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muchos más compañeros que merecen unas palabras. Gracias a Salva por los momentos com-
partidos. Muchas gracias a Ana, por saber entenderme, gracias por siempre contar conmigo,
por esos cafés y por aguantarme cuando llegaba tarde. Muchas gracias a Alex y Felix, que
también se tragaron mis lamentos en más de una ocasión. Gracias a Mario, tu también mereces
estar en estas lı́neas, me siento afortunado de haberte conocido durante tus visitas en Granada.

Thanks to my other colleagues from abroad. To my friend Med, I really appreciate all the
moments that we have shared together and I am thankful for constantly encouraging me. I
wish you all the best in your career. Also thanks to Havva, good luck with the end of your
thesis. I hope that next year will be a nice one in Lyon.

I would also like to express my gratitude to all the people that I have met during my re-
search stay in the university of Maryland. I am really grateful to CSCAMM for the hospitality
and, specially, to Pierre–Emmanuel Jabin. His mathematical wisdom is inspiring to me and I
feel lucky for having the chance of learning from him. Also thanks to all the students I met
there, specially to Hsin-Yi and Siming for all your help in a country that I was not used to. I
am happy for having met Alessandro as well. Thanks for sharing your lunches with me. I
need to say thanks to Javier and Jan for letting me work with them. Muchas gracias Javier por
todo lo que he aprendido de ti en este tiempo. Te deseo todo lo mejor a ti y tu familia. Mucho
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Dissertation Summary

This dissertation is centered around the analysis of non-linear partial differential equations that
arise from models in physics, mathematical biology, social sciences and neuroscience. Specifi-
cally, we address a particular family of models that have been coined in the literature with the
name of “collective dynamics models”. The main idea is that from basic rules stating how a
system of particles interact, the population often has the ability to self-organize collectively as
a unique entity and it amounts to different emergent phenomena depending on the particular
context., e.g., swarming, flocking, schooling, synchronization, etc.

Although these models appear in completely different settings, what make them so special
from a mathematical point of view is the fact that their structural resemblance allow us to
tackle them with common abstract mathematical tools. Indeed many relevant improvements
and mathematical methods have emerged from this interface as we tackle the different effects
that we can encounter (e.g., kinetic theory, stochastic equations, mean field limits, propagation
of chaos, hydrodynamic limits, potential theory, optimal transport, etc).

We will draw our attention specially to kinetic collective dynamics models where interac-
tions are mediated by singular kernels. This adds new analytical challenges that cannot be
solved with standard methods and require novel mathematical tools. In particular, some of the
problems that we will study in this thesis are: well-posedness, stability, scaling limits connect-
ing different scales of description (microscopic, mesoscopic and macroscopic), asymptotics of
solutions, etc.

Although equations arising in fluid mechanics can be considered as a special case of col-
lective dynamics, we will treat them as a complementary topic. Namely, most of the collective
dynamics models have well-defined associated macroscopic versions governed by a system of
conservation laws similar to Euler or Navier–Stokes equations. This suggests that the study of
fluid mechanics can shed light on the understanding of collective dynamics. In this thesis, we
focus on the study of stability of a particular class of stationary solutions to the Euler equation
that are called Beltrami fields. As it will be clarified later, such solutions have proved extremely
relevant in the Lagrangian theory of turbulence.

List of works contained in this thesis

• Chapter 1: article [4] in collaboration with Giacomo Albi, Nicolla Bellomo, Luisa Fermo,
Seung-Yeal Ha, Jeongho Kim and Juan Soler, to appear in Mathematical Models and Methods
in Applied Sciences.

• Chapter 2: article [255], in collaboration with Juan Soler, published in Mathematical Models
and Methods in Applied Sciences.
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• Chapter 3: article [241], in collaboration with Jinyeong Park and Juan Soler, submitted for
publication.

• Chapter 4: article [254], submitted for publication.

• Chapter 5: article [222], in collaboration with Javier Morales, submitted for publication.

• Chapter 6: article [118], in collaboration with Alberto Enciso and Juan Soler, published in
Communications in Mathematical Physics.

Further works in preparation

• Hydrodynamic limits of the thermomechanical Cucker–Smale model with fast and slow tempera-
ture relaxation, in collaboration with Jeongho Kim and Juan Soler.

• Modeling of morphogen transportation along moving cytonemes in Droshophila melanogaster, in
collaboration with Adrián Aguirre-Tamaral, Manuel Cambón, Isabel Guerrero and Juan
Soler.

How to read this thesis

Each chapter of this thesis is self-contained and can be read separately. Indeed, the main con-
cepts and equations that each part refers to are introduced in the corresponding chapter. How-
ever, we suggest the reader to follow the logical order in which the results are presented since
some relations are drawn between the different parts as we read these pages.

For clarity of the presentation, we have decided to divide the contents into distinguished
parts, that the reader may want to swap if necessary. Specifically, in Chapter 1 we review the
preceding literature and we state the main problems of this thesis. In Part I (Chapter (2)) we
focus on the study of the Cucker–Smale model of flocking. Part II (Chapters 3–5) contains
several different contributions to the study of the Kuramoto model of coupled oscillators and
some related versions. Part III (Chapter 6) centers on the analysis of existence and stability
results in fluid mechanics and Part IV (Chapter 7) collects a list of further works in preparation
that have emerged as a consequence of this thesis. We end that part with some conclusions and
perspectives for future work.

For an easier readability, we recall the main necessary notation to be used throughout this
dissertation in Section Conventions and notation. Also, to alleviate the presentation of the re-
sults, we include further important concepts and tools in Appendices A–H. Some of the results
therein are classical whilst some others are original contributions of the author that will come
to play along the reading.

Summary of the thesis

In the sequel, we outline the contents of the chapters that defines this thesis.
In Chapter 1 we introduce the state of the art for the main subjects within this thesis. Ac-

cordingly, we split it into two sections. The first one addresses the more recent contributions on
the study of ODE and PDE-based models for collective dynamics in life sciences at each of their
scaly of description (microscopic, mesoscopic and macroscopic), with additional emphasis on
two prototype models: the Cucker–Smale model and the Kuramoto model. The second section
focuses on the current studies of stability of stationary solutions in fluid mechanics, with spe-
cial attention to the problem of existence of linked and knotted vortex structures of complicated
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topology in hydrodynamics. In this chapter, we state the main problems of this thesis and we
compare them with preceding literature.

In Chapter 2 we derive some hyperbolic hydrodynamic limit of vanishing inertia type for
the kinetic Cucker–Smale model towards singular weights. This rigorously justifies the macro-
scopic system





∂ρ

∂t
+ div(ρu) = 0,

φ0 ∗ (ρu)− (φ0 ∗ ρ)u− u−∇ψ = 0,

ρ(0, ·) = ρ0,

where ρ = ρ(t, x) and u = u(t, x) respectively represent the density and velocity field of the
population, F = −∇ψ is some external force and φ0(r) = r−2α is a singular influence func-
tion. Such system can be regarded as a law of conservation of mass coupled with an implicit
integral equation for the velocity field, that is governed by a commutator of singular integrals.
First, we address the asymptotic limit for different appropriate scalings of the associated ki-
netic equation. This produces a method to construct weak measure-valued solutions to the
above macroscopic system for α ∈ (0, 1

2). Second, we also introduce a local-in-time existence
results in higher regularity spaces. Let us remark that this is one of the first results in the lit-
erature concerning hydrodynamic limits of the Cucker–Smale model with singular influence
function, see also [126, 127, 186].

In Chapter 3 we introduce a new version of the Kuramoto model [193, 196] of N coupled
oscillators with applications to neuronal synchronization. Specifically, we substitute uniform
weights by phase-dependent weights that exhibit singularities at configurations with same
phase and takes the following form





θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi),

θi(0) = θi,0,

where h(θ) :=
sin θ

|θ|2αo
,

for i = 1, . . . , N and α ∈ (0, 1). We justify such a model from first principles via a singu-
lar fast-learning approximation on a learning rule of weights that is governed by a plasticity
function verifying Hebb’s rule [166]. Such many-particle system shares some similarities with
the Cucker–Smale model with singular influence function, see [226, 244, 245]. We elaborate
on them along the Chapter. First, we derive a suitable well-posedness theory of global so-
lutions after eventual collisions. The presence of singularities represents a clear obstruction
to apply the classical theory and we decide to tackle the problem via the concept of Filippov
solutions. We remark here that the interaction kernel is merely Hölder continuous and it rep-
resents severe problems with regards to uniqueness. To solve this fateful lack of regularity, we
introduce a one-sided Lipschitz property, that arises from the structure of the kernel and is suf-
ficient to derive uniqueness. Second, we explore emergence of synchronization. Interestingly,
new phenomena is observed since oscillators have the ability of synchronizing in finite time.
We provide sufficient conditions on the system’s initial configuration that guarantee the global
phase-synchronization in finite time. Indeed, we derive useful characterizations of the cluster-
ing and sticking phenomena of oscillators of each of the different regimes of singularity in the
model, that open the scope in the paradigm of synchronization phenomena.

In Chapter 4 we present the associated kinetic counterpart of the above agent-based model
in Chapter 3. Such equation consists in a Vlasov-type kinetic equation with nonlocal interac-
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tions described in terms of the interaction kernel h, i.e.,




∂f

∂t
+

∂

∂θ
(Ωf −K(h ∗ ρ)f) = 0,

f(t, θ,Ω) = f(t, θ + 2π,Ω),
f(0, ·, ·) = f0,

where f = f(t, θ,Ω) is the distribution function and ρ = ρ(t, θ) is the phase density. We remark
that the interaction kernel is not Lipschitz and its study is a nontrivial matter. The contents
are sorted according to different aspects of the macroscopic system. First, we propose a well-
posedness theory of global weak measure-valued solutions that remains valid after collisions,
for all the values α ∈ (0, 1

2 ]. We conduct our proof based on the existence of Filippov flows, see
[251]. Second, we address the stability (or Dobrushin-type) estimates of the kinetic equation
with respect to two different transportation distances: the quadratic Wasserstein distance and
a new fiberwise quadratic Wasserstein distance that we propose here and has proved specially
well adapted to the nonlinear problem. Again, the one-sided Lipschitz property of the kernel
h is the heart of the matter in these inequalities. We apply such stability results to derive two
important consequences. On the one hand, we obtain uniqueness of the above Cauchy problem
for general initial data. On the other hand, we quantify the mean field limit as N → ∞ of
the particle system in the above Chapter towards the kinetic equation. Finally, we combine
the preceding study of synchronization for the agent-based system with the above stability
estimates to extend an analogue finite time phase synchronization of measure-valued solutions
under certain assumptions of the support of the initial data. The case α ∈ (1

2 , 1) is treated
separately using the ideas in the above Chapter 2. We remark that a close approximation was
conducted in [64, 67] for the aggregation equation in the Euclidean space. However, we do not
use any gradient flow structure of our system.

In Chapter 5 we return to the original Kuramoto model, that corresponds to h = sin. More
specifically, we consider its kinetic counterpart, also called Kuramoto–Sakaguchi equation:





∂f

∂t
+

∂

∂θ
(Ωf −K(sin ∗ρ)f) = 0,

f(t, θ,Ω) = f(t, θ + 2π,Ω),
f(0, ·, ·) = f0.

The goal of this part is to analyze the long-time asymptotics of the problem for general initial
data f0 ∈ C1(T×R). To the best of our knowledge, this is the first result in the literature where
general initial data are considered (in contrast to preceding results with phase supports con-
fined to the half circle) and explicit rates of convergence are computed. Historically, the main
obstructions to apply classical theories are of two types. On the one hand, the heterogeneity
introduced by the variable Ω implies that Kuramoto–Sakaguchi equation is not a Wasserstein
gradient flow over the space of probability measures (in the terms of Otto calculus [237]). On
the other hand, for identical oscillators the variable Ω can be neglected and the equation be-
comes a formal gradient flow but, unfortunately, the energy functional does not satisfy the nec-
essary convexity assumptions. Our proof joins two different components. Firstly, we quantify
a finite time that the system takes to enter a regime in which mass concentrates exponentially
fast in a neighborhood of the average phase. To do so, we derive a system of differential in-
equalities for some useful quantities of the system that quantifies four different principles: soft
entropy production, instability of equilibria with antipodal mass, emergence of attractor sets
of characteristics and an accurate control on sliding L2 norms along sets that evolve along the
flow. Such a result extends to Kuramoto–Sakaguchi the heuristics in [104] for the Boltzmann
equation. Secondly, once the system has entered into such a concentration regime, we derive
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generalized log-Sobolev and Talagrand inequalities (see [238] for the Fokker–Planck equation)
for an appropriately defined dissipation of the system and the fiberwise distance in the above
Chapter that allow concluding the convergence of the system to the global equilibrium.

In Chapter 6 we move to a different topic in the setting of fluid dynamics. Specifically, we
face the study of stationary solutions of the incompressible Euler equation for ideal fluids in
thee dimensions and we focus on a particularly interesting class of stationary solutions, that is,
(generalized) Beltrami fields {

curlu = fu,
div u = 0,

where u represents the velocity field in R3 and f is any function that we call the proportionality
factor. Their relevance arises in the Lagrangian theory of turbulence since they have important
implications due to Arnold’s structure theorem. Roughly speaking, it says that any incom-
pressible fluid has to be either laminar (in the sense that the full space is smoothly foliated by
curves coming from a first integral of the velocity field) or a Beltrami field. They have recently
gained attention due to [115, 116], where they were used to solve the ancient Kelvin’s conjec-
ture of knotted and linked vortex structures in incompressible fluids. Specifically, the authors
constructed (strong) Beltrami field with constant factor f = λ that realize any arbitrary and
topologically complicated ensemble of linked and knotted vortex lines and tubes. However, as
depicted in [117] Beltrami fields are rare since f must verify some very specific geometrical con-
straints. Then, it stand to reason that it is hard to perturb a factor f so that the above constraints
are met and new non-trivial Beltrami fields can be constructed. Our goal here is to address such
lack of full stability. Namely, we propose two partial stability results that provide very specific
ways to perturb f so that they lie within the constraints found in [117] and they have associated
non-trivial generalized Beltrami fields arbitrarily close to the initial one. In the first one, only
constant factors f = λ can be perturbed in the complementary of any arbitrarily small ball.
The second one applies to general factors in small enough balls around non-stagnation points
of the fluid. Interestingly, the new Beltrami fields that we construct exhibit complicated vortex
structures like in the preceding literature.

The last Chapter 7 addresses additional related works in progress that have emerged from
this thesis:
• In Section 7.1 we extend the results in Chapter 2 to derive rigorous hyperbolic hydro-

dynamic limits of vanishing inertia type for some versions of the kinetic thermomechanical
Cucker–Smale model [153, 161], whose discrete version takes the following form





dxi
dt

= vi,

dvi
dt

=
Kv

N

N∑

j=1

φ(|xi − xj |)
(
vj
Tj
− vi
Ti

)
,

dTi
dt

=
KT

N

N∑

j=1

ζ(|xi − xj |)
(

1

Ti
− 1

Tj

)
,

for any i = 1, . . . , N . Here, the new variable Ti represents the “temperature” of the i-th particle
and it is regarded as the internal energy of each particle. Under suitable scaling, we deduce
two possible macroscopic limits that we call the slow and fast temperature relaxation regimes.
• In Section 7.2 we propose a mathematical model to explain some important process in

developmental biology. Specifically, we address the study of cell-comunication mechanisms in
Drosophila melanogaster which take place during the particular signalling pathway that is me-
diated by Hh morphogen and its target gene Ci (responsible for the correct formation of wins,
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among others). Very recently, experimental research has elucidated the basis of such a mech-
anism, see [34, 141]. Nowadays, the most likely hypothesis is that it is mediated by signalling
filipodia (or cytonemes) that emanate from cell membranes. More specifically, proteins do
no spread randomly throughout the full extra-cellular matrix, but its propagation is confined
along such specific paths. Such filament-like structures are dynamic and both Hh emitting and
receiving cells extend their cytonemes, that grow, retract and orient in an ordered manner so
that after they connect in a sort of synapse, proteins are transferred from cell to cell. This mi-
croscopic dynamics generates the observed concentration gradient of morphogen which moves
from emitting cells to receiving cells. In this section, we derive a mathematical model that joins
three different components. First, we design a model based on first principles for the mechan-
ics of each cytoneme, that is regarded as a mathematical curve with ability to grow and retract
in a plastic but non-elastic way. Second, we describe the orientation potential that acts on each
cytoneme and is responsible for the guidance of filopodia to the appropriate contact sites. Ex-
perimental evidence has shown that the involved proteins in such a mechanisms are Ihog, Dally
and Dlp. Finally, we introduce a model for the morphogen transference after synapses that de-
scribes the propagation of proteins along moving cytonemes via flux-limited mechanisms on
one-dimensional manifolds.

xiv



Resumen en castellano

Esta tesis se centra en el análisis de ecuaciones en derivadas parciales no lineales que surgen en
modelos de fı́sica, biologı́a matemática, ciencias sociales o neurociencia. En particular, estudi-
amos una familia de modelos, que en la literatura reciben el nombre de “modelos de dinámica
colectiva”. La idea fundamental es que partiendo de reglas sencillas que describen las inter-
acciones entre partı́culas del sistema, la población tiene a menudo capacidad de organizarse
colectivamente como si de un único ente se tratara. Esto lleva a diferentes tipos de fenómenos
emergentes que dependerán del contexto en concreto, por ejemplo, “swarming”, “flocking”,
“schooling”, sincronización, etc.

A pesar de que estos modelos pueden aparecen en escenarios completamente diferentes, lo
que los hace tan especiales desde el punto de vista matemático es que su parecido estructural
nos permite atacarlos por medio de herramientas matemáticas abstractas comunes. De he-
cho, varios desarrollos importantes de las matemáticas han surgido de esta interfaz a medida
que uno se enfrenta a los diversos componentes que estos modelos conllevan (por ejemplo,
teorı́a cinética, ecuaciones estocásticas, lı́mites de campo medio, propagación de caos, lı́mites
hidrodinámicos, teorı́a del potencial, transporte óptimo, etc).

En esta tesis, prestaremos especialmente atención a modelos cinéticos de dinámica colectiva
donde las interacciones vienen descritas por medio de núcleos singulares. Esto genera nuevos
retos matemáticos que no se pueden resolver mediante los métodos estándar y requieren el de-
sarrollo de herramientas matemáticas novedosas. En particular, algunos de los problemas que
abordaremos en esta tesis son: buen planteamiento, estabilidad, limites de escala conectando
los diferentes niveles de descripción de los modelos (microscópico, mesoscópico y macrocópico),
comportamiento asintótico de las soluciones, etc.

A pesar de que las ecuaciones de la mecánica de fluidos pueden verse como casos especiales
de dinámica colectiva, trataremos estas últimos como un tema complementario en esta tesis.
Concretamente, la mayorı́a de modelos de dinámica colectiva tienen versiones macroscópicas
bien definidas que obedecen sistemas de leyes de conservación similares a las ecuaciones de
Euler y Navier–Stokes. Esto sugiere que el estudio de mecánica de fluidos puede arrojar luz
en la comprensión de dinámicas colectivas más generales. En esta tesis nos enfocaremos en
el estudio de estabilidad de una clase de soluciones estacionarias especiales de las ecuaciones
de Euler que reciben el nombre de campos de Beltrami. Como veremos más adelante, estas
soluciones son de gran relevancia en la teorı́a lagrangiana de la turbulencia.

Lista de artı́culos de la tesis

• Capı́tulo 1: artı́culo [4] en colaboracón con Giacomo Albi, Nicolla Bellomo, Luisa Fermo,
Seung-Yeal Ha, Jeongho Kim y Juan Soler, aceptado para publicación en Mathematical
Models and Methods in Applied Sciences.
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• Capı́tulo 2: artı́culo [255], en colaboración con Juan Soler, publicado en Mathematical Mod-
els and Methods in Applied Sciences.

• Capı́tulo 3: artı́culo [241], en colaboración con Jinyeong Park y Juan Soler, sometido para
publicación.

• Capı́tulo 4: artı́culo [254], sometido a publicación.

• Capı́tulo 5: artı́culo [222], en colaboración con Javier Morales, sometido a publicación.

• Capı́tulo 6: artı́culo [118], en colaboración con Alberto Enciso y Juan Soler, publicado en
Communications in Mathematical Physics.

Otros trabajos en preparación

• Hydrodynamic limits of the thermomechanical Cucker–Smale model with fast and slow tempera-
ture relaxation, en colaboración con Jeongho Kim y Juan Soler.

• Modeling of morphogen transportation along moving cytonemes in Droshophila melanogaster, en
colaboración con Adrián Aguirre-Tamaral, Manuel Cambón, Isabel Guerrero y Juan Soler.

Cómo leer esta tesis

Cada capı́tulo de la tesis es autocontenido y puede ser leı́do de forma separada. De hecho, los
conceptos principales y ecuaciones a los que hace referencia cada parte están presentados en
los correspondientes capı́tulos. Sin embargo, sugerimos que el lector siga el orden lógico en el
que se presentan los resultados dado que a lo largo de la lectura mostramos algunas relaciones
entre las diferentes partes de esta tesis.

Para mayor claridad de la presentación, hemos decidido dividir los contenidos en difer-
entes partes, que el lector puede intercambiar si es necesario. Concretamente, en Capı́tulo
1 mostramos un repaso de la literatura previa y del estado del arte acerca de los problemas
principales de la tesis. En Parte I (Capı́tulo (2)) nos centramos en el estudio del modelo de
Cucker–Smale. Parte II (Capı́tulos 3–5) contiene varias contribuciones al estudio del modelo de
Kuramoto para osciladores acoplados y algunas variantes relacionadas. Parte III (Capı́tulo 6)
se enfoca en el análisis de resultados de existencia y estabilidad en mecánica de fluidos y final-
mente, Parte IV (Capı́tulo 7) recoge una breve lista de otros trabajos en proceso de redacción
que han surgido como consecuencia de esta tesis. Concluimos dicha parte con algunas conclu-
siones y trabajos futuros.

Para una mejor lectura, recordamos la notación necesaria a lo largo de esta tesis en Sección
Conventions and notation. También, para aligerar la presentación de los resultados, incluimos
el resto de conceptos y herramientas necesarias en Apéndices A–H. Algunos de los resultados
ahı́ presentados son clásicos, mientras que otros son aportaciones originales del autor que serán
necesarios en ciertos puntos a lo largo de la lectura.

Resumen de la tesis

A continuación, presentamos un breve resumen acerca de los contenidos de los diferentes
capı́tulos que conforman esta tesis.
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En Capı́tulo 1 presentamos el estado del arte acerca de los principales temas tratados en
esta tesis. Dividimos este capı́tulo en dos secciones. La primera sección aborda las contribu-
ciones más recientes al estudio de modelos de EDOs y EDPs para dinámica colectiva en cien-
cias de la vida, atendiendo a las diferentes escalas de descripcción (microscópica, mesoscópcia
y macroscópica). Hacemos especial enfasis en dos modelos particulares: Cucker–Smale y Ku-
ramoto. La segunda sección se centra en estudios actuales de propiedades de estabilidad de
soluciones estacionarias en mecánica de fluidos, con especial atención al problema de existen-
cia de estructura de vorticidad enlazadas y anudadas con topologı́a compleja. En este capı́tulo,
presentamos los principales problemas de la tesis y comparamos con literatura anterior.

En Capı́tulo 2 deduciremos el lı́mite hidrodinámico singular de inercia pequeña para el
modelo cinético de Cucker–Smale hacia pesos singulares. El objetivo es deducir rigurosamente
el sistema macroscópico siguiente





∂ρ

∂t
+ div(ρu) = 0,

φ0 ∗ (ρu)− (φ0 ∗ ρ)u− u−∇ψ = 0,

ρ(0, ·) = ρ0,

donde ρ = ρ(t, x) y u = u(t, x) represetan respectivamente la densidad y campo de velocidades
de la población, F = −∇ψ es una fuerza externa y φ0(r) = r−2α es una función de influencia
con singularidades. Dicho sistema se puede observar como una ley de conservación de la masa
acoplada con una ecuación integral implı́cita para el campo de velocidades, que está deter-
minada por un conmutador de integrales singulares. Primero, estudiamos el lı́mite asintótico
asociado a distintos escalados de la ecuación cinética. Esto genera un método para construir
soluciones débiles en sentido de medidas del sistema macroscópico anterior para valores del
parámetro α ∈ (0, 1

2). En segundo lugar, mostramos resultados de existencia local de soluciones
en espacios con mayor regularidad. Hacemos énfasis en el hecho de que el resultado presen-
tado es uno de los primeros en la literatura en cuanto a lı́mites hidrodinámicos singulares del
modelo de Cucker-Smale con función de influencia singular, véase también [126, 127, 186].

En Capı́tulo 3 presentamos una nueva versión del modelo de Kuramoto [193, 196] de N
osciladores acoplados con aplicaciones a sincronización neuronal. Concretamente, sustituimos
los pesos uniformes por pesos que dependen de las fases y que presentan singularidad para
configuraciones con la misma fase. Dicho modelo toma la siguiente forma





θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi),

θi(0) = θi,0,

donde h(θ) :=
sin θ

|θ|2αo
,

para i = 1, . . . , N y α ∈ (0, 1). Justificamos dicho modelo desde primeros principios via una
aproximación de aprendizaje rápido sobre una regla de aprendizaje para los pesos descrita
en términos de una función de pasticidad verificando la regla de Hebb [166]. Dicho sistema
guarda cierto parecido con el modelo de Cucker–Smale con función de influencia singular,
véase [226, 244, 245]. Presentamos más detalles acerca de esta relación a lo largo del capı́tulo.
En primer lugar, mostramos resultados de existencia y unicidad de soluciones globales, válidos
incluso después de una posible colisión. La presencia de singularidades obviamente induce
un serio problema para aplicar la teorı́a clásica. Decidimos abordar el problema mediante el
concepto de solución en sentido de Filippov. Como quedará claro más adelante, el núcleo de
interacción no es mas que Hölder continuo, lo cual añade problemas de unicidad al problema.
Para resolver esta fatı́dica falta de regularidad, presentamos una propiedad de Lipschitz lateral,
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que surge de la estructura del núcleo y será suficiente para deducir la unicidad. En segundo
lugar, analizamos la emergencia de sincronización y encontraremos nuevas dinámicas como
consecuencia de que los osciladores tienen capacidad de sincronizarse en tiempo finito. Damos
condiciones suficientes en la configuración inicial del sistema que garantizan la sincronización
global de las fases en tiempo finito. De hecho, probaremos varias caracterizaciones interesantes
sobre la formación de grupos y agregación en tiempo finito para los osciladores en los diferentes
regimenes de singularidad del modelo, lo cual abre las fronteras en el paradigma del fenḿenos
de sincronización.

En Capı́tulo 4 presentamos la contraparte cineética asociada al sistema discreto anterior del
Capı́tulo 3. Dicha ecuación consiste en una ecuacón de tipo Vlasov con interacciones no locales
descritas en términos del núcleo de interacción h, es decir,





∂f

∂t
+

∂

∂θ
(Ωf −K(h ∗ ρ)f) = 0,

f(t, θ,Ω) = f(t, θ + 2π,Ω),
f(0, ·, ·) = f0,

donde f = f(t, θ,Ω) es la función de distribucón y ρ = ρ(t, θ) es la densidad probabilidad de
las fases. Nótese que el núcleo de interacción no es Lipschitz y por tanto el estudio del sistema
cinético no es claro. Presentamos los siguientes resultados atendiendo a distintos aspectos del
sistema macroscópico. En primer lugar, proponemos una teorı́a de existencia de soluciones
débiles en sentido de las medidas que permanece siendo aplicable tras posibles colisiones en
cualquier rango del parámetro α ∈ (0, 1

2 ]. Abordamos dicho resultado de la mano de la existen-
cia de flujos de Filippov, véase [251]. En segundo lugar, estudiamos desigualdades de estabili-
dad (o de tipo Dobrushin) para la ecuación cinética con respecto a dos distancias de transporte
diferentes en el espacio de probabilidades: la distancia cuadrática clásica de Wasserstein y una
versión en fibras, que presentamos aquı́ y ha acabado estando especialmente bien adaptada
al problema no lineal. De nuevo, la condición de Lipschitz lateral será esencial en esta parte.
Aplicamos dichos resultados de estabilidad para concluir dos consecuencias importantes. Por
un lado, obtenemos unidad del problema de Cauchy anterior para cualquier valor del dato
inicial. En segundo lugar, cuantificamos el lı́mite de campo medio cuando N →∞ del sistema
de partı́culas del Capı́tulo anterior hacia la ecuación cinética. Finalmente, combinamos el es-
tudio anterior de sincronización en el modelo discreto con los resultados de estabilidad para
recuperar la sincronización en fase en tiempo finito en soluciones en sentido de las medidas
con ciertas hipótesis acerca del diámetro inicial del soporte. El caso α ∈ (1

2 , 1) será abordado de
forma separada usando ideas similares a las obtenidas en el anterior Capı́tulo 2. Los resultados
de este capı́tulo siguen un acercamiento similar al desarrollado en [64, 67] para la ecuación de
agregación en el espacio Euclideo. Sin embargo, en este Capı́tulo no serán necesarias estruc-
turas de tipo flujo gradiente de este modelo.

En Capı́tulo 5 regresamos al modelo original de Kuramoto, que se corresponde con el caso
h = sin. Más concretamente, consideramos su versión cinética que recibe el nombre de ecuación
de Kuramoto–Sakaguchi en la literatura:





∂f

∂t
+

∂

∂θ
(Ωf −K(sin ∗ρ)f) = 0,

f(t, θ,Ω) = f(t, θ + 2π,Ω),
f(0, ·, ·) = f0.

El objetico de esta parte es analizar la dinámica asintótica de las soluciones cuando t→∞ para
datos iniciales generales f0 ∈ C1(T× R). Hasta donde sabemos, éste es el primer resultado en
la literatura donde consideramos datos inciales generales (al contrario de resultados previos
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donde el soporte de las fases se encuentra encerrado en un semicı́rculo) y computamos tasas
de convergencia explı́citas. Historicamente, los principales obstáculos para aplicar las teorı́as
clásicas son de dos tipos. Por un lado, la heterogeneidad del sistema impuesta por la variable
Ω implica que la ecuación de Kuramoto–Sakacuchi no es un flujo gradiente de Wasserstein so-
bre el espacio de medidas de probabilidad (en los términos del cálculo de Otto [237]). Por otro
lado, para osciladores idénticos la variable Ω desaparece y ahora la ecuación sı́ obedece un flujo
gradiente formal. Sin embargo, el funcional de energı́a no verifica las desigualdades de convex-
idad necesarias. Nuestra prueba reúne dos ideas principales. En primer lugar, cuantificamos
el tiempo finito transiente que el sistema tarda en entrar en un régimen en el que la masa
se concentra exponencialmente rápido en un entorno de la fase media del sistema. Para de-
mostrar esto, obtenemos un sistema de desigualdades diferenciales para algunas magnitudes
clave del sistema que cuantifican cuatro principios fundamentales: producción de entropı́a, in-
estabilidad de equilibrios con masa en la antı́poda de la fase media, emergencia de conjuntos
atractores de curvas caracterı́sticas y un control preciso de norma L2 de las soluciones sobre
conjuntos móviles mediante el flujo del sistema. Dichos resultados extienden al modelo de
Kuramoto–Sakaguchi la heurı́sitica desarrollada en [104] para la ecuación de Boltzmann. En
segundo lugar, una vez que el sistema entra en el régimen de concentración, demostramos
versiones adaptadas a nuestro problema de las desigualdades logarı́tmica de Sobolev y de Ta-
lagrand (véase [238] para la ecuación de Fokker–Planck) para una disipación apropriada del
sistema y la distancia de transporte en fibras del Capı́tulo anterior. Estas desigualdades per-
miten finalmente concluir la convergencia del sistema hacia el equilibrio global.

En Capı́tulo 6 cambiamos a un tema diferente en el amibente de la mecánica de fluidos.
Concretamente, afrontamos el estudio de soluciones estacionarias de las ecuaciones de Euler
para fluidos ideales en tres dimensiones y nos centramos en la clase particular de soluciones
estacionarias descrita por los campos de Beltrami (generalizados)

{
curlu = fu,
div u = 0,

donde u representa el campo de velocidades en R3 y f es una función general que recibe el
nombre de factor de proporcionalidad. Su relevancia nace en la teorı́a lagrangiana de la tur-
bulencia y, más concretamente, en sus implicaciones de acuerdo al teorema de estructura de
Arnold. A grosso modo, dicho resultado determina que cualquier fluido incompresible tiene
que ser o bien laminar (en el sentido de que el espacio completo está foliado de curvas de nivel
regulares que proceden de una integral primera del campo de velocidades) o bien un campo
de Beltrami. En particular, dichos campos han ganado popularidad debido a [115, 116], donde
los autores los usaron para resolver la antigua conjetura de Kelvin acerca de la existencia de
estructuras de vorticidad anudadas y enlazadas en fluidos incompresibles. Concretamente, los
autores construyeron campos de Beltrami (fuertes) con factor de proporcionalidad constante
f = λ que alcanzan cualquier conjunto arbitrario de lı́neas y tubos de vorticidad anudados
y enlazados con topolog’ia arbitrariamente compleja. Sin embargo, como se mostró en [117],
los campos de Beltrami son escasos en el sentido de que f debe verificar unas restricciones
geométricas muy especı́ficas. Entonces, parace claro que no es en general sencillo perturbar un
factor de proporcionalidad f de manera que las restricciones anteriores se sigan verificando y
dicho factor admita nuevos campos de Beltrami no triviales. Nuestro objetivo en este capı́tulo
es abordar esta falta de estabilidad global. De hecho, introducimos dos resultados de estabili-
dad parcial que proporcionan formas concretas de perturbar f de modo que se verifiquen las
condiciones encontradas en [117] y admita campos de Beltrami generalizados no triviales tan
cercanos al inicial como se desee. En el primer resultado, solo abordaremos el caso de fac-
tores de proporcionalidad constantes f = λ, que pueden perturbarse en el comprementario de
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una bola arbitrariamente pequeña. El segundo aplica a factores de proporcionalidad generales
en bolas suficientemente pequeñas entorno de puntos no crı́ticos del campo de velocidades.
Curiosamente, los nuevos campos de Beltrami presentan el mismo tipo de estructuras de vor-
ticidad complejas de la literatura previa.

En el último Capı́tulo 7 presenta otros trabajos en proceso de redacción que han surgido de
esta tesis:
• En la Sección 7.1 extendemos los resultados del Capı́tulo 2 para deducir de forma rig-

urosa el lı́mite hidrodinámico riguroso de tipo inercia pequeña de algunas versiones del mod-
elo cinético de Cucker–Smale termodinámico [153, 161], cuya versión discreta tiene la siguiente
forma 




dxi
dt

= vi,

dvi
dt

=
Kv

N

N∑

j=1

φ(|xi − xj |)
(
vj
Tj
− vi
Ti

)
,

dTi
dt

=
KT

N

N∑

j=1

ζ(|xi − xj |)
(

1

Ti
− 1

Tj

)
,

para cada i = 1, . . . , N . Aquı́, la nueva variable Ti representa la “temperatura” de la i-ésima
particula y puede verse como la energı́a interna de cada partı́cula. Bajo un escalado ade-
cuado, deducimos dos posibles lı́mites macroscópicos que representatán respectı́vamente dos
regı́menes diferentes de relajació de la temperatura: rápida o lenta.
• En Sección 7.2 proponemos un modelo matemático para explicar algunos procesos im-

portantes en biologı́a del desarrollo. Concretamente, abordamos el estudio de los mecanis-
mos de comunicación celular en Drosophila melanogaster que tienen lugar durante el concreto
mecanismo de señalización mediado por el morfógeno Hh y su gen diana Ci (responsable de
la formación correcta de las alas, entre otras cosas). Recientemente, algunos resultados exper-
imentales han dado luz sobre las bases de dicho mecanismo de comunicación, véase [34, 141].
Actualmente, la hipótesis más acertada es que dicho proceso está mediado por filipodios de
señalización (o citonemas) que crecen de las membranas de las células. Más especificamente,
las proteinas no pueden difundirse aleatoramente por toda la membrana extracelular, sino que
su propagación está subordinada a dichos caminos especı́ficos. Dichos filamentos son estruc-
turas dinámicas y tanto células productoras de Hh como células receptoras extienden sus fila-
mentos, los cuales crecen, se retraen y se orientan de forma ordenada y, tras un contacto en
forma de sinapsis, las proteinas son transferidas de célula a célula. Esta dinámica a nivel
microscópico es la razón de la formación del gradiente de concentración de morfógenos que
experimentalmente se observa y se propaga de células emisoras a células receptoras. En esta
sección proponemos un modelo matemático que reune tres componentes diferentes. En primer
lugar, diseñamos un modelo basado en primeros principios para la mecánica de cada citonema,
los cuales serán interpretados como curvas matemáticas con habilidad de crecer y contraerse de
forma plástica, pero no elástica. En segundo lugar, describimos los potenciales de orientación
que actúan sobre cada citonema y son responsables de su guı́a hacia los sitios de contacto. Los
resultados experimentales muestran que las proteı́nas involucradas en dicho mechanismo son
Ihog, Dally y Dlp. Finalmente, introducimos un modelo para la transferencia de morfógeno tras
la sinapsis, que describe la propagación de proteinas a lo largo de estas estructuras móviles
mediante mecanismos de flujo limitado sobre variedades unidimensionales.
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Conventions and notation

Notation for sets and structures

Given a set X and a subset A ⊆ X , we denote the complement of A in X by X \ A or simply
Ac when X is clear from the context. Also χA denotes the characteristic function of A, that is
χA(x) = 1 if x ∈ A, and χA(x) = 0 if x ∈ X \A.

For any set X , 2X denotes its power set, that is, the family of subsets of X .

For any family of setsX1, . . . , Xn we consider the product spaceX1×· · ·×Xn and for any family
of indices i1, . . . , im ∈ {1, . . . , n}we define the projection onto the (i1, . . . , im)-components by

π(xi1 ,...,xim ) : X1 × · · ·Xn −→ Xi1 × · · ·Xim ,

(x1, . . . , xn) 7−→ (xi1 , . . . , xim).

In particular, for the product space T× R we denote the projections

πz : T× R −→ T, πΩ : T× R −→ R,
(z,Ω) 7−→ z, (z,Ω) 7−→ Ω.

(N.1)

Given a Banach spaceX and a subsetA ⊆ X , co(A) denotes its convex hull , that is, the smallest
convex subset of X containing A. The closed convex hull is denoted by co(A) and represents
the smallest closed convex subset that contains A.

N is the set of positive integers, that is, N = {1, 2, 3, . . .}, R is the real line and C is the complex
plane. For any complex number z ∈ C we denote its real and imaginary parts by <z and =z
respectively. The Euclidean space of dimension n ∈ N is denoted by Rn and we define the
Euclidean scalar product and the Euclidean norm by

v · w =
n∑

i=1

viwi and |v| = (v · v)1/2,

for any v, w ∈ Rn. To avoid confusion, we shall sometimes use the notation 〈v, w〉 for the scalar
product. If n = 3, v × w represents the cross product of v and w. The open ball of Rn centered
at x ∈ Rn with radius r > 0 is Br(x) and B̄r(x) represents the closed ball.

Nn represents the set of multi-indices and for any γ = (γ1, . . . , γn) and any x ∈ Rd we denote
the monomial

xγ := xγ1
1 · · ·xγnn .
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Also, we denote the size of the multi-index by

|γ| = γ1 + · · ·+ γn.

And the factorial of γ is determined by

γ! = γ1! · · · γn!.

Mn,m(R) is the space of real n × m matrices, Mn(R) is the space of real squared matrices
and In represents the identity matrix (we omit n when it is clear). Skewn(R) is the subset of
squared skewsymmetric real matrices. For any A ∈Mn(R), we denote its transpose by A>, the
symmetric part by SymA = 1

2(A + A>), its trace is represented by TrA and its determinant is
detA. For any A,B ∈Mn(Rd) we define the Frobenius scalar product by 〈A,B〉F or A : B and
it reads

A : B = Tr(A>B) =

n∑

i,j=1

aijbij .

For any A ∈Mn1,m1(R) and B ∈Mn2,m2(R), we define the Kronecker product blockwise by

A⊗B =




a11B a12B · · · a1m1B
a21B a22B · · · a2m1B

...
...

. . .
...

an11B an12B · · · an1m1B




Along this thesis, we shall set ξ ∈ C∞c ([0,∞)) to be any non-increasing cut-off function verify-
ing the following properties

1. 0 ≤ ξ ≤ 1,

2. ξ|[0,1] ≡ 1 and ξ|[2,∞] ≡ 0,

3.
∫∞

0 ξ′(r) dr = −1.

Also, we will use the following scaled cut-off functions for every ε > 0

ξε(r) := ξ(ε−1r), r ∈ [0,+∞). (N.2)

Real calculus

Given a function f : Rn −→ R, we denote its gradient vector by ∇f and its Laplacian by ∆f .
In addition, for a multi-index γ ∈ Nn of size k, we denote the partial derivative of order γ by

Dγf :=
∂kf

∂xγ
=

∂kf

∂xγ1
1 · · ·xγnn

.

Given any scalar function f : Rn −→ R, any vector field Φ : Rm −→ Rn and any multi-index
γ ∈ Nm, we shall systematically use the following expression for the chain rule (see [206]):

Dγ(f ◦ Φ)(x) = γ!
∑

(l,β,δ)∈D(γ)

(Dδf)(Φ(x))
l∏

r=1

1

δr!

(
1

βr!
DβrΦ(x)

)δr
. (N.3)
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for every x ∈ Rm. Here, D(γ) will represent the set of decompositions of γ as follows

γ =

l∑

r=1

|δr|βr,

where l ∈ N, δr ∈ Nn, βr ∈ Nm for r = 1, . . . , l are multi-indices such that for every r =
1, . . . , l − 1 there exists some ir ∈ {1, . . . ,m} such that (βr)i = (βr+1)i for every i 6= ir and
(βr)ir < (βr+1)ir and we denote δ :=

∑l
r=1 δr.

For any vector field F : Rn −→ Rn, JacF is the Jacobian matrix and divF is the divergence. If
n = 3, curlF denotes the rotational of the vector field. For any vector fields F,G : Rn −→ Rn,
we define

(G · ∇)F = JacF ·G.
Also, the divergence of its Kronecker product F ⊗G can be computed blockwise as follows

div(F ⊗G) = (div(F1G), . . . ,div(FnG)) = (G · ∇)F + div(G)F.

When f = f(t) is any function defined on an interval of the real line (representing time), we
will denote its time-derivative in any of the following ways

f ′(t),
df

dt
, or ḟ(t).

For any set X and any couple of scalar functions f, g : X −→ R, we shall say that f . g if there
is a universal constant C such that

f(x) ≤ Cg(x), for all x ∈ X.

When used repeatedly along an argument, the symbol . may refer to possibly different values
of the universal constant C that can change from line to line.

Calculus on Riemannian manifolds

Given any complete (finite-dimensional) Riemannian manifold (M, 〈·, ·〉), TxM represents the
tangent space of M at x ∈M , 〈·, ·〉x : TxM → R is the metric at x and TM is the tangent bundle
of M . For any curve γ : [0, 1] −→M , the parallel transport along γ from γ(s2) to γ(s2) is

τ [γ]s2s1 : Tγ(s1)M −→ Tγ(s2)M.

Also, expx : TxM −→ M is the exponential map at x ∈ M and cut(x) stands for its cut locus
at x. The injectivity radius at x is represented by ι(x) and Br(x) = expx(Br(0)) is the geodesic
ball centered at x with radius r < ι(x).

The space of smooth tangent fields along M is denoted by X(M) and the space of 1-forms is
Ω1(M). Both can be identified via the musical isomorphisms [ and ] as follows

V [(W ) = 〈V,W 〉 and
〈
ω], V

〉
= ω(V ),

for any V,W ∈ X(M) and ω ∈ Ω1(M). For any function f : M −→ R its differential is
df ∈ Ω1(M) and its Riemannian gradient is∇f = df ].
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Also, we denote the Riemannian distance between any couple of points x, y ∈M by

d(x, y) := inf

{
L[γ] :=

∫ 1

0
|γ′(s)| ds : γ ∈ C1([0, 1],M), γ(0) = x, γ(1) = y

}
. (N.4)

By Hopf–Rinow’s theorem [111], such infimum is attained at some minimizing geodesic on M .
We refer to Appendix G for the particular case of compact hypersurfaces S of the Euclidean
space R3, where the operators ∇S , divS and curlS are introduced. We provide there a list of
classical identities to bear in mind throughout the thesis and, specially, in Chapter 6.

Measure theory

We will denote measure spaces by (E,F , µ) for some set E endowed with a σ-algebra F and a
positive measure µ. Integrals with respect to such measure will be denoted by

∫

E
f dµ or

∫

E
f(x) dxµ,

if it is necessary to emphasize the variable x ∈ E. If µ is a probability measure, then (E,F , µ) is
called a probability space. We shall mostly deal with particular measure spaces where E = X
is some Polish space, that is, a separable complete metric space, and F = B(X ) is the Borel
σ-algebra of X .

If X = Rd, the Lebesgue measure will be denoted Ld or simply dx and integrals are written by∫
Rd f(x) dx. If X = M is some manifold, its Riemannian measure is denoted dS and integrals

with respect to dS read
∫
M f(x) dxS.

Consider two Polish spaces X and Y :

1. For any measurable map T : X −→ Y and any finite measure µ on X , we define the
push-forwards measure T#µ on Y by the formula

∫

Y
ϕd(T#µ) =

∫

X
ϕ ◦ T dµ,

for any bounded continuous test function ϕ : X −→ R.

2. For any probability measure µ in the product space X × Y , we denote the y-marginal
by ν := πy#µ and we define the family of conditional probabilities or disintegrations
{µ(·|y)}y∈Y on Y though the formula

∫

X×Y
ϕ(x, y) dµ =

∫

Y

(∫

X
ϕ(x, y) dxµ(·|y)

)
dyν,

for any bounded continuous test function ϕ : X × Y −→ R.

Function spaces, measure spaces and optimal transport

We provide the list of the main function spaces to be used:
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Name Notation
Lebesgue Lp(Rn)

Weak Lebesgue Lp,∞(Rn)

Bounded mean oscillation BMO(Rn)

Sobolev W k,p(Rn)

Negative Sobolev W−k,p
′
(Rn)

Bounded-continuous Cb(Rn)

Continuous that vanish at infinity C0(Rn)

Continuous with compact support Cc(Rn)

Smooth with compact support C∞c (Rn)

Bounded-continuous derivatives Ck(Rn)

Inhomogeneous Hölder C0,α(Rn)

Higher order inhomogeneous Hölder Ck,α(Rn)

Here, k ∈ N, 1 ≤ p ≤ ∞, 0 < α ≤ 1 and we denote p′ = p/(p − 1) the conjugate exponent. We
consider the classical Banach-space structure in the spaces Lp, BMO, W k,p, W−k,p

′
, Cb, C0, Cc,

Ck, Ck,α. The space Lp,∞ will be regarded as a quasi-normed space and C∞c is endowed with
the classical locally convex topology. For any such function space X , we will denote its norm
(or quasinorm) by ‖ · ‖X . To avoid confusion, we set the following norm in the inhomogeneous
Hölder spaces Ck,α of higher order:

‖f‖Ck,α(Rn) :=
∑

|γ|≤k
‖Dγf‖Cb(Rn) +

∑

|γ|=k
[Dγf ]α,Rd , (N.5)

where [ · ]α,Rd represent the homogeneous α-Hölder seminorm in Rd.

The base space Rn can be replaced either by any open subset of Rn or any general Riemannian
manifold (M, 〈·, ·〉). Indeed, if Ω ⊆ Rn is any open subset, we shall distinguish between the
notation Ck(Ω) and Ck(Ω), the latter meaning that all the derivatives up to order k can be con-
tinuously extended to the closure Ω. Similar comments apply to the Hölder spaces Ck,α(Ω) and
Ck,α(Ω).

For any of the above regularity classes C, the vector-valued counterparts of such function spaces
will be denoted by C(Rn,Rm) (e.g., Lp(Rn,Rm), Ck,α(Rn,Rm), etc) and they are considered
component-wise.

For any Banach space X and any T > 0, we will considered the following Banach-valued
functions spaces.

Name Notation
Lebesgue–Bochner Lp(0, T ;X)

Weak Lebesgue–Bochner Lpw(0, T ;X∗)
Sobolev–Bochner W 1,p(0, T ;X)

Weak Sobolev–Bochner W 1,p
w (0, T ;X∗)

Given any Polish space X , that is, a complete separable metric space, we denote the following
spaces of finite measures and probabilities:
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Name Notation
Finite Radon measures M(X )

Positive finite Radon measures M+(X )

Probability measures P(X )

Wasserstein space Pp(X )

Again, we consider exponents 1 ≤ p ≤ ∞. Unless otherwise stated, we will endowM(X ) (as
a consequence also P(X )) with the weak-* topology associated with the standard duality pair
with the space Cc(X ). Sometimes, we will also consider the narrow topology on such spaces,
that is, the weak topology associated with the duality pair with Cb(X ). The Wasserstein space
Pp(X ) of p-th order will be endowed with the Wasserstein transportation distance Wp of p-th
order. Finally, dBL stands for the bounded-Lipschitz distance on P(X ).

Along the thesis we will also define two adaptations of the quadratic Wasserstein distance W2

in the product space X = T × R, that we respectively call the fiberwise quadratic Wasserstein
distance W2,g and the scaled quadratic Wasserstein distance SW2.

