.1% and 64.7% of the
variability in hydroxy D-oleuropein aglycone and hydroxy D-oleuropein content, respectively (R2 adj.
d.f., Table 4). The quadratic regression equations describing the effect of the independent variables on
hydroxy D-oleuropein aglycone (Equation (2)) and hydroxy D-oleuropein (Equation (3)) content are
as follows:

Hydroxy D− oleuropein aglycone
= −124.524 + 3.3054× T + 1.02943× E – 0.0155844× T2

+ 0.00110948× T × E – 0.0135149× T2
(2)

Hydroxy D− oleuropein =

−176.213 + 4.69159× T + 1.4106× E – 0.0203739× T 2

+ 0.000338833× T × E – 0.0188999× E2
(3)
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Figure 3. Response Surface graphs for (a) hydroxytyrosol, (b) hydroxy D-oleuropein aglycone, (c)
hydroxy-oleuropein, (d) demethyl oleuropein, (e) decarboxymethyl oleuropein aglycone, (f) oleuropein
content, and (g) yield.

The response surface graphs showed that the highest hydroxy D-oleuropein aglycone and hydroxy
D-oleuropein content was achieved with intermediate values of temperature and ethanol content
(Figure 4).
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The demethyl oleuropein concentration ranged from 0 to 21.6 mg/kg (Table 3). The quadratic form
of temperature was significant; however, the linear form was considered in the quadratic equations.
The linear form of ethanol content and cross-product forms of ethanol as extracting solvent and
temperature were significant for demethyl oleuropein content. The model explained 80.6% of the
variability (R2 adj. for d.f., Table 4).

The quadratic regression equation of demethyl oleuropein content (Equation (4)) is the following:

Demethyl oleuropein
= −24.3166 + 0.642713× T – 0.028972× E – 0.00327204× T2

+ 0.0023143× T × E – 0.000741822× E2
(4)

As can be seen in the response surface graph (Figure 3), the highest demethyl oleuropein content
was achieved with high temperature and high ethanol content.

The decarboxymethyl oleuropein aglycone concentration ranged from 0 to 19.1 mg/kg (Table 3).
Only the quadratic form of temperature and ethanol content were significant; however, the linear
form and cross-product forms of ethanol as extracting solvent and temperature were considered in
the quadratic equations for decarboxymethyl oleuropein aglycone. The model explained 83.6% of the
variability (R2 adj. for d.f., Table 4).

The quadratic regression equation of decarboxymethyl oleuropein aglycone content
(Equation (5)) is:

Decarboxymethyl oleuropeinaglycone
= −28.6763 + 0.667961× T + 0.272767× E – 0.00318761
× T 2 + 0.00059887× T × E – 0.00299909× E2

(5)

As can be seen in the response surface graph (Figure 3), the highest decarboxymethyl oleuropein
aglycone content was achieved with intermediate values of temperature and ethanol content.

The oleuropein concentration ranged from 3.7 to 113.4 mg/kg (Table 3). The linear, quadratic
form of temperature, linear form of ethanol content and cross-product forms of ethanol as extracting
solvent and temperature were significant, so were considered in the quadratic equations for oleuropein
content. The model explained 88.6% of the variability (R2 adj. for d.f., Table 4).

The quadratic regression equation of oleuropein content is the following (Equation (6)):

Oleuropein
= −47, 8575 + 1, 86207× T − 0, 487302× E − 0, 00932032× T2

+ 0, 0120913× T × E − 0, 00409461× E2
(6)

As can be seen in the response surface graph (Figure 3), the highest oleuropein content was
achieved with intermediate temperature and high ethanol content.
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According to the information described above, it is observed that the highest hydroxytyrosol
content was obtained in the treatments with high extraction temperatures (T4 and T5), while
hydroxy-D-oleuropein aglycone, dimethyl oleuropein, and decarboxymethyl-oleuropein aglycone
were not detected in these experiments. In contrast, hydroxytyrosol was not detected in the treatments
carried out at the lowest temperatures (T6, T8, and T11). These results show that high extraction
temperatures would cause rupture of secoiridoides to phenolic alcohols [14].

