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Abstract: Due to the importance of coastline detection in coastal studies, different methods have
been developed in recent decades in accordance with the evolution of measuring techniques such
as remote sensing. This work proposes an automatic methodology with new water indexes to
detect the coastline from different multispectral Landsat images; the methodology is applied to three
Spanish deltas in the Mediterranean Sea. The new water indexes use surface reflectance rather than
top-of-atmosphere reflectance from blue and shortwave infrared (SWIR 2) Landsat bands. A total
of 621 sets of images were analyzed from three different Landsat sensors with a moderate spatial
resolution of 30 m. Our proposal, which was compared to the most commonly used water indexes,
showed outstanding performance in automatic detection of the coastline in 96% of the data analyzed,
which also reached the minimum value of bias of −0.91 m and a standard deviation ranging from
±4.7 and ±7.29 m in some cases in contrast to the existing values. Bicubic interpolation was evaluated
for a simple sub-pixel analysis to assess its capability in improving the accuracy of coastline extraction.
Our methodology represents a step forward in automatic coastline detection that can be applied to
micro-tidal coastal sites with different land covers using many multi-sensor satellite images.
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1. Introduction

The coastal areas constitute one of the most productive yet vulnerable ecosystems in the world [1].
Furthermore, most of the world population is concentrated in the coastal area, with up to 60% living
close to the sea [2,3]. As a consequence, coastline monitoring must be an essential issue for public
policies regarding coastal management.

The coastal zone is a very dynamic environment affected by different factors, such as hydrography,
geology, climate, and vegetation [4]. The increasing development of coastal areas causes persistent
erosion and flooding problems [5]. Therefore, the knowledge and assessment of the shifts in shoreline
position are crucial in the understanding of the morphodynamic processes driving changes [6]. Thus,
coastal observation is under permanent development to improve measuring capabilities and to
characterize processes related to water quality, hydrodynamics, meteorology, and ecology, as well as
submarine geomophology [7].

During the last decades, the most commonly used methods for coastline mapping were field
surveys [8,9] and aerial photography [10,11]. Although aerial photographs provide good spatial
coverage of the coast [12], temporal coverage can be restricted [13]. To avoid such limitations, remote
sensing techniques constitute a good alternative due to the increase in the availability of satellite
images; the improvement in spatial, temporal, and radiometric resolution on satellite sensors; and
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the development of tools for geographic data analysis (Geographic Information Systems (GIS)) as
well as of image processing techniques [14]. During the last 30 years, images from different types of
satellites have been used to detect coastline, such as radar images, e.g., Synthetic Aperture Radar (SAR)
from European Remote Sensing satellite (ERS-1) [15] and ERS-2 [16], high spatial resolution (between
0.5 m and 2.5 m) in multispectral images from DubaiSat-1 and DubaiSat-2 satellites [17], WorldView-2
satellite images [18], and moderate spatial resolution in multispectral images (Operational Land
Imager) from satellite Landsat 8 [19].

The Landsat project is one of the most frequently used sources of space-based imagery for
Earth studies due to the large collection of multispectral imaging of moderate spatial and temporal
resolution; in addition, it is a free access database since 2008 [20]. Therefore, it has been widely used in
different areas such as agriculture [21], forestry [22,23], disaster prevention [24], hydrology [25], land
planning [26,27], etc. Nowadays, there are two satellites still in orbit, Landsat 7 and Landsat 8.

Many researchers such as Zhu [28], Rasuly et al. [29], Zhang et al. [30], and Rokni et al. [31] have
been using Landsat images to detect and monitor the coastline using visible and infrared multispectral
bands. Although the Landsat project allows to develop long-term (between 10 and 30 years) analyses
due to the large image collection [29,32,33], an important limitation in some cases is the spatial
resolution. Landsat images permit a coarse pixel analysis, which in some cases is not detailed enough
to detect small or sub-pixel features or changes [34]. In these circumstances, a sub-pixel methodology
by super resolution techniques may be useful [35], such as interpolation techniques [36,37]. Most of
the accepted interpolation methods for image spatial resolution improvement are based on nearest
neighbor and bilinear and bicubic interpolation [38–40].

Different types of image processing techniques have been developed for coastline detection, such
as segmentation and single band threshold [41,42]; segmentation based on local spectral histogram
and level set method [43], which is based on active contours or snakes [44,45]; water indexes [46,47];
classification techniques such as neural network, isodata, support vector machine among others [48–50];
fuzzy logic [51]; band ratio [52]; high water-line visual interpretation [53–56]; and edge detection [57].
Some of these techniques are made by manual detection [43], and others allow an automatic image
processing, which is often required in cases like classification of surface water to mask water pixels and
in enabling effective monitoring [58]. This is essential when long-term studies are conducted because
automating the process reduces human errors since it requires minimal or no human intervention and
improves the standardization and efficiency of the studies.

Deltas are among the most environmentally dynamic ecosystems in the world [59]. They are
also one the most affected coastal environments due to natural resources and human influence [60].
The deltaic coastal areas are used nowadays as human settlements and for different activities such as
tourism, natural reserves, and agriculture, among other things, making this area of high ecological,
economic, and social importance [61]. Hence, one of the main concerns of these areas is related to the
impact of the sea level rise driven by climate change [62], which results, among other things, in coastline
retreat. For this reason, it is essential to track coastline changes to understand the relationship between
spatiotemporal patterns of sea-level rise and those of coastline changes which requires studying the
coastline dynamic at large spatial scales and over long time periods [63].

It is clear that long-term studies are necessary to better understand coastal changes, so automated
methodologies are essential to carry out this task. Also, in some cases, the unsupervised classification
methods are useful due to their flexibility [64] where there is no need to feed the algorithm with prior
ground information [65], which is time consuming and can induce higher human errors. The proposed
water indexes combined with the methodology followed gave outstanding results in coastline detection
from different sites with different land covers. Also, it showed the effectiveness in detecting a greater
quantity of shorelines from different Landsat sensors in different coastal areas compared to the usual
indexes used over all the images analyzed in this paper, with a high positional accuracy in the coastlines
detected. The methodology proposed has the advantage to be simple, with relatively high accuracy
and low-cost implementation.
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This research proposes a methodology to automatically extract the coastline from different
satellite images by the combination of different processing techniques commonly used in the literature.
The methodology includes a new water spectral index, which improves the effectiveness to detect
the coastline compared to three of the existing and most common water indexes used: the modified
normalized difference water index (MNDWI), the normalized water index (NDWI), and the automated
water extraction index (AWEI). The methodology was applied to different deltas located on the
Spanish Medierranean coast (Guadalfeo, Adra, and Ebro). Multispectral satellite images from three
different sensor, i.e., the thematic mapper (TM), the enhanced thematic mapper plus (ETM+), and
the operational land imager (OLI) of the Landsat project were used, which increased their spatial
resolution by bicubic interpolation in order to asses a simple sub-pixel analysis. Accuracy assessment
was done by comparing the coastline extracted to high resolution data.

2. Study Sites

Three different river deltas (Figure 1) were selected in this study to apply the new methodology
and to compare the water-index behavior. An important characteristic that influenced the selection
of the three study zones is their micro-tidal conditions (a tidal range of approximately 0.5 m in the
Guadalfeo, usually not exceeding 1.0 m high in the Adra delta [61], and a maximum tidal range about
of 0.25 m in the Ebro delta [66]). This research aims to detect automatically the coastline from sites
with different land use using a water spectral index, the delta morphologic analysis is out of the scope
of this paper.

Figure 1. Location map of the three study areas used to validate the mehodology.
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2.1. Guadalfeo River Delta

The Guadalfeo river catchment has an area of 1252 km2, forming an irregular rectangle and
draining to the Mediterranean Sea [67]. The catchment is limited by three main crest lines; in the
northern line, the division corresponds to the crest line of the Sierra Nevada, whereas in the south,
the division corresponds to the crest lines of the Sierra de la Contraviesa and the Sierra de Lujar.

The current Guadalfeo river delta is located between Punta del Santo, former location of the river
mouth channel (before 1943), and the Rock of Salobreña [68]. The delta plain is delimited by this rock
in the west and by the Motril Port in the east [67,69]. According to the land-use distribution on the
delta plain, the main land use in this area is sugarcane, subtropical farming, and market gardening.
However, there is also a small percentage of land used for greenhouses [70], particularly between the
eastern side of the river and Motril Harbor.

The Guadalfeo River catchment has a subtropical Mediterranean climate with an average annual
rainfall of 586 mm [71]. Due to the steep topographic gradient, sediment sizes with different levels
of gradation and mixing are found [72], so the particle-size distribution on the coast is particularly
complex with varying proportions of sand and gravel [73].

