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Resumen

Entre los principales problemas abiertos en QCD esta el de la comprension de las interacciones fuertes
en el régimen de muy alta energia de colisiéon. Argumentos teéricos fundamentales relacionados con
la unitariedad de la teoria y avalados por diversos estudios empiricos indican que a muy altas energias
la descripcion estandar (basada en teoremas de factorizacion colineal) deja de ser valida. En su lugar
se entra en un régimen de muy altas densidades de gluones y campos de color intensos gobernado por
efectos no lineales, tales como la recombinacion de gluones. Dicho régimen —conocido como régimen
de saturacion de QCD— tiene especial relevancia en la descripcion de colisiones de iones pesados a
muy altas energias. Este tipo de experimentos son realizados en la actualidad en dos aceleradores de
particulas: el Relativistic Heavy Ion Collider (RHIC) y el Large Hadron Collider (LHC). El anélisis
del enorme volumen de datos obtenido en estas instalaciones proporciona informacién fundamental
sobre el sistema generado en estas colisiones. En particular, estos anélisis sugieren la formacion de
un fluido caracterizado por temperaturas y densidades extremadamente altas, en el que los grados
de libertad fundamentales de QCD —quarks y gluones— no dan muestras de confinamiento. Este
estado se denomina plasma de quarks y gluones (QGP).

El estudio de la generacion, expansion y desintegracion de esta sustancia plantea numerosos
retos a nuestro actual conocimiento de QCD. De hecho, uno de los obstaculos principales lo plantea
la descripcion del estado inicial del sistema (inmediatamente después de la colision). Esta tarea
requiere, por una parte, un conocimiento profundo de las funciones de onda nucleares en los instantes
previos a la colisién, y por la otra, una descripcion precisa de los miltiples procesos de colision que
le siguen. El enfoque tipico a este problema se basa en el uso de modelos fenomenologicos disenados
para generar condiciones iniciales para simulaciones Monte Carlo del QGP. Dichos modelos se definen
en base a una serie de parametros cuyos valores numéricos son deducidos a partir de comparaciones
con datos experimentales. No obstante, los valores extraidos mediante esta estrategia pueden llegar
a variar ampliamente de un modelo a otro. Esta discrepancia genera una gran incertidumbre tanto
en la precision como en la interpretacion de los estudios fenomenologicos del QGP.

No obstante, el hecho de que los niicleos colisionados son sistemas profundamente saturados
brinda la oportunidad de realizar calculos analiticos basados en métodos de la teoria de perturba-
ciones de QCD. La densidad de gluones que caracteriza a estos niicleos los hace aptos para una
descripcion mediante aproximaciones semiclésicas, en las que representamos los gluones mediante
distribuciones aleatorias de campos de color (modelo de McLerran-Venugopalan, MV). Las correc-
ciones cuanticas a este modelo son introducidas por un conjunto de ecuaciones de renormalizacion,
las ecuaciones B-JIMWLK, que permiten obtener la evoluciéon de la estructura hadronica a valores
decrecientes de la variable x de Bjorken (equivalentemente, a energias de colisién crecientes y es-
calas de momento transversas moderadas). Las ecuaciones B-JIMWLK incluyen efectos de emision
de gluones asi como posibles efectos de recombinacién gludnica, de naturaleza no lineal y relevantes
en condiciones de alta densidad de gluones. Estos elementos se engloban dentro de la teoria efectiva
Color Glass Condensate (CGC), que proporciona el marco tedrico adecuado para estudiar QCD a
muy altas energias de colisiéon y altas densidades de gluones.

La teoria CGC ha sido abundantemente empleada en la descripcion de la fase inicial de colisiones
de iones pesados. El sistema fisico presente durante esta etapa se denomina Glasma, y supone un paso
intermedio entre la colision y la generacion del QGP. Debido al caracter inherentemente aleatorio de
la colision, las propiedades fisicas del Glasma fluctiian de evento a evento, lo que ha demostrado ser



un aspecto fundamental en la descripcion de la formacion y expansion del QGP. Estas fluctuaciones
son, por tanto, una de las caracteristicas basicas que los modelos fenomenolégicos mencionados
anteriormente tratan de reproducir. Una de las prestaciones principales del CGC es que proporciona
herramientas analiticas para la descripcion cuantitativa de fluctuaciones de evento a evento. Esto se
lleva a cabo mediante el calculo de correladores, definidos como promedios sobre el ‘ruido ambiental’
generado por las distribuciones aleatorias de campos de color clasicos. Esta descripcion tedrica del
estado inicial, exclusivamente basada en principios fundamentales de QCD, puede ser aplicada como
condicion inicial de las simulaciones Monte Carlo utilizadas en fenomenologia del QGP.

El objetivo principal de esta tesis es profundizar y mejorar nuestra comprension del régimen
de saturacion de QCD. Abordamos esta tarea en el contexto de dos problemas fundamentales: la
descripcion tedrica de la fase inicial de las colisiones de iones pesados, y el analisis fenomenologico
de produccién de particulas en experimentos de aceleradores. Nuestros estudios se basan en el
formalismo CGC, el cual extendemos y modificamos a lo largo del desarrollo de la tesis. Con
nuestras modificaciones aspiramos a conseguir una descripcion més realista de los sistemas fisicos
implicados, y al mismo tiempo ampliar las potenciales aplicaciones de nuestros resultados a estudios
fenomenolégicos del QGP.

Empezamos realizando un calculo analitico de los correladores de uno y dos puntos del tensor
energia-momento correspondiente al Glasma. Estos objetos caracterizan la media y la varianza
de la distribucion de densidad de energia generada inmediatamente después de la colision. En este
calculo asumimos una dependencia explicita en el parametro de impacto, lo que nos permite describir
colisiones entre niicleos finitos. Ademas, prescindimos de la asunciéon de interacciones locales en el
plano transversal al eje de colision. Estos aspectos de nuestro calculo suponen una generalizacion
del modelo MV. Sin embargo, una de las cualidades méas importantes de nuestro enfoque es el hecho
de que no aplicamos las aproximaciones mas extendidas en este tipo de estudios. Concretamente,
en nuestro calculo prescindimos de la aproximacion Glasma Graph, actualmente establecida como
paso esencial de la implementacion practica del modelo MV. Nuestro planteamiento implica asumir
una serie de importantes complejidades técnicas originadas en el caracter intrinsecamente no lineal

del Glasma.

Aplicamos esta misma estrategia a otra propiedad fundamental del Glasma: la posibilidad de
generaciéon de carga axial a partir de fluctuaciones de evento a evento. En el contexto del CGC,
la descripciéon cuantitativa de esta cualidad implica el célculo del correlador de dos puntos de la
divergencia de la corriente Chern-Simons.

En los resultados de ambos estudios observamos una notable discrepancia con respecto a los
calculos realizados a partir de la aproximacion Glasma Graph. Concretamente, nuestros resultados
predicen correlaciones de (relativamente) largo alcance en el plano transversal, lo cual podria entrar
en conflicto directo con las hipdtesis cominmente adoptadas por la comunidad. Las expresiones
obtenidas en esta tesis admiten una aplicacion directa en numerosos estudios fenomenologicos del
QGP, lo cual supone un potencial impacto tanto en sus resultados numéricos como su interpretacion.

En las secciones fenomenologicas de esta tesis exploramos la influencia del régimen de saturacion
de QCD en el estudio de procesos de producciéon de particulas en el LHC. Concretamente, realizamos
un analisis de los datos de produccién inclusiva de piones neutros obtenidos por la colaboracion LHCH.
Estos datos son medidos en la region de rapidities ultra-altas de colisiones proton-protén y proton-
nucleo a alta energia. Dicha region cinemética es sensible tanto al sector diluzdo de QCD como
al régimen de saturacion. Para nuestro anéalisis empleamos un c6digo Monte Carlo que incorpora,



por una parte, una descripcion de colisiones a nivel partonico basada en el formalismo hibrido del
CGC, y por la otra, una implementacion del proceso de hadronizacién en el marco del modelo de
fragmentacion de Lund. Nuestro planteamiento incluye, ademas, una descripcion de la dependencia
con la energia de colision basada en las ecuaciones de evolucién no lineales del CGC. Esta estrategia
resulta en un notable acuerdo entre modelo y datos, lo que supone una clara indicaciéon de la
importancia de la fisica de saturaciéon para la descripcion de interacciones entre nicleos diluidos y
densos.

Los contenidos de esta tesis estan basados en los siguientes articulos:

e |1] J.L.Albacete, Yasushi Nara y P.G.R., “Ultra-forward particle production from CGC+Lund
fragmentation”, Physical Review D Volumen 94 (2016) tomo 5, 054004.

e [2] J.L.Albacete, Cyrille Marquet y P.G.R., “Initial correlations of the Glasma energy-momentum
tensor”, Journal of High Energy Physics 1901 (2019) 073.

e [3] P.G.R., “Topological charge fluctuations in the Glasma”, aceptado para publicaciéon en
Journal of High Energy Physics.
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Part 1

Introduction

You’re probably wondering why I’'m here (and so am I, so am 1)

— Frank Zappa in “You’re Probably Wondering Why I'm Here”



Our current understanding of physical phenomena is formulated in terms of four fundamental
interactions: electromagnetic, gravitational, weak and strong. These are assumed to be the most
basic forces of nature, dictating its behavior and structure at any scale. Throughout history, the
ever-growing precision and reach of experimental techniques have motivated the development of
increasingly sophisticated theories seeking to describe these interactions. For instance, the obser-
vation of magnetic induction inspired the unification of electric and magnetic forces, embodied in
Maxwell’s equations. Half a century later, the Michelson-Morley experiment ruled out the existence
of the ubiquitous ether implicit in said equations, leading Einstein to devise the theory of special
relativity. This was the first step towards the formulation of general relativity, which provides the
modern description of the gravitational force.

Similarly, in the case of strong interactions the advent of new experimental facilities and detection
techniques has been a decisive driving force of theoretical advances. Back in the 1930s, the strong
interaction was postulated as the one responsible of binding together the constituents of atomic
nuclei (protons and neutrons), then believed to be fundamental particles. An early effort to describe
this force was made in 1935 by Hideki Yukawa, who proposed a mechanism based on the exchange
of massive particles called mesons (analogous to the role played by photons in electromagnetism).
The massive character of the mediating particles explained the short range of the interaction. This
theory was accepted and applied with relative success until the early 1960s, when the devising of
new detectors (spark and bubble chambers) gave rise to the discovery of an overwhelming amount
of particles both in accelerators and cosmic ray observatories. The sheer volume of data inspired a
discussion on whether the new particles, known as hadrons, were all fundamental or rather bound
states of smaller components. This line of research resulted in the formulation of the quark model
(proposed independently by Murray Gell-mann and George Zweig in 1964), which states that the
most fundamental degrees of freedom are not hadrons but point-like particles called quarks and
gluons. In the late 1960s, the first Deep Inelastic Scattering experiments performed at the Stanford
Linear Accelerator Center (SLAC) provided experimental evidence of the existence of quarkﬂ In
the early 1970s, the study of the interactions between quarks and gluons (generically called partons)
adopted the relativistic quantum field formalism previously applied to Quantum Electrodynamics
(QED), thus becoming the theory known as Quantum Chromodynamics. This was the last piece
to be incorporated to the Standard Model paradigm, which provides a common framework for the
description of the electromagnetic, weak and strong interactions.

Quantum Chromodynamics (QCD) states that the property determining the strength of partonic
interactions —analogous to mass in gravity or electric charge in electromagnetism— is color charge.
The carriers of color charge are the fundamental degrees of freedom of the theory: quarks and
gluons. Quarks are fermions with fractional electric charge and a mass range that goes from very
light (10 MeV for up and down quarks) to very heavy (around 175 GeV for top), and gluons are
massless bosons that mediate the interaction between quarks. In addition to these basic aspects,
QCD exhibits a series of highly non-trivial features, some of them still not fully understood to this
day. One is the fact that strong interactions seem to ‘forbid’ the existence of asymptotic colored
states. This is known as color confinement, and it implies that we can not observe isolated partons.
Instead, they always appear to be confined in colorless objects: the hadrons. Another essential
property of QCD is asymptotic freedom, which is the decrease of the strong coupling constant in

!The discovery of all fundamental degrees of freedom of the quark model had to wait until 1979, when the electron-
positron collisions performed at the Deutsches Elektronen-Synchrotron (DESY) provided evidence for the existence
of gluons.
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interactions taking place over small distances. Thanks to this feature, processes dominated by large
enough momentum transfers (and thus governed by small distance phenomena) can be appropriately
described by means of perturbative methods. These have proven hugely successful in describing
experimental data from processes such as Deep Inelastic Scattering at moderate Bjorken-x, Drell-
Yan annihilation and jet production with great accuracy. In contrast, interactions characterized
by low momentum exchanges feature a large coupling constantﬂ, thus making perturbation theory
inapplicable. This poses serious limitations to the description of hadronic structure, as it is largely
determined by long range phenomena (over distances of the order of the proton size).

Fortunately, there are ways to work around this obstacle. Although a first-principles analytical
description of hadronic structure has proven elusive thus far, perturbative techniques can be suc-
cessfully applied to describe its evolution, namely the way it transforms as we vary the resolution
scales at which we observe it. Such observation can be performed through the aforementioned Deep
Inelastic Scattering (DIS) experiment, which directly probes the partonic degrees of freedom with
a resolution scale roughly proportional to the inverse of the collision energy (under certain condi-
tions). DIS provides a snapshot of hadronic structure that serves as starting point for the application
of perturbative renormalization group equations. The simplest and most widely used in practical
applications are the ones that describe evolution through linear radiation processes (i.e. DGLAP,
BFKL equations). However, they become inadequate at high energies, predicting a fast increase of
gluons that leads to the violation of unitarity. In this limit, nucleons become highly dense systems
where the possibility of gluon recombination processes must be taken into account. This is achieved
through the introduction of non-linear terms in the evolution equations, which have the effect of
taming the unphysical gluon growth in the hadronic wave function. Apart from playing a key role in
the consistency of the theoryf’, these non-linearities also have a great impact in the phenomenology
of research areas such as heavy ion physics and (potentially) ultra-high energy cosmic ray

The dynamical regime dominated by large gluon densities and non-linear phenomena —referred to
as the gluon saturation regime of QCD- is relevant in the description of highly energetic Heavy Ion
Collisions (HICs). Currently there are two particle accelerators conducting this kind of experiments:
the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The vast volume
of HICs data collected in these facilities has provided striking evidence of collective phenomena at
macroscopic scales. These observations hint at the emergence of a highly dense and extremely hot
state of matter where quarks and gluons appear to be deconfined. This is known as the Quark Gluon
Plasma (QGP). Virtually every stage of the generation, expansion and decay of this substance poses
serious qualitative and quantitative challenges to our understanding of QCD. In fact, one of the
main obstacles lies in the characterization of the very initial state of HICs, as it requires precise
knowledge of the nuclear wave functions prior to the collision and the multiple scattering processes

2Note that this property (often referred to as infrared slavery) is not a sufficient explanation for confinement.
As will be detailed later, the former can be theoretically obtained through the calculation of the beta function that
describes the running of the QCD coupling parameter, while the latter is a non-refuted hypothesis that states that
only color singlets can be observed in nature.

3The introduction of non-linear dynamics in evolution successfully removes unphysical results in the computation
of forward scattering amplitudes. However, it does not completely solve the problem, as the predicted total cross
section still grows more rapidly than allowed by unitarity. It is likely that non-perturbative effects are partially
responsible for this violation. However, this falls out of the scope of this thesis.

4Given the high energy scales involved in the collisions between these astroparticles and the atmosphere, it has been
proposed that the study of the non-linear regime of QCD might be applicable to their detection and characterization.
However, this is currently a subject open to debate.
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that take place immediately after. A typical approach to this problem relies on the use of a broad
variety of phenomenological models that provide initial conditions for Monte Carlo simulations of
the expanding QGP. The numerical values of the parameters required as input by these models
are constrained by agreement with data, sometimes varying largely from one model to another.
Such discrepancy introduces a significant amount of uncertainty in both the precision and physical
interpretation of most phenomenological studies of the expansion and cooling of QGP.

Nevertheless, the fact that the colliding nuclei are deeply saturated objects provides the oppor-
tunity to perform analytical, first-principles calculations based on perturbative methods. As will be
detailed later, such systems allow for a description by means of a semi-classical approximation where
gluons are represented by randomly distributed background color fields (McLerran-Venugopalan
model). Quantum corrections to the classical fields are introduced by perturbative non-linear evo-
lution equations (the B-JIMWLK equations). This approach is proposed within an effective theory
that approximates QCD at high energies and densities: the Color Glass Condensate (CGC).

The CGC framework has been extensively applied in the description of the early, non-equilibrium
stage of HICs, known as Glasma. Because of the inherently random nature of the positions and
partonic content of the colliding nucleons, the Glasma phase is characterized by event-by-event
fluctuations of the energy and momentum deposited in the collision area. This feature has been
shown to play a key role in the formation and expansion of QGP, and thus it is one of the aspects
that the aforementioned phenomenological models seek to reproduce. A main feature of the CGC
framework is that it provides analytical tools to describe the early event-by-event fluctuations. These
can be quantified through the calculation of correlators, defined as functional averages of observables
over the background color fields. This first-principles characterization of the initial state, purely
based on QCD interactions, can be used as an analytical input to the hydrodynamical simulations
employed in QGP phenomenology.

In a broad sense, the main goal of this thesis is to improve and deepen our understanding of the
saturation regime of QCD. With this aim in mind, we perform a study of the dynamical behavior
of the Glasma fields that populate the earliest stages of HICs. This phase emerges from multiple
interactions between the constituents of two deeply saturated nuclei, which can be described by
means of the CGC effective theory. Within this framework we study a series of physical features of
Glasma through the statistical properties of its event-by-event fluctuations. Specifically, we analyze
the average and variance of the energy, momentum, and topological charge distributions (respectively
computed within CGC as the one- and two-point correlators). We do so in a complete analytical
approach that entails a significant step beyond the standard approximations adopted for this kind
of calculations. In addition, we employ an extended version of our calculation framework with
the aim of expanding the possibilities for phenomenological applications. After discussing in detail
these theoretical studies, we explore the impact of saturation physics in the analysis of multiparticle
production in RHIC and LHC. To this end, we focus on the ultra-forward rapidity region of the
spectra, sensitive to both dilute and saturated regimes of QCD. Our analysis relies in a Monte
Carlo event generator that combines a CGC-based treatment of elementary parton scatterings with
a well-established implementation of the hadronization process.

This report is organized by chapters arranged in separate parts. The chapters included in Part
1] deepen into the essential aspects of QCD, emphasizing those that are more relevant to the cal-
culations and results presented in subsequent sections (such as small-z physics, the QGP, and the
topological structure of QCD). Special attention is paid to the CGC effective theory (introduced in

16



Chapter |3]), which comprises the basic principles and techniques extensively applied and built upon
throughout the thesis. In Part [[T]] this framework is employed in the theoretical characterization
of the system generated right after a high energy collision of large nuclei. The results reached here
serve as a starting point for Part [[V] which deals with the fluctuating behavior of the energy density
and topological charge distributions originated in the early phase of the collision. The conclusions
and future prospects are presented in Part [VIl Throughout the development of this thesis a number
of outstanding technical challenges were faced, some of them posing too much of a detour from the
general lines of the report. These problems are analyzed in depth in the appendices section.
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Part 11

Quantum Chromodynamics of Heavy Ion
Collisions

The universe works on a math equation that never even ever really even ends in the end...

— Modest Mouse in “Never Ending Math Equation”



a N

In the following chapters we briefly discuss some of the fundamental aspects of QCD, empha-
sizing those that are more relevant to high energy collisions and heavy ion phenomenology.
The present section is not, by any means, an exhaustive review of QCD or the vast body
of experimental results that sustains it. Rather, the goal of this part is to provide —to the
extent possible— a self-contained description of the concepts and techniques that will be
applied throughout the rest of the thesis. Such concepts include, but are not limited to, the
small-z regime of QCD, the McLerran-Venugopalan model, the CGC effective theory, the
Glasma state, and the QGP. For a more detailed and general overview of QCD the reader
is referred to [4].

"

Chapter 1

ABCs of QCD

Before introducing the theoretical core of this thesis (presented in Chapter [3)), in this and the
following sections we will unfold the path that leads from the very basics of QCD to the onset of
the gluon saturation regime. Note that in the ensuing discussion we intentionally leave out color
confinement, rather focusing on those properties that have thus far been inferred from (or successfully
embedded into) the analytical body of the theory.

1.1 The QCD Lagrangian

QCD is a non-Abelian gauge theory based on the symmetry group SU(N,.) with N, =3. Its fun-
damental degrees of freedom are point-like, spin-1/2, massive particles called quarks; and massless
vector bosons (with spin 1) called gluons. Their dynamics are encoded in the following Lagrangian
density:

1

Locp = > pilivDl — mydij)y, — TR LA (1.1)
f

which we refer to as the classical QCD Lagrangian (as we are omitting the gauge fixing and Faddeev-
Popov ghost terms). The first term contains the quark and antiquark fields, which are summed
over the flavor index f. This index takes six values corresponding to the known quark flavors
f=u,d,s, c,b,t, each one characterized by a certain quark mass my and a four-component Dirac
spinor 17 ; (5 for the antiquarks). These fields belong to the fundamental representation of SU(3)
and thus are labeled by the color indices i,j = 1,..., N. = 3 (typically dubbed as red, green and
blue). The gluons, represented by the gauge fields A% enter the Lagrangian through the covariant
derivative:

Dt =6,,0" + igts, A" (1.2)
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Figure 1.1: Diagrammatic representation of the color charge flow in a gluon-quark vertex.

and the gluon field strength tensor:
FHva — auAV,a o aVAu,a . gfabCAM’bAV’C. (13)

Here, g is the QCD coupling constant and the matrices t; are the SU(3) generators in the fundamen-
tal representation. The structure constants f*° determine the Lie algebra of the group, defined by
the commutation relation [t?,#°] =i f2%t¢. They also serve as generators of the adjoint representation
of SU(3), which is where the gluon fields A** are defined (the color index a thus taking values from
1 to N2—1=38).

A fundamental difference between QED and QCD lies in the fact that the mediating particles
of the latter do carry color charge, whereas photons are electrically neutral. Specifically, gluons
transport color and anti-color charges, which can be inferred from the quark-gluon interaction vertex
brought in by the covariant derivative. One can interpret the emission (or absorption) of a gluon to
induce a ‘shift’ in the color of a quark from j to ¢ (as represented in Fig.. This feature emerges
from the non-Abelian character of SU(3), which also gives rise to gluonic self-interactions in the
last term of Eq. . Said term, known as the Yang-Mills Lagrangian, encodes the dynamics of a
theory that contains only gluons.

a
c
b
92 b b 92 be red b d
7‘5‘]('(1 C(a,u,Au,a o 0”A“’“)AMA5 7Zf(“€fc ,eAZAVA;I,, ,Au,c

Figure 1.2: Diagrammatic representation of the 3-gluon and 4-gluon vertices that result from sub-
stituting Eq. (1.3) into the Yang-Mills Lagrangian.
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1.2 Running coupling

QCD is a renormalizable theory and, as such, the value of its coupling ‘constant’ depends on the
momentum scale ) at which the interaction takes place. This dependence is described by the beta
function:

dag
0Q)?

where a, = ¢g%/4r is defined as a strong ‘fine structure’ constant in analogy with QED. After the
second equality we show a perturbative expansion whose terms are obtained by computing loop cor-
rections to the gluon propagator. The aforementioned self-couplings of the gluon fields (represented
in Fig.[L.2) play a crucial role in this calculation, as the loops that include these vertices make a
positive contribution to the beta function. Physically, this suggests an anti-screening scenario —as
the spatial resolution increases (corresponding to smaller momentum exchanges), the interaction
becomes more sensitive to gluonic fluctuations in the vacuum, which have the effect of ‘enhanc-
ing’ the fundamental color charges. This phenomenon competes with quark-antiquark fluctuations,
which yield a color screening effect and thus make a negative contribution to the beta function.
This constitutes yet another fundamental difference with QED, where only negative contributions
(electron-positron fluctuations, known as vacuum polarization effects) are present at leading order.
Considering all one-loop corrections in a theory with N, colors and Ny active flavors (i.e. those that
can be assumed as massless at the scale Q?), the running of the coupling constant yields:

47 127

T Aol (Q2/N20p) | (1IN, — 2Ny) In (Q2/A2ep) (15)

This expression yields a renormalized coupling constant « that decreases as the momentum transfer
grows (as can be seen in Fig.. The renormalization mechanism introduces a scale Aqcp at which
our perturbative expansion Eq. loses validity. It is experimentally extracted to be of the order
of the typical hadronic size, Aqcp ~200 MeV.

Eq. implies that at high enough energies (@ > Aqcp) QCD is a weakly coupled theory and
thus amenable to be approximated via perturbative techniques. This property, known as asymptotic
freedom, comes in quite handy for the study of high energy collisions, which is —in a broad sense— the
main topic of this thesis. However, Eq. also poses a fundamental problem, namely that the long
distance phenomena that dictates hadronic structure can not in principle be described perturbatively.
As any given hadronic collision experiment is sensitive to both perturbative and non-perturbative
processes, we need to be able to ‘separate’ them in such a way that a systematic, analytical study
is possible. This is the main feature (and, in some cases, assumption) of factorization schemes such
as collinear factorization, primarily applied in the description of DIS processes.

Q2 = 5(055> = _50053(1 + ﬁlas + ﬁ2a§ + )7 (14)

as(Q?)

1.3 Deep Inelastic Scattering, the parton model

In a DIS process (represented in Fig. we probe the partonic content of a hadron A through its
interaction with a lepton, which to first order is described as the exchange of a single virtual vector
boson (v, W* or Z°) carrying a momentum ¢. The spatial resolution scale of such a probe can be
estimated from the uncertainty principle as A~1/Q, where Q*=—¢*>>0 is defined as its virtuality.
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Figure 1.3: Compilation of oy extractions from DIS experiments at HERA. The dashed line corre-
sponds to the theoretically predicted values. Depending on the specific final states observed, the
corresponding data points are obtained as functions of the momentum exchange () or the energy
carried by groups of hadrons sprayed from the collision (jets). Figure extracted from [5|.

In a DIS process the virtuality of the exchanged particle greatly exceeds the mass of the struck
hadron, Q?>>m?, which allows us to resolve its partonic constituents. This interaction results in the
fragmentation of the hadron, whose scattered pieces are recombined (through a highly non-trivial
process known as hadronization) into a new hadronic system that we denote by X. These final
states are integrated out, as we only measure the energy and recoil angle of the scattered lepton (we
will focus on inclusive DIS processes).

%

I /
g=k—-Fk
Q= —¢

Figure 1.4: Diagrammatic representation of a DIS.

Typically, the two main independent Lorentz invariant quantities used to characterize DIS processes
are the virtuality Q% and the Bjorken-z variable, defined as:
Q2
T = , 1.6
5P (1.6)

where P is the momentum of the incoming hadron. This variable quantifies the inelasticity of the
process and can be roughly related to the time resolution of the probe, At~1/x. For convenience
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we will also define the following quantity:

P-q

— (1.7)

y =
which (in the rest frame of the hadron) corresponds to the fractional energy loss of the incoming
lepton. In order to connect this discussion with experimental results, we will henceforth focus on
the particular case where the interaction happens between an electron and a proton via a virtual
photon exchange. Using the set of variables presented above (and considering the limit Q2 >>m?y?),
we can write the inclusive double differential cross section of DIS as:

d20_6_P—>6_X 47T042

drdQ> Q4

where « corresponds to the QED coupling constant and Fj, F; are dimensionless scalar functions
known as structure functiond!] These objects of undetermined analytical form contain all the infor-
mation about the internal structure of the struck hadron. The DIS experiments conducted in the
late 1960s at SLAC-MIT provided the first measurements of the proton structure functions, reveal-
ing them to be approximately Q% invariant [6] as previously proposed by Bjorken [7]@ This scaling
behavior, along with the large scattering angles observed in the electrons, motivated Feynman to
introduce in 1969 the first formulation of hadronic structure in terms of point-like constituents: the
parton model [8].

X

Fy (2, @) (L4 (L—9)?) + (B (2, Q%) — 22, (2, Q%)) (1 - y)} . (18)

In this framework, the physical picture underlying DIS is that of an incoherent elastic scattering
between the electron and one parton. Such an interpretation is possible in a reference frame where
the proton moves very fast: the Infinite Momentum Frame (IMF). Due to Lorentz time-dilation,
the characteristic time scale of interactions between partons in this frame is much larger than the
duration of the interaction with the virtual photon, which allows us to assume an incoherent and
instantaneous scattering of a single partonﬂ The cross section of this interaction is related to that
of the DIS process by the following formula:

d2 e P—e X d2 e qr—e qy

o drdQ? Z/ d f1(€) T drdQ? _;/0 dg f1(£)a(8), (1.9)

where d§ f;(§) gives the probability of the probe interacting with a parton of type f (quark, anti-
quark or gluon) carrying a fraction & of the total longitudinal momentum of the parent proton.
Note that this quantity does not depend on the transverse momentum of the probe, which conveys
the physical picture of an interaction with point-like particles. This is known as Bjorken scaling.
The Parton Distribution Function (PDF) f(£) contains all the information about the long-distance
phenomena that governs hadronic structure, and hence it is an inherently non-perturbative object.
In contrast, the cross section of the electron-parton scattering ¢ is computable in perturbative theory.
To first non-trivial order it reads:
47Ta 1

7= g ped@ = L+ -y, (1.10)

'Tn the case where the exchanged particles are W* or Z° bosons, this formula includes a third structure function.

q

2Although the article was published after the relevant experimental results, the Bjorken scaling proposal was
made before the measurements.

3For a more detailed discussion on the kinematics of DIS, see Appendix
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where e, is the electric charge of the quark ¢q. Here we implicitly take into account that, as gluons
are not electrically charged, only quarks will couple to the virtual photon. The expressions Eq. ,
Eq. along with the factorization ansatz Eq. allow us to perform an explicit computation
of the structure functions of the proton:

Fy=2aF =) elnf,(x). (1.11)
qq
The first equality in this expression, known as the Callan-Gross relation, directly stems from the
spin-1/2 nature of the probed quarks (it would read F; =0 for spin-0 particles). The observation of
this relation in the SLAC-MIT experiment allowed to identify Feynman’s partons with the quarks
previously postulated by Gell-Mann. This is recognized as one of the main achievements of the
parton model.
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Figure 1.5: Compilation of F;, data measured in DIS experiments. Bjorken scaling violation is explic-
itly displayed for Bjorken-z values under 10~!. The curves correspond to the PDF parameterization
from the HERAPDF analysis 9], which includes quantum corrections to be discussed in the next
chapter. Figure extracted from [10].

The parton model features both a useful physical picture of DIS and a first instance of factoriza-
tion of long-distance and short-distance phenomena (embodied in Eq. (1.9)). Although it does not
provide a satisfactory theoretical description of hadronic structure, this is not so much a problem of
the model itself as it is a general shortcoming of perturbative QCD, which can not produce analytical
information in the large coupling regime.

However, even if we consider the parton model merely as a useful approximation under which
we can interpret DIS processes, it quickly becomes insufficient as we move to higher center of mass
energies (or equivalently, smaller values of Bjorken-z), where data displays a violation of the scaling
behavior of structure functions. Another intriguing feature displayed by HERA data is the dramatic
increase of the proton structure function F; with decreasing Bjorken-z values, which suggests an
enhancement of the partonic density of the proton. Both properties can be observed in Fig.|[1.5
As will be discussed in the next chapter, these effects emerge from the quantum fluctuations that
continuously rearrange the hadronic structure.
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Chapter 2

Linear evolution equations

The parton model does not take into account any QCD interaction and thus it can be considered as
the zeroth order of a perturbative expansion in orders of ;. The first order corrections enter through
the quantum fluctuations represented in Fig.[2.1] These depict how, in a given DIS process, the
quark struck by the virtual boson may have emitted a gluon before the interaction (real correction)
or fluctuated into itself via an emission-absorption sequence (virtual corrections). Other possible
diagrams show how the virtual photon might even encounter a quark emitted in a prior radiation
procesﬂ. All such fluctuations are present in any interaction vertex, and DIS data becomes more
sensitive to them as we move towards smaller values of Bjorken-x. In the IMF this effect is interpreted
as an enhancement of the time resolution of the DIS probe (At~1/x) that allows it to interact with
short-lived quantum fluctuations (see Appendix for details). This in turn introduces a dependence
on the transverse resolution 1/Q) that, as will be shown below, can be studied via perturbative QCD
techniques.

Figure 2.1: O(«y) corrections to the squared amplitude of the elastic quark-electron scattering. P
is the momentum of the parent proton.

2.1 DGLAP evolution

Let us consider a quark emitting a gluon carrying transverse momentum k, and a small fraction x
of the longitudinal momentum of the parent quark. The differential probability for such an emission
reads:

dZBZ' koL
ZT; k2

€L

dP; ~ a

(2.1)

When integrated over the available phase space this probability leads to logarithmic divergences of
different nature. The limit z — 0 yields the ‘soft” divergence, which for this kind of emission is exactly
canceled by the contributions of the virtual corrections (central and right diagrams in Fig.. The

LOf course, not all possible O(ay) corrections are represented here. In addition to complex conjugates (which
would look like mirror images of these diagrams), one can also consider other real contributions that, unlike Fig.
(a), do not resemble the rungs of a ladder. However, we will neglect these terms in the present discussion, as their
contribution can be accounted for by an appropriate choice of gauge (the so-called ‘physical’ gauges).
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remaining singularity, known as ‘collinear’ divergence, appears when |k, |—0. The large logarithms
stemming from this limit enhance the quantum corrections in such a way that, even in the small
coupling regime, a naive perturbative expansion in powers of oz becomes ill-behaved. In order to deal
with this issue we perform a strategic rearrangement of said logarithmically enhanced terms. This
process is called resummation and is at the basis of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations, whose derivation we will briefly outline below.

Figure 2.2: Diagrammatic representation of the DGLAP scheme: gluon emissions with &k, under a
certain factorization scale pup are absorbed in the definition of the PDFs. The considered emissions
are strongly ordered to all orders in as.