Regarding oleuropein, the highest value was obtained in the treatment performed at high
temperature with high ethanol content (T9).

In relation to yield, this ranged from 3.7 to 25.7% (Table 4). The linear, quadratic, and cross-product
forms of ethanol as extracting solvent and temperature were significant for yield (Equation (7)). The
model explained 93.6% of the variability (R2 adj. for d.f.) in yield (Table 4).

YIELD[ % ] = −1, 57556 + 0, 00941454 × T + 0, 278964× E + 0, 000838349× T2

− 0, 0013601× T × E − 0, 00176315× E2 (7)

As can be seen in the surface graph (Figure 3), the yield showed the highest values when using high
temperature extraction and a minor proportion of ethanol in the extraction solvent (T4 and T5).

Finally, multiple optimization taking into account all response variables was evaluated (Desirability
Function). Figure 4 shows the surface response graphic. The optimal conditions for the extraction
of phenolic compounds and yield were 136.5 ◦C and 52.3% of ethanol in the ethanol:water mixture.
In the graph of the response surface, the optimum values are located at the yellow zone with 0.7
of desirability.

2.4. Characterization of Olive Pomace Extracts Obtained Under Optimal PLE Conditions (OP-PLE)

Figure 1 shows the HPLC-DAD-ESI-TOF/MS chromatograms and the tentative identification of
phenolic compounds in the olive pomace extract obtained by conventional extraction system (OP)
and olive pomace extract by optimal PLE (OP-PLE). In both olive pomace extracts, it is possible to
identify different phenolic compounds which have previously been reported in olive fruits and olive
derivatives [31].

Table 5 shows phenolic compound content of both OP and OP-PLE extracts. The total phenolic
compound content in OP-PLE extract was higher than in OP (1659 mg/kg d.w. and 281.7 mg/kg
d.w., respectively), showing a total phenolic compound value equivalent to 588.9% with respect to
the extract obtained by conventional extraction. This value is much higher than those previously
reported (201–256%) [8]. These results can be attributed to the high temperature and pressure of the
PLE extraction method, process conditions that improve the interaction capacity between the phenolic
compounds and the extraction solvent (ethanol and water mixture). On the other hand, the surface
tension and the viscosity of the extraction solvent are reduced by the increase of temperature, which
leads to better wetting and penetration in the matrix (olive pomace), thus increasing the mass transfer
and therefore the extraction of phenolic compounds [17,19,22,23,27,28].

Higher hydroxytyrosol contents than that of this study were reported in extracts of olive pomace
(var. Picual) (2800 mg hydroxytyrosol/kg d.w.) using ethanol–water as solvent and static-dynamic
process [7,18]. However, the initial phenolic compounds concentration in a matrix depends on several
agronomic (including cultivar, ripening stage, geographic origins, and tree irrigations, among others)
and technological factors (like the process temperature and water content) [3,8,32]. Future studies are
warranted to compare both techniques using the same matrix.
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Table 5. Phenolic compound content of olive pomace extracts by pressurized liquid extraction in
optimal conditions (OP-PLE) and olive pomace extract by conventional extraction (OP).

Compound Names
OP (d.w.) OP-PLE (d.w.)

(mg/kg) (%) (mg/kg) (%)

Quinic acid 40.2 ± 0.2 a 14.1 ± 0.9 a 223 ± 20 b 13.6 ± 0.4 a

Oxidized hydroxytyrosol - a - a 638 ± 16 b 38.5 ± 0.2 b

Oleoside/secologanoside or isomer 1 4.8 ± 0.3 a 1.7 ± 0.1 a 33.9 ± 0.2 b 2.1 ± 0.0 b

Hydroxytyrosol - a - a 67 ± 2 b 4.0 ± 0.1 b

Secoiridoid derived 47.6 ± 2.0 b 16.9 ± 0.9 b 9.7 ± 0.4 a 0.6 ± 0.0 a

Decarboxylated form of hydroxyl elenolic acid 2.9 ± 0.4 a 1.1 ± 0.1 a 60 ± 1 b 3.6 ± 0.1 b

Hydroxylated product of decarboxymethyl elenolic acid - a - a 17.2 ± 0.3 b 1.1 ± 0.1 b