2.2. Adra River Delta

The Adra river is the fifth longest river from the Mediterranean river systems of Andalusia with a
basin of 750.7 km2 [74] located in southeastern Spain and bounded by Sierra of Gador to the east and
by Contraviesa to the west [75].

The climate follows a typical Mediterranean semiarid regime, with an average annual temperature
of 18 ◦C and an average annual precipitation of around 300 mm [76]. The fluvial discharge of Adra
river is one of the largest compared to others from the Spanish Mediterranean river systems with a
mean discharge of 1 m3/s according to Liquete et al. [74] and with the characteristic to have water
year-round in contrast to other rivers in the region that have discharge only during storms [61].

Around the delta, the main land use is dominated by plastic greenhouses extended out of the
fertile floodplain along the rain-fed slopes of the delta valley [76]. In the southeastern side of the
river is located the most important coastal wetland of southeastern Spain which comprises two small
lagoons (0.5 Km2) which are protected areas of the Ramsar Convention.

2.3. Ebro River Delta

The Ebro river basin is located in the northeast of the Iberian Peninsula, and it has a surface
of 85,362 km2. The Pyrenees range delimits the basin to the north, whereas the Cantabrian Massif
delimits it to the Northwest, the Iberian System Range delimits it to the south and southwest, and the
Catalan Pre-Coastal Range delimits it to the east [77].

The Ebro delta is located 200 km southward of Barcelona (Spain). The subaerial surfaces are
of approximately 320 km [78], and the sandy coastline has an approximate length of 50 km [60].
During the last decades, the Ebro delta has changed mainly due to the dam construction that decreases
the river sediment discharge which, combined with wave-induced processes, resulted in a drastic
reshape of the delta [66,78,79].

More than half of the delta plain is used for agriculture, mainly rice crops [78,80]. The rest of
the area is represented by bog vegetation, lagoons and fresh marshes, sand beaches, canals, and
roads [80,81]. It is a highly valuable ecologic environment, being protected by international regulations
such as the Ramsar List of Wetlands of International Importance and the Natura 2000 network [82].

3. Data

3.1. Moderate Resolution Data Multispectral Satellite Images

Multispectral imaging sensors capture image data from at least two or more wavelengths across
the electromagnetic spectrum. On the sensor, each channel is sensitive to radiation within a narrow
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wavelength band resulting in a multi-layer image that contains both brightness and spectral (color)
information of the pixels sampled [83].

Multispectral Landsat images were selected from three different sensors: the Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI). These sensors
were selected due to their better spatial resolution (30 m) in contrast to Multispectral Scanner (MSS)
sensor which was present in Landsat 1, 2 and 3, of which the spatial resolution was 79 m (resampled
to 60 m). A total of 621 sets of images ranging between 1984 and 2017 were analyzed to test the
effectiveness to obtain a shoreline after applying the methodology for a pixel and sub-pixel analysis,
with different water indexes used to compare. Table 1 shows the distribution of the images depending
on the type of sensor. The selected images were from the visible region of the electromagnetic spectrum
(VIS, i.e., blue, green, and red bands), Near Infrared Region (NIR), and Mid Infrared Region (MIR,
i.e., SWIR 1 and SWIR 2), according to the water index used.

The Landsat images were downloaded from the online tool http://earthexplorer.usgs.gov/
developed by the United States Geological Survey (USGS). This tool enables searching, visualizing,
and downloading satellite images from several sources. All the images downloaded are cloud free and
the highest quality product available in the Landsat collection [84]. Images are already orthorectified,
geometrically corrected, and registered to a Universal Transverse Mercator (zone 30N for Guadalfeo
and Adra deltas and 31N for Ebro delta ) WGS84 ellipsoid coordinate system (with a georegistration
accuracy of Root Mean Square Error < 0.4 pixel).

Table 1. Set of images analyzed.

STUDY ZONE SENSOR No of Images SUBTOTAL

Guadalfeo
TM 51

264ETM+ 149
OLI 64

Adra
TM 61

172ETM+ 50
OLI 61

Ebro
TM 45

185ETM+ 104
OLI 36

3.2. High Resolution Data

In order to test the accuracy of the methodology through a geometric evaluation, high-resolution
data such as aerial orthophotos or high-resolution satellite images were selected. We searched the
available information that coincides with the dates of the Landsat images selected. Little information
was found that matches the same date (or close). In the case of Guadalfeo river delta, two sets of
Landsat images were compared with the coastline extracted from aerial images with a resolution equal
to 0.5 m/pixel provided by the Instituto de Estadística y Cartografía de Andalucía (Spain) [85], whereas
the other three sets of images were compared to field measurements collected with a Differential Global
Positioning System (DGPS) with less than 2 cm of instrument error, as described in Bergillos et al. [86].
Also, for the Adra and Ebro cases, the 0.5-m/pixel orthophotos were obtained from the The National
Center for Geographic information (CNIG) of Spain.

 http://earthexplorer.usgs.gov/
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Table 2. Acquisition dates of data used in the study to asses the methodology.

High Resolution Data

Study Site Landsat DGPS Orthophoto

Guadalfeo 18-Jul-2010 Jul-2010
23-May-2013 May-2013
25-Oct-2014 17-Oct-2014
12-Dec-2014 11-Dec-2014
6-Feb-2015 6-Feb-2015

Adra 18-Jul-2010 6-Jul-2010
23-May-2013 13-Jun-2013

2-Jul-2016 22-Jun-2016

Ebro 13-Aug-2007 21-Aug-2007
20-Jun-2008 22-Jun-2008
15-Jun-2012 22-Jun-2012

Table 2 shows acquisition date information about the different data used to test the methodology
for the three different deltas analyzed. In the Appendix A, Table A1 shows some parameters of the
Landsat images selected for each sensor to be compared with high resolution data. In Section 5.3,
we will explain how the assessment was done.

4. Methodology

The methodology applied in this research for the coastline detection was divided into three
main phases, as shown in Figure 2. First, in the preprocessing, as usually required, before extracting
a physical meaning or comparing between different sensors and dates, the Landsat images for the
analysis are selected to be radiometric normalized and atmospheric corrected. Second, in the processing
step, the spectral water index is applied. Finally, during postprocessing, the coastlines are obtained by
means of vectorization. A detailed explanation of the first two phases will be done in a later section.

Figure 2. Study workflow for the methodology used in coastline extraction.
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Shoreline Indicator

The coastline is ideally defined as the interface between land and water [12]. Although this may
appear simple and easy to be identified, it is a challenging task because the coastline is continually
changing depending on several factors such as astronomical tides, sediment transport, waves, currents,
and even human interventions, among others. The coastlines analyzed in this work are instant
shorelines representing a specific position according to the date and time of the satellite image.

During the last decades, different types of shoreline indicators have been defined mainly
depending on the data source and the method applied to detect the shoreline. Boak and Turner [13]
compiled and summarized 45 different shoreline indicators found in the literature; in our study, the
shoreline indicator selected is the line between wet and dry pixels, the so-called wet/dry line.

5. New Water Index Definition

Water indexes have been widely used to separate water from other features of satellite images.
The spectral water indexes method consists of calculating a ratio, pixel by pixel, from different bands
on an image to distinguish water from land. Some water indexes are not obtained by ratios but
by just applying an arithmetic operations like sum, subtraction, and multiplication as proposed
by Feyisa et al. [87] and Fisher et al. [58]. Some water indexes developed and the multi-band-based
methodology found in the literature [58,88] are listed in Table A3.

The most common spectral water indexes used to extract coastline from satellite images are based
on normalized difference indexes used in prior vegetation studies such as the Normalized Difference
Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) [89]. One of the most
often water index used is the NDWI proposed by McFeeters [90] to delineate open water features,
which uses the top-of-atmosphere (TOA) reflectance of green and NIR bands. Since water features
extracted using this NDWI include false positives from built-up land [31], a Modified Normalized
Difference Water Index (MNDWI) was proposed by Xu [91], using the SWIR1 instead of the NIR
band and enhancing the removal of shadows in city areas [92]. Another water index commonly
used is the Automated Water Extraction Index (AWEI) proposed by Feyisa et al. [87], which has two
versions: (1) AWEInsh that was proposed to eliminate non-water pixels, including dark built surfaces
in areas with urban background, and (2) AWEIsh that removes shadow pixels that AWEInsh may not
effectively eliminate.

In this work, two new water indexes are proposed to identify the coastline based on the
assumption that a spectral reflectance signature of water bodies is quite different from that of vegetation
and soils. According to Chuvieco [93], water reflectance is higher in the VIS region and decreases
when increasing the wavelengths, which means that water reflectance approaches zero in the NIR and
SWIR regions in contrast to soil and vegetation of which reflectance increases significantly.