In order to connect with the previous DIS calculations, let us consider quantum corrections to the
quark-electron scattering. Considering all orders in «g, the dominant contributions to this process

come from those ladder-like diagrams where the transverse momenta of the successive emitted gluons
are strongly ordered (see Fig.[2.2)):

Rih<<l€L1 Lk . <k, < up, (2.2)
with moderately small values of z (in such a way that In(1/x) factors do not yield a big enhancement).
Here Ry, is the transverse radius of the struck hadron and pp is an arbitrary momentum scale above
which we consider interactions to be hard. We will only consider this kind of diagrams, as the
remaining terms are suppressed by extra factors of a,. This is known as the leading logarithmic
approximation (LLA). Computing the probability of emitting n gluons under such strict ordering
condition, we obtain large logarithmic contributions:

2 n

dp, ~ [aS(Cf) In (—2>] ) (2.3)
Ho

where a,In(Q?/ud) ~1 to all orders. Here, p is an initial perturbative scale that we introduce as a

cut-off in the momentum integration. In the context of a DIS process, these large logarithms enter

the calculation of the structure functions through the hard factor &, thus explicitly violating Bjorken

scaling. Let us, for instance, consider Fy at first non-trivial order in QCD. We have:

Fa(e, Q%) = Y ac lféo)(x) + /xl %;—;fq(o)(z) {qu (f) In <—2) + H , (2.4)

2
< Ho
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where the omitted terms inside the curly brackets do not contain collinear divergences. Here fq(o) (x)
corresponds to the ‘bare’ PDF from the naive parton model. The splitting function P,,(x) gives the
probability of having a quark (or antiquark) emitting a gluon with fractional longltudmal momentum
z. In the same spirit as Eq. , we factorize the divergent long-distance contribution (implicit in
the limit pp—0) by absorbing it in the definition of the PDFs, such as:

i) = 100 + [ L2 06 fry (Dm () 4], (2.5

Mo
and thus:

(2, Q%) = erqu 7,Q?). (2.6)

Eq. features the factorization scale pr mentioned above, which explicitly separates perturbative
from non-perturbative physics. This is an arbitrary scale and thus observables like the structure
functions should not depend on its value. The renormalization group equation that imposes such
condition is the DGLAP equation:

aj(;ql(z,:;) _ %/ %fq(z 12)P,, (g) (2.7)

which yields the evolution of the PDF with pp. Taking into account that the proton contains both
quarks and gluons that can fluctuate into each other one arrives at the complete DGLAP equations,
which can be compactly expressed in matrix form:

e e R At o

with ¥ = f, 4+ f3. The factorization ansatz outlined above has been widely applied in a variety of
QCD calculations. Take, for instance, the differential cross section of an inclusive proton-proton
collision (represented in Fig.[2.3)):

do.pp—>X

:Z/dI1diU2fi(gc17/L%)fj(@,/i%)&(pl’pz,Oés,Qz//i%)~ (2.9)
dp1dp »

Here the perturbative factor ¢ is the only element that depends on the specific process studied. In
contrast, the PDFs are universal objects that, once measured and treated with Eq. , can be used
as input to a wide variety of predictive calculations. This ‘measurement’ is performed by proposing
a parameterization for the PDF at an initial scale py and fixing the parameter values through a fit
to data (typically from DIS or Drell-Yan processes). Then, the DGLAP equations evolve the PDFs
from gy up to the experimental scale of interest. This procedure has been successfully tested against
experimental data in a number of QCD processes (see [11] for a review centered in DIS data).

However, this is not the whole story. Eq. (2.8 shows how quark and gluon distributions are mixed
through evolution. This mixing is described by the splitting functions (represented in Fig.[2.4)), which
we compute perturbatively:

Pj(z,Q%) = PL°(x) + a(Q*) PO (x) + .. (2.10)

27



Figure 2.3: Sketch of the collinear factorization of the hadron-hadron cross section introduced in

Eq. .

Let us first consider only the LLO terms. Two of these functions exhibit a soft divergence: the ones
that describe gluon-gluon and gluon-quark splitting (Pngo and PquO). In consequence, if we were
to use LO DGLAP at very small values of x (i.e. below z=107%, although such values are outside
its range of validity), we would find that gluons become the dominant contribution to the PDFs,
growing as:

oz, Q%) ~ 2™ (2.11)

with A > 0. This asymptotic behavior is also reproduced at NNLO, which constitutes the current
state-of-the-art accuracy of DGLAP analyses. Eq. leads to a singular growth of the structure
function F; that falls short in comparison with the datasets obtained at HERA [1213]. These
results suggest that, as we reach higher energies (smaller values of x), the DGLAP picture becomes
increasingly inadequate. In this limit the resummation scheme adopted thus far fails to take into
account large logarithmic contributions from terms proportional to agIn(1/x), which, again, lead to
an ill-behaved definition of the perturbative series. This is where the BFKL picture enters.

g f
/P§’

q qu ng

qu

Figure 2.4: Diagrammatical representation of the four LO splitting functions.

It is worth remarking that the previous derivation is a simplified (and arguably incomplete)
sketch of a rigorous and very well documented procedure. For a more formal and detailed derivation
the reader is referred to |5}14].

2Note that these divergences do not get canceled by the virtual terms mentioned at the beginning of this section,
as they are corrections to different types of emission. The divergences that do get canceled enter through the splitting

functions PngO and PquO, which get regularized through the standard ‘plus-prescription’ method.
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2.2 BFKL evolution

The soft divergence of the splitting functions induces a fast growth of gluon distributions in the high
energy limit, which demands for the formulation of alternative evolution schemes beyond DGLAP.
We thus take the complementary limit, which corresponds to fixed photon virtuality Q? and de-
creasing x. In this limit the relevant degrees of freedom are gluons and the leading mechanism for
evolution is gluon radiation.

Figure 2.5: Schematic representation of the dominant diagrams for BFKL evolution.

We will thus consider diagrams such as the one shown in Fig.[2.5] where a radiated gluon emits
in turn more gluons. As we did in the previous section, we will resum the dominant contributions
to this process (LLA), which in this case correspond to diagrams showing a strong ordering in the
energy fractions carried by the radiated gluons:

T1>> X9 >> > Ty, (2.12)

We are thus abandoning the strong ordering in transverse momenta characteristic of the DGLAP
radiative cascadd’], considering instead a random walk in k, -space. Under these conditions, the
large logarithms that we resum are o, In(1/z)~1. This approach yields the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) evolution equation:

06(k,Y) _ a,N, / &g Vw)_ o(h,Y)
ol(l/z) 7 J (k—q?| @& @+ (k—q?]

(2.13)

where the evolution variable is the rapidity Y =In(1/z). Technically, the evolved object for such an
equation must be a function of k, whose value depends on the measurement scale Y (in contrast
to the PDFs, where transverse momentum and energy play the opposite roles). This object is the
unintegrated Gluon Distribution ¢(k,,Y’), which provides the number of gluons per unit phase space
with transverse momentum k&, in the wave function of a hadron probed at rapidity Y. Its definition
in terms of the usual (integrated) gluon distribution can be written as:

2

dN, @
xfg(x,QQ):/ d2]ﬁﬁ:/ d*k (2, k). (2.14)

3Considering both orderings simultaneously yields the double log approximation (DLA) of DGLAP, applicable
when both In Q2 and Inz are large. The results obtained in this limit with regards to gluon growth show qualitative
agreement with BFKL evolution, and thus we will only mention it here.
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Nevertheless, despite the equality sign in the previous expression, there is no unique direct relation
between integrated and unintegrated Gluon Distributions (uGDs). This is not a major issue, as
neither are observable quantities but undetermined mathematical objects that we measure through
fits to dataﬁ. The relation Eq. is established in a model-dependent way that connects the
definition of the uGDs to specific physical processes (for a detailed discussion on the interpretation
of different uGDs, see [16]). In the case of DIS, the BFKL equation at NLO succesfully predicted
the rapid growth of the cross section with increasing energies, which was subsequently observed
experimentally. However, the solution to the BFKL equations yields a gluon distribution that shows
an even more singular behavior in the small-z limit than DGLAP did:

__4N¢In2

ok x) ~amw o, (2.15)

which, as will be detailed below, leads to unphysical results. The origin of this malfunction is the
linear character of the evolution mechanisms considered thus far.

For a detailed derivation of the BFKL equations the reader is referred to [5].

2.3 Breakdown of linear evolution, saturation

In the previous sections we discussed how both linear evolution schemes, DGLAP and BFKL, point
towards a singular growth of gluon densities in the small-z limit (although only in the BFKL case
we should consider this a prediction). Such asymptotic behavior leads to the violation of unitarity,
which is a fundamental requirement of any quantum field theory. In the context of particle collision
experiments, the unitarity condition manifests as a strict constraint of the energy dependence of
total hadron-hadron cross-sections. This is known as the Froissart bound, which reads:

alh(s) < migrln2 s, (2.16)
where m, is the pion mass and s is the squared center of mass energy of the collision. The power
growth displayed by the solutions of the linear evolution equations violates this bound, thus being
forbidden by the unitarity requirementﬂ Although the Froissart bound is indeed a powerful condi-
tion, we must not overlook the fact that one of the key ideas used on its derivation is the existence
of a mass gap m, between the vacuum and the next lowest energy state of QCD (see e.g. [5] for
details). As such concepts are extraneous to the perturbative framework outlined in this chapter, it
is thus convenient to discuss unitarity in different terms.

In a perturbative context unitarity is more appropriately discussed in terms of the S-matrix,
related to the total cross-section by the following expression:

ohh — 2/d2bL [1—ReS(s,b.)], (2.17)

4A more precise definition can be achieved by using light-front quantization [15|. However, this is out of the scope
of this thesis.

5Note that although the Froissart bound does not directly allude DIS, the universal character of PDFs and uGDs
extends the singularity problem to any physical process where these objects are used.
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where b, is the impact parameter of the interaction (defined as the transverse distance between the
centers of the two colliding hadrons) and S(s,b,) is the forward matrix element of the S-matrix.
This fundamental object has a probabilistic interpretation and is therefore bounded between [0, 1].
This implies a unitarity bound do/d*h, < 2, which is equivalent to the black disk limitﬂ The
asymptotic power-law behavior displayed by the solutions to the BFKL equation Eq. implies
a total cross-section that grows as a power of s:

~ S

BFKL 4Neln2
tot T % (2-18)

thus violating the black disk bound (note that a similar result is obtained for DGLAP). Unitarity
can be partially restored by taking into account evolution mechanisms beyond gluon radiation.
In the DGLAP and BFKL approaches only radiative processes are considered, which suggests a
physical picture where partons only act as sources for even more quarks and gluons. From the point
of view of DIS, this suggests that the virtual boson only resolves one parton at a time, which is
plausible only in the case where the probed hadron is a dilute system. Linear evolution schemes
thus assume that hadrons stay dilute throughout the whole evolution process, allowing us to neglect
parton-parton interactions. At small-z this hypothesis breaks down, as gluon densities become too
large. Under such conditions we must take into account gluon recombination processes, which (as
will be shown in the following chapter) introduce non-linear terms in the evolution equations. Such
terms contribute negatively to the evolution of the gluon density, taming its otherwise uncontrolled
growth. In turn, they effectively transform the asymptotic curve Eq. into a logarithm, which
respects the unitarity bounds of the S-matrix.

However, S <1 is a necessary but not sufficient condition for the restoration of unitarity. Despite
the introduction of non-linear evolution schemes, the predicted total cross section still grows more
rapidly than allowed by Eq. . In order to better understand the physics implied in this violation
of unitarity one has to deepen into non-perturbative properties of QCD, which falls out of the scope
of this thesis.
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Figure 2.6: Schematic representation of the fusion of two BFKL ladders into a single radiation
cascade, a process accounted for by the introduction of non-linear terms in the evolution equations.

Including gluon recombination processes in evolution implies the emergence of a dimensionful
scale at which they become relevant. This is the saturation scale ), which signals the transverse mo-
mentum at which the linear and non-linear terms of the evolution equations become parametrically
of the same order. (), can be estimated through a simple geometrical argument. The probability of

6This limit is computed through the collision between a particle and a circular, totally absorptive target modeled
as an infinite potential well.
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having two gluons recombine can be computed as:

QJfg(.fl’, QQ) as

k= plog99 ~ LI T L 5 2.19
p ﬂ_R}QZ Q2 Y ( )
where p? is the transverse gluon density and 099 is the typical gluon-gluon interaction cross section.

We can define the saturation regime as the region of phase space where & is of order 1, which yields:
a
Q2 ~ — g fylw, Q%) ~ a7, (2.20)
TR2"Y

where we substituted the asymptotic behavior of the DGLAP solution for the gluon PDF (Eq. ([2.11))).
From this simple derivation we learn that ), is a dynamical scale that depends on the value of x. This
was verified through fits to data obtained in DIS experiments performed at HERA, which provide a
value of A~0.3 [17]. Another fundamental property of the saturation scale is its relation to the mass
number of the probed hadron. Considering that the gluon densities in nuclei correspond to A times
those of nucleons and taking into account the approximate relation between radii Rq=AY3 Ry, we
obtain:

Qi ~ APQy. (2:21)

This approximate relation shows how saturation effects are enhanced in the wave functions of nuclei
with respect to those of individual nucleons.

Ru~ AY3Ry

@4~ AVPQy

Figure 2.7: Sketch depicting the enhancement of the saturation constant from nucleons to nuclei.
The arrow represents a boost to the IMF.

Saturation effects are implemented in the CGC effective theory, which approximates QCD at
high energies and large gluon densities. This framework introduces evolution equations that include
non-linear terms accounting for gluon recombination processes. This is the theory on which the
results presented in this thesis are based. In the following chapter we present a brief review of its
main aspects.
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Chapter 3

The Color Glass Condensate

Including non-linear effects in the description of hadronic structure at high energies is both required
by theoretical considerations and supported by experimental observations. Arguably, the most
complete theoretical approach to this task is embodied in the CGC effective field theory. The CGC
framework relies in semi-classical methods for the description of the large gluon densities carried
by nuclei in the small-x regime. In such systems, the occupation number of gluons with transverse
momentum under the saturation scale Ny, is much larger than the commutator of creation a(k)
and annihilation a'(k) operators:

1
Nicg, = af(K)a(k) ~ - > [al(k), a(k)] ~ 1 (31)
This defines an inherently classical scenario, as one can neglect the non-commutativity of a(k) and
a'(k) and treat them as complex numbers. In turn, this condition allows us to treat the small-x
gluons as a classical gauge field, an approach first applied by McLerran and Venugopalan to the
calculation of parton distributions of large ultra-relativistic nuclei [18-20].

3.1 The McLerran-Venugopalan model

The McLerran-Venugopalan (MV) model describes the parton content of a nucleus in the IMF, where,
by convention, we see it moving in the positive 2® direction with a very large light-cone momentum
P> Aqep (see Appendix |Al for a detailed introduction to the light-cone coordinate system). The
IMF motivates a separation between ‘fast’ and ‘soft’ modes, as one can consider partons that carry
a large momentum fraction p* =z P and thus are much more sharply localized around the light
cone (within a distance Az~ ~1/p™) and long-lived (with mean lifetime Ax* o p™*) than the rest.
In the MV model said modes are identified with valence partons, which act as radiative sources of
the small-x gluons carried by ultra-relativistic nuclei. The separation between them is explicitly
performed at an arbitrary momentum A at which we define the theory. Each of these two groups
of partons is described through different approximations. Whereas the soft gluons are represented
by classical gauge fields A**, the fast degrees of freedom enter as a color current J** whose form is
fixed based on kinematic considerations:

Jh(x x,) = M pt (e xy), (3.2)

p® being the color charge density. J* is usuallyff] assumed to be independent of the light-cone time
x" due to the mean lifetime of the emitted gluons being much shorter than that of the valence quarks
(which is considerably extended by time dilation). Hence, the valence quarks appear to the observer
as a static, ‘frozen’ ensemble of SU(N,) charges sitting on 2= = 0. The fact that J”* generates

!There are several strategies for the calculation of the gauge fields A*®. One of the aspects in which they differ
is the ansatz adopted for J*®. Since this technical discussion is more relevant for the calculation method than for
the description of the model itself, we will leave it for Part
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a color current only in the + direction suggests a physical picture where the fast valence partons
do not recoil from their light-cone trajectory as the gluons they continuously exchange with the
medium are too soft to affect their motion (eikonal approximation). The dynamics of such scenario
are encoded in the following action:

1 a a, v a a
S:/d4I (_éF,ul/F s + J#A ’H) s (33)
where the small-x gluons are described according to the classical Yang-Mills action and the in-
teraction term J7A®" corresponds to a QED-like minimal coupling between soft and fast modes.
Minimizing this action we obtain the Yang-Mills equations of motion:

[D,,, PP = JHate = g (™, 2, ) 1, (3.4)

where p® acts as the source of the classical gauge fields. This variable is taken as a stochastic
quantity with a certain probability distribution W p| associated as weight function. Thus, in order
to calculate physical observables that depend on p® we need to perform a functional average over all
possible color charge configurations:

(Olpl)= ¢ [ oW IO, (35

where A is a normalization constant equal to [[dp]W[p]. The main assumption adopted in the MV
model is that in nuclei with large mass numbers the valence partons that enter Eq. through p*
emerge from a large number of separate nucleons and therefore are uncorrelatedﬂ . Thus, invoking
the central limit theorem, the MV model approximates W{p] with a Gaussian distribution:

Jldplexp {~ [ do~ e, 5t Tr (227, 2.)]} O

(Olp)hw =
g [1dp] exp {— fdx—d%lmrl’r [p?(x—, xl)]}

(3.6)

Here p?(z7) is a parameter proportional to the color source number density that acts as the variance
of the Gaussian weight. The main implication of the Gaussian ansatz is given by the following
correlators:

<pa(x_: x¢)>mv =0 (3.7)
("7, 2)p" (" Y ) = 12 (27)0%0 (2~ — y )6 (z — 1), (3.8)

which greatly simplify the calculations involved in the average process Eq. . However, while
Eq. plainly states the average color neutrality of the nucleus, Eq. presents a extremely
naive picture of color charge correlations (local in both color and space-time) and nuclei (transversely
infinite, uniform sheets of color charge) that does not precisely describe reality. In Part we will
introduce a generalization of the previous correlator with the twofold aim of achieving a more realistic
description and expanding the phenomenological applications of our results. Nevertheless, despite

Tt is assumed that the large transverse momentum scale at which we are probing nuclei results in transverse
resolution scales that are very small compared to a fermi. The argument is sometimes extended to nuclei with smaller
mass numbers (or even single nucleons) by assuming that on such scales we perceive locally uncorrelated quarks whose
charges add together in a random walk in color space.
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the crudeness of the Gaussian ansatz, the MV model is able to qualitatively reproduce the saturation
of uGDs.

As mentioned at the beginning of this section, the MV model is defined for a momentum scale
At =xP* that controls the distinction between fast (p™ > A™) and soft partons (¢" <A™1). As will
be shown below, the dependence on A™ enters through the functional weight W[p] =Wy [p], which
gives the probability of observing a certain configuration of color charge sources in the nucleus at
this scale, thus playing a similar role as the PDFs do in the collinear factorization framework. As was
also the case with the PDF and the arbitrary factorization scale ur, the dependence on A™ should
not permeate the observables computed in this theory. The renormalization group equation that
solves this issue, yielding the evolution of Wj[p] with decreasing values of A™, is the B-JIMWLK
equation.

3.2 Non-linear evolution equations

The framework described above does not include any ezplicit dependence on A*T. However, it
implicitly requires the described small-x modes to stand close to this artificial scale, with x ~A™/P™.
As we probe smaller values of x, gluons are less likely to have been emitted by the partons we
arbitrarily defined as sources, but by other gluons also lying in the small-z regime. These interactions
between soft modes are taken into account by computing quantum corrections to the classical field
(which become large with decreasing values of z, growing like In 1/b for gluons with 2’ =bx). Note
that this computation is necessarily constrained by the AT cut, as it is the maximum light-cone
momentum allowed for the gluons inside the loopg’l This is another instance of a quantum theory
introducing an explicit dependence on an artificial scale separating hard and soft degrees of freedom.
Again, we treat the issue by resumming the quantum fluctuations and absorbing them into the
redefinition of an intrinsically non-perturbative object, which in this case is the functional weight
Wilp]. This procedure yields the following renormalization group equation:

ow, 52 b 0
W[P]_Qs{l [ a]

25pm0m VeV —W[WIOZ]}, (3.9)
%My T

Olnl/z

known as the B-JIMWLK equation Eq. evolves Wy [p] from AT to a new value A'" < AT
by incorporating the modes contained in the momentum strip A" <p* <A™ as new color sources.
By doing so we effectively introduce quantum corrections into our theory while preserving its in-
herent classical nature. This procedure makes observables independent of A*. In the B-JIMWLK
framework, the MV model defined by Eq. acts as an initial condition for the evolution.

On a surface level, the main difference between Eq. and the renormalization group equations
introduced so far lies in the presence of a negative non-linear term that we can associate to gluon
recombination. This term emerges from the resummation process, which is performed at leading
logarithmic accuracy in the parameter aglnl/x (accounting for radiative, BFKL-like corrections)
and to all orders in the background classical fields (which, being strong fields, do not allow for
a perturbative expansion). The latter corrections yield the non-linear effects that tame the rapid

30therwise we would be double counting the large-z degrees of freedom, which in the MV framework act as
external sources.

4Conceived by Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner.
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growth of the gluon density in hadronic wave functions in the small-z limit. In the low density/weak
field limit the non-linear term vanishes, and thus we recover the BFKL evolution equation |21].
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Figure 3.1: Two sketches of the In Q?, In 1/z plane representing parton densities (left) and evolution

regimes (right). Non-perturbative region not represented.

Being notoriously difficult to solve, the practical use of the B-JIMWLK equation has thus far

been restricted to different analytical or numerical approximations.

The latter are based on a

reformulation of Eq. as a Langevin equation, which allows for numerical studies on the lattice
,. As for analytical approximations, a common example in phenomenological analyses is the
large- N, and mean field limit, which yields the so-called Balitsky-Kovchegov (BK) equation ,.
It has been shown that the difference between the solutions of the BK and (numerical) B-JIMWLK
equations is strikingly small, of the order of 0.1 % [26].
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Chapter 4

Heavy ion collisions: The Quark Gluon Plasma

In this chapter we perform a brief incursion into one of the research fields where saturation physics
plays a bigger role: HICs. Our goal with the following sections is to provide a general context to
QGP phenomenology, as it is the main area of application of the results presented in Part [V]of this
thesis. Specifically, we focus on the relevance of the previously discussed CGC effective theory in
the characterization of the initial state fluctuations of HICs.

4.1 The QCD phase diagram

In Chapter [I] we discussed that one of the main features of QCD is asymptotic freedom, namely the
decrease of the coupling constant in interactions characterized by large momentum exchanges (or
happening over small distances). This property, along with the assumption that one can factorize
perturbative from non-perturbative phenomena, allows us to build the evolution frameworks outlined
in chapters [2] and [3] However, we have not yet considered how the running coupling impacts the
bulk thermodynamic properties of QCD matter. This is a highly non-trivial topic, as its research
requires precise knowledge of strongly-coupled dynamics.
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Figure 4.1: Qualitative sketch of the QCD phase diagram. Lattice simulations of QCD predict a
transition at high temperature from a phase where quarks and gluons are bound into hadrons (as
usual in nature) to a phase where they appear to be deconfined; the QGP.

Currently, the only available first-principles approach to non-perturbative physics is based on
numerical simulations of QCD on the lattice. In this formalism the expectation values of observables
are obtained as path integrals where we discretize the Euclidean space-time into a hypercubic grid.
In contrast to perturbative QCD, lattice methods do not impose any constraint on the value of the
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coupling constant. This allows us to study the properties of the non-perturbative regime of QCD,
thus supplementing the information obtained from the previously discussed factorization frameworks.

But lattice techniques are not devoid of limitations. At non-zero baryonic density (up #O)EI, the
numerical computations involved become increasingly unpractical due to the Euclidean QCD action
adopting complex values. This is the well-known sign problem, which restricts the application of
lattice methods to those regions of phase space where baryonic density is very lowﬂ (up~0). Beyond
this regime, the available knowledge about the QCD phase diagram is subject to a considerable
amount of uncertainty, stemming from a variety of model calculations, perturbative computations
(in asymptotic regimes) and empirical evidence from nuclear physics. Therefore, it is not surprising
that the fine details of sketches like the one shown in Fig.[4.1] are not yet globally agreed upon.
Some of the most controversial aspects of the structure of the QCD phase space are the nature and
location of phase transitions, critical points, and the modifications induced by external magnetic
fields (for a comprehensive review of these topics, see [29]). However, the emergence of QGP at
extremely high temperatures and densities is a common point in all contemporary pictures of the

QCD phase diagram.

The available theoretical estimates suggest that the early universe was in a QGP state located
in the up = 0 axis of the QCD phase diagram. This has inspired a direct comparison between
the first stages of cosmological evolution and those of the system generated in HICs (which are
sometimes referred to as ‘Little Bangs’ [30]). Such an analogy is a great source of motivation for
heavy ion physics, as it links fundamental research in QCD with open problems in cosmology that
otherwise might not be possible to study in an experimentally controlled way (e.g. baryon asymmetry,
inflation). Other occurrences of the QGP in nature are expected in the core of neutron stars (cold
QGP) [31] and in collisions of ultra high energy cosmic rays with the atmosphere [32].

The QGP phase can be experimentally accessed in high energy collisions of heavy nuclei such as
the ones performed at RHIC and LHC. In the following section we will briefly outline some of the
main signs of QGP emergence observed in these colliders.

4.2 Experimental signatures of QGP

The QGP is a state of matter where the fundamental degrees of freedom of QCD no longer appear
to be bound into color neutral hadrons, but inside a macroscopic, strongly-interacting blob of quarks
and gluons. Therefore, it is obvious that its direct observation is forbidden by confinement. What
is actually observed in HIC experiments is a shower of color neutral particles (an average of 10* per
event for Pb-Pb collisions at a center of mass energy of 2.76 TeV) that includes hadrons, leptons,
photons and other vector bosons. The momentum spectra, chemical composition and correlations
of these final products provide indirect information about the QGP phase.

!The baryo-chemical potential iz is a measure of how the energy of a system increases as one adds another
baryon to it. At non-zero temperature, up =0 describes a system where the number of baryons and antibaryons is
identical, while up >0 is associated to a baryon-dominated medium. For the present qualitative discussion, baryonic
density and baryo-chemical potential are virtually interchangeable concepts, as they are proportional.

2Despite this obstacle, lattice methods rely on well-motivated extrapolations to access experimentally relevant
values of up. For a general review of lattice QCD, see [27]. For a more recent and HICs-centered approach to the
subject, see [28].
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Below we briefly describe some of the most notorious and historically relevant QGP observables
proposed so far. In practice, these are systematically compared to analogous measurements in
proton-proton collisions, which are assumed to be a reliable baseline for QGP searches.

4.2.1 Strangeness enhancement

Being able to distinguish between a QGP and a dense gas of hadrons was one of the first challenges
posed by HIC experiments. For this purpose, in [33| it was proposed that the QGP phase would
exhibit an enhanced strangeness content with respect to regular hadronic matter at the same tem-
perature. It was argued that, due to the expected abundance of up and down quarks in the QGP,
uwt and dd fluctuations would be suppressed by the Pauli principle, thus favoring the generation of
s§ pairs despite their larger mass.

Figure 4.2: Feynman diagrams representing gluon fusion processes.

Another source of enhancement was identified in the prevailing gluonic component assumed in
the QGP phase, which would yield a rapid ss pair production via gluon fusion processes (see Fig..
The proposed signal for this phenomenon was the enhancement of the ratios of multi-strange hadrons
over light hadrons, which was subsequently observed in a series of experiments conducted at CERN
between the 1980s and the year 2000 (when CERN announced the discovery of QGP [34]). For a
critical review of QGP observables centered in strangeness enhancement effects, see [35].

4.2.2 Quarkonium suppression

Quarkonium states are defined as bound states of heavy| quark-antiquark pairs. Although they
interact strongly with other hadrons, their interaction cross sections are reduced relative to those
of lighter mesons due to their smaller size. Therefore, the formation of quarkonium states in the
presence of a gas of hadrons would be enhanced and relatively easy to observe experimentally, as
they decay electromagnetically to lepton pairs of definite mass. However, it was predicted that
quarkonium production would be suppressed by color screening in a QGP [36]. This effect reduces
the range of attractive forces between quark-antiquark pairs, preventing the formation of bound
states whose size exceeds a certain critical length (i.e. Debye length) whose value grows with the
temperature of the medium. Therefore, the ‘largest’ quarkonium states were expected to dissolve first
in the QGP as its temperature increases, as depicted in Fig.[4.3] The ensuing sequential suppression
can be naively assumed to serve as an estimator of the temperature of the QGP.

In practice, however, this observable turns out to be much more complex than explained above.
There is a number of phenomena unrelated to QGP (known as Cold Nuclear Matter effects) that

3The definition of heavy in this context is rather narrow; in practice it only includes charm and bottom quarks.
The top quark does not appear in quarkonium states, as it is not expected to hadronize at all.
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Hadron gas QGP

Figure 4.3: Naive picture of the ‘melting’ of ¢¢ pairs in a QGP (right), in contrast to the situation
expected in a confined phase, where they manage to bond into J/v states (left). Note that the
relative sizes of the .J/i states and the other hadrons in this sketch are not intended to reflect
reality —the former would actually be smaller.

can either enhance or suppress the generation of quarkonia. In addition, there are some processes
fueled by the presence of deconfined matter —such as recombination— that work against suppression
effects, thus hampering the interpretation of data. As a result, many experimental observations
seem to disagree with the naive picture outlined above (e.g. a similar amount of J/1 suppression at
SPS, RHIC and LHC ) For a recent review of quarkonium suppression observables in the QGP,

see [38].

4.2.3 Jet quenching

Hard scatterings give rise to partons with large transverse momenta. Throughout their propagation
they radiate more partons, which can themselves undergo successive radiation processes. The result-
ing particle cascade goes through hadronization, giving rise to a collimated spray of hadrons in the
final state of the collision: a jet. The energy loss caused by the interaction between the hard partons
and a dense colored medium such as the QGP can influence the jet spectra in different ways. These

effects are labeled as jet quenching, and they constitute one of the main signals of the presence of a
QGP in HICs.

Arguably the simplest example of an observable sensitive to jet quenching is the nuclear modifi-
cation factor:

1 dN AA / dzp n dy

<Ncoll> dep/d2pLdy 7

Rap = (4.1)

which is defined as the ratio of the production rates in nucleus-nucleus and proton-proton collisions
normalized by the average number of binary nucleon-nucleon collisionsﬁ, (Neoy). Jet quenching
manifests through this observable getting values lower than 1 at high p,. This was observed in the

first HIC experiments conducted at RHIC (and later reproduced at LHC energies [41-43])
and it was one of the key measurements referenced in the announcement of the QGP discovery.

4This factor is obtained through comparisons to Monte Carlo simulations based on a geometric picture of the
collision known as the Glauber formalism. It depends on the centrality of the collision.
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4.2.4 Anisotropic collective flow

Some of the strongest signals of the presence of QGP in HICs are those that stem from its collective
expansion, typically referred to as its flow. This feature translates into non-trivial correlations
between the particles of the final state. One of the key observables sensitive to collective flow is
the azimuthal momentum asymmetry of the produced particles with respect to the reaction plane,
which is defined by the impact parameter and the beam directionE] (see Fig.. This is known
as azimuthal anisotropy, and it is characterized by means of the Fourier expansion of the invariant
triple differential distributions:

d¢°N 1 d°N
Jopdiag 1425 0, _v , 42
d3p T or pJ_dpJ_ dy ( " Z ‘ COS ¢ RP)]> ( )

where FE is the energy of the particle, y its rapidity, p its momentum, p, its transverse momentum,
¢ its azimuthal angle, and Ugp the reaction plane angle. As we assume symmetric collisions with
respect to the reaction plane, the sine terms of the expansion vanish. The Fourier coefficients of
Eq. are known as harmonic flow coefficients, and are given by:

U = (cos [n(¢ — Urp)]). (4.3)

Here the angular brackets denote an average over all particles, summed over all events in the consid-
ered (p,,y) bin. The coefficients vy and v3 are referred to as elliptic and triangular flow, respectively.

A

Figure 4.4: Sketch of a non-central collision of two large nuclei, showing a) the projectiles approaching
each other, and b) the initial spatial anisotropy that characterizes the overlap region.

pL

The experimental measurements of v, in both RHIC 46| and LHC [47] (specially the latter) point
towards a quasi-ideal fluid behavior of the generated medium. In this scenario, anisotropies can be
naturally explained through a purely geometrical approach. Considering a non-central collision
(as depicted in Fig., we assume that the almond-shaped nuclear overlap region delimits the
generated QGP. Treating this area as a fluid, its initial spatial anisotropy transforms into a final
state momentum space anisotropy through the hydrodynamical evolution of the system.

Before getting into the details of the implementation of QGP in phenomenological studies, it is
convenient to put it in the context of a wider framework that comprises the different phases of a
HIC.

5Note that both reaction plane and impact parameter are non-accessible experimentally, having to be estimated
through different methods. For a detailed review of analysis methods of azimuthal anisotropy in HICs, see [44}[45].
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4.3 Stages of a heavy ion collision

The collision of large nuclei constitutes a particularly involved example of many-body problem,
with extra difficulties arising from the non-perturbative properties of QCD. Notwithstanding the
underlying complexity of these experiments, over the last decade the HIC community has devised
a well-established paradigm that describes the different processes involved and sorts them in a
sequence of distinct evolution phases. The resulting framework, known as standard model of HICs,
defines a highly interdisciplinary approach where each evolution stage is treated according to its
most prominent physical features. Within this paradigm (represented in Fig. , the different
phases experienced by the system generated in a HIC are:

‘Pre-equlibrium: GLASMA‘ ‘Quark Gluon Plasma‘ ‘Hadronic phase‘ Finally observed particles

Quasi-ideal relativistic
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Figure 4.5: Standard model of HICs. Even though this paradigm is theoretically well motivated,
the numerical values for time and temperature shown in this diagram are currently subject to a
considerable degree of uncertainty, and hence they must be taken only as estimates.

e The initial state. Usually defined from ¢ =0 up until an infinitesimal proper time after the
collision (7 =0%). In this phase, the interactions between the small-x gluons carried by the
colliding nuclei give rise to a coherent, highly dense state known as Glasma. As will be discussed
later, a detailed understanding of this early stage is essential for a proper characterization of the
medium generated in HICs. The large occupation number characterizing this phase makes it
amenable to the semi-classical description provided by the previously discussed CGC effective
theory.

e Pre-equilibrium. The Glasma state undergoes a complex evolution process driven by a large
number of interactions between its constituents. Within a very short time (~0.5 fm/c), these
scatterings induce a redistribution of energy density and momentum that leads the system to
local thermal equilibrium. This highly non-trivial process is known as thermalization, and
its precise theoretical description remains one of the most fundamental open problems of the
field.

e The QGP phase. Once the system thermalizes, the mean free path of its constituents
has become much smaller than its size, and thus it can be described in terms of macroscopic
variables. Under such conditions, the dynamical evolution of the fireball is implemented within
the framework of quasi-ideal relativistic hydrodynamics. Through the comparison between
hydrodynamical simulations and experimental data one is able to obtain numerical values
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of transport properties of QGP such as its shear and bulk viscosities. As will be detailed
later, establishing the initial conditions for these simulations requires precise knowledge of the
earliest stage of evolution.

e Hadronic phase. The QGP expands and cools down, smoothly transitioning into the confined
phase approximately 10 fm/c after the collision. Throughout this process the hydrodynamical
description gradually breaks down, as the ensuing hot hadron gas can no longer be described by
means of macroscopic variables. Once hadronization is completed, the hadron cascade model
(implemented in a variety of Monte Carlo codes) provides a description of evolution based on
microscopic degrees of freedom.

e Free streaming. Although there are different views on this particular point, the general
consensus is that the hadronic system described above is produced out of chemical equilibrium.
As the hadron gas expands and cools down, it quickly becomes dilute and the collision rate
between its constituents decreases, which successively leads to chemical and kinematic freeze-
outs (approximately 15 fm/c after the collision). After this point, only resonance decays and
annihilations can modify the particle yields. The resulting system streams outwards freely,
eventually reaching the detectors. The description of this phase typically relies on the kinetic
theory framework.

The studies presented in this report focus on the former of these five phases —the initial state of
HICs. A proper theoretical characterization of this stage of the collision requires precise knowledge
of the partonic composition of the projectile nuclei. As mentioned above, the CGC effective theory
plays a fundamental role in this task. In the following section we will expand on the relevance of
initial state studies to QGP phenomenology.