Demethyl oleuropein 2.9 ± 0.4 b 0.8 ± 0.1 b UDL a UDL a

Elenolic acid glucoside or isomer 1 0.7 ± 0.2 a 0.3 ± 0.1 a 33.4 ± 0.5 b 2.0 ± 0.1 b

Oleoside/secologanoside or isomer 2 15 ± 2 a 5.7 ± 0.5 b 45.5 ± 0.4 b 2.8 ± 0.1 a

Hydroxy oleuropein - a - a 100 ± 1 b 5.9 ± 0.2 b

Aldehydic form of decarboxymethyl elenolic acid 13 ± 1 b 4.7 ± 0.3 b UDL a UDL a

Luteolin-7-O-rutinoside - a - a 2.3 ± 0.1 b 0.1 ± 0.0 b

Luteolin-7-O-glucoside 2.5 ± 0.2 a 0.9 ± 0.0 a 21 ± 2 b 1.3 ± 0.1 b

Oleuropein 22 ± 3 a 7.7 ± 0.9 b 94 ± 1 b 5.6 ± 0.0 a

Ligstroside 20 ± 2 a 7.0 ± 0.6 b 16.5 ± 0.8 a 1.0 ± 0.1 a

Pinoresinol 4.7 ± 0.3 b 1.7 ± 0.1 b 2.9 ± 0.3 a 0.2 ± 0.0 a

Acetoxypinoresinol 18 ± 1 b 6.5 ± 0.3 a 14.8 ± 0.4 a 0.9 ± 0.0 a

Luteolin 50 ± 1 a 17.7 ± 0.4 221 ± 4 b 13.2 ± 0.2
Apigenin 12.4 ± 0.5 a 4.4 ± 0.2 29.8 ± 0.1 b 1.9 ± 0.1

Total phenolic compounds 282 ± 12 a 100 a 1659 ± 31 b 100 a

Secoiridoids 154 ± 9 a 55 ± 1 b 435 ± 10 b 26.4 ± 0.3 a

Phenolic alcohols - a - a 702 ± 14 b 42.5 ± 0.2 b

Flavonoids 65 ± 2 a 23.0 ± 0.5 b 271 ± 7 b 16.4 ± 0.1 a

Lignans 23 ± 2 b 8.1 ± 0.3 b 17.6 ± 0.6 a 1.1 ± 0.0 a

OP: Olive pomace; PLE: Pressurized liquid extraction; d.w.: Dry weight; UDL: Under detection level. All the
variables were tested in three independent cultures for each experiment. Values are means ± SD. Different letters
represent level of significance: p < 0.05.

In OP extract, the main phenolic compound class was secoiridoids, with more than half of the total
phenolic content (54.8%): Secoiridoid derivated 1 (16.9%), derived from oleuropein aglycone (8.6%),
oleuropein (7.7%), and ligstroside (7.0%). These results are in agreement with other studies, in which
the main phenolic compounds are secoiridoids (between 50 and 70%) [8]. Flavonoids are the second
chemical group in importance (23%), with luteolin being the main compound of this subclass (17.7%).
In contrast, in OP-PLE extract obtained under optimum conditions, the main phenolic compound class
is phenolic alcohols with 42.5% (phenolic compound class that were not found in the OP), followed by
secoiridoids (26.4%) and flavonoids (16.4%), with luteolin being the main phenolic compound (13.2%).
The appearance of phenolic alcohols and the increase of the elenolic acid derivatives in OP-PLE could
be related to degradation reactions of secoiridoids, followed by several reactions, such as oxidation,
hydration, and loss of the carboxylic and carboxymethyl groups due to the high temperatures used in
the extraction method [33–35].

On the other hand, the OP-PLE extract obtained under optimal conditions had a processing yield
of 17.2%, which is higher to that found in olive extracts obtained with the PLE method.