In this research, the spectral signatures of different land covers were analyzed from selected
images of the Guadalfeo, Adra, and Ebro river deltas (Figures 3–5). These spectral signatures allow
to compare the land cover spectral behavior of the different sensors for each band. It was observed
that the highest water reflectance was attained in the blue band, followed by the green one. However,
the lowest water reflectance was found on the SWIR 2 band for all sensors. Thus, the proposed indexes
were as follows:

WI1 =
ρGreen − ρSWIR2

ρGreen + ρSWIR2
(1)

WI2 =
ρBlue − ρSWIR2

ρBlue + ρSWIR2
(2)

where ρBlue, ρGreen, and ρSWIR2 represent the surface reflectance in the green, blue, and shortwave
infrared 2 bands, respectively.

The spectral signature of the different land covers from the three deltas tested is quite similar
in terms of blue and SWIR2 band spectral behavior. From Figures 3–5, it is noticeable that changes
in the spectral behavior of the sand beach is almost imperceptible. Usually, NDWI and MNDWI are
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based on the assumption that spectral behavior of non-water covers have similar behavior in the green
band but opposite in the NIR or SWIR1 bands. Although they usually give negative index values
for non-water pixels and positive index values for water pixels, this is not always the case, as can be
seen in different images analyzed as the TM image from Guadalfeo Delta river (Figure 3c), the TM
and ETM+ image from Adra delta river (Figure 4b,c, as well as the TM image from Ebro delta river
(Figure 5c), in which, if MNDWI was calculated, sand pixels would take positive values just as water.
This can result in sand pixels misinterpreted as water pixels, so the accuracy of the coastline detection
decreases. The presence of sand is an important issue because sand reflectance may vary depending
on sand color or grain size of sediments and the content of water, as Drakopoulos et al. [94] confirmed
by laboratories measurements.

(a)

(b)

(c)

Figure 3. Spectral signature graphs of main land covers analyzed in the Guadalfeo Delta from different
dates and Landsat sensors: (a) Operational Land Imager (OLI) Landsat image captured on 23 May 2013.
(b) Enhanced Thematic Mapper Plus (ETM+) Landsat image captured on 25 October 2014. (c) Thematic
Mapper (TM) Landsat image captured on 18 July 2010.

On the other hand, as can been seen in all the spectral signatures from the three deltas tested,
if WI1 and WI2 are calculated in any of the images of Figures 3–5, they will usually get positive pixels
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values but non-water pixels will get values close to zero or negative while water pixel values will be
much higher. Thus, these differences in pixel values would help the Otsu’s algorithm performs better
in segmentation processes since this method maximizes the between-class variance and minimizes the
within-class variance [95].

(a)

(b)

(c)

Figure 4. Spectral signature graphs of main land covers analyzed in the Adra Delta from different
dates and Landsat sensors: (a) OLI Landsat image captured on 24 June 2013. (b) ETM+ Landsat image
captured on 28 July 1990. (c) TM Landsat image captured on 18 July 2010.
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(a)

(b)

(c)

Figure 5. Spectral signature graphs of main land covers analyzed in the Ebro Delta from different dates
and Landsat sensors: (a) OLI Landsat image captured on 10 September 2014. (b) ETM+ Landsat image
captured on 4 May 2014. (c) TM Landsat image captured on 14 March 2010.

5.1. Preprocessing Phase

The preprocessing process was done using open source Quantum GIS (QGIS) software. The Semi
Classification Plugin (SCP) allows not only for the semi automatic classification of remote-sensing
images but also for the preprocessing of images and raster calculations [96]. Using SCP, digital numbers
of each Landsat image selected were converted into radiance and then into surface reflectance by
applying the Dark Object Subtraction (DOS) method [97]. Prior studies have compared the DOS method
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to other atmospheric correction models over water areas and urban coastal environments, showing
that DOS exhibits better performance, being one of the atmospheric correction models widely used in
coastal studies [7,29,31,98]. Surface reflectance was used rather than TOA reflectance since atmospheric
correction is needed for analyzing multiple images acquired from different satellite sensors [99,100].
Parameters required for preprocessing were extracted from metadata files downloaded with image
data products. To find out more about how the radiometric normalization and the atmospheric
correction was calculated, see Appendix B.

5.2. Processing Phase

The processing step was made using Matlab R©. First, each band image was subset to extract
the study area in the first part of the automatic algorithm developed; this part allows to select all
the original size Landsat images needed from the same zone. When all the images are loaded, the
algorithm asks for the desired area to be cropped in the first image. The algorithm user points out the
desired area, and the algorithm saves the coordinates selected in the image and applies the crop to the
rest of the images with the same parameters. The next step was to apply a Matlab built-in function of
unsharp masking (i.e., an image sharpening subtracting a blurred version of the image from itself [101])
to enhance the edges presented in the images [102]. Then, the water indexes were applied according to
Equations (1) and (2) for the proposed water index (WI1 and WI2, respectively), and the expressions
found in Table A3 for the water indexes were selected to compare the proposed ones (NDWI, MNDWI,
and AWEI). After the application of the water indexes, the segmentation step was performed to
produce a binary image by threshold technique. In segmentation techniques, an image is partitioned
into meaningful parts, which have similar features and properties [103]. This method permits to
extract objects by selecting a specific threshold to differentiate the object from the background. Otsu’s
method [104] was selected as the global threshold automatic selection method because it is widely
used [105] and it is one of the best threshold methods of general real-world images with regard to
uniformity and shape measures [95]. Otsu’s method assumes that the image has two kind of pixels that
either fall in a foreground class or background class, so iterations are made until an optimal threshold
value that separates both classes is found.

Once a binarized image is obtained, a morphological operation is applied to clean up the image,
removing useless pixels. The morphological operation was an imfill built-in Matlab function to fill all
the holes inside the land area. Finally, a vectorization step was performed to obtain the coordinates
of the coastline extracted. An example of the sequence of the methodology applied on every image
can be seen in Figure 6 from an image obtained in the Guadalfeo delta on September 12, 2013 by the
OLI sensor.
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(a)

(b)

(c)

(d)

Figure 6. Sequence of the methodology for coastline detection on an OLI image from 12 September 2013. (a) An image after applying the water indexes for comparison.
(b) The result of the segmentation process by Otsu’s Method: the image became binary where the black pixels correspond to water and the white pixels correspond to
a non-water area. (c) The binary image after the application of morphological operation to finally delineate the coastline (d) after the automatic algorithm is applied.
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This methodology was applied to original-size Landsat images and to increased spatial resolution
images for further assessment of accuracy improvement. We used bicubic interpolation because it
offers the best results compared to different linear up-sampling methods [37,39,106,107] in spite of its
simplicity [108,109].

The spatial resolution increase was assessed by detecting the coastline with the original spatial
resolution image (30 m/pixel) and then by testing bicubic interpolation with different factors of
up-sampling to assess if the accuracy of the detected coastline with WI1 and WI2 could improve.
We assessed bicubic interpolation with factors of 2 (15 m/pixel), 3 (10 m/pixel), 5 (6 m/pixel), and
10 (3 m/pixel).

5.3. Data Validation

The methodology proposed was applied using NDWI, MNDWI, and AWEI indexes and then
compared to the coastline extracted with the new water indexes proposed WI1 and WI2. The statistic
metric used to analyze the goodness of the different indexes were the mean and the standard deviation
of the distances between the shoreline extracted from high-resolution data and from the Landsat
images. It was calculated as follows:

Mean =
∑n

j=1 (YjHr − YjLS)

n
(3)

Dj = (YjHr − YjLS) (4)

STD =

√
∑n

j=1 (Dj − Mean)2

n
(5)

where
Dj = Distance in meters between the high resolution data and the data derived from the Landsat images.
The difference of the vertical distance between the shorelines compared for the same X coordinate was
calculated. Dj is a positive value as Landsat data is seaward, and if Dj is a negative value, it means that
the Landsat data is landward.
Yj_LS = Coordinate of the Landsat data.
Yj_Hr = Coordinate of the high-resolution data.
Mean = The mean of Dj in meters.
STD = Standard deviation of Dj in meters.
n = Number of elements of the data evaluated.

6. Results

6.1. Coastline Extraction at the Pixel Level

We applied the methodology proposed for coastline extraction to Landsat images in the Guadalfeo,
Adra, and Ebro deltas. Each pixel value or digital number (DN) of these images was transformed
to spectral radiance and then converted into surface reflectance values, as explained in Section 5.1.
An example of the sequence of the methodology applied to every image can be seen in Figure 6 from
an image obtained in the Guadalfeo delta on September 12, 2013 by the OLI sensor.