4.4 Initial state of HICs

Over the last years it has become clear that the bulk observables in HICs not only reflect the
transport properties of the QGP, but also the dynamical features of the initial state of the collision.
This was not a sudden realization of the heavy ion community, nor was it the conclusion of a single
experiment. Rather, the study of nuclear structure in the high-energy limit (and its implications
in collider experiments) was already a long-term concern of QCD by the time the QGP was first
observed. Although the relevance of this topic was always acknowledged in the context of HIC
phenomenology, most of the early efforts in the field focused on describing the thermal properties of
the newly discovered state.

Initial state studies started to gain more notoriety in the community after the first Pb-Pb exper-
iments were performed at LHC. Just the shape of the measured p,-spectra already provided strong
indications of the importance of the earliest stages of the collision. As mentioned before, in a typical
Pb-Pb collision at 2.76 TeV an average of 10* particles are produced, and, more importantly, ~99%
of them carry a relatively small transverse momentum. This simple observation suggests that most
of the particles generated in HICs arise from partons carrying a small fraction x of the light-cone
momentum of the parent nucleon. Therefore, a detailed understanding of the small-x gluons that
dominate the wave functions of the colliding nuclei is essential for a proper description of HICs.
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More recently, QGP phenomenology has also provided important evidence on the relevance of
the initial state of HICs. Through fits to data, hydrodynamical simulations of the QGP expan-
sion provide quantitative information about transport properties of the medium, such as its shear
viscosity. The very small ratios of shear viscosity over entropy density obtained from both RHIC
and LHC data (n/s ~ 0.1 and n/s ~ 0.2, respectively [48|) intuitively suggest a low dissipation of
the dynamics mapping early and late times of the collision [49]. It is also worth mentioning that
phenomenological studies of collective flow favor a non-zero value for azimuthal anisotropy in the
initial state, as the traditional (geometrical) picture outlined in the previous section is not enough
to explain the relatively large values of triangular flow vz by itself [50].

From a technical view point, the dependence on the early stages of HICs necessarily enters
through the initial conditions required by hydrodynamical simulations. The multiple interactions
happening during the thermalization phase drive the system to local equilibrium and determine the
initial energy density and velocity profiles of the QGP. The systematic study of this fundamental
input poses a huge challenge, as there is currently no consensus about the theoretical description
of pre-equilibrium dynamics. Instead, the standard practice relies on the use of a broad variety of
phenomenological models whose main goal is to initialize QGP simulations (see [51] for a review).
The numerical values of the physical parameters defined within these models are constrained by
agreement with data, sometimes varying greatly from one model to the other. Such discrepancies
introduce a significant amount of uncertainty in both the precision and physical interpretation of
most phenomenological studies of the expansion and cooling of QGP. Moreover, in some cases a
meaningful comparison between models is not possible, as they might be based on vastly different
physical pictures. The most remarkable example of this issue (and one of the focus points of the
research presented in this thesis) lies in the characterization of the early event-by-event fluctuations
of the energy and momentum deposited in the collision area.

Event-by-event fluctuations are a fundamental part of the early dynamics of HICs. Stretching the
previously mentioned ‘Little Bang’ analogy, we could argue that they play a similar role as quantum
fluctuations do during the inflationary period of cosmology [52,53|, triggering the large-scale matter
fluctuations that eventually result in the formation of galaxies. Likewise in the context of HIC phe-
nomenology, event-by-event fluctuations provide a natural source of energy density inhomogeneity
in the initial state, which is mapped into final-state anisotropies through hydrodynamical evolution.

All the aforementioned phenomenological models include mechanisms to implement event-by-
event fluctuations in the initial conditions. However, the dynamical origin and practical description
of this feature vary largely from model to model. The most widely applied approach proposes
reproducing these fluctuations by randomly sampling the positions of nucleons in the transverse
plane. Other models achieve a similar effect by considering fluctuations only in the subnucleonic
degrees of freedom. However, the outcome of these prescriptions is a partonic distribution that
must be mapped onto an energy density profile —a process that is also subject to a large degree of
phenomenological modeling.

In the remaining chapters of this report, we will argue that the inherent uncertainty associated to
the modeling of the initial state of HICs can be reduced by application of first-principles techniques
from QCD. For this purpose, we will follow the classical approach embodied in the previously dis-
cussed CGC effective theory. This framework has been extensively applied to the study of Glasma
properties, providing fundamental information about its energy, momentum and topological struc-
tures [54-57]. The starting point for this kind of studies is the resolution of the classical equations
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of motion for the produced gluon field in the presence of two external color sources —the valence
degrees of freedom of the two colliding nuclei— at an infinitesimal proper time after the collision,
7=07. In Part we explicitly reproduce this calculation, showing an emerging picture of Glasma
as a strongly correlated, maximally anisotropic system dominated by strong classical fields. Having
computed said fields, the CGC effective theory allows us to provide explicit results quantifying the
size and extent of their transverse correlations (in Part [[V).

The CGC framework provides the theoretical tools to characterize event-by-event fluctuations
through the calculation of correlators. In the works presented in this report we specifically focus
on the one- and two-point functions of the energy, momentum, and topological charge distributions
characterizing the Glasma phase. These objects correspond, respectively, to the average and vari-
ance of the transverse distributions describing said properties. The only source of fluctuations in
our approach is that of the incoming valence partons, as the collision dynamics are fully determin-
istic under the classical approximation. This allows us to achieve analytical results that can be
straightforwardly applied to phenomenological analyses of data with a minimal numerical effort.

4.5 What about thermalization?

The extremely swift decay of the Glasma state into a QGP has been a subject of open debate and
intense investigation over the last years. This line of research aims at finding a mechanism that
consistently matches the medium descriptions provided by CGC at the initial state and by quasi-
ideal hydrodynamics at thermalization time. The task of reconciling these two frameworks is highly
non-trivial, as each one presents a radically different physical picture of the medium. As will be
shown in Part [ITI the Glasma is characterized as a coherent, highly anisotropic state dominated by
classical fields, which is considerably far from being a quasi-ideal fluid in thermal equilibrium.

Within the CGC framework, the evolution of Glasma at later times is provided by the classical
Yang-Mills equations, where the fields at 7=0" act as initial conditions. As no analytical solution
has been found to this day, the computation is performed either numerically or within certain
approximations. However, Yang-Mills evolution causes the system to expand and become dilute
over time, in such a way that the description in terms of classical fields breaks down. From the
uncertainty principle we can estimate this limit to be reached at t ~1/Q, (which at RHIC energies
corresponds to ~ 0.2 fm/c). The results reached so far within this approach, although promising,
are still far from providing a smooth matching between CGC and hydrodynamics at such an early
time. For a review of this topic the reader is referred to [58,59].

Some alternative approaches to this fundamental problem are currently being explored. For
instance, on a series of recent works [60] the possibility of matching the CGC description with
effective kinetic theory as an intermediate dynamical step before the hydrodynamization of the
system is studied. Another alternative approach, based on the AdS/CFT correspondence, suggests
that one can gain valuable insight on the thermalization problem by considering it in the context of
a N =4 supersymmetric Yang-Mills theory [61},62].

However, achieving a detailed description of the dynamics of thermalization is out of the scope
of this thesis. Rather, our goal is to explore the properties of the strictly classical Glasma dynamics,
which, as will be shown in the following chapters, already poses a quite challenging task. Despite our
decision to bypass this fundamental phase of the system evolution, the results reached here are still
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suitable for a large variety of phenomenological applications that will be detailed later on. This ties
up with a widely extended practice in the field, which consists in using the p, -integrated distribution
of particles produced at the Glasma stage to directly initialize hydrodynamic simulations of QGP.
Such a strategy is valid as long as one is interested only in p, -independent features over length scales
larger than the thermalization time.
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Chapter 5

The topological structure of QCD

One important feature of the classical QCD Lagrangian Eq. is the fact that it is invariant under
the combined transformations of charge conjugation (C) and parity (P), i.e. it is CP-symmetric.
There are, however, CP-violating terms that could be naturally included in Eq. , as they are
allowed by Lorentz and gauge invariance. Arguably the most notorious one is the so-called #-term:

I B (2) P (2), (5.1)

=0 .
Lo 3272 M

with F* and FH = %e’“”’UF o corresponding respectively to the gluon field strength tensor and its
dual. The fact that no experiment has provided any evidence of CP-violation in the QCD sector
so far suggests an extremely small —or even null- value for the 6 parameter of Eq. . This in
turn poses a fine tuning problem for which several solutions have been proposed. Nevertheless, this
issue does not only affect the self-consistency of QCD as a theory; it is in fact related to one of the
long-term concerns of physics at large.

The search for signals of CP-violation in experiments is mainly motivated by one of the fun-
damental puzzles of particle physics: the fact that we observe much more matter than antimatter
in the universe, i.e. the baryon asymmetry. Most attempts at explaining this imbalance are based
on the occurrence of CP-odd fluctuations during the first instants after the Big Bang. However,
the currently known sources of CP-violation within the standard model —mainly stemming from the
weak sector— are too small to account for baryon asymmetry by themselves. The development of
theoretical mechanisms for the generation of additional CP-odd fluctuations is thus a subject of
intense research within the particle physics community.

A possible source of CP violation stems from the topological structure of QCD. As will be detailed
throughout this chapter, the transitions between topologically inequivalent states of the vacuum —
labeled by the so-called winding number @),— are closely connected to the anomalous violation of
the chiral symmetry, which in turn induces the generation of CP-odd matter. Off-central HICs
(those that take place with |b,| > 0) provide an appropriate environment for the observation of
such effects. These collisions give rise to large background electromagnetic fields [63], which in the
presence of deconfined chirally-imbalanced matter may induce a separation of positive and negative
charges along the direction of angular momentum [64] (see Fig.. This effect ~known as the Chiral
Magnetic Effect (CME)- thus creates a preferential direction for the emission of charged particles
that would in turn translate into non-trivial azimuthal correlations in the hadron spectrum. The
search for such signatures of this and other transport phenomena connected to the chiral anomaly
(generically called anomalous transport phenomena) has been carried at both RHIC and LHC [65].

Although these experiments have provided numerous measurements that are indeed compatible
with said phenomena [66-70], the presence of large background effects (e.g. transverse momen-
tum [71] and local charge |72] conservation, which also give rise to intrinsic back-to-back correla-
tions; and final state interactions [73]) prevent from drawing definite conclusions. Hence, there is
a strong interest from the high energy QCD community in reducing this uncertainty. Significant
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Figure 5.1: Qualitative sketch of CME [64]. The full and dashed arrows represent the spin and
momentum of the quarks, respectively. The large magnetic field B induces the quarks to move
along its direction. The parity of the quarks determines whether their momentum is aligned with
their spin, or in the opposite direction. The initial state (a) is chirally symmetric, meaning that
there are as many right-handed and left-handed quarks. In (b) the presence of a gauge configuration
with non-zero @)y, gives rise to a chirally imbalanced state (c¢), where the movement of the quarks
generates a separation of charges.

advances have been achieved on the experimental side, including the development of different de-
tection techniques [74-77] and, most recently, the implementation of an isobaric collision program
at RHIC aimed at the isolation of the CME background [78|. Still, a thorough approach to this
task demands for better theoretical constraints on the dynamical origin of correlations between de-
tected particles. With this aim in mind, in Chapter [9] we perform a detailed study of the potential
contributions emerging from the initial state of HICs. As will be shown later, the event-by-event
fluctuations featured in the Glasma phase play a main role in this respect. Before going into more
detail about this work, it is convenient to briefly introduce the basic ideas underlying anomalous
transport phenomena.

5.1 The chiral symmetry

We will first outline the concept of chirality of a particle. To that end, let us briefly return to the
QCD Lagrangian:

s . 1 a v,a
Lacp = Y Vrain(D!)ij — mgdij)os; — TR (5.2)
f

where in this occasion we will consider only light quarks (f = u,d,s). Such an approximation
is reasonable when considering matter at temperatures around the typical QCD scale T'~ Aqcp,
where we expect effects due to heavy quark flavors to be negligible. Note that within this effective
theory we are able to study the basic constituents of all ordinary matter, since protons and neutrons
are composed solely of u and d quarks. We will also momentarily neglect the mass term, thus
obtaining:

. 7 1 a v,a
L=iY bpu(D")is, — TR (5.3)
f
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This expression is invariant under global flavor SU(3)., x SU(3)g transformations:

QR L)
UR(L) = exp 5 (VR0 (5.4)

also known as chiral rotations. Here 7; are the Pauli matrices and 9?%( 1) some arbitrary parameters.
We also defined

1:|:fy

VYRr(1) = L)Y (5.5)
as the right-handed and left-handed components of the quark fields, ¢r(r) = (uR( L) drr) S R(L))T.
Performing an expansion of the quark fields of Eq. (5.3]) in terms of Eq. (5.5]), we obtain a Lagrangian
where the right-handed and left-handed sectors are unmixed:

= WWpPr + WL Py, — ZFZVFW (5.6)
This expression conveys a scenario where particles with different chiralities (right- or left-handed,
represented by vp(r)), have an equivalent physical description, as Eq. is trivially symmetric
under chiral rotations. Although this invariance is explicitly broken by the quark mass term (which
mixes chiralities), the fact that we are considering very small masses should make the chiral symmetry
approximately satisfied even at low energies. However, we do not observe this behavior in natur({L
which is due to the chiral symmetry being spontaneously broken.

In order to show this, it is convenient to introduce the vector and axial symmetries. According to
Noether’s theorem, for each symmetry of the Lagrangian there exists an associated conserved current.
We define the vector and axial currents Vj“ , A;‘ in terms of the Noether currents corresponding to
chiral symmetry:

jfi,j = jll%,j - Jg] : (5.8)
In turn, these are associated to the following SU(3)y x SU(3) 4 transformations:

P — exp {ZTJTQJ} 0 (5.9)

1) — exp {ny —} ), (5.10)

under which the massless QCD Lagrangian is invarianﬂ. SU(3)y corresponds to an empirically
observed symmetry of strong interactions: isospin. Conversely, the axial symmetry SU(3)4 does not
seem to manifest in nature in any way, and thus it was hypothesized to be spontaneously broken.

'Tf chiral symmetry was not broken, we should expect to find a meson with opposite parity and same mass for
every member of the meson multiplets.

2Note that the vector and axial symmetries are just convenient rearrangements of the chiral symmetry and thus
they do not provide new information about the Lagrangian. Nevertheless, they convey a more natural picture in
relation to spontaneous symmetry breaking.

49



In general, a symmetry is spontaneously broken when it is not satisfied by the ground state of
the theory, i.e. the vacuum. In the case of QCD, the vacuum is populated by quark-antiquark and
gluonic fluctuations. The presence of this material medium has the two-fold effect of modifying the
force law between color-charged particles (resulting in the running coupling of QCD) and, in the case
of quark-antiquark pair fluctuations, breaking chiral symmetryﬂ This is only a partial breakdown
—as mentioned above, the fact that we can classify the hadron spectra in SU(3)y representations
motivates a violation that only affects the axial sector. The spontaneous symmetry breaking mecha-
nism gives rise to eight pseudo-scalar Goldstone states (corresponding to the eight broken generators

of the axial symmetry group) that can be identified with the lightestﬁ hadronic states: 7+, 7=, 7°
K*, K-, K° K°and n.

)

It is theoretically well established that the density of the ‘ether’ of virtual quark-antiquark pairs
described above is sensitive to the conditions of bulk QCD matter in such a way that it becomes
negligible at large temperatures, hence giving rise to the restoration of chiral symmetry. This process
is controlled by the expectation value (gz_ﬁgb)q, typically referred to as the chiral condensate. Lattice

simulations indicate that this quantity displays a smooth fall (see Fig. that is usually interpreted
as the cross-over transition between hadronic matter and the QGP.
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Figure 5.2: Compilation of lattice data on the temperature dependence of the chiral condensate

(defined for the up quark) extracted from [80-83]. Curves obtained in the PNJL model. Figure
extracted from [84].

The chiral condensate is not the only quantity proposed to be the order parameter that signals
the transition towards QGP. Another notorious example is the Polyakov loop, associated to the
deconfinement phase transition of QCD. The clear identification of the onset of the QGP phase
—both in qualitative and quantitative grounds— is currently subject to an intense debate that is out

of the scope of this thesis. For the following discussion it will suffice to bear in mind that the QGP
is a chirally-symmetric phase.

3These virtual particle pairs necessarily contain a net chiral charge in order to preserve momentum conservation.

4There is a mass gap of about 630 MeV separating the pseudo-scalar octet from the rest of the hadron spectrum.
This allows to build a low-energy effective theory where these hadrons act as the dynamical degrees of freedom (instead
of quarks and gluons): the Chiral Perturbation Theory. For a brief review of this topic, see [79].
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5.2 The chiral anomaly

Noether’s theorem holds only at tree level. This implies that for any symmetry of the classical
Lagrangian we must check whether it is broken by quantum corrections in higher orders of the
theory. These symmetry violations are known as quantum anomalies.

Y
Figure 5.3: Feynman diagram representing a quark loop correction of the neutral pion decay.
Quantum anomalies in global symmetries have the effect of introducing a corrective term into

the conservation equation of the corresponding currentE]. This is precisely the case of the chiral
symmetry. The quantum correction represented in Fig.[5.3]introduces the following anomalous term:

oy g2Nf [y
O = =25 Tr{FW(x)F (x)}. (5.11)
Note that in this expression we combine the anomalous terms corresponding to all light flavors
(hence the Ny factor). In the massless fermion limit Eq. is the only source of chiral symmetry
violation. The presence of this correction induces a transformation of left- into right-handed quarks
at the following rate:

dN5 o d(NR — NL) o 3 o gQNf 5 -
e o _/d T Oujy = — ) /d :cTr{Fw,(:c)F (x)}’ (5.12)

where we defined the axial charge Nj as the difference between the net numbers of right- (Ng) and
left-handed (Np) quarks. In order to describe the axial charge generation mechanism it is crucial
to understand the structure of the gauge fields entering on the right-hand side of Eq. . This
term implicitly contains different contributions to axial charge production, one of them stemming
directly from the underlying topological structure of QCD.

5.3 Topological charge fluctuations

Gauge field configurations can be classified in distinct classes characterized by their corresponding
value of the following topological invariant:

2

Qu = # /d% Tr {Fuy(x)ﬁ“”(x)} , (5.13)

known as topological charge or winding number. This quantity labels degenerate but topologically
inequivalent vacuum states separated by potential barriers with heights of order Aqcp. At low

5The situation is much more delicate when quantum anomalies affect a local gauge symmetry. In this case, both
the renormalizability and unitarity of the theory get compromised, making it unusable for phenomenological purposes.
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temperatures the transitions between different topological configurations require tunneling through
these barriers, and they are therefore highly suppressed. Such transitions are mediated by localized
field configurations called instantons. On the other hand, at high temperatures (such as the ones
reached in the QGP phase), these transitions can be performed classically over the potential barrier,
and thus they are not suppressed anymore. The corresponding field configurations are then known
as sphalerons (for a review of the topological aspects of gauge field theories, the reader is referred
to [85]).

The contribution of the topological fluctuations discussed above to the axial charge production

rate can be straightforwardly obtained from Eq. (5.13) and Eq. (5.12):

dNs dQu &Ny

a - Ny T e /deTf{Fw(ﬂf)F“”(:v)}. (5.14)

Because of this relation (and committing an abuse of language), throughout this report we treat
the terms ‘topological charge’ and ‘axial charge’ in a virtually interchangeable fashion. However, let
us highlight here that the former (or rather its fluctuations) represents a dynamical source for the
latter.

It is convenient to rewrite Eq. (5.14)) in terms of the Chern-Simons current:

K" = ehveo Aa (F + gAbAC> : (5.15)

po T g%t

whose 4-divergence satisfies:
1 .
(@) = OuK* = = Tr {FW(:C)FW(;U)} . (5.16)

The divergence of the Chern-Simons current is the main object of study of Chapter [9] whose results
will be directly compared to a previous study [86] in Chapter [10] For this reason (and also to
simplify our formulas), we consider it appropriate to adopt the short notation proposed in said
work, v(xz)=0,K*". Let us now rewrite Eq. in terms of v:

2
aNs _ 9Ny /d?’xv(x). (5.17)

dt 272

Based on this relation, we will take the divergence of the Chern-Simons current as the fundamental
object controlling the generation of chirally-imbalanced matter.

5.4 Axial charge generation in HICs

As mentioned at the beginning of this chapter, chirally-imbalanced QGP in the presence of a large
electromagnetic field may induce a separation of electric charges that gives rise to non-trivial correla-
tions in the final state of HICs. This phenomenon has attracted much interest from the high energy
QCD community throughout the last decade. Unfortunately, the identification of CME signals is
severely hindered by the presence of large background effects. The task of reducing this uncertainty
demands for a precise theoretical characterization of the different sources of axial charge.

That is precisely the aim of the study reported in Chapter [9 where we explore the potential
contributions emerging from the initial stage of HICs. As will be shown, the dynamical properties
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of the Glasma phase (which result in a vanishing average value of ©) do not allow for direct topolog-
ical charge generation. However, the event-by-event fluctuations that characterize the initial stage
dynamics —albeit unrelated to the underlying topological structure of QCD- can provide sizable
fluctuations of © that result in local imbalances of axial charge. The size and extent of these early
fluctuations are characterized by the two-point correlator (i,(z, )2 (y,)), which we compute in the
CGC framework. This object is of particular importance for those hydrodynamical descriptions
that mimic the effects induced by the chiral anomaly [87-89] since event-by-event fluctuations are
expected to contribute a significant fraction of the initial axial charge densities.

This source of topological charge competes with the previously discussed sphaleron transitions.
Although the latter are known to dominate axial charge production in the QGP phase, throughout
the pre-equilibrium stage both mechanisms are likely to yield a significant contribution. It has been
argued that in the early stage of the collision sphaleron transitions are suppressed due to the boost
invariance of the generated fields [90]. However, as the system evolves towards thermalization and
boost invariance wears down, they would be significantly enhanced [90,91]. Whether or not event-by-
event fluctuations dominate over this or other mechanisms of axial charge production —like thermal
fluctuations of the field strength— is out of the scope of this thesis. For more exhaustive discussions
on this topic, the reader is referred to the aforementioned studies. It any case, it is essential to
understand and quantitatively constrain the influence of each source in the experimentally observed
correlations.
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Part 111

Theoretical characterization of the Glasma
phase

They’re suspended like a prism splitting floodlight
To poles of primary colors clawing the veil of the vacuum

— Battles in “Ddiamondd”



a N

In this part we reproduce the analytical computation of the Glasma fields generated im-
mediately after an ultra-relativistic HIC in the MV model. Such task requires solving the
Yang-Mills equations with one and two sources (Chapter @ We then compute the energy-
momentum tensor and the divergence of the Chern-Simons current of the Glasma at an
infinitesimal proper time 7= 0% (Chapter E[) These objects respectively characterize the
early deposition of energy density and the generation of axial charge in the plane transverse
to the collision axis. The calculations shown in this part serve as preamble and starting

\point of Part [ITV] where the main results of the thesis are presented. j

Chapter 6

Solution of the Yang-Mills equations at 7=0"

In the MV model the description of the medium generated in a collision of two large ultra-relativistic
nuclei is formulated via the Yang-Mills equations with two external sources:

[D,LUFW/] = Ji/ + ng (61)

where indices 1, 2 label the colliding nuclei. This expression poses a quite crucial problem, namely
that it has no general analytical solution. However, in the inner surface of the light-cone, 7 =07
(i.e. an infinitesimal proper time after the collision), it is possible to find an analytical expression of
the gauge field{] In order to do so, it is convenient to divide the space-time into four quadrants as

indicated in Fig.[6.1]

The MV model provides the appropriate framework to compute the gauge fields that charac-
terize each nuclei before the collision. As they inhabit causally disconnected regions of space-time
(quadrants 1 and 2), the dynamics of their corresponding fields are described independently by the
Yang-Mills equations with a single source. This is the case we will study on Section Further
on we will detail how these fields define the boundary conditions for the solution in the future light-
cone (quadrant 3), where we need to take into account both color sources simultaneously. As for
the points where both =™, = are negative (quadrant 0), they represent a region where none of the
projectiles have arrived yet. We will see that gauge freedom allows us to choose gluon fields to be
zero in this region.

The calculations shown in this chapter were first performed in [92] and later revisited by many
other authors. In the following section we will discuss some of the most relevant approaches proposed
in the literature, pointing out their fundamental differences.

'If our goal was to study the generated medium at any value of 7, we would need to turn to either analytical or
numerical approximations. The solution at 7=0% (the focus of the present chapter) is an appropriate starting point
for such methods.
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Figure 6.1: Space-time diagram of the collision of two large ultra-relativistic nuclei. The two diagonal
lines represent their trajectories (located on top of the light cone).

6.1 Gluon fields carried by a single nucleus

Let us first focus on the case of a single nucleus moving in the positive 2* direction. We start by
coming back to the Yang-Mills equations with one source:

(D F) = 8™ — ig[A,, F*] = J**¢", (6.2)

which comprise the dynamical relation between ‘fast’ and ‘soft” nuclear degrees of freedom (valence
quarks and gluon fields, respectively) in the MV model. Due to the identity [D,,[D,, F**|] =0,
these equations imply the covariant conservation of the current:

[Dlm [Dy, F"]] = [Duv JH] = J" —ig [Aw JH =0, (6.3)

where J” = J"%“ (from now on we assume contracted color indices unless otherwise stated). This
equation encodes the effect that radiating the gauge fields has over the color sources and, from
a technical point of view, significantly constrains the analytical behavior of the function J*. By
choosing J* to generate a color current only in the + direction (eikonal approximation), we have

that Eq. (6.3)) yields:

a%ﬁ =ig[A™,JT], (6.4)

thus setting its light-cone time evolution. Let us write the solution to this equation by assuming
that the z-independent ansatz Eq. (3.2)) corresponds to J# at some initial value zd:

Jr (T e ) = Wit ad)JM (af, o7, o )W (@™, ad) = 4 TWp(xy, o )W (6.5)

Here we introduced the gauge links W. These operators, whose role is to maintain covariant con-
servation, evolve the color source densities from a certain reference point z§ to 7. In the eikonal
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approximation they have the following form:

Tt
Wzt o2 ,2,.) =P exp {@g/ dzt A" (2T, 2, xl)}, (6.6)

0

and are called Wilson hneﬂ We will come back to this object later on. The Yang-Mills equations get
very complicated when substituting Eq. into them, as they become non-local in . Instead, we
might choose to work in a gauge where A~ vanishes and in turn W =1, thus making our color current
static. Note that in such a gauge Eq. becomes the ordinary current conservation d,J* =0, which
is trivially satisfied by Eq. and decoupled from the Yang-Mills equations. Then, Eq. can
be solved by proposing a purely transverse ansatz A’. This is the traditional procedure, followed
in [92-94].

However, in this section we will apply the method first presented in [95], where the covariant
gauge (defined by 8,“21” =0) is temporarily adopted in order to solve the Yang-Mills equations in a
more systematic approach. We use a tilde to denote the gluon field A and the color source density
p in the covariant gaugeEL where Eq. takes the following form:

OA” = J¥ 1 ig [AM, Jazn 8“[1”]. (6.7)

The system composed of Eq. and Eq. can be solved iteratively by expanding in orders of
p. This is convenient as both F* and A* are at least order one in p, which makes the commutators
in these equations at least one order higher than the rest of the terms (and therefore do not appear
in the first iteration). Assuming that Eq. corresponds to the lowest non-trivial order of the
color currentﬂ, the order p' of Eq. reads:

o Ji =0, (6.8)

which is automatically satisfied due to our ansatz being light-cone time independent. Then, Eq. (6.7))
becomes:

—ViAl(l) = J(Vl) = 6y+ﬁ($_,IL). (69)
This is a Poisson’s equation, which can be trivially solved in momentum space: fl’(’l) =0"*p/p?. In

coordinate space the solution usually appears as:

~ 1

Ay = _(5V+V_2ﬁ(x_axJ_)a (6.10)
il

which is a convenient abuse of mathematical language. The actual explicit expression in coordinate
space is:

- d?z -
Al(’l)(:c’,xl) = 5”*/ 2; log(|z. —x.|)p(x™, z1). (6.11)

20n Appendix |§| we show a detailed derivation of the Wilson line based on the solution of a slightly simpler

equation, Eq. (6.21)).

3Both must be affected by the change of gauge in order to keep the gauge invariance of the Yang-Mills Lagrangian
(as can be inferred from the coupling term in Eq. (3.3)).

4Note that due to the feedback between gauge fields and currents encoded in Eq. 1D J¥ could in principle
receive higher order contributions in p.
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This expression is obtained by solving the Poisson’s equation via the Green’s function for the 2-
dimensional Laplace operator GG, which satisfies:

8iG(JZL—yL) :(5({L‘L—yL). (612)
This function admits a simple Fourier representation:

d2kj_ 6“@.'(9& —y1)

G(rr —y1) :—/ (27)? W2 ; (6.13)

that allows us to rewrite Eq. (6.11]) as the following convolution:

Al(’l)(x_,xL) = 5”+/dziG(zL —x)p(r™,21). (6.14)

This notation will prove useful later on. At order p? the equation system reads:
DALy = Jioy +ig| Ay Bl + 047, (6.15)
(9/“](“2) =0. (6.16)

The latter reduces to d, J(Jg) =0 if we assume that the current is generated only in the + direction to

all orders in p (the factor 0" would then be common to all terms of the p expansion). If we impose
this term ’Fo vanish in the remote past (z*— —00), the solution is J(Mz) =0. As for Eq. 1. it takes
the following form:

OAY, = 0. (6.17)

As the commutator vanishes, there are no sources for this term. By imposing that it also vanishes
in the remote past, we have Al(/z) =0. This argument can be extended to all orders in p, resulting in:

JHx " xy) =" p(e,xy) (6.18)

1
At(x™ x)) = —5“+?ﬁ(x_,aq) = 6“+/dziG(zL —z)p(x™, z1). (6.19)
1

Although the covariant gauge provides a systematic way of obtaining the classical fields A*, for the
upcoming calculations we will find it more convenient to work in the light-cone gauge, defined by
the condition A*=0. We must find the appropriate gauge rotation:

A = QT ArQ + Lotorq. (6.20)
g
The light-cone gauge condition AT =0 yields the following equation for the SU(N,) element 2:

It =igA*tQ. (6.21)

The solution to this equation is the following ordered exponential (see Appendix @ for an explicit
derivation):

T

0

Qzt, 27, 2,) =0(z",2,) P exp {Zg/ dz‘fl*(z_,xl)} =0z, 2 ) Uz ,21), (6.22)
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which includes the Wilson line U(x~, 2, ). Physically, this object encodes the effect of the interaction
with the classical gluon fields over the fast-moving partons in the eikonal approximation (i.e. a
rotation in color space). The lower integration limit z is arbitrary, being determined by the chosen
condition for gauge fixing. By only imposing the light-cone gauge condition we get the following

fields:

At =0 (6.23)
A = é@Ta—@ (6.24)
Al = é (6fUi(@'U)e + e19'e). (6.25)

As in Eq. (6.21]) the factor © cancels, the condition A* =0 does not constrain © in any way and thus
the transformation is still undetermined. This residual gauge freedom allows us to choose © =1,
resulting in:

AT =0

Al = éUTaiU, (6.26)

which is a pure gauge field (i.e. a gauge transformation of the vacuum) in the transverse plane. As
mentioned above, there is some arbitrariness stemming from the initial point x,. Different choices
of z; give us solutions A’ connected by gauge transformations. We shall adopt z, — —oo, which
corresponds to retarded boundary conditions in 2~ (A* — 0 with 2= — —o0). Coming back to
Fig. we see that this choice implies that the fields in quadrant 0 (the backward light cone)
should vanish. As no color sources have yet arrived to this region, the dynamics there are described
by the homogeneous Yang-Mills equations [D,, F*] = 0, which also admit a solution of the form
Eq. . We can choose this solution to be 0, hence agreeing with the retarded boundary conditions
of quadrants 1, 2 and giving rise to a discontinuity between gauge fields located on the sheet = =0.

The physical interpretation of the discontinuity typically stems from the assumption that the x~-
dependence of the color sources factorizes as J*=01"6(x~)p(x, ). This expression suggests that, due
to the Lorentz contraction experienced by relativistic nuclei, the valence charges are confined on the
light-cone surface x~ =0. In such a scenario this infinitely thin sheet contains all physical information
and is the only region of space-time where the field strength F/ does not vanish. Although in our
derivation we chose not to make any explicit assumption about the longitudinal structure of the
nuclei (other than a certain narrowness around x~ =0), we will draw on the prior considerations to

rewrite Eq. (6.26) as:
Al = Q(x_)évT(‘?iV = 0(z 7)ol (z.1), (6.27)

where we take the limit 2= — oo in the Wilson lines (V(z,) = U(oo,z,)) and factorize the x~-
dependence of A to a theta function. This solution makes explicit our choice to have vanishing
gauge fields in quadrant 0. Note that this is not the only option: instead of a €, one could in
principle choose a smoother function providing that it vanishes at z;, — —oo. However, taking
Eq. has the advantage of providing an analytically simple approximation that in turn conveys
an appropriate physical picture in the high energy limit.
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The transverse differentiation present in Eq. and Eq. can be performed explicitly
(which we do in Appendix . However, the fact that F'* has a particularly simple expression in
the covariant gauge yields a good shortcut to the calculation of A?. We first notice that, in the
light-cone gauge, F''t =—0TA", so

Al = —/ dz” F™"(27). (6.28)
We relate F'* to F't via a gauge transformation (driven by the Wilson lines):
F* =UF*U = U9 ATU = Ta Pu, (6.29)
vi
and thus: - ‘
‘ x o'p(z",x _
Al :/ dz" U (2, m%mz Lz (6.30)

Rewriting this expression in the same way as Eq. (6.27) we get to our final result:

; N S _ 0p(z,x _ N

A =0(x )/ dz"U'(z ,m%wz x1) = 0(z 7)o (). (6.31)
This calculation provides the starting point for the characterization of the gluon fields formed at the

initial stage of a collision between two ultra-relativistic nuclei, which is the topic of the following
section.