Potential theory

For any dimension d ∈ N, Iβ represents the fractional integral of order β. Specifically, we will
set

(Iβf)(x) =
1

|x|d−β ∗ f =

∫

Rd

1

|x− y|d−β f(y) dy, x ∈ Rd,

for any measurable function f : Rd −→ R. Notice that, for simplicity, we will forget about the
constant appearing in front of the Riesz potential |x|−(d−β).

In general, given a smooth open subset D ⊆ Rd and any kernel K = K(x, z) with x ∈ D and
z ∈ Rd \ {0}, the generalized volume potential generated by any density f : Rd −→ R is

(NKf)(x) =

∫

Rd
K(x, x− y)f(y) dy, x ∈ D.

In particular, if d = 3 and we can consider as kernel K(x, z) the fundamental solution of Hel-
moltz equation in R3, i.e.,

K(x, z) = Γλ(z) :=
eiλ|z|

4π|z| .

In such particular case, we denote the generalized volume potential associated with Helmholtz
equation generated by the density f in the simpler way:

Nλf := NΓλf.

If f is supported on G we denote the inner and outer generalized volume potentials by

N−λ f = (Nλf)|G and N+
λ f = (Nλf)|Ω .

Similarly, we denote the inner and outer single layer potentials associated with Helmholtz
equation and generated by a density f : S −→ R as follows

(Sλf−)(x) :=

∫

S
Γλ(x− y) f(y) dyS, x ∈ G,
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(Sλf+)(x) :=

∫

S
Γλ(x− y) f(y) dyS, x ∈ Ω.

The case λ = 0 represents the Newtonian case and we call of the above potentials the Newto-
nian volume and single layer potentials.

Specific notation for many-particles systems and kinetic equations

We shall denote the spacial dimension by d ∈ N. The main physical variables that will be
considered are listed as follows:

Variable Notation
Time t ≥ 0

Position x ∈ Rd
Velocity v ∈ Rd

Phase θ ∈ R
Frequency Ω ∈ R

Coupling strength K ≥ 0

For any phase θ ∈ R, we denote its representative modulo 2π within the interval (−π, π] by θ̄.

In many-particles systems, N will represents the amount of particles. As N → ∞, we repre-
sent the system by its distribution function f . In particular, if the physical variables are t, x, v,
say, the distribution function f = f(t, x, v) will depend upon such variables and it represent
the probability of finding particles at time t, position x and velocity v. Associated with the
distribution function we can set some relevant macroscopic quantities by coarse graining the
variable v, namely,

Quantity Notation

Local density ρ(t, x) =

∫

Rd
f(t, x, v) dv

Current j(t, x) =

∫

Rd
vf(t, x, v) dv

Velocity field u(t, x) =
j(t, x)

ρ(t, x)

Stress tensor S(t, x) =

∫

Rd
v ⊗ vf(t, x, v) dv

Kinetic energy E(t, x) =
1

2
Tr(S(t, x))
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CHAPTER 1

Introduction

How does water flow along a river? Why do fireflies synchronize their flashing? How does ice melts into
water? Why do birds form flocks? How do cells duplicate? Why do aircrafts flight?...

These are just a few of the many questions that mankind has tried to answer driven by our
natural curiosity about the world around us. These questions obviously do not have simple
answers and address completely different type of phenomena that can range from physics, to
biology, ecology, astrophysics, engineering or even social sciences. Since the origin of Science,
one of the more successful methods to find a common convincing answer is through ”mathe-
matical modeling”.

In a mathematical model, one tries to describe a system by using mathematical tools and
an appropriate language: algebra, ODEs, PDEs, statistics, mean games, etc. Both tools and
language depend upon the problem itself. Indeed, there are many choices that have to be made
to formulate a model. In particular, we have to decide whether the model is deterministic or
stochastic, quantitative or qualitative, analytical or numerical, discrete or continuous and also
we must select the appropriate level of description, that is, either microscopic or macroscopic.
If one wishes that the model is meaningful, two main aspects have to be respected. First, our
model has to be supported by some empirical evidence or a priori information of the system
under consideration. Such information will be translated into the mathematical hypothesis
upon which we build our model. Second, the model should be able to provide predictions,
which is the realm of mathematical modeling in Science.

Among all the above choices, which ones are the “best ones”? A first answer might be
to stick to reality as close as possible. Despite the fact that additional complexity produces
more realistic models, an excess of complexity often yields equations that are hard to tackle
and analyze from a mathematical point of view. Sometimes this translates into computational
problems that one is not able to solve with the current technology. A completely opposite (but
also outdated) answer to such a criterion, might be to assume Ockham’s razor principle:

Pluralitas non est ponenda sine necessitate (William of Ockham, 1287–1347),

whose meaning in our context gives precedence to simplicity and claims that of two compet-
ing theories, the simpler explanation of a phenomenon is the right one. This criterion proves
difficult to apply in practice because it is hard to elucidate which one is the simpler model after
we account for all the necessary a priori information about the system. Also, it is not clear that
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(a) Murmuration of starlings at Gretna, Scotland. (b) School of fish in Cabo Pulmo, Mexico.

Figure 1.1: Examples of collective dynamics, taken from the websites
https://www.bbc.com/news and https://blog.nationalgeographic.org.

“the simplest model” must be the suitable one. Then, the final usual agreement is a balanced
compromise between complexity and mathematical manageability of the model in terms of
a careful dimensional reduction of the involved variables and parameters so that we reduce
complexity, but we do not lose the most relevant features.

Historically, simple models have been studied first as representative of the more complex
ones that one can propose to describe any physical or biological phenomenon. After such rep-
resentatives are understood, we can then face more complex and realistic models explaining
the complicatedness of structures and patterns around us. An even more captivating reality
is that despite the fact that these simpler models may arise from completely different phe-
nomena, some of them implicitly share a common abstract structure due to their mathematical
resemblance. Then, we can think of such models as a connected family with an active feedback
between them, so that by studying one, we may understand some properties of the others.

The ultimate mathematical interest of such groups of models is that it has historically
given rise to strong mathematical advances as we try to analyze the different components.
Indeed, very important areas of mathematics have emerged and grown as we try to solve those
problems (e.g., kinetic theory, stochastic equations, potential theory, optimal transport, para-
differential calculus, harmonic analysis, etc).

In this thesis, we focus on the mathematical analysis of kinetic PDE models that arise from
problems in physics, mathematical biology, ecology and neuroscience. They consists in de-
terministic evolutionary equations that explain how a biological or physical system, which
departs from some initial configuration, evolves in time subordinated to specific laws. More
specifically, we address the family of “collective dynamics models”. Such equations describe a
biological (or ecological) population of individuals that interact through a given set of rules.
The main objective of such models is to show that the chosen interaction rules are robust
enough to explain the formation of a self-organized dynamics at larger scales. This is often
called collective behavior (or motion) and allows describing some complicated patterns and
structures that we observe in nature, e.g., swarming of bacteria, flock of birds or schooling of
fish, see Figure 1.1.

Along this thesis, we will pay special attention to systems of agents (particles, organisms,
etc) that are subject to singular interactions. This adds new analytical challenges that require
deriving novel mathematical theories and improving the preceding tools in the literature. In
particular, we are interested in the following general problems, among others,
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CHAPTER 1. INTRODUCTION

- Well posedness and stability properties of solutions.

- Scaling limits connecting different levels of description.

- Asymptotic behavior and emergent phenomena.

As a very specific example, we also address the study of some equations arising in fluid
mechanics. Notice that although they are apparently of completely different nature, they are
actually strongly connected via the second item above. Specifically, most of the macroscopic
collective dynamic models are described in terms of conservation laws of Euler or Navier–
Stokes type, what suggests that its study may shed some light on the general understanding of
collective dynamics.
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1.1. COLLECTIVE BEHAVIOR IN LIFE SCIENCES

In the following sections, we review the state of the art of the main topics that this disserta-
tion deals with. We also introduce the main problems of this thesis and related literature. The
contents are arranged as follows:

Contents
1.1 Collective behavior in life sciences . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Agent-based models of first and second order . . . . . . . . . . . . . . . 5
1.1.2 Mean field limit and propagation of chaos . . . . . . . . . . . . . . . . . 8
1.1.3 The Cucker–Smale flocking model . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 The Kuramoto model of coupled oscillators . . . . . . . . . . . . . . . . . 15
1.1.5 From Kuramoto to Cucker–Smale . . . . . . . . . . . . . . . . . . . . . . 28
1.1.6 Hydrodynamic limits and other asymptotic limits . . . . . . . . . . . . . 30
1.1.7 Other models in collective dynamics . . . . . . . . . . . . . . . . . . . . . 36

1.2 Stability and vortex structures in fluid mechanics . . . . . . . . . . . . . . . . . 38
1.2.1 The Euler equations for incompressible fluids . . . . . . . . . . . . . . . 38
1.2.2 Stationary solutions and Beltrami fields . . . . . . . . . . . . . . . . . . . 40
1.2.3 Turbulence and Arnold’s structure theorem . . . . . . . . . . . . . . . . . 40
1.2.4 The Kelvin conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.2.5 Obstructions to the existence of generalized Beltrami fields . . . . . . . . 45
1.2.6 Partial stability of generalized Beltrami fields . . . . . . . . . . . . . . . . 46

1.1 Collective behavior in life sciences

In this section, we introduce a short review of collective behavior models in the literature.
Since literature is huge, we do not aim at a comprehensive review. Instead, we will restrict our
discussion to some models arising from biology, ecology and neuroscience, that belong to the
area of soft active matter (see [210]), and that encompass the core of this thesis.

When designing a collective dynamics model, the description of the involved inter-particle
interactions may not be clear at first glance. Indeed, they strongly depend on the particular
phenomenon and on the specific nature of the population. Hence, we might require an in-
terdisciplinary point of view in order to elucidate which are the fundamental variables and
laws governing the social relations between agents. Specifically, a real population is actually
a complex system and, as such, it involves plenty of physical, social, biological and cognitive
variables. However, we still can give light to the problem if we restrict to part of the full com-
plex dynamics by disregarding secondary variables and just looking at the effect of the main
variables that that affect a given feature of the population. Although it clearly stops being a
universal description that works for every the scenario, in this way, we can obtain a simpler
and more manageable model that still recasts the most important features of the population,
e.g., emergence of global collective behavior.

The interest on collective dynamics models has notably raised during the recent years. From
the applied side, this is specially interesting since simple rules governing pairwise interactions
between agents, leads to global emergent behavior of the total population as a whole. As it
can be seen for instance in [24, 58, 64, 74, 128, 154, 157, 210, 241, 254, 255, 275, 287, 288] and
references therein, collective dynamics models have proved relevant in several areas of soft
active. In addition, those models are also important from a theoretical point of view since they
can be regarded as a rich source of problems in mathematics. Indeed, as mentioned before,
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many recent strong techniques in mathematics have arisen as a consequence of such models,
what highlights that the exchange of ideas between the applied and theoretical communities is
undoubtedly positive.

1.1.1 Agent-based models of first and second order

In this part we shall focus on a few collective dynamics models that obey a similar structure
and have been analyzed in the literature during the last years. We shall divide them into two
categories: first order models and second order models, with regards to the amount of time-
derivatives that are necessary for their description. Its relation will be clarified later on.

First, we describe first order models. At the agent-based level they consist of a system of
N first order coupled ODEs, one for each agent. Although this thesis mainly centers on their
kinetic description together with its macroscopic limit, we highlight in this part the microscopic
description from which the mesoscopic one inherits a large part of its properties. Specifically,
assume that each subject is located at a given position xi = xi(t). Then, all these first order
systems take the following form





dxi
dt

= νi + Fe(xi) +
K

N

N∑

j=1

mjF (xi, xj),

xi(0) = xi,0,

(1.1.1)

for i = 1, . . . , N , where xi represent positions in Rd (or Td, for periodic domains). Neverthe-
less, xi will not necessarily restrict to positions, but can also represent any other physical, social,
state or internal variable of agents. The parameter mi is the mass of the i-th agent and νi ∈ R
are often called natural velocities and stand for heterogeneities in the population in the form of
a biased tendency of individuals to follow a certain velocity in the absence of the remaining
ones. Also, Fe = Fe(x) represents an external force acting on the system and the more relevant
terms F = F (x, x′) describes the interaction kernel governing the force that a field agent at x′

exerts on a subject at x. Here, K is called the coupling strength and determines how strong
inter-particle interactions are. Rigorously speaking, F should not me called force since there is
no acceleration term in (1.1.1). Actually, F describes how each individual updates its instan-
taneous velocity as an effect of the remaining ones. To start, let us now list some of the main
collective dynamics models of first order type that embed into the above formulation (1.1.1).
For simplicity, we shall neglect the external force Fe and will focuse on the communication
kernel F (x, x′) part between agents.

1. If d = 1, xi ≡ θi ∈ R are phases along the unite circle and we set

F (x, x′) = sin(x′ − x), νi ≡ Ωi and mi = 1,

then (1.1.1) reduces to the Kuramoto model for coupled oscillators




dθi
dt

= Ωi +
K

N

N∑

j=1

sin(θj − θi),

θi(0) = θi,0.

(1.1.2)

This is a classical model that was proposed by Kuramoto as a prototype system exhibit-
ing emergence of synchronization [114, 145, 147, 157, 202]. This model was originally pro-
posed to describe chemical oscillations, but has been later applied to many other phe-
nomena. Here, the heterogeneities Ωi represent the natural frequency of each oscillator.
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1.1. COLLECTIVE BEHAVIOR IN LIFE SCIENCES

An extremely interestin setting appears when we try to apply Kuramoto model in neu-
roscience. In such case θi represent the phases of the neuronal signals, and θ̇i represents
the firing frequencies of neurons in the brain. In this setting, the Kuramoto model con-
sists in a first approach towards a mathematical description of neuronal synchronization
[11, 45, 209, 248, 261, 297, 305, 306], that is known to rule many cognitive process of the
brain that are activated when a specific group of neurons fire together forming a cluster.
Of course, this model can be made more realistic by adding coupling weights governing
the plasticity of connections via learning mechanisms [92, 159, 233, 247, 272], inertia terms
and delays in time [76, 77, 78, 79], noise or many other features like singular couplings
(see [241, 254] and Chapters 3 and 4 of this thesis). We will review some of this associated
models later on.

2. If xi ∈ Rd represent positions and we set

νi ≡ 0, mi = 1, and F (x, x′) = −∇xW (x− x′),

then (1.1.1) agrees with the aggregation equation with a given potential function W





dxi
dt

= −K
N

N∑

j=1

∇xW (xi − xj),

xi(0) = xi,0,

(1.1.3)

This is probably one of the best known models in this family. It represents swarming of
a population of bacteria or other entities, that try to aggregate and from a unique group
or cluster. Depending on the nature of potential W , one might include both attractive
and repulsive interactions, then enriching the dynamics. This is one of the reason why
this model has specially pulled the attention of the scientific community during the last
years, indeed it has the ability to generate dynamics converging to equilibria that exhibit
relevant patterns in biological contexts, see [37, 50, 49, 64, 67, 120, 121, 221, 220, 287, 288].

3. If d = 2, we neglect heterogeneities νi = 0 and we set

mi ≡ ωi ∈ R, and F (x, x′) =
(x− x′)⊥

2π|x− x′|2 ,

(where (z1, z2)⊥ = (−z2, z1) for z = (z1, z2) ∈ R2), then (1.1.1) is theN vortex system [231]




dxi
dt

=
1

N

∑

1≤j≤N
j 6=i

ωj
(xi − xj)⊥

2π|xi − xj |2

xi(0) = xi,0.

(1.1.4)

Here, the values ωi denote the strength of vortices. This model has been widely studied in
the fluid mechanics community. Specially, its associated PDE macroscopic model agrees
with the 2D Euler equation in vorticity form for an perfect incompressible fluid. When,
white noise is also added, we recover the well known Navier–Stockes system for viscous
fluids. In this sense, the equations in fluid mechanics can be regarded as a particular case
of collective dynamics where the emergent phenomenon is the rotation of individuals,
also see [287, 288]. In next Section 1.2 we provide a more detailed introduction to the
equations of fluid mechanics, that will be useful along Chapter 6 in this thesis.
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Before we talk about the macroscopic counterparts of the fist order agent-based model
(1.1.1), let us link the above system (1.1.1) with the classical well known second order models
arising form Newton’s second law. Specifically, consider the following second order determin-
istic model 




dxi
dt

= vi,

dvi
dt

= −1

τ
vi + Fe(xi) +

K

N

N∑

j=1

mjF (xi, xj),

xi(0) = xi,0, vi(0) = vi,0,

(1.1.5)

where we have included a friction term with the environment with associate relaxation time
τ . Notice that in the overdamped limit or Smoluchowski dynamics (see [258]) damping dominates
inertia and, consequently, the inertia term vanishes and make all the second order dependence
of the system disappear. Then, the first order system (1.1.1) arises naturally from (1.1.5). This
arguments can be made rigorous for Lipschitz-continuous forces via Tikhonov’s theorem [183].
See [120, 121, 125, 126, 142, 255, 255] for some recent advances in this line both for smooth and
singular kernels at the microscopic and macroscopic levels. Also see Chapter 2 and Section 7.1
of Chapter 7.

To complete this overview of agent-based models, let us mention that the forcing term in
(1.1.5) has been chosen to depend only on positions. However, we can also consider velocity
dependence of forces and, by Newton’s second law, we obtain the following more general form
of second order models:





dxi
dt

= vi,

dvi
dt

= −1

τ
vi + Fe(xi) +

K

N

N∑

j=1

mjF (xi, vi, xj , vj),

xi(0) = xi,0, vi(0) = vi,0.

(1.1.6)

This family of second order models contains a specially interesting case in collective dynamics.
Specifically, if we neglect external forces and friction, and we set

mi = 1 and F (x, x′, v, v′) = φ(|x− x′|)(v′ − v),

then, we arrive at the following model




dxi
dt

= vi,

dvi
dt

=
K

N

N∑

j=1

φ(|xi − xj |)(vj − vi),

xi(0) = xi,0, vi(0) = vi,0.

(1.1.7)

This is the Cucker–Smale model with influence function described by the radial function φ.
This model was introduced in [90, 91] as a prototype collective dynamics model where the
emergent phenomenon is called flocking and represents the asymptotic alignment of all agents’
velocities towards the average value.

Of course, such models (1.1.1)-(1.1.6) give rise to a large family of variants when, instead
of smooth, interaction kernels are singular at the origin or, instead of isotropic, they include
some more realistic anisotropy. Also, the addition of some noise that distorts the deterministic
dynamics can be relevant. In this thesis we will be mostly interested in non-smooth forces. No-
tice that such lack of smoothness is expected for real-life systems. Also, the lack of smoothnes
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1.1. COLLECTIVE BEHAVIOR IN LIFE SCIENCES

yield to substantially new phenomena of models like it is the case with finite-time clustering.
Specifically, such “sticky” behavior of particles leads to the formation of distinguished groups
in finite time with an eventual global collapse into a final unique cluster (or in several ones),
see for example [241, 254] and Chapters 3 and 4, where such phenomenon is addressed for a
singular version of (1.1.2) with singular weights. Here, we will be mostly interested in system
(1.1.2) and (1.1.7), but some vague ideas and references will be provided later for the readers’
convenience, specially regarding (1.1.3) and some anisotropic versions.

1.1.2 Mean field limit and propagation of chaos

In this section, we review the main techniques to derive the large crowd limit, or mean field
limit, as N → in the collective dynamics models (1.1.1) or (1.1.6). We shall focus mainly in the
former type of systems, but similar ideas apply to second order models as well.

There are two classical approaches in the literature: the empirical measure approach and the
BBGKY hierarchy approach. The second method is stronger and harder to apply, but it has
proved a strong method as it is intimately related to propagation of chaos in many particle
systems. As it will be seen, the later has to do with a control of the fall-off of inter-particle
correlations as the amount of agents N becomes large. For more accurate descriptions, see
[163, 164, 176, 177, 178, 179, 181, 216, 217, 230, 281]. Let us assume that agents are all identical
and mass are normalized to 1. Since the natural velocities in the discrete model (1.1.1) are
constant parameters, we can equivalently restate the system as follows





dxi
dt

= νi + Fe(xi) +
K

N

N∑

j=1

F (xi, xj),

dνi
dt

= 0,

(xi(0), νi(0)) = (xi,0, νi,0 ≡ νi).

Then, both xi an νi are regarded as variables, although the dynamics of νi is trivial.
On the one hand, for the first empirical measures approach let us recover the sequence of

empirical measure of such N agents

µN (t, x, ν) :=
1

N

N∑

i=1

δxi(t)(x)δνi(t))(ν), (1.1.8)

for every t ≥ 0. Then, it it is clear for Lipschitz forces that µN solves the following Vlasov
equation in the sense of distributions

∂µN

∂t
+ divx

[(
ν + Fe(x) +K

∫

Rd×Rd
F (x, x′) d(x′,ν′)µ

N
t

)
µNt

]
= 0. (1.1.9)

We now take the initial data such that µN0 weakly-* converges towards the initial probability
distribution f0 ∈ P(Rd×Rd) by virtue of some law of large numbers, e.g. [291]. Then, our goal
is to show that compactness is propagated uniformly in compact intervals of time and we get

µN → f in C([0, T ],P(Rd × Rd)− narrow),

for any T > 0. In such case, we may pass to the limit in (1.1.9) to recover the Vlasov equation

∂f

∂t
+ divx

[(
ν + Fe(x) +K

∫

Rd×Rd
F (x, x′) d(x′,ν′)ft

)
ft

]
= 0. (1.1.10)
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Such ideas are classical and have been long used for W 1,∞ kernels, see [230] for more precise
details. Indeed, the following estability estimate or Dobrushin-type inequality (see [112]) with
respect to the bounded-Lipschitz distance dBL on the space of probability measures holds true
for any two measure-valued solutions f, g ∈ C([0,+∞),P1(Rd × R)− narrow)

dBL(ft, gt) ≤ et(‖Fe‖W1,∞+K‖F‖W1,∞ )dBL(f0, g0), t ≥ 0. (1.1.11)

It is straightforward to check that in general, the minimal error to approximate any f0 ∈
P1(Rd × Rd) by a sequence of empirical measures in dBL is of order N−

1
2d . That provides

an explicit estimate quantifying how the discrete system (1.1.1) can be approximated by the
kinetic equation (1.1.10) as N →∞, namely,

dBL(µNt , ft) . eCtN−
1
2d , (1.1.12)

for any N ∈ N. Indeed, under such Lipschitz condition the characteristic flow is well defined
and bi-Lipschitz, thus guaranteeing that absolutely continuous initial data f0 propagates the
same L1 integrability for all times. Then, there is no way that Dirac masses can emerge from
smooth initial data. Of course, the lack of Lipschitz-continuity breaks most of the above argu-
ments down. This will be part of our goal in Chapter 4 of this thesis.

On the other hand, the BBGKY approach departs from the hierarchy of Liouville equations
for the joint laws fN = fN (t, x1, . . . , xN , ν1, . . . , νN ) ∈ Psym(RdN×RdN ), that assumes the form

∂fN

∂t
+

N∑

i=1

divxi




νi + Fe(xi) +

K

N

N∑

j=1

F (xi, xj)


 fN


 = 0. (1.1.13)

Notice that since fN0 ∈ Psym(RdN × RdN ), in the sense that interchanging i-th and j-th po-
sitions and natural velocities let the measure invariant, then the same continues happening
for all times by virtue of the properties of the system. Define the projection onto the first
k ∈ {1, . . . , N} variables,

πk,N : RdN × RdN −→ Rdk × Rdk,
(XN , νN ) 7−→ (Xk,N , νk,N ),

where for any (XN = (x1, . . . , xN ), νN = (ν1, . . . , νN )) ∈ RdN × RdN we are are denoting

Xk,N := (x1, . . . , xk) and νk,N := (ν1, . . . , νk).

Consider the marginal measures fk,Nt := πk,N# (fNt ) ∈ Psym(Rdk ×Rdk). Thanks to the assumed
symmetry in the system, integration in (1.1.13) yields

∂fk,N

∂t
+

k∑

i=1

divxi

[(
νi + Fe(xi) +

K

N

k∑

j=1

F (xi, xj)

)
fk,N

+K
N − k
N

∫

Rd×Rd
F (xi, xk+1) d(xk+1,νk+1)f

k+1,N

]
= 0. (1.1.14)

Via a diagonal argument we can obtain weak limits of an appropriate subsequence

fk,∞ := weak ∗ − lim
N→∞

fk,N .
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Although (1.1.14) is not closed for fixed N , some method to close it in the limit N → ∞ is
the propagation of chaos. Specifically, denote f := f1,∞ for simplicity and assume that all the
initial values are tensorized, that is fk,∞0 = f⊗

k

0 . Then, propagation of chaos means that such
tensorization remains true for all times, i.e.,

fk,∞t = f⊗
k

t , for all t ≥ 0.

Such property can be rigorously derived for Lipschitz kernels and symmetric interactions, like
it is the case in this discussion. Then, we can pass to the limit in (1.1.14) as N → ∞ for k = 1
and recover the Vlasov equation (1.1.10) for the limiting marginal f1,∞. Indeed, one can try
to recover a similar Dobrushin inequality (1.1.12) between f1,N and f1,∞ with respect to some
transportation distance. Indeed, such a bound has been studied for Wasserstein distances in
[164, 216, 217] and others references. However, in [177, 178, 179] a different strategy has been
followed to quantify chaoticity for a large class of models with non-smooth forces. Neverthe-
less, the presence of noise is required to guarantee existence of entropy solutions of (1.1.13).
In other case, for the deterministic situation without noise some condition close to Lipschitz
is required. Assume for the moment that the heterogeneities νi are neglected and we focus on
forces of the type F (x, x′) = F (x− x′). Then, for any entropy solution fNt = fN (x1, . . . , xN ) to
(1.1.13) and any solution ft = f(x1, . . . , xN ) to (1.1.10), one can measure their “distance” in the
sense of entropy by defining the following scaled entropy functionals

HN (fNt |f⊗
N

t ) :=
1

N

∫

RdN
fNt log

(
fNt
f⊗Nt

)
dx1 . . . dxN .

Indeed, the following quantitative estimate can be obtained:

Theorem 1.1.1. [179, Theorem 2] Assume that divFe ∈ L∞(Td), divF ∈ L∞(Td) and that either
F ∈ L∞(Td) or for d ≥ 2, F is an odd kernel and |x|F ∈ L∞(Td). Then, there exists a constantM > 0
depending on K, f0 and ‖ divFe‖L∞(Td) such that

HN (fNt |f⊗
N

t ) ≤ eM‖F‖∞t
(
HN (fN0 |f⊗

N

0 ) +
1

N

)
,

for every N ∈ N and t ≥ 0. Here, we set the following norm of the kernel

‖F‖∞ :=





‖F‖L∞(Td) + ‖ divF‖L∞(Td), if F ∈ L∞(Td),

‖|x|F‖L∞(Td) + ‖ divF‖L∞(Td), if d ≥ 2, F is odd and |x|F ∈ L∞(Td).

Notice that for every k ≤ N one has the relation

Hk(fk,Nt |f⊗kt ) ≤ HN (fNt |f⊗
N

t ),

for all t ≥ 0. Then, Theorem 1.1.1 amounts to quantitative estimates of propagation of chaos
of system (1.1.1). Indeed, from it we can recover the standard propagation of chaos in L1 and
Wasserstein distances by virtue of Csiszár–Kullback–Pinsker and Talagrand inequalities respec-
tively

‖fk,Nt − f⊗kt ‖L1(Tdk) ≤
√

2kHk(fk,Nt |f⊗kt ),

Wp(f
k,N
t , f⊗

k

t ) ≤ C(ft, p)
(
kHk(fk,Nt |f⊗kt )

)1/2p
,

10
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for any p ≥ 1, N ≥ k and t ≥ 0.
In the following, we will come back to Kuramoto model (1.1.2) and to Cucker–Smale model

(1.1.7). In the Lipschitz case, all the above theory works and we have well defined mesoscopic
models coming from the agent-based descriptions. In addition, we shall review some singu-
larly weighted versions (see [226, 241, 244, 245, 254, 255]) that will be the core of Chapters 2, 3
and 4 of the thesis. Notice that in such singular version models, divF is not bounded anymore
and the above theorem 1.1.1 is not applicable in the deterministic case without noise.

1.1.3 The Cucker–Smale flocking model

Flocking models have been deeply studied in the context of starlings. For instance, [170] shows
a study of the social behavior of tens of thousands of European Starlings (Sturnus vulgaris) in
Rome, that analyzes the rules that guide them into an ordered motion culminating with the
formation of a flock. Specifically, the population of starlings propagates and modifies its shape
through the amazing aerial maneuvers taking place in winter in the period before migration.
Such study, focuses on the internal natural laws and on explaining how they lead to the for-
mation of the convoluted patterns in flocking that we observe in the nature, see Figure 1.1a.
Computer simulation of complex systems is also a key ingredient to test whether the basic
rules of organization yields the observed patterns. To such end, the first computer simulation
(Boids) of flocking dynamics was pioneered by C. W. Reynodls [257].

The original model of flocking proposed by Reynolds relied in three different basic rules:
separation, alignment and cohesion. Roughly speaking, there must exist some type of repulsive
short range interaction (separation) that prevents two individuals in the crowd from getting
too close. In the same way, some sort of attractive long range interaction (cohesion) should be
considered in order for the population to form clusters that eventually flock. Finally, an inter-
mediate third kind of interaction (alignment) should be borne to describe actual mechanism
governing flocking collective behavior.

Later, partially influenced by the works of T. Vicsek [295], the Cucker–Smale model was
proposed in [90, 91] by F. Cucker and S. Smale in the form that we introduced before in Equation
(1.1.7). Notice that in such collective dynamics model, agent’s velocities suffer a relaxation
towards the values of their neigbour in an averaged way mediated by the influence function φ.
Notice that natural way of choosing φ is as a decreasing function of distance so that the larger
the interparticle distance, the weaker the influence. Indeed, the classical choice by Cucker and
Smale is the truncated inverse power law

φ(r) =
1

(1 + r2)β/2
, for r ≥ 0, (1.1.15)

where the exponent β > 0 describes the fall-off of influence between agents. By construction,
we expect that all agent’s velocity aligns asymptotically if influence is globally large enough.
This gives rise to the following definitions that we shall use throughout the thesis.

Definition 1.1.2 (Alignment and flocking). Let (x1, v1), . . . , (xN , vN ) solve the Cucker–Smale model
(1.1.7). We will say that

1. The i-th and j-th agents collide at t = t∗ if

xi(t
∗) = xj(t

∗).

2. The i-th and j-th agents stick at t = t∗ if

xi(t) = xj(t), for all t ≥ t∗.

11
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3. The system aligns asymptotically if

lim
t→∞

max
i,j
|vi(t)− vj(t)| = 0.

4. The system flocks asymptotically if it aligns asymptotically and, additionally,

sup
t≥0

max
i,j
|xi(t)− xj(t)| <∞.

Notice that when the system is well posed and it has unique solutions, it is clear that the
sticking condition in the second item amounts to the condition xi(t

∗) = xj(t
∗) and vi(t

∗) =
vj(t

∗). Also notice that only when the asymptotic alignment takes place fast enough we obtain
a uniform bound of the diameter of the system. This can be regarded as the cohesion property
by Reynolds and we readily recover the formation of a flock. In other case, the group may
spread out while aligning their velocities. Finally, since the average velocity of agents is a
conserved quantity of the system, that is,

d

dt

1

N

N∑

i=1

vi(t) = 0,

for all t ≥ 0, then the asymptotic velocity of the population turns out to be precisely such
average value.

Regular influence function

Regarding the classical Lipschitz influence function (1.1.15), the first results on the emergence of
collective motion where derived in [90, 162, 158]. Indeed, if β ≤ 1, then (1.1.7)-(1.1.15) exhibits
unconditional flocking behavior with exponential fall-off of the velocity diameter. Otherwise
for β > 1 flocking is conditional and is only valid for appropriate initial configurations. Using
the techniques in Section 1.1.2, we readily recover the rigorous mean field limit in the Lipschitz
case (1.1.15). Indeed, such ideas were conducted in [162, 158] to derive the Vlasov equation for
the distribution function f = f(t, x, v) as N →∞





∂f

∂t
+ v · ∇xf = divv(QCS(f, f)), (x, v) ∈ R2d, t > 0,

QCS(f, f)(t, x, v) :=

∫

R2d

φ(|x− y|)(v − w)f(t, x, v)f(t, y, w) dy dw.
(1.1.16)

See [51] for the analysis of well-posedness and stability of solutions to such system in a measure-
valued setting using optimal transport tools that remind the ones by R. Dobrushin and H. Ne-
unzert in [112, 230]. The macroscopic counterpart of (1.1.16) in the Lipschitz case (1.1.15) is
determined by the Euler-alignment equation, that takes the form of the following system of
conservation laws for density and velocity field of the population





∂ρ

∂t
+ div(ρu) = 0,

∂u

∂t
+ (u · ∇)u = φ ∗ (ρu)− (φ ∗ ρ)u.

(1.1.17)

Such a system has been deeply analyzed. In particular, in [63, 282] the authors showed that
global regularity is characterized by a explicit threshold on the initial data (ρ0, u0). Specifically,

12
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they discriminated initial data enjoying blow-up from data enjoying global regularity depend-
ing on the properties of a “magic quantity” in the 1D setting

G = ∂xu+ φ ∗ ρ.

Indeed, it was shown that smooth solutions must flock, for an appropriate definition of flocking
that extends the microscopic one in Definition 1.1.2. A possible way to formally justify (1.1.17)
is by imposing the monokinetic ansatz

f(t, x, v) = ρ(t, x)δu(t,x)(v),

on the kinetic equation (1.1.16). The rigorous justification via hyperbolic hydrodynamic limits
was recently derived in [127]. Some other attempts where an extra pressure term appears in
the second balance equation (1.1.17) were addressed in [186] and related literature. However,
in all the approaches to date, extra non-local damping terms have been added to the kinetic
equation (1.1.16) to drive the solution towards the above monokinetic ansatz. Deriving the
hydrodynamic limit in the absence of those artificial terms is still an open problem. We skip
this topic here, and will return to it in Section 1.1.6, where further hydrodynamic limits are
reviewed, in particular the one that we propose in Chapter 2.

In the above classical choice (1.1.15), influence is bounded by 1 for any couple of agents
that are located at arbitrarily close positions. This suggests that the relaxation forces of the
alignment term may not be strong enough for nearby agents to avoid collisions if their linear
momenta are opposite and sufficiently large. Indeed, as discussed above in the macroscopic
equation (1.1.17), this was materialized in [282] in terms of the description of a critical threshold
on initial data (ρ0, u0) that discriminates solutions with blow up from global smooth solutions.
Obviously, the repulsion property by Reynolds was formulated precisely in order for agents not
to collide, bearing in mind its applications to the formation of flocks. Nevertheless, the above
collisional property may be of interest in other situations physical or biological situations.

Singular influence function

With all the above intuition in mind, a plausible way to remove collisions from the dynamics
is to design a more appropriate influence function φ with larger influence between nearby
particles. This is the origin of the following singular choice

φ(r) =
1

rβ
, for r > 0, (1.1.18)

where β > 1. Indeed, although tails behave in a similar way to the Lipschitz case (1.1.15), in-
fluence is arbitrarily large between agents separated by small distances. We here distinguish
between two different regimes with regards to the singularity: the weakly singular case β ∈ (0, 1)
and the strongly singular case β ∈ [1,∞). Formally, the same arguments as in [158] can be used
to show that for β ∈ (0, 1], we can recover again unconditional flocking motion of the system,
but it is not necessarily true for β > 1, where we expect conditional flocking for certain ini-
tial configuration. However, a fateful complication is that despite φ being singular, we still
cannot assure that influence is strong enough to guarantee non-collision between agents. Con-
sequently, the presence of a singular term in the system causes sever problems to derive a
general well-posedness theory of the model that remains valid after potential collisions.

In the strongly singular case, particular initial conditions where found in [3] so that col-
lisions do not take place along the dynamics and solutions remain classic and smooth for all
times. Later, such a work was improved in [62], where the authors showed that in the strongly

13
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singular regime β ≥ 1, collisions do not appear for any non-collisional initial data. Then, the
above heuristics turns out to be true in the more singular regime. Nevertheless, it is easy to con-
struct initial configurations so that solutions overcome eventual collisions in the weakly singu-
lar case, see [244, 245]. Indeed, in such papers, the authors proposed a well-posedness theory
of piecewise weak solutions to (1.1.7)-(1.1.18) that accounts for the eventual emergence of col-
lisions and sticking between agents (see Definition 1.1.2 above). In next Section 1.1.4, analogue
results will be derived for a singularly weighted version of the Kuramoto model that become
the core of Chapters 3 and 4. Indeed, in Section 1.1.5 some relations will be drawn between
those singular collective dynamics models. We then postpone such discussion to forthcoming
sections and, instead, we comment on the main implications of the above non-collision and
collision character of the strongly singular and weakly singular cases..

Regarding the mean field limit, little in known due to the difficulties imposed by the sin-
gularity of φ. In a recent paper [152] a probabilistic approach to the derivation of the mean
field limit was addressed for singular influence function with β < d − 1. However, the main
restriction of such result is that it is only valid when φ in (1.1.18) is replaced by an appropriate
N -dependent cut-off near the origin that blows up when the number of particles N tends to
infinity. The general result for the original kernel φ is still open.

Similarly, regarding the well-posedness of the kinetic equation, little is known as well. In-
deed, only in the particular range of the weakly singular regime β ∈ (0, 1

2) has been treated,
mostly supported by the information at the microcopic scale provided in the above results in
[244, 245]. Notice that the expected emergence of Dirac mases lead us to focus on measure-
valued solutions. Specifically, in [226] the authors showed the following existence and (partial)
uniqueness result of measure-valued solutions.

Theorem 1.1.3. [226, Theorem 3.1]. Let us consider 0 < β < 1
2 . For any compactly supported initial

data f0 ∈ P(R2d) and any T > 0, (1.1.16)-(1.1.18) admits at least one weak measure-valued solution
f ∈ L∞(0, T ;M(R2d)) with ∂tf ∈ Lp(0, T ;C1

c (R2d)∗) for some p > 1. Moreover, if f0 is of the form

f0(x, v) :=
1

N

N∑

i=1

δxi(0)(x)δvi(0)(v),

then f remains atomic of the form

f(t, x, v) :=
1

N

N∑

i=1

δxi(t)(x)δvi(t)(v).

for all t ∈ (0, T ]. In particular, it is a unique measure-valued solution to (1.1.16)-(1.1.18) (weak atomic
uniqueness).

Although this is not the main topic of this thesis, let us finally mention the main littera-
ture concerning the Euler-alignment system with singular influence function (1.1.17)-(1.1.18).
On the one hand, the above collision avoidance in the strongly singular case β ≥ 1 is the cor-
nerstone to derive a well-posedness. Indeed, for such regime in [110, 189, 275, 276, 277] the
authors used that the non-local term of the right-hand side of the second equation in (1.1.17)
turns out to be a (weighted) fractional Laplacian. Then, the case d = 1 is reminiscent of the
Burger equation with fractional Laplacian. Thus, global regularity follows from similar regu-
larity methods. For d = 2 similar result are obtained in [165] and the general d-dimensional
case is still open. On the other hand, in the weakly singular case β ∈ (0, 1) one expects the
eventual blow up of solutions depending on some threshold, like it was the case for regular
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influence function (1.1.15). Specifically, in the recent paper [283] some special conditions were
found so that blow-up is guaranteed in (1.1.17)-(1.1.18).

However, to date, the derivation of singular Euler-alignment system via rigorous hydrody-
namic limits has not been solved yet. We refer to Section (1.1.6) and Chapter 2 for some partial
answers. We also refer to the recent review [213] for more details about the Cucker–Smale
model with singular weights.

1.1.4 The Kuramoto model of coupled oscillators

The Kuramoto model with mean field coupling (1.1.2) (see [196, 195]) has been extensively
studied during the last years as a first a approach to synchronization of agents. Their eventual
applications are well known and many of them are addressed in the review [1] and also in
[209, 248]. Although Kuramoto initially proposed it for synchronization in chemical reactions,
it is a captivating cooperative phenomena that is also observed in biological, physical, and
social systems and it has attracted the interest of scientists for centuries. Such mechanism
governs the synchronization of flashing of fireflies [48], chorusing of crickets, beating of cardiac
cells, metabolic synchrony in yeast cell suspension, etc. Here, we are mainly interested in
the above-mentioned application on synchronization of the frequencies of synaptic firing of
neurons in the brain. In particular, it allows explaining phase transitions from disordered to
ordered states at a critical coupling strength, that is one of the main features of this model
and will be slightly addressed later for the readers’ convenience. For some applications to
the human connective network and how the realistic connectome maps that are available in
the literature affect the emergence of synchronization, see [297] and references therein. Those
ideas exploit that the human connectome turns out to be organized in modula (characterized
by a much larger intra than inter connectivity) structured in a hierarchical nested fashion across
many scales, affecting to the neural dynamics [261, 305, 306].

Synchronization in the agent-based model

From a mathematical point of view, there have been important contribution in the analysis of
phase and frequency synchronization in the system. The reader may want to look in [114, 145,
147, 157, 202] and references therein. Here we will sketch some of the most relevant results in
the study of synchronization that will play a role in this thesis. Before we state them, let us
formulate the corresponding Definition 1.1.2 in the particular setting of the Kuramoto model.

Definition 1.1.4 (Phase and frequency synchronization). Let θ1, . . . , θN solve the Kuramoto model
(1.1.2) and define the phase and frequency diameters of the system in RN as follows

D(Θ(t)) := max{θi(t)− θj(t) : i, j = 1, . . . , N},
D(Θ̇(t)) := max{θ̇i(t)− θ̇j(t) : i, j = 1, . . . , N},

for all t ≥ 0, where bars denote the representative modulo 2π inside the (−π, π]. Then, we say that

1. The i-th and j-th oscillators collide at t = t∗ if

θ̄(t∗) = θ̄(t∗).

2. The i-th and j-th oscillators stick at t = t∗ if

θ̄i(t) = θ̄j(t), for all t ≥ t∗.
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3. There is asymptotic phase synchronization (PS) if

lim
t→∞

D(Θ(t)) = 0.

4. There is asymptotic frequency synchronization (FS) if

lim
t→0

D(Θ̇(t)) = 0.

5. The system converges towards a phase-locked state (PLS) if there are θ∞ij ∈ R such that

lim
t→0

θi(t)− θj(t) = θ∞ij .

Notice that asymptotic phase synchronization only can take place for identical oscillators
Ω1 = . . . = ΩN . In addition, if there is PS then there also is FS. Also, notice that if there is PLS
then there also is FS. The reverse is not necessarily true unless the fall-off of the frequencies
diameter is fast enough. In particular, when the heterogeneity disappear and all the agents are
identical (e.g. Ωi = 0), there is complete phase synchronization.

Theorem 1.1.5. [145, Theorem 3.1] Let Θ(t) = (θ1(t), . . . , θN (t)) be a smooth solution to (1.1.2) with
Ωi = 0 and assume that D(Θ0) < π. Then, we have an asymptotic complete phase synchronization.
Specifically,

e−KtD(Θ0) ≤ D(Θ(t)) ≤ e−K
sin(D(Θ(0)))

D(Θ0)
t
D(Θ0), t ≥ 0.

Although some other approaches had been explored, most of them produced N -dependent
rates that do not fit the mean field scaling and, to our best knowledge, this is the first result
that avoids that issue. Of course, complete frequency synchronization of identical oscillators
is the clear from the above result with a new exponential rate on the diameter. Regarding
non-identical oscillators, one cannot expect global phase synchronization. However, one still
expects frequency synchronization when the coupling strength K is large enough compared
with the size of Ωi. Indeed, when the decay rate is fast enough it implies emergence of phase-
locked states. Those equilibria are characterized by the fact that the inter-particle distances
remain constant while rotating in the unit circle. There are several approaches to that we will
shortly sketch.

On the one hand, the first approach is based on an uniform bound of the phase diameter
under appropriate conditions, that can be used to achieve an explicit exponential decay of the
frequency diameter of the system. Specifically,

Theorem 1.1.6. [145, Theorem 3.3] Assume that

1

N

N∑

i=1

Ωi = 0, D(Ω) > 0 and K > D(Ω),

and let Θ(t) = (θ1(t), . . . , θN (t)) be a smooth solution to (1.1.2) such thatD(Θ0) < D∞ and θi,0 6= θj,0
for every i 6= j, where D∞ ∈ (0, π2 ) is the unique root of

D(Ω)

K
= sinx, x ∈

(
0,
π

2

)
.

Then, the phase diameter keeps bounded by D∞ for all times and, in addition, we have asymptotic
complete frequency synchronization

D(Θ̇(t)) ≤ D(Θ̇0)e−K cos(D∞)t, t ≥ 0.
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Some other improvements are given in [114] and later in [147], where emergence of phase
locked states was proved for any initial configuration. The main restriction in such extensions
is the lack of estimate for the frequency decay, that in the general case is still an open problem.

The second approach exploits the gradient system structure of (1.1.2). Specifically, notice
that for the potential energy

V (Θ) = −
N∑

i=1

θiΩi +
K

2N

N∑

i,j=1

(1− cos(θi − θj)), Θ = (θ1, . . . , θN ) ∈ RN , (1.1.19)

System (1.1.2) is nothing but the gradient flow of V , i.e.,

˙Θ(t) = −∇V (Θ(t)). (1.1.20)

Indeed, V is an analytic potential, what in particular implies Łojasiewicz gradient inequality.
Namely, for every Θ∗ ∈ RN there exist γ ∈

[
1
2 , 1
)
, L > 0 and a ball BR(Θ) centered at Θ∗ such

that
|V (Θ)− V (Θ∗)|1−γ ≤ C|∇V (Θ)|2, for all Θ ∈ BR(Θ∗).

That can be used to prove that whenever one has a bounded trajectory Θ = Θ(t) in RN , fre-
quency has to converge to zero as t→∞ and a phase-locked state emerges, see [157]. However,
the explicit rate is not given since it is known to depend on the explicit Łojasiewicz exponent
γ of the phase-locked state θ′. See [202] where some decay rates have been given in particular
cases.

Partial synchronization results in the kinetic model

Regarding the macroscopic model, notice that according to the above part, Neuzert’s tech-
niques [230] yields the rigorous mean field limit of (1.1.2), thanks to the regularity of the kernel
F (x, y) = sin(y − x). Indeed, the Vlasov equation agrees with the well known Kuramoto-
Sakaguchi equation

∂f

∂t
+

∂

∂θ

[(
Ω +K

∫

T×R
sin(θ′ − θ)f(t, θ′,Ω′) dθ′ dΩ′

)
f

]
= 0. (1.1.21)

Such idea was first proposed in [198], where L1 solutions where obtained. However, a more
recent approach in [58] also address measure-valued solutions and a contractivity estimate was
given in a sort of Dobrushin-type inequality 1.1.11 (see [112, 230]) with negative exponential
decay. The authors used such information to transfer the above dynamical properties of agent-
based system to the macroscopic system.

On the one hand, the mean field limit allows transferring complete phase synchronization
in the identical case.

Theorem 1.1.7. [58, Lemma 4.1, Theorem 4.1] Suppose f0 ∈ P(T×R) such that all the oscillators are
identical, i.e., g = δ0(Ω) where g = (πΩ)#f0 is the Ω-marginal, or distribution of natural frequencies.
Assume that ∫

[0,2π)×R
θf0(θ,Ω) dθ dΩ = π, Dθ(f0) < π and K > 0.

Then, the measure-valued solution f to (1.1.21) issued at f0 satisfies

Dθ(ft) ≤ Dθ(f0)e
−K sin(Dθ(f0))

Dθ(f0)
t
,
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for t ≥ 0. In particular,
lim
t→∞

dBL(ft, f∞) = 0,

where the equilibrium reads f∞ = δπ(θ)⊗ δ0(Ω).

Here, Dθ(ft) = diam(suppθ ft) is the diameter of the θ-support of ft, that is, suppθ(ft) =
πθ(supp ft), where πθ stands for the projection onto the variable θ. The Ω-support of ft and
DΩ(ft) can be similarly defined.

Regarding complete frequency synchronization of non-identical oscillators, the necessary
result is the aforementioned contractivity estimate with tespec to to an appropriate transporta-
tion distance W̃p on the space of probability measures.

Theorem 1.1.8. [58, Lemma 5.1] Suppose that two initial measures f0, f̃0 ∈ P(T × R) and K > 0
satisfy the following constraints:

1. 0 < Dθ(f̃0) ≤ Dθ(f0) < π.

2.
∫

[0,2π)×R
θf0(θ,Ω) dθ dΩ =

∫

[0,2π)×R
θf̃0(θ,Ω) dθ dΩ = π.

3. K > DΩ(f0) max

{
1

sin(Dθ(f0))
,

1

sin(Dθ(f̃0))

}
.

Let f, f̃ be two measure-valued solutions to (1.1.21) corresponding to the initial data f0 and f̃0 respec-
tively. Then, there exists t0 > 0 and some D∞ ∈ (0, π2 ) such that

W̃p(ft, f̃t) ≤ e−
2K cosD∞

π
(t−t0)W̃p(ft0 , f̃t0),

for every t ≥ t0 and 1 ≤ p ≤ ∞.

Using such result frequency synchronization of non-identical oscillators takes place.

Corollary 1.1.9. [58, Lemma 5.1] There exists a unique stationary state f∞ in the set of probability
measures fulfilling the properties in Theorem 1.1.8 such that for any other f0 ∈ P(T × R) in such set,
the solution f of (1.1.21) issued at f0 verifies

W̃p(ft, f∞) ≤ e− 2K cosD∞
π

(t−t0)W̃p(ft0 , f∞),

for any t ≥ t0.

