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This work presents a semianalytical solution based on Laplace transform to study the behaviour of poroelastic materials in
the context of the Extended Nonequilibrium Thermodynamics. In this framework, the fluid phase incorporates a relaxation
time and, consequently, a frequency-dependence appears. This rheological behaviour could explain the frequency-dependence
experimentally observed in biological tissues, which has traditionally attributed to the solid phase of tissues. In particular, the
analytical solution is applied to two cases, heaviside and sinusoidal inputs, of a semi-infinite domain, which is filled with a material
such as the human cervix. From the results, it is observed that the frequency-dependenceof the fluid phase could be relevant to high
relaxation times while for null relaxation times the classical poroelastic theory is recovered. Finally, the present analytical solution
could be used to validate future computational codes and experimental settings.

1. Introduction

Nowadays, understanding mechanical behaviour of the
human cervix is a challenge for theoretical, computational,
and experimental communities since it could be used to
develop functional anticipation diagnostic tools, which will
be applied to reduce the main cause of infant mortality:
pretermbirth, according to [1]. Notice that the understanding
of cervical tissues is considered one of the most pressing
problems in obstetrics [2].

According to [3], the human cervix is composed of a
distribution of cells embedded in an extracellular matrix of
fibrillar collagen, which can be considered as the solid phase
and represent 20-30% of the tissue and water with dissolved
salts (fluid phase). The latter phase is the responsible for the
cervix incompressibility [4].

There exist many models to study dynamic responses
of tissues in specialised literature. However, most of them
are contradictory since they are based on phenomenological
equations, which lack robustness. In particular, measured
values in cervix tissues differ several orders of magnitude for

medium and high frequencies [5]. In this connection, there
are several viscoelastic approaches to properly characterise
the human cervix: a linear viscoelasticmodel was proposed in
[6], an in-homogenous model in [7], and several approaches
by the Rus’ group; see [8–10].

Despite the fact that the cervix is composed of solid and
fluid, all the previous works are only focused on the solid
contribution. On the contrary, the Extended Nonequilibrium
Thermodynamics (ENET) [11] incorporates a viscous-like
term to the fluid phase, which could explain the frequency-
dependence of the cervix. For instance, R. Palma et al. have
developed analytical and numerical solutions to study the
second sound in thermoelasticity (see [12, 13]), which can be
considered as a viscothermal effect. Also, ENET is applied in
[14] to study the Debye relaxation: a viscoelectric effect.

On this ground, this paper presents a poroelastic formu-
lation based on the ENET to study the frequency-dependence
of cervix tissues due to the fluid phase, and it could be
considered the main novelty of the present work. Then, the
formulation is expressed in one-dimension in order to obtain
a dynamical solution by a semianalytical approach based
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on Laplace transform. Finally, two numerical examples are
developed to highlight the importance of the fluid-relaxation
in the response of the cervix.

The present work assumes small strains and linear elastic-
ity for the solid phase. For the fluid, constant properties are
considered and the effects of temperature are neglected.

2. Three-Dimensional Governing Equations

Consider an arbitrary domain Ω and boundary Γ for which
the governing equations are composed of equilibrium and
constitutive equations and of the boundary conditions.

With regard to the equilibrium equation and since the
domain contains solid and fluid constituents, two equations
must be enforced: linear momentum and mass conservation.
Mathematically, they are expressed in local form as follows:

𝜌ü = ∇ ⋅ 𝜎⊤ + f,
𝑐𝑝𝑢 ̇𝜖 + 𝑐𝑝𝑝�̇� = −∇ ⋅ d + 𝐷, (1)

where 𝜌, ü, and f denote mass density (including solid and
fluid), acceleration, and body forces, respectively; 𝜎 = 𝜎⊤ is
the Cauchy stress tensor; d and 𝐷 denote the rate of change
in fluid mass through the boundary and the production
of fluid from an external source, respectively. Finally, 𝜖, 𝑝,𝑐𝑝𝑢, and 𝑐𝑝𝑝 denote volumetric strain, fluid pressure, and
two constants closely related to the porosity and fluid bulk
modulus, respectively.

Obviously, two constitutive equations, solid and fluid
phases, are required to model poroelasticity; these equations
read

𝜎 = C : 𝜖 − 𝑐𝑢𝑝𝑝I,
𝜏ḋ + d = −K ⋅ ∇𝑝. (2)

At this point, it is necessary to define all terms in (2):

(i) C denotes the elastic fourth order tensor, which is
composed of matrix C𝑚𝑡 and of fibre C𝑓𝑏 (both solid
phases) by the rule of mixture:

C = 𝜉C𝑚𝑡 + (1 − 𝜉)C𝑓𝑏,
with : {{{

C𝑚𝑡 = 2𝜇𝑚𝑡1 + 𝜆𝑚𝑡I ⊗ I,
C𝑓𝑏 = 2𝜇𝑓𝑏1 + 𝜆𝑓𝑏I ⊗ I,

(3)

where 𝜉 = 0.88 is the percentage of matrix, 1 denotes
the fourth-order identity tensor, and 𝜇, 𝜆 are the
Lamé parameters for matrix and fibre constituents,
respectively.