—00

6.2 Glasma fields at 7=0"

We now consider the collision between the nucleus studied in the previous section and another one
moving in the negative z® direction (which we label respectively as nuclei 1 and 2). Let us (again)
start by rewriting the Yang-Mills equations:

(D, F*"] = Z WAL (2, 2m(2)) J% (2 (2) WA (2, 20 (1)), (6.32)

m=1,2

where the factors W[A,,](z, z»(z)) are the gauge link operators introduced in Eq. (6.5) (evolving
the currents of each nucleus from a certain reference point 2y 2(z) = x|,+—o to z) and A, are the
classical fields carried by each nucleus. As mentioned at the beginning of this chapter, solving these
equations demands that we distinguish between those regions of space-time that are in causal contact
with the collision (z°=0) and those that are not. Let us first focus on the latter, which correspond
to the space-time points outside the light cone (quadrants 1 and 2 in Fig.. In the present section
we will work in the Fock-Schwinger gauge, which acts as a sort of interpolation of the light-cone

gauges of each nuclei. This gauge is defined by the following condition:
(A~ +2 AN /T =0. (6.33)

It is easy to check that the solution found in the previous section still holds in the Fock-Schwinger
gauge. As we did before, we start from the covariant gauge solution Eq. (6.19) and perform a
transformation:

A" = QFArQ + Latorq. (6.34)
g
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A trivial way to satisty Eq. is to have both AT =A~=0. We can get A~ to vanish simply by
taking € as light-cone time independent. In order to make AT =0 we must solve Eq. , which,
as shown earlier, yields:

Qz",2)=0(x ) U(z,x), (6.35)

with U(z~,x,) given by Eq. and O(z, ) an arbitrary function that, again, we choose to be
O(z,) = 1. Therefore, we arrive at the same result obtained in the light-cone gauge, Eq. .
The case of nucleus 2, moving in the negative x* direction (with very large p~), yields identical
expressions up to an index sign inversion:

A7 =0
Alﬁ = 9(1’+)042(M),

where:

+

2(27,21)

o0 O'pe(2F,
042(xJ_) :/ dZ+U2T(Z+,IL)%
— 00 1

zt

Usy(zt,x1) = Ptexp {zg/

—00

dz*fl2(z+,ml)}

~ 1

Ay (2t x)) = —5”_€ﬁ2(x+, xy).
1

These fields have the property of making the gauge links in the Yang-Mills equations drop out, which
allows us to rewrite them simply as:

[D,, F") = J", (6.36)

with:
JE = pro(z®,21) (6.37)
J'=0. (6.38)

The solution found for these equations outside the light cone can be compactly expressed as:

AT =0 (6.39)
A" =027 )0(—a )k (zy) + 0(xT)0(—27 )ab(zy). (6.40)

The new 6 factors account for the regions of space-time where the field generated by each nucleus
exists (quadrants 1 and 2 for nuclei 1 and 2, respectively). As these regions of space-time are causally
disconnected, the Yang-Mills equations are solved separately for each nucleus without interference
(see previous section). However, in the forward light-cone we must take into account both nuclei
simultaneously, as they are in causal contact. In this region the best one can do analytically is to
obtain the gauge fields just above the forward light-cone, at a proper time 7=0". As the valence
color charge densities vanish everywhere except at the very light-cone, in this region the Yang-Mills
equations become homogeneous:

[D,,, F"] = 0. (6.41)
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An appropriate strategy to find a solution consists in proposing the following boost invariant ansatz
(see Fig.|6.2)):

A* =42 a(r =0, 2,)

A" =a'(t=0%,2,), (6.42)
and invoking a physical ‘matching condition’ that requires the Yang-Mills equations to be regular
at 7 = 0. As anticipated, this implies using the gauge fields outside the light-cone Eq. - as

boundary conditions. Let us first write Eq. (| in terms of a and a'. In order to do this, we
compute the elements of the field strength tensor F H

0 0 1 1
Fr—= _8917_—($_a) - %—+(ac+a) == (2ra+ 7°0:a) = —;&(7204)
, , Oa Ot ; 1 ; ;
it + i i + i i
'~ =420 — 57 8:F:Fzg:c [a,a}:—x <;87042F[D,a}>
F9 =9'd) — o’ —ig[a', o] . (6.43)
It will prove useful to adopt proper-time 7 and rapidity n = %log (xt/27) as the coordinates

inside the light-cone. This is known as the comoving coordinate system (see Appendix [B| for an
introduction). Note that this coordinate system is quite convenient for our ansatz, as we have
A"=0and A"=qa(7,x1). In order to obtain F*” in the comoving system we need to perform the

transformation F*(r,n, L) = S22 922 pro(4 — 1), We get the following non-trivial components:

or On ar On
N _ __F+— F + — 87- 2
Oxt 0z~ = Ox~ Ozt T2 (")
. Or Ot x= _oowt . ;
FT— F:I:a — _F—H Tt — 87' )
ox* 0x° T + T “
. 877 ox’ 11 11 , ,
mi __ F o ____fpt___ pt__[D . 6.44
dr* Ox° 2xt 2~ [ ’ a] ( )

Figure 6.2: Sketch of space-time structure of the gauge fields that describe high energy nuclear
collisions. In the forward light cone we indicate the ansatz proposed for 7=0" (Eq. (6.42))).
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Now, expanding the homogeneous Yang-Mills equations 0, F" — ig[A,, F*] = 0 in their (7, n)
components we get:

1 .
;aT(rFT”) +ig7* [o, F"] + [D;, F] = 0. (6.45)

Note that to obtain the previous expansion we have made use of the formula for the divergence
operator in the comoving coordinate system (see Appendix :

VA= 0,A" = % (8, (r A7) + 0, A7 + B,(r AY)). (6.46)

The separate components of Eq. (6.45)) yield:

v=T—igT o, 0-] — % [D',0,a'] =0

v=mn— %&%87(720[) —[D, [D",a]] =0
v=j— %&(T@Toﬂ) —igr? [o, [D?,a]] = [D', F7] = 0. (6.47)

By requiring the regularity of the Yang-Mills equations at 7=0 we obtain the boundary conditions
generated by the sources. To do so we must consider the gauge field over the entire space-time,
which takes the following form:

AT =0(x)0(z )z a(r,x1)
A" = 020z )z a(r, zL)
A" =02 )0(—aN)al (v) + 0(xT)0(—z )b (zy) + 0(xzH)0(x 7)ol (1, 7L). (6.48)

Substituting Eq. (6.48)) in the Yang-Mills equations and taking the limit % — 0 we encounter some
singularities that disappear providing that:

(=0T 2)=0al(zy) +ab(zy) (6.49)
alr=0",2,) = % [0 (2,), ad(x1)] - (6.50)

The Yang-Mills equations Eq. (6.47]), along with the conditions Eq. (6.49), Eq. (6.50) pose a boundary
value problem whose general solution is not known yet. Several approximations of both analytical

and numerical nature have been applied in the literature for the evolution in 7. However, this is out
of the scope of the work presented in this thesis, which is focused in the properties of the Glasma
fields at 7=07.

Eq. and Eq. reveal a rather non-trivial physical picture of the collision process and
the resulting gluon fields at early times. As the two sheets of color charge pass through each other,
the ensuing transverse component arises from the sum of the gluon fields they carry. Moreover, a
longitudinal component A7 =« emerges as a consequence of the non-linear character of the Yang-
Mills equations. From these expressions we can compute the Glasma chromo-electric and -magnetic
fields, defined as:

E' = —F" (6.51)
1

BF = 5&ij”’. (6.52)
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Figure 6.3: LEFT: Representation of chromo-electric and -magnetic fields formed after the collision
of two ultra-relativistic hadrons. RIGHT: Schematic picture of Glasma flux tubes.

The 7, 7, k indices correspond to the spatial Cartesian coordinates, which we denote as 1, 2 and 3 = z.
To compute these fields at 7=0" we substitute Eq. (6.49) and Eq. (6.50) in the previous definitions
and take the limit 2* — 0. Remarkably, only the longitudinal components of both fields survive:

E* (1 =0") = —igs” [af(z1), ad(x,)] = 24" (6.53)
B (1 =0") = —ige [} (1), ad(z1)] . (6.54)

(See Appendix [F| for an explicit derivation). At 7=07 the color charge sheets become sources for
chromo-electric and -magnetic fields flowing in parallel to the collision axis. This peculiar configu-
ration of boost-invariant longitudinal fields motivates the Glasma flux tube picture (see right panel
of Fig., which predicts relatively short-range transverse correlations (of order 1/Q, rather than
1/Aqep) 196]. In the following chapter we will see how this structure is at the origin of a series of
remarkable features of the Glasma phase.

Summary:

e In this chapter we reproduce the calculation of the gauge fields representing the Glasma
phase generated immediately after a highly energetic collision of two large nuclei.

e For this task, we first compute the gluon fields carried by the nuclei before the collision
moment in the MV model.

e Then, we solve the Yang-Mills equations with two sources at an infinitesimal proper time
after the collision, 7=07.

e The Glasma fields are obtained as boundary conditions for the general resolution of the
Yang-Mills equations (at larger values of 7).

e Moreover, we compute the corresponding chromo-electric and -magnetic fields. The char-
acteristic longitudinal structure featured by these fields motivates a physical picture of the
Glasma reminiscent of strings or flux tubes stretching between the crossing nuclei.
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Chapter 7

Early properties of the Glasma

In this chapter we will compute the Energy-Momentum Tensor 7" and the divergence of the Chern-
Simons current v corresponding to the previously obtained gauge fields. These objects characterize
different properties of the Glasma phase, namely the energy and momenta carried by the classical
fields (in the case of T"") and the rate of axial charge generation (in the case of r). As will be
detailed in subsequent chapters of the thesis, these aspects of Glasma are relevant in a variety of
phenomenological studies. The calculations presented here constitute a preliminary step for the
computation of correlators (Part , which provide the statistical behavior of said quantities over
a randomly fluctuating background of color sources.

7.1 The Energy-Momentum Tensor of Glasma at 7=07

The Energy-Momentum Tensor 7" is a mathematical object that contains all information about
the density, flux density, energy and momentum of a field. Its components are:

Energy density Momentum density
f Too] { 701 02 03
gl [l 1 12 g3
%; 20 21 22 (7.1)
E T T T T3
29 T30 T31 T32 T33

Momentum flux

In a Yang-Mills theory this operator can be expressed in terms of the field strength tensor F*¢ as:

174 1 v ap,a a ,a v,a
™= g F POFLy — FrOCFYe, (7.2)
with the metric tensor defined as ¢g"” = [diag(1, —1, —1, —1)]*” in the Cartesian coordinate system.
The previous formula can be written in terms of the color-contracted field strength tensor (F* =

Frat®) by means of a color trace:
1 v af o v 1 v paB,aga b b a,aqa 1v,brb
2Ty Zg“F Fop — FFFY 5 =2Tr Zlg“F “OF gt — FROMC RN
0% (1

174 ap,a a,a v 1 174 ap,a a a,a v,a 174
=2— (Zg“ FOPepl, — Fre Fa’b) =9"F O e e (7.3)

which is equivalent to the sum over SU(N.) indices implicit in Eq. (7.2)) by the Einstein notation.
For simplicity, we will momentarily omit both the trace and the factor 2 in our expressions. The
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components of T* can be expressed in terms of the previously computed chromo-electric and -
magnetic fields F; and B;. Let us start with the energy density, ¢ = T°:

1 L .
e = 7(=2|BP + (7 B*) (e B")) + | B?
1 1
= SQIBP + 26" B B™) = (B +|BP) (7.4)

For the T% terms (which are the three components of the momentum density, i.e. the Poynting
vector) we get:

T% = —FYF’ = B'F', = —¢""E;B, = [E x BJ'. (7.5)

Note that the definition of the cross product includes a metric tensor that rises the ¢ index, and
therefore, a change of sign. Finally, for the 7% terms (momentum flux) we have:

g R
== (|E|* + |B]®) — (E'E’ + B'BY). (7.6)

Now we can explicitly calculate T by substituting Eq. (6.53)), Eq. (6.54) into Eq. (7.4), Eq. (7.5)
and Eq. (7.6). Remarkably, only the diagonal terms survive this substitution. As both the chromo-

electric and chromo-magnetic fields are longitudinal (and therefore parallel) at 7 =0T, the cross
product featured in Eq. (7.5 vanishes. In the case of Eq. (7.6)) with i+ j:

Tz‘j(T _ 0+) = Toij — —(EiEj 4 BiBj) =0. (7.7)

(From now on we will write F*(r=0") and B*(7=0") simply as E’, B'). This expression features a
product of two different components for each field. Again, as both E* and B* have only one nonzero
component (i.e. z), these terms vanish. This is not the case for the diagonal terms i=j=1,2:

T =73 = 2 (1BP + 1) (79)
and 1 = j = 3:
13 = L(EP + |BP) — (B +1BP) = — (1B + 1B (7.9
Hence:
Tg“’:% (|E|* + |B|?) xdiag(1,1,1, —1) =eq x t"*, (7.10)

where we defined t*” =[diag(1, 1,1, —1)]*. As expected in a classical approximation, this tensor is
traceless. Note that the characteristic diagonal structure of T§" is a feature of the specific proper time
at which we are setting our calculation. The ensuing time evolution brings non-trivial off-diagonal
corrections that largely modify this initial formﬂ. At 7=07, however, the classical approximation
yields a remarkably simple, diagonal Energy-Momentum Tensor.

What is most remarkable about this object is the maximum pressure anisotropy denoted by
the negative value in the longitudinal direction, which makes it very different to the characteristic

! As indicated by the higher order terms of the T-expansion proposed in |97].
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Energy-Momentum Tensor of an ideal fluid (where all the components of the pressure would be equal
and positive). The negative pressure tends to slow down the longitudinal expansion of the system,
while the remaining components force it to expand in the transverse directions. This picture is quite
problematic for a smooth matching to quasi-ideal hydrodynamics, which makes the description of
thermalization a remarkably complex endeavor.

In terms of the previously obtained gluon fields, Eq. (7.10]) reads:
T =g (576 + 1) Tr { o], od][of, ad]} x4, (7.11)

where we have explicitly restored the color trace introduced in Eq. (7.3). In order to compute it we
need to expand the color structure of our fields:

o/'(a:L):/ dzUT(z,xL)%U(z,xl):/ al,zav'o2 Uty

—00 [e.9]

o0 az ~a )
:/ dz_v—pQU“btb = a®b(x,). (7.12)

Here we used the relation between Wilson lines in the fundamental and adjoint representations
UTteU =U%t" (see Appendix |G| for a proof). Substituting in Eq. (7.11)) we get:

Ty = —92(5ij5kl + eijekl) ai’aag’baf’caé’d Tr {[ta, tb] [t td]} Xt
— 92<5ij5kl + Eijelcl) fabmean!i’aag’bO{ic’cO[é’d Tr {tmtn} x tH

2
97/ cij okl ij kI pabm pcdm _ia b ke ld v
=3 (0Y 0% 4 €7€™) fOm fem ol ol o oyt Xt (7.13)

7.2 The Divergence of the Chern-Simons current at 7=0"

As explained in Chapter [ the divergence of the Chern-Simons current v characterizes the early
fluctuations of axial charge density in the plane transverse to the collision axis. This object plays a
crucial role in the description of anomalous transport phenomena such as the Chiral Magnetic Effect,
as will be detailed later on. Its expression in terms of the Glasma chromo-electric and -magnetic
fields reads:

v(ir=0"2)=t(z,)=T{E(r=0"2,)B(r=0"z,)} (7.14)

By expanding this expression in terms of the gluon fields o and explicitly computing the color trace
we obtain:

vo(21) = —g*67 " Te{lal,, of Jaf,, ag,]}

lx) "2x
= g5 aloftal ol e (v ][, )
T

2
9" ij ki pabn pedn _ia b ke ld
255 M fen femtaltallalCans. (7.15)

Both Eq. (7.13) and Eq. (7.15) display a remarkably complex index structure. For instance, each
expression features two SU(N,) structure constants f¢ whose indices are contracted with those
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of gluon fields corresponding to different nuclei. As will be shown in Part [[V] the color algebra
operations derived from this particular configuration (specially for the calculation of two-point cor-
relators) will be the source of many technical challenges that will —in some cases— require the use of
computational methods.

Summary:

e In this chapter we obtain the expressions of the Energy-Momentum Tensor and the diver-
gence of the Chern-Simons current in term of the previously computed Glasma fields.

e Both expressions feature a notably complicated index structure, involving two SU(N..) struc-
ture constants and different combinations of Dirac deltas and Levi-Civita tensors.

e Remarkably, the structure of the Energy-Momentum Tensor at 7= 0% is far from that of
an ideal fluid (which the Glasma is expected to resemble after the thermalization process).
However, this issue is out of the scope of the studies presented in this report.
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Part 1V

Early correlations of the Glasma

[18 minutes of screeching noise/

— Kazumoto Endo in “While You Were Out”



a N

This part of the thesis is devoted to the theoretical characterization of the early event-by-
event fluctuations of Glasma. This feature is described in the CGC framework through the
functional average previously discussed in Chapter As a preamble, on Section [8.1] we
present a generalization of the two-point function of the MV model with relaxed transverse
locality and explicit impact parameter dependence. Such extensions allow for a more realistic
description of color charge correlations, while expanding the potential phenomenological
applications of our results. In this framework, we first study the energy and momentum
deposited in the transverse plane to the collision axis in the initial stage of the collision
(Chapter . Specifically, we compute the one- and two-point correlators of the energy-
momentum tensor characterizing the system generated at an infinitesimally small proper
time 7=0". We then focus on the generation of topological charge induced by event-by-
event fluctuations, which is described by the two-point correlator of the divergence of the
Chern-Simons current (Chapter E[) In Chapter 10| we compare our results with previous
\calculations performed in the so-called Glasma Graph approximation. j

Chapter 8

Energy density fluctuations of the Glasma

In this chapter we present a first-principles analytical calculation of the covariance of the Energy-
Momentum Tensor (EMT) associated to the Glasma phase. This object involves the two-point and
single-point correlators ((T""(xz,)T7?(y.)) and (T (x.)), respectively) of the EMT at proper time
7=0". Our approach is based on the previously discussed CGC effective theory, which provides the
tools to map the fluctuations of the valence color sources from the colliding nuclei to those of the
EMT of the produced gluon fields (computed in Part . We will start by computing the one-point
function, which describes the average energy density deposited in the collision area.

8.1 The EMT one-point correlator in the MV model

Although the results shown in this section have been —for the most part— derived previously in
the literature [55], this preface allows us to introduce the generalized MV model that we will be
extensively using throughout our calculations, as well as to establish the employed notation. The
proposed extensions to the MV model are embodied in the following two-point correlator:

("2, 2 )" (v, yu)) = (a7 (b )™ (x™ —y ) f ey — y.)
= Az, bL)éabé(x* —y ) fx,—y.), (8.1)

which generalizes the ansatz presented in Eq. (3.8)). This expression allows for the possibility of
finite, non-homogeneous nuclei by explicitly introducing an impact parameter (b, = (z, + y,)/2)
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dependence, as previously done in [98]|. Also, the assumption that interactions are local in the
transverse plane is dropped by the introduction of an undetermined function f(x, —y,) instead of
a Dirac delta. This generalization was first explored in [99] and later applied in the implementation
of BK evolution within the so-called Gaussian truncation framework [26,100-102]. Both these
extensions of the MV model could prove useful in subsequent phenomenological applications of our
results. The specific analytical behavior assumed for h(b,) and f(z, — y,) will be briefly discussed
later on (and is treated in depth on Appendix .

The starting point of our calculation is the Glasma EMT, computed in Section Applying
Eq. (8.1)) to this object we obtain (T (z,))=(e(z,)) xt", with:

(€(x))= %2(5“5’” 4 €Mty pabm pedm <o/"“(xl)ozk’c(xL)>l<aj’b(xl)o/’d(xl)>2. (8.2)

Here we factorize the average over color source densities p, and p,, as in the MV model we assume
the source fluctuations in each nuclei to be independent of each other:

Olbush) = 37 37 180 Walpl [ o IWilp) Ol 3)

Also note that, as in Eq. all indices are explicit, the a® coefficients can be freely permuted
in order to perform said factorization. The building block of (€,) is the average of two gauge fields
evaluated in the same transverse coordinate: (a*(z,)a?®(x,)). Nevertheless, it will prove useful
to perform this calculation for different transverse positions z,, y, and eventually take the limit
Y, — T,

. . o0 , ai~a’ 27, %, dar 8j~b’ Z_/, N , ,,
<0‘Z’a(xl)04]’b(yl)>:/ dz"dz" <%U (2 ,:L’L)%Ubb(z ,yL)>. (8.4)

The average in the right hand side of this expression contains, for each transverse position, an infinite
product of p factors, one being external and the rest being arranged inside the Wilson lines. Since
the MV model assumes the color sources to obey Gaussian statistics, we can apply Wick’s theorem,
which under such condition states that any correlator can be expressed in terms of products of
two-point functions. In our particular case, the only non-vanishing terms of the infinite possibilities
available are the ones that correspond to a factorization of the external sources from those inside

the Wilson lined™

<o/’a(aa)06j’b(yﬁ> :/_Zdzd2/<aiﬁa/(z_’ z.) (‘)jﬁb/(z_’yL)> <Ua/a(27, Z’L)Ub/b(zfl, y¢)>. (85)

V2 V2

As the differential operators 1/V? 9" commute with the average operation (...), the factor involv-
ing the external sources can be calculated through an almost direct application of the two-point
correlator. In the original MV model (Eq. (3.8)) this yields a quite simple expression:

8iﬁa/ T ,T, ajﬁb/ Y,y b _ _ i A
< (V2 ) (V2 ) — 5 b ,uQ(LE )5(27 -y )QB@;L(ZEL - yJ_)MVa (86)

v

Later on (in Section , we will perform a general analysis of the decomposition of the correlator of n Wilson
lines and m external sources.
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with:

— (v, — yl)—/ d22du® Gz, — v.)G(uy,— y.)6% (2, — u,)

:/ A’z Gz, — 2 )G (z,—y.) = Lz, — Y. ) (8.7)

However, the generalized version Eq. (8.1]) yields:

1 1
V2V

2, +u,

0.~ 1) = [ 202 6= 26— (2 ) e )

%h(bL)/dziduiG(zL— z)G(u,—y,)f(z,—u,)

h(b ) L(x, —y.), (8.8)

and then:
0103 (h(b.) L. —y.)) ~ h(b. )OO, — ). (8.9)

resulting in:

<é¥ﬁw($7$l)8jﬁ”(y7yL)

2 2 > = 0Nz, b, )0 (2~ — y )L L(x. —y.). (8.10)

In the same spirit than [98|, in Eq. we implicitly assume that the impact parameter profile
h(b,) introduced earlier is a slowly varying function over distances of the order of an infrared length
scale 1/m (or smaller). This length is taken as an intermediate scale between the inverse saturation
scale and the nuclear radius R4:

1
— < — < Ry. (8.11)
m

In our calculation 1/m acts as a cut-off that imposes color neutrality at the nucleon size. Another
assumption implicit in the previous expressions is that f(x,— y,) behaves in such a way that
its Fourier transform f (k.) tends to unity in the infrared limit. This requirement, along with
the assumed ‘slow’ behavior for h(b,), result in this factor being approximately unaffected by the
differential operators in both Eq. and Eq. (see Appendix [H| for a more detailed discussion
about these assumptions). Substituting in Eq. we obtain:

<ai’“(ml)a‘7’b(yL)>:/oodz_)\(z_, bl)f?;@iL(xL— yL><Ua/a<z_ﬂ"L‘J_)Ua/b(z_7yi_)>7 (8.12)

where the last factor corresponds to the dipole function in the adjoint representation [103]:

/ _ a/ _ a Nc < _
<Uaa(x 1)U b(x 7yL)>: 0 bexp{_g27F(xl_?/L))‘(x 7b¢>}
= (5“1’0;3}(:6’;3:”%). (8.13)

Here we introduce the factor

Iz, —y,)=2(L(0,) — L(x,—y,)) (8.14)
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and the integrated color charge density A(z~,b,)= [* dz~A(z7,b,). Note that in Eq. (8.13) the same
approximations as in Eq. (8.8)) were applied in order to obtain the factorization of (b, )I'(x,— y,).
Substituting:

<aiva<maﬂ>b<yl>>=5“b/ dz" Mz b)) 205 Ly — y. ) O (2300, y.). (8.15)

—00

Now, taking the limit y, —x:

<awwxl)a%%xL)>::-%5d6w /‘ dz‘A(z_,xl)82LUL)::——%5M6UX(xLﬁ¥I(OL)

— 00

_ _%5ab5ijﬂ2h(xL)a2L(ol)7 (8.16)

where we defined \(b,) = (oo, b,) = fi?h(b,) (in general, we will identify functions integrated in
the longitudinal direction from —oo to oo by simply omitting their longitudinal dependence) and
substituted the following expression:

1
a2

1mawunpﬁ./fﬂf<) = Lsiger0,), (8.17)

2.) (2m)?

with r =|r,| = |z, — y.|. Here the double derivative 9*L(0,) is a model-dependent constant that
yields a logarithmic divergence in the strict MV model:

L0, ) = — lim lln (mj{z)} . (8.18)

47 r—0

l\DI»—

Note that in our generalized framework one could in principle search for a function f(z,) that
regularizes said divergence. We will come back to this later. By applying Eq. (8.16]) for both nuclei
in Eq. (8.2), we obtain:

<€0(1’J_)> — %Qfabmfcdm(éijcskl + Eijekl) 5acazk6bd6]llu1 ”2 h ( )hg(xL)(GQL(OL))Q
= G N2CpA (2 )N (2,)(0°L(0,))?, (8.19)

whose dependence on the transverse position is a consequence of our generalized MV model approach.
Note that we label both factors y? and h according to the corresponding nucleus, which allows for
the use of different nuclear profiles for target and projectile. We absorb these quantities, along with
the factor 9*L(0_), in the definition of the following momentum scale:

Qi(%) = a,N, E\(xL)(_ZLWaZL(OL)) ) (820)

which characterizes each colliding nucleus. Performing this substitution we finally obtain:

(eolz.)) = ij 2 ()@ (). (8.21)

Due to Eq. (8.18)), in the strict MV model the average energy density is a logarithmically divergent
quantity. At the origin of this issue is the Gaussian ansatz, which does not hold for very small
resolution distances (r — 0). Indeed, under this approximation it is assumed that the color charge
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sources at two given points emerge from different nucleons and are therefore uncorrelated, which is
not a reasonable assumption at short enough distances. As mentioned before, this shortcoming could
in principle be ‘treated’ by relaxing the locality of correlations in the transverse plane. However, such
possibility was not explored in the work presented in this thesis. Instead, we absorb the divergent
factors into the definition of momentum scales characterizing each nucleus, @, ,, which later on will
be shown to be related to their saturation scales (as made apparent by the chosen notation).

8.2 The EMT two-point correlator in the MV model

The next step in our calculation is the computation of (T*(x )T (y.)) = {e(x .)€ (yL)) X tHL7°.
Whereas the one-point function expresses the average energy density of a fluctuating medium, the
two-point correlator characterizes how such event-by-event fluctuations give rise to non-trivial cor-
relations between the energy densities at two given points of the transverse plane. We start by
expanding the product of energy densities:

(2 )e(y.) = g' (090 + V) Tr { [af(a.), ad(a)] [k (2., ad(w.)]}
%675 T VI { |ad(y.), o) | ok (02), adly) |}

/

4
g . g N s = sl al AN, !/ q! s : A 4 VN, 1 g/
(51]6kl+ Emekl)(éz J 5k l ety Gk l )fabnfcdnfa b mfc d'm ai,aag,bak,caéd ai,aag ’bO[lf ’CO[é’d

4 vV 1 -\ Vv
T YL
_ pikt'K acd’d _da ke i’ K. b Ld b _Ud
= Ajl;j’l’ ]:bd;b’d’ alxalxaly Oély a2ma2xa2y aZy : (822)
Here we define the transverse and color structure tensors respectively as:
k7/k/ ;4 ;. ! 1y sl 1y
A;l‘;’l/ == <6lj5kl+ Ewﬁkl)((sl J (5k ! + E’L J Ek ! ) (823)
aca’c’ 94 abn pcdn pa’b’m pc’'d'm
Frapa =" [T, (8.24)

2,0

and adopted a shorthand notation for the gluon fields a**(z,)=a%®. As the average operation is
performed independently for both nuclei, the building block of (€,(x, )€, (y,)) reads:

aiﬁe(z_ ) xl)
V2
8k/ﬁ~’f/(w_,> y.)

VZ

[e.e]

(@™ (z, )ak(z, )a™ (y,)a™ (y,)) :/ Use™ @)

—00

9" 5 (=" y.)
v2

dz_dw_dz_'dw_’<

akﬁf(w—’ xL)

w2 Ulc(w=,z,)

U ) ). (525)
This is an extended, more complex version of Eq. (8.4)), with twice as many color sources depending
on different longitudinal coordinates. In order to compute this object, it will prove useful to analyze
the general case of correlators with n Wilson lines and m external color sources. In the following
subsection we will focus on the relevant case for our specific computation, where m is an even

number.

8.2.1 Correlators of n Wilson lines and m external color sources

The correlator featured in Eq. (8.25) can be computed by application of the techniques derived
in [104]. In said work they analyze the general case of the correlator of n Wilson lines and m color
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charge densities, denoted as F™". The following decomposition formula (represented in Fig. is
providedE]:

F™n (b=, a”) = G HO"

m—2 2,n
+ Z G(1771717{1}71+177]717{.]}?.]4"»1)7m)H({177271}71?{Z+17’.771}7.77{]4"»177""})
i7j7i<j

+ Gm—4
§ : (1,...i—=1,{i}i+1,...,—1,{5},g+1,....k—1{k} k+1,...,1—-1,{1},l4+1,....m)
1,9,k Li<j<k<l

x H-:™
({1771_1}717{14—177]_1}7]7{]+171k_1}7k1{k+1771_1}7l7{l+177m})

2 2,n m,n
T T Z G({lvmvi_1}7iv{i+17~--7]'—1}7j7{j+1,...7m})H(l,.A.,ifl,{i},iJrl,...,jfl,{j},j+1,...,m) + H™", (8-26)
1,J,5<]

where

G?I:.l7j—1,{j},j+1,...,m) = (p1--PiaPjsrPrm) (8.27)

is the correlator of m—1 color charge densities.

by

by

by,

(ash (2| @ (o) a

(03)2 as

(a2)2| @ ()2

(a2)n . : (@1)n

bn

(a3)n

(@m—1)1 (o)1

(atm—1)2 (a1)2

(@m—1)n (a1)n

Figure 8.1: Schematic representation of the decomposition of the correlator F™" (Eq. ) for an
even value of m. The gray oblong shapes represent correlators of color source densities. On the other
hand, the white oblong shapes represent the sum of all possible contractions between an external
source and n Wilson lines, whose correlators are represented as gray squares (see Fig.[3.3)).

2Eq. li is derived for the cases where m is even. In [104] the odd m formula is also provided.
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h| @ (1)1 @ [ (ap)| @ (0p1)1| @ = (m-1)1| @ ay

| @ - (a1)2| @ - (ap)2]| @ - (aps1)2| @ == (tm-1)2 | @ - az

b . : (@1)n ‘ - (ap)n . : (ap+1)n . — (@m-1)n . : an
b- o p Cpt1 Cm—1 a

Figure 8.2: Schematic representation of the connected correlator H™" (see Eq. (8.29))) for the par-
ticular case featured in our calculation.

In the notation adopted here, the indices corresponding to sources that are ‘missing’” from the
correlators (like p; in Eq. (8.27))) are indicated by brackets {...}. We also have:

H(]{Tll AT =1 i Ja— 1 Ja {4, e { T =100y { Ty g1sem)) — <P.11P.12~-PJJU1~-‘Un>cv (8.28)

-----

which we will called the ‘connected’ correlator of n Wilson lines with j insertions of external sources
at the positions J;, J,, ... J; (with J; < J, < ... < J;). This is a special kind of correlator that does
not include contractions between color sources outside the Wilson lines. Therefore, when computing
it, any of these external sources can only be linked to those arranged inside Wilson lines. This object
can be factorized as:

H™" (b7, a”[{b}, {a}) = H"(b™, e {0}, {eu}) [H H'" (e, s cpal{ap}, {apia})

< H (e y,a [{am-1}, {a}), (8.29)

where H'" is the basic building block of the connected correlators, having only one external source
being linked to those inside the n Wilson lines (see Fig.[8.2)). Applying our generalized version of the
MV model (embodied in the two-point correlator Eq. (8.1)), H'" yields the following expression:

HY™ (b7, a” [{b}, {a}) —QZM F 07y~ {oH B |g,=at™ (y ™5 a” [{BHa}) g=a

Y / 15,6~ ) (e =y (52 (830

However, a fundamental difference between the calculation discussed here and the one featured
in [104] is that in our case the external sources are affected by the differential operators 1/V? and
0. This aspect can be comprised in a redefinition of H" as:

H (0™, a” [{b}, {a})’ gZu F 07y~ {oH B lg=at™ (™, a” [{BHa}) g=a

fedd. (8.31)

0} [ desd 6o = )G~ )~ w)h ( s ““)

where F'™ denotes the correlator of n Wilson lines. Note that in these formulas the bracketed indices
represent a set of n color indices (not indices from ‘missing’ sources, as in Eq. (8.27) and Eq. (8.28])).
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By application of the analytical properties assumed for h (outlined in Appendix , the previous
expression can be rewritten as:

HY™(b™,a” [{b}, {a})’ NQZM EMO yT OB g=at " (v a” [{BHa})|g=a
xh (bL) a;L(ij - yl)]wdd,
A(?JTM)Z@;L(%— y ) fUCE b,y (OB ,—aF " (™, a” {8 a}) s, (8.32)

where b, = (z, +y,)/ ﬂ Another difference between our calculation and the one performed in
the aforementioned paper is that in the latter the insertion of external sources is assumed to take
place at a longitudinal position y~ that satisfies b~ <y~ <a~. However, in our particular case the
longitudinal coordinate on which the external color source p* depends is the same as the one of the
Wilson line that it is attached to, yielding the following simplification of the previous expression

(see Fig.[8.3)):
H" (b, a”[{b}, {a})" = gA(b~,b.) Zal () =y ) fOV P07 a [{BHa})lgmy.  (8.33)

Having defined all the basic pieces of the calculation of a correlator with m external sources and
n Wilson lines, we can go back to our particular case. The correlator in Eq. (8.25)) corresponds to
Fm™™ with m=4, n=4. By direct application of Eq. (8.26)):

< zeUea kafc~z e’ Uea ~k/f/Ufc > <pzmepl; fp;e ~k' f ><UeancUea Uf’c’>

(b )y Uz U U U L) + () (b Uz uteus Ul

c c

+<pzmep;e><pm py k' f UeancUea Uf’ ’> +<P;eﬁ]gj f><ﬁ§f~z € UeancUea Uf'c’>
(b ) (e U UL U U + (B A ) (e v Lo U )

U g UL i U UL (8.34)

C

For readability we momentarily adopted a shorthand notation that omits the longitudinal coordinate
dependence and the differential operators 1/V?, 9. However, it should be kept in mind that the
external sources and Wilson lines that share an index depend on the same longitudinal coordinate.
In the following subsections we will analyze the different contributions stemming from Eq. (8.34)).
Let us first focus on those terms that contain the ‘connected’ correlators introduced in Eq. (8.28)).