In the above result, the transportation distance W̃p proposed by the authors is not the usual
Wasserstein distance in T × R as one might expect. Such a distance is constructed for f, f̃ ∈
P(T×R) through the following procedure. First, we unwrap the circle T into [0, 2π) by opening
at the point z = 1 ∈ T. Then, we compute their associated cumulative distribution functions
with respect to θ as follows

F (θ,Ω) :=

∫ θ

0
f(θ′,Ω) dθ′, θ ∈ [0, 2π),

F̃ (θ,Ω) :=

∫ θ

0
f̃(θ′,Ω) dθ′, η ∈ [0, 2π).
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for any Ω ∈ R. Now, we compute their associated pseudoinverses

φ(t, η,Ω) := inf{θ ∈ [0, 2π) : F (t, θ,Ω) > η}, η ∈ [0, g(Ω)],

φ̃(t, η,Ω) := inf{θ ∈ [0, 2π) : F̃ (t, θ,Ω) > η}, η ∈ [0, g̃(Ω)],

Only when f and f̃ have a common distribution of natural frequencies g = g̃, we can finally
compute the following “transportation distance”

W̃p(f, f̃) :=

(∫

R
‖φ(·,Ω)− φ̃(·,Ω)‖pLp(0,g(Ω))dΩ

)1/p

. (1.1.22)

From our point of view, there are some implicit difficulties and restrictions to apply the above
transportation distance W̃p. On the one hand, notice that it implicitly requires that we can fix
the variable Ω and regard f(·,Ω) and f̃(·,Ω) as functions only depending on θ. Of course, this
can be done for absolutely continuous measures, but it is not fully clear for abstract measures.
In addition, we implicitly need that both f and f̃ have the same distribution of natural fre-
quencies. Since ft and f∞ in Corollary 1.1.9 satisfy such hypothesis, then W̃p can be applied in
such case. However, it is not clear that we can apply it in contractivity Theorem 1.1.8 unless we
restrict the class of initial data to those with common distribution g of natural frequencies. In
the next part we will introduced a new fiberwise transportation distance W2,g that is related to
W̃2 but is constructed in terms of the real Wasserstein in T. From its definition, it will become
clear at first glance that it applies to abstract probability measures not necessarily absolutely
continuous. Indeed, such a metric will prove specially useful in Chapters 4 and 5 of this thesis.

In most of the above results, the cornerstone is the asumption on the phase diameter. Then,
such results are nothing but a transference towards the kinetic equations of the preceding re-
sults at the discrete level. However, as explored in [147] and other papers, there is a classical
quantity that simplifies the understanding of the synchronization dynamics, namely, the order
parameter. For the continuous case (the reader can easily adapt it to the agent-based system),
the order parameters R = R(t) and φ = φ(t) are given by the relation

R(t)eiφ(t) =

∫

T×R
eiθ d(θ,Ω)ft, t ≥ 0. (1.1.23)

The parameter R is a measure of coherence in the system, ranging from disordered states with
R = 0 to globally phase synchronized states with R = 1. In fact, such parameters allow restat-
ing the Kuramoto–Sakaguchi equation (1.1.21) as follows

∂f

∂t
+

∂

∂θ
(Ω−KR sin(θ − φ)f) = 0.

Therefore, we may want to analyze the dynamics of (1.1.21) in terms of the above macroscopic
order parameters (1.1.23). This approach has been addressed in particular in [24, 154]. The
aim in such ideas is to get rid of the diameter assumption in preceding results and, it has been
successfully achieved in certain cases. Let us comment on the above improvements of such
idea.

On the one hand, the identical case g = δ0 is much simpler since (1.1.21) can be restated in
terms of the phase density ρt = (πθ)#ft

∂ρ

∂t
+

∂

∂θ
(−KR sin(θ − φ)ρ) = 0. (1.1.24)
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In addition, straightforward computations show that R is non-decreasing and, as shown in
[24], φ(t) converges to an asymptotic value. Also, we can compute the stationary states that
read as follows

ρ∞(θ) = σδφ∞(θ) + (1− σ)δφ∞+π(θ), (1.1.25)

for some parameter σ ∈ [1
2 , 1). With all these ingredients, the following result holds true.

Theorem 1.1.10. [24, Theorem 3.4] Consider ρ0 ∈ P(T) and consider the measure-valued solution ρ
to (1.1.24). Then, there exists φ∗ ∈ R and σ ∈ [1

2 , 1) such that

ρ(t)→ ρ∞ narrow in P(T),

as t → ∞, where ρ∞ is defined in (1.1.25). In addition, if ρ0 is non atomic then σ = 1, i.e., there is
complete phase synchronization.

Such result also has also been proved in [154, Theorem 3.1], showing concentration of mass
around φ(t) with exponential fall-off of the L2 norm around φ(t) + π.

On the other hand, regarding non-identical oscillators the distribution of natural frequen-
cies g = (πΩ)#f plays a role. Specifically, for compactly supported g and large enough K
compared to its support, there are stationary solutions with corresponding order parameters
φ∞, R∞ that play an analogue role to the above two-delta functions

f∞(θ,Ω) = g+(Ω)δϑ+(Ω)(θ) + g−(Ω)δϑ−(Ω)(θ), (1.1.26)

where g = g+ + g− and each Ω-dependent phase ϑ±(Ω) take the following form

ϑ+(Ω) = φ∞ + arcsin

(
Ω

KR∞

)
,

ϑ−(Ω) = φ∞ + π − arcsin

(
Ω

KR∞

)
.

In addition, the order parameter R∞ has to verify the consistency relation

KR2
∞ =

∫

R

√
K2R2∞ − Ω2 dΩ(g+ − g−). (1.1.27)

However, in such case, the results in [24] are just conditional. They do not yield any rigorous
convergence of the order parameters but only characterize the possible equilibria.

Proposition 1.1.11. [24, Proposition 4.1] Consider f0 ∈ P(T×R) non-atomic and let ft be the solution
to (1.1.21) issued at f0. Assume that supp g ⊆ [−KR∞,KR∞] and that R(t)→ R∞ and φ(t)→ φ∞
as t→∞. Then,

f(t)
∗
⇀ f∞ weakly- ∗ in P(T× R),

as t→∞, where f∞ is given by (1.1.26) with g− ≡ 0.

Mass concentration and full synchronization in the kinetic model

To the best of our knowledge, the first unconditional result in the non-identical case was ana-
lyzed in [154]. In that result, emergence of phase concentration for non identical oscillators was
detected independently on the size of the diameter Dθ(f0) of the initial configuration as long
as R0 := R(0) > 0 and K is larger that a large enough critical value depending on R0 and the
size of supp g.
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Theorem 1.1.12. [154, Theorem 3.3] Let f be a classical solution to (1.1.21) with R0 > 0 and assume
that the distribution of natural frequencies has compact support supp g ⊆ [−W,W ]. Then, for large
enough K compared to 1

R0
and W

lim inf
t→∞

R(t) ≥ R∞ := 1 +
W

K
−
√
W 2

K2
+ 4

W

K
,

and
lim
t→∞

∥∥ftχ(T\L∞(t))×R
∥∥ = 0.

Here L∞(t) is the interval centered at φ(t) with constant width larger, but arbitrarily close to

arccos



√

1−
[
W

K

(1 +R∞)

R2∞
+

1−R∞
R∞

]2

 .

Notice that as K
W →∞, the width can be made arbitrarily small and R∞ tends to one.

The lower bound of the order parameter was essential and is the first result in this line.
Also, it is reminiscent of practical synchronization at the agent-based level. That is, K has to be
large enough, in order for the order parameter R to oscillate arbitrarily close to 1. On the one
hand, notice that the above result is not strong enough to derive the convergence of the system
towards an equilibrium of the family (1.1.26). At least, it is consistent with Proposition 1.1.11
in the sense that antipodal mass is ruled out by virtue of the above asymptotic convergence
of mass towards the interval L∞. On the other hand, another negative point of such result is
that it does not quantifies the rate of convergence of mass to the neighborhood L∞ of the order
parameter.

In Chapter 5 we will provide the full answer to the above questions. Firstly, we quantify
a finite time that the system takes to enter a regime in which mass concentrates exponentially
fast around φ(t) by using the information provided by some system of differential inequalities
that quantifies four well described principles:

- Soft entropy production

- Instability of equilibria with antipodal mass.

- Emergence of attractor sets of characteristics.

- Accurate control on sliding L2 norms along sets that evolve along the flow.

Specifically, for an appropriately defined dissipation of the system (recall that non-identical
Kuramoto–Sakaguchi is not a Wasserstein gradient flow), we will perform a subdivision that
splits the dynamics into subintervals with dissipation below and above some critical threshold.
Fortunatelly, the abovementioned system of differential inequalities will be enough to provide
a sharp control on each regime so that we can extend to Kuramoto–Sakaguchi the ideas devel-
oped by L. Desvilletes and C. Villani in [104] for the Boltzmann equation and quantify mass
concentration.

Lemma 1.1.13 (Corollary 5.2.3 in Chapter 5). Let f0 be contained in C1(T×R) and let g be compactly
supported in [−W,W ] and centered at Ω = 0, that is,

∫

R
Ωg(Ω) dΩ = 0. (1.1.28)
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Consider the unique global-in-time classical solution f = f(t, θ, ω) to (1.1.21) and suppose that β =
π/3. Then, there exists a universal constant C such that if

W

K
≤ CR3

0,

then we can find a time T0 with the property that

T0 .
1

KR2
0

log

(
1 +W 1/2‖f0‖L2 +

1

R0

)
,

and
R(t) ≥ 3

5
and ρ

(
T\L+

β (t)
)
≤ e− 1

20
K(t−T0),

for every t in [T0,∞).

Secondly, we derive generalized log-Sobolev and Talagrand inequalities (see the work [238]
by F. Otto and C. Villani for the Fokker–Planck equation) that relate the rate of change of the
aforementioned fiberwise transportation distance W2,g and the appropriate concept of dissipa-
tion of the system

I[ft] =

∫

T×R
(Ω−KR sin(θ − φ))2f dθ dΩ.

Lemma 1.1.14 (Lemma 5.3.6 in Chapter 5). Assume that f0 is contained in C1(T × R) and let g be
compactly supported in [−W,W ] and centeted at Ω, i.e., (1.1.28). Consider the unique global-in-time
classical solution f = f(t, θ, ω) to (1.1.21). Then,

d

ds

1

2
W2,g(ft, fs)

2 ≤ I[f ]
1
2W2,g(ft, fs),

for every t ≥ 0 and almost every s ≥ 0.

Using the above Lemma 1.1.14 after the concentration regime quantified by Lemma 1.1.13
we conclude the converge of the system towards the global equilibrium:

Theorem 1.1.15 (Theorem 5.1.2 of Chapter 5). Under the assumptions in 1.1.13, we obtain that

W2,g(ft, f∞) . e−
1
40
K(t−T0),

for every t in [T0,∞). Here f∞ is the unique global equilibrium of the Kuramoto-Sakaguchi equation
up to phase rotations.

For an easier readability, we advance here the definition of our fiberwise transportation
distance W2,g. Given f, f̃ ∈ P(T × R) with same distribution of natural fequencies g :=

(πθ)#f = (πθ)#f̃ , we first denote their family of conditional probabilities with respect to Ω

by {f(·|Ω)}Ω∈R and {f̃(·|Ω)}Ω∈R and we define the fiberwise distance as follows:

W2,g(f, f̃) :=

(∫

R
W2

(
f(·|Ω), f̃(·|Ω)

)2
dΩg

)1/2

. (1.1.29)

For the sake of clarity, we have provided an Appendix F, that contains an outline of the main
required methods from optimal transport theory that will be used in this thesis. In particular,
we introduce such fiberwise distance (F.4.2) in Appendix F and we draw some relations with
the classical Wasserstein distances. Such a tool is a key point for both Chapters 4 and 5. We
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restrict our discussion here to clarify the main relations betweem W2,g in (1.1.29) and W̃p in
(1.1.22).

Notice that, as mentioned before, W2,g involves the quadratic Wasserstein distance W2 on
T. However, using the notation in the definition (1.1.22) of W̃p, we obtain

‖φ(·,Ω)− φ(·,Ω)‖pLp(0,g(Ω)) = Ŵp(f(·|Ω), f̃(·|Ω))pg(Ω),

for any Ω ∈ R, where Ŵp is the Wasserstein distance on the interval [0, 2π) (for such an identity
in dimension one we refer to the textbooks [9, 296], see e.g., [268, Proposition 2.17]). Then, we
recover the general inequality

W2,g(f, f̃)2 =

∫

R
W2(f(·|Ω), f̃(·|Ω))2 dΩg ≤

∫

R
Ŵ2(f(·|Ω), f̃(·|Ω))2 dΩg = W̃2(f, f̃)2,

where we have used the fact that transportation distance on [0, 2π) is in generally larger than
on T and. Indeed, the latter transportation distance is infimum of all the possible transporta-
tion distances of the different intervals that we can unwrap T into. Also, observe that we do
not need to make sense for f(·,Ω) since our construction is described in terms of conditional
probabilities f(·|Ω), that are well defined for abstract probability measures.

The reason to define such a distance will become apparent later, but we here emphasize
that such distance is extremely well conditioned to recover stability estimates (or Dobrushin
inequalities) for the Kuramoto–Sakaguchi equation. Also, as mentioned before, it proves spe-
cially well adapted to derive log-Sobolev and Talagrand-type inequalities (see [238] for the
Fokker–Planck equation).

Phase transition and Landau damping

As mentioned before, one of the most interesting features of the Kuramoto model in the mean
field limit is the presence of a phase transition at a given critical coupling strength from disor-
dered to ordered states. This was initially conjectured by Kuramoto, and was later rigorously
obtained by several authors by analizing the bifurcation diagram, see [56]

Theorem 1.1.16. [74, Theorems 1.1-1.3] Assume that g = g(Ω) is the Gaussian distribution or a
rational function which is even, unimodal and bounded. Consider the Kuramoto transition point Kc :=

2
πg(0) and let finc(θ,Ω) = g(Ω)

2π be the incoherent state. Then, the following results hold true:

1. (Instability of the incoherent state) If K > Kc, then finc is linearly unstable.

2. (Local stability of the coherent state) If 0 < K < Kc, there exists δ > 0 such that if f0 has
distribution of natural frequencies equals g, i.e., (πΩ)#f0 = g and

∣∣∣∣
∫

T×R
einθ d(θ,Ω)f0

∣∣∣∣ < δ, for all n ∈ N, (1.1.30)

then, R(t) decays to zero exponentially fast.

3. (Bifurcation) There exist ε, δ > 0 such that if Kc < K < Kc + ε and f0 fulfils (1.1.30) then

R(t) =

√
−16

πK4
c g
′′(0)

√
K −Kc +O(K −Kc) as t→∞.

23



1.1. COLLECTIVE BEHAVIOR IN LIFE SCIENCES

Similar results were also obtained in [25, 106, 108]. Notice that the second item can be
regarded as Landau damping in the vicinity of the incoherent state. Such a phenomenon was first
observed in Vlasov equation, see [225] for a comprehensive aproach to the nonlinear version of
the problem. Third result actually states that a pitchfork bifurcation arises after K = Kc, thus
generating stable inhomogenous partially locked states. In relation with it, Landau damping
towards those partially locked states was introduced in [107, 109].

The Kuramoto model with singular couplings

The above Kuramoto–Sakaguchi equation is still subject of deep study due to the complicat-
edness of the dynamics and its applications in many areas of Science. In particular, recall that
in [261, 297, 305, 306] such model has been applied to model neuronal synchronization. Each
node represents neurons in a specific area of the brain and the firing frequencies evolve through
the coupled system (1.1.2) (or (1.1.21) for macroscopic description consisting of many nodes).
However, uniform coupling weights between neurons are unrealistic in general. Specifically,
connections should change with time and adapt to the dynamics itself:





dθi
dt

= Ωi +
K

N

N∑

j=1

aij sin(θj − θi),

θi(0) = θi,0,

(1.1.31)

that is, aij = aij(t) are time-evolving and coupled with the dynamics of phases. This is called
plasticity and can be modelled via a learning rule [92, 159, 233, 247, 272], for instance

daij
dt

= η(Γ(θi − θj)− aij). (1.1.32)

The function Γ = Γ(θ) is called plasticity function and η > 0 determines the learning parameter.
According to the neuroscientist D. O. Hebb [166], any two cells or systems of cells that are repeatedly
active at the same time will tend to become associated, so that activity in one facilitates activity in the
other. In our setting, it means that Γ must achieve a maximum at the origin so that neurons
with close phases become associated and increase their coupling weights.

In the above reference, the choice Γ(θ) = cos(θ) was proposed as a particular prototype
of Hebbian learning. However, since cosine is not positive everywhere, (unrealistic) negative
coupling weights might eventually arise, although they end up disappearing after a finite time.
Our goal in Chapter 3 is to propose the following modification of the plasticity function

Γ(θ) :=
σ2α

(
σ2 + |θ|2o

)α , (1.1.33)

where σ ∈ (0, π), and |θ|o is the geodesic distance of eiθ to 1 along the unit circle, that is

|θ|o := |θ̄| for θ̄ ≡ θ mod 2π, θ̄ ∈ (−π, π].

In this way, only positive values of the weights aij arise in the dynamics of (1.1.32). More specif-
ically, using a fast learning singular limit of the plasticity rule, we shall reduce the problem to
the following collective dynamics agent-based model





dθi
dt

= Ωi +
K

N

N∑

j=1

h(θj − θi),

θi(0) = θi,0,

. (1.1.34)
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where the interaction kernel reads

h(θ) :=
sin θ

|θ|2αo
, θ ∈ R. (1.1.35)

Notice that this is a sort of Kuramoto–Daido model with three regimes of singularity: subcriti-
cal for α ∈ (0, 1

2), critical for α = 1
2 and supercritical for α ∈ (1

2 , 1). The presence of singularity
is relevant as it opens the scope in the paradigm of the Kuramoto model.

Let us advance the main results that we shall address later in Chapter 3 with regards to
such a model. First, we prove the well-posedness of global-in-time absolutely continuous solu-
tions of the agent-based system. In in the critical and supercritical regime, where the kernel is
discontinuous, solutions are considered in the sense of Filippov. Recall that Filippov solutions
are nothing but solutions to the differential inclusion into the Filippov set-valued map of the
system. In the most singular cases α ∈ (1

2 , 1] we will see that the Filippov set-valued map at
some point Θ ∈ RN consists of the values (ω1, . . . , ωN ) ∈ RN parameterized by

ωi = Ωi +
K

N

∑

1≤j≤N
θ̄j 6=θ̄i

h(θj − θi) +
K

N

∑

1≤j≤N
θ̄j=θ̄i

yij , (1.1.36)

for some skew-symmetric matrix Y = (yij)1≤i,j≤N with general items in R if α ∈ (1
2 , 1) or items

in [−1, 1] if α = 1
2 . Although one-sided uniqueness will follow for α ∈ (0, 1

2 ] (because the
Filippov set-valued map (1.1.36) is one-sided Lipschitz), it is not clear yet for the supercritical
regime α ∈ (1

2 , 1). Indeed, we will propose two different methods to obtain solutions: rigorous
limit towards singular kernel and a continuation criterion of classical solutions after collisions.
Checking whether they agree is an open problem yet that we have only solved positively for
two oscillators. From the point of view of the emergence of collective motion,we emphasize
the main novelties that this new model introduces: finite-time sticking and clustering into groups.

Theorem 1.1.17 (Theorem 3.3.6 in Chapter 3). Consider Θ = (θ1, . . . , θN ), the global-in-time classical
solution to (1.1.34)-(1.1.35) for α ∈ (0, 1

2). Assume that two oscillators collide at t∗, i.e., θ̄i(t∗) = θ̄j(t
∗)

for some i 6= j. Then, the following two statements are equivalent:

1. θi and θj stick together for all t ≥ t∗.

2. Their natural frequencies agree, i.e., Ωi = Ωj .

Recall Definition 1.1.4 for the concept of sticking of oscillators in this thesis that, in particu-
lar, we use in the above results. In the critical regime, some richer phenomena takes place.

Theorem 1.1.18 (Corollary 3.3.14 in Chapter 3). Consider Θ = (θ1, . . . , θN ) the global-in-time Filip-
pov solution to (1.1.34)-(1.1.35) for α = 1

2 . Assume that t∗ is some collision time and fix any formed
cluster with indices in the set E ⊆ {1, . . . , N} and size #E = n. Then, the following two statements
are equivalent:

1. The n oscillators in the cluster E stick all together after t = t∗.

2. The next condition takes place
∣∣∣∣∣
1

n

∑

i∈E
Ωi −

1

m

∑

i∈I
Ωi

∣∣∣∣∣ ≤
K

N
(n−m), (1.1.37)

for every 1 ≤ m ≤ n and every I ⊆ E such that #I = m.
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Notice that those results imply that oscillators with different natural frequencies are still
allowed to stick in finite time after a collision takes place as long as condition (1.1.37) holds
true. This is a conditional result, since we have not show yet that finite-time collision can take
place. However, explicit sufficient conditions for global phase synchronization in finite time
were also obtained in [241] for identical oscillators (Ωi = 0) initially confined to the half circle
both in the subcritical and critical regime. It is an analogue to the above asymptotic complete
phase synchronization of identical oscillators in Theorem 1.1.5.

Theorem 1.1.19 (Theorem 3.5.4 of Chapter 3). Let Θ = (θ1, · · · , θN ) be the classical solution to
(1.1.34)-(1.1.35) with α ∈

(
0, 1

2

)
for identical oscillators (Ωi = 0). Assume that the initial configura-

tion Θ0 is confined in a half circle, i.e., 0 < D(Θ0) < π. Then, there is complete phase synchronization
at a finite time not larger than Tc, where

Tc =
D(Θ0)1−2α

2αKh(D(Θ0))
.

Theorem 1.1.20 (Theorem 3.5.15 of Chapter 3). Let Θ = (θ1, · · · , θN ) be the Filippov solution to
(1.1.34)-(1.1.35) with α = 1

2 for identical oscillators (Ωi = 0). Assume that the initial configuration
Θ0 is confined in a half circle, i.e., 0 < D(Θ0) < π. Then, there is complete phase synchronization in a
finite time not larger than Tc, where

Tc =
D(Θ0)

Kh(D(Θ0))
.

Indeed, if the Filippov solutions obtained through the above two methods agree in the
supercritical case then the latter result remains true in such more singular regime as well, see
Remark 3.5.16. We refer to the corresponding chapter for more results and open problems
regarding the dynamics of system (1.1.34)-(1.1.35) (e.g., non identical case, emergence of PLS,
etc).

Let us move to the contents of Chapter 4 regarding the derivation and dynamics of the
macroscopic counterpart of the above collective dynamics model (1.1.34)-(1.1.35). First of all,
let us emphasize that the kernel h in (1.1.35) is no longer Lipschitz-continuous and the above
techniques by R. Dobrushin and H. Neunzert [112, 230] that were used in for the Kuramoto–
Sakaguchi equation [58, 198] do not work for these more singular regimes. Also, the approach
in Theorem 1.1.1 does not yield any result since the divergence (derivative in 1D) of the cou-
pling force is not bounded anymore in any of the regimes α ∈ (0, 1). In this chapter we will
introduced a new approach to deal with this sort of kernels for α ∈ (0, 1

2 ]. Specifically, we shall
construct weak measure-valued solutions (in the sense of the Filippov flow for α ∈ 1

2 ) to the
kinetic singular Kuramoto model. Here, we will first recall the subcritical and critical regimes
whilst the supercritical case will be sketched later.

On the one hand, it is clear that (formally) the kinetic singular Kuramoto model reads

∂f

∂t
+

∂

∂θ

[(
Ω +K

∫

T×R
h(θ′ − θ)f(t, θ′,Ω′) dθ′ dΩ′

)
f

]
= 0,

whete f = f(t, θ,Ω) is the distribution function of oscillators for all t ≥ 0 and (θ,Ω) ∈ T × R.
Notice that we are assuming periodic boundary conditions with respect to the variable θ. Such
a model equivalently takes the form of a nonlinear transport equation along the manifold T×R,
namely, {

∂f

∂t
+ div(V[f ]f) = 0, (z,Ω) ∈ T× R,

f(0) = f0,
(1.1.38)
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where the divergence is considered along T× R and the non-linear transport field reads

V[f ](z,Ω) := (P[f ](z,Ω)iz, 0),

P[f ](z,Ω) := Ω +K

∫

T\{z}

∫

R
h(θ′ − θ) d(θ′,Ω′)f,

(1.1.39)

for any (z = eiθ,Ω) ∈ T × R. Obviously, the transport field only makes sense for α ∈ (0, 1
2 ]

because ft is merely measure-valued. Indeed, the integral is intentionally considered off {z}
to avoid concentration issues for α = 1

2 . Notice that it is totally consistent with the micro-
scopic dynamics as yii = 0 in (1.1.36). Indeed, such definition does not make any sense for
α ∈ (1

2 , 1) unless ft enjoys some extra integrability, that we do not expect to propagate due to
concentration phenomena at the microscopic scale.

We will prove the existence and sided-uniqueness of a classical flow for α ∈ (0, 1
2) (re-

spectively Filippov flow for α = 1
2 ) of the transport field V[f ] due to the fact that the trans-

port field is continuous with linear growth at infinity for α ∈ (0, 1
2) (respectively, it is locally

bounded with linear growth at infinity for α = 1
2 ) and it is one-sided Lipschitz continuous.

In addition, we will show that the mean-field limit approach works although Theorem 1.1.1
does not apply. Specifically, we prove that the empirical measures supported on classical (re-
spectively Filippov) solutions to (1.1.34) are measure-valued solutions to (1.1.34) that converge
to the unique weak measure-valued solution (respectively, solution in the sense of the Filip-
pov flow) to (1.1.38) as N → ∞. Indeed, we will derive a similar Dobrushin-type estimate to
(1.1.11).

Theorem 1.1.21 (Theorems 4.4.6 and 4.6.31 in Chapter 4). Consider α ∈ (0, 1
2 ], K > 0 and two

time-dependent probability measures f, f̃ ∈ ACloc([0,∞), C∞c (T × R)∗ − weak ∗), solving (1.1.38)
weakly in the sense of measures (respectively in the sense of Filippov flow) with associated initial data
f0, f̃0 ∈ P2(T× R). Then,

W2(ft, f̃t) ≤ e(
1
2

+2KL0)tW2(f0, f̃0),

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h.

Here, P2(T × R) represents the metric space of probability measures on T × R with finite
second order moment endowed with the standard 2-Wasserstein distance W2 in the product
space T× R.

Such stability results imply two important consequences. On the one hand, it allows ob-
taining a quantitative mean field limit when f̃ = µN and the initial empirical measures approx-
imate the initial datum f0, i.e.,

lim
N→∞

W2(µN0 , f0) = 0.

On the other hand, notice that uniqueness follows by simply choosing f0 = f̃0 ∈ P2(T× R).
In the above consequence, the extra tightness imposed by P2(T×R) is technically assumed

in order that W2 makes sense. Nevertheless, we can still obtain uniqueness for general prob-
ability measures f0 ∈ P(T × R) by virtue of a similar Dobrushin inequality for the fiberwise
distance W2,g that we introduced before.

Theorem 1.1.22 (Theorems 4.4.2 and 4.6.28 in Chapter 4). Consider α ∈ (0, 1
2 ], K > 0 and two time-

dependent probability measures f, f̃ ∈ ACloc([0,∞), C∞c (T × R)∗ − weak ∗), solving (1.1.38) weakly
(respectively in the sense of Filippov flow) with initial data f0, f̃0 ∈ P(T×R). Consider the distribution
of natural frequencies g = (πΩ)# f0 and g̃ = (πΩ)# f̃0. If both distributions of natural frequencies agree
g = g̃, then

W2,g(ft, f̃t) ≤W2,g(f0, f̃0)e2KL0t,
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for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h.

In addition, the mean-field limit allows transferring Theorems 1.1.19 and 1.1.20 towards the
macroscopic equation (1.1.38).

Theorem 1.1.23 (Theorem 4.5.8 in Chapter 4). Set α ∈ (0, 1
2) and consider any initial datum f0 ∈

P(T × R) with identical distribution of natural frequencies, namely, g = (πΩ)#f0 = δ0. Let f be
the unique global-in-time weak measure-valued solution to (1.1.38) issued at f0 and assume that 0 <
Dθ(f0) < π. Then,

f(t) = f∞ for all t ≥ Tc,
where

Tc =
Dθ(f0)1−2α

2αKh(Dθ(f0))
,

and the equilibrium f∞ is given by the monopole f∞ := δzav(0)(z)⊗ δ0(Ω) and zav is the average phase
of the oscillators.

Theorem 1.1.24 (Theorem 4.6.33 in Chapter 4). Set α = 1
2 and consider any initial datum f0 ∈

P(T × R) with identical distribution of natural frequencies, namely, g = (πΩ)#f0 = δ0. Let f be the
unique global-in-time measure-valued solution to (1.1.38) in the sense of the Filippov flow issued at f0

and assume that 0 < Dθ(f0) < π. Then,

f(t) = f∞ for all t ≥ Tc,

where
Tc =

Dθ(f0)

Kh(Dθ(f0))
,

and the equilibrium f∞ is given by the monopole f∞ := δzav(0)(z)⊗ δ0(Ω) and zav is the average phase
of the oscillators.

1.1.5 From Kuramoto to Cucker–Smale

We devote this part to state some main relations between the two main collective dynamics
model in this thesis: Cucker–Smale (1.1.7) and Kuramoto (1.1.2). Indeed, such relation does not
necessarily restrict to smooth influence functions, but it will also remain valid for the singular
versions that we have introduced in the preceding parts. In general, consider a Kuramoto–
Daido model as follows 




θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi),

θi(0) = θi,0,

(1.1.40)

for an abstract periodic force h. If it is smooth, differentiation implies




θ̇i = ωi,

ω̇i =
K

N

N∑

j=1

φ(θj − θi)(ωj − ωi),

(θi(0), ωi(0)) = (θi,0, ωi,0),

(1.1.41)

where φ := h′. Notice that the initial and natural frequencies are related through the rule

ωi,0 = Ωi +
K

N

N∑

j=1

φ(θj,0 − θi,0).

28



CHAPTER 1. INTRODUCTION

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

θ

(a) phi(θ) = cos θ

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

r

(b) φ(r) = 1
(1+r2)3/4

Figure 1.2: On the left, influence function φ(θ) = h′(θ) = cos θ associated with the classical
Kuramoto model. On the right, smooth infuence function (1.1.15) of the Cucker–Smale model

This amounts to say that Kuramoto–Daido model (1.1.40) agrees with Cucker–Smale model
(1.1.41) for well-prepared initial data. In other words, the Kuramoto–Daido model (1.1.40) im-
plicitly describes the evolution of swarms.

In particular, when h(θ) = sin θ, one obtains that the classical Kuramoto model agrees with
the Cucker–Smale model with an influence function φ(θ) = cos θ. This can be used to under-
stand frequency synchronization as a flocking phenomenon. Observe indeed that alignment
and frequency synchronization in Definitions 1.1.2 and 1.1.4 correspond each others. Then,
the above relation allows transferring techniques between both models in 1D. In particular, see
[150] where it was introduced and used to derive an alternative kinetic description for synchro-
nization of oscillators

∂F

∂t
+ ω

∂F

∂θ
+

∂

∂ω

[
K

(∫

T×R
cos(θ′ − θ)(ω′ − ω)F (t, θ′,Ω′, ω′) dθ′ dΩ′ dω′

)
F

]
= 0.

However, let us notice that by doing so φ is not necessarily positive everywhere and this intro-
duces a main difference in (1.1.41) in the form of “anti-alignment” between oscillators that are
separated by distances close to π, see Figure 1.2.

Regarding the singular cases, in the subcritical regime frequencies enjoy a minimum regu-
larity required to describe the augmented second order equation. Namely,

Theorem 1.1.25 (Remark 3.4.5 in Chapter 3). Consider a classical solution Θ = (θ1, . . . , θN ) to
(1.1.34) with α ∈ (0, 1

2). Then, the frequencies verify θ̇i ∈ W 1,p([Tk−1, τ ]), for 1 ≤ p < 1
2α , every

k ∈ N and every τ ∈ (Tk−1, Tk). In addition, they verify the following equation in weak sense

θ̈i =
K

N

∑

j /∈Si(Tk−1)

h′(θj − θi)(θ̇j − θ̇i), (1.1.42)

for all t ∈ [Tk−1, τ ]. Here, {Tk}k∈N are the new collision times after some oscillators have stick together
and Si(Tk−1) means the set of indices j of oscillators that stick with the i-th one at t = Tk−1.

In other words, the singular Kuramoto model (1.1.34)-(1.1.35) in the weakly singular regime
α ∈ (0, 1

2) is reminiscent of the Cucker–Smale model with singular influence function (1.1.7)-
(1.1.18) for the choice of exponents β = 2α. Here, we call the attentions of readers as this choice
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Figure 1.3: On the left, influence function φ = ψ′ in (1.1.35) associated with the singular Ku-
ramoto model. On the right, weakly singular infuence function (1.1.18) of the Cucker–Smale
model

of exponents will be propagated along the whole thesis. To unify notation, we will not use
parameter β but parameter 2α here on.

Notice that the main difference between the (singular) Kuramoto and (singular) Cucker–
Smale models is the periodicity assumption along with the fact that for the Kuramoto model,
the influence function is not always positive. Indeed, as mentioned before, φ also attains neg-
ative values near θ = π, see Figure 1.3. This means that Kuramoto oscillators with far apart
phases are pushed away from the flock. Nevertheless, as shown in [24, 154, 222], the periodic-
ity conditions recover the unique flock when the natural frequencies agree.

1.1.6 Hydrodynamic limits and other asymptotic limits

In this subsection we will review some hyperbolic hydrodynamic limits that have been ana-
lyzed in the literature for the kinetic Cucker–Smale model (1.1.16).

- In the first part, we will focus on Lipschitz influence functions φ, i.e. (1.1.15), which
corresponds to the classical Cucker–Smale model. As mentioned below, the goal is to rig-
orously derive the Euler-alignment model (1.1.17) when the influence function is smooth.

- Later, since the full hydrodynamic limit in the singular regimes is still a hard open prob-
lem, we will introduce a particular macroscopic approximation. Specifically we shall pro-
pose a singular hyperbolic hydrodynamic limit of vanishing inertia type for the weakly
singular case α ∈ (0, 1

2 ], that covers the contents in Chapter 2 of this thesis. Such a method
yields a reduced first order fluid model where inertia in the balance equation of momen-
tum has been neglected in the flavour of the overdamped limit or Smoluchowski dynamics
for the second order system with inertia and friction that we introduced in (1.1.5).

- Finally, due to its relation to this last case, we will show that a similar approach can be
done to derive weak measure-valued solutions of the kinetic singular Kuramoto model
(1.1.38) in the supercritical regime α ∈ (1

2 , 1). We will sketch a similar singular hyperbolic
hydrodynamic limit of vanishing inertia type on an augmented Kuramoto-type model
with inertia and regularized weights.
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Hydrodynamic limits for Lipschitz influence function

To derive macroscopic hydrodynamic models of the kinetic model of Cucker–Smale with clas-
sical Lipschitz interactions (1.1.15), new terms were introduced in [186]. Specifically, the fol-
lowing hyperbolic scaled model was proposed





∂fε
∂t

+ v · ∇xfε = divv(QCS(fε, fε)) +
1

ε
divv(∇vfε + (v − uε)fε),

QCS(fε, fε)(t, x, v) := K

∫

R2d

φ(|x− x′|)(v − v′)f(t, x, v)f(t, x′, v′) dx′ dv′.
(1.1.43)

Notice that such model includes velocity noise (through a Fokker–Planck term) and a local
alignment effect of the velocity towards the mean velocity field

uε(t, x) =

∫
Rd vfε(t, x, v) dv∫
Rd fε(t, x, v) dv

.

The hyperbolic scaling sets a regime with large noise and strong local alignment but weak non-
local alignment of Cucker–Smale type. Notice that such local alignment term can be regarded
as linear damping towards the macroscopic velocity field and provides no effect on the balance
equation of momentum by virtue of its cancellations

∫

Rd
v divv((v − uε)fε) dv = −

∫

Rd
(v − uε)fε dv = 0.

This local alignment term (v − u)f was introduced in [223] as the singular limit φ → δ0 of in
the Mostch–Tadmor nonlinear alignment term

QMT (f)(t, x, v) = K

∫
R2d φ(|x− x′|)(v − v′)f(t, x, v)f(t, x′, v′) dx′ dv′∫

R2d φ(|x− x′|)f(t, x, v′) dx′ dv′
. (1.1.44)

The main idea in (1.1.44) is to normalized the pairwise interactions φ(|xi − xj |) between agents
in terms of a relative influence. Of course, it breaks the symmetry of the initial Cucker–Smale
model, what in particular causes severe problems to recover such kinetic model as mean field
limit of the corresponding agent-based description.

When ε→ 0, relative entropy methods were used in [186] to obtain the hydrodynamic limit
of (1.1.43), that takes the form





∂ρ

∂t
+ divx(ρ u) = 0,

∂

∂t
(ρ u) + divx(ρ u⊗ u) = −∇xρ+ φ ∗ (ρu)ρ− (φ ∗ ρ)ρu.

Note that such models maintain nonlocal alignment effects but does not include any local
damping, as it disappeared in the limit. Indeed, the strong local alignment in (1.1.43) was
only introduced as an extra term that helps the system reach the hydrodynamic regime. Unfor-
tunately, notice that an extra pressure term−∇xρ has appeared as a consequence of the velocity
noise in the Fokker–Planck term of the right hand side of (1.1.43).

In relation with such scaling, the method was very recently improved in [127] to remove
the velocity term noise. Specifically, the following system was considered





∂fε
∂t

+ v · ∇xfε = divv(QCS(fε, fε)) +
1

ε
divv((v − uε)fε),

QCS(fε, fε)(t, x, v) := K

∫

R2d

φ(|x− x′|)(v − v′)f(t, x, v)f(t, x′, v′) dx′ dv′.
(1.1.45)
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Again, similar relative methods allow recovering the well known pressureless Euler-alignment
model 




∂ρ

∂t
+ divx(ρ u) = 0,

∂

∂t
(ρ u) + divx(ρ u⊗ u) = φ ∗ (ρu)ρ− (φ ∗ ρ)ρu.

(1.1.46)

where the above pressure term in the right hand side of the momentum equation has disap-
peared. This is precisely the abovementioned macroscopic system (1.1.17) that arises as the
monokinetic antsatz of the Cucker–Smale model. However, its rigorous derivation has not
been proved yet without the help of some extra damping or strong local alignment terms.

Another close approach was given in [185]. The velocity noise and nonlocal Cucker–Smale
alignment term in (1.1.43) were neglected but the strong local alignment was kept and linear
damping was also added to the system

∂fε
∂t

+ v · ∇xfε = λ divv(vfε) +
1

ε
divv((v − uε)fε).

In this case, a similar analysis provides the limiting system




∂ρ

∂t
+ divx(ρ u) = 0,

∂

∂t
(ρ u) + divx ·(ρ u⊗ u) = −λρu.

Again, the strong local alignment is lost in the macroscopic system, but a linear damping has
been recovered in the limit. This represents the compressible Euler equations with velocity
damping.

In the same line, when agents are driven by a fluid, the following coupled system with
fluids has been considered in [61]

∂fε
∂t

+ v · ∇xfε = divv((v − Uε)fε) +
1

ε
divv(∇vfε + (v − uε)fε),

where Uε is the velocity field of the fluid, which evolves according to the incompressible
Navier–Stokes system, i.e.,

{
∂Uε
∂t

+ (Uε · ∇x)Uε = −∇xpε + ν∆Uε + (uε − Uε)ρε,
divx Uε = 0,

where ν ≥ 0 is the viscosity and pε stands for the pressure of the fluid. In such paper, an
entropy method in the spirit of [186] was derived to pass to the limit ε → 0 and the following
limiting macroscopic system was obtained





∂ρ

∂t
+ divx(ρ u) = 0,

∂

∂t
(ρ u) + divx(ρ u⊗ u) = −∇xρ+ (U − u)ρ,

coupled with the limiting Navier–Stokes system

{
∂U

∂t
+ (U · ∇x)U = −∇xp+ ν∆U + ρ(u− U),

divx U = 0.
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For the readers’ convenience, let us mention another alternative to the above hydrodynamic
limits in wich the scaling lead to a vanishing inertia effect on the macroscopic limit, thus reduc-
ing the second order dynamics to the Smoluchoski first order dynamics. In particular, this line
has been developed in [22, 142, 232] for the Vlasov–Poisson–Fokker–Planck system, that give
rise to the aggregation equation with Newtonian interactions, i.e.,

{
∂tρ+ divx(ρ u) = 0,
u = −∇xϕ,

where potential ϕ = ϕ(t, x) can be recovered from the density ρ through the Poisson equation

∆ϕ = θρ, x ∈ Rd,

and θ = 1 or θ = −1 respectively represent the attractive of repulsive character of the New-
tonian interactions. In the parabolic case, the limiting system changes the velocity field from
u = −∇xϕ to u = −∇xϕ+ ∇xρ

ρ , that includes viscosity on the continuity equation for ρ.

Hydrodynamic singular limits of vanishing inertia type

Mimicking the preceding ideas, in Chapter 2 we will consider the kinetic singular Cucker–
Smale model, with linear damping, velocity noise (Fokker-Planck term) and the effect of an
external force−∇xψ. A dimensionless analysis will be proposed in Appendix 2.A of that chap-
ter, leading to the following scaled system





∂fε
∂t

+ v · ∇xfε =
1

ε
divv(Qε(fε)fε) +

1

ε
∇xψε · ∇vfε +

1

ε
divv(v fε +∇vfε),

Qε(fε, fε)(t, x, v) :=

∫

R2d

φε(|x− x′|)(v − v′)fε(t, x, v)fε(t, x
′, v′) dx′ dv′.

(1.1.47)

Here, the singular influence function (1.1.18), with β = 2α, has been regularized as follows

φε(r) =
1

(ε2 + cαr2)α
, r > 0, (1.1.48)

for some α ∈ (0, 1
2 ] and a α-dependent coefficient cα. Notice that the scaled kernel (1.1.48)

converges towards the singular one (1.1.18) as ε → 0. Given a sufficiently regular initial data
fε(0) = fε(0, x, v) and the corresponding smooth solution fε(t) = fε(t, x, v) to the regularized
system (1.1.47), one can associate the macroscopic quantities:

Density: ρε(t, x) :=

∫

Rd
fε(t, x, v) dv,

Current: jε(t, x) :=

∫

Rd
v fε(t, x, v) dv,

Velocity field: uε(t, x) :=
jε(t, x)

ρε(t, x)
,

Stress tensor: Sε(t, x) :=

∫

Rd
v ⊗ v fε(t, x, v) dv,

which verifies the following system of conservation laws

∂ρε
∂t

+ divx jε = 0, (1.1.49)

33



1.1. COLLECTIVE BEHAVIOR IN LIFE SCIENCES

ε
∂jε
∂t

+ ε divv Sε + ρε∇xψε + jε + (φε ∗ ρε) jε − (φε ∗ jε) ρε = 0. (1.1.50)

Our goal is to find appropriate compactness on ρε, jε and Sε so that we can pass to the limit
in the system (1.1.49)-(1.1.50). Specifically, we will show that, in particular, we get

ρε
∗
⇀ ρ, in L∞w (0, T ;M(Rd)),

jε
∗
⇀ j, in L2

w(0, T ;M(Rd))d.

as ε→ 0 for an appropriate subsequence. In addition we achieve a useful dissipation estimate
of the system that takes the following form

∫ T

0

∫

R4d
φε(|x− x′|)|v − v′|2fε(t, x, v)fε(t, x

′, v′) dx dx′ dv dv′ dt

≤ C
(
d, T, ‖∇ψε‖L2(0,T ;L∞(Rd)), ‖|v|2fε(0)‖L1(R2d)

)
. (1.1.51)

for every ε > 0. Passing to the limit in all the linear terms of (1.1.49)-(1.1.50) is clear. However,
the main problem is the non-linear term in (1.1.50). To achieve this goal it is necessary to take
into account the kindness of the commutator that defines the nonlinear term, the symmetry
of the influence function, the range of values α ∈ (0, 1

2), as well as additional properties of
convergence in time for ρ, see [255] for the details. Indeed, the above properties allow us to
identify the limit

ρε ⊗ jε ∗⇀ ρ⊗ j in L2
w(0, T ;M(R2d))d,

that in turns, allows identifying the limit in (1.1.50) in the sense of distributions for 0 < β ≤ 1
and obtaining:

Theorem 1.1.26 (Theorem 2.2.9 in Chapter 2). Let f0
ε verify the hypothesis





f0
ε = f0

ε (x, v) ≥ 0 and f0
ε ∈ C∞c (Rd×Rd),

‖f0
ε ‖L1(R2d) = 1 and ρ0

ε
∗
⇀ ρ0 inM(Rd),

‖|x|f0
ε ‖L1(R2d) ≤M0 and ‖|v|2f0

ε ‖L1(R2d) ≤ E0,

for every ε > 0 and some ε-independent constants M0, E0 > 0. Also assume that the external −∇xψε
forces satisfy appropriate mild assumptions. Let fε = fε(t, x, v) be the smooth solutions to (1.1.47) with
α ∈ (0, 1

2 ]. Then, ρε and jε converge in a weak sense to some finite Radon measure ρ and j that solve
the Cauchy problem associated with the following Euler-type system in the distributional sense





∂ρ

∂t
+ divx j = 0, x ∈ Rd, t ∈ [0, T ),

ρ∇xV + j = (φ ∗ j)ρ− (φ ∗ ρ)j, x ∈ Rd, t ∈ [0, T )

ρ(0, ·) = ρ0, x ∈ Rd .

(1.1.52)

The endpoint case β = 1 is more involved due to the fact that test functions cannot cancel
the full singularity of the kernel. This can be compared with the 2D Euler equations in vorticity
formulation {

∂ω

∂t
+ u · ∇xω = 0, x ∈ R2, t > 0,

u = KBS ∗ ω, x ∈ R2, t > 0,
(1.1.53)

where KBS is the so called Biot–Savart kernel, that reads

KBS(x) =
x⊥

2π|x|2 , x ∈ R2.

34



CHAPTER 1. INTRODUCTION

This is the mean field equation associated with the N vortex problem (1.1.4). In this context, a
well known bound of vorticity in some logarithmic Morrey space is all we need to guarantee
the absence of concentrations on the diagonal and to pass to the limit. Notice that in 2D Euler
(1.1.53) the Biot–Savart kernel KBS is odd. However, the Riesz-type φ in (1.1.18) for the weakly
singular Cucker–Smale model is even and does not admit similar cancellations. Fortunately,
the extra estimate for the dissipation (1.1.51) gives rise to the required the non-concentration
estimate that allows the kinetic nonlinear term to be bounded for α = 1

2 . This finally allows
obtaining a measure-valued solution to the asymptotic system also in the endpoint case.

Hydrodynamic limits in the singular Kuramoto model

As mentioned before, similar hydrodynamic limits of vanishing inertia type have been consid-
ered in recent literature for related systems like the Vlasov–Poisson–Fokker–Planck equation,
the aggregation equation, the alignment-aggregation system and some other anisotropic ver-
sions of the aggregation equation, see [120, 121, 125, 126, 142] and last Subsection 1.1.7. Before
ending this part, we will sketch the idea for a different suitable system where one can apply
such a method. This covers the derivation of existence of measure-valued solutions to the ki-
netic singular Kuramoto model (1.1.38) in the last supercritical regime of singularity α ∈ (1

2 , 1).
This is the content of Section 4.7. The cornerstone is again the cancellation property of the non-
linear term. We show that indeed, such cancellation works in the case of identical oscillators,
i.e., g = δ0.

Let us briefly introduce the idea, that will be addressed later in Chapter 4 of this thesis.
Specifically, one can consider the next scaled kinetic equation for the distribution function Fε =
Fε(t, θ, ω) at time t with phase θ ∈ T and frequency ω ∈ R:

∂Fε
∂t

+ ω
∂F ε

∂t
+

1

ε

∂

∂ω

[
K

(∫

T×R
hε(θ

′ − θ)Fε(t, dθ′, dω′)
)
Fε

]
=

1

ε

∂

∂ω

(
ωFε +

∂Fε
∂ω

)
. (1.1.54)

This is nothing but the Vlasov–McKean kinetic equation associated with the stochastic agent-
based model 




dθi = ωi dt,

εdωi =
K

N

N∑

j=1

hε(θj − θi) dt− ωi dt+
√

2ε dW i
t ,

θi(0) = θi,0, ωi(0) = ωi,0.

(1.1.55)

Such second order system is a Kuramoto–Daido model with identical oscillators, regularized
kernel hε, endowed with inertia inertia, white noise W i

t and frequency damping. The inertia
term and noise have been scaled so that they disappear as ε ↘ 0 while the scaled regularized
kernel reads

hε(θ) :=
sin θ

(ε2 + |θ|2o)α
,

and converges towards the singular kernel h in (1.1.35). Notice that the formal limit ε ↘ 0
in (1.1.55) recovers the singular first order system (1.1.34). Then, we expect that the hydrody-
namic limit in (1.1.54) can be closed and yields rigorous weak solutions to (1.1.38). Starting
with smooth initial data F 0

ε , the above system (1.1.55) produces smooth solutions due to the
regularizing effect of the diffusion and the regularized kernels hε. Again, in [254] the following
ω moments were considered as the analogues of those in the above subsection:

Phase density: ρε(t, θ) :=

∫

R
Fε(t, θ, ω) dω,
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Phase current: jε(t, θ) :=

∫

R
ωFε(t, θ, ω) dω,

Phase stress: Sε(t, θ) :=

∫

R
ω2Fε(t, θ, ω) dω.