It can be observed through a visual comparison that the methodology applied using the water
indexes WI1 and WI2 were able to separate water from non-water pixels across the study areas covered.
WI1 and WI2 were more sensitive in detecting vegetation areas than the other indexes, as can be seen
in Figures 7–9 in the TM and ETM+ images.
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(a)

(b)

(c)

Figure 7. Water Indexes calculated for comparison in each of the sensors selected: TM, ETM+, and OLI in the Guadalfeo River Delta. (a) The water indexes calculated
on a TM image recorded on 17 September 2003. (b) The water indexes calculated on an ETM+ image recorded on 20 September 2013. (c) The water indexes calculated
on an OLI image recorded on 12 September 2013.
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(a)

(b)

(c)

Figure 8. Water Indexes calculated for comparison in each of the sensors selected: TM, ETM+, and OLI in the Adra River Delta. (a) The water indexes calculated on a
TM image recorded on 9 October 2011. (b) The water indexes calculated on an ETM+ image recorded on 6 September 2002. (c) The water indexes calculated on an OLI
image recorded on 20 December 2014.
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(a)

(b)

(c)

Figure 9. Water indexes calculated for comparison in each of the sensors selected: TM, ETM,+ and OLI in the Ebro River Delta. (a) The water indexes calculated on a
TM image recorded on 11 October 2011. (b) The water indexes calculated on an ETM+ image recorded on 22 Janyary 2000. (c) The water indexes calculated on an OLI
image recorded on 3 October 2014.
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The Ebro delta is a more complex area in a geomorphological characterization sense due to the
presence of coastal lagoons, salt marshes, and narrow long sand bars. In contrast to TM and ETM+
images, in the OLI images after WI1 and WI2 was applied, the vegetation area was not detected but
the salt marshes, the different lagoons inside the area, and the course of the river were still present,
which is consistent with the goal of detaching water pixels from non-water pixels.

The non-water pixels (vegetation/greenhouses areas) that presented in TM/ETM+ images after
applying WI1 and WI2 were eliminated with the segmentation and morphological operation steps,
as seen in Figure 6b,c. Apparently, after applying the methodology, the visual comparisons for both
Guadalfeo and Adra deltas (Figures 10 and 11) show a similar coastline detection with all the water
indexes applied, including the proposed WI1 and WI2. In the Ebro delta case (Figure 12), there are
some variations, especially in the inner side of the coastline of the Banya spit.

Some of the non-water areas detected were associated with greenhouses, as seen in Figure 13,
regarding the Guadalfeo delta area, where the noise identified in the analyzed image matched some
greenhouses found in a high-resolution image. This greenhouse-related behavior is more evident
in the Adra delta, where most of the land is dedicated to this use, so the three sensors detected the
greenhouses areas (see Figure 8). However, the contrast between the sea water and the shoreline is
slightly better when obtained with WI1 and WI2. Furthermore, after application of the methodology,
WI1 and WI2 detect the shoreline, avoiding non-water areas.

In the visual comparison across the entire set of images, we found that, in the Guadalfeo delta,
AWEI was not able to detect the coastline in 43.19% of the images. The OLI sensor presented a higher
number of images by which AWEI could not detect the coastline (54.69% of the OLI images). Moreover,
in 19.70% of the total images analyzed, AWEI detected noise around the coastline, which makes the
result useless. NDWI and MNDWI showed noise around the coastline in almost 12.88% and 11.36% of
the images, respectively. This behavior was observed in 25% of TM images and in 18% of OLI images.
In addition, NDWI and MNDWI were not able to detect the coastline in almost 4.90% and 11.36%, so in
these cases, these indexes were not useful. Instead, WI1 was able to detect the coastline in 85.98% of the
set of images but showed noise in almost 7.33% of them, while WI2 was the only index that was able
to detect the coastline in almost all the scenes that were analyzed (99.62%). Figure 14 shows examples
of no coastline being detected or the noise that presented in some of the images after applying the
methodology with the different water indexes that were evaluated.
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(a)

(b)

(c)

Figure 10. Shoreline extracted from images of different sensors in the Guadalfeo River Delta. (a) The shoreline detected on a TM image recorded on 17 September 2003.
(b) The shoreline detected on an ETM+ image recorded on 20 September 2013. (c) The shoreline detected on an OLI image recorded on 12 September 2013.
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(a)

(b)

(c)

Figure 11. Shorelines extracted from TM, ETM+, and OLI images in the Adra River Delta. (a) The shoreline detected on a TM image recorded on 9 October 2011. (b)
The shoreline detected on an ETM+ image recorded on 6 September 2002. (c) The shoreline detected on an OLI image recorded on 20 December 2014.
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(a)

(b)

(c)

Figure 12. Shorelines extracted from TM, ETM+, and OLI images in the Ebro River Delta. (a) The shoreline detected on a TM image on 11 October 2011. (b) The
shoreline detected on an ETM+ image recorded on 22 January 2000. (c) The shoreline detected on an OLI image recorded on 3 October 2014.



Remote Sens. 2019, 11, 2186 21 of 43

(a)

(b)

Figure 13. Comparison of the locations of some of the greenhouses in the delta plain of the Guadalfeo
River. (a) The greenhouses detected with WI2 in an OLI Image captured on 12 September 2013. (b) The
greenhouses on a Google image from 31 December 2013.

Regarding the Adra delta, the results after applying the methodology to the images point to a
similar behavior as that of the Guadalfeo delta. According to Table 3, in the TM and OLI images,
the AWEI index showed more scenes (72.53% of the TM images and 85.25% of the OLI images)
that were not able to detect the coastline or presented too much noise, which need further image
processing or a different methodology, for example. In addition, WI1, MNDWI, and NDWI presented
a significant proportion of results with no coastline or too much noise (approximately 37.80%, 27.33%,
and 36%, respectively). However, WI2 showed better performances in detecting the coastline, with
only 6.92% of the images, whereby the methodology could not obtain useful results. The results from
the ETM+ images showed that MNDWI, NDWI, and WI2 behaved in a similar manner, giving the
best outputs and obtaining a useful coastline from almost all the images. For a while, AWEI and WI1
gave a satisfactory result in more than 64% of the ETM+ images. In Figure 15, the common error that
presented in the analyzed images from Adra delta can be seen.

For the images analyzed from Ebro delta, WI2 showed by far the best result in detecting the
shoreline for both OLI and TM images, with 88.9% and 100% of the images, respectively, in comparison
with those of MNDWI (22.2% of the OLI images and 53.3% of the TM images), NDWI (19.4% of the
OLI images and 53.3% of the TM images), and AWEI (0% of the OLI images and 37.77% of the TM
images). Nevertheless, for the ETM+ sensor, the indexes compared (except AWEI) could detect the
coastline in the entire set of images from that sensor. Figure 16 shows some of the errors after applying
the methodology to detect the coastline.

In general, as seen in Table 3, the best performance according to accurate coastline detection
was WI2, which detected the shoreline in 95.65% of the total of images that were analyzed, including
the three deltas. WI1, MNDWI, and NDWI obtained similar results (75.65%, 74.9%, and 74.50%,
respectively). The worst result was obtained by AWEI, which detected the shoreline in only 45.75% of
the total of images that were analyzed in this paper.
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Table 3. Number of images that has no error or noise after applying the methodology for coastline
detection with the different indexes evaluated.

STUDY ZONE SENSOR No OF IMAGES NDWI MNDWI AWEI WI1 WI2

Guadalfeo
TM

264
30 31 24 25 50

ETM+ 146 145 113 149 149
OLI 41 28 24 50 64

Adra
TM

172
39 39 25 26 56

ETM+ 50 50 40 32 46
OLI 34 36 9 49 58

Ebro
TM

185
24 24 17 24 35

ETM+ 104 104 43 104 104
OLI 7 8 0 8 102

(a)

(b)

(c)

(d)

(e)

(f)

Figure 14. Cont.
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(g)

(h)

(i)

Figure 14. Errors detected after the methodology was applied to the set of 264 images in the Guadalfeo
River Delta. (a) The corrected Landsat band images from 7 March 1985. (b) The water indexes calculated
from Landsat band images from 7 March 1985. (c) The coastline detected from water indexes calculated
from a Landsat Image (7 March 1985). (d) The corrected Landsat image from 3 April 2015. (e) The
water indexes calculated from Landsat band images from 3 April 2015. (f) The coastline detected from
water indexes calculated from a Landsat Image (3 April 2015). (g) The corrected Landsat image from
24 June 2013. (h) The water indexes calculated from Landsat band images from 24 June 2013. (i) The
coastline detected from water indexes calculated from a Landsat Image (24 June 2013).