8.2.2 The connected function

The connected correlator (...). accounts for the contribution of correlations between the external
color source densities and those arranged inside the Wilson lines. In principle, it can be computed

3In this step we have made use of the knowledge that all the transverse positions that enter our calculation are
either #, or y,. Thus, when expanding h((z, + w,)/2) around h(b,) in Eq. (8-31)), the linear term of the expansion
yields a correction proportional to a product of the form (z/, — b,)*9*h(b, ). Whether 2/, = x, or 2/, = y,, this term
is suppressed with respect to h(b,) according to the assumptions detailed in Appendix
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/f; p° P p°
b| @ ay blé v ay by ay by a
bo| @ a2 b2 a2 b 1’4 as by as
b| @ : s bo : an b : ' b.(®) V'] : La,
N ; ; = ] : ; :
b~ a” b~ a” b~ a” b~ a”

Figure 8.3: Schematic representation of Eq. (8.33). The circles in the right hand of the equation
represent couplings of the external source p® to Wilson lines inside the correlator (dark square).
Each of these couplings multiplies the correlator by a gA(b~,b.) f%¥ 0, L(x;, —y.) factor.

by application of formulas Eq. and Eq. . However, our case of interest is somewhat more
general than the one covered in these equations, as in our correlator each Wilson line depends on a
different longitudinal coordinate. Even though this may seem a source of extra difficulty, it actually
yields great simplification. For instance, let us take what seems to be the most complicated term of
our calculation, namely the fully connected version of the correlator (last term in Eq. (8.34)):

00 ixe( . — k~f(, — il ~el( . —1 K ~f, 1
/ dZdU}dZ/dw/<ap(Z ;Jf¢>ap(w 7xL>ap(Z a@h)ap (w 7yL)

B E E V2
KU (2, 2 \UTe(w™, 2 YUY (2~ y Y UT (w™, yl)> . (8.35)

—00

In order to compute this expression we need to consider all regions of integration spaceﬂ For
example, applying Eq. (8.29) in the region where 2z~ >w™ >2z"">w~" we have:

H* (27, —oole, f, e, [ a,c,d . ) =H" (27, w™|e ; o) HY (w™, 27|, f 5 o, B)*
XHY (27w o, B, € a3,62,’)/1)i/
x HY (w™, —oolay, B, i, f 5 @, ¢, &), (8.36)
where, according to Eq. , the first factor reads:
HY (27w e s o) = g Mz, b,)0LL(0,) f* (U (27, w52,)) =0, (8.37)

which vanishes due to the antisymmetric property of the SU(N.) structure constants. As we have
the same contribution from every region of the integration space, Eq. (8.35]) yields 0. In order to

4Namely the regions where 2~ >z~ >w™ >w™/, 2~ >27'>w™' >w™, etcetera. As is also the case for a single

point in a 1-dimensional integral or a line in a 2-dimensional one, the regions where two or more of the coordinates
have the same values (for example 2z~ =27 >w~ >w™’) yield a negligible contribution. Therefore, we must always
consider a certain ordering in our integration variables.
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Figure 8.4: Schematic representation of the connected correlator H** factorized in Eq. (8.39).

address the remaining six terms we define the ‘connected’ function:
oo al ~al Z_’ u a] "’b/ Z_/7 u/
C;jb:’(ﬁl(ulv Ul, Vi, Ui) = / dz=dz""dw dw™’ < P ( J-) P ( L)

V2 V2
x<8’“ﬁc’<w7m> o5 (w' v))

[e.9]

Ua/“(z*, uL)Ub/b(z*/, ui)Uclc(w*, Ul)Udld(w*/, vi)>

Z v
= 0.0, L(u, — ul)/ dz"dw dw ' Az7,b,)
8kﬁc’ (w_7 v >alﬁd/ (w_/71]/ ) das — o o e _ , B
X< NE - V2 LU (27, u ) U (2, YU (w0, ) U (w ’,vi)>, (8.38)

where b, = (2, +y,)/2. The only non-vanishing contributions to this integral come from the regions
where 2~ >w™ >w™ and 2~ >w~'>w"~, as in the other cases Eq. (8.33)) introduces a vanishing A
factor. For the 2~ >w™>w™ region we have (see Fig.:

0L, Liu, —ui)/ dz_/ dw_/ dw_')\(z_,bL)Céig(z_,w_;uL,u'L)

ak~c/ — , ’ /
X <—p (;; ’Ul)U“A(w,w’;uL)U“B(w,w/;ul)Ucc(waw/;Ul)>

C

8l ~d' (o~ 1 ,
X <%’Ul)[ﬂ4a(w/7uL)UBb(w/7 ul)Ucc(wflj UL)Ud d(’wfl, Ui)> . (8.39)

The locality of the two-point function Eq. (8.1)) allows us to perform a factorization in the longitudinal
direction. We focus on the first connected correlator, which contains one external source and three
Wilson lines, thus corresponding to:

HY(w™ w™|d,d',d ; A, B,C)* /(g \(w™,b.))
= 0"L(v, — uL)fC/“/“<UaA(w_, w u Y UB (w™ w™ ! YU (0™, w™, UL)>

+OFL(v, — ul)fC/“/“<U“lA(w_, wu YU (w0 ! YU (w™, w™; UL)> +0. (8.40)
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Substituting the result for the three-point correlator of Wilson lines in the adjoint representation:

(U (w2 )U" (w, e U (w™, 2))

1 130 0 NCQ abe a'b'c! ch B ; )
ZQNZCF (fabCfabC +—N2—4dbd b )exp{_ggz)\(w ’bL)ZF(l‘L_Ii)}
c P —
— abc ab’/ N2 abc ja'b'c! @y - .1 .2 .3
- 2N20F 1 TNz Nz g0 AT | Cag(wT ey, 2, a), (8.41)

we get to:
HYS (™ w™'|d’,d ¢ ; A, B,C)* = gf*PCCR) (w™ w™su, ], v,)
xXMw™,b,)OF(L(v, — ) — L(v, —u.)). (8.42)

Here, the color factor that cancels (2N2Cx) ™! emerges from the trace of the product of two structure
constants. The remaining correlator, which contains an external source and four adjoint Wilson lines,
yields:

H"(w™'{A, B,C,d'}, {a,b,c,d})! /(g Mw™,b.))

=0\, L(v — uL)fd/Aa<Ua“(w_’,uL)UBb(w_’,u’L)UCC(w DU w >

40, L(v, — ul)fd/Ba<UAa(w_',uL)Uab(w_',u’L)UCC( DU (w >
0l LV, = v 1O (U w0 w U ™ U w0, ) U (w0 >> 10, (8.43)

Substituting this expression and summing the contribution from the z= > w™" > w™ region the
‘connected’ function finally yields:

C;jb’,’zil<ul7 u/u UL, UI )
=g*h3(0,)0L 8, L(u, — /dz/ dw/ dw™ 1 (27 (w™ ) p? (w™)
O 0 >([@’f< (v =) = L(v. = u )OS (w7 w ™ v.)
Xaf]/(fAeDfCBeL(Ul—UL>+fAcefDBeL<Ui _u/L)_'_fABefeCDL(U/l_UL))

_ I +— k
X Qo P (w ™, v, )]+ [g — gD, (8.44)

L

where we introduced the adjoint Wilson line quadrupole tensor:
Qpaph (w52, 'y yh) = (U (w2 ) U (w™, ! )U (w™,y ) U (w™,5,). (8.45)

The fact that in our particular case the Wilson lines depend on only two transverse coordinates (x,
and y, ) yields a significant simplification in the final expression. For example, by taking u, = «/, in
Eq. (8.44)) we can see that the first two connected terms of Eq. (8.34]) yield 0. The next four terms

80



take the following form:
C;Jb:]zil<xl7 yL7 va yl)
=2¢°h*(b,)0L0) L(x, —y. / dz / dw / dw™ 1 (27 p? (w™ ) (w™)

xCE (=" wTsa,,y O (L(x, — x,)— Lz ymc;f;i(w wiw, Y.,

x 0, (L(y.—y.)—L(y. xL))fAcefBDleldeD< §xuf‘/mxuyl)7 (8.46)
Y
where we applied the Jacobi identity of SU(N.):
fabefecd + fcbefaed + fdbeface =0. (847)

Although we still need to compute the quadrupole projection fAC€ fBPeQABED et us first focus on
the first term after the equal sign in Eq. , which corresponds to a complete factorization of
external sources and Wilson lines. We will express this contribution in terms of the ‘disconnected’
function, whose derivation is detailed in the following subsection.

8.2.3 The disconnected function

The last term from Eq. (8.34) to be discussed corresponds to a complete factorization of the corre-
lations of color source densities and Wilson lines:

O ) 0w ) 07 (2 ) O (w )
/_ dz dw dz" dw < 2 w2 vz o2

><<U6“( L2 U (w2 YU (2, y U w _',yL)>. (8.48)

[e.e]

It can be further expanded by application of Wick’s theorem, which tells us that the external source
correlator breaks down into the following sum of pairwise contractions:

(e et B By = (i ) (i T ) 5 VB )+ (e N ). (8.49)

Following this decomposition, Eq. (8.48) yields three terms that we can address in terms of the
‘disconnected’ function, which we derive explicitly in the following lines:

D;]l‘);;lzld(uh u/p ULy Ui)
oo i ~a'( ,— j b —1 k~c'(,, — Lxdl(,,,—1 .
:/_ dZdZ/dwdwl<a p (éQ?uJ-) a p (é2 7?’LL>><a p (QV‘UQ 7UJ-) ap ($2 7/UL)>
><< “/“(z’,uL)Ub/b(z”,u’L)Udc(w’,Ul)Ud/d(w",vi)>

:/ dz=dz"dw dw ™Y N(27,b,)0(2 ™ — 27N, L(u, — o )N w™,b,)

[e.e]

x d(w™ —w )0k, L(v, — vi)< YO u ) UY (2 U (w ™, 0, ) U (w ™, vi)>

= Tij;kl(um u:_? Uy, U:_)/ dz—dw_)‘(z_v bl)/\(w_’ bJ-)

o0

X (U (= u U (0 U (w0 U ™ 0)) ), (8.50)
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Note that both here and in the connected function Eq. (8.44) we substituted the result of Eq. (8.10)),
which implies that we adopt the same assumptions over h(b,) and f(x, — y,) as in the previous
sectionﬂ In the previous expression we introduced the following function:

Tk (u, ! v, 0 )= 0L, Llu, — o/ )08, L(v, — v'), (8.51)

where, as was also the case in the connected function Eq. (8.44)), we encounter double derivatives
of L(x, — «')). Let us address these factors here. From their symmetries and dimension, we can
parameterize them as:

. i 69 pipd
0,00 L(r.) = A(r.)6" + B(r.) > ) (8.52)
This formula accounts for an explicit separation of the contributions of the unpolarized A(r,) and
linearly polarized B(r.) parts of the gluon distribution. We can express these coefficients in terms
of f(r.) explicitly as:

_1 quL ~ eiQJ_'TJ_
A(n)—§/(2ﬂ)2f(ql) Z (8.53)
d2 Lo iqrcosf
B(r,) = — / (27?)2 fla.)" 7 cos(20), (8.54)

where f(g.) is the Fourier transform of f(r,). In Appendix [H| we provide an explicit calculation in
the specific case of the MV model (where f(r,)=0®(r,)). However, for now we prefer to stay in
the most general case and leave them undetermined.

In order to solve the integral present in D” -.q we consider separately the region where 2= >w™
and its complementary. As was also the case with Eq. ( - asuming a certain ordering in the
integration variables allows us to factorize the Wilson line correlator by applying the locality in
rapidity implied in Eq. . For instance, in the region z~ >w~ (see Fig.|8.5)):

<U“l“(2_,uL)U“/b(z_,u'l)Uclc(w_,Ul)Uc/d(w_,v’l)>:<U“,A( LW uL)U“B (27, w s, >
><<UAa(w_,ul)UBb(w_,u’l)UC/C( DU w™, v,
0(2)( LW UL, U 'L)<UA“(w_,uL)UAb(w_,u’l)UCIC( Ude U

)
)
)

ad]
Cadj( w T g, u)) QA (wu, U v, v (8.55)
Summing the contributions from each integration region 2~ >w™ and w™ >z~ we get:
~ 2
D?g;’z;(um u v, v)) =T w0l vy, ’Uj_)/ dz_/ dw Az7,b )N w™, b))
—oo —o0
x(Cii}(z’,w*;uL, )—i—CadJ( w’;vbv’l)) SABEEPQABEL (=, ! v, V). (8.56)

5We also made use (again) of the knowledge that eventually all the transverse positions that enter this expression
will be either z, or y,, allowing us to approximate h as h((x, + y,)/2). This approximation was also taken in
Eq. (8.41)), allowing us to extract A(w~,b.) as a common factor of the sum.
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Figure 8.5: Schematic representation of the correlator factorization performed in Eq. (8.55]).

Having defined the connected and disconnected functions, we can rewrite our building block com-

pactly Eq. (8.25) as:

(a'(z,)a" (x)a" (y, )" (y.)) = DN (x x gy, y.) + DM (@ g w0, y.)

+Dik/;.ki/($u Yo, 2y, yJ_) + O“ K (xj_; Yo, 2y, yJ_) + OZk ke (xj_; Yo, 2y, yJ_)

ac’;ca aa’;ec! ac’;ca’
kk'id’ ki’ ik’
+Ccc’;aa’ (xjn Y, 2, yl_> + Cca ;ac’ (‘TJ-’ Yo, T, yl—) (857)

Remarkably, in both D;kafi nd C’fljbkd we find different projections of the adjoint Wilson line
quadrupole Eq. -, which is a quite complex object. In some instances, the fact that in our
calculation we only consider two transverse coordinates z, and y, yields great simplification. For
example, the first term after the equal sign in Eq. corresponds to:

D;’Z;kc (xl,xL,yL,yl):2Tik;¢/k/(scL,xl,yL,yL)/ dz/ dw Az, b ) N(w™,b,)
fclgfcc’cxwi;xuwmymyl)- (8.58)

In this case, the projection of the adjoint Wilson line quadrupole can be obtained in a straightforward
way. Writing it explicitly:
AN (™, Yy, YL) = <UAa(w*, x )UAw™, 2, ) U (w™,y YU (w0, yL)> (8.59)

aca’'c

and expanding the first pair of adjoint Wilson lines in terms of fundamental Wilson lines as U =
2Tr {U Tty tb} (see Appendix |G| for a proof of this identity), we get:

UAaUAC =4 (]T tkakltlel ]/t /k,”Uk/l/tl/ .
Now, applying the Fierz identity t{;tf, = %(5,-l5jk—N%5ij5kl):

1
=2 (5jk’5kj’ — ﬁdjkéj/k/) U UkltllU Uk’l’tl/ i’
— (UT UnUS Uiy — FUT U]lUj,j,Uj,l,> R

1
=2 ((511151‘/[ N 5115 ’l’) ?z Vit = (Tl"{tatc} — FTI‘{ta}TI"{tC}) = 9" (860)
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Therefore:

Diﬁiz/kc// (xu Ti,Yi, yL) =2 Tik;i/k/(xm Ti,Yi, yL)éacéa/C/ dz” dw_)\(z_’ bi)A(w_’ bL)
_ Tik;i’k’<$L’ Ty, yL)5aC(5a/0l5\2<b 5““(5’ kl(82L ) 5(165(1 ¢ )\Q(b ) (861)

In the two remaining disconnected terms the Wilson lines that share a color index depend on different
transverse coordinates, which prevents the Fierz identity from simplifying the expression. To put it

differently, while in Eq. (8.58)) we have
PSP QU (W™, Yy, y,) = 076, (8.62)

which corresponds to the trivial propagation of an eigenvector in color space, in the other two
particular cases of Dzjb;;]zg we find

SACSBPQABC P (Wi YL, y)) (8.63)

instead, whose calculation requires expressing §4¢3P2 in terms of the eigenvectors of QABCD  As

for the case present in the connected function C;%’zil we have:
fAcefBDe begD(w_§xuyuxuyL)' (8.64)

In order to compute Eq. (8.63) and Eq. (8.64), in the following subsection we analyze the adjoint
Wilson line quadrupole in depth.

8.2.4 The correlator of four Wilson lines in the adjoint representation

Reexponentiation method

Before addressing our case of interest we will briefly describe and apply a general method for the
computation of Wilson line correlators. This technique, first applied in [105], is based on the
discretization of the z~-direction into n layers of length Az~. Due to the properties of path-ordered
exponentials, this leads to the factorization of the Wilson line into a product of n independent
contributions from each zone:

Uz, 2,)y = U0 = (U (g, 2, ) U Ny, 2,)..UNar, x0)y, (8.65)

assuming that Ax~ is equal to or shorter than the correlation length of the gluon field fluctuations.
This assumption is trivially satisfied in the MV model (and also in our generalized version), where
interactions are local in rapidity, allowing us to take the limit Az~ — 0. As a first step we expand
one of these n factors to order g%

- C _
Ulx™,x,)ij = <5z‘k: +igAt(x,,, xL)t‘i}kAx_—QQTF)\(x;, bL)L(OL)Ax_&k) U,g;l b (8.66)
where
A*a(e=z,) = —% (8.67)
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is the only non-trivial component of the gluon field expressed in the covariant gauge. Note that in
the g?-order term of Eq. (8.66)) we already applied the two-point correlator, whose discretized version
reads:

(¥ (27, e )AT (Y7, p0)) = Ma™,b)0" Lz, — m)ég‘;_‘ . (8.68)

We iterate this process n—1 more times neglecting terms of order (Az~)? or higher. Then, we
rearrange the resulting terms in the form of the first orders of an expanded exponential. The last
step is the reexponentiation, where we assume that the neglected terms complete the expansion. As
an example, let us use this technique to calculate the well-known dipole function:

<T1" {U(xL)UT<y¢)}>

~ <Ué7‘”<m>UlS”‘”*(yL> (@-k FigAY (a2 A — ¢ A, bJL(oi)Ax(sik)

X (53‘1' - Z'gfzﬁb(a?;, yL)t?iAx—gQ%)\(xn, bL)L<OL)Ax5ji)>
—(Tx {U(ﬂm)UT(yL)H(nl)(l — L Cr A M7, b )T (e, — yL)). (8.69)

In the last step we have made use of the locality in rapidity of the MV model to factorize the

correlator of the remaining Wilson line layers <Tr {U (x)U(y L)}>(nfl). By iterating the process,
we arrive at:

(T {U(x)UN(y.)}) ~ (1 L0~y )h(b) ;A:c‘/f(w;))

_ (1 - %QCFF(@ - ygm,bg) . (8.70)

Lastly, we assume that the neglected higher order terms add up to the following exponential expres-
sion:

(Tr {U(z,)UT(y,)}) =exp {—Q;CF D(x, —y )Mo, bL)}, (8.71)

which indeed agrees with the known result.

Diagonalization method

One important shortcoming of the technique described above lies in the fact that there is no unique
way in which we can arrange the terms resulting from expanding the Wilson lines. This step
becomes more problematic as we increase the number of Wilson lines in the correlator. Nevertheless,
we can reduce the inherent arbitrariness of the reexponentiation process by formulating it as a
diagonalization problem. This allows us to systematically account for all incoming and outgoing
states of the color connections embodied in the medium average (...). In the next subsection we will
make use of this technique to obtain the behavior of the following adjoint Wilson line quadrupole:

<UAa(xL)UBb(xl)UCC@L)UDd(yL)>- (8.72)
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under different color projections. In order to illustrate the method we will first reproduce the more
general result obtained in [105] for three different transverse coordinates:

<Uab(ZL)UCd(ZL)Uef(fM)Ugh(yl»- (8.73)

First, we need to expand the adjoint Wilson lines in a longitudinal position z,. For the sake of
simplicity in the following calculations we will momentarily adopt a shorthand notation where we
absorb the gAx~ factor in the definition of our fields:

gAY (z7 ) Ax = ATz, ), (8.74)
which yields the following two-point function:
(At (z™ 2 YA (y™,y.)) = 84y 0" By (x7, b)), (8.75)

where, due to the discretization of the rapidity range, the Kronecker delta ¢,-,~ now takes the place
of the Dirac delta. For simplicity we also introduced:

B:vy(x_7bL>EQQAx_)‘(x_’bL)L(xL _yJ.) (876)

Using this notation the expansion to order ¢ of the adjoint Wilson line yields:

Uﬂ%x—,xL)::aJ“q0%4><5hb<1-%§zz4x;,m)> —J&Kxgﬁm)fh¢>. (8.77)

Performing this expansion for every Wilson line in Eq. (8.73)) and neglecting terms of order (Az™)?
or higher we get:

/ / ’ / (n_l)
(U () U ()0 ()0 (1)) = (U (2 )0 (20U (@)U (1))
/ / / / Nc ’ / ! /
% <5ab50d(sef§gh (1 o 7 (2BZ + Bm + By)) + 5ab56df6mffgthxy
_I_é‘a’b(se’ffc’mdfg’thzy + 5a’bé‘g’hfe’mffc’mdex + 56/f50/dfalmbfg/thzy
_}_dg’héc’dfe’mffa”mb‘B?xr + 5e’f59’hfa’mbfc’mde> ) (878)

[PRPN N

We express the previous lines as a matrix equation: Uy = (Ujfjg,g,)Wl)de;h” , for which we
introduce the following color vector basis:

T T
U}1 — deamdgcm wQ — dcamdgem w3 — dgam decm
Zl — deam fng 22 — dcam fgem Z3 — dgamfecm . (8. 79)

It can be shown via color algebra arguments that this ensemble covers all possible connections
embodied in Tyq"7 (see IIOGI)H. The last three (21, 29, z3) form a basis that does not mix with

SIn |106], only 8 of these objects are addressed. This is due to the author focusing on the specific case of N.=3.
The existence of an extra algebraic relation between SU(3) generators reduces the number of independent rank 4
tensors from 9 to 8.
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the rest of the vectors in the Gaussian model we are considering. Thus, if we expressed T(;’“d'f,;e'h' in
this 9-dimensional space it would look like a block diagonal matrix with a 6 x 6 part corresponding
to the vectors u;, w; and a 3 x 3 sector corresponding to the z; set. In our specific calculation, the
vectors that we are interested in ‘live’ in the 6-dimensional space defined by the first two sets, and
thus it will suffice to consider Tféﬁe/h/ in the basis formed by u; and w;. In order to build this matrix
we propagate these six vectors using Eq. (8.78)):

IPNBNA N ! ! !0 NC
Tlf:ifcheh ge'a s9'c :5fb5hd (1 _ 7(232 + Bw + By — 2Bzx — QBZy))
+ fbfmfdhm (Bz + Bxy _ Bzm — Bzy)

N, .  _ _
Y (1 — Pt AT My, b)(D(z — 31) + T (2, — m))

2

+ fbfmfdhm%Ax_)\(x;, b )(D(zy —x)+T(z. —y) —T(z. —yy)). (8.80)

The SU(N.) factor fo/™ fdhm  as well as the ones resulting from permutations of its indices, can be
expressed in terms of our basis vectors by means of the following identity:

2

~ (5ac(5bd o 5ad5bc) + dacedbde o dadedbce' (881)

fabm fcdm —

Therefore, the propagation of u; reads:
oNe .\,
Tu; =uy |1—yg TAx Mz, b )T(z, —2) + (2. —y,))

+ %Ax_/\(a:;, b,) (N£<u2 —ug) + wy — w3) T(z,—x )+ T(z,—y)—T(zi—vy.)). (8.82)

[

Repeating this process for the remaining vectors, we obtain:
o Ne o
Tus =us(1—g 7A$ Az, b ) T(z, —y,) (8.83)
oNe o
Tus=u3z(1—g 7Aa: Mz, b )T(z, —2) + (2, — 1))

+ %Am‘)\(x;, b.) (NE(UQ —uy) + wy — w1> T(zy—2)+T(z,—y ) —T(x,—y,)) (8.84)

C

N,
Tw, =w, <1 — g2§Ax_)\(x;,bl)(F(xl —y )+ 30(z, —x,) +30(2, — yL)))

+ %QA:c‘)\(x;,bL) ((% - %) (wa — ws) + (132 - 1> (uz — U3))

C

(D@ —y) =Tz — o) = Dzr —y1)) (8.85)

Twy = 1wy (1 - QQ%A:E_)\(:E;, b)) (D, —y, )+ (2, —2)) + (2, — yl))) (8.86)
Tws = ws (1 — gQ%Ax_)\(x;, b )Tz —y) +30(z0 — ) +3T(2, — ?JL)))
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4 g;Ax‘A(x;,bL) ((Ni - %) (ws — wy) + (% _ 1) (uz — u1)>
X(T(re —y) —T(zr —2) = T(2r — 1)) (8.87)

From the previous projections we can write Eq. (8.78]) in the following form:

1L 1A )

Usagt, = WUarlo) " VT () = (Uil )"V (L M) g (8.88)
where the Mféf;f/g/ matrix is of order 1 in Axz~. The next step of the method consists in iterating
the expansion of the Wilson lines n — 1 times. By doing this (and neglecting terms of order (Az~)?
or higher), we get:

Uiser — 143 MESY (57) =1+ / 02 MESES () = 14 M (a). (8.89)

=1

It is worth remarking that we are omitting some of the dependencies of M for simplicity; this tensor
also depends on the transverse coordinates, M(x~;z,,z,,y.). In order to reproduce the notation
of [105], we introduce the following functions:

Ru= 3 b)) (New — ) -~ Tlew —p.) (5.90)
R, = —‘92—2)\(1’, b)) (D(x, —y.)) (8.91)
Ry = Ry — R., (8.92)

and thus we obtain the following expression for M (hereby correcting typos in the matrix given
in [105]):

[ N.R, 0 —2Ry 0 0 Ry =1) |
2R N, ERi —Ra(fs-1) 0 ~Ra(3 - 1)
~ERi 0 NR, Ry 1) 0 0 599
0 0  —Rs (3R, + R 0 Ro(&-%) | |
R« 0  Rs —Ry (Nl - NT> N(R,+R,) —Ry (Nl - NT>
| -Ri 0 0 Ry (Nl - NT) 0 %(3R, + Ry) |

which we diagonalize using Mathematica:

[N.R, 0O 0 0 0 0 ]
0 N.R, 0 0 0 0
_ 0 0 3(Ra+ Ry)N, 0 0 0
Ma= | 0 0 1(Ra + Ry)N. 0 0 (8.94)
0 0 0 N.R,—Rq 0
0 0 0 N.R,+Ry
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The final step is the reexponentiation of Eq. (8.89)), which is straightforward for a diagonal matrix:

Upiin = (L+ MaJyst — Ui = (M)5h. (8.95)
Here the dot stresses that in order to use this result we need to work in the basis defined by the
eigenvectors of M, which in the (uq,us, us, wy, wq, ws) basis adopts the form:

N2—4 2
2N, 0 - Ne
0 1 0
_ N2-—4 0 2
tl - 2Ne ) t2 - ) t3 - Ne )
-1 0 -1
0 0 0
1 0 1
2+NC Q_Nc
0 Ne N
0 2 24N, 2 2-N.
Ne Ne+1 Ne Ne—1
O 2+ N, 2—N.
ty = Lt = Ne g = Ne | (8.96)
0 1 1
1 __ Ne+4 _ Ne—4
Ne+2 N.—2
0 1 1

Remarkably, we have to =uy =009, t3=—f" f9¢" and ty =w; =d“*"d9°".

Projections of the quadrupole

Let us now go back to our particular case:
<UAa(xj_)UBb(fEJ_)UCC(yL)UDd(yL)> ) (8'97)

which can be obtained from the quadrupole studied in the previous subsection by setting z, =,
and x, =y, =y,. This simplifies the above result, as R, =0 and R;=—R,. In this limit, M; adopts
the following form:

[N.R, 0 0 0 0 0 |
0 0 0 0 0 0
_ 0 0 iNR, O 0 0
Ma=1"9 o 0 INR, 0 0 (8.98)
0 0 0 0 (N.+1DR, 0
0 0 0 0 0 (N, —1)R,

As part of the calculation of (T"(z,)T7"(y,)), we need to calculate the following projections of the
adjoint Wilson line quadrupole:

fABefDCe <UAa(l’L)UBb<$L)UCC(yL)UDd<yL)> (899)
§ACPP(UA (2 YUP (2 YU (y ) U (y.)). (8.100)
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The first of them corresponds to the propagation of the eigenvector t3, which is straightforward to
compute:

v 1
(M) and P ()PP = ()" exp {iNcRa}

_ fabnfdcn exp {—QQ%F<$l— yL)S\(x*’ bL)}7 (8101)

as was also the case with Eq. (8.62). In contrast, Eq. (8.100) corresponds to the propagation of uy,
which is not an eigenvector and thus requires that we express it in terms of the ¢; set:

—1t+ L, 1t+ Ne t+1t L (8.102)
MENT N 1T N TN Ty ‘
Then:
_ 1 _
(€M) pas ” ()PP = —(t1) " exp {—g* NeT (2, — y )N} + <5 (£2) ™
N, N2 -1
1 N, . N, e N, .
A {—92711(% - yl)A} Tz 4(154) P exp {—QQTF(:& - yL)A}
1 _
—1—1(255)“1’“1 exp {—¢°(N. + DI'(z, —y. )N} — )P exp {—g*(N. — D)I'(z, —y.)A},  (8.103)

where we omitted the dependencies of A for simplicity. Expanding the eigenvectors in terms of our
original basis Eq. (8.79)) we obtain:

N2 4 2 by 2 2 Nepy N + 2 2 by N -2 2 by
5a05bd( e 9 N.T'A + "9 2T + c e 9 (Ne+1)TA + c e~ 9 (NC—I)F)\>
2N? N2 AN, 4N,

c

+6ab50d 1 . Ne+2 e—gQ(NC—l—l)F;\ + Ne—2 e—gQ(NC—l)FS\
N2—1 2NN, 1) IN.(N, — 1)

N2 —4 _ 2nrs 2 onepy  Ne+2 0 s Ne—2 5
+5ad5bc<_ c e Y N.ITA = e 2T + c e 9 (Ne+1)T'A + c e 9 (Ncl)l")\>
ON? RE AN, 4N,

c

1 2 h) 1 2 Ney 1 2 hY 1
dacndbdn _ T —@*NTIX | - —g?8eTh | T —g*(Ne+1)IX _ = —g*(N.—1)I'X
+ ( Nce + Nce + 46 46

1 gebngedn <N£VC 46792%& . 4(];]\;: 142> o9’ (Ne+1)I'X + 487\; - 42) e 9" (Ne 1)F)\)

4 adn gben (iegwcr,\ . Niegw;r,\ + iegQ(NCJrl)F)\ . %leg2(Ncl)I‘/\)7 (8.104)

where we continue to omit dependencied’}

8.2.5 Connected and disconnected functions (revisited)

By application of the projections computed above, we are now able to complete the calculations of
C’;{) ’22 and fobkld As shown in Eq. (8.101), the former contains a trivial projection of the adjoint

"Note that in order to apply Eq. (8.104) in the calculation of Di]l‘j_lzld(x“ Yy.,%,,y,) and Céjl;i’zfi(x“ Yi,T,,Y,) one
has to permute its indices b and c.
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Wilson line quadrupole:

fAcefBDe aAb]gc?D (w_/§ Ti,Y, X, yl_) = fABefCDeQaACEC?D (w_/' L1, T1,Y1, yj_)
= face fbde adJ( Ly (8.105)

Also, note that in the case of only two different transverse coordinates the adjoint Wilson line tripole
also tends to the dipole function:

Oﬁg(wi’wil; Ty Yo, o) = ngdi(w w xlayL)' (8.106)

Substituting these expressions into Eq. (8.46)), we are left with a product of three dipole functions
that combine as:

ng (27w 5@y, yL)Cﬁlg (W™ w™s2y, yl)cﬁﬁ (w™s2L,y.)

— exp {—f%m — YR (P w) + w0 )

w)
e { =y ponton L acurs [ acirs [ act )}

—CW(zx,,y)),  (8.107)

adj

and therefore:

T 2 . .
C;](,:]Zé(xm Yi, Ui, YY) = %facefbdehg(bL)a;aZ,L(Il_ yL)a§F($L - yL)aglJF<yi — 1))

x/ dz/ dw/ dw”/f(z’)pz(w’)MQ(w”)C’%(z’;xl,yl). (8.108)
Solving the double integral, we obtain:

O;jb ]Zg(l’u Yo, T,y )= facefbdea;a;[/(xj__ yj_)a];r(l]_ - yL)a?lJF(IJ_ —Y.)

4 M) 4 A\ o)
8 <F3g4N§ B ( oTN, 344 N3 + 2 N? Cogi (05 91) | (8.109)
which concludes the computation of the connected function. In the case of the disconnected function,

substituting the result of Eq. (8.63) and solving the double integrals, we obtain:
N2 —4 2 N.+2 N.—2
fa

R B B

2N2 N? AN, AN,
1 N, +2 N,—2 ]
5a05bd _ ¢ ' c =
+ {Ng TN TN, —

N? -4 2 N, +2 N.—2 ]
+5ad6bc {_ fl - fz + fd + f4

IN? N2 AN, 4N, '
1 1 1 1 1 1 1 1]
+-dbm qedm |:_Fcf1 + ﬁcfg + Zfs — Zf4] + doimderm {ﬁcﬁ — Eﬁ + Zfz — Zﬂ_

N, f Nc+4er N, —4
N2 — 47" 4(N,+2)"°

- ) e, @

A(N, -2
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where:

fi =gt~ Ca(,w)’ (8.111)
o=y (e~ Gl ) = A 8.112)
F= (g~ G

oA 2)(]\2[0 Ty (1= (C2(x,,y.)) exp {—g2F)\(bl)})) (8.113)

1 (2)
i (NC<NC —2)giT? (1= Cogi(@1,9.))

B (N, — 2)(]\2[(: —1)g'T? (1- (Cﬁ}@m y.))?exp {QQF)\(bL)})) (8.114)
s :NC;F (X(m N szp(l - Cﬁﬁ(%m))) (8.115)

. . ; A A
This concludes the calculation of (aafcal “a™).

8.2.6 Covariance of the Glasma energy density

The final step of this long calculation consists in explicitly expanding the color contractions between
said building blocks (one for each nucleus) and the transverse and color structure tensors defined
earlier:

(e )euly.)) = ALk Fsa'd (0l abeal o), (adbabdadV ol )., (8.116)

The product of the seven terms corresponding to each nucleus (Eq. (8.57)) yields a total of 49 terms,

which, by application of the symmetries of the tensors A;lf;if,/ and ]-fg;;,/, can be reduced to:

(eo(z1)eo(yr)) = {%D1 ;’Z:Z’kc/’ (o, 20,9, yL)DQJI;lc;l{;/l;/ (T, 2., y., yL)A;’Z’;:f,/]-"f;’gﬁ:ﬁ
+ <D1Z]Z:Z’kc/’ (xh Ti,Ys, yi)Dzjb]b/’Z;l’ (xu Yi, Ty, yL)

D, M (g, ) Dy (e yL)> [A;’;;f e gk pco
+ (Dli]zifli//(%, ﬂfmymyﬂ@igig&/(%, Yi, Ty, yL)
+2 Dl Zz;j:fc]i’ (xb Y, T, yL)Cz%::fil:i/ (xm Yi, Ty, yJ_)

205 (s w y )G ey )

ik;i' k' acya’c ikyi’' k' ~aca’c’ ik;i' k! —ac;a’c ik;i’'k’ ac;a’c
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It is worth mentioning that the terms stemming from the first contraction after the equal sign in
Eq. (8.117)) are identical to the product of the separate averages of €,(x ) and €,(y.):

DZ@ZZ/ (T, 20,y ?JL)DZQ;{;Z' (T, 20, y0, yl)A;};;?if’,f;Z;;/;/’
= g'(0°L(0,)) "N Cr X; (b1) A3 (b.)
1 - - c2_, -
= Eaé"(‘lﬂ 07 L(0.1))'N,CE AL (D)X () = g—fQé’l o 2 {&(@)) 6 (y.), (8.118)

(where we approximated h(z, ) and h(y, ) with h(b, ), as repeatedly done throughout the calculation).
Therefore, the result of Cov[e](T=0";2,,y,) = (&(x,)e(y.)) — (€2, )){€(y.)) corresponds to the
remaining terms. We use the Mathematica package FeynCalc [107,/108| to explicitly perform the
index contractions featured in Eq. . After doing so we arrive at the main result of this chapter:

Cov[e](T=0"2.,y.) = (&(z1)6(y.)) — (o)) {6(yL)) =
DITOIT(N? — 1)A(442 — B?)