The corresponding conservation laws read

∂ρε
∂t

+
∂jε
∂θ

= 0,

ε
∂jε
∂t

+ ε
∂Sε
∂t

+ jε +K(hε ∗ ρε)ρε = 0.

Through a similar compactness method, we recover the following result, that is actually valid
for any value α ∈ (0, 1) of the singularity.

Theorem 1.1.27 (Theorem 4.7.12 in Chapter 4). For any α ∈ (0, 1), fix initial data




F 0
ε = F 0

ε (θ, ω) ≥ 0 and F 0
ε ∈ C∞c (T× R),

‖F 0
ε ‖L1(T×R) = 1 and ρ0

ε
∗
⇀ ρ0 in M(T),

1
2‖ω2F 0

ε ‖L1(T×R) ≤ E0.

Consider the strong solution Fε = Fε(t, θ, ω) to (1.1.54) issued at F 0
ε . Then, for every T > 0 there

is a limiting measure ρ ∈ C([0, T ],P(T)) of ρε, that verifies the kinetic singular Kuramoto model for
identical oscillators in the sense of distributions, namely,

{ ∂ρ

∂t
− ∂

∂θ
((h ∗ ρ)ρ) = 0,

ρ(0) = ρ0.

The above result provides global existence in the supercritical regime, but as for the micro-
scopic scale, uniqueness is only guaranteed for α ∈ (0, 1

2 ], the case α ∈ (1
2 , 1) being an open

problem. Similarly, emergence of phase synchronization is not guaranteed for these sort of
(very) weak measure-valued solutions because the existence technique is not supported by the
mean field limit approach this time.

1.1.7 Other models in collective dynamics

Apart from the preceding models, that have been exhibited as prototype of first and second
order agent-based models where one can study its kinetic and macroscopic counterparts, there
are a few more that have been proposed and analyzed in the literature. Although we will not
enter into details, we will mention some of them and their main features.

Related to the last technique in Subsection 1.1.4, the classical Kuramoto model with inertia
has been analyzed at the microscopic and kinetic scales in [76, 77, 78, 79]:

∂f

∂t
+ ω

∂f

∂θ
+

∂

∂ω

[
K

(
(Ω− ω)f +K

∫

T×R×R
sin(θ′ − θ)f dθ′ dΩ′ dω′

)
f

]
= 0, (1.1.56)

where f = f(t, θ,Ω, ω) is the distribution of identical oscillators at time t, phase θ ∈ T, fre-
quency ω ∈ R and natural frequency Ω ∈ R. The dynamics introduces a transient regime due
to inertia, that can be used to model certain physical situations. Nevertheless, the final dynam-
ics essentially agrees with the starting model without inertia, as depicted in the above refer-
ences. Although a hydrodynamic has not been proposed yet, the same vanishing inertia limit
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in Theorem 1.1.27 can be achieved mutatis mutandis, thus recovering the Kuramoto–Sakaguchi
equation (1.1.21) with identical oscillators.

Another interesting swarming model in R3 arises when one consider constant speed. Then,
only positions and orientations play a role. This is known as the Couzin–Vicsek model that in its
kinetic version reads

∂f

∂t
+ c ω · ∇xf +∇ω · [ν(I − ω ⊗ ω)Ω(t, x, ω)−D∇ωf ] = 0, (1.1.57)

where f = f(t, x, ω) is the distribution of particles at time t, position x ∈ R3 and orientation
ω ∈ S2. Here c > 0 is the constant speed of particles, D > 0 is the strength of the orientation
noise and Ω = Ω(t, x, ω) is a normalized momentum vector Ω = J

|J | and

J(t, x, ω) :=

∫

R3×S2

KR(|x− x′|)ω′f dx′ dω′.

KR is the “observation kernel” and typically stands for the characteristic function of the ball
centered at the origin with radiusR but one can consider general kernels modeling the fact that
the influence of the particles falls off with distance. The global case R → ∞ is classically con-
sidered, that is, J is the global momentum when all particles are taken into account. The model
was rigorously derived via the mean-field limit approach in the discrete Couzin–Vicsek model
[101] and some numerical simulations were obtained in [135]. The strong non-linearity, that
gives rise to degenerate terms when the momentum vanishes, has proved a strong obstruction
and makes well posedness a hard issue. Under the a priory assumption of positivity of mo-
mentum [136] shows well posedness of solutions in the full space-inhomogeneous case. The
only unconditional results have been obtained for the space-homogeneous case, see [128, 184].
Hydrodynamic limits towards macroscopic limits have been derived in [101, 133]. Other cor-
rections of (1.1.57) that smooth the momentum term have been studied in [40, 98].

Regarding the aggregation equation (1.1.3), there is a huge literature, see [37, 49, 57, 221,
220, 287, 288] and related references. Indeed, similar estimates to those in Theorem 1.1.21 have
been proved for such family of gradient-flow systems. When W is λ-convex for some λ ≥ 0, the
same estimate was derived in the Euclidean space Rd for the associated kinetic equation [64, 67]

∂ρ

∂t
+ divx (−(∇xW ∗ ρ)ρ) = 0, (1.1.58)

where ρ = ρ(t, x) is the probability density of particles. The main differences between (1.1.38)
and (1.1.58) are: the absence of heterogeneities νi in (1.1.58), the Wasserstein gradient-flow
structure of (1.1.58) with potential

W[ρ(t)] :=

∫

Rd×Rd
W (x− x′)ρ(t, dx)ρ(t, dx′),

and the underlying Euclidean space Rd compared to the manifold T× R in (1.1.38).
The same ideas as in Subsection 1.1.6 were analyzed in [57] in order to derive a hydrody-

namic limit of vanishing-inertia-type (or large friction) of the second-order kinetic aggregation
equation towards the first-order aggregation equation (1.1.58). Also, explicit convergence rates
were measured in Wasserstein distances, adding the above-mentioned strong local alignment,
but not noise (to avoid pressure terms). To such end, the same scaling as above was considered
to make inertia small.
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Related to the aggregation equations, several more realistic variants have been proposed in
order to include anisotropies in the interactions. For instance, in [120, 121] the force F (x, x′) =
∇xW (x− x′) in (1.1.3) is replaced by a velocity-dependent force

F (x, v, x′, v′) := ∇xW (x− x′)η
(
x− x′
|x− x′| ·

v

|v|

)
.

The function η is considered a cut-off function at the origin so that if fades the effect of the
aggregation force when the velocity of the particle and the director vector of such particle with
respect to any other test particle are not sufficiently aligned. That anisotropic term arises as
a sort of “cone of vision” that has been included in many other settings. In such paper, the
anysotropies are velocity induced. However, there are some other related models where no
velocity dependence appears. Specifically, in [50] the authors proposed a 2D model where the
force reads

F (x, x′) : = FA(x− x′, T (x)) + FR(x− x′)
= fA(|x− x′|)T (x)(x− x′) + fR(|x− x′|)(x− x′).

Then, there is an isotropic repulsive part and an anisotropic part dependent on the tensor

T (x) = χs(x)⊗ s(x) + (1− χ)l(x)⊗ l(x),

for χ ∈ [0, 1], being {s(x), l(x)} an orthonormal frame of R2. The constant χ is regarded as
the anisotropy parameter, being χ = 1

2 the isotropic case. Such model was proved useful to
describe the formation of fingerprints and becomes a generalization of the Kücken–Champod
model [194].

1.2 Stability and vortex structures in fluid mechanics

In this section, we provide a brief overview of the mathematical context of some recent results
in fluid mechanics where Chapter 6 takes place. Specifically, we will first introduce the Euler
equations of incompressible inviscid fluids in three dimensions. Later, we shall present a par-
ticular class of stationary solutions that have proved relevant in the literature and will become
the main tool in our result. These are the Beltrami fields, that have deep implications on the
understanding of Lagrangian theory of turbulence in hydrodynamics. Later, we review the old
conjecture by L. Kelvin on the existence of linked and knotted vortex structures in incompress-
ible fluids and we recall the recent poof by A. Enciso and D. Peralta Salas that, following the
intuition of V. Arnold, is solved in terms of Beltrami fields. Finally, we state some properties of
Beltrami fields regarding their (lack) of stability and we introduce our main contribution to the
topic, that will be later developed in Chapter 6 of this thesis.

1.2.1 The Euler equations for incompressible fluids

The Euler equations represent a system of conservation laws describing the dynamics of an
inviscid fluid that fills the whole space R3. They were first proposed by L. Euler [119] in the
form of a coupled system for the continuity equation of the density and the balance equation of
linear momentum. Throughout this thesis we are interested in a simpler case of inviscid fluids,
often called perfect fluids. These are ideal, homogeneous and incompressible fluids, that can
be represented in terms of the following system of nonlinear partial differential equations

38



CHAPTER 1. INTRODUCTION





∂u

∂t
+ (u · ∇)u = −∇p, t > 0, x ∈ R3,

div u = 0, t > 0, x ∈ R3,
u(0, x) = u0(x), x ∈ R3.

(1.2.1)

Here u = u(t, x) stands for the velocity field at time t ≥ 0 and position x ∈ R3 and determines
the velocities of particles located at such points. Also, p = p(t, x) is a scalar function that is
often called the pressure.

On the one hand, since the fluid is homogeneous we have normalized density to one for
simplicity. Then, the continuity equation is trivial and we can ignore it. On the other hand the
first equation in (1.2.1) governs the evolution of linear momentum. It can be easily deduced
from Newton’s second law if we assume that the fluid is ideal. This means that the only forces
exerted over any volume D ⊆ R3 within the fluid are normal to the boundary ∂D and pro-
portional to p. Finally, the second equation in (1.2.1) represents the incompressibility condition
and characterizes fluids so that the subdomain D keeps constant volume when we let it flow
along the streamlines. See [5] for an easy derivation of the Euler equations and their viscous
counterpart (i.e., the Navier–Stokes equations).

The Euler equations (1.2.1) have long been studied during the history. As a consequence,
extremely important mathematics have emerged when we try to solve some of the involved
problems. In particular, we mention that the question of global-in-time well posedness vs.
blow-up is a extremely hard open problem with relevant implications in sciences. Indeed, the
analogue version of such problem for the Navier–Stokes equation has been considered one
of the problems of the millennium by Clay Mathematics Institute. Its resolution (either in an
affirmative or negative way) entails a US$ 1 million prize to the discoverer, as a recognition
of a strong advance in mathematics. We recall that, to date, only one of the seven millenium
problems has been solved; namely the Poincaré’s conjecture by G. Perelman in 2013.

The Euler equation (1.2.1) consists of four variables u1, u2, u3, p and four equations (momen-
tum equation and incompressibility condition), what suggests that they should be well posed.
Notice that, by taking divergence on the first equation (1.2.1) and using the incompressibility
condition, we achieve the following Poisson equation for pressure

−∆p = div((u · ∇)u),

that suggests that pressure dynamics is subordinated to that of velocity. A different way to state
it is in terms of the vorticity formulation of (1.2.1), that is obtained by applying curl operator to
it, namely 




∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u, t > 0, x ∈ R3,

div u = 0, t > 0, x ∈ R3,
curlu = ω, t > 0, x ∈ R3,
ω(0, x) = ω0(x), x ∈ R3.

(1.2.2)

The vector field ω = ω(t, x) is called the vorticity field and represents the tendency of the
fluid to rotate around x ∈ R3. Observe that, in doing so, pressure has dissapeared from the
dynamics. Once ω is known, we observe that u is subordinated to ω in terms of the div-curl
problem in (1.2.2). It is well known that we can solve it in terms of the Biot–Savart law that
describes a explicity formula for u in terms of ω

u(t, x) =
1

4π

∫

R3

x− y
|x− y|3 × ω(t, y) dy,

for any t > 0 and x ∈ R3, see [5].
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1.2.2 Stationary solutions and Beltrami fields

Along this thesis we are interested in the particular case of stationary solutions u = u(x), p =
p(x) of the Euler equations (1.2.1). Indeed, notice that they must verify the simpler equations

{
(u · ∇)u = −∇p, x ∈ R3,
div u = 0, x ∈ R3.

For any given stationary solution (u, p) to such a problem, let us observe that the so called
Bernoulli function is a first integral of the velocity field u. Specifically, if we set

B(x) :=
1

2
|u|2 + p,

then u · ∇B = 0. This is called Bernoulli law and has long been used in hydrodynamics and
engineering. Using it, we can check that stationary solutions solved the following equivalent
system that is often called, Bernoulli formulation





u× ω = ∇B, x ∈ R3,
div u = 0, x ∈ R3,
curlu = ω, x ∈ R3.

(1.2.3)

Notice that condition u·∇B determines thatB is constant along stream lines (that is, integral
lines of u). However,B must not be necessarily constant globally. Indeex, the latter assumption
describes a specific subclass of stationary solutions with the condition ω×u = 0. That is, u and
ω must be collinear. This gives rise to the following definition.

Definition 1.2.1 (Beltrami fields). Let u : R3 −→ R3 be any vector field. We say that u is a (general-
ized) Beltrami field if there exists a scalar function f : R3 −→ R such that

{
curlu = fu, x ∈ R3,
div u = 0, x ∈ R3.

(1.2.4)

Moreover, when f = λ is constant globally, we will say that u is a strong Beltrami field.

By construction, (generalized) Beltrami fields are particular stationary solutions of the Euler
equations. Observe that if we compute the divergence of the first equation in (1.2.4), then we
achieve the condition u ·∇f . Again, this means that f is a new first integral of u. This condition
introduces some rigidity on the problem that will be discussed later.

1.2.3 Turbulence and Arnold’s structure theorem

As a particular class of Beltrami fields, let us mention the so called ABC flows [208], that are
periodic strong Beltrami fields determined by the expression u = (u1, u2, u3), where

u1(x1, x2, x3) := A sinx3 + C cosx2,

u2(x1, x2, x3) := B sinx1 +A cosx3,

u3(x1, x2, x3) := C sinx2 +B cosx1,

for every (x1, x2, x3) ∈ R3 and A,B,C ∈ R are constants. They were named after V. Arnold, E.
Beltrami and S. Childress, but many studies are originally devoted to I. S. Gromeka, see [144].
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(a) Poincaré sections of a single
streamline of the ABC flow

(b) Arrangement of the Poincaré sections
of the ABC flow

Figure 1.4: Pressence of chaotic and ordered areas for streamlines of ABC flows. Pictures have
been taken from [113].

Here, we shall remark an interesting feature of ABC fields, as representative of more general
Beltrami fields, see [113]. In such paper the authors found that ABC flows can have very com-
plicated Lagrangian structure. Specifically, streamlines can behave in very convoluted ways.
In particular, the authors showed that for the particular choice of parameters

A2 = 1, B2 =
2

3
and C2 =

1

3
,

often called Hénon choice, the streamlines of the corresponding ABC flows exhibit both or-
dered regions (with KAM invariant surfaces) and chaotic regions (containing the unstable
stagnation points), see Figure 1.4. As a consequence, starting at arbitrarily close points, the
corresponding streamlines of the fluid may push particles towards completely different places
or even fill a complete region of the fluid. This active enhancement of transport due to chaos in
the dynamical system of streamlines is often called Lagrangian turbulence, to be distinguished
from the usual Eulerian dynamics that emerges via bifurcation of structures as viscosity is de-
creased in the solution of the Navier–Stokes equation.

The above ideas suggest that Beltrami fields are good candidates of stationary perfect fluids
with complicated vortex structures. Indeed, such heuristics were strengthened later after the
so called Arnold’s structure theorem in fluid mechanics:

Theorem 1.2.2. [12, Théorème 7] Let D ⊆ R3 be a compact connected domain and assume that the
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(a) Subdomain fibered by invariant tori. (b) Subdomain fibered by invariant cylinders.

Figure 1.5: Scheme of the two posible subdomains ofD that determines the internal structure of
the stream lines of incompressible fluids where ω and u are not everywhere collinear. Pictures
have been taken from [12].

velocity field u : D −→ R3 is a stationary solution of the Euler equation (1.2.2) in D so that u · η = 0
on ∂D. Assume that D, ∂D and u are all analytic and that the vorticity field ω and the velocity field u
of the fluid are not everywhere collinear in D, that is,

ω × u 6≡ 0 in D.

Then, there exists an analytic compact subset K ⊆ D of codimension 1 or larger so that D \K can be
split into finitely many connected subdomains D1, . . . , Dn, each of them being of one of the following
two types:

1. If ∂Di ∩ ∂D = ∅, then Di is fibered by invariant tori under u. On each torus, the flow of u is
conjugate to linear a flow (either rational or irrational), so that, in particular, streamlines along
each torus are either all dense or all periodic, see Figure 1.5a.

2. If ∂Di ∩∂D 6= ∅, then Di is fibered by invariant cylinders under u whose boundary lie on ∂D. In
addition, the streamlines of u on each cylinder are all closed curves, see Figure 1.5b.

In particular, notice that only when velocity and vorticity are parallel everywhere we can
expect existence of streamlines and stream tubes with more complicated structures than simple
tori or cylinders in Theorem 1.2.2. This suggests that Beltrami fields are well conditioned to
exhibit complicated vortex structures.

1.2.4 The Kelvin conjecture

The interest on the search for complicated vortex structures in fluid mechanics dates back to
William Thomson, also known by Lord Kelvin, in 1875. After the seminal work [169] where H.
Helmholtz showed that vortices in a perfect fluid are stable objects that exert long range forces
according to the Biot–Savart (the same law describing magnetic forces), Lord Kelvin imagined
that vortices should be the minimal perpetual constituents of matter. More specifically, he
proposed a new atomic theory in which matter is regarded as a perfect fluid (aether) and atoms
are identified with linked and knotted vortex filaments within the fluid. Indeed, Lord Kelvin
aimed at describing all the possible states of matter in the universe (atoms) in terms of different
complicated linked and knotted vortices, see Figure 1.6.
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(a) Lord Kelvin (b) Kelvin atoms

Figure 1.6: Some examples of atoms according to the atomic theory of vortices by Lord Kelvin.
Pictures are taken from Wikipedia

For two decades, such atomic theory was popularly accepted in the scientific community
due to the fact that it gathered several solid features that no other model had combined before.
Unfortunately, such an atomic theory did not survived the test of time after the discovery of
the electron by J. J. Thomson in the 1890s. However, it gave rise to an important conjecture,
later popularized by V. Arnold and K. Moffat in 1960s’:

For any ensemble of stream lines and tubes, that can be linked and knotted in an arbitrary way, there
exists and incompressible fluid that realizes it?

As discussed before, the abovementioned results in [12, 113] suggest that such a conjecture
by L. Kelvin must be true and Beltrami fields are the good candidates for the solution.

On the one hand, from the experimental point of view a recent affirmative answer was
drawn in [190]. Specifically, the authors printed 3D hydrofoils and used them to accelerate in a
tank of water at Reynold number Re ∈ (104, 105) compared to the size of the hydrofoil (close to
inviscid). Then, tiny buoyant gas bubbles were used as indicators of regions with high vorticity
and using high speed cameras they obtained single rings, trefoil knots and a couple of linked
rings, see Figure 1.7.

The rigorous mathematical proof of such a conjecture was later derived in [115, 116] by A.
Enciso and D. Peralta-Salas using strong Beltrami fields and takes the following form:

Theorem 1.2.3. [116, Theorem 1.1] Consider any ensemble of disjoint linked and knotted closed curves
γ1, . . . , γn in R3. Then, there exists a constant ε0 > 0, depending on the topology of the curves, so that
for any ε ∈ (0, ε0) and for the thin tubes

Tε(γi) := {x ∈ R3 : dist(x, γi) ≤ ε}, i = 1, . . . , n,
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(a) Vortex ring (b) Trefoil vortex

Figure 1.7: Experimental vortices generated in a laboratory. Pictures are taken from [190].

there exists a diffemorphism Φ : R3 −→ R3 that is arbitrarily closed to the identity in any Cm

norm and there exists a strong Beltrami field u : R3 −→ R3 with constant factor λ = ε3 so that
Φ(Tε(γ1)), . . . ,Φ(Tε(γn)) are vortex tubes of u. In addition, the decay of u and its derivatives is opti-
mal, namely,

|Dαu(x)| ≤ Cα
|x| , x ∈ R3,

for every α ∈ N3 and the following properties hold true inside each vortex tube Φ(Tε(γi)):

1. In the interior of Φ(Tε(γi)) there are uncountably many nested tori invariant under the Beltrami
field u. On each of these invariant tori, the field u is ergodic.

2. The set of invariant tori has positive Lebesgue measure in a small neighborhood of the boundary
∂Φ(Tε(γi)).

3. In the region bounded by any pair of these invariant tori there are infinitely many closed vortex
lines, not necessarily of the same knot type as the curve γi.

4. Φ(γi) is a closed vortex line of u.

The above result joins three different components. First, the authors derived a local exis-
tence results of strong Beltrami fields inside each thin tubes. Second they developed a KAM-
type theorem for Beltrami fields in generic thin tubes. Finally, they proved a Runge-type ap-
proximation theorem of the above local field in tubes by a global Beltrami field tending to zero
at infinity.

As it will be of interest later, we recall two main important properties of the Beltrami fields
with knotted and linked structures that were obtained in Theorem 1.2.3:

1. On the one hand, the fall-off of the above Beltrami fields is optimal as depicted in the
Liouville-type theorem in [227].

2. On the other hand, the above fields are structurally stable. This means that, if v : R3 −→
R3 is a divergence-free field that is close enough to u in Cm for large enough m. Then,
there exists another diffemorphism Ψ : R3 −→ R3 that is arbitrarily close to the identity
so that Ψ(Tε(γi)) are invariant tubes of v.
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1.2.5 Obstructions to the existence of generalized Beltrami fields

In the above Theorem 1.2.3, the authors constructed non-trivial strong Beltrami fields, that is
Beltrami fields with non-constant factor. Regarding generalized Beltrami fields, the existence
theory is less abundant, probably due to the rigidity imposed by the aforementioned first inte-
gral condition u·∇f = 0 of the proportionality factor f . Here, we review the main non-existence
results of Beltrami fields with generic non-constant factor that were proved in [117]. Most of
these results are of purely local nature.

The first obstruction to the existence of solutions to the Beltrami equation (1.2.4) is the fol-
lowing:

Theorem 1.2.4. [117, Theorem 1.1] Let D ⊆ R3 be a domain and take any nonconstant proportionality
factor f ∈ C6,α(D). Suppose that the vector field u satisfies (1.2.4) in D with proportionality factor
f . Then, there is a sixth order nonlinear partial differential operator P 6= 0, which can be computed
explicitly, such that u ≡ 0 unless P [f ] ≡ 0 in D. In particular, there exists an open set O ⊆ Ck,α(D)
with k ≥ 6 and infinite codimension so that u ≡ 0 for all f ∈ O.

It should be noticed that Theorem 1.2.4 is of a purely local nature, as it provides obstruc-
tions for the existence of nontrivial Beltrami fields in any open set and most proportionality
factors. A less powerful but more conceivable obstruction is that if f has a regular level set
homeomorphic to the sphere, then (1.2.4) does not have nontrivial solutions.

Theorem 1.2.5. Let D ⊆ R3 be a domain and take any nonconstant proportionality factor f ∈
C2,α(D). Assume that a level set f−1(c), for some c ∈ R, has a connected components in D that is
homeomorphic to the sphere. Then, for any u solving (1.2.4) in D, u ≡ 0.

There is a very useful direct consequence of the above theorem. Specifically, notice that
whenever f has a strict local extrema or it is radially symmetric, then there is a level set of
f that is homeomorphic to the sphere. In such cases, there is no non-trivial Beltrami field
associated to such a non-constant factor. This is related to the classical theorem of Cowling on
the nonexistence of poloidal Beltrami fields with nonconstant factor and axial symmetry [15].

The proof of these theorems is based on formulating the Beltrami equation (1.2.4) as a con-
strained evolution problem. Indeed, one can show that (1.2.4) is locally equivalent to the asser-
tion that there is a time-dependent 1-form β(t) ∈ Ω1(Σ) on a surface Σ ⊆ D that satisfies the
following equations

∂β

∂t
= T (t)β, x ∈ Σ, (1.2.5)

dβ = 0, x ∈ Σ. (1.2.6)

Here, T (t) is a time-dependent tensor field that depends on f and the exterior differential d is
computed with respect to the coordinates on the surface Σ, which, in turn, is a regular level set
of f . It should be stressed that this formulation depends strongly on the choice of coordinates.

On the one hand (1.2.5) is an evolution equation for β governed by the tensor field T . Such
an equation is not generally compatible with the constraint (1.2.6). The corresponding compat-
ibility conditions translate into equations of β and T , that translate into a condition involving
f and its derivatives. In Theorems 1.2.4 and 1.2.5 we have presented the first two of these
compatibility conditions, but in fact the method of proof yields a whole hierarchy of explicitly
computable obstructions to the existence of solutions. Computing a family that only contains
all the possible independent obstructions is an interesting open problem.
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1.2.6 Partial stability of generalized Beltrami fields

According to the above Theorems 1.2.4 and 1.2.5, we do not expect full stability results of Bel-
trami fields. Specifically, according the second part of Theorem (1.2.4), there are complete open
subsets in O ⊆ Ck,α(D) with infinite codimension containing non-constant factors that ad-
mit only trivial Beltrami fields. Hence, perturbations of proportionality factors cannot be con-
ducted in an arbitrary way, but they have to be subordinated to the implicit set of obstructions
imposed by the constrained evolution equation (1.2.5)-(1.2.6). In Chapter 6, we will introduce a
very specific method to achieve perturbations of factors so that they admit non-trivial Beltrami
fields. Our results are of two types and take the following forms.

On the one hand we introduce an almost global perturbation method of strong Beltrami
fields in the complement of arbitrarily small balls.

Theorem 1.2.6 (Theorem 6.4.7 in Chapter 6). Let G ⊆ R3 be an open domain that is homeomorphic
to a sphere and consider λ ∈ R \ {0} so that it is not a Dirichlet eigenvalue of Laplace operator in G.
Assume that u0 ∈ Ck+1,α(R3 \ G,R3) is a strong Beltrami field with factor λ in the exterior domain,
that is, {

curlu0 = λu0, x ∈ R3 \G,
div v0 = 0, x ∈ R3 \G,

so that it admits an invariant cylinder T0 whose endpoints are both supported on ∂G. In addition,
suppose that u0 points outwards at some of the two tops surfaces Σ of the cylinder. Then, for every ε > 0

there exists δ > 0 so that for any ϕ0 ∈ Ck+1,α
c (Σ) with ‖ϕ0‖Ck+1,α(Σ) < δ, there is another vector field

u ∈ Ck+1,α(R3 \G,R3) with ‖u− u0‖Ck+1,α(R3\G) < ε so that it solves




curlu = (λ+ ϕ)u, x ∈ R3 \G,
div u = 0, x ∈ R3 \G,
u · η = u0 · η, x ∈ Σ,

|u(x)| . |x|−1, x ∈ R3 \G.

In addition, ϕ ∈ Ck,α(R3 \G) has compact support contained within a similar invariant cylinder T of
u whose endpoints are supported on ∂Ω, and it propagates the values of the prescription ϕ0 along the
stream lines that foliate the tube T .

On the other hand, we derive a perturbation method of generalized Beltrami fields in small
enough domains around a non-stagnation point of the original field.

Theorem 1.2.7 (Theorem 6.6.3 in Chapter 6). LetG ⊆ R3 be an open domain and u0 ∈ Ck+1,α(G,R3)
be a generalized Beltrami field with factor f0 ∈ Ck,α(G), that is,

{
curlu0 = f0u0, x ∈ G,
div v0 = 0, x ∈ G.

Fix some none-stagnation point x0 ∈ G of u0 (i.e., u0(x0) 6= 0), a small enough radius R > 0 and
any surface ΣR ⊆ BR(x0) at which u0 points inwards. Then, for any ε > 0 there exists some δ > 0
so that for every ϕ0 ∈ Ck+1,α(ΣR) with ‖ϕ0‖Ck+1,α(ΣR) < δ there exists another vector field u ∈
Ck+1,α(BR(x0),R3) with ‖u− u0‖Ck+1,α(BR(x0)) < ε so that it solves





curlu = (f0 + ϕ)u, x ∈ BR(x0),
div u = 0, x ∈ BR(x0),
u · η = u0 · η, x ∈ ΣR.

In addition, ϕ propagates the values of the prescription ϕ0 along the streamlines of u, that determine a
flow conjugate to a linear one across x0.
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We emphasize that, in our results, perturbations are not general but they have a very spe-
cific fiberwise structure along invariant cylinders of u that is compatible with the obstructions
imposed by (1.2.5)-(1.2.6). Also, let us notice that the perturbed fields can be chosen arbitrar-
ily close to the initial one by taking the perturbation ϕ0 small enough. This, along with the
structural stability of the Beltrami fields in Theorem 1.2.3 guarantee that the new fields can also
exhibit complicated linked and knotted stream lines and tubes.
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CHAPTER 2

Singular hyperbolic limits of the kinetic Cucker–Smale model
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2.1 Introduction

The aim of this chapter is to rigorously derive and analyze the following system of equations
of Euler-type with singular commutators that arises as hydrodynamic hyperbolic limit of the
kinetic Cucker–Smale model





∂ρ

∂t
+ div(ρu) = 0, t ≥ 0, x ∈ Rd

φ0 ∗ (ρu)− (φ0 ∗ ρ)u− µu−∇ψ = 0, t ≥ 0, x ∈ Rd .
(2.1.1)
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Here, ρ = ρ(t, x) and u = u(t, x) respectively represent the density and velocity field of the
population at time t and position x. Likewise, d stands for the space dimension, being d = 2
and d = 3 the most physically meaningful cases. Also, throughout this chapter we will assume
that ρ is normalized as a probability density, that is,

∫

Rd
ρ(t, x) dx = 1, for all t ≥ 0.

Notice that since the continuity equation in (2.1.1) conserves the initial mass, the above can be
assumed without loss of generality by just restricting to initial data ρ0 ∈ P(Rd) in the space
of probability measures. Notice that the main complexity in the above model arises from the
coupling between velocity and density via the second equation in (2.1.1). Specifically, it consists
of an integral equation given by a commutator of weakly singular integrals that involves linear
friction with the medium (velocity damping) with constant coefficient µ ≥ 0, along with the
effect of some external conservative force F = −∇ψ described through a potential ψ = ψ(t, x).
Regarding the singular kernel in the commutator, it takes the form

φ0(r) =
1

cαα

1

r2α
, (2.1.2)

for any r > 0, some constant cα > 0 to be described later and any α > 0, that measures
the fall-off of the interactions between agents separated by large distances. Consequently, the
commutator can be written in the following way

φ0 ∗ (ρu)− (φ0 ∗ ρ)u = − 1

cαα
[u, Id−2α]ρ

= − 1

cαα

∫

Rd

u(t, x)− u(t, y)

|x− y|2α ρ(t, y) dy,

(2.1.3)

where Iβ = (−∆)−β/2 denotes the Riesz potential or fractional integral operator of order β ∈
(0, d) generated by a scalar measurable function f on Rd and [u, Iβ] stands for the commutator
of Iβ itself with the multiplication operator by u. For the sake of simplicity, we shall forget
about the standard constant arising from the fundamental solution of the fractional Laplacian
(−∆)β/2 and we simply write

(Iβf)(x) =

(
1

| · |d−β ∗ f
)

(x) =

∫

Rd

f(y)

|x− y|d−β dy,

for each x ∈ Rd, see [278, Chapter V, Section 1] for more details.
As depicted in Chapter 1, the ultimate goal of connecting microscopic and macroscopic

scales intends to keep the basic features of the interactions between agents, that eventually is
responsible for the self-organization of the complex system. This is a currently challenging
issue in different areas of Science that steer towards the attainment of more complex rules be-
yond the Newtonian-type laws and it constitutes a particularly active area in the biological
description of emergent processes in complex populations. Depending on the biological con-
text, some of the emerging dynamics are called swarming, schooling, flocking or synchronization.
For different models in this context we mention [1, 17, 21, 42, 58, 88, 92, 99, 100, 101, 170, 145,
195, 196, 210, 224, 257, 295], the references therein along with other works that have been men-
tioned in the introductory Chapter 1. In the same spirit, but within the framework of social and
cellular interactions, we can also mention [19, 18, 20, 43, 140, 168, 210, 235, 240] among others.
From a biological viewpoint, the main interest is to explore the convoluted set of rules stating
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how agents in an ecosystem self-organize. Such local organization or cooperation between the
individuals in neighboring areas is expected to lead towards some kind of global emergent be-
havior, as a complex mechanism that brings all the agents of the population together and leads
to dynamics driven by the collective motion of the rest of individuals. In other words, indi-
viduals in the ecosystem are self-driven by a self-generated collective motion that, in turns,
such collective motion itself is determined by the local interactions between individuals. This
is a captivating phenomenon that can be observed in some typical examples in nature like the
formation of flocks of birds, schools of fish or a swarm of bacteria.

Regarding our system (2.1.1), we will see that such equation inherits the main insights of
the microscopic system from which it is a macroscopic approximation, that is, the so-called
Cucker–Smale model





dxi
dt

= vi, t ≥ 0,

dvi
dt

=
1

N

N∑

j=1

φ(|xi − xj |)(vj − vi), t ≥ 0.
(2.1.4)

Such system was proposed in [90, 91] as an adequate model for the alignment of velocities ofN
agents in a weighted way that depends on the influence function φ = φ(|x− y|). More specifi-
cally, we shall require slightly modifying the original model (2.1.4) to account for velocity linear
damping and noise along with the effect of some external conservative force F = −∇ψ. Then,
we will show that (2.1.1) collects the nonlocal alignment effects of velocities of the population
in a regime where inertia is negligible compared with friction and the forcing term F = −∇ψ.
This is typically called the overdamped Langevin dynamics, Brownian dynamics or Smoluchowski
equation in Physical Statistics, see [258, p. 257], and has proved a good simplification of the orig-
inal full dynamics for certain bio-physical systems [210]. Although in this chapter ψ(t, x) will
be regarded as a external potential, it might also be considered internal (i.e., self-generated). In
a sense, external potentials amount to simpler linear terms that shall help us focus on the most
relevant nonlinear alignment terms. However, we believe that many of the techniques that will
be exhibited in this chapter can be adapted to cover other self-generated potentials, for instance,
those described in terms of more general nonlocal nonlinearities of the type ψ = W ∗ ρ, for ap-
propriate interaction potentials W = W (x), or more general forces F = K ∗ ρ, for adequate
interaction kernels K = K(x). Notice that such choices open our scope and lead to connecting
system (2.1.1)-(2.1.2) with other systems in the literature. In particular, one recovers swarming
effects modelled by aggregation-type terms [26, 37, 49, 64, 66, 67, 120, 126, 221] or more general
terms [287, 288] inspired in Fluid Mechanics, the Euler equation and the closely related gSQG
model [70, 97].

Notice that (2.1.1) can be compared with the recently proposed pressureless Euler-alignment
equation arising in the setting of Cucker–Smale dynamics of flocking





∂ρ

∂t
+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) = −

∫

Rd
φ(|x− y|)(u(t, x)− u(t, y))ρ(t, x)ρ(t, y) dy,

(2.1.5)

see [63, 165, 275, 276, 277, 282, 282] for some properties of such model. Specifically, when
inertia effect (i.e., acceleration) is neglected in such hydrodynamic nonlocal alignment model
but linear friction and some force F = −∇ψ are assumed to act on the system, then we are
formally led to the above general system (2.1.1).

Unfortunately, the rigorous derivation of the Euler system with nonlocal alignment effects
(2.1.5) has been mainly achieved from mesoscopic models via formal arguments through a
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method of closure of the hierarchy of velocity moments based on the choice of a monokinetic
distribution of particles [63, 66, 80, 162, 224, 282]. Very recently, several attempts to derive
such model rigorously have been addessed via hydrodynamic limits in [127, 186]. Both results
require introducing new “damping terms” in the associated kinetic equation. Specifically, the
auhtors introduce the so called local alignment force, that can be understood as damping towards
the mean velocity. An alternative derivation of such term can be obtained from the Mostch–
Tadmor kinetic alignment term [223] when the influence function is approximated by a Dirac
delta function. In [186], the authors also require introduce velocity noise in order for some
relative-entropy method to work. Unfortunately, in the hyperbolic strong local alignment limit
such velocity noise amounts to an artificial presure in the macroscopic equations. Later, the
same relative-entropy method was achieved in [127] in the absence of velocity noise, leading to
the above pressureless Euler-alignment system (2.1.5) in the hyperbolic strong local alignment
limit. See Chapter 1 for some more details with regards to such literature on hydrodynamic
limits towards Euler-alignment type models. We remark that such extra “damping term” has
proved necessary in order to push the kinetic distribution of agents towards the monokinetic
distribution in the hyperbolic limit. Indeed, an analogue result where the non-local alignment
is the only responsible for the monokinetic distribution to emerge in the hyperbolic limit is still
missing in the absence of local alignment terms.

Regarding regularity of interactions, we remark here that both [127, 186] assume Lipschitz
influence functions φ = φ(r). To our best knowledge, no rigorous derivation has been achieved
for less regular influence functions. Specifically, the underlying choice of φ in those results is
the classical one by Cucker and Smale [90, 91]

φ(r) =
1

(1 + r2)α
, (2.1.6)

for any r > 0. Naturally, the lack of singularity at r = 0 simplifies the mathematical handling
of the kernel and nonlinear terms appearing in the Euler equation with nonlocal alignment.
In addition, note that regular φ aims at preventing distant interparticle interactions. In order
to augment the local interactions, a possible solution might be the one considered in [223]
(assuming asymmetric interactions) or the model proposed in [244] (with singular interactions).
From a mathematical point of view, very little has been obtained for the singular case (2.1.2)
for values α ∈ (0, 1

2). In [60] local in-time well posedness of the sigular kinetic model has been
proved. In [244, 245] the existence of piecewise weak solutions to the particle system along
with existence and uniqueness of W 1,1 strong solutions in the restricted range α ∈ (0, 1

4) has
been analyzed and the mean field limit has been explored in [226]. See also the review paper
[213] for a comprehensive exposition of all the results up to date concerning the Cucker–Smale
model with singular influence function at any level of description (microscopic, kinetic and
macroscopic). The interest on singular interactions in not purely accidental, but actually this
new paradigm leads to substantially new dynamics. Specifically, [244] exhibits some examples
where (2.1.2) with α ∈ (0, 1

2) amounts to finite-time collisions and sticking of particles. See
Section 3 and 4 for a detailed analysis of the sticky behavior of the related Kuramoto model
with singular coupling weights.

In this chapter, we are interested in rigorously obtaining measure-valued solutions to (2.1.1)-
(2.1.2) through a singular limit in the classical choice of the influence function devoted to
Cucker and Smale. It will be done via a hydrodynamic singular limit of vanishing-inertia type
on an appropriately chosen hyperbolic-type scaling for the kinetic Cucker–Smale system of
flocking with linear damping and velocity noise, namely

∂fε
∂t

+ v · ∇xfε −
1

ε
∇xψε · ∇vfε =

1

ε
divv

(
fεv +∇vfε +QφεCS(fε, fε)

)
, (2.1.7)
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where the scaled kinetic Cucker–Smale alignment operator reads

QφεCS(fε, fε)(t, x, v) := fε(t, x, v)

∫

Rd

∫

Rd
φε(|x− y|)(v − w)fε(t, y, w) dy dw.

The interaction potential will be scaled as follows

φε(r) =
1

(ε2 + cαr2)α
. (2.1.8)

As it is apparent now, the formal limit ε↘ 0 yields singular interactions modeled by the Riesz
kernel φ0 of order d − 2α in (2.1.2). In a general context, we can see (2.1.7)-(2.1.8) as a way to
obtain an approximate sequence of solutions whose macroscopic quantities converge towards
a measure-valued solution of (2.1.1)-(2.1.2) in a weak sense. Also, see [57, 126, 175] for recent
related results on such vanishing inertia type limits or Smoluchowski limits. Finally, not only
will we focus on the above-mentioned hyperbolic scaling, but we will also inspect appropri-
ately chosen intermediate scalings where the velocity diffusion effects (that are inherited from
the randomness in the microscopic equations) do not dominate and disappear in the limit. See
[22, 232, 252] for a comprehensive study of the intermediate, hyperbolic and parabolic limits in
the Vlasov–Poisson–Fokker–Planck system.

As it will be observed in the chapter, the main difficulties both to pass to the limit and
to analyze the limiting hydrodynamic system obviously rely on handling with commutators.
Specifically, the commutator in the hydrodynamic limit reads

(φε ∗ jε)ρε − (φε ∗ ρε)jε =

∫

Rd

1

(ε2 + cα|x− y|2)α
(ρε(t, x)jε(t, y)− ρε(t, y)jε(t, x)) dy,

where ρε and jε stand for the density and current of particles associated with the particles
distribution function fε, i.e.,

ρε(t, x) :=

∫

Rd
fε(t, x, v) dv, jε(t, x) :=

∫

Rd
vfε(t, x, v) dv.

Then, the main result of this chapter reads as follows (also see Section 2.2 for a more detailed
statement).

Theorem 2.1.1. Under appropriate hypothesis on the initial data f0
ε and the external forces −∇ψε,

let fε be the smooth solutions to (2.1.7) with α ∈ (0, 1
2 ]. Then, the macroscopic quantities ρε and jε

converge in a weak sense to some probability measure ρ and some finite Radon measure j that solve the
Cauchy problem associated with the following Euler-type system in the distributional sense





∂tρ+ div j = 0, x ∈ Rd, t ∈ [0, T ),

(φ0 ∗ j)ρ− (φ0 ∗ ρ)j − j − ρ∇ψ = 0, x ∈ Rd, t ∈ [0, T ),

ρ(0, ·) = ρ0, x ∈ Rd .
(2.1.9)

Naturally, we have some difficulties when trying to give some sense to the corresponding
commutator when ε ↘ 0 since we do not expect that ρε and jε converge stronger than in the
weak-star sense of finite Radon measures. This is due to the fact that the distribution function
and some of its functional moments with respect to velocity will be only bounded in L1, inde-
pendently of ε. Like it is the case for other related systems with antisymmetric interactions, one
can solve such issue for singularities that lie in the range α ∈ (0, 1

2) via a symmetrization trick
by just considering the above term in weak form and by cancelling the singularity through
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the use of appropriate test functions. Nevertheless, the same cannot be directly inferred for
the endpoint case α = 1

2 (compare with the 2D Euler equations in vorticity formulation [269]), that
indeed agrees with the critical value of the parameter α over which one cannot expect uncondi-
tional flocking in the Cucker–Smale system (see [65, 162]). Again, comparing with the 2D Euler
system in vorticity formulation, recall that some sort of logarithmic Morrey space estimate for
the sequence of approximated vorticities can be obtained in order to ensure that the system do
not exhibit concentration and to pass to the limit (see [103, 207, 293]). In our case, our scaled
systems do not enjoy any additional estimate with respect to Morrey-type norms. Fortunately,
we shall obtain an alternative uniform-in-ε bound on the dissipation of the kinetic energy due to
alignment interactions, i.e.,

∫ T

0

∫

R4d
|v − w|2φε(|x− y|)fε(t, x, v)fε(t, y, w) dx dy dv dw dt ≤ CT ,

for all ε > 0. Such bound will help us prove that the singular limit ε → 0 involves no con-
centration and we can pass to the limit in the symmetrized version of the nonlinear term for
all the values of the parameter α ∈ (0, d2), in the same spirit as in [269] or the 2D-case in [232].
Nevertheless, it will only prove useful for the restricted range α ∈ (0, 1

2 ] because the absence of
further Lp-integrability for ρ and j causes severe difficulties to identify the limiting nonlinear
term in weak form. Interestingly, we will show that the nonlinear term is uniformly bounded
with respect to ε though for a slightly larger range of the parameter, namely, α ∈ (0, 1), see Re-
mark 2.2.19. It suggests that the convergence result might be extended to such case but, making
such argument rigorous is a difficult task that we will not explore here because some conver-
gence result for the particle distribution function fε towards f is missing and, more precisely,
the extension of the above bound of the dissipation of kinetic energy to the limiting distribution
seems unclear.

The dissipation of the kinetic energy due to alignment interactions also appeared in some
preceding results [61, 127, 185, 186] as a dissipation term of a “generalized entropy” that is
composed of the Boltzmann entropy, the kinetic energy and the second order moment with
respect to position. The symmetries of the aforementioned local alignment forces along with
the boundedness of the influence function (2.1.6) near r = 0 and an appropriate choice of the
scaling in the kinetic equation ensured the presence of such entropy inequality in [127, 186].
However, as it will be made apparent later, we cannot ensure that the vanishing intertia type
scaling in our system (2.1.7) do enjoy such sort of entropy results. It stands to reason that it
is due to the singular scaling for φε and the corresponding lack of further Lp norms for the
macroscopic density ρ = ρ(t, x). Then, in this chapter we shall forget about entropy methods
and will simply resort on compactness methods, that have proven useful to deal with singular
interactions. We must warn here about the fact that in our hyperbolic and intermediate scal-
ings, the presence of the velocity linear damping term divv(fεv) in the Fokker–Planck operator
is essential to derive some of the only possible estimates for the current of particles that can be
obtained. One might think that it perfectly fits the fact that in [127, 186] extra damping terms
are required. However, such idea is not completely correct. Indeed, [126] explores the same
type of vanishing inertia type limit in a system with regular influence function but no extra
damping term was required by the authors to achieve the convergence towards the monoki-
netic distribution. In our case, the damping term is needed in order to neutralize the negative
effect of working with purely singular interactions.

Once Theorem 2.1.1 is proved, we can formally cancel a factor ρ in the limiting equation
(2.1.9) by considering the relation j = ρ u linking current to velocity field of agents. Then, we
are formally led to Equation (2.1.1) and the commutator in (2.1.3). This is somehow surprising
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because such commutator has not clear sense for ρ ∈ L1(Rd). For such limiting Equation (2.1.1),
that couples the velocity field and the density function, we shall explore the existence of strong
solutions with higher regularity for the Cauchy problem associated with the system (2.1.1)-
(2.1.2). To this end, one has to obtain accurate bounds for the commutator operator [u, Id−2α]
of a Riesz potential and the multiplication operator by u. The study of such bounds in Lp

spaces is classical in harmonic analysis, see [73, 82, 89, 243]. In particular, it is known, by the
Hardy–Littlewood–Sobolev inequality, that the fractional integral or Riesz potential of order d − 2α
is a bounded linear operator between the next spaces

Id−2α : Lp(Rd) −→ Lq(Rd),

where 1 < p < q < ∞ and 1/p − (d − 2α)/d = 1/q. The boundedness when p = 1 (then
q = d/2α) is not true in the Lp − Lq sense but in the Lp − Lq,∞ way, where Lq,∞(Rd) stands for
the weak Lebesgue space or Lorentz spaces. For further details, we refer to [278, Theorem 1.2.1]
and the discussion in Appendix C. Regarding the commutator, one recovers the boundedness
of the next linear operator

[u, Id−2α] : Lp(Rd) −→ Lq(Rd,Rd),

if, and only if, u ∈ BMO(Rd,Rd), see [73]. Nevertheless, the endpoint case p = 1 cannot be
recovered in the Lp − Lq,∞ sense [89], which is the natural framework according to the lack of
estimates for ρ. The main difficulty when dealing with the Equation (2.1.1) is that it is not clear
whether the operator u 7−→ [u, Id−2α]ρ is bounded from some Banach space to itself. Note that
it is a key property to be checked in order for the classical existence techniques involving fixed-
point theorems to work. We will show that this is the case for some well chosen Banach space
of functions of Lipschitz type enjoying some summability properties. Namely, such normed
space will be denoted by W k,p,q, where

W k,p,q := W k−1,p(Rd) ∩W k−1,q(Rd) ∩W k,∞(Rd), (2.1.10)

that is a Banach space when endowed with the norm

‖f‖Wk,p,q(Rd) := ‖f‖Wk−1,p(Rd) + ‖f‖Wk−1,q(Rd) + ‖f‖Wk,∞(Rd).

Such commutator estimates constitute the cornerstone to construct our strong solutions to
(2.1.1) via fixed point arguments. This will be the purpose of our second main result in this
chapter.

Theorem 2.1.2. Let us consider α ∈ (0, d2), 1 ≤ p1 < p2 ≤ ∞ and k ∈ N such that

1

p2
< 1− 2α

d
<

1

p1
and kp1 >

d

2α
.

Then, for any R > 0 there exists δR > 0 depending on R such that (2.1.1) admits one, and only one
solution u ∈ L1(0, T ;W 1,kp1,kp2(Rd,Rd)), ρ ∈ L∞(0, T ;Lp1(Rd) ∩ Lp2(Rd)) with

‖u‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ R,

provided that the forcing term F = −∇ψ and the initial datum ρ0 fulfil the “smallness” conditions

‖∇ψ‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) < R and ‖ρ0‖Wk,p1,p2 (Rd) < δR.
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Such result then entails that the friction term tends to slow down the particles up to a state
of absence of any motion unless some forcing term F = −∇ψ assumed to act on the system.
On the one hand, notice that the velocity damping is natural and it can be justifyied by the
conditions of the medium. On the other hand, the presence of a force F can also be justified
in certain biological settings like in the soaring flight of some flocks of big birds like pelicans or
seagulls. Soaring birds avoids flapping in the presence of a thermal, since they can use wind
currents to self-propel. See [234, Chapter 5] for a comprehensive classification of the kinds
and mechanisms of soaring flights along with some pictures (e.g., slope, thermal, gust, frontal,
wave and dynamic soaring). Another reference where such biological feature is considered
(i.e., some kind of “external” force is assumed to propel birds) is the coupled macroscopic–
mesoscopic system proposed in [61] consisting in a Vlasov–Fokker–Planck equation with local
alignment effects describing the motion of birds in the core of a fluid obeying the Navier–Stokes
equation of Fluid Mechanics. See also [16] for a similar analysis of global existence of strong
solutions of such coupled systems.