(ii) 𝜖 = (1/2)(∇ ⊗ u + u ⊗ ∇) = ∇𝑠u is the small strain
second order tensor and ∇𝑠 denotes the symmetric
part of the gradient of displacements.

(iii) K = (1/]𝑓)𝜅 denotes solid permeability and it is
closely related to the fluid viscosity ]𝑓.

(iv) 𝜏 is the relaxation times, which is introduced by
the assumption of a mixed entropy; see [15]. This
empirical parameter is responsible for viscosity in
the fluid phase and, consequently, for the frequency-
dependence. Notice that the classical poroelasticity
theory is recovered by imposing 𝜏 = 0.

Finally, the Dirichlet and Neumann boundary conditions
for the extended poroelastic problem read

u = u,
𝜎
⊤ ⋅ n = t,
𝑝 = 𝑝,

d ⋅ n = 𝑑𝑐,
(4)

whereu and 𝑝 denote prescribed displacements and pressure,
respectively, and t and 𝑑𝑐 prescribed traction and fluid flux on
the boundary with outward normal n.

3. Analytical Solution

This section presents a one-dimensional, semianalytical, and
dynamical solution for a half-space filled with a poroelastic
material. For this purpose, the three-dimension extended
poroelastic equations reported in Section 2 are rewritten
along the 𝑥-axis in order to apply the state space tech-
nique; see [16].The three-dimensional Euclidean coordinates
become

x ≡ (𝑥, 0, 0, 𝑡) 󳨐⇒ {{{
u (x, 𝑡) ≡ 𝑢 (𝑥, 𝑡) ,
𝑝 = 𝑝 (𝑥, 𝑡) , (5)

and the components of strain tensor are reduced to

{𝜖} 󳨐⇒ {{{
𝜖1 = 𝜕𝑢 (𝑥, 𝑡)𝜕𝑥 = 𝜖,
𝜖2 = 𝜖3 = 𝜖4 = 𝜖5 = 𝜖6 = 0, (6)

and, finally, the constitutive equation of (2) (upper) becomes

𝜎1 = 𝐶11𝜖1 − 𝑐𝑢𝑝𝑝 󳨀→ 𝜎 = 𝐶𝜖 − 𝑐𝑢𝑝𝑝,
𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 𝜎6 = 0. (7)

In absence of body forces f = 0 and mass sources 𝐷 = 0,
the equilibrium equations of (1) are reduced to

𝜕𝜎𝜕𝑥 = 𝜌�̈�𝑥 󳨐⇒
𝜕2𝜎𝜕𝑥2 = 𝜌𝜕�̈�𝑥𝜕𝑥 = 𝜌 ̈𝜖,
𝐾𝜕2𝑝𝜕𝑥2 = ( 𝜕𝜕𝑡 + 𝜏 𝜕

2

𝜕𝑡2)(𝑐𝑝𝑢𝜖 + 𝑐𝑝𝑝𝑝) ,
(8)
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Now, equations (6), (7), and (8) are rewritten in the
Laplace domain by applying the transformation 𝑓(𝑠) =∫∞
0
𝑓(𝑡)𝑒−𝑠𝑡d𝑡:

𝜎 = 𝐶 𝜖 − 𝑐𝑢𝑝𝑝,
𝜕2𝜎𝜕𝑥2 = 𝑠2𝜌𝜖,
𝐾𝜕2𝑝𝜕𝑥2 = (𝑠 + 𝜏𝑠2) (𝑐𝑝𝑢𝜖 + 𝑐𝑝𝑝𝑝) .

(9)

These equations can be expressed in compact form by
introducing the coefficients 𝐿1, 𝐿2,𝑀1, and𝑀2:

𝐿1 = (𝑐𝑝𝑢𝑐𝑢𝑝 + 𝐶𝑐𝑝𝑝𝐾𝐶 )(𝑠 + 𝜏𝑠2) ,
𝐿2 = ( 𝑐𝑝𝑢𝐾𝐶) (𝑠 + 𝜏𝑠2) ,
𝑀1 = 𝑐𝑢𝑝𝜌𝑠2𝐶 ,
𝑀2 = 𝑠2𝜌𝐶 ,

(10)

to give

𝜕2𝑝𝜕𝑥2 = 𝐿1𝑝 + 𝐿2𝜎,
𝜕2𝜎𝜕𝑥2 = 𝑀1𝑝 +𝑀2𝜎,

(11)

and the closed solution of this system of two couple equations
can be expressed as follows:

{𝑝 (𝑥, 𝑠)𝜎 (𝑥, 𝑠)} = exp(√[𝐿1 𝐿2𝑀1 𝑀2]𝑥){
𝑝 (0, 𝑠) = 𝑝0𝜎 (0, 𝑠) = 𝜎0} . (12)

The solution of this system is obtained by applying the
Cayley-Hamilton theorem [16] to give

{𝑝 (𝑥, 𝑠)𝜎 (𝑥, 𝑠)} = [𝐿11 𝐿12𝐿21 𝐿22]{
𝑝0𝜎0} , (13)

where 𝑝0 and 𝜎0 are the boundary conditions and the
coefficient and are explicitly given by

𝐿11 = 𝑒−√𝜂2𝑥 (𝜂1 − 𝐿1) − 𝑒−√𝜂1𝑥 (𝜂2 − 𝐿1)𝜂1 − 𝜂2 ,
𝐿22 = 𝑒−√𝜂1𝑥 (𝜂2 −𝑀2) − 𝑒−√𝜂2𝑥 (𝜂1 −𝑀2)𝜂2 − 𝜂1 ,
𝐿12 = 𝐿2 (𝑒−√𝜂1𝑥 − 𝑒−√𝜂2𝑥)𝜂1 − 𝜂2 ,
𝐿21 = 𝑀1 (𝑒−√𝜂1𝑥 − 𝑒−√𝜂2𝑥)𝜂1 − 𝜂2 ,

(14)

where 𝜂1 and 𝜂2 are the solutions of the following character-
istic equations:

𝜂1 + 𝜂2 = 𝐿1 +𝑀2,𝜂1𝜂2 = 𝐿1𝑀2 − 𝐿2𝑀1. (15)

Finally, the semianalytical solution is attained by impos-
ing boundary conditions and by inverting the Laplace trans-
form using Riemann-sum approximations, as in [12].

4. Results

This section presents two analytical solutions, called cases, in
order to highlight the main features of the present formula-
tion. For this purpose, the material properties are obtained
from the literature (see Table 1), and they are real measured
variables of the human cervix. In particular, Lamé parameters
for fibre and matrix phases are obtained from [8, 9], bulk
modulus of fluid from [17], solid permeability from [18], and
fluid viscosity from [19]. Finally, the coefficient 𝑐𝑢𝑝 = 0.75
obeys the composition of the cervix, namely, 80-70% of fluid
phase; see [20].

4.1. Case I. For case I, the boundary conditions are assumed
to be a heaviside unit step function𝐻(𝑡):

𝑝0 = 𝑝0𝑠 ,𝜎0 = 0. (16)

Introducing (16) in (12) and taking into account (14), the
solutions for 𝑝 and 𝜎 in the Laplace domain read

𝑝 = 𝑝0 [(𝜂1 − 𝐿1) 𝑒−√𝜂2𝑥 − (𝜂2 − 𝐿1) 𝑒−√𝜂1𝑥]𝑠 (𝜂1 − 𝜂2) ,
𝜎 = 𝑝0𝑀1 (𝑒−√𝜂1𝑥 − 𝑒−√𝜂2𝑥)𝑠 (𝜂1 − 𝜂2) .

(17)

Furthermore, the mechanical displacement and the flux can
be obtained taking into account

𝑑 = −𝐾𝜕𝑝𝜕𝑥 ,
𝜕2𝜎𝜕𝑥2 = 𝑠3𝜌𝑢 󳨐⇒
𝑢 = 1𝑠3𝜌 𝜕

2𝜎𝜕𝑥2 ,
(18)
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Table 1: Material properties of the human cervix.

Magnitude Value Units𝜌 1000 [kg/m3]𝜌𝑓 1000 [kg/m3]𝑐𝑢𝑝 0.75 [–]
]𝑓 1.2 × 10−3 [Pa⋅s]𝜇𝑓𝑏 6.45 × 107 [Pa]𝜆𝑓𝑏 1.47 × 108 [Pa]𝜇𝑚𝑡 7.47 × 103 [Pa]𝜆𝑚𝑡 1.7 × 109 [Pa]𝐵𝑓 2.2 × 109 [Pa]𝜅 7.2 × 10−14 [m2]

to give

𝑑
= 𝐾𝑝0 [(𝜂1 − 𝐿1)√𝜂2𝑒−√𝜂2𝑥 − (𝜂2 − 𝐿1)√𝜂1𝑒−√𝜂1𝑥]𝑠 (𝜂1 − 𝜂2) ,
𝑢 = 𝑝0𝑀1 (𝜂1𝑒−√𝜂1𝑥 − 𝜂2𝑒−√𝜂2𝑥)𝜌𝑠4 (𝜂1 − 𝜂2) .