(p1Q2 + pz%)

16N2T% g4

(N2 —1)(16A* + B*) (0iTOIT)*(NZ — 1) A2
2Nc2r4g4 plpZ + 64NC2F694 Q1Q2

(N2 —1)(442+ B?) ([ - _Q2%?
SN LA — 44 de )|+ 1< 2]

N (4A% + B?)? [ | N6 +2N% — 19N2? +8 NS — 3N*—26N? + 16 ,@
— e
g TN? (N2 —1) (N2 = 1)(N2 —4)

(Ne — (N + 3N (Ne _(ery2ei, Q% (Netnr?Q%
(N. + 12(N, + 2)2 e e+ (N.42) —2(N,+ e "% Je 2
e+ LNV, - 3>N03 Ne - (e-lrde QL2 (Ne-1r?Q2)
(NC_ 1)2(NC_2)2 76 2N¢ + (NC_2) _Q(NC_ 1)6 4 e NG

4 2 2 2 2 2 2 2 \,2
" A2 A2 2.2 — Qg7 (N2 —8)(N2 — 1)(N2 +4) _(ahref)?
Pl m Al (1 o ) i (N2 —4)? e T

+1 2]), (8.119)

where the dependencies have been omitted for readability. Note that the covariance of the full EMT is

straightforwardly obtained from the previous expression as Cov[T*](0%; z,,y,)=Cov[e](0T; 2z, y, )x
v 4op,

Explicit expressions for the factors A(r,) and B(r,) are given in Appendix and in Eqs. (8.124]),
(8.125)) below for the specific case of the original MV model. Also, in order to make our final result

more compact we have defined:

Q§1,2’“2

po=c i (QrP+4)—4 (8.120)
Q? , r2

Ga=e 1 (Q4rt +8Q2 17 +32) — 32, (8.121)
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For simplicity, in the previous expressions we also defined the following momentum scale:

2M)2
N, -
T _ R )Aw.), (8122)

which is related to the one introduced in Sec.[8.1] by:

Q2(r.,b.) "= Q%(b,). (8.123)

(This limit is explicitly computed in Appendix . Since Eq. (8.119)) is somewhat lengthy, in the
next sections we discuss a few simplifying limits in the context of the original MV model.

8.2.7 N.expansion in the MV model

Our generalization of the classical approach introduces a few elements that had to be left unde-
termined throughout the calculation. For instance, the function f(r,) featured in the two-point
correlator of Eq. introduces some ambiguity in the computation of the double derivative of
L(r,), which is left in terms of the unknown coefficients A(r,) and B(r.). In the particular case of
the MV model, where f(r,) is taken as a Dirac delta, we are able to compute them as:

1 1
A(TL)I\IV = _éG(Ti) = EKOOWJT) (8124)
1
B(T.L)MV == E7 (8125)

where K, is a modified Bessel function. The mass m is an infrared scale that we introduce to
regularize the divergent Green’s function G(r,). For simplicity we choose m to be the same mass
scale introduced earlier in Eq. (8.11)). The leading behavior in the m —0 limit is:

A(n)wziln( i ) (8.126)

& m2r2

and B,,, being a constant, yields a negligible correction to this logarithm. In the same limit, the
leading behavior of T'(r,) and the product of its derivatives corresponds to the following expressions:

e = —— — " K )~ o 2 (8.127)

T 9mm2 2em ! Y m2r? ’
o r2 m2r2 2

EARANIES —zln ( 1 ) : (8.128)

(See Appendix [H for a detailed derivation of these expressions). Except for B,,, all these factors
exhibit logarithmic divergences of different nature. While I'" and 8;1“8;1“ diverge only in the infrared
limit m —0, A and Q? are divergent in both infrared and ultraviolet r — 0 limits. Then, as the scale
Q? contains the factor 92L(0,) = —2}% A(r,), it is logarithmically divergent in the MV model by

definition.

However, the only divergences that we need to deal with are the ones included in the saturation
scales Qs and (@), as all logarithms stemming from A and I' are cancelled in the pre-factor of
Eq. (8.119). Therefore, the overall effect of taking the MV limit on the complete result of the energy
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density covariance only consists in replacing all r-depending coefficients (except the saturation scales)
with constants. As this substitution does not yield a significant simplification to the final formula,
instead of showing that result we prefer to display the first orders of its N.expansion. Note that in
these expressions we are not adopting the strict MV limit, which would imply h(b,)=1; instead, we
are only assuming locality in the transverse plane (by taking f(z, —y,)=0d(x, —y,)). The leading
order of the expansion, of order N?, reads:

1 ,ﬁ 2 2 Q?l'f‘Q
[COV[EM\z](O+§ Ty, ?JL)}NE - gt 8¢ 7 (Q+0%) (16 + 32¢” 2

Q%

r2 —
—6de~ T — 40T (2004Q%) (Q‘SLQ 204t +8Q%r + 48)

7‘2
e (Fr) Q1L+ (1QAQA° + 12872)(Q2 + QL) + 167 (Q2 + Q2)"+ 1024)

0| —

r2 (H2 2 —
+2¢7 (Q0H@%) (1 14 (2 — 1)+ 40))} Pl 2. (8.129)
The next term, of order N2, reads:

1
NgirS

[COV[GMV](O—i_; Lo, yL)} N72 T |: e_%(Q§1+Q§2) (2 ( 317"2 + 327"2 + 8)2

2 .2 2 .2

Q5ar Q5o
HAQ2r2 (8 + Q%rY)e T — 8(8 + QArH) (4 + QA r?)e d

7"2 —
+4 e (205+Q%) <Q§2r4 —20Q%r* +8Q%r* + 16Q§1r2>

2

T (O @R)(QLQL + (4Q2,Q%r° +1280%) (@2 + Q%) + 167" (Q2 + QL) 1024)

0| =

~2H @@ Qir - )+ 30k - 103 Y) )|+l e 2l (8130

In both these expressions we have already cancelled the previously mentioned logarithms, which
leaves us only with saturation scales. Different prescriptions with a varying level of sophistication
are available in the literature to treat their divergences. In order to give a general idea of the
magnitude and analytical features of our solution, here we will adopt the GBW model, which in
practice consists simply in neglecting all logarithmic dependencies. In this framework, on Fig.[3.0]
we draw Eqs. (8.129), (8.130) as functions of the dimensionless product rQ; for Qg = Q5. Note
that, as we are ignoring all logarithmic factors, we also have Q,=Q,.

The N2 term yields a small but noticeable negative correction (see red dashed curve of Fig..
As the next terms are negligible, the first two orders of the N_-expansion provide a neat approxi-
mation to the complete result (see right plot of Fig.. Comparing this curve with the N%-order
term we notice that the large- N, limit yields a 12.5% error in the r— 0 limit, which is a reasonable
approximation. Most remarkably, in the rQ, > 1 limit our result vanishes following a 1/r? power-
law behavior. The leading term of this limit results from a combination of terms included in the

first two orders of the N.expansion presented above, Eq. (8.129) and Eq. (8.130)):

2(N2_1)(_4 2+Q4Q2)
. +. o c 51°% 82 52°% s1
ng;l Covew](0T 2, ,y,) = N2 : (8.131)
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Figure 8.6: LEFT: Sum of the first two orders of the N .-expansion of the energy density covariance
against rQ, for Q, = Qg and N,=3. Blue full curve: N2-order term. Red dashed curve: Sum of
N?- and N 2-order terms. RIGHT: Ratio between the complete result and the sum of the first two
orders of the N -expansion.

Note that this power-law tail is a non-trivial feature of our general result that is also displayed in the
particular case of the MV model. Normalizing the previous result with a single one-point correlator
we obtain the following expression:

hm COV[G](O+;xl7yL) — 4 7371 ‘32 _'_ 7?2 31 . (8132)
TQS>>1 <60<xl>> MV 92N6T2 32 ‘31
In the opposite limit, »— 0, the covariance tends to:
. C - - 3Cr -, =
}E;% COV[EMV](Oﬂﬂh,yL) = W:g‘l ( ;11 §2 + ( ;11 ;%2 + Q;12 ;ll)) = 2Ncg4 ;11 ;127 (8133)
and the normalized covariance:
lim (COV[E](O+; Ty, yi_)) _ ;11 ézj‘ (__§1 ;12 + QZSLQQ?I) _ 3 (8 134)
r=0 \ (& (z 1)) {(€(yr)) Sy @5 (NZ —1) NZ—1 ‘

In both expressions we applied Eq. (8.123)) in the last step.
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Summary:

We perform an exact analytical calculation of the covariance of the EMT characterizing the
Glasma state at 7=07.

For this task we introduce a generalization of the MV model aimed at expanding the sub-
sequent phenomenological applications of our results.

Throughout this calculation we face a number of highly non-trivial challenges, like the
computation of projections of the correlator of four Wilson lines in the adjoint representation
and the decomposition of correlators of an arbitrary number of color sources and Wilson
lines.

The obtained expressions display a power-law tail 1/r? in the limit of long correlation
distances rQs > 1. As will be detailed in Chapter [I0] this is a non-trivial feature of our
exact approach that contrasts with the behavior predicted by the analytical approximations
typically applied in the community.

Our result seems to conflict with the conjectured physical picture of Glasma flux tubes, as
it predicts transverse correlation lengths larger than 1/Q) (or rather, logarithmic enhanced
by a factor In(Q/m) sensitive to the infrared).

The first two orders of the N.-expansion of our result (N? and N ?) yield a good approxi-
mation of the exact expression.
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Chapter 9

Topological charge fluctuations of the Glasma

In this chapter we perform an analytical first-principles calculation of the one- and two-point corre-
lators of the divergence of the Chern-Simons current at proper time 7=0", which characterize the
early generation of axial charge density in the plane transverse to the collision axis due to event-by-
event fluctuations. As discussed in Chapter [f] this object plays a crucial role in the description of
anomalous transport phenomena such as the Chiral Magnetic Effect.

9.1 One-point correlator of the divergence of the Chern-Simons
current

Before evaluating the two-point function, in this section we will show that the expectation value of
the divergence of the Chern-Simons current over the classical background fields is 0, indicating that
there is no overall CP violation in the process. The correlator of Eq. (7.15)) factorizes like:

(o(2.)) = %25” e e feit (o ()i () (ed* (w1 ) oy (2.1)). (9.1)

As in the case of the one-point function of the EMT, we have that the building block of (i)
is the correlator of two gauge fields evaluated in the same transverse position, (a®*(x,)a®<(z,)).

Substituting Eq. (8.16)), we get:

2
. q _ _ .. . .
o\L1)) = 5 1L (@ )As(, )0 e =Y, .
<I/ (IE )) 2 (82[4(0 ))2)\ ($ ))\ (l’ )51 klfabnfcdné‘acdzkébdajl 0 (9 2)

which vanishes due to the antisymmetric property of the Levi-Civita tensor. As mentioned earlier,
this null average accounts for the Glasma state being globally CP-symmetric. However, local axial
charge fluctuations are expected to happen on an event-by-event basis. Our object of interest is
therefore the two-point correlator of 7, whose computation we outline in the following section.

9.2 'Two-point correlator of the divergence of the Chern-Simons
current

In this section we describe the calculation of (2, (z,)(y,)). As we did in the previous section, we
start by expanding 7, in terms of the gluon fields:

4
. . g ij _klci'j’ K'U pabn pedn pa’b'm g/d'm _da b ke lLd i'a 0 K. U.d
VO(xL)VO(yL) = Zé €70 e f f f f Ay Xz A1y a2za1y O'/Qy aly &2@/ ) (93)
then, the correlator reads:

4
<I)0 (Q:L)])O (yi>> _ gzeklek’l’fabnfcdnfa’b’mfc’d’m <CY§E’GC¥];’COKZ’G/O£’;’C/>1 <a2b&2da;’,b'a;’,d’>2. (94)
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Color algebra-wise, this expression presents the same level of complexity than the previously com-
puted two-point correlator of the energy density. However, it features a much simpler transverse
index structure, which we can rewrite as:

leék/l/ _ 5kk’6ll’_ 6kl’51k’, (95)
yielding;:
4
<V0<xL)V0(yL)> — ngabnfcdnfabmfcdm<<azaakcaz aakc> <OszOéldCYZ bald>
<OéZaOéchél aalc> <CYZbOéldOéz b’ak’d’>>‘ (96)

The building block for this computation is the correlator of four gluon fields in two different trans-
verse positions, which was computed in the previous chapter. Substituting said result in Eq.
and performing the ensuing index contractions (for which, again, we use the Mathematica package
FeynCalc), we obtain the main result of this chapter:

. . 16A4* — B* N6 +2N* —19N? + 8 N6 —3N* —26N? +16 e
(To(z)to(yL)) = < < ¢ — _2-¢ c c 1
o\L1)W\YL)) = g4F4NC2 2(Nc2_1)2 N§—5N02+4
2 2 .2 2,2 2 2
p o1 (1 D) (1o (14 e
4 4
4 2 2 2 2 2 2
r 2 2 212 _QSZT (NC - 8) (NC - 1) (NC —|— 4) (Q51+Q52)7‘
+ ZQSlQSQ —2r Qsl (1 € 4 ) + 2 (ch _ 4)2 e
N.+3)N? [N, _Wet)r’Q2 9 _ (Net1)r2Q?
S IR (?6 N (Ne 4 2) = 2Nt e T ) 1
N ]' Nc Nc _m Qf r2 _(chl)'r'QQg
(< . )1(>2<N )> (76 P (Ve —2) —2(Ne — e ) - ]
+le 2]), (9.7)

where the dependencies have been omitted for readability.

Let us now compute some simplifying limits on Eq. (9.7) in order to obtain more compact
formulas. In the limit of small transverse separations »—0 the two-point function tends to:

PN BN —1) 4 s
11}_1)% <VO($L)VO(yL)>Mv: W 1'% 82" (98>
The ratio with the product of the energy density averages at each transverse position reads:
lim( (@, )20(y.)) ) = 2; (9.9)
r=0 \(eo(@))(60(yL)) /e B(NZ — 1)

which displays the characteristic 1/(N? — 1) suppression factor of non-trivial color correlations. In

the opposite limit, (), > 1, we obtain:

lim (7o(2 ) 0(y. )y =

rQs>1

805

g4 N2p4 ’
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Figure 9.1: Two-point correlator of the divergence of the Chern-Simons current normalized to the
product of energy density averages in the exact analytical approach (blue full curve) and the Glasma

Graph approximation (red dashed curve). As a visual aid we also indicate the asymptotic behavior
in the infrared limit, which is 32/[(N? — 1)%r1Q?] (green dot-dashed curve).

For the sake of comparison with previous results obtained in the Glasma Graph approximation (see
Fig.[9.1) we also compute the following limit:

Wz )(y)) Y | 32Q%Q%
((%(m))(eo(yl»)m_ (N2 —1)271Q1 QL (9.11)

The limits computed above allow for a straightforward comparison of our approach to other analytical
frameworks available in the literature, which is the main subject of the next chapter.

lim
rQs>1

9.2.1 N .-expansion

In order to complete the analysis of our final expression Eq. (9.7]), in this subsection we display its
expansion in orders of N.. The leading order term, of order N, reads:

1 r2 QE 7‘2 QE 7'2 r2
[(Zo(2 ) (y. )] wo = { e T () (8+16e - 32e 1 4 24e7 (901Q3)
c g 7"

7"2 2 2 1”2 2 2
8T (B0HO%) (8.4 Q2,%) + T () (Q2 Q2 + 4r(@Q2 + Q2) +43) )|+ 10 2], (9.12)

and the next term, of order N2, reads:

2 2
r2 27

[ )in(y)) e = [N; ez (%hran) (2 QL (8 + Qe

T‘2 7‘2
18T (200+0%) (4Q§1r2 + QL - 4) + 4e7(Q?1+Q32)( 2 Q2 — 4r2(Q% + QL) + 4)

s1 52

Q%yr?

7“2
—4(QAr" + 12Q2 0 +82)e T — e (O ARQ2QLM + 4r(Q2 + Q) - 80)

+(Q2r2 + §2r2+8)2)]+[1<—>2]. (9.13)
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As it is also the case for the covariance of the energy density €y, the first two orders of the N.-
expansion of Eq. (9.7) yield a neat approximation of the complete result (see Fig.[9.2)), but not a
significant improvement regarding the practicality of the formulas.
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Figure 9.2: LEFT: Comparison of the first two orders of the N.-expansion of the two-point function
of the divergence of the Chern-Simons current against r (s in the GBW model for Qg = (s, and
N.=3. Blue full curve: N%-order term. Red dashed curve: Sum of N%- and N 2-order terms. Thin
green curve: full result. RIGHT: Ratio between the full result and the sum of the first two orders
of the N.-expansion.

Summary:

e We perform an exact analytical calculation of the one- and two-point correlators of the
divergence of the Chern-Simons current characterizing the Glasma state at 7=07.

e For this task we use the same generalized framework applied in Chapter [

e Our final expression displays a power-law tail 1/7* in the limit of long correlation distances
rQs > 1. As will be detailed in Chapter [10] this result is also in conflict with the one
obtained by the standard analytical approach, and thus it supports the conclusions reached
in the calculations from Chapter [§|

e As in the case of the EMT, the first two orders of the N, -expansion of our result (N2 and
N2) yield a good approximation of the exact expression.
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Chapter 10

Comparison with previous results

An alternative approach to the calculations presented in the previous chapters is proposed in [86]
under the so-called Glasma Graph approximation. In its original formulation, this method plays a
foundational role in the practical implementation of the MV model.

By proposing a Gaussian ansatz (Eq. (3.6)), the MV model implicitly assumes that the complex
color charge correlations underlying the interactions between colliding nuclei can be uniquely de-
termined by the two-point function Eq. . The Glasma Graph approximation builds upon this
assumption and extends it by considering that said interactions are restricted to the exchange of
only two gluons per color source. This approach —although expected to be valid only in a gluon-
dilute regime— has been adopted as the standard practice in the field, being at the base of a wealth
phenomenological studies of HICs [109H117]. Moreover, the Glasma Graph approximation provides
some justification to the most widely accepted physical picture of the early stages of HICs, i.e. the
Glasma flux tubdll

The two-gluon exchange ansatz outlined above translates into a factorization of double parton
distributions into all possible products of single parton distributions, which yields great simplification
in the context of dihadron correlator calculations [86]. In the same spirit, in the aforementioned
work it is assumed that the four-point correlation functions of the gluon fields factorize into products
of two-point correlation functions such that:

(@ (x)a"(x,)a" " (y,)a" (y,)ae = (@™ (2 ) (2,)) ('

+Hab (@ )a™ (y)) (e )a" (y.)

(2, )a (y,)) (e (x.)a" (y.)). (10.1)
This Wick theorem-like decomposition is equivalent to assuming that the gluon fields conserve the
Gaussian character of the color source distributions?} This is not generally correct, as the dynamical
generation of the former by the latter (encoded in the Yang-Mills equations) is non-linear. However,
as we shall see, this assumption yields a good approximation of the exact result in the limit of small
transverse separations » — 0. In this limit an effective linearization of the fields’ dynamics takes
place, as the connected functions derived in Chapter |8 vanish and the disconnected contributions
become equivalent to the two-point function of gluon fields. This results in a mapping of the Gaussian
statistics followed by the color source distributions onto the gluon fields.

Let us first focus on the EMT correlators computed in Chapter |8 We compare the normalized
covariance from our result (in the strict MV model and with Qg = Qs,) with the one computed

according to the decomposition defined in Eq. (10.1). As can be seen in Fig.[10.1} although both

!The contributions considered in the Glasma Graph approach are expected —on purely parametric grounds— to
be highly suppressed for p, > Q,, which supports the short correlation range conjectured by the flux tube picture.

2This assumption, although giving rise to a formally similar decomposition of correlators, is of a fundamentally
different nature than the original Glasma Graph approximation. In this regard, note that the interactions comprised
by the two-point correlators from Eq. include gluon exchanges to all orders. Ignoring conceptual differences,
we will use the name ‘Glasma Graph approximation’ to refer to said decomposition.
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Figure 10.1: LEFT: Comparison of the normalized covariance of energy density €, against r ()
for Qs = Qs, N. = 3 in the exact analytical approach (blue full curve) and the Glasma Graph
approximation (red dashed curve). As a visual aid we also indicate the asymptotic behavior in the
IR limit, which is 16/[(N? — 1)r2Q?] (green dot-dashed curve). RIGHT: Ratio of exact analytical
result to the Glasma Graph result.

results agree exactly in the UV limit » — 0, in the rest of the spectrum our computation yields a
harder curve. Another remarkable difference is that, while our result for the normalized covariance
shows a slowly vanishing behavior in the infrared limit, the Glasma Graph approximation yields a
much steeper tail:

lim =
rQs>1

Covle (0%, ,y.)\  16(Q% + QL)
< <EO($L)><€o<yl)> )CC 7«4(N62 _ 1) _él N4 (102)

52

The oc 1/r* decreasing behavior displayed by this expression is in clear contrast with the oc 1/r?
curve approached by our result in the same limit. A similar thing happens in the case of the
divergence of the Chern-Simons current. In Fig.[9.1] and Fig.[10.2] we compare our result with the
one computed according to the Glasma Graph approximation. As can be seen in Fig.[9.1] although
both results agree exactly in the small transverse separation limit r— 0, in the rest of the spectrum
(approximately for r>1/Q) our computation yields a significantly harder curve, just as in the case
of the EMT correlators. However, in the case of v this difference is larger (as can be seen in the
right panel of Fig.. While our result shows a oc1/r* decreasing behavior (see Eq. ), the
Glasma Graph approximation yields a much steeper oc1/r® tail:

- oz )(y)) \ 96
o (<eo<xl>><eo<yo>>m‘ (N2 = 1)r°QLQ% (10:5)

Such discrepancies potentially imply much different numerical results and physical interpretations
for any observable built from any of these quantities. Moreover, they provide further evidence on
the inadequacy of the Glasma Graph approximation for correlation distances larger than 1/Q;, an
outcome that agrees with the expected validity range of this approach. Although this is indeed a
remarkable finding, our results conflict with the Glasma Graph approximation in a deeper level, in
turn challenging the previously mentioned Glasma flux tube picture.
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Figure 10.2: LEFT: Comparison of the covariance of the divergence of the Chern-Simons current
(lower pair of curves) and the energy density (upper pair of curves) against rQ, for Qs = Qs in
the exact analytical approach (blue full curves) and the Glasma Graph approximation (red dashed
curves). RIGHT: Ratio of exact analytical result to the Glasma Graph result for the covariance of
the divergence of the Chern-Simons current (blue full curve) and the energy density (red dashed
curve).

In order to see this, let us return to our result for the EMT correlators. The 2-dimensional
transverse integral of Eq. is dominated by the upper bound (the infrared cut-off r ~1/m)
rather than the lower bound r~1/Q), which is what happens under the Glasma Graph approxima-
tion [118] due to its 1/7* fall-off. This indicates that the range of the transverse color screening of
the correlations, which determines the size of the color domains in the interaction region, is actu-
ally bigger than 1/Qs, as it features a logarithmic enhancement In(Q;/m) sensitive to the infrared.
Similar observations were made in [119] in the context of two-particle correlations: a sensitivity of
the color domain size to the infrared was observed numerically, with it getting larger as the infrared
cut-off was decreased. In the case of EMT correlations, our qualitative discussion also remains to
be quantified with numerical calculations.

The previous feature is not, however, reproduced by the correlators corresponding to the di-
vergence of the Chern-Simons current. The two-dimensional transverse integral of Eq. is
dominated by the lower bound r~1/Q;, as opposed to the case of the corresponding energy density
correlator. This result thus seems somewhat more consistent with the conjectured Glasma flux tube
picture [96]. Nevertheless, Eq. still displays a remarkably slow fall-off that contrasts with the
behavior one could naively expect from correlations between Gaussianly-distributed color charges.
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Summary:

We compare the results from chapters [§/and [9] to previous calculations performed under the
widely applied Glasma Graph approximation.

Although said calculations also exhibit a power-law behavior in the rQ, > 1 limit, they
yield much more rapidly decaying curves than those obtained in the exact approach (oc 1/7%
and oc 1/r® for the EMT and the divergence of the Chern-Simons current, respectively).

Remarkably, the gap between the results for the divergence of the Chern-Simons current is
even larger than the one showed by those of the energy density.

The relatively long-range correlations obtained in this part could potentially have a remark-
able impact in both physical interpretations and numerical results for any phenomenological
work based on these quantities —specially those that require their integration in the trans-
verse plane.

Our results for the EMT correlators could challenge the conjectured physical picture of
Glasma flux tubes, as they lead to an infrared-sensitive logarithmic enhancement of the
correlation length.
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Part V

Color Glass Condensate phenomenology

What good is it if you don’t use it?
It ain’t no good to nobody!

— Screamin’ Jay Hawkins in “What good is it?”



a N

The calculations carried out in Part [[V] provide the foundation for a number of phenomeno-
logical studies of HICs. For example, the results of Chapter [§| could be directly applied in
studies of QGP properties via multi-parametric fits based on Bayesian statistics [120]. Also,
upon the proper spectral decomposition, they may allow to perform mode-by-mode studies
of the hydrodynamical propagation of initial fluctuations (as proposed in [121,/122]). As
for the expressions derived in Chapter [0 they can be directly applied to the Monte Carlo
modeling of initial axial charge density [86], a fundamental input for those hydrodynamical
simulations that aim at describing anomalous transport phenomena [87-89]. In this final
part of the thesis we focus on a specific application explained in Chapter[I1] In this work we
apply the CGC framework to the description of hadron production in high energy collisions
at ultra-forward rapidities, achieving a good description of a variety of observables sensitive
to saturation effects, measured at both RHIC and LHC.

- /

Chapter 11

Ultra-forward particle production in CGC

In this chapter we present an analysis of data on single inclusive pion production in high energy
proton-proton and proton-nucleus collisions at ultra-forward rapidities (8.8 <y <10.8), as measured
by the LHCf collaboration. We also analyze forward RHIC data for calibration purposes. Our
study relies on the use of a Monte Carlo event generator that combines a perturbative description of
partonic scatterings based on the hybrid formalism of CGC with an implementation of hadronization
in the framework of the Lund string fragmentation model. This strategy allows us to reach values
of the momenta of the produced particles as low as detected experimentally, p, ~0.1 GeV. Before
getting into the details of our analysis, let us start with a brief overview of the CGC description of
hadron production in high energy collisions.

11.1 CGC description of high energy multiparticle production

Hadron production in high energy collisions is still an open problem in QCD. To this day, there
is no framework able to provide a unified, consistent description of hadron spectra in all accessible
kinematic ranges. Even at partonic level, we need to rely on different formalisms adapted to the
physical conditions of each region of phase space. For example, the standard procedure to analyze the
large-p, sector of hadron spectra relies on Monte Carlo implementations of the collinear factorization
ansatz Eq. . As previously discussed (Section , this formalism breaks down as we move
towards the small-x limit, where one can no longer assume the colliding hadrons to be dilute objects.
The appropriate framework to be applied in this regime is the CGC effective theory.

Two fundamental approaches to particle production have been proposed within CGC. The cal-
culations reproduced in Part [[T]] provide the starting point to one of them, namely the numerical
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resolution of the classical Yang-Mills equations on the lattice. The other strategy is based on the
so-called k -factorization ansatz:

dN, _AmN. ag

dyd?p,d®b, — N2 —1p?

/deL¢1(ki7y7bL>¢2(ki _pi7y7 bL)? (111>

by which the gluon spectra is computed through the integration of the uGDs of the colliding hadrons
¢1.2. The motivation behind this expression lies in the experimental observation that most particles
generated in HICs carry a relatively low transverse momentum. In the case of the Au-Au collisions
performed at /syn = 200 GeV at RHIC, most detected particles carry a transverse momentum
approximately below 1 GeV. The fact that this value is quite close to the estimated saturation mo-
mentum for such collisions (Q? ~1 +2 GeV?) suggests an underlying particle production mechanism
largely dominated by saturation effects. Hence, the k, -factorization scheme proposes a description
of the multiplicity distributions exclusively based on uGDs with a scale dependence given by the
evolution equations of CGC.

Figure 11.1: Sketch of a DIS process as interpreted in dipole models.

As explained in Section [2.2] the practical description of uGDs is not unique; it is established in a
model-dependent way connected to the specific processes in which they are experimentally measured.
Arguably the most widely applied prescriptions are those based on the dipole model [123-125|, which
stems from a relatively simple formulation of DIS experiments. Within this model, DIS is interpreted
as a two step process: first, the fast moving virtual photon ~+* fluctuates into a quark-antiquark
pair; and then, this dipole scatters off the hadronic target through multiple gluon exchangesﬂ (see
Fig.. The uGDs are related to the dipole scattering amplitude in coordinate space via a Fourier
transform:

() = [ dr e s (L= Nigyay (o] (112)

where ¢4 refers to the uGD in either the fundamental or adjoint representationﬂ. The dipole
scattering amplitude Nz 4) encodes all the information about the strong interaction of the scattering
process (and thus contains all z-dependence). There exist several prescriptions for its modeling,

"Which in the MV model are described in terms of Wilson lines, as seen in Chapter@

2The uGD in the adjoint representation is built from the dipole scattering amplitudes corresponding to a gluon
dipole. In the large N, limit these are obtained as Ny = 2Np — NZ |126]. However, in [16] it was shown that this
relation is only valid in the local Gaussian approximation adopted in the MV model.
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which in turn define different approaches within CGC to experimental data analysis (see [51] for a
review of some of the available models).

The k, -factorization formula Eq. is appropriate for the parton-level description of collisions
between two gluon-dense objects. However, the analysis of particle production at very large rapidities
—i.e. the ultra-forward region— is sensitive to the wave functions of the colliding hadrons in the
extreme limits of phase space. In this kinematic regime, only one of these hadrons is perceived as
a gluon-dense system, whereas the other appears as a dilute ensemble of fast-moving quarks (as
illustrated in Fig.[11.2). This can be inferred from the relation between the (p,,y) of a particle
produced in a hadronic collision at center-of-mass energy /s and the z fraction carried by the
participants of the partonic subprocess:

~ DLy T~ —=e Y, (11.3)

Ty R s
where z,; labels the parent hadrons as projectile or target. From these expressions we can infer that
by analyzing large rapidities we are probing the projectile at large-x values and the target at small-x
values. Specifically, in the kinematic range covered by the LHCf experiment one has /s =7 TeV,
pe S1 GeV and 8.8 <y <10.8, yielding the following Bjorken-z values for projectile and target: x, ~
107t ~ 1 and 2y ~ 1078 ~ 1079, the latter being the smallest = values ever accessed experimentally.
As discussed in the introductory chapters of this report, a highly asymmetric collision in terms of x
is also strongly asymmetric in the density of the colliding objects.

.. Projectile

Target

LHCT detector

Figure 11.2: Rough sketch of a hadron-hadron collision as perceived in the LHCf experiment. Af-
ter the collision, the particles that fly very close to the beam axis (ultra-forward rapidity region)
correspond to the large-z degrees of freedom of the projectile (its valence partons) and the small-z
gluons from the target.

At large (but not too large) x values an appropriate characterization of hadrons is given by the
partonic picture discussed in chapters|l|and [2| whereas in the very small-z limit they can be properly
described in the CGC framework. These ‘dilute-dense processes’ can be interpreted at partonic level
as mediated by a highly energetic valence quark from the projectile scattering off a ‘soft’ parton

109



(typically a gluon) from the target. Such a process features a clear separation of scales that allows
us to describe each side of the interaction independently. This is the main principle of the hybrid
formalism, first proposed in [127].

11.2 The hybrid formalism

In the hybrid factorization scheme (depicted in Fig. the large-x degrees of freedom (from the
projectile) are represented with the usual PDFs of collinear factorization, while the small-z gluons
(from the target) are described in terms of uGDs with a scale dependence given by the evolution
equations of CGC. In the hybrid formalism the cross section for quark or gluon production in the
scattering off a gluon-dense target reads:

dohhe=ld/a)X K g

2
dy &2k, - (2m)2 9 T1f(a/9) /01 (21, NF)¢(F/A)/h2 (o, kL), (11.4)

where fq/q).n (21, p?) is the PDF of quarks or gluons in the projectile h; evaluated at the scale
pr, while ¢(p/ay/n, (x2, ki) refers to the uGD of the target in either the fundamental or adjoint
representation. Eq. is known as the DHJ formula (for Dumitru, Hayashigaki, and Jalilian-
Marian). This formalism thus combines the previously discussed frameworks of collinear and k. -
factorization.

In our analysis we use a Monte Carlo event generator set up to simulate partonic hard scatterings
(g9 — q and gg — g) according to Eq. (11.4), along with initial and final state radiation based on
DGLAP evolution. For the computation of the uGDs we take the parameterization of the dipole
scattering amplitude N (z,r) from the AAMQS fits to data on the structure functions measured in
electron-proton scattering at HERA [128|[129] (see Fig.[11.3]for a comparison with HERA data). The
main dynamical input in those fits is the running coupling BK (r¢BK) equation for the description
of the z-dependence of the dipole amplitudes [130-132|. The fit parameters are mostly related to
the initial conditions for the evolution, set at the initial Bjorken-z value zo=10"2. In the AAMQS
fits they were chosen in the following form:

o) =1 e[ OB g (1] s

The AAMQS fits provide a well constrained parameterization of the proton uGD. Similar to what
has been done in previous works [133|, the uGDs of nuclear targets (lead or gold in our case) are
built by simply rescaling the value of the initial saturation scale as previously indicated in Eq. :

04 = AY Q% n» where A is the mass number of the target nucleus. In this work we shall use the
AAMQS sets corresponding to v =1.101, Q% = 0.157 GeV? and v =1.119, Q?%, =0.168 GeVZ. We
check that the results for LHCf kinematics are very little sensitive to this particular choice, as other

AAMQS sets yield a very similar description of the data.

As for the proton PDFs, we use the CTEQ6 leading order set [135] with a default factorization
scale up = max{k,,Q,}, where k, is the transverse momentum acquired by the incoming parton
as it multiply scatters the soft glue of the target. This choice ensures that primary partonic pro-
duction can be described by means of perturbative tools. We cannot exclude that part of primary
particle production could be of genuinely non-perturbative origin —specially for very small transverse
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Figure 11.3: Comparison of experimental data for the reduced cross sections measured at HERA [134]
(black squares) with results from the AAMQS fits (red circles) in different @Q* bins. The left plot
corresponds to a fit with only light flavors and GBW initial condition, whereas the right plot also
includes the contribution of charm and beauty quarks. Figure extracted from [129].

momenta of the produced pions— and hence, not amenable to a description in terms of Eq. .
However, the good description of the data reported below makes us confident that the main dynam-
ical features of the process studied here are well accounted for by our approach. When applied to
LHCf kinematics, our ansatz for the factorization scale ensures that it always falls into the perturba-
tive domain p = 1 GeV, since the saturation scale at the LHC ultra-forward region is perturbatively
large: Q4 (z ~ 107®) = 1 GeV both for proton and lead targets. Such is not the case in RHIC kine-
matics, where the saturation scale is considerably smaller and closer to its initial values Q% ~ 0.2
GeV. In the latter case, we impose a momentum cut-off on the exchanged transverse momentum
k, min=1GeV. However, this cut-off is not necessary at the LHCf or, in other words, our results are
insensitive to its precise value, as the scattering is dominated by higher transverse momenta (of the
order of the saturation scale of the target k, ~ Qs(z) = 1 GeV).

Finally, the factor o¢ in Eq. results from the integration over impact parameter implicit in
Eq. . In the mean field approach treatment of the target geometry —proton or nucleus— that
we shall adopt, it carries the meaning of the average transverse size of the proton. Its value can be
taken from the AAMQS fits where it was one of the free fit parameters (oo/2 = 16.5mb). As for the
K-factor in Eq. , it is not the result of any calculation; it has been added by hand to account
for higher order corrections and potential non-perturbative effects. In practice, we use it to adjust
the normalization of theoretical curves to experimental data in phenomenological works. In an ideal
situation it should be equal to unity.