(a)

(b)

(c)

(d)

Figure 15. Cont.
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(e)

(f)

(g)

(h)

(i)

Figure 15. Errors detected after the methodology was applied to the set of 172 images in the Adra
River Delta. (a) The corrected Landsat band images from 1 June 1987. (b) The water indexes calculated
from Landsat band images from 1 June 1987. (c) The coastline detected from water indexes calculated
from a Landsat images (1 June 1987). (d) The corrected Landsat image from 4 January 2000. (e) The
water indexes calculated from Landsat band images from 4 January 2000. (f) The coastline detected
from water indexes calculated from a Landsat Image (4 January 2000). (g) The corrected Landsat image
from 22 August 2014. (h) The water indexes calculated from Landsat band images from 22 August
2014. (i) The coastline detected from water indexes calculated from a Landsat Image (22 August 2014).
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 16. Errors detected after the methodology was applied to the set of 185 images in the Ebro
River Delta. (a) The corrected Landsat band images from 30 January 2000. (b) The water indexes
calculated from Landsat band images from 30 January 2000. (c) The coastline detected from water
indexes calculated from a Landsat Image (30 January 2000). (d) The corrected Landsat image from
31 July 2014. (e) The water indexes calculated from Landsat band images from 31 July 2014. (f) The
coastline detected from water indexes calculated from a Landsat Image (31 July 2014).

6.1.1. Accuracy Assessment

The Landsat images that were selected from the three study zones were compared to field
measurements that were collected with a differential global positioning system (DGPS) and/or
with high-resolution orthophotos. The statistical validation was performed for pixel and sub-pixel
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analyses of each of the evaluated images by calculating the bias (mean ± standard deviation),
as described in Section 5.3. Each high-resolution data gives a coastline to be compared with the
coastline that was detected in the Landsat images after applying the methodology using the water
indexes that have commonly been used in the literature as well as the water indexes proposed
in this research. The statistical results are plotted for visual comparison in Figures 17–20, where
the AWEI index was excluded due to its unsatisfactory results in detecting the coastline along the
analysis. Appendix D shows the numerical results that were obtained for bias and standard deviation
calculations, including AWEIs.

(a)

(b)

(c)

(d)

(e)

Figure 17. The graphs show the mean distance and standard deviation behavior according to the
different factor of bicubic interpolation used on the Landsat images to analyze accuracy assessment
in the coastline detected in Guadalfeo river delta. (a) The image captured on 18 July 2010. (b) The
image captured on 23 May 2013. (c) The image captured on 25 October 2014. (d) The image captured
on 12 December 2014. (e) The image captured on February 6, 2015.
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(a)

(b)

(c)

Figure 18. The graphs show the mean distance and standard deviation behavior according to the
different factor of bicubic interpolation used on the Landsat images to analyze accuracy assessment
in the coastline detected in Adra river delta. (a) The image captured on 18 July 2010. (b) The image
captured on 23 May 2013. (c) The image captured on 2 July 2016.

(a)

(b)

(c)

Figure 19. The graphs show the mean distance and standard deviation behavior according to the
different factor of bicubic interpolation used on the Landsat images to analyze accuracy assessment in
the coastline detected in Ebro river delta. (a) The image captured on 13 August 2007. (b) The image
captured on 20 June 2008. (c) The image captured on 15 June 2012.

Pixel Level

First, we compared at the pixel level the difference in distance between the coastline detected
with the high resolution data and those detected with the different water indexes used in this paper.
Based on the Landsat image recorded on May 23, 2013, WI1 and WI2 were the only two indexes that
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were able to detect the coastline; the rest of the evaluated indexes showed too much noise due to
misidentification of water pixels as land pixels, and the bias and precision that were obtained with
WI1 and WI2 were also satisfactory.

According to the statistical results, the pixel analysis in the Guadalfeo delta (Figure 20a) showed
that, for most of the dates evaluated in this study area (three of five), the shorelines detected with NDWI
had the lowest seaward bias; however, the standard deviations in both NDWI (ranging between ±6.22
and ±119.40) and MNDWI (±6.48 and ±175.25)) were much higher and heterogeneous than those
obtained in shorelines detected with WI2 (±4.70 and ±7.29), which means that shorelines detected
with the WI2 method are more precise and stable than those detected with the rest of the indexes.
In addition, WI2 reached the minimum value of bias (−0.91 m).

Figure 20b shows the bias and standard deviation calculated between shorelines detected from
high-resolution data and the shorelines detected from Landsat images in the Adra delta. AWEI was
again not taken into account because it has no useful result for any of the dates that were evaluated.
The shoreline detected with WI1 on July 18, 2010 had a high standard deviation value due to a
misidentification of land pixels as water pixels in the mouth of the Adra river area. The shorelines
detected with the MNDWI, NDWI, and WI1 methods only showed one date with an acceptable
standard deviation less than ±12.00. Therefore, in this study zone, WI2 had the best performance since
it was the only index that had a bias less than 13 m for the three dates analyzed, with a homogeneous
standard deviation less than ±12.50.

Figure 20c shows the graphs regarding the bias and standard deviation calculated between
shorelines that were detected from the Landsat images and high-resolution orthophotos from the
Ebro delta. The results obtained for these study zones were consistent with the results of the other
two study zones. AWEI was also not plotted because it has no useful results for any of the dates that
were evaluated. Once again, the shoreline detected with the WI2 method had the best performance
since almost all the dates that were evaluated showed a lower bias and obtained a lower standard
deviation, which means that the shorelines obtained with the WI2 method is a good approach for the
expected shoreline.
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(a)

(b)

(c)

Figure 20. Mean distance and standard deviation graphs between the high resolution data and the
original Landsat resolution images (30 m/pixel) in the study sites for accuracy validation. (a) The
statistic results in the coastline detected in the Guadalfeo delta river. (b) The statistic results in the
coastline detected in the Adra delta river. (c) The statistic results in the coastline detected in the Ebro
delta river.

Sub-Pixel Level

Although the Landsat collection is the largest collection of satellite images with moderate
resolution, this resolution sometimes is not enough, depending on the type of analysis that is required.
We applied a simple sub-pixel analysis to assess the position accuracy of the detected shorelines.
However, the statistical results showed an increasing trend of bias, although the standard deviation
remained nearly constant.

7. Discussion

7.1. Coastline Extraction at Pixel Level

The applied methodologies (with water indexes WI1 and WI2) were able to separate water from
non-water pixels across the study areas covered, although WI1 and WI2 were more sensitive to
detecting vegetation areas than the other indexes. This may be because both water indexes use the
SWIR 2 band, which is useful for detecting the moisture content of soil and vegetation. However, WI1
and WI2 combined with Otsu’s segmentation were able to remove the building and beach sand areas
next to the coastal zone, which is critical for dividing water from non-water pixels. The differences that
were observed in the WI1/WI2 results between TM/ETM+ and OLI images may be due to technical
differences between the sensors. The OLI sensor has better spectral resolution, with a 12-bit dynamic
range and a higher signal-to-noise ratio. In addition, in the OLI sensor, the NIR, SWIR 1, and SWIR 2
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pass bands are narrower than in the ETM+ sensor to avoid some atmospheric attenuation features,
which means that it better discriminates contrast over land surfaces [110–112].

Regarding the errors found in many images while detecting the coastline (Figures 14–16), it was
observed that, in most cases, after the index calculations for most of the water indexes were assessed
(except WI2), water pixels (brighter pixels) were discriminated only near the coast; however, in the
deep water areas, misidentified pixels were sometimes classified as land (dark pixels). This behavior
obstructs the ability of Otsu’s segmentation method to separate land from water along the coast.
It did not occur using WI2, which could be due to the advantage of the capability of penetration of
the blue wavelength in water [113], and is one of the reasons this wavelength is used to bathymetry
applications [7].

It is noticeable that the methodology of the proposed water index WI2 represents a better
alternative for automatic detection of the coastline, since it was the only method that detected the
shoreline in 96% of the images evaluated (621), unlike the other compared water indexes with which
the coastline was detected in less than 76% of the images. In addition, it is clear that the WI2 method
can be applied to different study zones with different land covers, which allows for more data obtained
from the three different Landsat sensors to be used. This is an important advantage when a historical
analysis of a coastline is needed for the data that are offered by the three Landsat sensors (TM, ETM+,
and OLI).

Accuracy Assessment

According to the statistical results, the pixel analysis of the three sites that were analyzed showed
that the AWEI water index obtained the worst results because, in some cases, the coastline vanished in
the last step or it had too much noise, which gave inconsistent error values (which is why it was not
included in the statistical plots, as was mentioned before).

In the Guadalfeo delta site, the higher values of standard deviation found in MNDWI and NDWI
resulted from misidentification of sea water pixels as land pixels; however, the high value of standard
deviation for WI1 on July 18, 2010 was the opposite case. Here, the coastline that was detected with
the WI1 index gave a land pixel misidentification with a water pixel. It was over a small area near the
coastline. In these cases, the small distance between some pixels increases the chance of incorrectly
identifying pixels in areas where similar reflectance values are nearby, depending on the surrounding
land cover. This is a handicap that is expected when working with similar reflectance values of certain
types of targets. The visual analysis showed that this kind of misidentification over the coastline
only occurred in some cases when the coastline was detected with WI1, but none of the coastline was
detected with WI2. In addition, it can be highlighted that, for the three sensors that were evaluated,
the shorelines that were detected with WI1 and WI2 tended to move landward, unlike the shorelines
that were detected with NDWI.