The rest of the chapter is organized as follows. In Section 2.2 and 2.4 we shall focus on the
relationship between the mesoscopic and macroscopic scales of descriptions via hydrodynamic
limits. Specifically, in Section 2.2 we will concentrate on a hyperbolic and singular limit of the
kinetic Cucker–Smale model whilst Section 2.4 shows that such techniques can be adapted
to other relevant hydrodynamic limits of intermediate type. We will also address the fric-
tionless case with appropriate scaling along with a hydrodynamic limit linking the Rayleigh–
Helmholtz type friction terms with the standard linear damping. Section 2.3 presents the ex-
istence and uniqueness of global in time solutions of higher regularity for the limiting macro-
copic systems arising from the preceding hydrodynamic and singular limits. To conclude, we
derive in Appendix 2.A the preceding scalings of the kinetic equation through a nondimen-
sionalization procedure and an appropriate choice of the dimensionless parameters.

2.2 Hyperbolic and singular hydrodynamic limit

In this section we shall focus on a hyperbolic scaling of the kinetic Cucker–Smale model with
friction and diffusion effects in the velocity variable, see (2.1.7). Recall that the main highlight
in this scaling is that the regular influence functions φε converge towards the singular one φ0 as
ε→ 0, see (2.1.2) and (2.1.8). In Appendix 2.A such kinetic Cucker–Smale model was recovered
from agent-based descriptions via mean field limits. Moreover, a dimensional study of the
physical constants of the model has been conducted, thus producing the following hyperbolic
scaling

∂fε
∂t

+ v · ∇xfε −
1

ε
∇xψε · ∇vfε =

1

ε
divv

(
fεv +∇vfε +QφεCS(fε, fε)

)
, (2.2.1)

for the probability distribution fε(t, ·, ·) ∈ P(Rd × Rd) under appropriate assumptions on the
scaling of the scaled mean thermal velocity and mean free path, along with the scaled effective
range and strength of the interactions. See Appendix 2.A for further details. Although we will
be interested in (2.2.1) most of the time, we will show that our technique also yields some in-
sight into the understanding of the rigorous hydrodynamic limit in an intermediate hyperbolic
scaling for the frictional case and a hyperbolic scaling for the frictionless case that we have also
introduced in the Appendix 2.A. This will be postponed to Section 2.4.
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2.2.1 The Maxwell–Boltzmann distribution

For simplicity, in this chapter we will not address the rigorous convergence of fε, but we shall
simply state some heuristics about the shape of the limiting distribution of fε as ε→ 0 in terms
of its associated macroscopic quantities ρ and j, that are governed by (2.1.9) of this chapter. The
reader might find this discussion useful to gain some intuition on the asymptotics that we have
proposed for this model. We refer to [126, 175] for some rigorous results in such line regarding
vanishing inertia limits for regular interaction kernels.

Theorem 2.2.1. Let fε solve the scaled system (2.2.1) and consider any weak-* limit in the sense of
distributions f(t, x, v) = (weak ∗)− limε→0 fε(t, x, v). Then, f formally takes the form of a Maxwell–
Boltzmann distribution, namely,

f(t, x, v) =
ρ(t, x)

(2πkBT (t, x))d/2
e
− |v−u(t,x)|2

2kBT (t,x) .

Here ρ and u respectively represent the macroscopic probability density and velocity field associated with
f , that are governed by (2.1.1), and T (t, x) is the thermodynamic temperature, i.e.,

ρ :=

∫

Rd
f dv,

j := ρ u :=

∫

Rd
vf dv,

T :=
1

kB(1 + φ ∗ ρ)
,

where kB stands for Boltzmann’s constant.

In order to properly derive such formula for f , we shall require the following result.

Lemma 2.2.2. Consider any A ∈ Rd and B ∈ R+, and define the Gaussian function

G(v) = eA·v−B|v|
2
, v ∈ Rd.

Then, we obtain that ∫

R
G(v) dv =

( π
B

)d/2
e
|A|2
4B .

Proof of Theorem 2.2.1. Taking limits formally when ε → 0 in (2.2.1), we can seek for f as solu-
tion to the following equation

∇vf = (−v − (φ ∗ ρ)v + φ ∗ j −∇xψ) f.

By integration we obtain that f can be expressed as follows

f(t, x, v) = exp

(
−1

2
(1 + φ ∗ ρ)|v|2 + (φ ∗ j −∇xψ) · v

)
F (t, x), (2.2.2)

for some factor v-independent F = F (t, x) that we will try to identify in terms of ρ and j.
Define the coefficients

A := φ ∗ j −∇xψ and B :=
1

2
(1 + φ ∗ ρ).
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Then, by virtue of Lemma 2.2.2, we can integrate with respect to v in (2.2.2) to achieve the
following relation

ρ =

(
2π

1 + φ ∗ ρ

)d/2
exp

( |φ ∗ j −∇xψ|2
2(1 + φ ∗ ρ)

)
F.

Notice that it relates F with ρ and j. Hence, substituting in (2.2.2) implies that

f(t, x, v) = ρ

(
1 + φ ∗ ρ

2π

)d/2
exp

(
−|(1 + φ ∗ ρ)v − (φ ∗ j −∇xψ)|2

2(1 + φ ∗ ρ)

)

= ρ

(
1 + φ ∗ ρ

2π

)d/2
exp

(
−(1 + φ ∗ ρ)

2
|v − u|2

)
,

(2.2.3)

where the macroscopic velocity field u can be recovered from the relation j = ρu and we have
used the second equation in (2.1.9) to simplify terms. Then, the proof follows by definition of
the thermodynamic temperature.

2.2.2 Hierarchy of moments

Before going into the heart of the matter, let us introduce some notation that will be used along
the chapter and show the first equations of the hierarchy of velocity moments. We will focus
on the next ones that correspond to the first forth velocity moments

Density: ρε(t, x) :=

∫

Rd
fε(t, x, v) dv,

Current: jε(t, x) :=

∫

Rd
v fε(t, x, v) dv,

Velocity field: uε(t, x) :=
jε(t, x)

ρε(t, x)
,

Stress tensor: Sε(t, x) :=

∫

Rd
v ⊗ v fε(t, x, v) dv,

Stress flux tensor: Tε(t, x) :=

∫

Rd
(v ⊗ v)⊗ vfε(t, x, v) dv.

First of all, let us note that the average kinetic energy consists of the macroscopic kinetic energy
together with the internal energy and it can be obtained as a contraction of the stress tensor.
Specifically, take the trace of the stress tensor to obtain

Eε(t, x) :=
1

2
Tr(Sε(t, x)) =

1

2

∫

Rd
|v|2fε(t, x, v) dv

=
1

2
ρε +

1

2

∫

Rd
|v − uε(t, x)|2fε(t, x, v) dv

=: Ekinε (t, x) + Eintε (t, x).

Another classical kinetic quantity is the well known energy flux that can be obtained as a new
contraction of the stress flux tensor. Namely,

Qε(t, x) :=
1

2
Tr(Tε(t, x)) =

1

2

∫

Rd
v|v|2fε(t, x, v) dv.
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Note that (2.2.1) can be restated in the following form that closes the nonlinear alignment op-
erator in terms of some of the above macroscopic quantities

ε
∂fε
∂t

+ εv · ∇xfε −∇xψε · ∇vfε = divv (fεv + ε∇vfε + fεφε ∗ ρεv − fεφε ∗ jε) . (2.2.4)

Also, notice that we have moved the parameter ε to the transport part in the left hand side of
the equation in order to clarify that (2.2.4) indeed consists in a vanishing-inertia type scaling.
Here on we will need to assume that the initial data f0

ε satisfy the next hypothesis




f0
ε = f0

ε (x, v) ≥ 0 and f0
ε ∈ C∞c (Rd×Rd),

‖f0
ε ‖L1(R2d) = 1 and ρ0

ε
∗
⇀ ρ0 inM(Rd),

‖|x|f0
ε ‖L1(R2d) ≤M0 and ‖|v|2f0

ε ‖L1(R2d) ≤ E0,

(2.2.5)

for every ε > 0, where M0, E0 > 0 are constants that do not depend on ε > 0. Regarding the
external forces −∇ψε, we will assume that





ψε ∈ L2(0, T ;W 1,∞(Rd)) and ψ ∈ L2(0, T ;W 1,∞(Rd)),
∇ψε(t, ·) ∈ Cb(Rd,Rd) and ∇ψ(t, ·) ∈ Cb(Rd,Rd), a.e. t ∈ [0, T ),
‖∇ψε‖L2(0,T ;L∞(Rd,Rd)) ≤ F0 and ∇ψε → ∇ψ in L1(0, T ;Cb(Rd,Rd)),

(2.2.6)

for every ε > 0 and some F0 > 0 not depending on ε.

Remark 2.2.3. Notice that the uniform tightness condition in the third line of (2.2.5) allows guaran-
teeing that the weak * limit ρ0 does not lose mass at infinity and, consequently ρ0 ∈ P(Rd) and

ρ0
ε → ρ0 narrow in M(Rd),

thanks to Prokhorov’s compactness theorem. Indeed, we can readily see via standard arguments [296]
that the limit preserves the same finite first order moment, i.e., ρ0 ∈ P1(Rd) and, in addition, the narrow
convergence amounts to

ρ0
ε → ρ0 in P1(Rd)−W1.

However, in this chapter we will forget about Wasserstein spaces for simplicity. See Chapter 4, where a
more sharper result is shown in Wasserstein spaces for the closely related singular Kuramoto model.

Under such assumptions (2.2.6)-(2.2.5) there exists a unique global in time strong solution
to (2.2.4) such that fε(0, ·, ·) = f0

ε for every ε > 0, see [44, 68, 162]. Respectively multiplying
Equation (2.2.4) by 1, v and v ⊗ v (Kronecker product) and integrating by parts with respect to
v, we obtain the next hierarchy of moment equations:

•Mass conservation
∂ρε
∂t

+ divx jε = 0. (2.2.7)

• Law of balance of current

ε
∂jε
∂t

+ εdivx Sε + ρε∇xψε + (1 + φε ∗ ρε) jε − (φε ∗ jε) ρε = 0. (2.2.8)

• Law of balance of stress

ε
∂Sε
∂t

+ε divx Tε+2 Sym(jε⊗∇xψε)+2 ((1 + φε ∗ ρε)Sε − ρεI)−2 Sym((φε∗jε)⊗jε) = 0. (2.2.9)
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Here, Sym(M) denotes the symmetric part of a square matrix M , i.e., Sym(M) := 1
2(M +MT).

Notice that we can take the spectral norm of the stress tensor and notice that it can be fully
controlled by the average kinetic energy

|Sε(t, x)| ≤ 2Eε(t, x), t ≥ 0, x ∈ Rd .

Consequently, despite the fact that the stress tensor does contain all the information about the
average kinetic energy of the system of particles, one might be interested in a priori control for
the latter. Indeed, a explicit balance law for the average kinetic energy can be readily deduced
from (2.2.9) by taking traces

ε
∂Eε
∂t

+ ε divxQε + jε · ∇xψε + 2

(
(1 + φε ∗ ρε)Eε −

d

2
ρε

)
− (φε ∗ jε) · jε = 0. (2.2.10)

As it often happens in most of the kinetic equations, the hierarchy of velocity moments is not a
closed system. Nevertheless, as it will be shown later, our hyperbolic hydrodynamic limit will
close the system (2.2.7)–(2.2.8) when ε↘ 0 as stated in Equation (2.1.1).

2.2.3 A priori bounds

Let us show first some useful bounds for the local interaction kernel φε.

Lemma 2.2.4. Let us fix any nonnegative number ε and any exponent α ∈ (0, 1/2). Then, the next
estimates hold for every r > 0:

1. φε(r) ≤
1

cααr
2α

,

2. φε(r) ≤
1

ε2α
,

3. |φε(r)− φ0(r)| ≤ Cα
ε1−2α

r
,

where Cα > 0 is some constant depending on α but not depending neither on ε nor on r.

Proof. The first two estimates follows from the definition of φε. Then, let us focus on the last
property. The fundamental lemma of calculus leads to the next expression

φε(r)− φ0(r) =

∫ ε

0

d

dτ

[
1

(τ2 + cαr2)α

]
dτ = −α

∫ ε

0

2τ

(τ2 + cαr2)α+1
dτ.

Young’s inequality for real numbers allows obtaining the next bound

2τ =
1√
cαr

2τ
√
cαr ≤

1√
cαr

(τ2 + cαr
2).

Then, taking absolute values on the preceding identity we arrive at

|φε(r)− φ0(r)| ≤ α√
cα

1

r

∫ ε

0

1

(τ2 + cαr2)α
dτ

≤ α√
cα

1

r

∫ ε

0
τ−2α dτ =

α

(1− 2α)
√
cα

ε1−2α

r
.
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Let us now discuss some a priori bounds for the density function ρε and the current jε.

Proposition 2.2.5. Let the initial distribution functions f0
ε verify (2.2.5) and the external forces −∇ψε

fulfill (2.2.6). Consider the strong global in time solution fε to (2.2.4) with initial data f0
ε and fix any

nonnegative integer k. Then, the k-th order moments in x and v of fε obey the following equations,

ε
d

dt

∫

Rd

∫

Rd
|v|kfε dx dv =− k

∫

Rd

∫

Rd
|v|k−2v · ∇xψεfε dx dv

− k
∫

Rd

∫

Rd
|v|kfε dx dv + k(d+ k − 2)

∫

Rd

∫

Rd
|v|k−2fε dx dv

− k
∫

Rd

∫

Rd
|v|k−1

(
(φε ∗ ρε)|v| − (φε ∗ jε) ·

v

|v|

)
fε dx dv, (2.2.11)

d

dt

∫

Rd

∫

Rd
|x|kfε dx dv = k

∫

Rd

∫

Rd
|x|k−2x · vfε dx dv. (2.2.12)

Note that in particular we recover the conservation of mass, namely,

ρε(t, ·) ∈ P(Rd), for all t ≥ 0, ε > 0. (2.2.13)

Corollary 2.2.6. Under the hypothesis in Proposition 2.2.5, we obtain that
∥∥∥|v|kfε

∥∥∥
L1(0,T ;L1(R2d))

+
1

2

∫ T

0

∫

R4d
(|v|k−2v − |w|k−2w) · (v − w)φε(|x− y|)fε(t, x, v)fε(t, y, w) dx dy dv dw dt

≤ ε

k
‖|v|kf0

ε ‖L1(R2d) + (d+ k − 2)‖|v|k−2fε‖L1(0,T ;L1(R2d)) +
∥∥∥|v|k−1fε∇xψε

∥∥∥
L1(0,T ;L1(R2d))

,

‖|x|kfε‖
1
k

L∞(0,T ;L1(Rd))
≤ ‖|x|kf0

ε ‖
1
k

L1(Rd)
+

∫ T

0

(∫

Rd

∫

Rd
|v|kfε dx dv

) 1
k

dt.

Proof. Regarding the first inequality, integrate Equation (2.2.11) with respect to time and neglect
the term arising from the Barrow rule associated with the endpoint t = T of the time interval.
On the other hand, regarding the second inequality notice that we can use Hölder’s inequality
in the RHS of (2.2.12) and arrive at

d

dt

(∫

Rd

∫

Rd
|x|kfε dx dv

) 1
k

≤
(∫

Rd

∫

Rd
|v|kfε dx dv

) 1
k

.

Then, integrating with respect to time yields the claimed inequality.

Remark 2.2.7. Note that the estimate in Corollary 2.2.6 leads to a real estimate of the k-the order
velocity moment as long as the second term in the LHS is nonnegative. In turns, such term can be lower
bounded through simple computations involving the Cauchy–Schwartz inequality as follows

∫ T

0

∫

R4d
(|v|k−1 − |w|k−1)(|v| − |w|)φε(|x− y|)fε(t, x, v)fε(t, y, w) dx dy dv dw

≤ 1

2

∫ T

0

∫

R4d
(|v|k−2v − |w|k−2w) · (v − w)fε(t, x, v)fε(t, y, w) dx dy dv dw dt.

Note that when k ≥ 1, then

(|v|k−1 − |w|k−1)(|v| − |w|) ≥ 0 v, w ∈ Rd .
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Consequently, for each k ≥ 1 the k-th order moment can be bounded as follows
∥∥∥|v|kfε

∥∥∥
L1(0,T ;L1(R2d))

≤ ε

k
‖|v|kf0

ε ‖L1(R2d) + (d+ k − 2)‖|v|k−2fε‖L1(0,T ;L1(R2d)) +
∥∥∥|v|k−1fε∇xψε

∥∥∥
L1(0,T ;L1(R2d))

,

(2.2.14)

and the next term can be bounded similarly

1

2

∫ T

0

∫

R4d
(|v|k−2v − |w|k−2w) · (v − w)φε(|x− y|)fε(t, x, v)fε(t, y, w) dx dt dv dw dt

≤ ε

k
‖|v|kf0

ε ‖L1(R2d) + (d+ k − 2)‖|v|k−2fε‖L1(0,T ;L1(R2d)) +
∥∥∥|v|k−1fε∇xψε

∥∥∥
L1(0,T ;L1(R2d))

.

(2.2.15)

In particular, the case k = 2 yields the next bounds of the average kinetic energy, the current
of particles and the dissipation of kinetic energy due to alignment interaction between particles.

Corollary 2.2.8. Under the hypothesis in Proposition 2.2.5,

‖|x|fε‖L∞(0,T ;L1(R2d)) ≤M0 + T 1/2‖|v|fε‖1/2L2(0,T ;L1(Rd))
, (2.2.16)

‖|v|fε‖L2(0,T ;L1(R2d)) ≤
∥∥|v|2fε

∥∥1/2

L1(0,T ;L1(R2d))
, (2.2.17)

∥∥|v|2fε
∥∥
L1(0,T ;L1(R2d))

≤ 2εE0 + 2dT + F 2
0 . (2.2.18)

In addition, the next estimate holds
∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw dt ≤ 2εE0 + 2dT + F 2

0 . (2.2.19)

Proof. By Corollary 2.2.6, the next bound follows for k = 2

2‖|v|2fε‖L1(0,T ;L1(R2d)) +

∫ T

0

∫

R4d
|v − w|2φε(|x− y|)fε(t, x, v)fε(t, y, w) dx dt dv dw dt

≤ ε‖|v|2f0
ε ‖L1(R2d) + 2dT‖f0

ε ‖L1(R2d) + 2 ‖|v|fε∇xψε‖L1(0,T ;L1(R2d))

≤ ε‖|v|2f0
ε ‖L1(R2d) + 2dT‖f0

ε ‖L1(R2d) + 2‖|v|fε‖L2(0,T ;L1(R2d))‖∇ψε‖L2(0,T ;L∞(R2d)).

The Cauchy–Schwartz inequality leads to

‖|v|fε‖L2(0,T ;L1(R2d)) ≤
(
‖f0
ε ‖L1(R2d)

)1/2 (∥∥|v|2fε
∥∥
L1(0,T ;L1(R2d))

)1/2
,

and Young’s inequality for real numbers yields

2 ‖|v|fε‖L2(0,T ;L1(R2d)) ‖∇xψε‖L2(0,T ;L∞(Rd))

≤ ‖∇xψε‖2L2(0,T ;L∞(R2d))
‖f0
ε ‖L1(R2d) +

∥∥|v|2fε
∥∥
L1(0,T ;L1(R2d))

,

and this ends the proof of the velocity moments and dissipation of kinetic energy due to align-
ment interactions. Finally, for k = 1 we can control the position moments in terms of the
velocity moments via the second relation in Corollary 2.2.6, namely

‖|x|fε‖L∞(0,T ;L1(Rd)) ≤ ‖|x|f0
ε ‖L1(Rd) + ‖|v|fε‖L1(0,T ;L1(Rd))

≤ ‖|x|f0
ε ‖L1(Rd) + T 1/2‖|v|fε‖1/2L2(0,T ;L1(Rd))

,

where the Cauchy–Scwarz inequality has been used in the last inequality.
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2.2.4 Passing to the limit

In this subsection, we will concentrate on the limiting procedure underlying the proof of Theo-
rem 2.1.1. For the sake of completeness, let us specify the content and technical hypothesis that
we will need in the proof.

Theorem 2.2.9. Let f0
ε and∇ψε satisfy hypothesis (2.2.5)-(2.2.6) and consider a sequence fε of smooth

solutions to (2.1.7) with α ∈ (0, 1
2 ]. Then, the macroscopic quantities ρε and jε satisfy

ρε → ρ, in C([0, T ];M(Rd)− narrow),

jε
∗
⇀ j, in L2

w(0, T ;M(Rd))d,

when ε ↘ 0, for some probability measure ρ, some finite Radon measure j and some subsequences
of {ρε}ε>0 and {jε}ε>0 that we denote in the same way. In addition (ρ, j) is a weak measure-valued
solution to the Cauchy problem associated with the following Euler-type system





∂tρ+ div j = 0, x ∈ Rd, t ∈ [0, T ),

ρ∇ψ + j = (φ0 ∗ j)ρ− (φ0 ∗ ρ)j, x ∈ Rd, t ∈ [0, T ),

ρ(0, ·) = ρ0, x ∈ Rd .
(2.2.20)

We refer to Appendix A for a summarized presentation of weak-* Lebesgue Bochner spaces
Lpw(0, T ;X∗) for a Banach space X , their comparison with classical Lebesgue-Bochner spaces
Lp(0, T ;X∗) along with their duality properties and how it can be used to obtain weak-* com-
pactness of bounded sequences.

Remark 2.2.10. Notice that according to (2.2.16), our assumptions (2.2.5) imply that ρε have finite first
order moment uniformly in ε > 0 and t ∈ [0, T ]. Such uniform tightness can be used to substantially
improve the convergence result of densities. Specifically, elaborating a little bit on the arguments in this
section, we can show that

ρε → ρ in C([0, T ],P1(Rd)−W1),

where (P1(Rd),W1) stands for the Wasserstein space of probability measures with a finite first order
moment, endowed with the associated Wasserstein distance. As discussed in Remark 2.2.3, for simplicity,
we will avoid those technical details along this chapter. However, the reader may want to see Chapter 4,
where those arguments are rigorously justified in a closely related model, namely, the Kuramoto model
with singular coupling weights.

This subsection will be divided into three distinguished parts. The first step will collect
the necessary compactness properties of the sequences {ρε}ε>0 and {jε}ε>0 that can be inferred
from the preceding part of the section, whilst the second step will try to give some insight into
what the dissipation of kinetic energy due to alignment interactions provide to our system.
The last step will show how to pass to the limit in all the terms in the weak formulation. Before
entering into details, let indeed write (2.2.7)-(2.2.8) in weak form as follows

∫ T

0

∫

Rd
∂tϕρε dt dx+

∫ T

0

∫

Rd
∇xϕ · jε dt dx = −

∫

Rd
ϕ(0, x)ρ0

ε(x) dx, (2.2.21)

for any ϕ ∈ C∞c ([0, T )× Rd),
∫ T

0

∫

Rd
ρε∇xψε · ϕdt dx+

∫ T

0

∫

Rd
jε · ϕdt dx−

∫ T

0

∫

Rd
((φε ∗ jε)ρε − (φε ∗ ρε)jε) · ϕdt dx

= ε

∫

Rd
ϕ(0, x) · j0

ε (x) dx+ ε

∫ T

0

∫

Rd
∂tϕ · jε dt dx+ ε

∫ T

0

∫

Rd
Jacx ϕ : Sε dt dx,

(2.2.22)
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for any ϕ ∈ C∞c ([0, T )× Rd,Rd).

First step: Compactness

Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε fulfil (2.2.6) and

consider the strong global in time solution fε to (2.2.4) with initial data f0
ε and α ∈ (0, d2). Recall

that sinceM(Rd) fails the Radon–Nikodym property, it is difficult to identify L∞(0, T ;M(Rd))
and L2(0, T ;M(Rd)) as dual spaces. Instead, we propose using the weak-* Lebesgue Bochner
spaces that provide the duality representations

L∞w (0, T ;M(Rd)) ≡ L1(0, T ;C0(Rd))∗ and L2
w(0, T ;M(Rd)) ≡ L2(0, T ;C0(Rd))∗,

see Appendix A for further details. Now, observe that by Proposition 2.2.5, Corollary 2.2.8 and
the Banach–Alaoglu theorem one has

ρε
∗
⇀ ρ, in L∞w (0, T ;M(Rd)), (2.2.23)

jε
∗
⇀ j, in L2

w(0, T ;M(Rd))d, (2.2.24)

when ε ↘ 0. Consequently, it is straightforward to pass to the limit in each term of the conti-
nuity equation in weak form (2.2.21) and obtain

∂ρ

∂t
+ div j = 0,

in the distributional sense, with initial datum ρ(0, ·) = ρ0. Regarding the equation of balance of
linear momentum in weak form (2.2.22), passing to the limit in all the linear terms is straight-
forward. The only term that requires some more elaboration is the nonlinear part

∫ T

0

∫

Rd
((φε ∗ jε)ρε − (φε ∗ ρε)jε) · ϕdx dt

=

∫ T

0

∫

Rd

∫

Rd
φε(|x− y|) (ρε(t, x)jε(t, y)− ρε(t, y)jε(t, x)) · ϕ(t, x) dx dy dt.

In order to show that such nonlinear term makes sense, let us use the kindness of the commu-
tator therein along with the symmetries of the influence function. An easy change of variables
that interchanges x with y then yields the next expression

∫ T

0

∫

Rd
((φε ∗ jε)ρε − (φε ∗ ρε)jε) · ϕdx dt

=
1

2

∫ T

0

∫

R2d
Hα,ε
ϕ (t, x, y) · (ρε(t, x)jε(t, y)− ρε(t, y)jε(t, x)) dx dy dt, (2.2.25)

where the integral kernel Hα,ε
ϕ takes the form

Hα.ε
ϕ (t, x, y) := φε(|x− y|)(ϕ(t, x)− ϕ(t, y)) =

ϕ(t, x)− ϕ(t, y)

(ε2 + cα|x− y|2)α
,

for any test vector field ϕ ∈ C∞c ([0, T ) × Rd,Rd). Combining the mean value theorem along
with Lemma 2.2.4 we arrive at:

Lemma 2.2.11. Let us fix ε > 0, α ∈ (0, 1
2) and a test function ϕ ∈ C∞c ([0, T )× Rd). Then, the next

estimates hold for every couple (x, y) ∈ R2d \∆ and t ∈ [0, T ):
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1.
∣∣Hα,ε

ϕ (t, x, y)
∣∣ ≤ 1

cαα
‖∇xϕ‖C([0,T )×Rd)|x− y|1−2α,

2. |Hα,ε
ϕ (t, x, y)| ≤ 1

ε2α
‖∇xϕ‖C([0,T )×Rd)|x− y|,

3. |Hα,ε
ϕ (t, x, y)−Hα,0

ϕ (t, x, y)| ≤ ε1−2αCα‖∇xϕ‖C([0,T )×Rd),

where ∆ stands for the diagonal of R2d i.e., ∆ := {(x, y) ∈ R2d : x = y}.

Let us first note some difference between the cases α ∈ (0, 1
2) and α ≥ 1

2 . In the former
case, not only does Hα,ε

ϕ belong to C([0, T ], C0(Rd,Rd)) for every positive ε but it also belongs
to such space when ε = 0. This is no longer true when α = 1

2 because despite the fact that the
continuity is granted for positive ε, the corresponding kernel with ε = 0 takes the form

H
1
2
,0

ϕ (t, x, y) :=
ϕ(t, x)− ϕ(t, y)√

3|x− y|
,

and, although bounded, it clearly loses the continuity at the diagonal points x = y regardless
of the modulus of continuity of ϕ(t, x). This is a common restriction in many other classi-
cal systems such as the 2D Euler equations in vorticity formulation (see e.g. [269]) or the 2D
Vlasov–Poisson–Fokker–Planck system (see e.g. [232]). Similarly, in the latter case α > 1

2 the
kernel is discontinuous along the diagonal points and it is not necessarily bounded at x = y
since it can even blow up. Hence, one cannot expect to pass to the limit for α > 1

2 , but at most
for α ∈ (0, 1

2 ].
In this part we will focus on α ∈ (0, 1

2), where the continuity along the diagonal points is
granted. In such case, Lemma 2.2.11 shows that

lim
ε→0
‖Hα,ε

ϕ −Hα,0
ϕ ‖C([0,T ],C0(Rd,Rd)) = 0. (2.2.26)

The next step will be to show that,

ρε ⊗ jε ∗⇀ ρ⊗ j in L2
w(0, T ;M(R2d))d,

which does not directly follows just from (2.2.23)-(2.2.24). In general some sort of time equicon-
tinuity in certain space is needed (see [232, 252, 269]).

Theorem 2.2.12. Let the initial distribution functions f0
ε verify (2.2.5), the external forces−∇ψε fulfill

(2.2.6) and consider the strong global in time solution fε to (2.2.4) with initial data f0
ε and α ∈ (0, d2).

Then, the following convergence takes place

ρε → ρ in C([0, T ];M(Rd)− narrow),

that is to say,

lim
ε→0

sup
t∈[0,T ]

∣∣∣∣
∫

Rd
φ(x)dx(ρε(t, ·)− ρ(t, ·))

∣∣∣∣ = 0,

for every continuous test function φ ∈ Cb(Rd).

Proof. Consider any test function ϕ(t, x) = η(t)φ(x), where η ∈ C∞c (0, T ) and φ ∈ C∞c (Rd).
Notice that (2.2.7) gives rise to the following equation in weak form

∫ T

0

∂η

∂t
(t)

(∫

Rd
ρε(t, x)φ(x) dx

)
dt =

∫ T

0
η(t)

(∫

Rd
jε(t, x) · ∇xφ(x) dx

)
dt.
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Since by Corollary 2.2.8 the scaled current is bounded in L2(0, T ;L1(Rd)), then
∣∣∣∣
∫ T

0

∂η

∂t
(t)

(∫

Rd
ρε(t, x)φ(x) dx

)
dt

∣∣∣∣ ≤ ‖η‖L2(0,T ) ‖jε‖L2(0,T ;L1(Rd)) ‖φ‖W 1,∞(Rd)

≤ (2εE0 + 2dT + F 2
0 )1/2‖η‖L2(0,T )‖φ‖W 1,∞(Rd).

A well know characterization of Sobolev space leads to
∥∥∥∥
∫

Rd
ρε(·, x)φ(x) dx

∥∥∥∥
H1(0,T )

≤
(
T 1/2 + (2εE0 + 2dT + F 2

0 )1/2
)
‖φ‖W 1,∞(Rd).

In particular, Sobolev’s embedding implies
∣∣∣∣
∫

Rd
(ρε(t1, x)− ρε(t2, x))φ(x) dx

∣∣∣∣ ≤
(
T 1/2 + (2εE0 + 2dT + F 2

0 )1/2
)
‖φ‖W 1,∞(Rd)|t1 − t2|1/2,

for every t1, t2 ∈ [0, T ). Consequently, the next bound holds

‖ρε‖
C0, 12 ([0,T ];W−1,1(Rd))

≤ T 1/2 + (2εE0 + 2dT + F 2
0 )1/2.

Notice that the boundedness of {ρε}ε>0 in C([0, T ];W−1,1(Rd)) also follows from the analogous
bound in L∞(0, T ;L1(Rd)) (see Proposition 2.2.5) and the chain of continuous inclusions

L1(Rd) ↪→M(Rd) ↪→W−1,1(Rd).

Then, the weak-* form of the Ascoli–Arzelà theorem yields the convergence inC([0, T ];W−1,1(Rd)−
weak ∗), see Appendix B. Finally, a straightforward argument by density ofW 1,∞(Rd) inC0(Rd)
along with the boundedness of ρε in L∞(0, T ;L1(Rd)) and the uniform tightness (2.2.16) allows
claiming that

ρε → ρ in C([0, T ];M(Rd)− narrow).

Let us conclude our assertion with the next result.

Corollary 2.2.13. Let the initial distribution functions f0
ε verify (2.2.5), the external forces−∇ψε fulfil

(2.2.6) and consider the strong global in time solution fε to (2.2.4) with initial data f0
ε and α ∈ (0, d2).

Then, we obtain that
ρε ⊗ jε ∗⇀ ρ⊗ j in L2

w(0, T ;M(R2d))d.

Proof. Notice that Theorem A.0.11 in Appendix A about Riesz representation for duals in Lebesgue–
Bochner spaces in terms of weak-* Lebesgue–Bochner spaces leads to the next identification

L2
w(0, T ;M(R2d)) ≡ L2(0, T ;C0(R2d))∗.

Let us then consider a test function ϕ ∈ L2(0, T ;C0(R2d)). By density, one can assume that ϕ
takes the form

ϕ(t, x, y) := η(t)φ(x)ψ(y),

for η ∈ L2(0, T ) and φ, ψ ∈ C0(Rd). The objective is to show that

Ii,ε :=

∫ T

0

∫

Rd

∫

Rd
ϕ(t, x, y)

(
dx(ρε(t, ·))dy

(
jiε(t, ·)

)
− dx(ρ(t, ·))dy(ji(t, ·))

)
dt→ 0,
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as ε → 0. The superscript i ∈ {1, . . . , N} stands for each component of the above current
vectors. Ii,ε can be split as follows

Ii,ε = I1
i,ε + I2

i,ε + I3
i,ε,

where each term reads

I1
i,ε :=

∫ T

0
η(t)

(∫

Rd
φ(x)dx(ρε(t, ·)− ρ(t, ·))

)(∫

Rd
ψ(y)dy

(
jiε(t, ·)− ji(t, ·)

))
dt,

I2
i,ε :=

∫ T

0
η(t)

(∫

Rd
φ(x)dx(ρε(t, ·)− ρ(t, ·))

)(∫

Rd
ψ(y)dy

(
ji(t, ·)

))
dt,

I3
i,ε :=

∫ T

0
η(t)

(∫

Rd
φ(x)dx(ρ(t, ·))

)(∫

Rd
ψ(y)dy

(
jiε(t, ·)− ji(t, ·)

))
dt.

We will restrict to the first term, I1
i,ε, since the reasoning in the remaining two terms is similar.

Let us define the sequence of scalar functions given by

Rε(t) :=

∫

Rd
φ(x)dx (ρε(t, ·)− ρ(t, ·)) , ηε(t) := η(t)Rε(t).

By Theorem 2.2.12 one has that

Rε → 0 in L∞(0, T ),

ηε → 0 in L2(0, T ).

Then, I1
i,ε can be restated as

I1
i,ε =

∫ T

0

∫

Rd
ηε(t)ψ(y) dy

(
jiε(t, ·)− ji(t, ·)

)
dt,

that converges to zero as ε → 0 because the test functions ηε ⊗ ψ strongly converges to zero in
L2(0, T ;C0(Rd)) and jε− j also converges to zero weakly-* in L2

w(0, T ;M(Rd))d by (2.2.24).

Second step: Non-concentration

Recall that the limiting kernelsHα,ε
ϕ are continuous except at most at the diagonal points x = y.

Then, in order for the nonlinear term in weak form

1

2

∫ T

0

∫

R2d
Hα,ε
ϕ (t, x, y) · (ρε(t, x)jε(t, y)− ρε(t, y)jε(t, x)) dx dy dt,

to pass to the limit, we have to ensure that the limiting terms ρ ⊗ j − j ⊗ ρ do not concentrate
on the set of points of discontinuity of Hα,0

ε . This is the content of the next result, that holds for
α belonging to the whole range (0, d2).

Lemma 2.2.14. Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε fulfil

(2.2.6) and consider the strong global in time solution fε to (2.2.4) with initial data f0
ε and α ∈ (0, d2).

Then
lim inf
R,ε→0

|ρε(t, ·)⊗ jε(t, ·)− jε(t, ·)⊗ ρε(t, ·)|(ΩR) = 0, a.e. t ∈ [0, T ).

where ΩR denotes the augmented diagonal of Rd×Rd with radius R > 0, i.e.,

ΩR := {(x, y) ∈ R2d : |x− y| < R}.
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Proof. Consider any ε > 0, fix any radius R > 0 and note that

|ρε(t, ·)⊗ jε(t, ·)− jε(t, ·)⊗ ρε(t, ·)|(ΩR)

=

∫∫

|x−y|<R
|ρε(t, x)⊗ jε(t, y)− jε(t, x)⊗ ρε(t, y)| dx dy

≤ (ε2 +R2)α/2
∫

R4d
|v − w|φε(|x− y|)1/2fε(t, x, v)fε(t, y, w) dx dy dv dw.

Then, the Cauchy–Schwartz inequality along with the estimate (2.2.19) in Corollary 2.2.8 yield

(∫ T

0
|ρε(t, ·)⊗ jε(t, ·)− jε(t, ·)⊗ ρε(t, ·)|(ΩR)2 dt

)1/2

≤ (ε2 +R2)α/2(2εE0 + (2dT + F 2
0 ))1/2,

and consequently, taking limits when ε and R become zero

lim inf
ε,R→0

(∫ T

0
|ρε(t, ·)⊗ jε(t, ·)− jε(t, ·)⊗ ρε(t, ·)|(ΩR)2 dt

)1/2

= 0.

Then, the proof is done by virtue of Fatou’s lemma.

Now, let us recall the next result that may be used to show how to pass to the limit on a
sequence of finite Radon measures (without distinguished sign) that do not exhibit concentra-
tions on a set, against a bounded function that is discontinuous on such set (at most). It is a well
known result for positive measures and it is the cornerstone in many other frameworks (e.g. 2D
Euler with signed vortex sheet initial data [103, 269] or the 2D Vlasov–Poisson–Fokker–Planck
system [232]). The proof for positive measures can be found in [250, Lemma 2.1], [269] or [270,
Theorems 62-63, Chapter IV].

Proposition 2.2.15. Let {µε}ε>0 ⊆M(Rd) be a sequence of general finite Radon measures and assume:

1. µε
∗
⇀ µ inM(Rd) as ε→ 0, for some µ ∈M(Rd),

2. There exists some closed set C ⊆ Rd such that

lim inf
ε,R→0

|µε|(ΩR) = 0,

where ΩR stands for the augmented C with radius R > 0, i.e.,

ΩR := C +BR(0) = {x ∈ Rd : dist(x,C) < R}.

Therefore, we obtain that

lim
ε→0

∫

Rd
ϕdµε =

∫

Rd
ϕdµ, (2.2.27)

for every measurable and bounded function ϕ : Rd −→ R whose discontinuity points lie in C and such
that ϕ falls off at infinity.

Proof. Let us decompose µε into its positive and negative part, according to Hahn’s decompo-
sition theorem, i.e., µε = µ+

ε − µ−ε . We can assume, without loss of generality, that

µ±ε
∗
⇀ µ± in M(Rd),
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where µ± ∈ M(Rd) do not necessarily agree with the Jordan decomposition of µ = µ+ − µ−.
By hypothesis, it is clear that

lim inf
ε,R→0

µ±ε (ΩR) = 0.

As a consequence of the weak-* lower semicontinuity of the total variation norm, one obtains

µ±(ΩR) ≤ lim inf
ε→0

µ±ε (ΩR).

By monotonicity µ±(C) = 0 and consequently, one can then apply Lemma 2.1 in [250] to the
positive measures µ+

ε and µ−ε to end the proof of the theorem.

Remark 2.2.16. An important fact to be remarked is that, as stated in [250], the above result is not true
if one only assumes that |µ|(C) = 0. Indeed, some example is

µε = δε − δ−ε, µ = 0, C = {0}.

Obviously, |µ|({0}) = 0 but fails (2.2.27) (take ϕ any cutoff function at infinity of the sign function).
Notice that there is no contradiction since the non-concentration property in the above result also fails

lim inf
ε,R→0

|µε|(−R,R) = lim inf
ε,R→0

(δε + δ−ε)(−R,R) = 2 6= 0.

Third step: Convergence

To end this section, let us show that the above results allow us to take limits in the symmetrized
expression (2.2.25) of the nonlinear term in (2.2.22) as ε → 0 for the restricted range of the pa-
rameter α ∈ (0, 1

2 ]. For α ∈ (0, 1
2), it is a direct consequence of the Corollary 2.2.13 and the

uniform convergence (2.2.26). The case α = 1
2 requires a special analysis since (2.2.26) does not

hold. However, the estimate (2.2.19) of the dissipation of kinetic energy due to alignment in-
teractions will suffice to reinforce the lack of uniformity in the convergence of the approximate
kernels Hα,ε

ϕ .

Corollary 2.2.17. Let the initial distribution functions f0
ε verify (2.2.5), the external forces−∇ψε fulfil

(2.2.6) and consider the strong global in time solution fε to (2.2.4) with initial data f0
ε and α ∈ (0, 1/2].

Then, we can pass to the limit in (2.2.25) as ε→ 0. Specifically,

lim
ε→0

1

2

∫ T

0

∫

Rd

∫

Rd
Hα,ε
ϕ (ρε ⊗ jε − jε ⊗ ρε) dx dy dt =

1

2

∫ T

0

∫

Rd

∫

Rd
Hα,0
ϕ (ρ⊗ j − j ⊗ ρ) dx dy dt,

for every test function ϕ ∈ C∞c ([0, T )× Rd,Rd).

Proof. Since the proof for α ∈ (0, 1
2) is a direct consequence of Corollary 2.2.13 and the uniform

convergence (2.2.26), then we restrict to the endpoint critical case α = 1
2 . To this end, let us

show that

Iε :=
1

2

∫ T

0

∫

Rd

∫

Rd

[
H

1
2
,ε

ϕ (ρε ⊗ jε − jε ⊗ ρε)−H
1
2
,0

ϕ (ρ⊗ j − j ⊗ ρ)

]
dx dy dt,

becomes zero when ε→ 0. For simplicity, we decompose Iε into Iε = IIε + IIIε, where

IIε :=
1

2

∫ T

0

∫

Rd

∫

Rd
(H

1
2
,ε

ϕ −H
1
2
,0

ϕ )(ρε ⊗ jε − jε ⊗ ρε) dx dy dt,
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IIIε :=
1

2

∫ T

0

∫

Rd

∫

Rd
H

1
2
,0

ϕ [(ρε ⊗ jε − jε ⊗ ρε)− (ρ⊗ j − j ⊗ ρ)] dx dy dt.

First, since H
1
2
,0

ϕ is discontinuous at most at the diagonal ∆ of Rd×Rd, then Lemma 2.2.14 and
Proposition 2.2.15 show that IIIε → 0 when ε→ 0. Regarding IIε, note that

|φε(r)− φ0(r)| = (ε2 + 3r2)1/2 −
√

3r√
3r(ε2 + 3r2)1/2

≤ ε1/2

√
3r
φε(r)

1/2, r > 0.

Consequently, there exists come constantC > 0 depending on the test function ϕ ∈ C∞c ([0, T )×
Rd,Rd) such that

|IIε| ≤ Cε1/2

∫ T

0

∫

R4d
|v − w|φε(|x− y|)1/2fε(t, x, v)fε(t, y, w) dx dy dv dw dt,

and by the Cauchy–Schwartz inequality and estimate (2.2.19)

|IIε| ≤ CT 1/2(2εE0 + (2dT + F 2
0 ))1/2ε1/2,

that obviously implies IIε → 0 when ε→ 0.

Remark 2.2.18. 1. For the sake of clarity, let us come back to the equation of balance of current
(2.2.22) and comment why the hypothesis that we considered in (2.2.6) regarding the forcing term
−∇xψε allows passing to the limit in the last term

Iε :=

∫ T

0

∫

Rd
ρε∇xψε · ϕdx dt, for any ϕ ∈ C∞c ([0, T )× Rd,Rd),

as ε → 0. Specifically, notice that the assumption in (2.2.6) implies that ∇xψε · ϕ → ∇xψ ·
ϕ in L1(0, T ;C0(Rd)). Indeed, for it to happen we do not really need that ∇xψε → ∇xψ in
L1(0, T ;Cb(Rd,Rd)), like in (2.2.6), but simply that

∇xψε → ∇xψ in L1(0, T ;C(K)), for any K ⊂⊂ Rd.

This, along with the fact that ρε
∗
⇀ ρ in L∞w (0, T ;M(Rd)) allow us to pass to the limit in Iε as

ε→ 0 and identify the limit in terms of ρ and ∇xψ.

2. The assumption ∇xψ(t, ·) ∈ Cb(Rd,Rd) might seem very imposing at first glance, since gener-
ally forcing terms might not be even bounded. Recall that this requirement arose in the proof of
Corollary 2.2.8 in order to achieve the bound

‖|v|fε∇xψε‖L1(0,T ;L1(Rd)) ≤ ‖|v|fε‖L2(0,T ;L1(Rd))‖∇ψε‖L2(0,T ;L∞(Rd))

≤ ‖|v|2fε‖1/2L1(0,T ;L1(Rd))
‖∇ψε‖L2(0,T ;L∞(Rd)).

Indeed, as mentioned in the Introduction, one might have considered self-generated forcing terms
−∇xψε, e.g., ∆ψε = θρε in the Vlasov–Poisson system (here θ = ±1 suggests the attractive or
repulsive character of the interactions). It can be restated as follows

−∇ψε = θ(∇Γd) ∗ ρε,

where Γd stands for the fundamental solution of−∆ in Rd. Those nonlinearities have to be studied
separately on each case like our nonlinear conmutator. Indeed, when the density only enjoys L1
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bounds, then −∇ψε can be shown to be bounded just in the d = 1 case. The case d = 2 is harder
and resembles our case α = 1

2 , that required a non-concentration argument of the limiting density,
see [232]. For general d, relative entropy methods (that do not work in our case) have been used
in [142]. Consequently, despite having derived a method to deal with bounded continuous forces,
each nonlocal force given by a potential ψε = W ∗ ρε and some interaction potential W needs
to be treated separately through similar ideas to those developed here and in the related papers
[22, 142, 232, 252]. Also, kernels appearing in other systems like the aggregation equation and
fluid models like the gSQG or other Euler-type equations can be approached via this techniques,
see [26, 70, 97, 287, 288].

To end this section, let us show, as already discussed in the Introduction, that the nonlinear
term is bounded with respect to ε, not only for the above range α ∈ (0, 1

2 ], but also for a larger
range α ∈ (0, 1).

Remark 2.2.19. Consider α ∈ (0, 1), δ > 0 and fix any cut-off function η ∈ C∞c ([0,+∞)) such that
0 ≤ η ≤ 1, η(r) = 1 for r ∈ [0, 1] and η(r) = 0 for r ∈ [2,+∞). Define the associated dilation
ηδ ∈ C∞c ([0,+∞)) of such cut-off function as follows

ηδ(r) := η
(r
δ

)
, r > 0.

Then, the nonlinear term in weak sense can be split as follows for every ε > 0,
∫ T

0

∫

Rd

∫

Rd
Hα,ε
ϕ (ρε ⊗ jε − jε ⊗ ρε) dx dy dt = Iε + IIε,

where each term reads

Iε :=

∫ T

0

∫

Rd

∫

Rd
Hα,ε,δ
ϕ,+ (ρε ⊗ jε − jε ⊗ ρε) dx dy dt,

IIε :=

∫ T

0

∫

Rd

∫

Rd
Hα,ε,δ
ϕ,− (ρε ⊗ jε − jε ⊗ ρε) dx dy dt.

Here, ϕ is any test function in C∞c ([0, T )× Rd) and the kernels read

Hα,ε,δ
ϕ,+ (t, x, y) := Hα,ε

ϕ (t, x, y)ηδ(|x− y|),
Hα,ε,δ
ϕ,− (t, x, y) := Hα,ε

ϕ (t, x, y) (1− ηδ(|x− y|)) .

By virtue of the Cauchy–Schwartz inequality and Corollary 2.2.8, we obtain that

|Iε| ≤
(∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw dt

)1/2

×
(∫ T

0

∫

|x−y|<2δ
φε(|x− y|)|ϕ(t, x)− ϕ(t, y)|2ρε(t, x)ρε(t, y) dx dy dt

)1/2

≤(2δ)1−α

c
α/2
α

T 1/2
(
2εE0 +

(
2dT + F 2

0

))1/2 ‖ϕ‖C0([0,T ),C1(Rd)),

|IIε| ≤
∫ T

0

∫

|x−y|≥δ
φε(|x− y|) |ϕ(t, x)− ϕ(t, y)| |ρε(t, x)jε(t, y)− jε(t, x)ρε(t, y)| dx dy dt

≤ 2

cααδ
2α
T 1/2(2εE0 + (2dT + F 2

0 ))1/2‖ϕ‖C0([0,T ),C0(Rd)).
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These bounds suggest that it might be possible to pass to the limit ε→ 0 for larger values of α than those
α ∈ (0, 1

2 ] considered in Theorem 2.2.9, namely, for α ∈ (1
2 , 1), since the nonlinear terms are bounded

with respect to ε for each fixed test function ϕ.
However, it is not clear whether the dissipation of kinetic energy due to interactions makes sense in

the limit ε → 0 since we have not compactness properties (in time) for the distribution function fε to
pass to the limit in estimate (2.2.19). Let us specifically remark where passing to the limit is unclear.
First, notice that a similar result to that in Lemma 2.2.4 entails

|φε(r)− φ0(r)| ≤ C ε

r2α+1
,

for every r > 0. In particular,

lim
ε→0
‖Hα,ε,δ

ϕ,− −Hα,0,δ
ϕ,− ‖C([0,T ],C0(Rd,Rd)) = 0,

and one can show, using similar ideas to those in Corollary 2.2.17, that

∫ T

0

∫

Rd

∫

Rd
Hα,ε,δ
ϕ,− (ρε ⊗ jε − jε ⊗ ρε) dx dy dt −→

∫ T

0

∫

Rd

∫

Rd
Hα,0,δ
ϕ,− (ρ⊗ j − j ⊗ ρ) dx dy dt.