The degree of accuracy of the hybrid factorization formula as well as that of the non-linear
evolution equations describing the Bjorken-z dependence of the uGD of the target —-rcBK in our
case— have been considerably improved in the recent past. In particular, NLO corrections to the
cross-section Eq. have been computed in [136,/137]. Also, both the BK and B-JIMWLK
evolution equations are now known at full NLO accuracy [138,/139]. However, it was quickly noticed
that the perturbative expansion of hadronic observables and evolution equations at NLO become
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unstable in certain regions of phase space [140-142|, even leading to negative cross sections. Such
unphysical behavior has been identified as due to the increasing importance of double transverse
momentum logarithms. Later works showed that the resummation of those collinear logs stabilizes
the behavior of the perturbative series [143]/144], even allowing a good phenomenological description
of electron-proton cross sections measured in HERA [145,/146]. Recently, it has been suggested that
the kinematic corrections embodied in the resummation of large collinear logs can be accounted for
through an appropriate subtraction of the rapidity divergence in the BK evolution for the target [147].

However the notable progress briefly reported above, we shall consider the hybrid formalism only
at leading logarithmic accuracy (LL) together with LO DGLAP evolution and running coupling
BK evolution to describe the scale dependence of the projectile PDF and target uGD respectively.
Although a full NLO analysis of forward production data would be desirable —as all theoretical tools
are now available— its phenomenological implementation should start by performing a global fit to
electron-proton data at full NLO accuracy in order to obtain the uGD of a proton, which has not
been carried out to date. Also, as shown in [140,141], NLO effects become increasingly important in
the region of high transverse momentum and small to moderate evolution rapidities Y =In(zo/x). In
this work we are interested in the opposite kinematic regime of very high evolution rapidities Y ~ 15
and small transverse momentum scales, k; < Q(x). We expect then that the LO implementation of
the hybrid factorization captures the main dynamical features of the collision process in the LHCf
kinematic regime. This set up could be systematically improved using available theoretical progress,
but we leave such task for future works.

Figure 11.4: Sketch of the hybrid formalism. The multiple gluon exchanges in the lower part of the
diagram represent the non-linear small-z evolution of the uGDs, computed within the CGC effective
theory.

Let us now go over the additional features implemented in our Monte Carlo code. A fundamental
aspect of out set up is the possibility of simulating multiple, simultaneous scatterings of different
valence quarks with the dense glue of the target.

11.3 Multiple parton scattering

This feature is implemented in the eikonal model formalism [148-150|, where we assume the prob-
ability distribution governing the number of independent hard scatterings to be a Poisson of mean
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n, with:
n(b, 8) = Tpp(b)UDHJ(S). (116)
n is the average number of partonic collisions per event. It depends on the invariant mass of the

collision s through the integrated cross section opyy, and on the impact parameter of the collision b
through T},,, which is the spatial overlap of the colliding protons obtained as the convolution of two

Gaussian functions: 1 b2
T (5 — by 11.
po(b) IrB exp < 4B> (1L.7)

For every event, the impact parameter b is randomly generated in a range between 0 fm and:

o
bnaw = 1] 2. (11.8)

s
which is the radius of a circle of area defined by the cross section of non-diffractive events, ¢,4. For
collisions on nuclear targets, we substitute the target profile by a Gaussian with radius R3 = Rf) A3,

Its convolution with the Gaussian profile of a proton yields:

Toa(b A% o 11
pall) = TR2(AZ5 4 1) P (Rg(A2/3+1>>' (11.9)

Which is normalized to A%2. Other options for a nuclear spatial profile like the Woods-Saxon model
were not considered in this work. The increase of the maximum impact parameter b,,,, allowed for
nuclear targets is accounted for by the substitution of o,4 in Eq. by the cross section values
for d-Au and p-Pb collisions given in [151},/152].

As a last step of the Monte Carlo simulation, the partonic cascades generated through the
implementation of multiple scatterings according to Eq. have to be mapped into hadron
distributions. In previous analyses of LHC and RHIC forward particle production data (which were
also based on the hybrid factorization scheme [140,{141}/153]) this step was performed through the
following convolution:

do.hadrons dO.Pm"tfmS

— —DHJ D 11.10
dyfp,  dydp, " (10

where Dj,/, is known as the fragmentation function. This non-perturbative object provides the
probability of a parton p giving rise to a certain hadron h. The description of the hadronization
process in terms of fragmentation functions is limited, by construction, to perturbatively large values
of the transverse momentum of the produced particle, p, ~ 1 GeV, where these functions are defined.
However, one of the main novelties of the work discussed in this chapter with respect to previous ones
lies precisely on the treatment of the hadronization process, which we implement in the framework
of Lund string fragmentation.

11.4 The Lund fragmentation model

The hadronization of the scattered partons into the finally observed hadrons is described in terms of
the Lund string fragmentation model as embedded in the PYTHIA event generator. More specifi-
cally, PYTHIAG |154] is used to arrange partons resulting from hard scatterings and initial and final
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state radiation processes into strings; PYTHIA 8.186 |155] is then used to simulate their fragmenta-
tion into hadrons in the framework of the popcorn mode]ﬂ This particular choice of hadronization
model turns out to be crucial for a good description of the data. Other possible choices, like the
diquark model, result in much softer spectra of the produced pions, yielding a worse agreement
with data. The remnants of the colliding hadrons are also arranged into strings (stretched between
quark-diquark pairs). The fraction of the total energy = carried by the quark is chosen according to
the probability density:

(I —xz)"
4\/ £C2 + C'?nin '

Where ¢pnin, = 2(my)/v/s = 0.6/y/s. For the o parameter we use the PYTHIA6 default value
a = 3. No primordial k, distribution is considered, as in [156] it was shown to be unnecessary in
this framework. This procedure allows us to reach values of the momenta of the produced particles
as low as detected experimentally p, ~ 0.1 GeV and, therefore, opens the possibility of describing
particle multiplicities.

P(r) x (11.11)

The Monte Carlo code described above was first developed and applied for the description of
ultra-forward pion production in proton-proton collisions at the LHC [156]|. In the work presented
in this chapter we extended it to the case of proton-nucleus collisions and the study of the measured

nuclear modification factors. As a preliminary step we perform an analysis of forward production
at RHIC.

11.5 Inclusive hadron transverse momentum spectra at RHIC

In this section we compare our results to experimental data in the kinematic range observed by
two different RHIC detectors, namely BRAHMS [157] and STAR [158]. The kinematic conditions
achieved in the d-Au collisions performed at /s = 200 GeV at RHIC are appropriate for a description
in terms of the DHJ formula, provided that we focus on the high-rapidity region of the spectra (see
Fig.[I1.5)). These fits act as a reference for calibration, as the datasets used have been largely studied
in previous works based on the DHJ formula [153,(156,/159]. We build the PDF of the deuteron
from the proton PDFs assuming strict isospin symmetry. For each independent hard scattering
we calculate the multiplicity density of produced particles from the Eq. for the cross section
scaling by the non-diffractive cross-section:

A Nhiha=(a/9)X 1 dghh2—(d/9)X

S —— 11.12
dy 42k, oa Ay d2h, (11.12)

We assume that the energy dependence of the non-diffractive cross section in Eq. (11.12]) cancels
off the energy dependence of the oq factor in Eq. (11.4)), even if these two objects are not necessarily
the same one. Any possible deviation from this assumption is absorbed on the corresponding K-
factors.

We take a quite straightforward approach on proton-nucleus collisions. In this particular case,
where the colliding particle is a deuteron (a deuterium nucleus, containing a proton and a neutron),

3For a brief discussion on hadronization models, see Appendix
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Figure 11.5: Average distribution of Bjorken-z values for projectile and target and pseudo-rapidity
of the produced particle 3.2 <y < 3.4.

we simply consider its PDF to be increased by a factor of 2 with respect to the proton’s. No
coherence effects between partons from proton and neutron are considered, as in the kinematic region
of interest both nucleons are equally dilute. The only nuclear effect we consider is the boosting of
the saturation scale by a factor of approximately A'/3. This situation causes the gluon saturation
effects to appear at higher transverse momentum scales than for single nucleons. The fact that we
get a good description of data by this simple approach (see figure tells us that the nonlinear
dynamics of the saturation regime are the most prominent feature of proton-nucleus collision in this
kinematic region, dominating over other effects like nuclear fluctuations.

We reach a rather good description of d-Au data on the spectra of negatively charged hadrons
measured at pseudo-rapidities n = 2.2 and 3.2 by BRAHMS in minimum bias collisions and also
of STAR data on neutral pion production at n =4, see Fig [[1.60] Our results are little sensitive
to the specific value of the number of participants nucleons in the collision which, in the mean
field treatment of nuclear geometry performed here, is given by Ny, ~ A3, The most remarkable
feature of our result is that, by means of the Lund fragmentation mechanism implemented in our
Monte Carlo, we can reach values of the transverse momentum of the produced particle as low as
detected experimentally p, jin~ 0.2 GeV. As previous approaches relied on the use of fragmentation
functions to describe the hadronization process, they could only access the regime of perturbatively
high transverse momenta p, min 2, 1 GeV. BRAHMS data is well described with a K-factor K = 1.

However, STAR data on neutral pions can only be described with a K-factor K = 0.4, exactly the
same value obtained in previous analyses of data.

11.6 Inclusive hadron transverse momentum spectra at LHCf

In this section we compare our results with data on neutral pion production measured by the LHCf
collaboration in p-p and p-Pb collisions at /s = 7 TeV and 5.02 TeV respectively [160]. The rapidity
range available in this experiment (8.8 <y < 10.8) is appropriate for a description in terms of the
DHJ formula, as shown in Fig.[I1.7] In this figure we plot the distributions of Bjorken-z values
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Figure 11.6: Left plot: negatively charged hadron transverse momentum spectra at n =2.2 and 3.2
in d-Au collisions at /s = 200 GeV measured by the BRAHMS collaboration. Right plot: neutral
pion spectra at n =4 in d-Au collisions at /s = 200 GeV measured by the STAR collaboration.
Scale dependence between Q2, = 0.157 A'/3 GeV? with A'/? = 6 and 4 is shown by the shaded areas.

contributing from projectile and target. They are peaked in z, ~ 0.1 and x; ~ 10~%, which indicates
a much stronger dilute-dense asymmetry than in the RHIC case, Fig.[I1.5]

Similarly to the previous analysis presented in [156|, we obtain a remarkably good description
of p-p data for all rapidities, see Fig.[I1.9 Importantly, the K-factor used for the description of
data is exactly the same as the one used for the description of BRAHMS data, K = 1. This is an
important result, as it indicates that the energy evolution from RHIC to LHC, equivalent to more
than ten units in evolution rapidity, AY 2 14, is well accounted for by the theoretical tools in our
approach, namely the rcBK evolution for the z-dependence of the uGDs. For the sake of illustration
in Fig.[11.9] we also show the partonic spectra generated prior to the hadronization process. As a
comment, it should be noted that the bump observed for the lowest momentum bin is due to the
contribution of projectile remnants not participating into the hard scattering.

We also find a good agreement of the neutral pion spectra measured in p-Pb collisions, see
Fig[IT.10] In this case our theoretical result is a bit above the data at the highest values of transverse
momenta. Again, we have used a K-factor K =1 for its description. As shown in Fig[11.10] a slightly
lower value of the K-factor, K =0.5, results in a slightly better description of the data, although we
do not have a clear motivation for such choice.

11.7 Nuclear modification factor at LHCf

Finally, in this section we present our results for the nuclear modification factor R,py, defined as

follows: 0
R Oma  E@P/dp 1 dNPPTEdydp, (11.13)
PP N0 PP EdBo? [P (Neou) dNPP=7°X [dyd?p, '

inel
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Figure 11.7: Average distribution of Bjorken-z values for projectile and target and rapidity of the
produced particle 8.8 < y < 9.0.

Where Ed30PP? /dp®, Ed®oPP/dp?® are the inclusive cross sections of neutral pion production in p-
Pb and p-p collisions respectively, and (N,,;) is the average number of nucleon-nucleon scatterings
in a p-Pb collision. We shall use the same value of (N.;) as the one used in the experimental
analysis [160], obtained from a Monte Carlo Glauber simulation: (N..;)=6.9. Also, it should be
kept in mind that the experimental value for \/s=>5.02 TeV is obtained after interpolating p-p data
from 2.76 and 7 TeV collision energies.

One remarkable feature of experimental data is the approximate flatness of the Rglojb over all

the measured rapidity range (see Fig.|11.11)). Actually a constant value Rg;b =1/(Neoy) =~ 0.15 is
compatible with data for all y. This would immediately imply that the multiplicity density in p-p
collisions is approximately equal to the one in p-Pb collisions (see right hand side of Eq. (11.13])):

dep—MrOX dePb—>7r0X

dydp, . dydp,

(11.14)

Certainly, a more refined analysis of data would probably indicate a decreasing behavior of Rg;b
with increasing rapidity of the detected pions. However, such rate of change is much smaller than
the one observed at RHIC energies in a similar range of transverse momenta. This purely empirical
observation is well accounted for by our calculations. In terms of saturation physics this result can
be immediately related to the asymptotic properties of the solution of the BK equation, used to
describe the z-dependence of the uGDs of the proton and lead targets. At partonic level, Eq.
can be written as:

<nPPb>bN(PFb7A) ~ <npp>bN(pF/A)' (1115)

Where N(PF'?/ A IV, (pF /4 are the uGDs corresponding to proton and nucleus targets, and (nppb)s, (pp)b
are the average number of independent hard collisions per p-p and p-Pb events integrated in impact

parameter. Due to the normalization of the spatial overlap function for proton-nucleus collisions
T4, the integration of Eq. (11.6) over b yields:

(nppn)y = A% (nyp ). (11.16)

117



10

LHCf

(x ~107%)

| RHIC
(17 ~ 10—4)

LHCf
(x~1079)

0.2 0.4 0.6 0.8 1 1.2 1.4

p.1 [GeV]

Figure 11.8: Ratio of rcBK-evolved uGDs for proton and lead targets for the different z-ranges
observed at RHIC and LHC.

Applying this expression to Eq. (11.15]), and also neglecting the difference in the factorization scales
for p or Pb scattering we get:
NPb 1
(F/4) _
P 2/3"
Ny A

This behavior is well realized by the BK-evolved uGD’s used in this work. As shown in Fig.[I1.8] the
ratio of lead over proton uGD’s takes a constant value 1/A%? = 0.03 in all the k, range probed by the
LHCf data studied here. We interpret the fact that the experimental data on R;f_opb reproduces this
constant behavior over the whole range of rapidity as an indication for the prevalence of saturation
effects in the probed kinematic regime by the LHCf. In turn, the analogous ratio for the kinematic
regime relevant for forward RHIC data also exhibits a growing behavior with increasing transverse
momentum, in the very same fashion as the corresponding nuclear modification factor. We conclude
that RHIC forward kinematics falls outside the universality regime of small-x evolution. Rather,
RHIC kinematics test non-linear evolution in the pre-asymptotic regime.

(11.17)

Aside from the description of data discussed in this work, the fact that the main features of
ultra-forward production data —even for very small transverse momentum of the produced particles—
can be understood in terms of perturbative tools may open interesting new avenues of research in
the field of Ultra-High Energy Cosmic Rays (UHECR). There, the main features of the air showers
developed after the primary collisions in the upper atmosphere are determined to a large extent
by the hadronic collisions properties —in particular, by the total cross-section, forward multiplicity,
charm production and inelasticity [161]. Thus, the availability of theoretically controlled tools to
extrapolate from the well constrained collision energy domain probed at the LHC to that of UHECR
is necessary to reduce the inherent uncertainty associated to the extrapolation itself and, thereby,
also the uncertainty associated to the analysis of the primary mass composition of UHECR. We
propose that the use of non-linear renormalization group equations of QCD (like the BK equation
employed in this work) can offer insight in this direction.
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Figure 11.9: Neutral pion transverse momentum spectra in the rapidity range 8.9 < y < 10.6 in p-p
collisions at /s = 7TeV. Also shown is the corresponding partonic spectra (dashed lines).
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Figure 11.11: Nuclear modification factor for neutral pion production at /syy = 5.02TeV. Data
points taken from [160|. Since there is no neutral pion transverse momentum spectra measurement
available for p-p collisions at /s = 5.02 TeV, it is derived by interpolation of datasets obtained from

p-p collisions at /s = 7TeV and 2.76 TeV, which are included in that paper.
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Summary:

We perform an analysis of data on hadron production in high energy p-p and p-A collisions
at ultra-forward rapidities.

For this task we use a Monte Carlo event generator that combines a CGC description of
elementary partonic scatterings with an implementation of hadronization according to the
Lund string fragmentation model.

Within this approach we achieve a good description of the single neutral pion spectrum
in the very forward region of the LHC (8.8 <y <10.8) and down to the lowest values of
transverse momentum experimentally accessed by the LHCT collaboration (p, < 0.1 GeV).

~Y

The flat and approximately constant behavior obtained for the nuclear modification factor
R,py, over the wide range of rapidities covered by data can be related to the asymptotic
properties of the solutions of the rcBK equation and, in particular, to the existence of
universal solutions at sufficiently small-z.

Our results show that the main dynamical features of a dilute-dense interaction can be
reproduced through the saturation-dominated small-x evolution of the uGDs (in our case,
given by the rcBK equation).

Moreover, this approach provides a theoretically controlled way of extrapolating to higher
energies, which has a clear potential as a tool for studying Ultra-High Energy Cosmic Rays.
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Part VI

Conclusions and prospects

With intensity, the drop evaporates by law
In conclusion, leaving is easy
When you’ve got some place you need to be.

— Bill Callahan in “Riding for the Feeling”



In this report we address the saturation regime of QCD in the light of two fundamental problems
of high energy physics: the theoretical characterization of the initial stage of HICs, and the phe-
nomenological analysis of multiparticle production in collider experiments. Our studies are based on
the CGC formalism, which throughout the development of the thesis we extend and modify with the
two-fold aim of achieving a more realistic physical picture and expanding the potential applications
of our results.

On the theoretical side, we start with a first-principles analytical calculation of the one- and two-
point correlators of the Glasma EMT. These objects characterize, respectively, the average and the
variance of the distribution of energy density deposited in the plane transverse to the collision axis at
an infinitesimal proper time 7=07". In the course of this work we extend the traditional MV model
by introducing an explicit impact parameter dependence in the two-point correlator of color source
densities, as well as a generalization of the transverse profile of the interaction. Also, and foremost,
throughout our calculations we apply a self-consistent approach where we respect the inherently
non-linear character of the Glasma field dynamics, thus departing from the approximations adopted
as standard practice in this kind of studies (i.e. the Glasma Graph approximation). The results
achieved in this way raise a question about the accuracy of the widely accepted flux tube picture of
Glasma. Said results can be summed up in four main points:

e Our expression for the two-point correlator of the Glasma EMT displays a remarkably slow
vanishing behavior in the limit of long correlation distances rQ, > 1: a power-law tail 1/r2.

e Although the calculations performed under the Glasma Graph approximation also exhibit a
power-law behavior in the same limit, they yield much more rapidly decaying curves than those
obtained in the exact approach (oc 1/r% vs. o< 1/r4).

e Our results could conflict with the conjectured physical picture of Glasma flux tubes, as they
predict transverse correlation lengths larger than 1/Q; (or rather, logarithmic enhanced by a
factor In(Qs/m) sensitive to the infrared).

e The relatively long-range correlations obtained in this work could potentially have a deep im-
pact in both physical interpretations and numerical results for any phenomenological study
based on the two-point correlator of the Glasma EMT. An example that is already being
explored by the author is the analytical calculation of the moments of the energy density dis-
tribution, known as eccentricities. From these quantities we can build a series of dimensionless
ratios that have been observed to be proportional to the experimentally measured anisotropic
flow coefficients. Our first principles analytical approach proves successful in reproducing data
measured at both RHIC and LHC without needing to resort to other less theoretically moti-
vated implementations of initial state fluctuations (e.g. sampling of random nucleon positions).

Then we turn our attention to another fundamental feature of the Glasma phase: the fluctuations of
topological charge that in turn give rise to generation of local imbalances of axial charge. Within the
CGC framework these fluctuations are characterized by the two-point correlator of the divergence
of the Chern-Simons current, which we compute in the same fashion as the previously obtained
correlators of the EMT. Remarkably, the obtained expressions yield an even larger discrepancy with
those computed under the Glasma Graph approximate approach. To summarize:

e Our result for the two-point correlator of the divergence of the Chern-Simons current exhibits
a power-law tail 1/r% in the limit of long correlation distances rQ, > 1, whereas the expression
obtained under the Glasma Graph approximation decays like 1/7%.
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e Remarkably, the gap between the results for the divergence of the Chern-Simons current is
even larger than the one showed by those of the energy density, suggesting that the non-linear
dynamics followed by the gluon fields have an even greater effect over the long-range transverse
fluctuations of axial charge density than they do over those of the deposited energy.

e However, despite the notably slow fall-off of our expression, the transverse correlation lengths
estimated for this observable are neither sensitive to the infrared nor logarithmically enhanced,
an outcome that seems somewhat more consistent with the conjectured Glasma flux tube
picture.

e The results of this study can be directly applied in studies of anomalous transport phenomena
such as the CME, as they provide a fundamental input for the Monte Carlo modeling of initial
conditions of axial charge density.

A common conclusion of both studies is that the commonly adopted Glasma Graph approximation
yields the exact same result as our approach in the UV limit » — 0. This seems to indicate that
the non-linear nature of the Glasma fields dynamics can be overlooked in this limit, or to a good
approximation for correlation distances shorter than 1/Q,. This outcome confirms the expected
validity range of the Glasma Graph approximation. However, the large discrepancies observed in
the rest of the spectra provides analytical evidence on the importance of the non-linear dynamics
relating color source densities and gauge field correlators.

In the phenomenological part of the report we study the influence of saturation physics in the
analysis of multiparticle production at the LHC. With this goal, we perform an analysis of data
on single inclusive pion production measured by the LHCf collaboration in high energy proton-
proton and proton-nucleus at ultra-forward rapidities, 8.8 <y < 10.8. Our analysis relies on the
use of a Monte Carlo event generator that combines a perturbative description of the partonic-level
scattering process in the hybrid formalism of CGC with an implementation of hadronization in the
framework of the Lund string fragmentation model. The main dynamical input in this set up is the
rcBK equation, which is applied in the computation of the z-dependence of dipole amplitudes. The
main conclusions of our analysis can be summarized as:

e We achieve a good description of the single neutral pion spectrum in the very forward re-
gion of the LHC (8.8 <y < 10.8) and down to the lowest values of transverse momentum
experimentally accessed by the LHCf collaboration (p, < 0.1 GeV).
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e The fact that we can reproduce such low values is a feature of our particular approach, where
we employ the Lund string fragmentation model —instead of fragmentation functions— to de-
scribe hadronization. This particular aspect opens the door for a calculation of less inclusive
observables dominated by the low-p, region, such as 2-particle correlations or multiplicities.

e The flat and approximately constant behavior obtained for the nuclear modification factor
R,py over the wide range of rapidities covered by data can be interpreted as a consequence
of the asymptotic properties of the solutions of the rcBK equation and, in particular, the
existence of universal solutions at sufficiently small-z.

e Our results show that the main dynamical features of a dilute-dense interaction can be repro-
duced through the saturation-dominated small-z evolution of the uGDs (in our case, given by
the rcBK equation).

e This approach provides a theoretically controlled way of extrapolating to higher energies, which
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could be applied in the study of Ultra-High Energy Cosmic Rays.

The studies described above presents a wide variety of applications and potential follow-up
projects. It was already mentioned that our results for the correlations of the Glasma EMT can be
applied in the computation of anisotropic flow coefficients. A logical continuation of this project
would be the implementation of the obtained expressions into a Monte Carlo code aimed at a fully
QCD-based description of primordial fluctuations in HICs.

Another potential application of our previous work is the computation of the dilute-dense limit
of the computed correlators. As our set-up allows for different mass numbers A;, A, for the colliding
nuclei, it is thus straightforward to repeat the calculation in the case where A; < Ay. This simple
project aims at bringing new insight into the theoretical characterization of the system generated in
a highly energetic proton-nucleus collision.

A more complex follow-up to the previous works is the analytical calculation of higher order
terms in the T-expansion of the EMT correlators. Said expansion was proposed in [162], where they
define the gluon fields generated after a HIC in terms of a power series in 7, which turns the Yang-
Mills equations into an infinite system of differential equations that can be solved recursively. This
approach provides analytical insight of the early time evolution of essential objects like the energy-
momentum tensor and its correlators. A theoretical characterization of how these quantities evolve
after the collision is of fundamental interest for the application of our work to phenomenological
studies of QGP, as such state is expected to be formed at a proper time of the order of the inverse
of the saturation scale.

Besides being the foundation for several applications and follow-up works, the research reported
in this thesis can also be subject to improvements, upgrades and expansions. For instance, in the
case of the calculation of correlators, a straightforward refinement of our results could come from
considering saturation beyond the MV model] Regarding the analysis of ultra-forward particle
production, an immediate improvement could come from the implementation of the state-of-the-art
precision tools for small-z evolution.

4In this regard, the undetermined function f(z, —%,) introduced in our generalized approach allows for the
implementation of JIMWLK evolution within the so-called Gaussian truncation.
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Conclusiones

En esta tesis hemos abordado el estudio del régimen de saturacion de QCD desde dos angulos: uno
tedrico, realizandose una descripcion analitica de la fase inicial de una colisiéon de iones pesados;
y uno fenomenologico, basado en un analisis de la produccién de particulas en experimentos de
aceleradores (concretamente, el LHC). Estos estudios se llevaron a cabo en el marco del formalismo
CGC, al que realizamos una serie de modificaciones.

En la parte tedrica presentamos el célculo de los correladores de uno y dos puntos del tensor
energia-momento correspondiente al Glasma. Estos objetos describen cuantitativamente propiedades
estadisticas de la distribucion de densidad de energia generada inmediatamente después de la colision
(tiempo propio 7=0"); concretamente, la media y la varianza. En el desarrollo de este calculo intro-
ducimos dos generalizaciones del modelo MV, a saber: incorporamos una dependencia explicita en
el parametro de impacto, y relajamos la asuncién de localidad en las correlaciones a nivel partoénico.
Asimismo, adoptamos un método ezacto (dentro de las convenciones del modelo MV) en el que
respetamos la naturaleza no lineal de las correlaciones del Glasma, lo que supone un notable paso
adelante en relacion a las técnicas aproximadas aplicadas rutinariamente en este tipo de célculos.
Los resultados obtenidos mediante esta estrategia ponen en duda la interpretacion del Glasma como
conjunto de tubos de flujo de color, cominmente aceptada como paradigma del estado inicial de las
colisiones de iones pesados. Dichos resultados se pueden resumir en cuatro puntos:

e La expresion obtenida para el correlador de dos puntos del tensor energia-momento tiende a
cero en el limite Q) > 1 a un ritmo notablemente lento: siguiendo una curva 1/r2.

e Aunque los resultados obtenidos por medio de la aproximacién Glasma Graph también exhiben
un comportamiento de potencia negativa, su tendencia a 0 es mucho més rapida (o< 1/7? vs.

o 1/r).

e Nuestros resultados podrian entrar en conflicto con la interpretacién del Glasma mencionada
anteriormente. A partir de dicha hipotesis se deducen distancias de correlacion cortas (del or-
den de 1/Q),), mientras que las correlaciones obtenidas en nuestro célculo dan lugar a distancias
de correlacion logaritmicamente amplificadas por un factor In(Qs/m) sensible al infrarrojo.

e Las correlaciones de (relativamente) largo alcance obtenidas en este trabajo podrian tener un
impacto profundo tanto en las interpretaciones como en los resultados numéricos de cualquier
estudio fenomenolégico basado en el correlador de dos puntos del tensor energia-momento del
Glasma. Una aplicacion especifica que esté siendo estudiada por el autor en la actualidad es
el cédlculo analitico de excentricidades, obtenidas como momentos de la distribuciéon de den-
sidad de energia. A partir de estas cantidades se pueden calcular una serie de magnitudes
adimensionales que exhiben sendas relaciones de proporcionalidad con los coeficientes de flujo
anisotropico medidos experimentalmente. Nuestra metodologia de primeros principios resulta
en un excelente acuerdo con datos obtenidos en RHIC y LHC, sin tener que recurrir a mod-
elos fenomenologicos con menos respaldo teoérico (por ejemplo, el muestreo de posiciones de
nucleones aleatorias).

Nuestro siguiente objeto de estudio es el correlador de dos puntos de la divergencia de la corriente
Chern-Simons. Esta cantidad caracteriza la generacion de carga axial originada por fluctuaciones
de evento a evento en el Glasma. En este célculo seguimos los mismos principios aplicados en el
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calculo de correladores del tensor energia-momento. Notablemente, al comparar con resultados de
la aproximacion Glasma Graph las expresiones obtenidas dan lugar a una discrepancia ain mas
significativa que en el caso anterior. En resumen:

e En el limite rQs > 1, nuestro resultado para el correlador de dos puntos de la divergencia de
la corriente Chern-Simons tiende a 0 siguiendo una curva 1/r%. Por otro lado, la expresion
obtenida siguiendo la aproximacion Glasma Graph decrece de acuerdo a 1/r8.

e Cabe destacar que la discrepancia entre resultados es ain mayor para esta propiedad que para
el caso anterior (tensor energia-momento).

e A pesar del comportamiento de la expresion obtenida en el limite rQ), > 1, las distancias de
correlacion estimadas para esta propiedad particular no muestran sensibilidad al infrarrojo,
ni estan amplificadas de ninguna otra forma. Es, por tanto, un resultado mas facilmente
integrable en el paradigma de los tubos de flujo de Glasma.

e Los resultados de este estudio representan una contribuciéon fundamental a la modelizacion
de distribuciones iniciales de carga axial para simulaciones Monte Carlo. Por tanto, pueden
ser aplicados directamente en estudios sobre fenémenos de transporte andémalo como el efecto
magnético-quiral.

Una observacion comun a ambos estudios es el hecho de que, en el limite ultravioleta » — 0,
nuestro método de calculo da lugar a exactamente los mismos resultados que la aproximacion Glasma
Graph. Esto sugiere que el caracter no lineal del Glasma puede ser ignorado en dicho limite,
siendo ademés una buena aproximacion para distancias inferiores a 1/Q. Este resultado confirma
el rango de validez de la aproximacion Glasma Graph, predicho en estudios recientes. No obstante,
la significativa discrepancia observada en el resto del espectro evidencia la importancia del caracter
no lineal de las correlaciones del Glasma.

En las secciones de fenomenologia de esta tesis estudiamos la influencia del régimen de saturacion
sobre los procesos de produccién de particulas observados en el LHC. Especificamente, realizamos
un analisis de los datos de produccion inclusiva de piones neutros obtenidos por la colaboraciéon
LHCt. El rango de rapidities accesible por este experimento se denomina region de rapidities ultra-
altas: 8.8 <y <10.8. En esta regiéon observamos una colisiéon altamente asimétrica en la que uno
de los ntucleos que colisionan se percibe como saturado. Nuestro analisis se basa en el uso de un
c6digo Monte Carlo que combina una descripcion de las colisiones a nivel parténico basada en el
formalismo hibrido del CGC con una implementaciéon del proceso de hadronizacion de acuerdo al
modelo de fragmentacion de cuerdas de Lund. La evolucion de la distribucion de gluones (uGD)
que describe el nicleo saturado con la energia es descrita por medio de la ecuacion reBK del CGC.
Los resultados de este anélisis se pueden resumir en los siguientes puntos:

e Obtenemos una buena descripcion de los datos en todo el espectro de momento transversal,
alcanzando incluso los valores més bajos accesibles por la colaboracion LHCE (p, < 0.1 GeV).

~Y

e Poder reproducir datos correspondientes a momentos tan bajos es una cualidad de la metodologia
detallada anteriormente, en especial del uso del modelo de hadronizaciéon de Lund. Esto supone
una ventaja significativa sobre aquellos métodos de analisis basados en el uso de funciones de
fragmentacion. Este aspecto en particular abre la posibilidad de aplicar nuestro modelo a la
descripcion de observables menos inclusivos dominados por la region de bajo p,, como por
ejemplo la multiplicidad.
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e [l factor de modificaciéon nuclear R, p, se mantiene aproximadamente constante en un amplio
margen de rapidities, lo que puede ser interpretado como una consecuencia de las propiedades
asintoticas de las soluciones a la ecuacion rcBK. Esto sugiere la existencia de soluciones uni-
versales a valores de x lo suficientemente bajos.

e Nuestros resultados muestran que los aspectos principales de las interacciones entre sistemas
diluidos y densos pueden ser descritos en términos de fisica de saturaciéon; en particular, por
medio de la evolucién no lineal de las uGDs.

e La metodologia empleada en este estudio propone un método teéricamente motivado de ex-
trapolar a altas energias, lo que encontraria una potencial aplicaciéon en el estudio de rayos
cosmicos de ultra-altas energias.

Los estudios presentados en esta tesis plantean una amplia variedad de posibles aplicaciones y
proyectos complementarios. Como ha sido mencionado previamente, nuestros resultados sobre las
correlaciones del tensor energia-momento del Glasma pueden ser aplicadas en el calculo de coefi-
cientes de flujo anisotréopico. Una continuacién natural de este proyecto seria la implementacion de
las expresiones obtenidas en un cédigo Monte Carlo para el estudio de fluctuaciones primordiales en
colisiones de iones pesados.

Otro posible uso de los resultados obtenidos en dicho trabajo seria el estudio de colisiones con
un alto grado de asimetria. Se trata de una aplicacién directa del calculo presentado anteriormente,
ya que éste permite asignar distintos niimeros masicos A;, A, a los nicleos. El calculo del limite
A; < A, permite una aproximacion tedrica sencilla al problema de describir el sistema generado en
colisiones proton-ntcleo.

Otra posible continuacion de los estudios anteriores seria el célculo analitico de términos de una
expansion en 6rdenes de 7 en la que los correladores obtenidos aqui actuarian como orden 0. En
dicha expansion [162], las ecuaciones Yang-Mills se convierten en un sistema de infinitas ecuaciones
diferenciales que puede ser resuelto recursivamente. La computacion de o6rdenes superiores en 7
permitiria ganar intuicién sobre la evolucion temporal de las propiedades fundamentales del Glasma.
Este es un aspecto de vital importancia para la conexiéon entre nuestros estudios y los anélisis
fenomenologicos del QGP, generado en escalas temporales del orden de 1/Q);.