In the Adra delta area, the high value of standard deviation (July 18, 2010) that was obtained with
WI1 can be understood since there may be some zones with water that make the algorithm behave
incorrectly around this area (on the river mouth). The remaining values of high standard deviation that
presented on the remaining dates for the Adra site with the MNDWI, NDWI, and WI1 were caused by
the misidentification of sea water pixels as land pixels. This can happen due to the image noise that
is detected with those methods or sea state characteristics that can influence the reflectance in these
areas, but more research is needed to better understand the reason.

In the results obtained in the Ebro delta, the lower bias and standard deviation obtained also
confirmed that the shorelines obtained with the WI2 method were a good approximation of the
expected shorelines.

In regard to the sub-pixel approach that was made in this study, the super resolution technique
(i.e., bicubic interpolation) used in this research was not able to enhance the accuracy of the shorelines
detected with the methodology, but the error bias in the pixel level was transferred to the sub-pixel



Remote Sens. 2019, 11, 2186 31 of 43

level, so the bias increased as the factor of interpolation increased. Therefore, other alternatives for a
more accurate sub-pixel analysis must be assessed.

8. Conclusions

The main goal of this research was to detect the coastline automatically from Landsat satellite
images. Although this methodology has been applied to three Spanish Mediterranean deltas
(Guadalfeo, Adra, and Ebro) to assess the method performance, the study of the morphology of
the delta is beyond the scope of this paper.

The methodology is based on the definition of a new water index that improves the effectiveness
of coastline detection from different coastal areas over the common water indexes that are used in the
literature, namely, NDWI, MNDWI, and AWEI. This new index uses the blue and SWIR 2 bands of
Landsat images. The methodology with the new index was applied to images from three different
sensors TM, ETM+, and OLI of the Landsat project. In addition, a sub-pixel approximation was
performed by applying bicubic interpolation.

The methodology permits the extraction of shorelines from as many images as are required to
obtain outstanding results compared to that of the most commonly used water indexes for coastline
detection. The water indexes that are most commonly used currently in the literature to detect water
have been separately shown in this paper to be less useful than was expected for each of the different
sites. However, the method with water index WI2 showed high performance by detecting the coastline
in more than 96% of the satellite images that were analyzed. In addition, this WI2 method allows
for the shoreline to be detected from different Landsat sensors and different sites with micro-tidal
conditions and diverse land cover, such as build-up, agriculture, greenhouses, or wetlands, with good
positional accuracy. This provides a great advantage because the same method can be used in different
kinds of coastal areas unlike other water indexes that are usually restricted to certain sites.

Bicubic interpolation was unable to enhance the accuracy of the extracted shoreline, so it is
advisable to assess more complex techniques and to verify whether better accuracy is possible.

Further investigation could be carried out in future work in order to do the following:

• Evaluate the influence of different site conditions (sea level rise, tide effects, run-up, etc.) with the
accuracy that is obtained with the methodology proposed.

• Use other satellite images with similar characteristics but with higher spatial resolution
(10 m–20 m) such as Sentinel 2 imagery from the European Space Agency (ESA) to assess their
performance.

• Test other sup-pixel approaches to improve the accuracy, such as the super resolution technique
based on Fourier transform, discrete wavelet transform [114], and Daubechies complex wavelet
transform [115], which are frequency domain techniques for image enhancement.
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Abbreviations

The following abbreviations are used in this manuscript:

MNDWI Modified normalized difference water index
NDWI Normalized difference water index
AWEI Automated extraction index
TM Thematic mapper
ETM+ Enhanced thematic mapper plus
OLI Operational land imager
VIS Visible region of electromagnetic spectrum
NIR Near infrared region of electromagnetic spectrum
SWIR1 Short wave infrared 1 region of electromagnetic spectrum
SWIR2 Short wave infrared 2 region of electromagnetic spectrum
TOA Top of atmosphere
WI1 Water index proposed number 1
WI2 Water index proposed number 2
QGIS Quantum geographic information system
SCP Semi-classification plugin
DOS Dark object subtraction method
DN Digital number
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Appendix A. Landsat Images Selected to Accuracy Assessment

Table A1. Technical specifications of Landsat images.

Satellite/Sensor Date Acquired Geometry RMSE Characteristics

4,5/TM 18-Jul-2010 4.065

Landsat Band B1 B2 B3 B4 B5 B7

Electromagnetic
spectrum
region

0.45 µm–0.52 µm 0.52 µm–0.60 µm 0.63 µm–0.69 µm 0.76 µm–0.90 µm 1.55 µm–1.75 µm 2.08 µm–2.35 µm

Blue Green Red Near Infrared Mid-Infrared
(SWIR 1)

Mid-Infrared
(SWIR 2)

Spatial Resolution 30 m

7/ETM+

25-Oct-2014 4.924 Landsat Band B1 B2 B3 B4 B5 B7

Electromagnetic
spectrum
region

0.45 µm–0.52 µm 0.52 µm–0.60 µm 0.63 µm–0.69 µm 0.76 µm–0.90 µm 1.55 µm–1.75 µm 2.09 µm–2.35 µm

12-Dec-2014 6.054

Blue Green Red Near Infrared Mid-Infrared
(SWIR 1)

Mid-Infrared
(SWIR 2)

Spatial Resolution 30 m

8/OLI

23-May-2013 7.710 Landsat Band B2 B3 B4 B5 B6 B7

Electromagnetic
spectrum
region

0.45 µm-0.51 µm 0.53 m–0.59 µm 0.64 µm–0.67 µm 0.85 µm–0.88 µm 1.56 µm–1.65 µm 2.09 µm–2.35 µm

6-Feb-2015 7.919

Blue Green Red Near Infrared Mid-Infrared
(SWIR 1)

Mid-Infrared
(SWIR 2)

Spatial Resolution 30 m
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Appendix B. Preprocessing Parameters

The digital numbers (DNs) can be scaled to absolutely calibrated radiance or reflectance values
using metadata which are distributed with the product. The radiometric calibration was made by
applying the following general expression [116], where the radiance at sensor is obained:

Lλ = M_L ∗ Qcal + A_L (A1)

where
Lλ = Spectral radiance at the aperture of the sensor (W/(m2srµm))

Qcal = Quantized calibrated pixel value (DN)
M_L= Band-specific multiplicative rescaling factor (W/(m2srµ m))
A_L = Band-specific additive rescaling factor (W/(m2srµm))

Then, the next step was the calculation of the reflectance at the surface applying the dark object
subtraction method as follow [96]:

ρgλ = [π ∗ (Lλ − Lp) ∗ d2]/(Esunλ ∗ cos θ) (A2)

where
ρgλ = Spectral reflectance at surface
Lλ = Spectral radiance at satellite sensor (Wm−2sr−1µm−1)

Lp = the path radiance
d = Earth–sun distance in astronomical units ( )
θ = Angle of the incidence of the direct solar flux on the Earth’s surface
Esunλ = Mean solar exo-atmospheric irradiances (Wm−2µm−1)

λ = spectral band
For further explanation, the authors of Reference [96] could be consulted.

Table A2. Parameters from Landsat images used in statistic calculations to asses the methodology.

Study Site Landsat Band M_L A_L Radiance_Max Reflectanc_Max

Guadalfeo 18-Jul-2010 Blue 7.6583 × 10−1 −2.28583 193 0.322142
Green 1.4482 −4.28819 365 0.673307
Red 1.0440 −2.21398 264 0.574915
NIR 8.7602 × 10−1 −2.38602 221 0.694189

SWIRI 1.2035 × 10−1 −0.49035 30.2 0.467522
SWIRII 6.555 × 10−2 −0.21555 16.5 0.651009

25-Oct-2014 Blue 1.1807 −7.38071 293.7 0.448115
Green 1.2098 −7.60984 300.9 0.503626
Red 9.4252 × 10−1 −5.94252 234.4 0.477476
NIR 9.6929 × 10−1 −6.06929 241.1 0.699313

SWIRI 1.9122 × 10−1 −1.19122 47.57 0.666848
SWIRII 3.7205 × 10−2 3.16280 12.65 0.631521

12-Dec-2014 Blue 7.7874 × 10−1 −6.97874 191.6 0.286591
Green 7.9882 × 10−1 −7.19882 196.5 0.322426
Red 6.2165 × 10−1 −5.62165 152.9 0.305339
NIR 6.3976 × 10−1 −5.73976 157.4 0.447569

SWIRI 1.2622 × 10−1 −1.12622 31.06 0.426851
SWIRII 3.7205 × 10−1 −1.12622 12.65 0.404257

23-May-2013 Blue 1.2247 × 10−1 −61.23639 741.38898 1.210700
Green 3.3420 × 10−4 0.10000 22.00180 1.210700
Red 3.3420 × 10−4 0.10000 22.00180 1.210700
NIR 1.2541 × 10−2 −62.70681 759.19135 1.210700

SWIRI 1.1557 × 10−2 −57.78379 699.58838 1.210700
SWIRII 1.4831 × 10−3 −29.81822 361.00916 1.210700

6-Feb-2015 Blue 1.2913 × 10−2 −64.56697 781.71234 1.210700
Green 3.3420 × 10−4 0.10000 22.00180 1.210700
Red 3.3420 × 10−4 0.10000 22.00180 1.210700
NIR 1.3223 × 10−2 −66.11737 800.48297 1.210700

SWIRI 1.2185 × 10−2 −60.92659 737.63824 1.210700
SWIRII 6.2880 × 10−3 −31.44000 380.64407 1.210700
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Table A2. Cont.