However, it is not clear how to give some meaning to

∫ T

0

∫

Rd

∫

Rd
Hα,0,δ
ϕ,+ (ρ⊗ j − j ⊗ ρ) dx dy dt,

since the kernel there needs not be neither bounded at the diagonal points.

2.3 Analysis of the limiting equations

In this section we shall focus on analyzing the macroscopic system arising from the singular
and hydrodynamic limit of the preceding section. For simplicity, recall the velocity field u can
be recovered from the law j = ρ u and the limiting system can be restated formally as





∂tρ+ div(ρu) = 0, x ∈ Rd, t ≥ 0,

ρ(0, x) = ρ0(x), x ∈ Rd,
u = φ0 ∗ (ρu)− (φ0 ∗ ρ)u−∇ψ, x ∈ Rd, t ≥ 0.

(2.3.1)

Notice that such system consists of d+ 1 unknowns (ρ and u = (u1 . . . , ud)), d+ 1 equations (a
scalar conservation law for ρ and a vector-valued implicit equation for u) and a Cauchy datum
at t = 0. Then, we expect that such macroscopic system enjoys some sort of well-posedness in
appropriate functional settings to be explored in the sequel. First, we will revisit the existence
theory of weak solutions in Lp for scalar conservation laws in conservative form driven by
W 1,∞ velocity fields. Second, we will analyze the properties of the above commutator

φ0 ∗ (ρu)− (φ0 ∗ ρ)u = − 1

cαα
[Mu, Id−2α]ρ = −

∫

Rd
φ0(|x− y|)(u(t, x)− u(t, y))ρ(t, y) dy,

for u(t, ·) ∈ W 1,∞(Rd,Rd) and ρ(t, ·) ∈ Lp(Rd). Finally, we put both properties together about
scalar conservation laws and the commutator to obtain a solution to (2.3.1) via a fixed point
method.
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Remark 2.3.1. Here we call the attention of the reader about a relevant issue to be borne in mind along
this section. Recall that by construction ρ was set as a probability density. Nevertheless, we shall
relax this normalization assumption here in order to first account for wellposedness results under small
initial data assumptions. At first glance, such condition might be thought as a contradiction with the
normalization assumption on ρ ∈ P(Rd). However, we shall later show that this is not the case when
appropriate exponents are chosen, thus recovering the case of probability densities. Unfortunately, such
smallness assumption restricts our initial data to a class of flat enough densities.

2.3.1 Linear transport equations in conservative form with Lipschitz transport field

The following result summarizes the existence and uniqueness results of weak solutions in Lp

spaces when the transport field belongs to L1(0, T ;W 1,∞(Rd,Rd)).

Theorem 2.3.2. Set a velocity field u ∈ L1(0, T ;W 1,∞(Rd,Rd)) and consider the next Cauchy problem
for the density ρ = ρ(t, x)

{
∂tρ+ div(ρu) = 0, x ∈ Rd, t ≥ 0,

ρ(0, x) = ρ0(x), x ∈ Rd, (2.3.2)

where the initial data ρ0 ≥ 0 is taken in Lp(Rd) for some 1 ≤ p ≤ ∞. Then there exists one and only
one weak solution ρ to (2.3.2) such that ρ ∈ L∞(0, T ;Lp(Rd)). Indeed, when 1 < p ≤ ∞ then

‖ρ(t, ·)‖Lp(Rd) ≤ exp

(
1

p′
‖u‖L1(0,T ;W 1,∞(Rd))

)
‖ρ0‖Lp(Rd),

for any t ∈ [0, T ), where p′ stands for the conjugated exponent of p i.e., p′ = p
p−1 . When p = 1 we

recover the conservation of the total mass, namely,

‖ρ(t, ·)‖L1(Rd) = ‖ρ0‖L1(Rd),

for any t ∈ [0, T ).

Although the proof follows from standard arguments (see [7, Chapter 1]), we exhibit a short
sketch of the proof in Appendix 2.B for the sake of completeness.

2.3.2 Commutator estimates and existence results for the limiting system

In this section, we explore the regularity properties of the commutator appearing in the limiting
equation (2.3.1). This is the content of the next result.

Theorem 2.3.3. Consider 1 ≤ p1 < p2 ≤ ∞ such that

1

p2
< 1− 2α

d
<

1

p1
.

Then, there exists some positive constant C = C(p1, p2, α, d) such that

‖([u, Id−2α]ρ)‖L1(0,T ;W 1,∞(Rd))

≤ C‖u‖L1(0,T ;W 1,∞(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
,

for every ρ ∈ L∞(0, T ;Lp1(Rd)) ∩ L∞(0, T ;Lp2(Rd)) and every u ∈ L1(0, T ;W 1,∞(Rd)).
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Proof. Write the commutator of the multiplier u with the Riesz potential in a more explicit way
as follows

([u, Id−2α]ρ)(t, x) =

∫

Rd
φ0(|x− y|)(u(t, x)− u(t, y))ρ(t, y) dy.

On the one hand, taking L∞ norms with respect to space yields

‖([u, Id−2α]ρ)(t, ·)‖L∞(Rd) ≤ 2‖u(t, ·)‖L∞(Rd)‖φ0 ∗ ρ(t, ·)‖L∞(Rd).

The assumptions on ρ together with the L∞ bounds provided by Hardy–Littlewood–Sobolev’s
theorem of fractional integrals lead to

‖([u, Id−2α]ρ)‖L1(0,T ;L∞(Rd))

≤ C‖u‖L1(0,T ;L∞(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
,

see Appendix C. Now, taking derivatives with respect to space in the commutator, we have

∂

∂xi
[u, Id−2α]ρ = [u, Id−(2α+1)]ρ+

∂u

∂xi
φ0 ∗ ρ.

Regarding the first term, one can cancel the extra degree of singularity thanks to the Lipschitz
continuity with respect to space of u, leading to a similar estimate

‖([u, Id−(2α+1)]ρ)‖L1(0,T ;L∞(Rd))

≤ C‖u‖L1(0,T ;W 1,∞(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.

The second term is easier to estimate in the same manner as follows
∥∥∥∥
∂u

∂xi
φ0 ∗ ρ

∥∥∥∥
L1(0,T ;L∞(Rd))

≤ C‖u‖L1(0,T ;W 1,∞(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.

Arranging all the terms within the same bound ends the proof.

Apart from the preceding regularity results, that leads toW 1,∞ estimates of the commutator,
we can indeed obtain some extra integrability by virtue of Hardy–Littlewood–Sobolev’s theorem
of fractional integrals, see Appendix C. Note that such integrability cannot be directly inferred
from the W 1,∞ regularity via Sobolev’s embedding theorem.

Theorem 2.3.4. Consider 1 ≤ p1 < p2 ≤ ∞ and 1 ≤ s <∞ such that

1

p2
< 1− 2α

d
<

1

p1
and s >

d

2α
.

Then, there exists some positive constant C = C(p1, p2, s, α, d) such that

‖([u, Id−2α]ρ)‖L1(0,T ;Ls(Rd))

≤ C‖u‖L1(0,T ;Ls(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
,

for every ρ ∈ L∞(0, T ;Lp1(Rd)) ∩ L∞(0, T ;Lp2(Rd)) and every u ∈ L1(0, T ;Ls(Rd)).
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Proof. First, split the commutator into two parts as follows

[u, Id−2α]ρ = F +G,

where the functions F and G take the form

F = (φ0 ∗ ρ)u, and G = φ0 ∗ (ρu).

Note that one can apply the above reasoning to estimate F in any Lebesgue space as follows

‖F‖L1(0,T ;Ls(Rd)) ≤ C‖u‖L1(0,T ;Ls(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.

Regarding the second term, define the exponent

p :=
d

d− 2α
,

and note that our hypothesis leads to p1 < p < p2. Then, the interpolation inequality of the
Lebesgue spaces shows that ρ ∈ L∞(0, T ;Lp(Rd)) and

‖ρ‖L∞(0,T ;Lp(Rd)) ≤ ‖ρ‖θL∞(0,T ;Lp1 (Rd))
‖ρ‖1−θ

L∞(0,T ;Lp2 (Rd))
,

for some exponent θ ∈ (0, 1) given by

1

p
=

θ

p1
+

(1− θ)
p2

.

By inspection, it is straightforward to check that

θ =

1
p′2
− 2α

d

1
p1
− 1

p2

.

Hence,
‖ρ‖L∞(0,T ;Lp(Rd)) ≤ ‖ρ‖

(1/p′2− 2α
d

)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
N
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.

Now, the Hölder inequality shows that ρ u ∈ L1(0, T ;Lr(Rd)), where

1

r
=

1

p
+

1

s
.

Since we are assuming s > d/2α, then r > 1. Moreover, the next identity holds

1

s
=

1

r
+

2α

d
− 1.

Consequently, the Hardy–Littlewood–Sobolev inequality (see Appendix C) entails

‖G‖L1(0,T ;Ls(Rd)) ≤ C‖ρu‖L1(0,T ;Lr(Rd))

≤ C‖u‖L1(0,T ;Ls(Rd))‖ρ‖L∞(0,T ;Lp(Rd))

≤ C‖u‖L1(0,T ;Ls(Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
,

and this end the proof of the theorem.
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In the next part, some particular choices of s will be needed. Specifically, s will equal some
entire multiples of the upper and lower exponents p1 and p2 of ρ.

Corollary 2.3.5. Let α be any exponent in (0, d2) and 1 ≤ p1 < p2 ≤ ∞ such that

1

p2
< 1− 2α

d
<

1

p1
.

Consider any k ∈ N so that kp1 >
d

2α . Then, there exists C = C(p1, p2, s, α, d) > 0 such that

‖([u, Id−2α]ρ)‖L1(0,T ;Lkpi (Rd))

≤ C‖u‖L1(0,T ;Lkpi (Rd))‖ρ‖
(1/p′2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
,

for every i ∈ {1, 2} and each ρ ∈ L∞(0, T ;Lp1(Rd)) ∩ L∞(0, T ;Lp2(Rd)), u ∈ L1(0, T ;Lkp1(Rd)) ∩
L1(0, T ;Lkp2(Rd)).

All the above results amounts to the necessary tools that we will need to construct a solu-
tion to (2.3.1) by the Banach contraction principle in the space W 1,kp1,kp2 (see (2.1.10) for the
definition of such Banach space). This is the content of Theorem 2.1.2 in the Introduction that
we prove next.

Proof of Theorem 2.1.2. Let us define two operators D and C given by:

D[u] :=
ρ0(y)

Ju(t; 0, y)

∣∣∣∣
y=Xu(0;t,·)

,

C[ρ, u] := − 1

cαα
[u, Id−2α]ρ,

for every u ∈ L1(0, T ;W 1,kp1,kp2(Rd,Rd)) and ρ ∈ L∞(0, T ;Lp1(Rd)∩Lp2(Rd)). Here,Xu(t; t0, x0)
and Ju(t; t0, x0) stand for the forward flow of u and its associated Jacobian determinant. No-
tice that so defined, D[u] is the solution to the Cauchy problem obtained by means of Theorem
2.3.2 and C[ρ, u] is the above commutator of weakly singular integrals. With this notation, the
existence and uniqueness of solution to (2.3.1) amounts to finding a solution to

C[D[u], u]−∇ψ = u, u ∈ L1(0, T ;W 1,kp1,kp2(Rd,Rd)).

Recall the definition of W 1,kp1,kp2 in (2.1.10). Naturally, it can be restated as a fixed point equa-
tion

Φ[u] = u, u ∈ L1(0, T ;W 1,kp1,kp2(Rd,Rd)),

for the new operator Φ[u] := C[D[u], u]−∇ψ. First, notice that such fixed point problem is well
posed because

Φ(L1(0, T ;W 1,kp1,kp2)) ⊆ L1(0, T ;W 1,kp1,kp2),

as a consequence of Theorem 2.3.2 and Corollary 2.3.5. Indeed,

‖D[u]‖L∞(0,T ;Lpi (Rd)) ≤ exp

(
1

p′i
‖u‖L1(0,T ;W 1,∞(Rd))

)
‖ρ0‖Lpi (Rd),

‖C[ρ, u]‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ C‖u‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd))

× ‖ρ‖(1/p
′
2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.
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Let us show that it is indeed a contraction. Set u1, u2 ∈ L1(0, T ;W 1,kp1,kp2(Rd,Rd) and split

Φ[u1]− Φ[u2] = C[D[u1], u1 − u2] + C[D[u1]−D[u2], u2] =: U + V.

The first term can be bounded as follows

‖U‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ C‖u1 − u2‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd))

× exp

(
2α

d
‖u1‖L1(0,T ;W 1,∞(Rd))

)
‖ρ0‖(1/p

′
2− 2α

d
)/(1/p1−1/p2)

Lp1 (Rd)
‖ρ0‖(

2α
d
−1/p′1)/(1/p1−1/p2)

Lp2 (Rd)
.

Regarding the second term one arrives at the next slightly different estimate

‖V ‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ C‖u2‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd))

× ‖D[u1]−D[u2]‖(1/p
′
2− 2α

d
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖D[u1]−D[u2]‖(

2α
d
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.

The next step is to estimate D[u1] − D[u2]. To this end, the Lkpi estimate of the commutator in
Theorem 2.3.3 and Corollary 2.3.5 will be essential. As it will be checked, it will not directly
follow from the W 1,∞ estimate in Theorem 2.3.3. Since we are assuming smooth ρ0, there is no
problem in considering the pull-back pointwise. Thus,

D[u1](t, x)−D[u2](t, x)

= ρ0(Xu1(0; t, x))(Ju1(0; t, x)− Ju2(0; t, x)) + (ρ0(Xu1(0; t, x))− ρ0(Xu2(0; t, x)))Ju2(0; t, x).

On the one hand, the first term can easily bounded by virtue of a straightforward change of
variables, the Jacobi–Louville formula and the mean value theorem

‖ρ0(Xu1(0; t, ·))(Ju1(0; t, ·)− Ju2(0; t, ·))‖Lpi (Rd)

≤ ‖ρ0(Xu1(0; t, ·))‖Lpi (Rd)‖Ju1(0; t, ·)− Ju2(0; t, ·)‖L∞(Rd)

≤ ‖ρ0‖Lpi (Rd) exp

(
1

pi
‖u1‖L1(0,T ;W 1,∞(Rd))

)

× exp
(
‖u1‖L1(0,T ;W 1,∞(Rd)) + ‖u2‖L1(0,T ;W 1,∞(Rd))

)
‖u1 − u2‖L1(0,T ;W 1,∞(Rd)).

On the other hand, the second term has to be studied separately as follows. First, the Jacobian
determinant can be bounded in L∞ as usual through (2.B.2). Second, the difference of the
evaluation of ρ0 along the flow of u1 and u2 can be split by means of the integral remainder
version of Taylor’s theorem, specifically

ρ0(Xu1(0; t, x))− ρ0(Xu2(0; t, x))

=
∑

0<|γ|≤k−1

1

|γ|!D
γρ0(Xu2(0; t, x)) (Xu1(0; t, x)−Xu2(0; t, x))γ

+
∑

|γ|=k

(∫ 1

0

(1− θ)k
k!

Dγρ0(Xu2(0; t, x) + θ(Xu1(0; t, x)−Xu2(0; t, x))) dθ

)

× (Xu1(0; t, x)−Xu2(0; t, x))γ .

As a consequence, one can obtain the next bound

‖(ρ0(Xu1(0; t, ·))− ρ0(Xu2(0; t, ·)))Ju2(0; t, ·)‖Lpi (Rd)
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≤
∑

0<|γ|≤k−1

1

|γ|!‖D
γρ0‖Lpi (Rd) exp

(
1

pi
‖u2‖L1(0;T ;W 1,∞(Rd))

)
‖Xu1(0; t, ·)−Xu2(0; t, ·)‖|γ|

L∞(Rd)

+
1

(k + 1)!

∑

|γ|=k
‖Dγρ0‖L∞(Rd) exp

(
1

pi
‖u2‖L1(0;T ;W 1,∞(Rd))

)
‖Xu1(0; t, ·)−Xu2(0; t, ·)‖k

Lkpi (Rd)

Since ui(t, ·) belongs both toW 1,∞(Rd) andLkpi , then a straightforward application of Gron-
wall’s Lemma yields the next upper bounds

‖Xu1(0; t, ·)−Xu2(0; t, ·)‖L∞(Rd)

≤ exp
(
‖u1‖L1(0,T ;W 1,∞(Rd))

)
‖u1 − u2‖L1(0,T ;L∞(Rd)),

‖Xu1(0; t, ·)−Xu2(0; t, ·)‖Lkpi (Rd)

≤ exp

(
1

kpi
‖u1‖L1(0,T ;W 1,∞(Rd))

)
exp(‖u2‖L1(0,T ;W 1,∞(Rd)))‖u1 − u2‖L1(0,T ;Lkpi (Rd)).

To sum up, there exists some separately increasing function κ2 : R+
0 ×R+

0 −→ R+
0 that does not

depend on u1, u2 or ρ0 such that

‖Φ[u1]− Φ[u2]‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ ‖ρ0‖Wk,p1,p2 (Rd)

× κ2(‖u1‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)), ‖u2‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)))‖u1 − u2‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)).

Similarly, one obtains the next estimate of Φ[u]

‖Φ[u]‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd))

≤ ‖ρ0‖(1/p
′
2− 2α

d
)/(1/p1−1/p2)

Lp1 (Rd)
‖ρ0‖(

2α
d
−1/p′1)/(1/p1−1/p2)

Lp2 (Rd)
κ1(‖u‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)))

+ ‖∇ψ‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)),

for some increasing function κ1 : R+
0 −→ R+

0 which does not depend on u or ρ0. Consider any
radius R > ‖∇ψ‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) and define the unit ball of L1(0, T ;W 1,kp1,kp2(Rd,Rd))
centered at the origin

BR := {u ∈ L1(0, T ;W 1,kp1,kp2(Rd,Rd)) : ‖u‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ R}.

Assume that ρ0 is “small enough” so that

‖ρ0‖(1/p
′
2− 2α

d
)/(1/p1−1/p2)

Lp1 (Rd)
‖ρ0‖(

2α
d
−1/p′1)/(1/p1−1/p2)

Lp2 (Rd)
κ1(R) ≤ R− ‖∇ψ‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)),

‖ρ0‖Wk,p1,p2 (Rd)κ2(R,R) < 1.

(2.3.3)

Then, Φ(BR) ⊆ BR, Φ is a contraction for the norm ‖ · ‖L1(0,T ;W 1,kp1,kp2 (Rd,Rd)) and the Banach
contraction principle shows the existence of a unique solution u to (2.3.1) in BR.

Remark 2.3.6. 1. Notice that since T is arbitrary, then the above theorem yields a global existence
result for velocities fields u ∈ L1(0,∞;W 1,kp1,kp2(Rd))d. Nevertheless, initial data have to be
considered small enough so that condition (2.3.3) fulfils. At first glance, it seems that (2.3.3)
might contradict the normalization assumption ρ0 ∈ P(Rd) because κ1, κ2 ≥ 1 by construction.
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2. Recall that global existence results for small initial data usually amount to local-in-time existence
results for general initial data in many systems of conservation laws. However, the implicit equa-
tion for u does not involve any time derivative and, consequently, those ideas cannot be easily
implemented. Indeed, a classical way to do so is to replace u ∈ L1(0, T ;W 1,kp1,kp2(Rd))d with
u ∈ Lq(0, T ;W 1,kp1,kp2(Rd))d for some q > 1, e.g., q = ∞. By doing so, we can generalize
Theorems 2.3.3 and 2.3.4, specifically

‖D[u]‖L∞(0,T ;Lpi (Rd)) ≤ exp

(
T 1/q′

p′i
‖u‖Lq(0,T ;W 1,∞(Rd))

)
‖ρ0‖Lpi (Rd),

‖C[ρ, u]‖Lq(0,T ;W 1,kp1,kp2 (Rd,Rd)) ≤ C‖u‖Lq(0,T ;W 1,kp1,kp2 (Rd,Rd))

× ‖ρ‖(1/p
′
2− 2α

N
)/(1/p1−1/p2)

L∞(0,T ;Lp1 (Rd))
‖ρ‖(

2α
N
−1/p′1)/(1/p1−1/p2)

L∞(0,T ;Lp2 (Rd))
.

Then, a similar procedure like in the above proof yields a local-in-time existence result for (2.3.1)
with Lq(0, T ;W 1,kp1,kp2(Rd)) velocity fields. Unfortunately, the smallness assumption on ρ0 still
cannot be removed due to the fact that κ1, κ2 ≥ 1.

3. Recall that the smallness assumption explicitly reads

‖ρ0‖Wk,∞(Rd) + ‖ρ0‖Wk−1,p1 (Rd) + ‖ρ0‖Wk−1,p2 (Rd) < δR.

Notice that if we set p1 = 1, then we indeed obtain the explicit constraint ‖ρ0‖L1(Rd) < δR, that
clearly contradicts the normalization assumptions ρ0 ∈ P(Rd). However, we can set p1 > 1. In
this case, Sobolev’s embedding theorem characterizes in a sharp way the continuous embedding
of the involved Sobolev spaces W k−1,p1(Rd) and W k−1,p2(Rd) into further Lr(Rd) spaces. This
sharp result guarantees that r > p1 and, consequently, such eventual gain of Lr-integrability does
not prevent us from choosing any ρ0 ∈ P(Rd) as long as it fulfils the corresponding “smallness”
(flatness) assumption.

2.4 Other relevant hydrodynamic limits

This section focuses on showing that the techniques in Section 2.2 remain valid for other rel-
evant scalings of the system. Specifically, regarding the friction case we will analyze an inter-
mediate scaling (see Equation (2.A.5) in Appendix 2.A). Note that this scaled system includes
the velocity diffusion at a lower order of ε. Hence, we cannot expect the system to converge
towards a Maxwellian as it was expected in the hyperbolic scaling in the preceding section.
Nevertheless, such scaling in the diffusion term is compulsory in order to get some estimate
on the scaled current (coming from the friction term) that allows passing to the limit ε→ 0. In
the frictionless case, we will introduce another hyperbolic scaling (see Equation (2.A.6) in Ap-
pendix 2.A) where the velocity diffusion is again of a low order of ε and similar a priori bounds
for the current can be obtained from the inertial terms, not from the friction term. Finally, we
will address the well known Rayleigh–Helmholtz friction, that has been considered of great
help in the modeling of flocking, swarming and self-propelling phenomena through the recent
years [66, 259]. Specifically, we shall introduce a new hydrodynamic limit where not only hy-
perbolic, intermediate scalings and singular influence functions can be considered, but also the
Rayleigh–Helmholtz-type damping can be assumed as an approximation of the classical linear
friction when ε→ 0.
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2.4.1 Hydrodynamic limit with intermediate scalings in the damping case

The intermediate hyperbolic scaling (2.A.5) was derived in 2.A and takes the form

ε1+γ ∂fε
∂t

+ εv · ∇xfε − εγ∇xψε · ∇vfε = divv

(
fεv + ε2γ∇vfε +QφεCS(fε, fε)

)
, (2.4.1)

for some parameter γ ∈ [0, 1]. Note that when γ = 0, it agrees with the hyperbolic scaling in
Section 2.2 and the choice γ = 1 reminds us of a parabolic scaling. In this case, the hierarchy of
velocity moments now takes the form:

•Mass conservation
∂ρε
∂t

+ divx

(
jε
εγ

)
= 0. (2.4.2)

• Law of balance of current

ε1+γ ∂jε
∂t

+ εdivx Sε + εγρε∇xψε + (1 + φε ∗ ρε) jε − (φε ∗ jε) ρε = 0. (2.4.3)

• Law of balance of stress

ε1+γ ∂Sε
∂t

+εdivx Tε+2εγ Sym(jε⊗∇xψε)+2
(
(1 + φε ∗ ρε)Sε − ε2γρεI

)
−2 Sym((φε∗jε)⊗jε) = 0.

(2.4.4)
Thanks to our choice for the scaling of the velocity diffusion term, one arrives at an analogue

of Corollary 2.2.6.

Corollary 2.4.1. Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε fulfil

(2.2.6) and consider the strong global in time solution fε to (2.4.1) with initial data f0
ε and α ∈ (0, d2).

Then, for any nonnegative integer k the next bound holds true

k

∥∥∥∥|v|k
fε
ε2γ

∥∥∥∥
L1(0,T ;L1(R2d))

+
k

2

1

ε2γ

∫ T

0

∫

R4d
(|v|k−2v − |w|k−2w) · (v − w)φε(|x− y|)fε(t, x, v)fε(t, y, w) dx dy dv dw dt

≤ ε1−γ‖|v|kfε(0)‖L1(R2d) + k(d+ k − 2)‖|v|k−2fε‖L1(0,T ;L1(R2d)) + k

∥∥∥∥|v|k−1 fε
εγ
∇xψε

∥∥∥∥
L1(0,T ;L1(R2d))

,

‖|x|kfε‖
1
k

L∞(0,T ;L1(Rd))
≤ ‖|x|kfε‖

1
k

L1(Rd)
+

∫ T

0

(∫

Rd

∫

Rd

|x|k
εkγ

fε dx dv

) 1
k

dt.

Again, the choice k = 2 and k = 1 on each inequality leads to the next estimates for the
scaled first and second order velocity moments.

Corollary 2.4.2. Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε fulfil

(2.2.6) and consider the strong global in time solution fε to (2.4.1) with initial data f0
ε and α ∈ (0, d2).

Then, we obtain

‖|x|fε‖L∞(0,T ;L1(Rd)) ≤M0 + T 1/2
(
2ε1−γE0 +

(
2dT + F 2

0

))1/2
,

∥∥∥∥|v|
fε
εγ

∥∥∥∥
L2(0,T ;L1(R2d))

≤
(
2ε1−γE0 +

(
2dT + F 2

0

))1/2
,

∥∥∥∥|v|2
fε
ε2γ

∥∥∥∥
L1(0,T ;L1(R2d))

≤ 2ε1−γE0 +
(
2dT + F 2

0

)
.
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In addition, the next bound also holds

1

ε2γ

∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw dt ≤ 2ε1−γE0 +

(
2dT + F 2

0

)
.

By virtue of the preceding Corollary 2.4.2, we can pass to the limit again in the linear terms
of the weak form of Equation (2.4.3). The only term that is not completely clear is the nonlinear
term again. To identify the limit as ε → 0, we proceed as in Section 2.2. Indeed, the above a
priori estimates in Corollary 2.4.2 and the ideas in Appendix A imply

ρε
∗
⇀ ρ, in L∞w (0, T ;M(Rd)),

jε
εγ

∗
⇀ j, in L2

w(0, T ;M(Rd))d.

Again, the continuity equation provides us with some extra compactness with respect to time
and the ideas in Appendix B (see also Theorem 2.2.12) amount to

ρε → ρ, in C([0, T ];M(Rd)− narrow),

that ensure the convergence of the tensor product of both measures

ρε ⊗
jε
εγ

∗
⇀ ρ⊗ j, in L2

w(0, T ;M(R2d))d.

Consequently, we recover an analogous convergence result to Corollary 2.2.17 for any exponent
α ∈ (0, 1

2 ] and the same limiting macroscopic system (2.2.20), hence (2.1.1) in the Introduction.

Remark 2.4.3. Let us recall here that the intermediate scaling in Equation (2.4.1) with γ ∈ (0, 1] that
we have proposed here is different from the one that was considered in [22, 252] for the the Vlassov–
Poisson–Fokker–Planck system. Specifically, in (2.4.1), the velocity diffusion is of lower order of ε and
each term in the Fokker–Planck differential operator is scaled in a different way, see Appendix 2.A. This
implies that the parabolic case γ = 1 in [252] does not enjoy any bound of the scaled average kinetic
energy like in Corollary 2.4.2 for our scaled system. Consequently, in the case γ = 1 in [252] the term
divx Sε does not have any scaling factor of ε in front and the authors could not show converge towards
zero of such term. Indeed, the authors showed in [252] that, in the sense of distributions,

divx Sε ⇀ ∇xρ, in D∗((0, T )× Rd).

As a consequence, an extra diffusive term appears in the continuity equation for such scaling of the
Vlasov–Poisson–Fokker–Planck system, but it does no longer happen in our particular parabolic-type
scaling (2.4.1) of the kinetic Cucker–Smale model.

To conclude, we formally recover an analogue to Theorem 2.2.1 to exhibit the expected
shape for the limiting distribution f .

Theorem 2.4.4. Let fε solve the scaled system (2.4.1). Then, fε asymptotically behaves as follows

fε ∼
ρε

(2πkBTε)d/2
1

εγd
exp


−

∣∣∣(1 + φε ∗ ρε) vεγ − φε ∗
jε
εγ +∇xψε

∣∣∣
2

2kBTε


 ,

as ε → 0, where Tε := 1
kB(1+φε∗ρε) is the thermodynamic temperature of fε and kB stands for

Boltzmann’s constant. In addition, consider a weak-* limit in the sense of distributions f(t, x, v) =
weak ∗ − limε→0 f(t, x, v), then f agrees with the monokinetic distribution

f(t, x, v) =
ρ(t, x)

(2πkBT (t, x))d/2
δu(t,x)(v),

where ρ and u evolve according to (2.1.1).
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2.4.2 Hydrodynamic limit in the frictionless case

In the frictionless case, the same technique cannot provide us with the desired a priori estimates
since the friction term is missing in the system. Consequently, one has to rely on estimates that
arise from the inertial terms of the system. To this end, the appropriate choice of the scaling
is some hyperbolic scale where the velocity diffusion and external force are of low order of ε.
Specifically, we will consider the scaled system (2.A.6) in Appendix 2.A, i.e.,

∂fε
∂t

+ v · ∇xfε −∇xψε · ∇vfε = divv(∇vfε) +
1

ε
divv(fε(φε ∗ ρε)v − fεφε ∗ jε). (2.4.5)

The associated hierarchy of velocity moments then takes the form:

•Mass conservation
∂ρε
∂t

+ divx jε = 0. (2.4.6)

• Law of balance of current

ε
∂jε
∂t

+ εdivx Sε + ερε∇xψε + (φε ∗ ρε) jε − (φε ∗ jε) ρε = 0. (2.4.7)

• Law of balance of stress

ε
∂Sε
∂t

+ε divx Tε+2εSym(jε⊗∇xψε)+2 ((φε ∗ ρε)Sε − ερεI)−2 Sym((φε ∗jε)⊗jε) = 0. (2.4.8)

First, let us obtain some estimates for the moments of fε in the same spirit as Proposition 2.2.5.
Straightforward computations that are identical to that in the above-mentioned propositions
yield the next analogue.

Proposition 2.4.5. Let the initial distribution functions f0
ε verify (2.2.5) and consider the strong global

in time solution fε to (2.4.1) with initial data f0
ε and α ∈ (0, d2). Consider any k ∈ N. Then,

ε
d

dt

∫

Rd

∫

Rd
|v|kfε dx dv =− kε

∫

Rd

∫

Rd
|v|k−2v · ∇xψεfε dx dv

+ k(d+ k − 2)ε

∫

Rd

∫

Rd
|v|k−2fε dx dv

− k
∫

Rd

∫

Rd
|v|k−1

(
(φε ∗ ρε)|v| − (φε ∗ jε) ·

v

|v|

)
fε dx dv

d

dt

∫

Rd

∫

Rd
|x|kfε dx dv = k

∫

Rd

∫

Rd
|x|k−2x · vfε dx dv.

Note that in particular we recover the conservation of mass, namely,

ρε(t, ·) ∈ P(Rd) for all t ≥ 0, ε > 0.

As a direct consequence, taking k = 2 and k = 1 respectively entails the next analogue of
Corollary 2.2.6.

Corollary 2.4.6. Let the initial distribution functions f0
ε verify (2.2.5) and the forcing terms −∇ψε be

merely bounded in L2(0, T ;L∞(Rd))d. Consider the strong global in time solution fε to (2.4.1) with
initial data f0

ε and α ∈ (0, d2). Then,

‖|x|fε‖L∞(0,T ;L1(Rd)) ≤M0 + T
(
4E0 + 4dT + 4F 2

0

)1/2
,

84



CHAPTER 2. SINGULAR HYDRODYNAMIC LIMITS OF THE CS MODEL

‖|v|fε‖L∞(0,T ;L1(R2d)) ≤
(
4E0 + 4dT + 4F 2

0

)1/2
,

1

2

∥∥|v|2fε
∥∥
L∞(0,T ;L1(R2d))

≤ 2E0 + 2dT + 2F 2
0 .

In addition, the next bound also holds

1

ε2α

∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw dt

≤ 2ε1−2αE0 + ε1−2α
(
2dT + 2F 2

0

)
.

Again, the preceding estimates can be arranged to show that, up to subsequence, we get

ρε ⊗ jε ∗⇀ ρ⊗ j in L2
w(0, T ;M(R2d))d.

The same reasoning as in Section 2.2, where one distinguishes again the regimes α ∈ (0, 1
2) and

α = 1
2 because of the concentration issues, yields the next result.

Corollary 2.4.7. Let f0
ε and∇ψε satisfy hypothesis (2.2.5), the forcing terms−∇ψε be merely bounded

in L2(0, T ;L∞(Rd))d, and consider a sequence fε of smooth solutions to (2.1.7) with α ∈ (0, 1
2 ]. Then,

the macroscopic quantities ρε and jε satisfy

ρε → ρ, in C([0, T ];M(Rd)− narrow),

jε
∗
⇀ j, in L∞w (0, T ;M(Rd))d,

when ε ↘ 0, for some probability measure ρ, some finite Radon measure j and some subsequences of
{ρε}ε>0 and {jε}ε>0 that we denote in the same way. In addition (ρ, j) is a weak measure-valued solu-
tion to the Cauchy problem associated with the following Euler-type system in the sense of distribution





∂tρ+ div j = 0, x ∈ Rd, t ∈ [0, T ),

0 = (φ0 ∗ j)ρ− (φ0 ∗ ρ)j, x ∈ Rd, t ∈ [0, T ),

ρ(0, ·) = ρ0, x ∈ Rd .
(2.4.9)

Remark 2.4.8. In this particular case, the last estimate in Corollary 2.4.6 provides an improved bound
that allows quantifying convergence to zero of the commutator term, namely, strong convergence (not
only in the sense of distributions) for the range α ∈ (0, 1

2). Specifically, notice that the Cauchy–Schwartz
inequality, the obvious inequality φε ≤ 1

εαφ
1/2
ε and Corollary 2.4.6 entail

‖(φε ∗ ρε)jε − (φε ∗ jε)ρε‖L2(0,T ;L1(R2d))

≤
(

1

ε2α

∫ T

0

∫

Rd

∫

Rd
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw dt

)1/2

‖f0
ε ‖L1(R2d)

≤ ε 1
2
−α (2E0 + 2dT + 2F 2

0

)1/2
.

In particular, since α < 1
2 then

lim
ε→0
‖(φε ∗ ρε)jε − (φε ∗ jε)ρε‖L2(0,T ;L1(R2d)) = 0.
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2.4.3 Rayleigh–Helmholtz friction towards linear friction

As it has be shown in Section 2.3 in the analysis of the limiting equation (2.1.1), the classical
friction in the Fokker–Planck differential operator prevents the individuals from the desired
self-propelled behavior since it aims at reducing the particles’ velocity to zero. Then, classical
linear friction tends to halt the dynamics of the individuals unless we include an external force
given by a potential ψ = ψ(t, x) (see Section 2.2 and Subsection 2.4.1) or we neglect friction
effects (see Subsection 2.4.2). Depending on what are we modeling it might (or not) make
sense. Actually, it is the nature of the environment where agents live that determines the kind
of friction to be considered. For instance, assume that individuals live inside some viscous
material so that its velocity decreases proportionally to the velocity itself at a constant rate µ.
In such case, the microscopic Langevin equation reads





dxi
dt

= vi, t ≥ 0,

dvi
dt

= −µv +
1

n

∑

j 6=i
φ(|xi − xj |)(vj − vi) +

√
2Dξi(t), t ≥ 0,

and the kinetic description takes the form

∂f

∂t
+ v · ∇xf = divv(µvf +D∇vf +QφCS(f, f)),

which is the kinetic model that we have focused on so far. Naturally, such velocity damping
comes imposed by the medium. However, the individuals might slow down its velocity ac-
cording to any v-dependent friction coefficient µ = µ(v). A particularly interesting choice by
its consequences in the modeling of self-propelled behavior is the Rayleigh–Helmholtz friction,
see [66, 259]. It arose from the theory of sound developed by Rayleigh and Helmholtz and takes
the form

µ(v) := β|v|2 − δ.
Note that, it consists of a decrease term, −β|v|2v, in the spirit of the classical linear damping
and an increase term, +δv, that can be understood as an intrinsic self-propulsion of individuals
to surpass the medium natural friction. Such competition leads to a natural asymptotic velocity√
δ/β. To understand it, let us forget about the interactions and stochastic effects and restrict

ourselves to one single particle and one spacial dimension. This gives rise to the next first order
scalar ODEs

dx

dt
= −µv, dv

dt
= (δ − βv2)v.

On the one hand, the former linear damping has only one velocity equilibrium, namely v = 0,
that is asymptotically stable. On the second hand, the latter Rayleigh–Helmholtz friction enjoys
three different equilibria, namely,

v = −
√
δ/β, v = 0 and v =

√
δ/β.

Here, v = 0 is unstable whilst the remaining two equilibria are asymptotically stable. Conse-
quently, the velocities evolve as depicted in Figure 2.1. Note that when the initial velocity is
under the threshold one, the self-propulsion term helps to achieve such asymptotic velocity.
Similarly, when the initial velocity is over the threshold one, the medium friction slow down
agent’s velocity until it relaxes towards the asymptotic one. In particular, note that whenever
δ 6= 0 the asymptotic velocity of the particle is no longer zero, which is a much more realistic
property to model flocking behavior of birds under the influence of some friction arising from
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√
δ/β

−
√
δ/β

0

v(t)

t

Figure 2.1: Velocity tendency under the Rayleigh–Helmholtz friction equation

the medium. Hence, why don’t we study the same kind of hydrodynamic limit as above when
one considers alignment interactions along with Rayleigh–Helmholtz-type friction terms, e.g.,

ε1+γ ∂fε
∂t

+ εv · ∇xf − εγ∇xψε · ∇vfε = divv((β|v|2 − δ)vf + ε2γ∇vfε +QφεCS(fε, fε))?

The reason becomes apparent when we compute the hierarchy of moments and try to obtain the
same type of estimates as in the preceding sections. Specifically, it is clear that one can obtain
bounds for velocity moments of high enough order; however, it is not clear at all how the
hydrodynamic limit might help on closing the hierarchy of macroscopic equations of moments
since in the equation of any velocity moment involves twice higher order velocity moment (that
cannot be shown to converge to zero, but only to remain bounded).

Remark 2.4.9. For completeness of the above exposition, we recall here a related nonlinear damping
(that will not be studied here). Specifically, we can recover the same sort of behavior and self-propulsion
effects with a first order nonlinear friction term like

−µ(v)v = −γ0(|v| − v0)
v

|v| ,

for γ0, v0 > 0. This is known as the Schienbein–Gruler friction (see [259] and references therein, where
its is proposed as a linearization of the above-mentioned Rayleigh–Helmholtz friction in the theory of
active Brownian motions). It also arises in the modeling of certain type of cell of granulocyte type. As
it is apparent, the velocity v0 is the asymptotic one that the system tends to achieve. However, from a
mathematical point of view, such nonlinear friction term behaves worse due to the obvious discontinuity
at v = 0. From a dynamical point of view, this friction term can also be compared with the classical
linear friction in the limit |v| → +∞.

In this subsection we will compare the first two types of friction (classical and Rayleigh–
Helmholtz) by considering a family of intermediate terms that, in the limit ε→ 0, approach the
classical friction case. Such intermediate frictions take the form

µ(v) = β|v|k − δ,
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for 0 ≤ k ≤ 2 and δ, β ≥ 0. Notice that k = 0 and δ = 0 yields the classical linear friction whilst
k = 2 and δ > 0 represents Rayleigh–Helmholtz. To summarize, the kind of kinetic equations
that we will deal with takes the form

∂f

∂t
+ v · ∇xf −∇xψ · ∇vf = divv((β|v|k − δ)vf +D∇vf +QφCS(f, f)).

First note that the asymptotic velocity of the friction term is now (δ/β)1/k and it converges
towards zero in the limit δ → 0 and k → 0. A dimensional analysis like in Appendix 2.A allows
introducing the next intermediate scaling of the system

ε1+γ∂tfε + εv · ∇xfε − εγ∇xψε · ∇vfε = divv

(
(|v|k(ε) − δ(ε))vfε + ε2γ∇vfε +QφεCS(fε, fε)

)
,

(2.4.10)
for some functions k = k(ε) and δ = δ(ε) such that k(ε) ↘ 0 and δ(ε) ↘ 0 when ε ↘ 0.
In the formal limit ε → 0, we expect to recover the same hydrodynamic limit as with a fixed
classical friction, i.e., Equation (2.1.1). As in the previous case, we refer to [44, 68, 162] for the
combination of ideas to deal with the analysis of existence for solutions to this system. Let us
sketch how does the hierarchy of velocity moments looks like and how can we obtain similar
estimates to rigorously passing to the limit.

Hierarchy of moments

In addition to the velocity moments ρε, jε,Sε, Tε, let us define

qk(ε)+1
ε :=

∫

Rd
|v|k(ε)vfε dv,

Qk(ε)+2
ε :=

∫

Rd
|v|k(ε)v ⊗ vfε dv.

Then, the first three velocity moments read as follows:

•Mass conservation
∂ρε
∂t

+ divx

(
jε
εγ

)
= 0. (2.4.11)

• Law of balance of current

ε1+γ ∂jε
∂t

+ εdivx Sε + εγρε∇xψε + (qk(ε)+1
ε − δ(ε)jε) + (φε ∗ ρε) jε − (φε ∗ jε) ρε = 0. (2.4.12)

• Law of balance of stress

ε1+γ ∂Sε
∂t

+ εdivx Tε + 2εγ Sym(jε ⊗∇xψε) + 2(Qk(ε)+2
ε − δ(ε)Sε)

+ 2
(
(φε ∗ ρε)Sε − ε2γρεI

)
− 2 Sym((φε ∗ jε)⊗ jε) = 0. (2.4.13)

A priori bounds

We will need some hypothesis on the coefficients k(ε) and δ(ε) in order to obtain appropriate a
priori bounds. On the one hand, in the hyperbolic case, i.e., γ = 0 we will assume that

k(ε) = o(1) and δ(ε) = o(1) when ε→ 0. (2.4.14)
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On the other hand in the purely intermediate or parabolic cases γ ∈ (0, 1] we will assume

k(ε) = O(ε2γ), k′(ε) = O(ε−(1−γ)) and δ(ε) = o(1) when ε→ 0. (2.4.15)

For the sake of simplicity, we first present the next lemma that will help us to control the veloc-
ity moments of order 1, 2 and k(ε) + 1 in terms of that of order k(ε) + 2.

Lemma 2.4.10. Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε fulfill

(2.2.6) and consider the strong global in time solution fε to (2.4.10) with initial data f0
ε and α ∈ (0, d2).

Let us also define the exponents

pε := 1 +
k(ε)

2
, qε := 2 + k(ε), rε := 2− k(ε)

1 + k(ε)

Then, the next estimates hold true

‖|v|2fε‖Lpε (0,T ;L1(R2d)) ≤ ‖|v|k(ε)+2fε‖1/pεL1(0,T ;L1(R2d))
,

‖|v|fε‖Lqε (0,T ;L1(R2d)) ≤ ‖|v|k(ε)+2fε‖1/qεL1(0,T ;L1(R2d))
,

‖|v|k(ε)+1fε‖Lrε (0,T ;L1(R2d)) ≤ ‖|v|k(ε)+2fε‖1/rεL1(0,T ;L1(R2d))
.

In particular, Hölder’s inequality together with Young’s inequality for real numbers imply

‖|v|2fε‖L1(0,T ;L1(R2d)) ≤ ‖|v|k(ε)+2fε‖1/pεL1(0,T ;L1(R2d))
T 1/p′ε

≤ 2

2 + k(ε)
‖|v|k(ε)+2fε‖L1(0,T ;L1(R2d)) +

k(ε)

2 + k(ε)
T,

‖|v|fε‖L2(0,T ;L1(R2d)) ≤ ‖|v|k(ε)+2fε‖1/qεL1(0,T ;L1(R2d))
T

k(ε)
2(k(ε)+2)

=
(
‖|v|k(ε)+2fε‖1/pεL1(0,T ;L1(R2d))

T 1/p′ε
)1/2

≤
(

2

2 + k(ε)
‖|v|k(ε)+2fε‖L1(0,T ;L1(R2d)) +

k(ε)

2 + k(ε)
T

)1/2

.

Remark 2.4.11. Note that we have not considered neither a L1 norm nor a L2 norm with respect to
time for the last term ‖|v|k(ε)+1fε‖Lrε (0,T ;L1(R2N )). The reason is twofold.

1. First, the exponent rε ↗ 2 as ε ↘ 0. Consequently, the natural L2 norm cannot be achieved for
each fixed ε but in the limit ε→ 0.

2. Second, one could have obtained a L1 norm with respect to time in the same spirit as in the second
order velocity moment since rε > 1 for small enough ε. However, if we do so, then the coefficient
in the Young inequality that comes before ‖f0

ε ‖L1(R2d) would be 1/(2 + k(ε)). Although it is
obviously bounded with respect to ε, it does not vanish in the limit ε → 0 and it is a serious
obstruction in order to obtain bounds for the needed scaled velocity moments.

Proposition 2.4.12. Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε

fulfil (2.2.6) and consider the strong global in time solution fε to (2.4.10) with initial data f0
ε and

α ∈ (0, d2). Then,

1

ε2γ

∫ T

0

∫

R2d
|v|k(ε)+2fε dx dv dt+

1

ε2γ

∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw
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≤ δ(ε)

ε2γ

∫ T

0

∫

R2d
|v|2fε dx dv dt+ ε1−γ

∫

R2d
|v|2fε(0) dx dv

− 1

εγ

∫ T

0

∫

R2d
v · ∇xψε fε dx dv dt+ T

∫

R2d
f0
ε dx dv.

Now, one can apply apply the estimates of the L1 and L2 norms of the second and first
order velocity moments above to obtain the next inequality.

Corollary 2.4.13. Under the assumptions of Proposition 2.4.12, the next property holds

[
1−

(
δ(ε) +

1

2

)
2

2 + k(ε)

]
1

ε2γ
‖|v|k(ε)+2fε‖L1(0,T ;L1(R2d))

+
1

ε2γ

∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw

≤ 2ε1−γE0 +

[
1

ε2γ

(
α(ε) +

1

2

)
k(ε)

2 + k(ε)
+ 1

]
T +

1

2
F 2

0 .

For ε small enough one can obtain a lower estimate of the first factor as follows
[
1−

(
δ(ε) +

1

2

)
2

2 + k(ε)

]
≥ 1

4
.

Consequently, the preceding results yield the next list of estimates for the scaled velocity mo-
ments under consideration.

Corollary 2.4.14. Let the initial distribution functions f0
ε verify (2.2.5), the external forces−∇ψε fulfill

(2.2.6), consider the strong global in time solution fε to (2.4.10) with initial data f0
ε and α ∈ (0, d/2)

and assume the hypothesis (2.4.14)–(2.4.15). Then, there exists some constant C > 0 that does not
depend on ε such that

1

ε2γ
‖|v|k(ε)+2fε‖L1(0,T ;L1(R2d)) ≤ C,

1

εγ
‖|v|k(ε)+1fε‖Lrε (0,T ;L1(R2d) ≤ C,

1

ε2γ
‖|v|2fε‖L1(0,T ;L1(R2d)) ≤ C,

1

εγ
‖|v|fε‖L2(0,T ;L1(R2d)) ≤ C,

‖|x|fε‖L∞(0, T ;L1(Rd)) ≤ C,

and
1

ε2γ

∫ T

0

∫

R4d
φε(|x− y|)|v − w|2fε(t, x, v)fε(t, y, w) dx dy dv dw ≤ C,

where rε agrees with the exponent in Lemma 2.4.10.

Proof. All the estimates obviously follows from Lemma 2.4.10 and Corollary 2.4.13. Let us just
sketch the proof of the second one which is less apparent according to the moment relations in
Lemma 2.4.10. Such result shows that

1

εγ
‖|v|k(ε)+1fε‖Lrε (0,T ;L1(R2d) ≤

ε2γ/rε

εγ

(
1

ε2γ
‖|v|k(ε)+2fε‖L1(0,T ;L1(R2d)

)1/rε

.

90



CHAPTER 2. SINGULAR HYDRODYNAMIC LIMITS OF THE CS MODEL

Now, one can apply the Young inequality for real numbers once more to obtain the next bound

1

εγ
‖|v|k(ε)+1fε‖Lrε (0,T ;L1(R2N ) ≤ ε

γ
k(ε)

1+k(ε)

{
1 + k(ε)

2 + k(ε)

1

ε2γ
‖|v|k(ε)+2fε‖L1(0,T ;L1(R2N )) +

1

2 + k(ε)

}
.

Note now that

ε
γ

k(ε)
1+k(ε) = exp

(
γ

1 + k(ε)
k(ε) log ε

)
→ 1 when ε→ 0,

because we are assuming k = O(ε2γ). In particular, note that one cannot say that such scaled
momentum converges to zero as ε → 0 because the above factor, although bounded, does not
converges to zero.

The above results show that we again can consider weak-* limits for ρε and jε
εγ by virtue of

Appendix A to obtain

ρε
∗
⇀ ρ in L∞w (0, T ;M(Rd)),

jε
εγ

∗
⇀ j in L2

w(0, T ;M(Rd))d,

thus leading to the limiting continuity equation in the sense of distributions

∂ρ

∂t
+ div j = 0.