A parte de aportar la base para futuras lineas de investigacion, los estudios realizados en esta
tesis también son susceptibles de mejoras, y ampliaciones. Por ejemplo, en el caso del calculo de
correladores, una extension logica de nuestros resultados vendria de considerar modelos de saturacion
més alla del modelo MV. Con respecto al analisis de produccion de particulas en rapidities ultra-
altas, una mejora inmediata seria la incorporacion de las herramientas de precisiéon més recientemente
desarrolladas para la descripcion de evolucion en el régimen de = bajo.
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Appendix A

Light-cone coordinates

In the calculations presented in this thesis we make extensive use of Dirac’s light-cone coordinate
system. In order to define it, let us start with the usual Cartesian system of Minkowski space, where
4-positions are expressed by the components 7= (2°, 2!, 2% 23) = (2", 7., 2%). We choose the metric

tensor to be g,, =diag(1, -1, —1, —1). In this framework, the light-cone coordinates are defined as:

0 .3 0 3
"+ z T —x
= = ——. (A.1)
V2 V2
Note that this transformation is equivalent to performing a 45° rotation of the Cartesian system,
in such a way that the 2%, 2% axes fall on top of the light-cone. This does not affect the transverse
coordinates x!, 22, and thus we can ignore them for now. By differentiation of the previous formulas

we obtain the base vectors of the new coordinate system:

X

7 =1 +2%6s =xte, +a e (A.2)
. or 1 1
= aF T Eeo + Eeg (A.3)
or 1 1
s =T e A4
e e 5¢0 5Cs (A4)
with the corresponding scale factors h, =|€y| =1 and h_=|€_| =1. The components of a general

4-vector A in this coordinate system are straightforwardly obtained as:

A%+ A3 AV — A3
= Aiz—, A5
V2 V2 (4.5)

formulas that can be expressed more succinctly using matrix notation:

AYY 1 (11 AO_SAO A
() =5 4 ()= (6) 0

Here we define the transformation matrix S. We may use S to express the metric tensor in light-cone

coordinates:
) T ~ (1 1 1 0 L1 0 1
9w = (S7)" g (S 1):§<1 —1) (0 —1) (1 —1) (1 0)' (A7)

Including transverse coordinates the complete light-cone metric tensor reads:

A+

/ _
guu -

o O = O



and therefore the scalar product yields:
@ b=a,b' = g0’V =ab” +a"b" —a'bt — a®b?. (A.9)

An important feature of the light-cone coordinates is the fact that they do not mix under Lorentz
boosts in the 2% direction. Whereas in the Cartesian system a boost of rapidity 7 has the following
form:

2" = 2% coshn — 2% sinh (A.10)

2" = 2% coshn — 2° sinh 7, (A.11)

in the light-cone system such boost is succinctly expressed as a scaling transformation:

Pt =e 2t (A.12)

" =elx7, (A.13)
which leaves the product x 1z~ invariantﬂ This yields great simplification when describing highly

boosted systems, e.g. nuclei moving at nearly the speed of light. Another notable feature of the
light-cone coordinates is given by their derivatives:

0 1 0 0

9 (a_ * a_) (A.14)
0 1 0 0

TN (a?‘a—) (A.15)

Let us take &% for instance and perform a Lorentz boost in the 23 direction. We obtain:

o 1 8+8_1 8x06+6x38+8x08+8x38
ox't 2\ 020 028 ) 2 \0x0020  0x00x3  0x30x0  Ox'3 a3
, 1 0 0 0
= (coshn + sinh n)ﬁ (@ + %) = enaas_Jr’ (A.16)
which shows that it transforms like the — component of a 4-vector. The reciprocal is also true,
81% = e‘"a%_. Due to this feature of light-cone coordinates, we adopt the notation 9*=0/9z7.

In the first stage of the calculations featured in this report (part we apply light-cone coordi-
nates in the description of a nucleus moving at the speed of light in the positive 2® direction. Such
system is sitting at 2~ =0 with 2T increasing proportionally to the temporal coordinate z°, which
justifies why in this framework x is typically referred to as ‘light-cone time’. Later on, when we
consider two colliding nuclei, it is useful to use a different system known as ‘comoving’ coordinates.

!This is simply the light-cone form of the familiar Lorentz invariance: z 7z~ =((z")? — (2%)?) /2.
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Appendix B

Comoving coordinates

High energy collisions are almost invariant under boosts in the longitudinal direction, which mo-
tivates the equations of motion derived in Chapter (originally in [92]) being independent of
rapidity n = %10g(m+ / x*) Such invariance makes it convenient to use the comoving coordinate
system (sometimes referred to as Bjorken coordinates), defined by the Lorentz-invariant quantities
known as proper time 7 and rapidity »:

T=/(29)% — (23)2 = V2uta- n= 1log (M) = 1108; <x+) (B.1)

2 20 — 23 2 =

Inverting the previous expressions:

+_ T -_ T
rT = —=e r = —=e B.2
7 7 (B.2)
2" =71coshn  2° = rsinhy. (B.3)
By differentiation of these formulas we obtain the base vectors of the new coordinate system:
F=xté, +a"é_ =71 +neé, (B.4)
or at xr~
cr = — = —¢ —é_ B.5
‘ or 7ot * e (B5)
or n
€y =——=2a"€éy —a é_. B.6
n an + ( )

Note that, in general, curvilinear coordinate systems do not require the natural basis vectors to be
of unit length. The corresponding scale factors are h, = 1 and h,, = 7. By solving the system posed
by the previous expressions for ¢, and é_ and substituting:

A= ATE + A", = Ate, + Ame_ = A* <§(€T + 5,7/7')) +A” (g(eﬁ — 577/7)) , (B.7)
we can obtain the components of general 4-vectors in the comoving coordinate system:
4 — T AT 42t AT (B.5)
T
an = TA 5 A (B.9)

Using matrix notation this transformation yields:

N (7T Moot B.10
- D) e

In Chapter this property emerges as a consequence of our ansatz for the longitudinal structure of the valence
quarks inside nuclei
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and the metric tensor looks like:

b= 0= (7 )OO D)6 ) e

T

As with the light-cone system, the transverse coordinates are not affected by this transformation
and therefore the complete metric reads g, = diag(1, —72,—1,—1). Remarkably, the fact that
this coordinate system is characterized by a non-trivial scale factor (h, = 7) has an effect over the
definition of differential operators such as the divergence of a vector A*. The general formula for a
curvilinear coordinate system (uy, ug, ug) reads:

1 0 0 0
—(hgthl) + _(h1h3A2) + —(hthAg) s (B12)

-A=0,A" =
v 8“ hlhzhg aul 8u2 8U3

where hy, hs, h3 are the respective scale factors of each coordinate. In the comoving system we get:
1 4
0,A! = — (GT(TAT) + 0, A" + (Z(TAZ)) , (B.13)
T

with ¢ = 1,2. It is also useful to know the relation between simple derivatives in the light-cone and
comoving systems:
" or 9 O 9 atd _xt 9 a* r*

670y~ 7 or 2o 1T

= 307 97 + Oy (B.14)

72

Note the position of the n index after the last equality sign. While rising or lowering the 7 index
does not introduce new factors, we must be careful when doing the same for 7. For example, if we
want to express the previous relation using matrix notation:

(Zj::@l)C;>:(i j;><§>a (B.15)

in order to recover the previous notation we must take into account that " = —9, /7%. The inverse
relations read:
rt0” + a0t [ xt |z~
O =————=1\/=—0" —o B.16
T 2z~ + 2zt ( )
Oy =at0" —z"0r. (B.17)

In these expressions we can observe that 0, and 0, are Lorentz-invariant operators, which is an
important feature of this coordinate system.

134



Appendix C

Kinematics of DIS

The physical picture underlying a DIS process depends on the reference frame we choose to work
in. We will focus on the Infinite Momentum Frame (IMF), in which the parton model (discussed in
Section is formulated. In the IMF the proton moves with a very large longitudinal momentum
P in the positive 23 direction. In cartesian coordinates its 4-momentum reads:

P~ (P, 0,0, P), (C.1)

where we are neglecting the proton mass m. For the 4-momentum corresponding to the exchanged
photon we have:

¢ = (% q¢', ¢, 0). (C.2)

Note that, although sometimes we explicitly refer to an electron-proton scattering, the following
discussion is applicable to any case of DIS. These processes are described in terms of the following
Lorentz invariants:

2 2 Q*
= — = . C.3
Q' =—q = 0p (C.3)
With the previous definitions, we have Q?/x = 2P - ¢ = 2Pq° and therefore:
2
2 (C.4)

T oxP
From this expression we can infer that ¢ < @ and thus Q*a ¢?. Therefore, from the uncertainty
principle we are able to estimate the transverse resolution A of the DIS probe as:

1 1

. . Q
As in a DIS process we have Q? > m, from the previous expression we infer that the photon
can resolve very short distances inside the proton; this allows it to interact with its fundamental
degrees of freedom. In the parton model of DIS we assume that said interaction only affects a single
parton, and that it is incoherent (i.e. independent of the spectators partons). In order to justify this
assumption we need to analyze the different time scales involved in a DIS process. From Eq.
we can estimate the interaction time between the DIS probe and the target as:

; 1 2z P
DIS — R —5.
¢ @

. (C.5)

(C.6)

Let us compare Eq. (C.6) with the typical time scale at which partons interact with each other,
t,. We can estimate this quantity by performing a boost from the rest frame of the proton, where
(tp)RF ~ 1/AQCD7 to the IMF"

1 P
t, ~

~ —. C.7
o (1)
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The Lorentz factor corresponding to this transformation is P/m, where m is the proton mass. From
the DIS condition Q? > m we can infer that zAqcpm < Agepm < Q* and therefore:

tpis K tp. (CS)

This expression tells us that the DIS probe is not sensitive to the interactions of the constituents
of the target (in the naive parton model). Eq. is not, however, the quantity that we identify
with the time resolution At in this report. Rather, we prefer to use a time scale that we can directly
compare to the lifetimes of partonic fluctuations inside the proton. We compute this quantity in its
rest frame, where:

P = (m,0,0,0) 7" = (¢°,0,0,¢°), (C.9)
and:
2
0o_ @
= ) C.10
e 2xm ( )
From the DIS condition we can see that ¢° > (). Now, from the definition of Q:
(@*)? = (") =@ >0. (C.11)

These expressions pose a hierarchy of scales ¢ > ¢° > Q that suggests that ¢® ~ ¢°. This situation
is specially suitable for the use of light-cone coordinates (introduced in Appendix |A):

0 3
L BNV C.12
0o_ 3
_ 9 —q
= . C.13
= ©13)
In order to estimate ¢, we use the fact that 2¢7¢~ =(¢°)? — (¢*)*=—Q? to compute:
1 1 Q> rm
7:—+7:—— 2%——:—. 014

Now, from the uncertainty principle (which in light-cone coordinates reads x*pT > 1), we can
estimate the light-cone time resolution of the probe as:
1 2
vt~ — £ (C.15)

q mx

This quantity is usually referred to as loffe time in the literature. In our report we identify it as a
temporal resolution At ~ 1/z, as it provides the estimate lifetimes of the partonic fluctuations to
which the DIS probe is sensitive.

Let us finish this discussion by pointing out a straightforward relation between our DIS invariants
Eq. (C.3). By computing the squared center-of-mass energy of the photon-proton reaction:

s=(P+q)?=2P -q+¢@+m*>=2P -q—Q* +m? (C.16)
we see that Bjorken-z can be rewritten as:
Q?
= v C.17
Tt Q% — m?’ ( )

which justifies the identification of the small-z regime with large energies.
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Appendix D

Derivation of the Wilson Line

In order to solve Eq. (6.21)) we consider a path in the 2~ coordinate defined as a curve v(z~) that
goes from an initial point z;, to x7:

0
Ov(z~)

We rename this path as z; = y(27) and integrate:

Q(’Y(‘T_)? .I‘+, xl) = igA+(’y(:E_>, xL)Q(V(x_)a ZL’+, mi)' (Dl)

/ dzlaiQ(zl,er,xL) = z'g/ dey At (27, 2)Q27 2t x))
Ty 21 Ty
Qa2 1) 1—1—2'9/ o A (o0, 2 )0, 2 ), (D.2)

Zo

where we take the initial point z; so Q(z,, 2%, xz,)=1. This equation defines an iterative process
that starts by substituting Q(z;, 2",z ):

e

1 deydzg AT (27, 00)AT (25, 22y, 2tz ),

T

_ doy AT (27, 20) + (z‘g)?/

Lo

Q™27 2,) = 1—1—@'9/

Zo
(D.3)
where z; defines a new path that goes from x, to z;. Substituting Q(z;, 2", 2, ) we get:

=

1 deydzg AT (27, 0 ) AT (25, )

T

7 dzy AT (27, 210) + (ig)® /

Zo

Qz™, 2T, 2,) = 1+ig/

Zo

+ (ig)® /_ deydzy AT (27, 0 ) A (25, 2)) /_ dzg At (25, 2)Q(z5, 27, 1),

0 0

(D.4)
and so on. Repeating the process, we obtain:
Q2" 2) =02, 2)Ulx,z1), (D.5)
where:
Ulx™,xy) = Z [(zg)"/ dzydzy ..dz; AT (27,21 ) AT (25, xL)...flJ“(zg,xL)] :
n=0 TT22] 22y 222, 12T
(D.6)

We have factorized the % dependence (and some of the z; dependence) into an arbitrary function
© that does not participate in the previously described iterative process (as this factor cancels out

in Eq. ) We can express U more succinctly by using the fact that in Eq. the fields At
are arranged in a decreasing ‘path order’ from z; to z,. We introduce the path ordering function
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P~, that rearranges the fields from left to right according to decreasing values of 7. One of the
properties of this function will allow us to rewrite Eq. in a more convenient way:

/ dzy dzy AT(27)AY () / dzy / dzy P~ (At (2)) AT (25 )) (D.7)
TT>2] 225 2T

as in the right side of the equation there are two cases that contribute equally to the integration
(21 >z, and z; >2;). Extending this to the z~-ordered product of n fields featured in Eq.
we get:

[(z’g')" /: dzy dzy ...dz, P~ (A (21 ,:CL)/F(ZQ,xL)...fl*(zn,a:L))]
= i (iz!)nP_ [(/f dzfﬁ(z,xﬂ)n]
=P exp {ig /: dz= A+ (2, xL)} , (D.8)

0

where we have defined the path-ordered exponential. The final form of the solution is:

Qzt, 27 ,2) =0(z", 2 ) P exp {z’g /f dzfl*(z,:ﬂ)} =0tz ) U(z",x1). (D.9)

0

U(x~,x,) is the SU(N,) group element called Wilson line. The initial integration point x; is
arbitrary (it could be x5 >2z~, in which case P~ would stand for a decreasing ordering in x~) until
we establish the condition for gauge fixing. However, residual gauge freedom allows us to choose
©=1, resulting in Q(z*, 27,2, )=U(x",x,).
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Appendix E

Transverse differentiation of Wilson lines

As a cross-check, in this appendix we explicitly perform the calculation of the covariant gauge
field, which includes a derivative of the Wilson line U on the transverse plane: A'(x~,x.) =
i/gUT(x~,2.)0'U(x~,x.). In order to do this calculation it is convenient to expand U as:

OU(x™,x,)=0" [Z(zg)"/ dzl_/ 1 dz;.../ nildz;fllflg..fln
n=0 zo Tg Ty

n

:Z(z'g)”/ dzl_/l dz;.../ o dz, Y (A0 Ay Ay, (E.1)
=1 zy zy @

0 m=1

where we have defined A; EA(Z’i, x,) = A p%. Let us write down a few terms of this double sum:

0+ (ig) / A0 + (ig)? ( / Cas / ) dz;(@iﬁlﬁg—i—z‘il@iﬁg))

0
+ (Zg)3 (/ le/ de/ dzg(ai;ll;lgflg -+ Alaizigzzig + A1A281A3)> + ... (E2)
Zo Zo Zo

From this expression it is easy to see that, in general, the sum of all terms proportional to 9A,,
takes the following form:

/ dzl_fll/ 1 dz;flg.../ M7ldz;8i14~lm (Z(zg)”/ mdz;ﬂflmﬂ.../ " dz;fln>, (E.3)

0 0 0 n=m 0

which allows us to reorganize Eq. (E.1)) as:

OU(x~,x,) Z/ dz7 Ay /_m dz 0 Ay, (Z(zg)n /_m dz;wrlflmﬂ.../_n_ldz;fln), (E.4)
n=m Zo Zg

which can be expressed as a function of a new Wilson line by using the path ordering function P™:

_ Z/ dz;[h.../m dz-0' A, (Z%/ dz;LH...dz;P_(flmﬂ...fln)) (E.5)
m=1" %o Zo R

n=m
and redefining the index of the inner summation as n’=n—m:

= Z/ dZ;Al /_m_ldzmalzim(gg)m (Z (7’5,)' /_m dZ;dZ;,Pi(Al Arﬂ))

m=1""%o 0 n/=0 ) 0
0 x = 5 N 5 24 o

= (z’g)m/ dzl_Al/ dz;Ag.../ dz, 0"'AnU (2, x,). (E.6)
ot %y % vy



Now, redefining m'=m—1:

= Z(zg)m// dzlzzll.../ m/_ldzm,[lm// mldz’(z'g)aiflU(z’,xL).
m/'=0 T T x

0

0

0

For simplicity, we also renamed the smallest integration variable z,. as z~. Now, by using a theta
function we can redefine the upper integration limit of the integration over z~, as:

_ / ) dz[Z(z’g)m/ / s Ay / T e A 900y — 2O AUG 2| (B

0 m!'=0 Zo 0

In this expression it is apparent that the integral has support only for z_, greater or equal to 27,
which takes values between = and x,. As every other integration variable is greater or equal to z,,
due to path ordering, we can lose this instrumental theta function by modifying the lower integration
limit of the nested integrals:

:/ dz- Z(ig)j/ dzlfh.../“dzjfij g AV U=z,
Ty | j=0 z~ z~
I I Lo () Sy S I [ D
= dz Z i dzy .dzy P (Ay. Ay) | ig 0" A(z7) U2, 2,
Ty | j=0 . e
:ig/ dz"U(z™, 27520 A7) U (2, x5 2.). (E.8)

0

Substituting the previous result in the covariant gauge field formula, we get:

Ai(x_,xl)zéUT(x_,xL)c?iU(x_,xL) :—/ dz UM w2 ) U™, 2752, )0 A7) Uz, 2552,

0

— _/ dz" UM (27,252 )0 A7) U (2, 255 2,)
aiﬁ<z_7 xl)

vz U(z",xzq;2,). (E.9)

:/ dz" UM (27,25 2,)

0

In the omitted intermediate step we have used Uf(a,b;z,)=U(b,a;x,) and the fact that, due to
path ordering, we can ‘glue’ Wilson lines together as U(b, c;z,)U(a,b;x,)=Ul(a,c;z.).
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Appendix F

Calculation of chromo-electric and -magnetic fields

Starting from the components of 7" expressed as functions of E? and B*, the next step is to
calculate these fields at 7 = 0. We start with the transverse components of the chromo-electric
field E* (with i = 1,2).

: - 0x° Oz 9z° ., 020 . 1 1. :
EZ = —.FOZ = _al‘a 8xPFUp = — (a?F—H + 8I__F > = —E (ZE+ (;87—0[ — [D ,Oé])

2~ G&oﬁ + [Di,a])> = — cosh (n)0,a" + (%) D, al.

Now, taking the limit 2+ — 0:

xt —ax” . ,
) 1D igfasy o). )] =o.

E' = —cosh (n)0- (o (z.) + ab(z.)) — <W

As for the longitudinal field F*:

9z° Oz* 9z° Ox* 9z° Ox*
EP=—F%=— FoP=—_———F"+_— ) =Ft"=-2a—710,0.
0x° OxP <8x+ 0~ * Oz~ Ozt ) amTea
Taking the limit % — 0:
EF =g [oni(z,), ab(z,)] = —ig [ef(z.), dh(z, )] = —2A". (F.1)

Now we focus on the chromo-magnetic field. Its transverse components B* (with k = 1,2) read:

- o O Ox® o (0% . Ox® G :
Bk — 1szzz _ izk = For — izk FH— Fz— FH- A
‘ < a7 O ‘ Ozt Ox~ V2 ( )

e O ) B ) ) B N e [

As it was also the case with E?, this expression vanishes in the limit ¥ — 0. Finally, for the
longitudinal field B,:

1 .. .. 1

B — ZUrp — F12 o F21 — F12.
5€ 5 ( )
In order to compute this it is preferable to start from F%:
F'9 = 0'ad — &a’ —igla’, o]

We take the limit z+ — 0:
Y — ai(a{ + oz%) — aj(oz’i + aé) — ig[o/i + oz;, a{ + aé] = (?’dj + 8@% — 8jo/i — 5jozé —ig ([ozil, a{]
+[Oé§,0é%] - [06‘17042 062,042 yﬂ/—i_% Zg a17a2 - [OK{,O&;}) :

And finally: o .
B* = F"? = —ige” [a}(z.), a)(z.)] . (F.2)
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Appendix G

Identities relating Wilson line representations

In general, the tensor product of irreducible representations is not necessarily an irreducible rep-
resentation. In fact, it can be decomposed into the direct sum of irreducible representations as:
R®R =®R,. The Clebsch-Gordan coefficients (CG from now on) C's; define the transformation
between the unitary bases of each representation space:

é'L] = Zcf?] aa7 (Gl)
Ra

where ¢é;;, éfe are the basis vectors for the tensor-product space R ® R’ (with each group identified

with indices i, j) and the irreducible representations R,, respectivelyﬂ This transformation being
unitary implies:

(ngj) CB ij 6RQR5504,3a (GQ)
Z (0533) Cf,zz = 0ikj1- (G.3)

Rq
The latter can be interpreted as a completeness relation of the projectors built as ngz = (Cf‘;j) C’a N
(which gives rise to the Fierz identities). Any vector V' of the tensor-product space can be expressed
in both bases as V =V;é;5=> 5 VR gRa Tt is straightforward to use the previous properties of the
CG coefficients to obtain the following relations between components:

VEe — Cff;j Vij (G.4)
Vij = Z (Cféy) Vi, (G.5)
Ra

We can use these expressions to derive the relation between group elements in different representa-
tions. In general, group transformations U affect these coefficients as:

Vo = Uls Ve (G.6)
Vij = Ui}zUﬁ/Vkl- (G.7)
If we perform a transformation in both sides of Eq. (G.4]) we get:

Ulsvfie = 0l URUT V. (G.8)

By writing VBR“ in the {k, [} basis (according to Eq. 1) and crossing out the V},; coefficients in

both sides we get to the following useful identity:
UlsClie, = Clle URU

a,t] ]l )

(G.9)

INote that this is a generalization of the expansion coefficients of total angular momentum eigenstates in a tensor
product basis.
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which tells us how CG coefficients transform. Now let us focus on the particular case of the tensorial
product of the fundamental and anti-fundamental groups of SU(N,) (which may represent a quark-
antiquark dipole), whose decomposition in irreducible representations yields the sum of the scalar
and adjoint representations:

3®3—=8dD1.
The corresponding CG coefficients read:
cw- L (G.10)
i = NV :
(8) _ a
Oa,z'j - \/5 tji? (Gll)

which, along with Eq. (G.9)), give us the expression relating the action of SU(N.) elements in the
fundamental, anti-fundamental and adjoint representations. In particular, for Wilson lines we have:

V2Uehth, = \/575?1,(]% 4= \/Et?iUikUT

oo

UTt*U = U™ (G.12)

Now, from the completeness relation Eq. (G.3|) we get the following familiar identity:

1
F(Sijfsug + 218ty = 0udj, (G.13)
which is often referred to as ‘the’ Fierz identity of the SU(N,) generators. This identity tells us that
the SU(N,) generators in the fundamental representation complemented with the identity matrix
form a complete base of the N.x N, matrix space. Multiplying both sides by U}, U;; = U;Z-Ujj/ and

applying Eq. (G.12) we get:
1

1
N —(Si/jlélk; +2 Uabt?’j’t%l = UiT’lUkjl’ (G14)

U 00Uy 0 + 2 ULt Usrtly = Ubi0udnUsy N

A%

a Fierz-like identity that relates Wilson lines in the fundamental and adjoint representations. From
here we can obtain a closed expression for the components of U in terms of the fundamental Wilson
lines by multiplying both sides by t;’kt?,i,:

1
v eth Oy 2 0t Uty = 10 th, Ul Unyr FWJ& UTe{t"t*} Tr{t""} = Te{Ut*Ut"}

U = 2Te{Ut"Ut"}. (G.15)

As a trivial cross-check, we can obtain Eq. (G.12)) from here by contracting one of the indices of U
with a color matrix and applying the Fierz relation Eq. (G.13)):

1
Ut = 2 Te{UTte U " = 20T 4%, Uptbit®, = ULt%, Uy, (@n@m — —5%5%)

(] 157 Nc
1
= U} Uk — FW&M = UTt"U. (G.16)

The last term cancels due to the cyclic property of the trace, which makes it the same as the trace
of a single color matrix (which is zero).
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Appendix H

Operations involving the 2-D Laplacian Green’s func-
tion

Throughout the computation of the covariance of 7" we encounter several non-trivial calculations
involving the Green’s function for the 2-dimensional Laplace operator G(z, — y,). For instance,
when computing the correlator of two gluon fields (Eq. (9.1])), we find:

1 1
VI V2

Z,+u,

(008~ .)) = [ A2 6= )Gl o (5 ) =) (@D

This expression includes two undetermined functions, h(b,) and f(x, — ¥y, ), introduced in the two-
point correlator (Eq. (9.6))) in order to generalize the MV model. However, we do not take these
functions as completely general. For h(b,), in addition to overall good analytical properties, we
assume a slowly varying behavior over lengths of the order of a length scale 1/m or smaller (as
proposed in [98]):

\h(b.)] > m MO h(b,)| > m 20D h(b,)| > ... (H.2)

where we take m as the infrared regulator. We require that:

1 1
— < — <R H.3
QS<<m<< Ao (H.3)

where R, is the nuclear radius. Thus, the interaction distances of interest in our calculation obey
r = |r.—y.| < m~!. This requirement, as well as the assumed behavior for h(b, ), yield a significant
simplification to Eq. (H.1]). To see this, we expand h ((z,+ u,)/2) around b, =(z, + y,)/2:

h(b) =h(b.)+ (¥, —b)h(b.)+ .. (H.4)

where ¥ = (z,+u,)/2. Cutting the expansion at first order, Eq. yields the following terms:
) [ 2P Gle — )Gl — ) (21— )
OB [ E2.du.Gle, — )G 0.~ )~ b e~ ), (15)
First, we focus on the leading order term:
) [ 20,6, — )Gl = ) e = ) = Wb (e, 0., (16

In order to further transform L(z,—y,) we go to momentum space. The Green’s function G(z,—vy, )
admits a simple Fourier representation:

d2]{;J_ etk (zi—yL)
G(xi_ - yJ_) = _/ (27T)2 k?2 ) <H7)
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which we substitute in L(z, —y, ), yielding:

d?z, d*uy PhLdq g e
Lo ~w) :/(%)2 G e g C et e )

d? q. » ety
/(>f()q | (IL8)

In the last step we introduced the inverse Fourier transform of f, defined as:

flg) = / Pw, e M f(w)). (H.9)

Now we turn to the linear term of the expansion (second term of Eq. (H.5)), which we want to
compare with A(b,)L(r,). By performing a simple variable change, it can be written as:

1, 5 o v tw, Ty v, —w, 1\ (vy)

where v, =2, +u, and w, =z, — u,. Substituting Eq. (H.7) and performing some transformations,
we get to:

2 2 2 A
?wmﬂé@ﬂ?d?wﬁm”wwq“%>f< ko). (H.11)
n q

The integration in v, yields a distribution derivative of the Dirac delta function:
/dZULe"(l“Jrqi)'” (v)' = —i(27)?0"6 (k. + q.). (H.12)

Substituting this result in Eq. (H.11)) and integrating by parts, we finally obtain:

1iﬁubﬂdwﬁﬂ ) L), (H.13)
S H ey BN DTS PR A R U " :
and thus, Eq. yields:

(h(bL) + %ri@%(bﬁ) L(r.) = h(b.)L(r.). (H.14)

Here we applied the fact that 7 &h(b,) < |r.||0h(b.)| < m~|dh(b.)| < |h(b.)|. We will take this
expression as a good approximation of Eq. (H.1). The next step in the calculation of the two gluon
field correlator Eq. (9.1) is the computation of the double derivative:

.01 (h(b.)L(r.)) = (0,05h) L + (82 h)(OLL) + (9,h) (DI L) + (8,07 L)
~ h(b,)0L0) L(r.). (H.15)

The reasoning behind the last approximate equality follows from the dimension of L(r,), its IR
behavior, and the fact that we imposed an infrared cut-off mass scale m. In order to be able to
discuss L(r,) in the infrared region we need to assume a certain behavior of f (g.) in this regime.
We assume fIRN 1, just like in the MV model, as we do not expect other possible choices of models
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to differ in that regime. Then, we can safely assume that Locm ™2, which makes the term (0.07h)L
suppressed with respect to 9,0 L (a dimensionless object). Also, this takes us to 0’ Locm ™", making
the terms of the form (07h)(0'L) negligible as well. Thus, we are left with the following double
derivative:

Y] quL R eiQJ_'T'J_ i j
0,0, L(r.) :/Wf(QL)Tq q- (H.16)
From its symmetries and dimension, the previous expression can be parameterized as:
i aj ij (52] TiT’j
0,00 L(r.) = A(r.)0" + B(r.) -5 ) (H.17)

A priori, this decomposition is not possible when r — 0. However, as it is a symmetric object in 1,
j, we can make a different parameterization in this limit:

P_I}I(l) 9,00 L(r.) = CoY, (H.18)
that we can relate to:
L 0 o Oy or’ L
I2AY) - s — At A)
0,00L(r,) = 5 <8yj 5,7 8xj) L(r,) = =0,0)L(r,). (H.19)
Now, taking the limit » — 0:
1513) 0,00L(r.) = — 71n1_I>I(l) 9,00 L(r,) = —Cd" (H.20)
and contracting with §%: ) o
oY liH(l) DI L(r,)=—20=0L(0,), (H.21)
r—
we have C' = —192L(0,), which is the notation we use in the body of the article (the same as

in [163] We can express these coefficients in terms of f (q.) by computing the following projections

of Eq. (FLT6) and Eq. (FLTS)
1 ... . 1 dQQJ_ o ety

N ==0Y9 0 L(r,) == N H.22

Alr) =500 =3 [ G (1.22)

5u J d? oA ety i i <ij ged
s =2(5 - T:)a%(”‘/( o) e (30275 )

dQQJ_ R ety - q]rj
_/(27_‘_)2 f(qL) q4 <

d2qL . 6iqrcos€ d q. - 6iqrcos@
/(27)2f(q ) Z ( cos” ) /(27T)2f(q ) 2 cos(26) (H.23)
— 815 T I — — J—
C = 507 lm AL (r,) = 5 / ol @) g (H.24)

Note that, as lim A(r,)=C and lim B (r.)=0, this parameterization of 9,0) L(r,) is continuous in
r— T—
r. We can relate C' to the factor I', defined as:

o =) =2(20.) - Lo~ ) =2 [ G0 0 - cwny )
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by taking the limit »—0:

A~ A~

m (2, —y,) = 2/ (657?;2 fa.) (—i(ql- )+ %(qg m)Q) = %2/ (225;2 fa.)

r—0 q4

where we assumed that f(q,)=/(|q.]).

The MV model

In the specific case where f(z, —w,)=0%*(z, — w,), i.e. the MV model, we have fA(ql) =1 and thus
we can explicitly compute our coefficients:

1
A(ry)w = ——G(TJ_) (H.27)
2 d d«9 iqrcosf 1 [>~d 1
TL MV / 1 6 S(20> :2_/ ;qjg(q T) = 4— (H28)
7 Jo T
1
C, = 47r — = —571}_{1;1)(?(“) (H.29)

Both A(r,),, and C,, yield an infrared logarithmic divergence, which we deal with by introducing
a regularizing mass in the Fourier representation of G(r,):

d?*q, ehrre 1
Glr.) / (27)2 ¢* + m? 27 o(mr), (H.30)

where K, is a modified Bessel function. For simplicity we choose m to be the same mass scale
introduced earlier in Eq. (H.2)) (although it could be an unrelated infrared scale). In our calculation
we will keep only the leading behavior in the m — 0 limit, which is:

1 mr 1 mr
A m =g (n(5) +0) = =2 (), (H31)

(where 7 is the Euler constant) and thus:

o 1 S g
OLOL(r ) ~ - { 5 n (”””) + (— T )} . (H.32)

T 2 2 r?

The coefficient C,,, corresponds to the UV limit of the previous expression (r—0):

X 2
i 5j ijoa O o
ll_r%ﬁ A L(r, )y = O iy 11_1}1% {ln <mr>} , (H.33)
and thus:
1 m2r?
2 _ .
L0,y = yym llg(l) {ln ( 1 )} : (H.34)
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which also exhibits a logarithmic divergence. As for I', we have:

d’q, 1
(2m)% (g2 +m?)?

1 T

2mm?  2mm

F<xl - yL)Mv = 2/

The leading behavior of the previous expression in the m — 0 yields:

r? m2r? r? 4
F(xJ_ - yJ_>Mv ~ _g (log ( 4 ) + 2’7 - ]-) ~ glog <m2r2) :
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(1—erm) = — —K,(mr).

(H.35)

(H.36)



Appendix I

Baryon production models

In this appendix we outline a brief, qualitative description of the hadronization mechanisms consid-
ered within the Lund fragmentation model.

Meson production

In the framework of the Lund fragmentation model, meson production is quite simply described in
terms of the breaking of a string between two quark/antiquark endpoints. The breaking mechanism
is based on the generation of quark-antiquark fluctuations that are put on-shell by the color field
between the string endpoints. The concept of quantum tunneling allows us to give a transverse
mass m, to these quarks: we say that the quark-antiquark fluctuation tunnels out to the classically
allowed region by drifting apart in such a way that the potential between them can be transformed
into m,. The tunneling probability depends on m, and on the string tension x as:

P~ exp (—”mi) (L.1)

K

Where k ~ 0.2 GeV?. Remarkably, this simple picture implies a suppression in the generation of
heavy quarks through this mechanism. Strings keep breaking successively until tunneling is no longer
energetically favorable and we are left with a variety of color-singlet bound states.

A consistent description of baryon production in the same terms has not been found yet. However,
several prescriptions have been developed.

Baryon production: The diquark model

The simplest possible approach. The diquark in a color anti-triplet state is considered to be an
effectively fundamental object (just like an ordinary antiquark), and therefore we consider diquark
pair production as an additional string breaking mechanism. Baryons are produced by combining
diquarks and quarks. A feature of this model is that baryons and antibaryons are produced adjacently
arranged along the string, with no meson production in between. This is the key difference with the
next production model:

Baryon production: The popcorn model

In this model, which is more general and relatively closer to QCD, we consider quarks to be the only
fundamental objects, and therefore only quark-antiquark fluctuations are considered.
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Baryon production in the popcorn framework is based on more complicated color constructions.
When the string endpoints are quarks with colors r and 7, the breaking of the string by the generation
of a r7 pair in between would lead to the production of two mesons, but within this model we also
consider the possibility that the generated pair is, for example, gg. Then, as r+g = b, the generation
of a new bb pair in between would lead to baryon-antibaryon production in the exact same way as in
the diquark model (considering the gb, gb pairs as diquarks). Nevertheless, the main difference with
the diquark model is the possibility of mesons being produced between baryons and antibaryons,
which may happen through an additional fluctuation. The simple popcorn model only allows for
one intermediate meson to be produced, but the advanced version allows many.

In order to simulate the popcorn model in a Lund fragmentation-based Monte Carlo, we consider
the probabilities of generating baryon-antibaryon pairs with (P(BMB)) or without (P(BB)) an
intermediate meson to be related by the following ratio:

P(BMB) A 12)
P(BMB)+ P(BB) 0.5+ X '

This ratio is simply the fraction of events in which a meson is produced between the baryon pair.
The default value for the A\ parameter in the event generator PYTHIAS is A = 0.5, meaning that

P(BMB)=P(BB). If we make A\=0 instead, we get P(BM B)=0, meaning that no intermediate
meson production is allowed; this situation corresponds to the application of the diquark model.

One conclusion of this comparison is that the energy distribution between mesons and baryons
in our Monte Carlo simulations is clearly model-dependent, as many more mesons are generated
at every event when using the popcorn model with a relatively high A value. Another example of
a model-dependent observable in the outcome of the simulations presented in Chapter is the
baryon-antibaryon transverse momentum correlation.
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