3. Materials and Methods

3.1. Samples

Olive pomace (Orujo, var. arbequina) waste from a three-phase decanter was provided by Olivos
Ruta del Sol Company (33◦31’48.0´´S 71◦40´ 52.6´´W, Santa Cruz, Bernardo O´Higgins Region, Chile)
(May, 2018). Olive pomace (OP) was dried in a freeze-dryer (IlShinBioBase Co. Ltd. Modelo FD5508,
Dongduchun City Kyunggi-do, Korea) and stored in bags hermetically sealed at –20 ◦C in dark
conditions until the extract preparation.
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3.2. Chemicals

Hexane, ethanol, methanol, and sodium hydroxide were purchased from Panreac (Barcelona,
Spain). Acetic acid was acquired from Fluka (Steinheim, Germany). Double-deionized water with
conductivity lower than 18.2 MV was obtained with a Milli-Q system (Millipore, Bedford, MA,
USA). Standards of hydroxytyrosol, caffeic acid, luteolin, apigenin, quinic acid, and naringenin were
purchased from Sigma-Aldrich (St. Louis, MO, USA), and (+)-pinoresinol was acquired from Arbo
Nova (Turku, Finland). Oleuropein and luteolin-7-O-glucoside were purchased from Extrasynthese
(Lyon, France).

3.3. Conventional Extraction Procedure of Phenolic and Other Polar Compounds from Olive Pomace (OP)

Conventional extraction of phenolic compounds from olive pomace was performed by solid–liquid
extraction. Lyophilized olive pomace (5.0 g d.w.) was soaked for 120 min with 20 mL of a mixture of
methanol:water (80:20). After this, the samples were centrifuged at 10,000 rpm for 15 min, and the
supernatants were collected and filtered through a 0.45 µm filter. Each procedure was carried out in
triplicate. The OP extracts were frozen at –20 ◦C until analysis.

3.4. Extraction of Phenolic Compounds from Olive Pomace by PLE (OP-PLE)

PLE was performed using a Dionex ASE 350 Accelerated Solvent Extractor (Thermo Fisher
Scientific, Leicestershire, UK). All extractions were done using 34-mL extraction cells, containing 5 g of
lyophilized olive pomace mixed homogeneously with 10 g of sand. Prior to extraction of phenolic
compounds, a preliminary clean-step based on the use of n-hexane as the solvent and 1500 psi at room
temperature as the experimental conditions was carried out to remove the lipophilic fraction from
the olive pomace. After this step, the extraction of phenolic compounds from the olive pomace was
performed according to a central composite design, with a total of 12 runs (4 experimental points,
4 axial points, and 4 central points). The ethanol percentage (0 to 100%) and temperature (40 to 176 ◦C)
were evaluated as independent variables to cover a wide range of dielectric constants (from 19 to
65.5 F/m, Table 6). The pressure and extraction time were 1500 psi and 20 min, respectively. All of the
experiments were conducted randomly to avoid systematic errors.

Table 6. Central composite Design 22 with star points from PLE.

Treatments Temperature (◦C) Ethanol (%) Dielectric Constant (F/m)

T1 108 50 36.1
T2 108 50 36.1
T3 108 100 19.0
T4 164 10 39.2
T5 176 50 28.9
T6 51 90 28.6
T7 108 50 36.1
T8 40 50 46.0
T9 164 90 20.8
T10 108 50 36.1
T11 51 10 65.6
T12 108 0 53.5

The obtained extracts were protected from light, filtered through a 0.45 µm regenerated cellulose
filter and evaporated under vacuum in Speed Vac (Thermo Scientific, Leicestershire, UK). Yield (Y),
hydroxytyrosol, and hydroxytyrosol-containing compounds were used as response variables for the
experimental design of olive pomace extracts by PLE (hydroxityrosol (HYTY), hydroxyoleouropein
aglycone, hydroxyoleuropein, demethyl oleuropein, decarboxymethyl oleuropein, and oleouropein).

Response surface methodology (RSM) was applied to determine the optimal conditions for the
OP-PLE system by multiple response optimization using the desirability function (DF) where the
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response variables were maximized. The data were fitted to a second-order regression model according
to Equation (8).