Indeed, one can repeat the same idea as in the preceding sections to ensure (thanks to the
continuity equation (2.4.11) and Appendix B) that

ρε → ρ in C([0, T ],M(Rd)− narrow).

In particular, ρ(0, ·) = ρ0. Recall that the balance law for the scaled current now takes the form

ε1+γ ∂

∂t

(
jε
εγ

)
+ε1−γ divx Sε+ρε∇xψε−

(
1

εγ
qk(ε)+1
ε − δ(ε) jε

εγ

)
+(φε ∗ρε)

jε
εγ
−
(
φε ∗

jε
εγ

)
ρε = 0,

or, in weak form,

− ε1+γ

∫ T

0

∫

Rd

∂ϕ

∂t
· jε
εγ
dx dt− ε1−γ

∫ T

0

∫

Rd
Jacϕ : Sε dx dt

+

∫ T

0

∫

Rd
ρε∇xψε · ϕdx dt−

∫ T

0

∫

Rd

q
k(ε)+1
ε

εγ
· ϕdx dt+ δ(ε)

∫ T

0

∫

Rd

jε
εγ
· ϕdx dt

− 1

2

∫ T

0

∫

Rd

∫

Rd
Hα,ε
ϕ (t, x, y) ·

(
ρε(t, x)

jε
εγ

(t, y)− ρε(t, y)
jε
εγ

(t, y)

)
dx dy dt = 0,

for any ϕ ∈ C∞c ([0, T ];C1
0 (Rd,Rd)). The same arguments as before guarantee that we can pass

to the limit in each term (including the commutator) by virtue of Corollary 2.4.14. Recall that
it holds for all the parameters in the range α ∈ (0, 1

2 ]. Again, the endpoint case α = 1
2 has to be

considered separately because of the concentration issues of the term ρ⊗ j− j⊗ ρ and the only
term that requires a special analysis is the forth term one, i.e.,

∫ T

0

∫

Rd

q
k(ε)+1
ε

εγ
· ϕdx dt.

Moreover, the first, second and fifth terms vanish when ε → 0. The next result shows that one
can indeed pass to the limit in the forth term and identify it in terms of the limit of jε

εγ , i.e., j.
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Theorem 2.4.15. Let the initial distribution functions f0
ε verify (2.2.5), the external forces −∇ψε fulfil

(2.2.6), consider the strong global in time solution fε to (2.4.10) with initial data f0
ε and α ∈ (0, d2) and

assume the hypothesis (2.4.14)–(2.4.15). Then,

lim
ε→0

1

εγ

∥∥∥||v|k(ε) − 1| |v|fε
∥∥∥
Lp(0,T ;L1(R2d))

= 0,

for every exponent 1 ≤ p < 2.

Proof. We start by restating the difference |v|k(ε) − 1 though the integral version of the mean
value theorem as follows

|v|k(ε) − 1 =

∫ k(ε)

0

d

dτ
|v|τ dτ =

∫ k(ε)

0
log |v| |v|τ dτ.

As a consequence,

1

εγ

∫

R2d
||v|k(ε) − 1| |v|fε dx dv ≤

1

εγ

∫ k(ε)

0

∫

R2d
|log |v|| |v|τ+1fε dx dv dτ.

Then, all our efforts must be conducted to bound logarithmic velocity moments of the particle
distribution. This will be done by controlling them in terms of the already known bounds for
the velocity moments in Corollary 2.4.14. Then, let us recall that for any couple of positive
exponent a, b, the asymptotic behavior of the logarithm near r = 0 and r = ∞ is explicitly
given by

| log r| ≤





1

ae
r−a, r ∈ (0, 1],

1

be
rb, r ∈ [1,+∞).

In a more compact (although less sharp) way

| log r| rτ+1 ≤ 1

ae
rτ+1−a +

1

be
rτ+1+b,

for every τ ∈ (0, k(ε)) and every a, b > 0. Fix now any couple of exponents m ∈ [0, 1) and
n ∈ (0, 1]. Note that when ε is small enough, then 0 < k(ε) < n and this allows choosing
a = a(τ) and b = b(τ) as follows

a = (1−m) + τ, b = n− τ.

Such choice amounts to

| log r|rτ+1 ≤ 1

((1−m) + τ)e
rm +

1

(n− τ)e
r1+n, (2.4.16)

for every r > 0. Thus, our integral can be split into two terms

1

εγ

∫

R2d
||v|k(ε) − 1| |v|fε dx dv ≤ Fε(t) +Gε(t),

where

Fε(t) :=
1

εγ

∫ k(ε)

0

1

((1−m) + τ)e

∫

R2d
|v|mfε dx dv dτ,
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=
1

εγ
1

e
log

(
1 +

1

1−mk(ε)

)
‖|v|mfε‖L1(R2d)

Gε(t) :=
1

εγ

∫ k(ε)

0

1

(n− τ)e

∫

R2d
|v|1+nfε dx dv dτ,

= − 1

εγ
1

e
log

(
1− 1

n
k(ε)

)
‖|v|1+nfε‖L1(R2d).

Regarding the first term, let us use once more the Hölder inequality to obtain

‖Fε‖L2/m(0,T ) ≤
1

e

log
(

1 + 1
1−mk(ε)

)

εγ(1−m)

(
1

εγ
‖|v|fε‖L1(0,T ;L1(R2d))

)m
‖f0
ε ‖1−mL1(R2d)

.

In this case, Corollary 2.4.14, our choice of k(ε) and L’Hôpital’s rule show that

lim
ε→0
‖Fε‖L2/m(0,T ) = 0.

Note that the endpoint case m = 0 is also allowed, giving rise to L∞ norms with respect to
times. Regarding the second term,

‖Gε‖
L

2
1+n (0,T )

≤ −1

e
log

(
1− 1

n
k(ε)

)
εγn

(
1

ε2γ
‖|v|2fε‖L1(0,T ;L1(R2d))

) 1+n
2

‖f0
ε ‖

1−n
2

L1(R2d)
.

The same reasoning as above also shows that

lim
ε→0
‖Gε‖

L
2

1+n (0,T )
= 0.

Since both exponents are ordered, namely

2

1 + n
<

2

m
,

then, one can conclude that

lim
ε→0

1

εγ

∥∥∥||v|k(ε) − 1| |v|fε
∥∥∥
L

2
1+n (0,T ;L1(R2d))

= 0,

for every n ∈ (0, 1]. Since n = 0 is not allowed in the splitting (2.4.16) (to obtain convergent
τ -integrals), then we arrive at the claimed convergence result for each exponent 1 ≤ p < 2.

Corollary 2.4.16. Let the initial distribution functions f0
ε verify (2.2.5), the external forces−∇ψε fulfil

(2.2.6), consider the strong global in time solution fε to (2.4.10) with initial data f0
ε and α ∈ (0, d2) and

assume the hypothesis (2.4.14)–(2.4.15). Then,

1

εγ
qk(ε)+1
ε

∗
⇀ j

when ε→ 0 both in Lpw(0, T ;M(Rd)), for every 1 < p < 2, and inM([0, T ]× Rd).

Proof. For simplicity, we restrict to the case 1 < p < 2, although the other case can be proved
through similar arguments. First, recall that

jε
εγ

∗
⇀ j in L2

w(0, T ;M(Rd)).
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Since we are assuming p < 2, then

jε
εγ

∗
⇀ j in Lpw(0, T ;M(Rd)).

By virtue of Theorem 2.4.15 one has that 1
εγ q

k(ε)+1
ε is bounded in Lp(0, T ;L1(R2N )). Then, some

common subsequence (that we do not distinguish from the original for the sake of simplicity)
weakly-* converges to some limit q ∈ Lpw(0, T ;M(Rd)), i.e.,

1

εγ
qk(ε)+1
ε

∗
⇀ q in Lpw(0, T ;M(Rd)).

Hence,
q
k(ε)+1
ε

εγ
− jε
εγ

∗
⇀ q − j in Lpw(0, T ;M(Rd)).

Then, the weak-star lower semicontinuity of dual norms yields the estimate

‖q − j‖Lpw(0,T ;M(Rd)) ≤ lim inf
ε→0

∥∥∥∥∥
q
k(ε)+1
ε

εγ
− jε
εγ

∥∥∥∥∥
Lpw(0,T ;L1(R2N ))

= lim inf
ε→0

∥∥∥∥∥
q
k(ε)+1
ε

εγ
− jε
εγ

∥∥∥∥∥
Lp(0,T ;L1(R2N ))

≤ lim
ε→0

1

εγ

∥∥∥||v|k(ε)+1 − 1| |v|fε
∥∥∥
Lp(0,T ;L1(R2N ))

= 0,

where in the second line we have used that q
k(ε)+1
ε
εγ − jε

εγ is actually strongly measurable along
with the discussions in A to identify the norms of both the Lebesgue–Bochner spaces and their
weak-* version. Hence, we conclude that q ≈ j and this ends the proof.

Appendices

2.A The agent-based system, its mean field limit and scalings

In this Appendix we will introduce the kinetic Cucker–Smale model of interest with all its
physical constants. Later we shall develop a nondimensional analysis and we will identify
some dimensionless parameters that will be useful to justify the proposed scalings of hyper-
bolic and semi-hyperbolic type in this chapter. To start, we consider a system of N interacting
particles particles subject to Cucker–Smale type of interactions, for anyN ∈ N. We shall assume
that particles are influenced by some external force F = −∇ψ described in terms of a potential
function ψ = ψ(t, x). In addition, we shall assume that particles might be affected by a thermal
bath; specifically, velocities experiment linear damping and white noise due to interaction with
such bath. This amounts to a coupled system of stochastic ODEs of Langevin-type:





dxi = vi dt,

mdvi =
m

N

N∑

j=1

φK,α,σ(|xi − xj |)(vj − vi) dt−∇xψ(t, xi) dt−
m

τ
vi dt+m

√
2µ

τ2
dW i

t ,

(2.A.1)
for every i = 1, . . . , N , where W i

t are N independent standard Wiener processes (Brownian
motions) in Rd and the stochastic term in last equation is understood in Itô sense. Herem stands
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Parameter Description
m Mass of each particle
τ Relaxation time under the thermal bath√
µ Mean thermal velocity
σ Range of effective interactions
K Coupling strength

Table 2.1: Physical parameters of the model.

for the mass of particles, that we assume is equal for each of them for the sake of simplicity.
The influence function φK,α,σ = φK,α,σ(r) represents agents connectivity. As it is usual, we will
sort such connectivity decreasingly depending on inter-particle distances so that the larger the
distances, the lower the interactions. Inspired in the choice by F. Cucker and S. Smale [90, 91]
we shall set the influence function as follows

φK,α,σ(r) = Kaα,σ(r) := K
σ2α

(σ2 + cα|x|2)α
, (2.A.2)

where K is called the coupling strength with units times−1 and aα,σ(r) is dimensionless. Here
α > 0 controls the the fall-off of connectivity with the interparticle distance, cα = ζ−1/α − 1
for any fixed value ζ ∈ (0, 1) (e.g., ζ = 1

2 ) and σ has spacial units and represents the range of
effective interactions, namely,

r ≤ σ =⇒ aα,σ(r) ≤ ζ =
1

2
.

In addition, notice that aσ,α(r) ∈ (0, 1] for every r ≥ 0 and consequently K controls the max-
imum strength of interactions. Finally, τ represents the relaxation time of each particle on the
thermal bath whilst

√
µ is the mean thermal velocity and defines the typical velocity of the ther-

mal motion of particles. Sometimes, the mean free path
√
µτ is considered instead. Such magni-

tude consists in the average distance that particles must travels between collisions with other
moving particles. All that terminology has been borrowed from the kinetic theory of gases.
Indeed, those concepts appear in Boltzmann equation to characterize the dynamics of collision
between particles within gas, but can be extended to related descriptions, like Fokker–Planck-
type equations. See [71, Section 2.10] and [258, Section 10.1] for further details about those
physical magnitudes along with the approximation of Boltzmann equation by Fokker–Planck-
type equations. To summarize, the main parameters are given in Table 2.1

In order to derive the mesoscopic descriptions we refer to the discussion in Section 1.1.2 of
the introductory Chapter 1 about the mean-field limit and propagation of chaos. Also, we
recall the bilbiography [163, 164, 176, 177, 178, 179, 181, 216, 217, 230, 281]. Specifically, we can
consider the BBGKY hierarchy of Liouville-type equations associated with (2.A.1). Indeed, the
deterministic joint laws fN = fN (t, x1, . . . , xN , v1, . . . , vN ) are governed by

∂fN

∂t
+

N∑

i=1

vi · ∇xifN −
1

m

N∑

i=1

∇xψ(t, xi) · ∇vifN

=

N∑

i=1

divvi


1

τ
vif

N +
µ

τ
∇vifN +

K

N

N∑

j=1

aα,σ(|xi − xj |)(vi − vj)fN

 .
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Notice that the symmetry of the interactions guarantee that if fN0 ∈ Psym(RdN × RdN ) is a
symmetric probability density initially, then the same continues happening for all times, i.e.,
fNt ∈ Psym(RdN × RdN ) for t ≥ 0. This is precisely what allows writing a closed hierarchy for
the marginal probabilities fk,N = fk,N (t, x1, . . . , xk, v1, . . . , vk)

∂fk,N

∂t
+

k∑

i=1

vi · ∇xifk,N −
1

m

k∑

i=1

∇xψ(t, xi) · ∇vifk,N =

k∑

i=1

divvi

(
1

τ
vif

N +
µ

τ
∇vifN

)

+K
(N − k)

N

k∑

i=1

divvi




N∑

j=1

∫

R2d

aα,σ(|xi − xk+1|)(vi − vk+1)fk+1,N dxk+1 dvk+1


 ,

for 1 ≤ k < N . Take limits fk,∞ = limN→∞ fk,N and use propagation of chaos, (that usually takes
place in this type of systems, see references above), meaning that

f2,∞
0 = f1,∞

0 ⊗ f1,∞
0 =⇒ f2,∞

t = f1,∞
t ⊗ f1,∞

t , t ≥ 0.

Then, we can write down the limiting equation for the marginal f1,∞ ≡ f , that agrees with the
kinetic Cucker–Smale model for the probability distribution of particles f = f(t, x, v)

∂f

∂t
+ v · ∇xf −

1

m
∇xψ · ∇vf = LFP (f) +KQα,σCS (f, f), (2.A.3)

where LFP (f) is the classical Fokker–Planck operator, that is reminiscent of the thermal bath,
and Qα,σCS (f, f) is the Cucker–Smale integro-differential operator associated to the influence
function φα,σ , that is contains all the information about alignment interactions, specifically

LFP (f) := divv

(
1

τ
vf +

µ

τ
∇vf

)
,

Qα,σCS (f) := f(t, x, v)

∫

Rd

∫

Rd
aα,σ(|x− y|)(v − w)f(t, y, w) dy dw.

In the sequel, we shall introduce a nondimensional analysis of the above model (2.A.3),
see [252, Appendix] for a comprehensive dimensional analysis of the Vlasov–Poisson–Fokker–
Planck system. Namely, consider some characteristic units for time, space, velocity and typical
value of the potential

t =
t

T
, x =

x

R
, v =

v

V
, ψ(t, x) =

ψ(t, x)

ψ0
.

Straightforward computations on the original model lead to the next dimensionless model,
where we have removed bars for the sake of simplicity in the notation

∂f

∂t
+
V T

R
v · ∇xf −

1

m

ψ0T

RV
∇xψ · ∇vf = divv

(
T

τ
fv +

T

τ

µ

V 2
∇vf + V dRdTKQ

α,σ/R
CS (f, f)

)
.

Now, let us introduce a scaling where the characteristic units and the physical constants are
linked thought the next formulas:

R

T
=

1

m

τ

R
ψ0, V dRd = 1.

The above choices are considered in order for the quotient of the characteristic length over the
characteristic time to agree with the drift velocity associated with the potential ψ(t, x) and for
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f to preserve the normalization property. Indeed, notice that the only constraint in the rescal-
ing is that f has to preserve the total probability 1. Finally, consider the next dimensionless
parameters for the thermal mean velocity, the thermal mean free path, the scaled range of the
effective interactions and the scaled coupling strength

λ :=

√
µ

R/T
, β :=

√
µτ

R
, ν :=

√
µ

V
, δ :=

σ

R
, κ := τK.

Consequently, the corresponding dimensionless model reads

∂f

∂t
+
λ

ν
v · ∇xf −

ν

β
∇xψ · ∇vf =

λ

β
divv

(
fv + ν2∇vf + κQα,δCS(f, f)

)
.

In this chapter, we are interested in “singular” scalings of the system depending on a param-
eter ε → 0. To illustrate the idea, let us look at the corresponding influence function of the
dimensionless model

κaα,δ(r) =
κσ2α

(σ2 + cαr2)α
.

Then, we are interested in taking σ → 0 and κσ2α = 1 as ε → 0, so that a singular influence
kernel arises. Notice that such singular limit amounts to small range of effective interactions
compared with the typical size of the system and large coupling strength compared to the
inverse relaxation time of the thermal bath. We shall propose the following different scaling
that are compatible with such idea:

1. First, a hyperbolic scaling can be obtained by choosing the next order of the parameters:

λ = 1, β = ε, ν = 1, δ = ε, κ = ε−2α.

Note that, in particular, we are assuming the characteristic velocity of the system to agree
with the mean thermal velocity in the thermal bath. In this case the system takes the form

ε
∂fε
∂t

+ εv · ∇xfε −∇xψε · ∇vfε = divv

(
fεv +∇vfε +QφεCS(fε, fε)

)
. (2.A.4)

2. Second, one can suppose that the characteristic velocity of the system is much larger that
the mean thermal velocity. An appropriate choice of the scaling is

λ = 1, β = ε1+γ , ν = εγ , δ = ε, κ = ε−2α,

for some parameter γ ∈ [0, 1]. We shall call such scaling, an intermediate hyperbolic
scaling and it reads

ε1+γ ∂fε
∂t

+ εv · ∇xfε − εγ∇xψε · ∇vfε = divv

(
fεv + ε2γ∇vfε +QφεCS(fε, fε)

)
. (2.A.5)

3. Finally, one might be interested on neglecting friction effects. In this case, the factor fv
disappears in the above equation. We are interested in a hyperbolic scaling that stands
for the next choice of the dimensionless parameters

λ = 1, β = ε, ν = ε, δ = ε, κ = ε−2α.

Such system takes the form

ε
∂fε
∂t

+ εv · ∇xfε − ε∇xψε · ∇vfε = divv

(
ε∇vfε +QφεCS(fε, fε)

)
. (2.A.6)
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In all the above scalings (2.A.4), (2.A.5) and (2.A.6) we have considered the scaled influence
kernel φε given as follows

φε(r) :=
1

(ε2 + cαr2)α
, r > 0.

When ε→ 0, we recover singular kernels of Newtonian type as opposed to the classical regular
setting in the original works of F. Cucker and C. Smale [90, 91]. Along this chapter, our main
goal is to take the rigorous limit as ε → 0, that amounts to consider a coupled hydrodynamic
and singular limit in the corresponding scaled kinetic model.

2.B Sketch of proof of Theorem 2.3.2

First, let us recall that ρ ∈ L1
loc([0, T )× Rd) is said to be a weak solution to (2.3.2) when

∫ T

0

∫

Rd

(
∂ϕ

∂t
+ u · ∇ϕ

)
ρ dx dt = −

∫

Rd
ρ0(x)ϕ(0, x) dx, (2.B.1)

for every test function ϕ ∈ C1
c ([0, T )× Rd).

Second, the assumed hypothesis on the transport field u yields the existence of an uniquely
defined flux of u in the extended sense of Caratheodory (see [81, Theorem 1.1, Chapter 2]).
Specifically, since the three Caratheodory conditions (continuity in x, measurability in t and
boundedness both in t and x by a t-dependent integrable function) fulfill, then the characteristic
system {

d

dt
X(t; t0, x0) = u(t,X(t; t0, x0)), t ∈ [0, T )

X(t0; t0, x0) = x0,

has a unique absolutely continuous global-in-time solution X(t; t0, x0) for every 0 ≤ t0 < T
and x0 ∈ Rd. Notice that such ODE holds in the a.e. sense (recall that absolutely continuous
functions are a.e. differentiable). The Lipschitz continuity of u does not only ensures the global
definition by the Gronwall lemma but also its uniqueness. Indeed, X(t; t0, ·) is a bi-Lipschitz
diffeomorphism for each t, t0. Specifically, note that the Lipschitz continuity with respect to x
shows that

d

dt
|X(t; t0, x1)−X(t; t0, x2)|2

= 2 (X(t; t0, x1)−X(t; t0, x2)) · (u(t,X(t; t0, x1))− u(t,X(t; t0, x2)))

≤ 2‖u(t, ·)‖W 1,∞(Rd,Rd)|X(t; t0, x1)−X(t; t0, x2)|2,

and consequently,

|X(t; t0, x1)−X(t; t0, x2)| ≤ exp
(
‖u‖L1(0,T ;W 1,∞(Rd,Rd))

)
|x1 − x2|,

for every 0 ≤ t, t0 < T and x1, x2 ∈ Rd. In particular, one can define its Jacobian determinant
a.e. because Lipschitz functions are a.e. differentiable by Rademacher’s theorem

J(t; t0, x0) := det (Jacx0 X(t; t0, x0)) .

If u were smooth, then Liouville’s theorem would hold, i.e.,

d

dt
J(t; t0, x0) = div u(t,X(t; t0, x0)) J(t; t0, x0),
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and consequently,

J(t; t0, x0) = exp

(∫ t

t0

div u(s,X(s; t0, x0)) ds

)
.

In particular, one would obtain the next upper and lower bound of J

exp
(
−‖u‖L1(0,T ;W 1,∞)

)
≤ J(t; t0, x0) ≤ exp

(
‖u‖L1(0,T ;W 1,∞)

)
. (2.B.2)

Nevertheless, it is not compulsory to assume that u is smooth. Indeed, if u ∈ L1(0, T ;W 1,∞(Rd,Rd))
then (2.B.2) also holds by a density argument (see [7, Section 2]).

The corresponding theory for classical solutions with smooth initial data ρ0 provides the
following candidate of weak solution

ρ(t, x) := ρ0(X(0; t, x)) J(0; t, x) =
ρ0(y)

J(t; 0, y)

∣∣∣∣
y=X(0,t,x)

. (2.B.3)

First of all, let us show that although evaluation of measurable functions like ρ0 might not
have sense at some points (because they are defined almost everywhere), the above definition
makes sense and does not depend on the representative. To this end, note that X(0; t, ·) has its
Jacobian determinant lower and upper bounded by positive constants by virtue of (2.B.2) and,
consequently, the theorem of change of variables shows that the flux X(0; t, ·) preserves the
negligible sets in Rd. Thus, no matter the chosen representative of the measurable function, the
above composition yields functions that agree almost everywhere (hence, representing same
equivalence classes).

On the one hand, the claimed bound in L∞(0, T ;Lp(Rd)) when 1 < p ≤ ∞ is clear by the
change of variables theorem for bi-Lipschitz vector fields and the above bound (2.B.2). Simi-
larly, the L∞(0, T ;L1(Rd)) estimate is also apparent when p = 1 through the same argument
since the L1(Rd) norm is indeed constant for all time. Let us now show that, so defined, ρ gives
rise to a weak solution to (2.3.2). We will face first the case 1 < p ≤ ∞. Fix any test function
ϕ ∈ C1

c ([0, T )× Rd) and notice that definition (2.B.3) implies

∫ T

0

∫

Rd

(
∂ϕ

∂t
+ u · ∇ϕ

)
ρ dx dt =

∫ T

0

∫

Rd

(
∂ϕ

∂t
+ u · ∇ϕ

)∣∣∣∣
(t,X(t;0,x))

ρ0(x) dx

=

∫ T

0

∫

Rd

d

dt
[ϕ(t,X(t; 0, x))] ρ0(x) dx

= −
∫

Rd
ϕ(0, x)ρ0(x) dx,

where we have used the fundamental lemma of calculus in the last equality to arrive at the
weak formulation (2.B.1) for every ϕ ∈ Cc(Rd) (notice that locally absolutely continuous func-
tions also verify such result). A similar argument also proves the weak formulation when
p = 1.

Finally, let us prove the uniqueness of weak solution in the sense of (2.B.1) under the
stronger assumption that u is smooth. Consider two weak solutions ρ1(t, x) and ρ2(t, x) to
the same Cauchy problem (2.3.2). Then, by linearity it is clear that ρ = ρ1 − ρ2 solves (2.3.2)
with ρ0 ≡ 0, i.e., ∫ T

0

∫

Rd

(
∂ϕ

∂t
+ u · ∇ϕ

)
ρ dx dt = 0,
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for every test function ϕ ∈ C1
c ([0, T ),Rd). Note that given any test function ψ ∈ C1

c ((0, T )×Rd)
the classical theory also allows solving the backwards Cauchy problem

{
∂tϕ+ u · ∇ϕ = ψ, t ∈ [0, T ],
ϕ(T ) = 0,

then leading to a test function ϕ ∈ C1([0, T ), C1(Rd,Rd)). Since ψ is arbitrary, the fundamental
lemma of the calculus of variations shows that ρ ≡ 0, i.e., ρ1 ≡ ρ2. When u is not smooth but
only L1(0, T ;W 1,∞(Rd,Rd)), a similar duality argument can be proved, leading to the unique-
ness of weak solutions. Also, Wasserstein-type estimates prove uniqueness for Lipschitz ker-
nels in an alternative way, without resorting on duality arguments or further smoothness as-
sumptions on u. See Chapter 4 for further details.
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CHAPTER 3

The Kuramoto model with singular couplings: the agent based system
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3.1. INTRODUCTION

3.1 Introduction

Synchronization is the natural collective behavior arising from agents-based interactions de-
scribed by periodic rules. These rhythmical motions can be easily observed in various biolog-
ical complex systems such as flashing of fireflies, beating of cardiac cells, etc. Since Kuramoto
proposed such mathematical model for coupled oscillators in [196, 195], synchronization has
received a lot of attention and has been studied extensively in various disciplines from this
point of view, see [1] for a comprehensive review on this topic. In the classical model by Ku-
ramoto, the system of N coupled oscillators has an all-to-all coupling with uniform weights
characterized by a constant coupling strength K

θ̇i = Ωi +
K

N

N∑

j=1

sin(θj − θi), (3.1.1)

for i = 1, . . . , N , where θi’ represent the phases and Ωi’s are the natural frequencies of each
oscillator. The original system by Kuramoto is a paradigmatic model describing collective syn-
chronization of a large population of coupled oscillators, that spontaneously synchronize to
oscillate at a common frequency. Although Kuramoto initially proposed it for synchroniza-
tion of chemical reactions, such many-body cooperative effect can be observed in many other
examples in nature, see [1].

One of the most significant examples of synchronization appear in neurons. For some ap-
plications to neuronal synchronization and how the realistic human connectome maps that are
available in the literature affect the emergence of synchronization, see [297] and references
therein. Such ideas exploit neuronal connections in the brain turn out to be organized in mod-
uli structured in a hierarchical nested fashion across many scales, and it affects the neural dy-
namics [262, 305, 306]. Associative or Hebbian learning [166] proposes an explanation for the
adaptation of neurons in the brain during the learning process. Such mechanism is founded
in the assumption that synchronous activation of cells (firing of neurons) leads to selectively
pronounced increases in synaptic strength between those cells. The consequence is that the
pattern of activity will become self-organized. In Hebb’s words

Any two cells or systems of cells that are repeatedly active at the same time will tend to
become associated, so that activity in one facilitates activity in the other, D. O. Hebb. (3.1.2)

see [166, p. 70]. In neuroscience, this processes provide the neuronal basis of unsupervised
learning of cognitive functions in neural networks and can explain the phenomena that arises
in the development of the nervous system. However, uniform and time-constant coupling
weights like in (3.1.1) are too restrictive to explain the complicatedness of the above phenom-
ena. Thus, it is more interesting to consider a generalization of the Kuramoto model introduced
in [10, 156, 159, 233, 247, 256, 272]

θ̇i = Ωi +
1

N

N∑

j=1

Kij sin(θj − θi) (3.1.3)

ȧij = η(Γ(θj − θi)− aij), (3.1.4)

for i = 1, . . . , N . In such model, each couple of oscillators θi and θj is equipped with a plastic
(adaptive) coupling Kij = Kij(t), that has its own dynamics depending on the phase config-
uration. Indeed, for convenience the couplings Kij are often split into the dimensional and
dimensionless parts as follows

Kij = Kaij ,
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where aij = aij(t) ∈ [0, 1] measures the degree of connectivity between the i-th and j-th oscilla-
tors and K is the coupling strength and has frequency units. Also, recall similar considerations
for the influence function φ = φ(r) of the related Cucker–Smale model in Chapter 2. Equa-
tion (3.1.4) governing connectivity can be regarded as a dynamic learning rule for the coupling
weights. Here, Γ = Γ(θ) ∈ [0, 1] represents the plasticity function and η is called the learn-
ing rate. In a way, small values of η delay the adaptation of weights aij towards the value of
Γ(θi − θ)j whilst large values of η accelerates such adaptation mechanism.

According to the choice of the plasticity function Γ, the dynamics of the system (3.1.3)-
(3.1.4) shows various scenarios. In neural networks systems, Hebbian-type dynamics is often
considered for the learning algorithm of couplings between oscillators. Specifically, from a
qualitative point of view, Hebb’s learning rule (3.1.2) amounts to saying that the couplings tend
to increase when oscillators fire simultaneusly, that is, when phases get close to each other.
Equivalently, for a mathematical point of view Hebb’s rule sets Γ = Γ(θ) as a decreasing func-
tion of the phase distance θ that achieves the maximum value 1 at θ = 0 (i.e., total connectivity
when θi = θj). For example, in [159, 233, 272] the authors assumed the Hebbian type plasticity
function Γ(θ) = cos θ so that attraction between near oscillators is reinforced, but also repul-
sive interaction arises between apart phases. On the other hand, some other processes follow
anti-Hebbian type rules like Γ(θ) = | sin θ|, that was considered in [159, 256]. In this case, syn-
chronization emerges slowly due to the reduction of weight for nearby oscillators. Other types
of adaptive rules are considered in [156, 247]. In this chapter, we shall consider a more realistic
Hebbian-like plasticity function Γ that in particular solves the “problematic” eventual changes
of sign in the aforementioned case Γ(θ) = cos θ. Namely, we will propose

Γ(θ) :=
σ2α

(
σ2 + cα,ζ |θ|2o

)α , (3.1.5)

where σ ∈ (0, π), ζ ∈ (0, 1] and |θ|o := dT(eiθ, 1) is the (orthodromic) distance along T, i.e.,

|θ|o := |θ̄| for θ̄ ≡ θ mod 2π, θ̄ ∈ (−π, π].

Here, the parameter cα,ζ := 1 − ζ−1/α has been chosen so that whenever two phases θi and
θj stay at orthodromic distance σ or larger, then the adaptive function Γ predicts a maximum
degree of connectivity not larger than ζ between such oscillators. See also Chapter 2 for com-
parison with the influence function φK,α,σ in (2.A.2) for the Cucker–Smale model.

Along this chapter we will not address the full dynamics of the system (3.1.3)-(3.1.4). In-
stead, we will consider the fast learning regime in order to reduce the learning rule (3.1.4) to a
simpler instantaneous adaptation and start gaining some intuition about the model. Specifi-
cally, since the plasticity function Γ in (3.1.5) is Lipschitz-continuous, then we can apply the
classical Tikhonov theorem [183] to system (3.1.3)-(3.1.4) and rigorously take the limit η → +∞
to arrive at the following simplified Kuramoto model with weighted coupling structure

θ̇i = Ωi +
K

N

N∑

j=1

Γ(θj − θi) sin(θj − θi), (3.1.6)

for i = 1, . . . , N . This model will play a central role in this chapter. Notice that if either the
parameter α = 0 or ζ = 1, then our plasticity function (3.1.5) becomes 1 everywhere and
(3.1.6) reduces to the classical Kuramoto model (3.1.1). Hence, we will assume that α > 0 and
ζ ∈ (0, 1) from now on. Our main purpose is to analyze (3.1.5)-(3.1.6) and compare it with the
associated singular counterpart governed by the following singular plasticity function

Γ(θ) :=
1

cαα,ζ |θ|2αo
. (3.1.7)
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Notice that plasticity function is actually a normalized quantity and by definition it cannot
be unbounded like in (3.1.7). However, in the next section we shall derive this new singular
dynamics from the regular one via a singular scaling of the parametersK and σ that is reminis-
cent of the one proposed in the preceding chapter. Notice that the singularly weighted system
indeed differs from the regular one for several reasons. First, in the regular case (3.1.5) Γ is
Lipschitz-continuous function and (3.1.6) becomes the Kuramoto model with regular weights
depending on a different sine-type coupling force. Hence, well-posedness of global-in-time
classical solutions is standard. Unfortunately, in the singular case (3.1.7) the system (3.1.6) has
non-Lipschitz right hand sides due to the presence of a singular weight. Then, the Cauchy–
Lipschitz theory cannot be used again to guarantee existence and uniqueness of global-in-time
solutions. More interestingly, we also expect that such a difference plays a fundamental role
at the dynamical level and the singularly weighted case introduces substantially new dynam-
ics in the paradigm of synchronization. When dealing with singularities, we shall distinguish
three different regimes α ∈ (0, 1

2), α = 1
2 and α ∈ (1

2 , 1) that we respectively call the subcritical,
critical and supercritical cases for simplicity.

The main results of this chapter are listed as follows. First, we study well-posedness of the
singular weighted system. Depending on the value of α, the properties of the right hand side of
(3.1.6) vary. Specifically, in the subcritical regime, we deal with systems of ODEs with Hölder-
continuous right hand side while we face discontinuous right hand side of both bounded and
unbounded type in the critical and supercritical cases respectively. This suggests that the ap-
propriate concept of uniqueness that we should explore in these systems is not the standard
one but just one-sided forward uniqueness. This allows the possibility that a group of oscillators
might gather and collide in finite time to form a cluster of oscillators with same phase but larger
mass that stay stuck together for all times. This is a phenomenon that was recently found in
other relevant agent-based systems like Cucker–Smale model with weakly singular influence
function (see [244, 245]) or the aggregation equation with mildly singularity potentials (see
[27, 28, 29, 64, 200])

Our second result characterizes the explicit conditions for sticking in the subcritical and
critical regimes. In the former case, we show that only clusters of oscillators with the same nat-
ural frequencies can stick together. Nevertheless, in the latter case, cluster of oscillators with
different natural frequencies may stick together as long as such frequencies fulfill an appropri-
ate condition. Regarding the supercritical case, the analogue sticking condition becomes trivial
and we can show a continuation procedure of classical solutions after finite-time collisions.
Namely, after a cluster is formed in finite time, the cluster keep stuck together no matter which
are the natural frequencies of the involved oscillators.

The third result consists in showing that these singular weights are actually physically rel-
evant. Specifically, we will show that the system (3.1.6)-(3.1.7) with singular weights can be
recovered as a rigorous singular limit of the regular model (3.1.5)-(3.1.6). Again, the strategy
will differ in each of the regimes. For the subcritical case, similar tools to those in [244, 245]
for the singular Cucker–Smale model can be adapted. What is more, we can even obtain an
analogue gain of extra W 1,1 piece-wise regularity of the frequencies of oscillators. For the crit-
ical and supercritical cases we cannot resort on the same ideas. Hence, we use the underlying
gradient-flow structure to gain compactness of frequencies. Identifying the limit will be the
heart of the matter in this part.

Our last result faces the emergence of synchronization in each regime of the parameter α.
For identical oscillators, we show the emergence of complete phase synchronization in finite-
time under appropriate assumptions on the initial diameter of phases. At least in the subcrit-
ical regime, where frequencies become more regular, we study the asymptotic emergence of
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complete frequency synchronization of non-identical oscillators. Also, we study the stability
properties of collision-less phase-locked states in all the three regimes.

The techniques are firstly inspired by a combination of results for the classical Kuramoto
model, but these techniques require of a new perspective allowing for singular interactions.
For this purpose, we introduce a well-posedness result “à la Filippov” that is valid for sys-
tems of ODEs with discontinuous right-hand sides. Specifically, we will rely on the study of
absolutely continuous solutions of the differential inclusions associated with the Filippov’s set-
valued map. The values of such map are convex polytopes that are bounded and unbounded
in the critical and supercritical case respectively. Hence, the classical theory can be used in
the former case whereas new ideas are developed for the latter case. Also, we prove some
one-sided uniqueness results for non–Lipschitzian interactions that rely on the structure of in-
teraction kernel near the points of loss of Lipschitz-continuity. For the stability of equilibria,
Lyapunov’s first method entails a similar scenario to that of the classical Kuramoto model in
the critical and supercritial regime. On the other hand, the subcritical regime requires a cen-
ter manifold approach that yields the stability of the corresponding equilibria. Regading the
dynamics, it is interestingn that we can still reproduce some accurate control of the diameter
of the system. Such control can be used to show finite-time and asymptotic synchronization
for the identical and non-identical cases respectively. Unfortunately, the emergence of phased-
locked states cannot be takled with the same ideas as in [157] for the Kuramoto model due to
the fact that Łojasiewicz’ gradient inequality [204] might not holds for non-analytic systems
with gradient structure like this. Similarly, it is not clear whether the ideas in [147] can be
conducted to recover emergence of phase-locked states for any initial data in the large cou-
pling regime in these models. We do not address such ideas here, that will be object of study
in future works. Finally, regarding the singular limit from regular coupling weights towards
the singularly weighted cases, our main goal is to prove that solutions of the regularized sys-
tem converge towards absolutely continuous trajectories that verify the differential inclusion
into Filippov’s map. The cornerstone of such results is the derivation of an appropriate H-
representation (half-space representation) of such convex polytopes through convex analysis
techniques. Then, the preceding gain of compactness of frequencies along with such geometric
representation of the Filippov map will become the necessary tools for the singular limit to
work in the critical and supercritical regimes.

The remaining section of this chapter are organized as follows. In Section 3.2, we present
definitions, basic properties of the weighted Kuramoto model, the underlying gradient-flow
structure, the passage from regular to singular plasticity function and the expected macro-
scopic equations. Since Chapter 4 is devoted to the associated kinetic equations, we skip the
details here and focus on the agent-based system. In Section 3.3, we study the system with
singular weights and we prove the well-posedness theory in each regime. In Section 3.4, we
prove the rigorous singular limit in every regime and compare the model with previous results
derived in other agent-based systems, in particular we compare with Cucker–Smale models.
In Section 3.5, we show the emergence of synchronization for the singular weighted system.
For the sake of clarity, we summarize in Appendix 3.A the main classical tools that have been
used for the Kuramoto models and we apply them to show emergence of synchronization for
the regular weighted system. Appendix 3.B shows the proofs of the H-representation of the
Filippov set-valued map in the critical and supercritical cases. Finally, Appendix 3.C intro-
duces the explicit characterization of the sticking conditions. For a brief summary of the basis
of Filippov’s existence theory that we will use in this chapter, we refer to Appendix D of the
thesis.
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3.2 Preliminaries

3.2.1 Basic properties and definitions

In this section, we study the basic properties of the weighted Kuramoto system and introduce
some related results that will be useful in the following sections. For simplicity, let us denote
the interaction kernel by h(θ) := Γ(θ) sin θ (here Γ can be any even function, e.g., (3.1.5) or
(3.1.7)). Then the system (3.1.6) can be expressed as

θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi). (3.2.1)

For simplicity, we shall sometimes use vector notation in (3.2.1). We define the vector field
H(Θ) = (H1(Θ), . . . ,HN (Θ)) whose components read

Hi(Θ) = Ωi +
K

N

N∑

j=1

h(θj − θi). (3.2.2)

Then, (3.2.1) can be restated as
Θ̇ = H(Θ). (3.2.3)

Since h is an odd function, by taking sums on both sides of (3.2.1), we have

N∑

j=1

θ̇i =

N∑

j=1

Ωi,

i.e., the average of frequencies is conserved. Thus, without loss of generality, we may assume
that the average of natural frequencies is zero, 1

N

∑N
j=1 Ωi = 0, in order to focus on the fluctua-

tion from the constant average motion.
For the discussion in Section 3.4, we briefly introduce the second order augmentation of

Kuramoto model, see [150]. By taking one more derivative on the system (3.2.1), we have the
second order model 




θ̇i = ωi,

ω̇i =
K

N

N∑

j=1

h′(θj − θi)(ωj − ωi).
(3.2.4)

For both systems (3.2.1) and (3.2.4) we have the following equivalence.

Theorem 3.2.1. The Kuramoto model (3.2.1) is equivalent to an augmented Kuramoto model (3.2.4) in
the following sense.

1. If Θ = (θ1, . . . , θN ) is a solution to (3.2.1) with initial data Θ0, then (Θ, ω := Θ̇) is a solution to
(3.2.4) with well-prepared initial data (Θ0, ω0):

ωi,0 := Ωi +
κ

N

N∑

j=1

h(θj,0 − θi,0).

2. If (Θ, ω) is a solution to (3.2.4) with initial data (Θ0, ω0), then Θ is a solution to (3.2.1) with
natural frequencies:

Ωi := ωi,0 −
κ

N

N∑

j=1

h(θj,0 − θi,0).
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For the regular cases (3.1.5), the proof can be found in [150]. However, one has to take
special care with the time regularity of solutions in the singular cases (3.1.7) before we take
derivatives in (3.2.1). In that later case with α ∈ (0, 1

2), the type of solutions to be considered
for (3.2.1) are absolutely continuous solutions, while for (3.2.4), solutions have to be taken in
weak sense with C1 and piecewise W 2,1 regularity (see [244] for this concept of solution for the
discrete Cucker–Smale model with singular influence function). The well–posedness of both
singular systems (3.2.1) and (3.2.4) will be established in Sections 3.3 and 3.4 (see Theorems
3.3.5, 3.3.12, 3.4.2, 3.4.4 and Remark 3.4.5) and comparisons with Cucker–Smale models with
singular influence function will be given in Subsection 3.4.4.

For the sake of completeness, we recall the different definitions of synchronization, [145].

Definition 3.2.2. Let Θ(t) = (θ1(t), . . . , θN (t)) be the phase configuration of oscillators of which the
dynamics is governed by the system (3.1.6).

1. The system shows the complete phase synchronization asymptotically if, and only if, the following
condition holds:

lim
t→∞
|θi(t)− θj(t)| = 0, for all i 6= j.

2. The system shows the complete frequency synchronization asymptotically if, and only if, the fol-
lowing condition holds:

lim
t→∞
|θ̇i(t)− θ̇j(t)| = 0, for all i 6= j.

3. The system shows the emergence of a phase-locked state asymptotically if, and only if, there exist
constants θ∞ij such that

lim
t→∞
|θi(t)− θj(t)| = θ∞ij , for all i 6= j.

Analogue definitions of synchronization will be considered if, instead of asymptotically, the emergent
dynamics takes place in some finite time T . In such case∞ will be replaced by such finite time T in the
above definitions.

We note that the complete phase-synchronization is a special case of phase-locked state.
It is obvious that if the solution shows the emergence of phase-locked state, then it implies
the complete frequency synchronization. However, the converse is valid when the frequency
synchronization occurs fast, i.e., integrable decay of frequency differences.

3.2.2 Singular weighted model

In this part, we introduce the formal derivation of the Kuramoto model with singular weights
as singular limit of the regular weighted model. We note that the regular weighted model is
(3.2.1) with interaction kernel given by

h(θ) :=
σ2α sin θ

(σ2 + cα,ζ |θ|2o)α
.

Recall that the degree of connectivity is smaller than ζ for interparticle distances larger than
σ and α imposes the fall-off of the interactions. Consequently, σ measures the effective range
of interactions. Similarly, the parameter K measures the maximum strength of interactions.
Hence, one can propose the following scaling

σ = O(ε), Kσ2α = O(1), when ε→ 0.
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Or more specifically, using the change of variables

σ → ε and K → Kε−2α,

where ε is a dimensionless parameter, we arrive at the next scaled system

θ̇i = Ωi +
K

N

N∑

j=1

hε(θj − θi), (3.2.5)

where the scaled interaction kernel now reads

hε(θ) :=
sin θ

(ε2 + cα,ζ |θ|2o)α
. (3.2.6)

If we formally take limits when ε → 0, then we arrive at the desired singular weighted Ku-
ramoto model, whose singular interaction kernel is

h(θ) :=
sin θ

cαα,ζ |θ|2αo
.

All these arguments are heuristic. However they might become rigorous depending on the
value of α. For a rigorous derivation of the singular limit in all the subcritical, critical and
supercritical regimes, see Section 3.4.

3.2.3 Emergence of clusters: collision and sticking of oscillators

In this part we introduce some notation that will be used along the whole chapter. We will
denote the set of pair-wise collisions of the i-th and j-th oscillators by

Cij := {Θ ∈ RN : θ̄i = θ̄j},

where θ̄ denotes again the representative of θ in (−π, π]. Then, the set of collisions reads

C :=
⋃

i 6=j
Cij = {Θ ∈ RN : ∃ i 6= j such that θ̄i = θ̄j}.

Consider any phase configuration of the N oscillators, i.e.,

Θ = (θ1, . . . , θN ) ∈ RN .

We will say that the i-th oscillator collides with j-th oscillator when Θ ∈ Cij and we will say that
Θ is a collision state when Θ ∈ C. In order to manage with collisions, let us define the following
binary relation

i
Θ∼ j when Θ ∈ Cij .

Since it is an equivalence relation, we can denote its equivalence classes by

Ci(Θ) := {j ∈ {1, . . . , N} : i
Θ∼ j} = {j ∈ {1, . . . , N} : Θ ∈ Cij}. (3.2.7)

As it is apparent from the definition, Ci(Θ) is the set of indices of collision with the i-th oscillator.
Then, Θ is a collision state when some of its equivalence classes is non-trivial. Consequently,
each of the equivalence classes can be regarded as a cluster of oscillators with the same phase
value. Let us denote by E(Θ) the family of all the different equivalence classes (clusters). It is
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apparent that E(Θ) determines a partition of {1, . . . , N}, that we will call the collisional type of
Θ. It represents the way oscillators are arranged into clusters. For simplicity of notation, we
shall enumerate the equivalence classes

E(Θ) = {E1(Θ), . . . , Eκ(Θ)(Θ)},

in such a way that the minimal representatives in each of them, i.e., ιk(Θ) := minEk(Θ), are
increasingly ordered, that is,

ι1 < ι2 < · · · < ικ,

where κ(Θ) := #E(Θ) represents the total amount of different clusters for such phase config-
uration Θ. Finally, we shall denote nk(Θ) := #Ek(Θ) to the size of the k-th cluster, that is the
number of particles which form the k-th cluster, for each k = 1, . . . , κ(Θ).

Assume now that not only do we know some phase configuration at a particular time, but
a whole absolutely continuous trajectory t 7→ Θ(t) = (θ1(t), . . . θN (t)) ∈ RN governing the
dynamics of the N oscillators. It is clear that the collisional type might change from time to
time subordinated to the dynamics of phases itself. Then, as long as it is clear from the context,
we shall omit the dependence on the particular trajectory and will simplify the notation as
follows

Ci(t) := Ci(Θ(t)), E(t) := E(Θ(t)), κ(t) := κ(Θ(t)), nk(t) := nk(Θ(t)).

Similarly, time may be omitted in our notation for simplicity. Apart form collisions into clusters,
it is important to characterize when those clusters remain stuck together. If the i-th and j-th
oscillators have collided at time t, we will say that they stick together (for all times) when

θ̄i(s) = θ̄j(s), for all s ≥ t.

Then, we can define the set of indices of sticking with the i-th oscillator by

Si(t) := {j ∈ Ci(t) : θ̄i(s) = θ̄j(s), for all s ≥ t}. (3.2.8)

In Section 3.3 we will introduce some results about clustering and sticking behavior of solutions
to our singular weighted Kuramoto model corresponding to (3.2.5)-(3.2.6) with ε = 0.

3.2.4 Gradient flow structure

In this part, let us remark that our system (3.2.1) can be equivalently turned into a gradient
flow system:

Θ̇ = −∇V (Θ), (3.2.9)

governed by a potential V = V (Θ) that is defined by

V (Θ) = −
N∑

i=1

Ωiθi + Vint(Θ) := −
N∑

i=1

Ωiθi +
K

2N

∑

i 6=j
W (θj − θi). (3.2.10)

Here, W is the primitive function of h such that W (0) = 0, i.e.,

W (θ) :=

∫ θ

0
h(θ′) dθ′. (3.2.11)

The function W can be regarded as the interaction potential of binary interactions while Vint
stands for the total interaction potential due to binary interactions. This approach is obviously
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formal and depends on the specific regularity of the plasticity function Γ. For instance, if we
choose Γ to be analytic, then (3.2.1) can be regarded as a gradient flow system with analytic po-
tential V . In such particular case, one can oversimplify the proof of emergence of synchroniza-
tion like in the classical Kuramoto model, see [147]. Specifically, some boundedness property
of the trajectory is all we need to ensure the exponential convergence towards a phase-locked
state by virtue of the Łojasiewicz inequality for analytic functions. For the choices of plasticity
function of interest in this chapter, i.e., either (3.1.5) or (3.1.7), analyticity is lacking and the
same approach does not necessarily work. Nevertheless, we shall focus on values of the pa-
rameter α that belong to the range α ∈ (0, 1) and produce potentials V globally a continuous
and smooth off the set of collisions C. Since in general we are missing either analyticity or
convexity of V , the gradient flow structure will not be used much along this chapter, except in
Subsections 3.4.2 and 3.4.3.

3.2.5 Kinetic formulation of the problem

In this part, let us formally introduce the expected kinetic models associated with (3.2.5). Also
see the discussion in Section 1.1.2 of the introductory Chapter 1 about mean-field limit and
propagation of chaos and the bibliography [163, 164, 176, 177, 178, 179, 181, 216, 217, 230, 281].