Study Site Landsat Band M_L A_L Radiance_Max Reflectanc_Max

Adra 18-Jul-2010 Blue 0.76583 −2.28583 193 0.322142
Green 1.4482 −4.28819 365 0.673307
Red 1.0440 −2.21398 264 0.574915
NIR 0.87602 −2.38602 221 0.694189

SWIRI 0.12035 −0.49035 30.2 0.467522
SWIRII 0.06555 −0.21555 16.5 0.651009

23-May-2013 Blue 1.2247 × 10−1 −61.23639 741.38898 1.210700
Green 3.3420 × 10−4 0.10000 22.00180 1.210700
Red 3.3420 × 10−4 0.10000 22.00180 1.210700
NIR 1.2541 × 10−2 −62.70681 759.19135 1.210700

SWIRI 1.1557 × 10−2 −57.78379 699.58838 1.210700
SWIRII 1.4831 × 10−3 −29.81822 361.00916 1.210700

2-Jul-2016 Blue 1.2146 × 10−2 −60.72913 735.24762 1.210700
Green 3.3420 × 10−4 0.10000 22.00180 1.210700
Red 3.3420 × 10−4 0.10000 22.00180 1.210700
NIR 1.2437 × 10−2 −62.18737 752.90253 1.210700

SWIRI 1.1461 × 10−2 −57.30513 693.79321 1.210700
SWIRII 5.9142 × 10−3 −29.57121 358.01871 1.210700

Ebro 13-Aug-2007 Blue 7.6583 × 10−1 −2.28583 193.000 0.320184
Green 1.4482 × 100 −4.28819 365.000 0.669215
Red 1.0440 × 100 −2.21398 264.000 0.571421
NIR 8.7602 × 10−1 −2.38602 221.000 0.689971

SWIRI 1.2035 × 10−1 −0.49035 30.200 0.464680
SWIRII 6.5551 × 10−2 −0.21555 16.500 0.647053

20-Jun-2008 Blue 1.1807 × 100 −7.38071 293.700 0.468005
Green 1.2098 × 100 −7.60984 300.900 0.525979
Red 9.4252 × 10−1 −5.94252 234.400 0.498668
NIR 9.6929 × 10−1 −6.06929 241.100 0.730351

SWIRI 1.9122 × 10−1 −1.19122 47.570 0.696446
SWIRII 6.6496 × 10−2 −0.41650 16.540 0.659552

15-Jun-2012 Blue 1.1807 × 100 −7.38071 293.700 0.467635
Green 1.2098 × 100 −7.60984 300.900 0.525563
Red 9.4252 × 10−1 −5.94252 234.400 0.498274
NIR 9.6929 × 10−1 −6.06929 241.100 0.729774

SWIRI 1.9122 × 10−1 −1.19122 47.570 0.695896
SWIRII 6.6496 × 10−2 −0.41650 16.540 0.659030

The Esun values for the different Landsat images can be found in the United States Geological
Survey (USGS) documentation [116].

Appendix C. Water Indexes Commonly Used for Coastline Detection

Table A3. Some of the water indexes used to extract water features on multispectral images: ρ indicates
raw data (DN) or reflectance values from the different bands proposed for each index.

Index Formula

NDWI [90] ρGreen−ρNIR
ρGreen+ρNIR

MNDWI [91] ρGreen−ρSWIR1
ρGreen+ρSWIR1

AWEI [87]
AWEInsh = 4 (ρGreen − ρSWIR1)− (0.25ρNIR + 2.75ρSWIR2)

AWEIsh = ρBlue − 2.5ρGreen − 1.5 (ρNIR + ρSWIR1)− 0.25ρSWIR2

NDX [117] ρRed−ρSWIR1
ρRed+ρSWIR1

NDPI [118] ρSWIR1−ρGreen
ρSWIR1+ρGreen

NDWI [14]

NDWI1 =
ρSWIR2−ρSWIR1
ρSWIR2+ρSWIR1

NDWI2 =
ρNIR−ρGreen
ρNIR+ρGreen

NDWI3 =
ρSWIR1−ρNIR
ρSWIR1+ρNIR

NDWI4 =
ρSWIR1−ρGreen
ρSWIR1+ρGreen

NDWI5 =
ρSWIR2−ρGreen
ρSWIR2+ρGreen

TCW [119] 0.0315ρBlue + 0.2021ρGreen + 0.3102ρReed + 0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2

WI [58] 1.7204 + 171ρGreen + 3ρRed − 7ρNIR − 45ρSWIR1 − 71SWIR2
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Appendix D. Bias Calculations: Mean ± Standard Deviation

Table A4. Bias comparison (mean ± standard deviation) between Landsat images analyzed and GPS
data/high-resolution ortophotos at the pixel level in the Guadalfeo River Delta.

IMAGES PIXEL ANALYSIS

ORTOPHOTO DGPS LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

Jul-10 18-Jul-10 TM 9.90 ± 7.06 −2.10 ± 7.82 1.90 ± 6.22 −15.10 ± 23.43 −3.77 ± 6.33

May-13 23-May-13 OLI 1,133.744 ± 139.39 239.41 ± 233.42 452.41 ± 409.55 −5.91 ± 6.64 −0.91 ± 7.29

17-Oct-14 25-Oct-14 ETM 345.20 ± 339.36 −6.46 ± 6.67 1.20 ± 8.49 −10.46 ± 6.39 −10.46 ± 6.38

11-Dec-14 12-Dec-14 ETM 317.09 ± 323.66 36.09 ± 175.25 −5.24 ± 7.12 −10.90 ± 6.33 −10.90 ± 4.70

6-Feb-15 6-Feb-15 OLI 5.49 ± 5.45 −0.51 ± 6.48 47.49 ± 119.40 −7.51 ± 5.65 −1.51 ± 6.33

IMAGES PIXEL ANALYSIS f = 2 (15 m)

ORTOPHOTO DGPS LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

Jul-10 18-Jul-10 TM 21.07 ± 50.68 5.34 ± 6.68 6.35 ± 4.22 −8.65 ± 23.85 −1.95 ± 5.89

May-13 23-May-13 OLI −1,215.068 ± 63.24 306.95 ± 363.54 595.01 ± 386.95 −0.63 ± 6.38 5.85 ± 6.21

17-Oct-14 25-Oct-14 ETM 457.34 ± 389.10 −0.40 ± 4.95 6.13 ± 5.31 −4.72 ± 5.14 −3.26 ± 5.63

11-Dec-14 12-Dec-14 ETM 446.80 ± 390.71 55.42 ± 181.67 1.67 ± 5.25 −4.35 ± 5.78 −3.91 ± 4.91

6-Feb-15 6-Feb-15 OLI 11.50 ± 4.78 5.97 ± 5.07 53.11 ± 146.49 −0.36 ± 5.63 7.53 ± 5.49

IMAGES PIXEL ANALYSIS f = 3 (10 m)

ORTOPHOTO DGPS LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

Jul-10 18-Jul-10 TM 21.99 ± 37.90 8.45 ± 5.81 10.72 ± 4.39 −5.34 ± 23.55 5.18 ± 6.11

May-13 23-May-13 OLI −1,215.50 ± 63.33 261.96 ± 359.84 523.98 ± 426.77 3.88 ± 6.00 10.26 ± 5.96

17-Oct-14 25-Oct-14 ETM 436.34 ± 414.40 4.91 ± 2.08 10.81 ± 4.62 −1.96 ± 5.07 −0.36 ± 4.90

11-Dec-14 12-Dec-14 ETM 407.40 ± 425.65 118.99 ± 315.18 5.48 ± 4.36 14.53 ± 108.02 −0.36 ± 4.47

6-Feb-15 6-Feb-15 OLI 15.37 ± 4.47 9.32 ± 4.54 43.26 ± 148.43 2.94 ± 4.68 9.53 ± 4.18