Y = b0 +
2∑

i=1

biXi +
2∑

i=1

biiX2
i +

1∑
i=1

2∑
j=i+1

bi jXiX j (8)

where Y is the response; subscripts i and j range from 1 to the number of variables (n = 2); b0 is the
intercept term; bi values are the linear coefficients; bi j values are the quadratic coefficients; and Xi and
X j are the levels of independent variables.

3.5. High-Performance Liquid Chromatography Coupled to Diode Array Detection and Electrospray
Time-of-Flight Mass Spectrometry (HPLC-DAD-ESI-TOF/MS)

The HPLC analyses were performed in a high-performance resolution liquid chromatography
(HPLC) system (Agilent Technologies, Waldbronn, Germany) equipped with a vacuum degasser,
autosampler, a binary pump, and diode-array-detector (DAD). This equipment was coupled to a
time-of-flight mass spectrometry (TOF-MS) microTOF (Bruker Daltonik, Bremen, Germany). The TOF
mass spectrometer was equipped with a model G1607A ESI interface (Agilent Technologies, Palo
Alto, CA, USA) operating in negative ion mode. The analytical column used was a 150 mm × 4.6 mm
internal diameter, 1.8-µm Zorbax Eclipse Plus C18 (Agilent Technologies, Palo Alto, CA, USA).

The flow rate was 0.5 mL/min, and the temperature of the column was maintained at 25 ◦C. The
mobile phase was water with 0.25% acetic acid (Solvent A) and methanol (Solvent B) eluted according
to the following multistep gradient: 0 min, 5% Solvent B; 7 min, 35% Solvent B; 13 min, 45% Solvent B;
18.5 min, 50% Solvent B; 22 min, 60% Solvent B; 29 min, 95% Solvent B; 36 min, 5% Solvent B; and the
injection volume was 10 µL.

The compounds separated were monitored with DAD (240 and 280 nm) and MS. At this stage,
the use of a splitter was required for the coupling with the MS detector, as the flow arriving to
the TOF detector had to be 0.25 mL/min in order to ensure reproducible results and a stable spray.
External mass spectrometer calibration was performed with sodium acetate clusters (5 mM sodium
hydroxide in water/2-propanol 1/1 (v/v), with 0.2% of acetic acid) in high-precision calibration (HPC)
regression mode.

The phenolic compound quantification was performed with calibration curves elaborated
with commercial standards: Hydroxytyrosol was used to quantify hydroxytyrosol and oxidized
hydroxytyrosol; tyrosol was used to quantify tyrosol and ligstroside; caffeic acid was used to quantify
verbascoside; oleuropein was used to quantify oleuropein, its isomers and derivatives, oleosides
and elenolic acid derivatives, and secoiridoids; pinoresinol was used to quantify pinoresinol and
acetoxypinoresinol; luteolin was used to quantify luteolin; and luteolin 7-glucoside was used to
quantify luteolin 7-glucoside and luteolin 7-rutinoside. All phenolic compound standard solutions
were prepared at a concentration of 1000 mg/L by dissolving the appropriate amount of the compound
in methanol and then serially diluting to working concentrations (0.5 to 50 mg/L). Naringenin was
added at 25 µg/mL and used as internal standard.

3.6. Statistical Analysis

Linear regression (95% confidence limit) was used to determine the correlation between dielectric
constant and each phenolic compound class for the design from olive pomace extracts by PLE. A
one-way analysis of variance (ANOVA) and Duncan’s multiple range test were performed to test
for differences in phenolic compound content between olive pomace extracts by pressurized liquid
extraction in optimal conditions (OP-PLE) and olive pomace extract by conventional extraction (OP).
The statistical analyses were performed using Statgraphics Centurion XV (StatPoint Inc., Warrenton,
VA, USA, 2011).
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4. Conclusions

The extraction design of phenolic compounds from olive pomace by PLE demonstrates the great
variability of extracts that can be obtained by changing the extraction conditions, presenting differences
in the selectivity of extraction. The olive pomace extract obtained under optimized conditions showed
a higher concentration in phenolics than that obtained by conventional extraction, besides presenting
hydroxytyrosol, a compound which was not found in the extraction by maceration. The olive pomace
extract obtained under optimized PLE conditions can be used in the design of bioactive food ingredients,
as well as nutraceuticals.
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