(19)

Consider a one-dimensional and semi-infinite domain,
which is filled with a material as that of cervix. At 𝑡 =0, a fluid pressure of heaviside type is applied and, then,
the evolution of all variables of (17) and (18) is numerically
studied. In particular, Figure 1 shows the time evolution of 𝑝
(left column), 𝑢 (middle column), and 𝜎 (right column) for
three different relaxation times: 𝜏 =0.5, 0,1, 0 [s] (each one in
a row). In addition, each figure contains three different curves
at three time instants 𝑡 =0.3, 0.5, 1 [s].

For 𝜏 ̸= 0 [s] (extended poroelasticity) a hyperbolic
behaviour is attained in the evolution of 𝑝 and, consequently,
in 𝑢. It is observed in the wave front, which is moving at
each time instant. On the contrary, for the case 𝜏 = 0 a
parabolic behaviour is observed, absence of wave front, and
the classical poroelastic theory is recovered. In this sense,
the extended poroelasticity removes the paradox of infinite
velocity, which lacks physical meaning: in nature, there are
no infinity velocities.

Since the problem is coupled, the stresses for 𝜏 ̸= 0
[s] show a viscous-like behaviour that could explain the
frequency-dependence experimentally observed in cervical
tissues. On the contrary, for 𝜏 = 0 [s], a linear behaviour
is observed and, therefore, it is concluded that the classical
poroelasticity can not be used to model the human cervix.

4.2. Case II. For case II, a sinusoidal function 𝑝0 sin(𝜔𝑡) of
frequency 𝜔 is prescribed:

𝑝0 = 𝑝0 𝜔𝑠2 + 𝜔2 ,
𝜎0 = 0. (20)

Following a procedure similar to that of case I, the solutions
for 𝑝 and 𝜎 in the Laplace domain are

𝑝 = 𝑝0𝜔[(𝜂1 − 𝐿1) 𝑒−√𝜂2𝑥 − (𝜂2 − 𝐿1) 𝑒−√𝜂1𝑥](𝑠2 + 𝜔2) (𝜂1 − 𝜂2) ,
𝜎 = 𝑝0𝑀1𝜔 (𝑒−√𝜂1𝑥 − 𝑒−√𝜂2𝑥)(𝑠2 + 𝜔2) (𝜂1 − 𝜂2) ,

(21)

and the mechanical displacement and the flux are given by

𝑑
= 𝐾𝑝0𝜔 [(𝜂1 − 𝐿1)√𝜂2𝑒−√𝜂2𝑥 − (𝜂2 − 𝐿1)√𝜂1𝑒−√𝜂1𝑥](𝑠2 + 𝜔2) (𝜂1 − 𝜂2) ,
𝑢 = 𝑝0𝑀1𝜔 (𝜂1𝑒−√𝜂1𝑥 − 𝜂2𝑒−√𝜂2𝑥)𝜌𝑠3 (𝑠2 + 𝜔2) (𝜂1 − 𝜂2) .

(22)

Consider the same semi-infinite domain as that in case
I. Now, a fluid pressure of sinusoidal type is applied at𝑡 = 0 and all variables of (21) and (22) are shown in
Figure 2. Again, the same conclusion as those in case I
can be observed for this sinusoidal input. Nevertheless, the
curves are smoother due to the nature of the sinusoidal
signal. Therefore, these solutions are more amenable for
future computational validations since it is not necessary to
use regularisation schemes.

5. Conclusions

This work has presented a theoretical approach based on
Nonequilibrium Thermodynamics to study the behaviour
of poroelastic materials taking into account the frequency-
dependence of the fluid phase. In this connection, the main
novelty of the present work is the incorporation of relaxation
times for the fluid phase to perform a material constitution
applied to biological tissues. Then, the three-dimensional
governing equations are reduced to one dimension in order
to obtain a semianalytical and dynamical solution based
on Laplace transform. In particular, the solution is applied
to simulate a semi-infinite domain, which is filled with a
material such as the human cervix, and it is observed that the
frequency-dependence also could be due to the fluid phase.
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Figure 1: Case I. Fluid pressure (left column), mechanical displacement (middle), and mechanical stress (right) versus distance for three
relaxation times: 𝜏 = 0.5 (top row), 𝜏 = 0.1 (middle) and 𝜏 = 0 [s] (bottom). Each figure shows three different curves at three time instants:𝑡 =0.3, 0.5, 1 [s].
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Figure 2: Case II. Fluid pressure (left column), mechanical displacement (middle), and mechanical stress (right) versus distance for three
relaxation times: 𝜏 = 0.5 (top row), 𝜏 = 0.1 (middle), and 𝜏 = 0 [s] (bottom). Each figure shows three different curves at three time instants:𝑡 =0.3, 0.5, 1 [s].
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