IMAGES PIXEL ANALYSIS f = 5 (6 m)

ORTOPHOTO DGPS LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

Jul-10 18-Jul-10 TM 21.24 ± 4.59 11.00 ± 4.79 14.18 ± 3.38 −2.73 ± 22.63 7.86 ± 5.09

May-13 23-May-13 OLI −1,217.47 ± 66.04 263.24 ± 350.44 495.45 ± 406.73 5.68 ± 4.84 12.89 ± 4.94

17-Oct-14 25-Oct-14 ETM 372.68 ± 377.10 5.20 ± 3.42 14.04 ± 3.98 0.82 ± 3.90 2.21 ± 3.85

11-Dec-14 12-Dec-14 ETM 356.54 ± 402.72 45.34 ± 187.09 8.50 ± 3.28 5.78 ± 47.50 1.73 ± 3.50

6-Feb-15 6-Feb-15 OLI 18.18 ± 3.19 12.26 ± 3.24 46.73 ± 112.35 4.85 ± 4.00 12.33 ± 3.40

IMAGES PIXEL ANALYSIS f = 10 (3 m)

ORTOPHOTO DGPS LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

Jul-10 18-Jul-10 TM 23.12 ± 4.38 12.68 ± 4.74 16.04 ± 3.14 −0.77 ± 22.28 8.94 ± 5.15

May-13 23-May-13 OLI −1,216.12 ± 66.35 266.11 ± 354.61 456.10 ± 142.80 7.51 ± 4.87 14.79 ± 4.89

17-Oct-14 25-Oct-14 ETM 349.04 ± 400.09 7.07 ± 3.54 15.95 ± 3.82 2.52 ± 3.80 4.05 ± 3.63

11-Dec-14 12-Dec-14 ETM 315.23 ± 412.27 37.03 ± 191.65 10.44 ± 3.08 2.58 ± 4.09 3.44 ± 3.21

6-Feb-15 6-Feb-15 OLI 20.20 ± 3.24 14.16 ± 3.07 42.72 ± 95.72 6.51 ± 4.06 14.06 ± 3.25
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Table A5. Bias comparison (mean ± standard deviation) between Landsat images analyzed and
high-resolution ortophotos at the pixel level in the Adra River Delta.

IMAGES PIXEL ANALYSIS

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

6-Jul-10 18-Jul-10 TM 845.17 ± 733.19 −1.25 ± 11.30 0.14 ± 9.34 −9.35 ± 55.15 −2.26 ± 10.67

13-Jun-13 23-May-13 OLI 1,345.9 ± 496.99 1,174.9 ± 611.08 1.216.33 ± 596.77 468.65 ± 567.35 7.80 ± 12.05

22-Jun-16 2-Jul-16 OLI No Data 12.69 ± 9.06 42.44 ± 140.60 6.19 ± 9.43 13.50 ± 8.59

IMAGES PIXEL ANALYSIS f = 2 (15 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

6-Jul-10 18-Jul-10 TM 981.90 ± 647.26 6.28 ± 10.18 7.07 ± 8.80 2.74 ± 18.94 4.73 ± 9.58

13-Jun-13 23-May-13 OLI 426.82 ± 188.87 700.15 ± 301.10 521.63 ± 307.63 823.23 ± 685.27 14.63 ± 10.99

22-Jun-16 2-Jul-16 OLI No Data 19.32 ± 7.99 61.70 ± 212.74 11.96 ± 7.2 19.88 ± 7.00

IMAGES PIXEL ANALYSIS f = 3 (10 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

6-Jul-10 18-Jul-10 TM 856.75 ± 663.24 9.77 ± 9.07 10.86 ± 8.09 0.33 ± 74.22 8.31 ± 8.90

13-Jun-13 23-May-13 OLI 428.73 ± 779.08 705.83 ± 329.81 540.70 ± 306.15 557.67 ± 602.99 18.36 ± 10.47

22-Jun-16 2-Jul-16 OLI No Data 24.47 ± 7.86 70.40 ± 178.32 15.41 ± 6.46 24.37 ± 6.33

IMAGES PIXEL ANALYSIS f = 5 (6 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

6-Jul-10 18-Jul-10 TM 758.87 ± 697.64 12.27 ± 8.98 13.42 ± 8.09 1.64 ± 84.14 10.48 ± 8.93

13-Jun-13 23-May-13 OLI 432.73 ± 183.54 713.72 ± 329.52 626.56 ± 296.89 507.35 ± 613.87 21.32 ± 10.54

22-Jun-16 2-Jul-16 OLI No Data 26.81 ± 7.55 57.68 ± 155.21 18.19 ± 6.28 27.23 ± 6.25

IMAGES PIXEL ANALYSIS f = 10 (3 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

6-Jul-10 18-Jul-10 TM 272.61 ± 712.75 14.01 ± 8.74 15.27 ± 7.96 3.83 ± 82.21 12.8 ± 8.08

13-Jun-13 23-May-13 OLI 434.25 ± 181.91 732.38 ± 335.03 628.56 ± 295.70 326.71 ± 526.04 23.26 ± 10.45

22-Jun-16 2-Jul-16 OLI No Data 28.89 ± 7.39 54.30 ± 134.40 20.01 ± 6.28 29.46 ± 6.17
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Table A6. Bias comparison (mean ± standard deviation) between Landsat images analyzed and
high-resolution ortophotos at the pixel level in the Ebro River Delta.

IMAGES PIXEL ANALYSIS

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

21-Aug-07 13-Aug-07 TM 1,161.00 ± 3,231.00 −7.93 ± 11.15 −8.21 ± 12.11 −6.19 ± 11.44 −3.70 ± 11.23

22-Jun-08 20-Jun-08 ETM 6,582.90 ± 2,550.70 −26.35 ± 157.11 −22.36 ± 36.57 −24.99 ± 95.11 −18.16 ± 11.44

22-Jun-12 15-Jun-12 ETM 7,968.00 ± 7,111.10 −4.75 ± 73.26 −6.74 ± 11.11 −9.19 ± 12.63 −6.72 ± 12.62

IMAGES PIXEL ANALYSIS f = 2 (15 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

21-Aug-07 13-Aug-07 TM 3,391.15 ± 5,700.57 −1.32 ± 10.68 −1.06 ± 11.59 −0.81 ± 11.37 2.23 ± 10.70

22-Jun-08 20-Jun-08 ETM 6,406.72 ± 2,699.92 −17.50 ± 147.17 −13.09 ± 11.42 −13.67 ± 11.72 −11.87 ± 11.50

22-Jun-12 15-Jun-12 ETM 8,124.35 ± 6,953.55 1.67 ± 2.47 0.04 ± 10.32 −2.62 ± 11.87 −0.04 ± 11.62

IMAGES PIXEL ANALYSIS f = 3 (10 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

21-Aug-07 13-Aug-07 TM 2,616.91 ± 5,503.86 8.70 ± 277.95 2.04 ± 11.32 17.14 ± 434.54 6.07 ± 10.60

22-Jun-08 20-Jun-08 ETM 6,426.89 ± 2,462.51 −14.50 ± 162.74 −9.77 ± 11.28 −10.06 ± 11.52 −8.26 ± 11.38

22-Jun-12 15-Jun-12 ETM 7,986.05 ± 7,012.41 15.12 ± 334.11 3.17 ± 10.06 6.48 ± 261.95 3.31 ± 11.80

IMAGES PIXEL ANALYSIS f = 6 (5 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

21-Aug-07 13-Aug-07 TM 1,514.56 ± 4,031.58 5.28 ± 9.92 4.38 ± 10.89 6.36 ± 10.08 9.07 ± 9.80

22-Jun-08 20-Jun-08 ETM 6,043.27 ± 2,373.90 −15.45 ± 220.79 −10.14 ± 91.04 −7.33 ± 11.10 −5.41 ± 10.88

22-Jun-12 15-Jun-12 ETM 7,665.09 ± 6,826.27 4.96 ± 91.02 1.01 ± 120.28 3.32 ± 11.29 6.02 ± 11.30

IMAGES PIXEL ANALYSIS f = 3 (10 m)

ORTOPHOTO LANDSAT SENSOR AWEI MNDWI NDWI WI1 WI2

21-Aug-07 13-Aug-07 TM 810.14 ± 3,231.53 7.16 ± 9.80 5.80 ± 11.08 7.90 ± 9.97 10.94 ± 9.90

22-Jun-08 20-Jun-08 ETM 5,614.44 ± 2,381.34 −9.34 ± 157.96 −8.36 ± 96.15 −5.44 ± 10.96 −3.51 ± 10.82

22-Jun-12 15-Jun-12 ETM 7,399.59 ± 6,773.48 7.28 ± 87.53 3.65 ± 110.80 5.09 ± 11.26 7.79 ± 11.24
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