On the one-hand, for every ε > 0 the mean field limit for the distribution function of oscil-
lators fε = fε(t, θ,Ω) is governed by the following Vlasov equation with regular kernels

∂fε
∂t

+
∂

∂θ
[(Ω−Khε ∗ ρεfε] = 0, t ∈ R+

0 , θ ∈ [0, 2π], Ω ∈ R, (3.2.12)

where periodic boundary conditions in the variable θ are assumed. Here the macroscopic
phase-density ρε is nothing but

ρε(t, θ) :=

∫

R
fε dΩ.

Similarly, when ε = 0 the corresponding mean field limit for the distribution function of oscil-
lators for f = f(t, θ,Ω) is subject to a Vlasov equation with singular kernels

∂f

∂t
+

∂

∂θ
[(Ω−Kh ∗ρ f ] = 0, t ∈ R+

0 , θ ∈ [0, 2π], Ω ∈ R, (3.2.13)

with analogous periodic conditions in θ. The derivation of the mean field limit is more involved
in this latter case and requires a sharper analys, see references [59, 163, 226] for related singular
models like. Let us briefly recall the main formal idea supporting the above mean field limit
through the empirical measures approach. Fix the following empirical measure as initial condition
in (3.2.13)

µN0 (θ,Ω) =
1

N

N∑

i=1

δθNi,0
(θ)δΩNi

(Ω),

associated to some discrete initial configuration ΘN
0 = (θN1,0, . . . , θ

N
N,0). Because of the results

in this chapter, the Filippov solution ΘN (t) = (θN1 (t), . . . , θNN (t)) to the singular discrete model
allows considering the next measure-valued solution to (3.2.13)

µNt (θ,Ω) =
1

N

N∑

i=1

δθNi (t)(θ)δΩNi
(Ω).

The ultimate effort to be done is to show that the weak limit f of µN as N → ∞ is another
measure-valued solution in some generalized sense to the singular macroscopic system.
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We postpone this topic to the forthcoming Chapter 4, where a comprehensive analysis of
the singular macroscopic model (3.2.13) has been conducted. Also, see [226] for a close ap-
proach in the Cucker–Smale model with weakly singular influence kernel corresponding to
the smaller range of parameters α ∈ (0, 1

4) of the subcritical regime. Analogue results in ag-
gregation models and classical Kuramoto model has been studied in [59, 64, 67] and [58, 198]
respectively.

3.3 Well–posedness of the singular weighted system

We now consider the Kuramoto model with singular coupling that we introduced in Section
3.2. For simplicity, we will forget about the constant c = cα,ζ = 1 − ζ−1/α and the system gets
simplified as follows

θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi), (3.3.1)

for i = 1, . . . , N , with coupling force given by

h(θ) :=
sin θ

|θ|2αo
. (3.3.2)

Regarding the parameter α, it belongs to the interval (0, 1) to allow for mild singularities.
Note that the kernel is continuous for α ∈ (0, 1

2), it exhibits a jump discontinuity at θ ∈ 2πZ for
α = 1

2 , and it shows essential discontinuities for α ∈ (1
2 , 1), see Figure 3.1.

In this section, we shall focus on developing the well-posedness theory of such system
(3.3.1)-(3.3.2) of coupled ODEs. Note that uniqueness is not trivial even in the subcritical
case. Indeed, due to the choice of singular plasticity function, the coupling force (3.3.2) is
not Lipschitz-continuous in any of the subcritical, critical and supercritical regimes. Thus, we
must explore existence and uniqueness of (generalized) solutions to the singular weighted sys-
tem before we proceed with the study of synchronization. Notice that the main obstruction
appears after each collision time, where classical solutions stop existing. This contribution is
then valuable as we are able to specify in which sense classical solutions can be extended after
such collision times. For the following discussion, we recall the definition of the vector field
H = H(Θ) in (3.2.2) that allows stating (3.3.1)-(3.3.2) in the vector form (3.2.3).

3.3.1 Well–posedness in the subcritical regime

In the subcritical case, namely α ∈
(
0, 1

2

)
, the vector field H = H(Θ) in (3.2.2) is continuous.

Therefore, it is a clear consequence of Peano’s theorem that (3.3.1)-(3.3.2) has a local-in-time
solution for every initial configuration Θ(0) = Θ0 ∈ RN . Unfortunately, note that h(θ) has
unbounded slope at the phase values θ ∈ 2πZ. Indeed, the modulus of continuity of h is
strictly worst than Lipschitz as it is shown in this result.

Lemma 3.3.1. Consider α ∈ (0, 1
2). Then, h is a (1−2α)-Hölder continuous periodic function, namely,

|h(θ1)− h(θ2)| ≤ coshπ |θ1 − θ2|1−2α
o ,

for every couple θ1, θ2 ∈ R.

Proof. Taking appropriate representatives for the phases, we can assume that θ1 − θ2 ∈ (−π, π]
without loss of generality. To simplify the proof, we shall divide it into two different cases:
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Figure 3.1: Plot of the interaction kernel h = h(θ) in (3.3.2) for the values α = 0.25, α = 0.5 and
α = 0.75, respectively.
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• Case 1: θ1 − θ2 ∈ [0, π]. By the Taylor expansion of the sine function, we obtain

h(θ1)− h(θ2) =
sin θ1

θ2α
1

− sin θ2

θ2α
2

=
∞∑

n=0

(−1)n

(2n+ 1)!
(θ2n+1−2α

1 − θ2n+1−2α
2 ).

Since α ∈ (0, 1
2), then 1− 2α ∈ (0, 1) and, consequently, for n = 0 we infer the next estimate

|θ1−2α
1 − θ1−2α

2 | ≤ |θ1 − θ2|1−2α.

For any other n ≥ 1 we apply the mean value theorem to obtain

|θ2n+1−2α
1 − θ2n+1−2α

2 | ≤ (2n+ 1− 2α)π2n−2α|θ1 − θ2|
≤ (2n+ 1− 2α)π2n|θ1 − θ2|1−2α

≤ (2n+ 1)π2n|θ1 − θ2|1−2α.

Putting everything together, we achieve the desired estimate

|h(θ1)− h(θ2)| ≤
∞∑

n=0

π2n

(2n)!
|θ1 − θ2|1−2α = coshπ |θ1 − θ2|1−2α.

• Case 2: θ1 − θ2 ∈ (−π, 0]. By the antisymmetry of the kernel h with respect to the origin,
we can reduce this case to the latter one, thus we omit the proof.

Finally, in order to end the proof notice that θ1 − θ2 ∈ (−π, π] and, consequently, |θ1 − θ2| =
|θ1 − θ2|o = d(z1, z2).

Such loss of Lipschitz-continuity of H = H(Θ) causes some problems and, in particular,
the classical Cauchy–Picard–Lindelöf theorem does not apply. Hence, the study of uniqueness
requires an alternative approach that we discuss in the sequel. Roughly speaking the method is
supported by the following fact: near the points of loss of Lipschitz-continuity our vector field
can be locally split into the sum of a decreasing vector field and a Lipschitz-continuous vector
field, then ensuring the local one-sided Lipschitz condition that is enough to obtain a forward
one-sided uniqueness result.

Lemma 3.3.2. Let F : RN −→ RN be a bounded and continuous vector field and assume that for every
x∗ ∈ RN there exists some open neighborhood V ⊆ RN and a positive constant M so that F verifies the
one-sided Lipschitz condition in V

(F (x)− F (y)) · (x− y) ≤M |x− y|2,

for every couple x, y ∈ V . Then, the following initial value problem (IVP) associated with any initial
configuration x0 ∈ RN enjoys one global-in-time solution, that is unique forward in time

{
ẋ = F (x), t ≥ 0,

x(0) = x0.

Since the proof is classical, we omit it here. Let us now apply such result to our case of
interest. To do so, it is enough to introduce a decomposition of the vector field H = H(Θ) in
the Kuramoto model (3.3.1)-(3.3.2). We first set the following split of the interaction function
h = h(θ). First, consider h and θ̃ ∈

(
0, π2

)
such that

h := max
0<r<π

h(r) and 2α sin θ̃ = θ̃ cos θ̃.
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Figure 3.2: Plot of the function −h(θ) and the functions δ(θ) and λ(θ) in the decomposition for
the value α = 0.25.

Note that θ̃ is uniquely defined as the value in (0, π) where h attains its maximum. Second,
define the couple of functions δ = δ(θ) and λ = λ(θ) in (−π, π) as follows

δ(θ) :=





h, for θ ∈ (−π,−θ̃),
−h(θ), for θ ∈ [−θ̃, θ̃),
−h, for θ ∈ [θ̃, π),

λ(θ) :=





−h− h(θ), for θ ∈ (−π,−θ̃),
0, for θ ∈ [−θ̃, θ̃),
h− h(θ), for θ ∈ [θ̃, π).

Notice that
− h(θ) = δ(θ) + λ(θ), for all θ ∈ (−π, π), (3.3.3)

as depicted in Figure 3.2.

Remark 3.3.3. Note that although −h(θ) is not a Lipschitz-continuous function because of the un-
bounded slope at θ ∈ 2πZ, we can locally decompose it around such values in terms of a decreasing
function δ(θ) and a Lipschitz-continuous function λ(θ).

Finally, consider any value Θ∗ = (θ∗1, . . . , θ
∗
N ) ∈ RN to locally decompose H around it. For

Θ = (θ1, . . . , θN ) in a small enough neighborhood V of Θ∗ in RN , we set

∆(Θ) :=
K

N

∑

j∈Ci(Θ∗)
δ
(
θi − θj

)
, (3.3.4)

Λ(Θ) := Ωi +
K

N

∑

j∈Ci(Θ∗)
λ
(
θi − θj

)
− K

N

∑

j /∈Ci(Θ∗)
h(θi − θj), (3.3.5)

where we recall that Ci(Θ∗) stands for the set of indices of collision with the i-th oscillator in
the phase configuration Θ∗, see Subsection 3.2.3.
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Proposition 3.3.4. Let Θ∗ = (θ∗1, . . . , θ
∗
N ) ∈ RN , and define the vector fields

∆ : U −→ RN , Λ : U −→ RN ,

via the formulas (3.3.4)-(3.3.5), for a small enough neighborhood U of Θ∗ in RN . Then,

1. H = ∆ + Λ in U .

2. ∆ is decreasing in U .

3. Λ is Lipschitz-continuous in U .

4. H is one-sided Lipschitz continuous in U .

Proof. The decomposition ofH is clear by virtue of the decomposition (3.3.3) and the definitions
(3.3.4)-(3.3.5). Let us then focus on the last three properties. Fist, consider Θ = (θ1, . . . , θN ), Θ̃ =

(θ̃1, . . . , θ̃N ) ∈ RN in a small enough neighborhood of Θ∗. Without loss of generality, we will
directly assume that θi − θj and θ̃i − θ̃j belong to (−π, π]. In other case, we just need to work
with the representatives. On the one hand,

(∆(Θ)−∆(Θ̃)) · (Θ− Θ̃) =
K

N

N∑

i=1

∑

j∈Ci(Θ∗)
(δ(θi − θj)− δ(θ̃i − θ̃j))(θi − θ̃i).

Changing the indices i and j we obtain

(∆(Θ)−∆(Θ̃)) · (Θ− Θ̃) =
K

N

N∑

j=1

∑

i∈Cj(Θ∗)
(δ(θj − θi)− δ(θ̃j − θ̃i))(θj − θ̃j)

= −K
N

N∑

i=1

∑

j∈Ci(Θ∗)
(δ(θi − θj)− δ(θ̃i − θ̃j))(θj − θ̃j),

where the properties of the sets Ci(Θ∗) along with the antisymmetry of δ have been used in the
last line. Taking the mean value of both expressions and using that δ is decreasing, we arrive at

(∆(Θ)−∆(Θ̃)) · (Θ− Θ̃) =
K

2N

N∑

i=1

∑

j∈Ci(Θ∗)
(δ(θi − θj)− δ(θ̃i − θ̃j))((θi − θj)− (θ̃i − θ̃j)) ≤ 0,

and, as a consequence, to the monotonicity of ∆. On the other hand,

|Λi(Θ)− Λi(Θ̃)| ≤ K

N

∑

j∈Ci(Θ∗)
|λ(θi − θj)− λ(θ̃i − θ̃j)|+

K

N

∑

j /∈Ci(Θ∗)
|h(θi − θj)− h(θ̃i − θ̃j)|.

Since λ is Lipschitz-continuous in (−π, π) and h is locally Lipschitz-continuous in (−π, π)\{0},
then there exists some constant M = M(U) so that

|Λi(Θ)− Λi(Θ̃)| ≤ KM

N

N∑

j=1

|(θi − θj)− (θ̃i − θ̃j)| ≤
N + 1

N
KM |Θ− Θ̃|,

for every index i ∈ {1, . . . , N}, thus yielding the Lipschitz-continuity of Λ in U . The last part is
a simple consequence of all the other properties. Namely, consider x, y ∈ U and note that

(H(x)−H(y)) · (x− y) = (∆(x)−∆(y)) · (x− y) + (Λ(x)−Λ(y)) · (x− y) ≤ N + 1

N
KM |x− y|2,

where we have used the above two properties along with the Cauchy–Schwartz inequality.
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Finally, putting together Lemma 3.3.2 and Proposition 3.3.4, one concludes the following
well-posedness property.

Theorem 3.3.5. There is one global-in-time strong solution to the system (3.3.1)-(3.3.2), with α ∈
(0, 1

2), which is unique forwards in time, for any initial configuration.

The next result is a simple consequence of the above well-posedness theorem and charac-
terizes the eventual emergence of sticking in a cluster after a potential collision.

Theorem 3.3.6. Consider Θ = (θ1, . . . , θN ), the global-in-time solution in Theorem 3.3.5. Assume
that two oscillators collide at t∗, i.e., θ̄i(t∗) = θ̄j(t

∗) = θ∗ for some i 6= j. Then, the following two
statements are equivalent:

1. θi and θj stick together at t∗.

2. Their natural frequencies agree, i.e.,

Ωi = Ωj . (3.3.6)

Proof. Without loss of generality, let us assume that i = 1, j = 2 and θ1(t∗) = θ2(t∗) ∈ (−π, π].
Assume that the two particles keep stuck together after time t∗. Then, looking at the first
two equations in system (3.3.1)-(3.3.2) it is clear that Ω1 = Ω2. Conversely, let us assume that
Ω1 = Ω2 =: Ω and consider the following system of N − 1 coupled ODEs.

ϑ̇ = Ω +
K

N

N∑

j=3

h(ϑj − ϑ),

ϑ̇i = Ωi +
2K

N
h(ϑ− ϑi) +

K

N

N∑

j=3

h(ϑj − ϑi), i = 3, . . . , N,

with initial data given by

(ϑ(t∗), ϑ3(t∗), . . . , ϑN (t∗)) = (θ∗, θ3(t∗), . . . , θN (t∗)).

A similar technique to that in Theorem 3.3.5 clearly yields a global-in-time solution to such
initial value problem. Hence, the following two trajectories in RN

t 7→ (θ1(t), θ2(t), θ3(t), . . . , θN (t)),

t 7→ (ϑ(t), ϑ(t), ϑ3(t), . . . , ϑN (t)),

are both solutions to (3.3.1)-(3.3.2) such that at t = t∗ they take the value

(θ∗, θ∗, θ3(t∗), . . . , θN (t∗)).

By uniqueness they agree and, in particular, θ1(t) = ϑ(t) = θ2(t) for all t ≥ t∗.

118



CHAPTER 3. THE SINGULAR KURAMOTO MODEL: AGENT-BASED SYSTEM

3.3.2 Well–posedness in the critical regime

In the critical case, i.e. α = 1
2 , the vector field H = H(Θ) is no longer continuous and the

Peano existence theorem does not work. Nevertheless, in such case H is still a measurable
and essentially bounded vector field. Consequently, one can apply Filippov’s existence criterion,
see [14, 130]. Such method provides a criterion to ensure the existence of Filippov-solutions to
(3.3.1)-(3.3.2), that is, absolutely continuous trajectories

t ∈ [0,+∞) 7−→ Θ(t) = (θ1(t), . . . , θN (t)),

that solve the differential inclusion
{

Θ̇(t) ∈ H(Θ(t)), a.e. t ≥ 0,
Θ(0) = Θ0,

(3.3.7)

whereH = H(Θ) is the Filippov set-valued map associated with H = H(Θ) for α = 1
2 , i.e.,

H(Θ) =
⋂

δ>0

⋂

|N |N
co(H(Bδ(Θ) \ N )),

for any Θ ∈ RN , where |N | represents the Lebesgue measure of a measurable subset N ⊆ RN
and co(A) represents the closed convex hull of a subset A ⊆ RN . See also Definition D.1.1
and the remaining results in Appendix D for further details about Filippov’s theory that will
be used later along this part. However, before Filippov existence theory, let us first explore a
more explicit representation ofH = H(Θ) to gain some intuition about the Filippov set-valued
map of many-particle systems with discontinuous forces. We recall Subsection 3.2.3 about the
collision equivalence relation and the necessary notation to deal with clusters of oscillators.

Proposition 3.3.7. In the critical regime α = 1
2 , the Filippov set-valued mapH = H(Θ) associated with

H = H(Θ) stands for the convex and compact polytope consisting of the points (ω1, . . . , ωN ) ∈ RN
such that

ωi = Ωi +
K

N

∑

j /∈Ci(Θ)

h(θj − θi) +
K

N

∑

j∈Ci(Θ)\{i}
yij , for all i = 1, . . . , N,

for some Y = (yij)1≤i,j≤N ∈ SkewN ([−1, 1]).

Here, SkewN ([−1, 1]) represents the space of skew-symmetric N × N matrices with items
in the interval [−1, 1]. Since the proof is straightforward by Definition D.1.1 of the Filippov
set-valued map, we omit it here.

Remark 3.3.8. Notice that for every (ω1, . . . , ωN ) ∈ H(Θ) the next property holds true

N∑

i=1

ωi =

N∑

i=1

Ωi.

In particular, every Filippov solution (θ1, . . . , θN ) to (3.3.1)-(3.3.2), in the case α = 1
2 , verifies

N∑

i=1

θ̇i(t) =
N∑

i=1

Ωi, for a.e. t ≥ 0.

Hence, Filippov solutions in the critical case still preserve the average frequency like classical solutions
do for the subcritical case or the original Kuramoto model.
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Example 3.3.9. In order to gain some intuition about those sets, let us exhibit some particular examples:

1. For every N ∈ N, if Θ /∈ C, thenH(Θ) = {H(Θ)}.

2. For N = 2, if Θ = (θ1, θ2) ∈ C12, then H(Θ) is the polytope consisting of points (ω1, ω2) ∈ R2

such that

ω1 = Ω1 +
K

2
y12,

ω2 = Ω2 −
K

2
y12,

for some y12 ∈ [−1, 1].

3. For N = 3, if Θ = (θ1, θ2, θ3) ∈ C12 \ C13, then H(Θ) is the polytope consisting of the points
(ω1, ω2, ω3) ∈ R3 such that

ω1 = Ω1 +
K

3
h(θ3 − θ1) +

K

3
y12,

ω2 = Ω2 +
K

3
h(θ3 − θ2)− K

3
y12,

ω3 = Ω3 +
K

3
h(θ1 − θ3) +

K

3
h(θ2 − θ3),

for some y12 ∈ [−1, 1]. That is a line segment, see Figure 3.3a.

4. For N = 3, if Θ = (θ1, θ2, θ3) ∈ C12 ∩ C13, then H(Θ) is the polytope consisting of the points
(ω1, ω2, ω3) ∈ R3 such that

ω1 = Ω1 +
K

3
y12 +

K

3
y13,

ω2 = Ω2 −
K

3
y12 +

K

3
y23,

ω3 = Ω3 −
K

3
y13 −

K

3
y23.

for some y12, y13, y23 ∈ [−1, 1]. This is a regular hexagon, see Figure 3.3b.

Finally, let us apply Filippov theory in Appendix D to construct the unique Filippov solu-
tions of our particular system (3.3.1)-(3.3.2) in the critical case α = 1

2 . Notice first that global
existence is guaranteed by Lemma D.1.5 thanks to the boundedness of the vector fieldH . How-
ever, uniqueness is less apparent. The way to go is similar to that in the preceding Subsection
3.3.1 and relies on a good decomposition of −h. Define the couple of function δ = δ(θ) and
λ = λ(θ) in (−π, π) as follows

δ(θ) :=

{
1 for θ ∈ (−π, 0),

−1, for θ ∈ [0, π),

λ(θ) :=

{
−1− h(θ), for θ ∈ (−π, 0),

1− h(θ), for θ ∈ [0, π).

Notice that
− h(θ) = δ(θ) + λ(θ), for all θ ∈ (−π, π), (3.3.8)

as depicted in Figure 3.4.
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Figure 3.3: Pictures of the Filippov set-valued map in the critical case at a total collision
phase configuration. In Figure 3.3a, N = 2 and the polytope is a line segment joining(
Ω1 ± K

2 ,Ω2 ∓ K
2

)
. In Figure 3.3b, N = 3 and the polytope is a regular hexagon with vertices(

Ω1 ± 2K
3 ,Ω2 ∓ 2K

3 ,Ω3

)
,
(
Ω1 ± 2K

3 ,Ω2,Ω3 ∓ 2K
3

)
and

(
Ω1,Ω2 ± 2K

3 ,Ω3 ∓ 2K
3

)
. For simplicity,

the natural frequencies are set to zero and K = 1 in the figures.
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Figure 3.4: Plot of the function −h(θ) and the functions δ(θ) and λ(θ) in the decomposition for
the value α = 0.5.
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Remark 3.3.10. Note that although−h(θ) is a continuous function because of the jump discontinuities
at θ ∈ 2πZ, one can locally decompose it around such values in terms of a decreasing function δ(θ) and
a Lipschitz-continuous function λ(θ).

Finally, for every Θ∗ = (θ∗1, . . . , θ
∗
N ) ∈ RN we locally decompose H around it as follows

∆i(Θ) :=
K

N

∑

j∈Ci(Θ∗)
δ
(
θi − θj

)
, (3.3.9)

Λi(Θ) := Ωi +
K

N

∑

j∈Ci(Θ∗)
λ
(
θi − θj

)
− K

N

∑

j /∈Ci(Θ∗)
h(θi − θj), (3.3.10)

for every i = 1, . . . , N , where the above functions are defined almost everywhere. Indeed,
notice that since δ does not make sense at 0, thus ∆ is not defined on C, but it is a negligible set.
Again, we recall that θ̄ is its representative modulo 2π in the interval (−π, π], for any θ ∈ R.

Proposition 3.3.11. Let Θ∗ = (θ∗1, . . . , θ
∗
N ) ∈ RN and define the vector fields

∆ : U −→ RN , Λ : U −→ RN ,

via the formulas (3.3.9)-(3.3.10), for a small enough neighborhood V of Θ∗ in RN . Then,

1. H = ∆ + Λ in U .

2. ∆ is decreasing in U .

3. Λ is Lipschitz-continuous in U .

4. H is one-sided Lipschitz continuous in U .

Proof. The proof is analogous to Proposition 3.3.4.

Finally, putting Lemmas D.1.5 and D.1.7 in Appendix D and Proposition 3.3.11 together, we
conclude the following well-posedness result of Filippov solutions for (3.3.1)-(3.3.2).

Theorem 3.3.12. There is one global-in-time Filippov solution to the system (3.3.1)-(3.3.2) with α = 1
2

for any initial configuration, that is unique forwards in time.

Again, we can characterize the eventual emergence of sticking of a cluster after a potential
collision in a similar way as we did in Theorem 3.3.6. We require the following notation. For
any N ∈ N, each 1 ≤ m ≤ N and every permutation σ of {1, . . . , N} we define the following
couple of m×m matrices:

Mσ
m(Ω) := (Ωσi − Ωσj )1≤i,j≤m, Jm = (1)1≤i,j≤m, (3.3.11)

i.e., Mσ
m(Ω) stands for the matrix of relative natural frequencies of the only m oscillators with

indices i = σ1, . . . , σm and Jm is a m×m matrix whose components are all equal to one.

Theorem 3.3.13. Consider Θ = (θ1, . . . , θN ) the global-in-time Filippov solution in Theorem 3.3.12.
Assume that t∗ is some collision time and fix any cluster Ek(t∗) ≡ Ek with k = 1, . . . , κ(t∗). Then, the
following two statements are equivalent:

1. The nk(t∗) oscillators in such cluster Ek(t∗) stick all together at time t∗.
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2. There exists a bijection σ : {1 . . . , nk} → Ek and Y ∈ Skewnk([−1, 1]) such that

Mσ
nk

(Ω) =
K

N
(Y · Jnk + Jnk · Y ) . (3.3.12)

Proof. Let us call n := nk for simplicity and assume that the oscillators in such cluster agree
precisely with the first n oscillators, i.e., Ek = {1, . . . , n}. By continuity, let us take some small
ε > 0 such that θ̄j(t) 6= θ̄i(t), for every t ∈ [t∗, t∗ + ε], any i ∈ Ek and each j /∈ Ek. First, let us
assume that the former statement holds true. Without loss of generality we might assume that
θ1(t) = · · · = θn(t) for all t ≥ t∗ and we define θ(t) := θ1(t) = · · · = θn(t) for all t ≥ t∗. Then,
looking at the explicit expression in Proposition 3.3.7 for the Filippov set-valued map H, it is
clear that the following identities hold true

θ̇i = Ωi +
K

N

N∑

j=n+1

h(θj(t)− θ(t)) +
K

N

n∑

j=1

yij(t),

for a.e. t ∈ [t∗, t∗+ε] and every i = 1, . . . , n, where yij ∈ L∞(t∗, t∗+ε) and Y (t) = (yij(t))1≤i,j≤n ∈
Skewn([−1, 1]) for almost all t ∈ [t∗, t∗ + ε]. Since θ̇i = θ̇j a.e., for every i, j = 1, . . . , n, then we
obtain the next system of equations

Ωi − Ωj = −K
N

n∑

l=1
l 6=i

yil(t) +
K

N

n∑

l=1
l 6=j

yjl(t),

for a.e. t ∈ [t∗, t∗ + ε]. In particular, (3.3.12) holds. Conversely, let us assume that (3.3.12) is
verified for some Y ∈ Skewn([−1, 1]), then we have

Ωi +
K

N

n∑

l=1
l 6=i

yil = Ωj +
K

N

n∑

l=1
l 6=j

yjl =: Ω̂.

Let us now consider the vector field

Ĥn = (Ĥn
0 , Ĥ

n
n+1, . . . , Ĥ

n
N ) : RN−n+1 −→ RN−n+1

given by the formulas

Ĥn
0 (ϑ, ϑn+1, . . . , ϑN ) = Ω̂ +

K

N

N∑

j=n+1

h(ϑj − ϑ),

Ĥn
i (ϑ, ϑn+1, . . . , ϑN ) = Ωi +

nK

N
h(ϑ− ϑi) +

K

N

N∑

j=n+1

h(ϑj − ϑi),

for every i = n + 1, . . . , N . Also, consider its associated Filippov set-valued map Ĥn and the
associated differential inclusion

(ϑ̇, ϑ̇n+1, . . . , ϑ̇N ) ∈ Ĥn(ϑ, ϑn+1, . . . , ϑN ),

with initial datum given by

(ϑ(t∗), ϑn+1(t∗), . . . , ϑN (t∗)) = (θ∗, θn+1(t∗), . . . , θN (t∗)).
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A similar well-posedness result to that in Theorem 3.3.12 shows that such IVP enjoys one
global-in-time solution. In addition, by definition it is apparent that whenever we pick

(ω, ωn+1, . . . , ωN ) ∈ Ĥn(ϑ, ϑn+1, . . . , ϑN ),

then, we obtain (
ω, . . . , ω︸ ︷︷ ︸
npairs

, ωn+1, . . . , ωN
)
∈ H

(
ϑ, . . . , ϑ︸ ︷︷ ︸
npairs

, ϑn+1, ϑN
)
.

Consequently, the following two trajectories in RN

t 7→ (θ1(t), θ2(t), . . . , θn(t), θn+1(t), . . . , θN (t)),

t 7→ (ϑ(t), ϑ(t), . . . , ϑ(t)︸ ︷︷ ︸
npairs

, ϑn+1(t), . . . , ϑN (t)),

are Filippov solutions to (3.3.1)-(3.3.2) such that they take the same value at t = t∗, namely,
(
θ∗, . . . , θ∗︸ ︷︷ ︸
npairs

, θn+1(t∗), . . . , θN (t∗)
)
.

By uniqueness they agree and, in particular,

θi(t) = ϑ(t) for all t ≥ t∗ and every i = 1, . . . , n.

The sticking condition (3.3.12) can be characterized in a much more explicit manner by con-
vex analysis techniques supported by Farkas’ alternative. See Appendix 3.C and, in particular,
the characterization of condition (3.3.12) in Lemma 3.C.3. Such ideas can be arranged in the
next result.

Corollary 3.3.14. Under the same assumptions as in Theorem 3.3.13. The following two assertions are
equivalent:

1. The nk oscillators in the cluster Ek stick all together at time t∗.

2. We have
1

m

∑

i∈I
Ωi −

1

nk

∑

i∈Ek
Ωi ∈

[
−K
N

(nk −m),
K

N
(nk −m)

]
, (3.3.13)

for every 1 ≤ m ≤ nk and every I ⊆ Ek such that #I = m.

Remark 3.3.15.

• Notice that in Theorem 3.3.13 and Corollary 3.3.14 we have characterized when the whole cluster
Ek remains stuck together, but not when a subcluster of a given size instantaneously splits from
the remaining oscillators of the cluster. The main problem to extend the above proof is that it is
hard to quantify the way in which an oscillator splits from the subcluster. Specifically, it is possible
that an oscillator departs from the cluster exhibiting a left accumulation of switches of state where
it instantaneously splits and collides with the formed subcluster. This accumulating phenomenon
will come to play several times along this chapter and will cause some problems throughout the
chapter that we shall try to overcome.
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• The above accumulating phenomenon is called left Zeno behavior in the literature. It appears in
Filippov solutions of some systems like the reversed bouncing ball. For instance, in [130, p. 116]
Filippov proposed a discontinuous first order system with solutions exhibiting Zeno behavior. In
[130, Theorem 2.10.4], the same author considered absence of Zeno behavior as part of the sufficient
conditions (but not necessary) guaranteeing forwards uniqueness. We skip the analysis of Zeno
behavior here and will address it in a future work.

3.3.3 Well–posedness in the supercritical regime

Recall that in the supercritical regime, i.e., α > 1
2 , the vector field H = H(Θ) is not only

discontinuous at the collision states but it is also unbounded near those points, see Figure 3.1.
Thus, the classical theory for well-posedness cannot be applied neither and one might seek for
a notion of generalized solutions in the same sense as in the critical case α = 1

2 (see Subsection
3.3.2). Again, a plausible strategy is to turn the differential equation (3.3.1)-(3.3.2) of interest
into the augmented differential inclusion (3.3.7) associated to the Filippov set-valued mapH =
H(Θ). A similar analysis to that in Proposition 3.3.7 yields the following characterization of the
Filippov set-valued map for the supercritical regime.

Proposition 3.3.16. In the supercritical regime α > 1
2 , the Filippov set-valued map H = H(Θ)

associated with H = H(Θ) stands for the convex and unbounded polytope consisting of the points
(ω1, . . . , ωN ) ∈ RN such that

ωi = Ωi +
K

N

∑

j /∈Ci(Θ)

h(θj − θi) +
K

N

∑

j∈Ci(Θ)\{i}
yij , for all i = 1, . . . , N,

for some Y = (yij)1≤i,j≤N ∈ SkewN (R).

Now, notice that SkewN (R) represents the set ofN×N skew-symmetric matrices with items
in the whole real line. The Filippov set-valued map then enjoys similar expressions in the crit-
ical and supercritical regimes except for a “slight” change. In the former case, the coefficients
yij range in the interval [−1, 1] whereas in the latter case they take values in the whole R. In-
deed, the same examples for α = 1

2 in Example 3.3.9 can be considered for α > 1
2 . For instance,

similar polytopes to those in Figure 3.3 are obtained at the total collision phase configurations
when the corresponding polygon is replaced by its affine envelope. Those similarities ensure
that any Filippov solution to (3.3.1)-(3.3.2) with α > 1

2 also conserve the average frequency as
in Remark 3.3.8. What is more, since H(Θ) is apparently non-empty, then Lemma D.1.3 in Ap-
pendix D shows thatH takes values in the non-empty, closed and convex sets and it has closed
graph in the set-valued sense. However, the unboundedness in yij entails a severe change of
behavior. Specifically, it violates the local compactness of the minimal selection m(H) and, as
a consequence, the existence result in Lemma D.1.4 does not work. Such loss of compactness
is fateful and implies that the supercritical regime α > 1

2 lies in the setting where all the “clas-
sical” assumptions ensuring global existence and one-sided uniqueness does not hold. The
literature about the abstract analysis of unbounded differential inclusions is rare, see [172, 286].
In addition, all those results require some sort of relaxed set-valued Lipschitz condition and
linear growth that do not hold in our particular problem. Nevertheless, we will show that in
some cases we can still construct a Filippov solution which is unique under some conditions.

Remark 3.3.17. Notice that we still do not know anything about uniqueness results in the supercritical
case. However, the approach in Theorem 3.3.13 can still be used to obtain a partial answer. Namely, it
might give a sufficient condition on the natural frequencies to ensure that after a collision of a classical
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solution, we can extend a Filippov solution with sticking of the formed cluster. We shall elaborate
on this idea later after this remark and we skip it here. Instead, let us just focus on the study of the
analogue necessary condition of sticking like in (3.3.12). Indeed, consider some Filippov solution Θ =
(θ1, . . . , θN ) to (3.3.1)-(3.3.2) with α > 1

2 and assume that it is defined in an interval [0, T ) and that
t∗ ∈ (0, T ) is some collision time. Then, we might fix a cluster Ek(t∗) ≡ Ek and assume that the
nk(t

∗) ≡ nk oscillators in such cluster stick all together at time t∗. Hence, a similar proof to that of
Theorem 3.3.13 yields the existence of some bijection σ : {1, . . . , nk} −→ Ek and some Y ∈ Skewnk(R)
such that the following equation fulfils

Mσ
m(Ω) =

K

N
(Y · Jnk + Jnk · Y ) . (3.3.14)

Again, let us obtain a more explicit characterization of such condition. We can resort on similar ideas
coming from Farkas’ alternative, see Lemma 3.C.2 in Appendix 3.C. Such Lemma ensures that (3.3.14)
is perfectly equivalent to the condition (3.C.2), i.e.,

mij +mjk +mki = 0,

for every i, j, k = 1, . . . , nk, where mij denotes the (i, j)-th component of the matrix Mσ
m(Ω). Let us

look into the particular structure of Mσ
nk

(Ω) to restate the above condition (see (3.3.11))

mij +mjk +mki = (Ωσi − Ωσj ) + (Ωσj − Ωσk) + (Ωσk − Ωσi).

Then, the necessary sticking condition is automatically satisfied for every given configuration of natural
frequencies. This suggests that any classical solution in the supercritical case that stops at a collision
state might always be continued as Filippov solution with sticking of the cluster without any constraint
for the chosen natural frequencies.

Our next goal is to show that we can indeed prolong classical solutions by Filippov solu-
tions in this way. To such end, we require some more accurate control of the behavior of such
classical solutions at the maximal time of existence. This is the content of the next result where
the (dissipative) gradient-flow structure in Subsection 3.2.4 comes into play.

Lemma 3.3.18. Consider Θ = (θ1, . . . , θN ) any classical solution to (3.3.1)-(3.3.2) with α ∈ (1
2 , 1)

that is defined in a finite maximal existence interval [0, t∗). Then,

1. The solution does not blow up at t∗, i.e.,

lim
t→t∗
|Θ(t)| 6=∞,

2. The solution converges towards a collision state, i.e., there exists Θ∗ ∈ C such that

lim
t→t∗

Θ(t) = Θ∗.

In addition, the trajectory t 7→ Θ(t) remains absolutely continuous up to the collision time t = t∗;
specifically, Θ̇ ∈ L2((0, t∗),RN ).

Proof. We split the proof into three parts. The first part is devoted to show that the classical
trajectories verify the following fundamental inequalities:

1

2

∫ t

0
|Θ̇(s)|2 ds ≤ Vint(Θ0) +

C2
Ω

2
t, (3.3.15)
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|Θ(t)| ≤ |Θ0|+
∫ t

0
|Θ̇(s)| ds, (3.3.16)

for every t ∈ [0, t∗). Here, Vint(Θ) is the second term of the potential V (Θ) in (3.2.10) and we
set the constant

CΩ := |(Ω1, . . . ,ΩN )| =
√

Ω2
1 + · · ·Ω2

N .

We shall show in the second step that such inequalities (3.3.15) and (3.3.16) infer the next ones

1

2

∫ t∗

0
|Θ̇(s)|2 ds ≤ Vint(Θ0) +

C2
Ω

2
t∗ <∞, (3.3.17)

∫ t∗

0
|Θ̇(s)| ds ≤ Vint(Θ0) +

1 + C2
Ω

2
t∗ <∞, (3.3.18)

|Θ(t)| ≤ |Θ0|+ Vint(Θ0) +
1 + C2

Ω

2
t∗, (3.3.19)

for every t ∈ [0, t∗). Finally, the third part will focus on proving the assertions in the statement
of the Lemma via such fundamental inequalities (3.3.15)-(3.3.19).

• Step 1: Recall that in Section 3.2, the classical solution t 7−→ Θ(t) of (3.3.1)-(3.3.2) equivalently
solves a gradient flow system (3.2.9), i.e.,

Θ̇(t) = −∇V (Θ(t)),

for all t ∈ [0, t∗), where V is given in (3.2.10). Hence,

d

dt
V (Θ(t)) = ∇V (Θ(t)) · Θ̇(t) = −|Θ̇(t)|2,

for every t ∈ [0, t∗). Taking integrals in time, we obtain

∫ t

0
|Θ̇(s)|2 ds = V (Θ0)− V (Θ(t)) =

N∑

i=1

Ωi(θi,0 − θi(t)) + Vint(Θ0)− Vint(Θ(t)), (3.3.20)

for every t ∈ [0, t∗). Recall that the function W in (3.2.11) involved in the potential (3.2.10) is a
primitive function of h. Then, W ≥ 0 as a consequence of the antisymmetry of h and our choice
W (0) = 0 and, in particular, Vint ≥ 0. This, together with the Cauchy–Schwarz inequality, yield

∫ t

0
|Θ̇(s)|2 ds ≤ CΩ

∫ t

0
|Θ̇(s)| ds+ Vint(Θ0), (3.3.21)

for every t ∈ [0, t∗). Using Young’s inequality in the first term of (3.3.21), we arrive at the first
fundamental inequality (3.3.15). The second inequality (3.3.16) is standard, but let us sketch it
for the sake of clarity

d

dt

|Θ|2
2

= Θ · Θ̇ ≤ |Θ| |Θ̇|,

for all t ∈ [0, t∗). Then, we arrive at

d

dt
|Θ(t)| ≤ |Θ̇(t)|,

for every t ∈ [0, t∗) and integrating with respect to time yields (3.3.16).
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• Step 2: First, taking limits t → t∗ in (3.3.15), we clearly obtain (3.3.17). Also, the finite length
of the trajectory (3.3.18) holds true by virtue of the Cauchy–Schwarz inequality and Young’s
inequality both applied to the preceding one. Finally, inequalities (3.3.16) and (3.3.18) entail
(3.3.19).

• Step 3: The classical trajectory t 7→ Θ(t) is defined up to a finite maximal time t∗. Hence,
classical results show that either it blows up at t = t∗ or there exists some sequence {tn}n∈N ↗
t∗ and some Θ∗ ∈ C such that {Θ(tn)}n∈N → Θ∗. Since the former option is prevented by
(3.3.19), then the latter must hold true. Let us prove that the whole trajectory converges towards
that collision state Θ∗. In other case, there exists another sequence {sn}n∈N ↗ t∗ and some
ε0 > 0 such that

|Θ(sn)−Θ∗| ≥ ε0, (3.3.22)

for all n ∈ N. Without loss of generality we can assume that the sequences {tn}n∈N and {sn}n∈N
are ordered as follows

t1 < s1 < t2 < s2 < . . .

and that
|Θ(tn)−Θ∗| ≤ ε0

2n
, (3.3.23)

for every n ∈ N. Thereby,

|Θ(tn)−Θ(sn)| ≥ |Θ(sn)−Θ∗| − |Θ(tn)−Θ∗| ≥ ε0 −
ε0

2n
,

|Θ(sn)−Θ(tn+1)| ≥ |Θ(sn)−Θ∗| − |Θ(tn+1)−Θ∗| ≥ ε0 −
ε0

2n+1
,

for all n ∈ N. Then, it is clear that
∫ t∗

0
|Θ̇(t)| dt ≥

∫ t∗

t1

|Θ̇(t)| dt

=
∞∑

n=1

∫ sn

tn

|Θ̇(t)| dt+
∞∑

n=1

∫ tn+1

sn

|Θ̇(t)| dt

≥
∞∑

n=1

|Θ(tn)−Θ(sn)|+
∞∑

n=1

|Θ(sn)−Θ(tn+1)|

≥
∞∑

n=1

ε0

(
1− 1

2n

)
+
∞∑

n=1

ε0

(
1− 1

2n+1

)
=∞.

Thus, the trajectory would have infinite length and that contradicts (3.3.18). Hence, we find

lim
t→t∗

Θ(t) = Θ∗.

Such conclusion shows that, as expected, it is plausible to continue classical solutions by
Filippov solutions (hence absolutely continuous) after a possible collision. The explicit method
of continuation is discussed in the following result.

Theorem 3.3.19. Consider Θ = (θ1, . . . , θN ) any classical solution to (3.3.1)-(3.3.2) with α ∈
(

1
2 , 1
)

that is defined in a finite maximal existence interval [0, t∗) and, according to Lemma 3.3.18, let us
consider the collision state Θ∗ ∈ C such that

lim
t→t∗

Θ(t) = Θ∗.
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Then, there exists some ε > 0 so that the classical trajectory t 7→ Θ(t) can be continued by a Filippov
solution to (3.3.1)-(3.3.2) in a short interval [t∗, t∗ + ε) in such a way that oscillators belonging to the
same cluster of the collision state Θ∗ remain all stuck together after t∗.

Proof. Let Ek be the k-th cluster of oscillators with nk = #Ek for k = 1, · · · , κ. We consider
a bijection σk : {1, . . . , nk} −→ Ek, for every k = 1, . . . , κ. Since the necessary condition
(3.3.14) is automatically satisfied as discussed in Remark 3.3.17, then there exists some matrix
Y k ∈ Skewnk(R) such that

Ωσki
+
K

N

nk∑

l=1
l 6=i

ykil = Ωσkj
+
K

N

nk∑

l=1
l 6=j

ykjl =: Ω̂k, (3.3.24)

for every couple of indices i, j ∈ {1, . . . , nk}. Let us define the following system of κ differential
equations

ϑ̇k = Ĥk(ϑ1, . . . , ϑk) := Ω̂k +
K

N

κ∑

m=1
m 6=k

nmh(ϑm − ϑk), (3.3.25)

for k = 1, . . . , κ, with initial data given by

(ϑ1(t∗), . . . , ϑκ(t∗)) = (θ∗ι1 , . . . , θ
∗
ικ). (3.3.26)

Since the initial datum is a non-collision state in a lower dimension space Rκ of phase con-
figurations, then there exists a unique classical solution to such problem that is defined in a
maximal existence interval [t∗, t∗∗) and such that if t∗∗ < ∞, then (ϑ1, . . . , ϑκ) converges to-
wards a new collision state by virtue of Lemma 3.3.18 (merge of clusters). The same result
ensures that

t ∈ [0, t∗) 7−→ (θ1(t), . . . , θN (t)),

t ∈ [t∗, t∗∗) 7−→ (ϑ1(t), . . . , ϑκ(t)),

belong to W 1,2((0, t∗),RN ) and W 1,2((t∗, t∗∗),Rκ), respectively. Let us set the prolongation of
t 7−→ Θ(t) in [t∗, t∗∗) in such a way that

θσki
(t) := ϑk(t), ∀t ∈ [t∗, t∗∗),

for every i ∈ Ek and k = 1, . . . , κ. Both trajectories glue in a W 1,2 way and it is clear, by virtue
of the definition of Ĥk in (3.3.25) and Ω̂k in (3.3.24) along with the explicit expression of the
Filippov map in Proposition 3.3.16, that t ∈ [0, t∗∗) 7−→ Θ(t) becomes a Filippov solution to
(3.3.1)-(3.3.2) in [0, t∗∗).

Remark 3.3.20. The above procedure can be repeated as many times as needed after each collision time of
the corresponding classical solutions to the reduced systems (3.3.25)-(3.3.26). Indeed, by Remark 3.3.17
the necessary condition (3.3.14) is automatically satisfied. Since there cannot be more than N − 1 differ-
ent sticking times, we may apply Theorem 3.3.19 finitely many times to obtain global-in-time Filippov
solutions to (3.3.1)-(3.3.2) in the supercritical case. However, one may wonder whether this global-in-
time continuation procedure is unique or oscillators may also be allowed to split instantaneously after
a collision. Although answering the general question for any number N of oscillators and any collision
state is really convoluted, let us give some particular answer for the case N = 2:

θ̇1 = Ω1 +
K

2
h(θ2 − θ1), (3.3.27)
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θ̇2 = Ω2 +
K

2
h(θ1 − θ2). (3.3.28)

Consider the relative phase θ := θ2 − θ1 and relative natural frequency Ω := Ω2 − Ω1. Then, the
associated dynamics of a classical solution is governed by the next equation

θ̇ = Ω−Kh(θ),

in the maximal interval of existence [0, t∗). The dynamics of the above ODE is analyzed later in Proposi-
tion 3.5.2, from which we can infer that t∗ = +∞ if θ(0) = θ̄, whereas t∗ < +∞ if θ(0) /∈ {0, θ̄}. Here,
θ̄ stands for the unique (unstable) equilibrium of the system, see Proposition 3.5.2 in the subsequent
Section 3.5. Without loss of generality, we will fix the initial relative phase so that θ(0) ∈ (0, θ̄) (the
other cases are similar). Then, Lemma 3.3.18 guarantees that t = t∗ must be a collision time, i.e.,

lim
t→t∗

θ(t) = 0.

1. Let us assume by contradiction that there was another Filippov solution in [t∗, t∗∗) consisting
of two particles that instantaneously split again after t = t∗. Such split can arise in only two
different manners:

(a) (Sharp split) There exists some small ε > 0 such that θ(t) 6= 0, for every t ∈ (t∗, t∗ + ε). In
such case, either θ(t) > 0, for all t ∈ (t∗, t∗ + ε), or θ(t) < 0, for all t ∈ (t∗, t∗ + ε).

(b) (Zeno split) There exist a couple of sequences {tn}n∈N ↘ t∗ and {sn}n∈N ↘ t∗ such that
θ(sn) = 0 but θ(tn) 6= 0, for every n ∈ N. Recall Remark 3.3.15 for the left accumulations
of switches or Zeno behavior and see Figure 3.5.

Replacing t∗ by a suitable time, it is apparent that the second type of split at t∗ guarantees the
first one at a (possibly) latter time. Let us then focus just on the fist case. Looking at the profile of
Ω − kh(θ) in Figure 3.6, we then would arrive at the following conclusion: either θ̇(t) < 0 and
θ(t) > 0 for all t ∈ (t∗, t∗ + ε) or θ̇(t) > 0 and θ(t) < 0 for all t ∈ (t∗, t∗ + ε). In any case, we
obtain a contradiction.

2. Hence, the only choice for the oscillators after the collision state is to stick together. Let us define
the phase of the reduced system, see (3.3.24)

Ω̂ := Ω1 + y12 = Ω2 + y21,

where Y ∈ Skew2(R) is any matrix verifying the necessary condition (3.3.14). Indeed, there just
exists one such matrix Y , whose items read y12 = −y21 = Ω2−Ω1

2 . Then, Ω̂ = Ω1+Ω2
2 and the

reduced system (3.3.25) looks like
ϑ̇ = Ω̂, t ∈ [t∗,∞).

Consequently, the only Filippov solution to (3.3.1)-(3.3.2) evolves through (3.3.27)-(3.3.28) up to
the collision time t∗. After it, both oscillators stick together and they move with constant frequency
equals to the average natural frequency.

For generalN , it is not clear whether (b) in the above first item can be reduced to (a) in a similar way.
Namely, we cannot guarantee that along a whole time interval (t∗, t∗+ε) all the formed subclusters split-
ting from the given cluster remain at positive distance or they actually merge and split instantaneously
with eventual switches of collisional type in a similar way to Figure 3.6 in Zeno behavior. Also, studying
the higher dimensional phase portrait in the same spirit as we have done for N = 2 is not easy and we
shall address it in future works.
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Figure 3.5: Left-Zeno behavior in the relative phase θ(t) = θ2(t)− θ1(t) of two oscillators
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Figure 3.6: Profile of Ω−Kh(θ) for Ω = 0.25, K = 1 and α = 0.75.

3.4 Rigorous limit towards singular weights

In the previous section, we studied the existence and one-sided uniqueness of absolutely con-
tinuous solutions to the singular weighted first order Kuramoto model in all the subcritical,
critical and supercritical cases. Because of the continuity of the kernel for α ∈

(
0, 1

2

)
, we can

show that in that case the solutions are indeed C1, although we cannot say the same neither
for the critical case α = 1

2 nor for the supercritical case α ∈
(

1
2 , 1
)
. Also, these results does not

necessarily provide any extra regularity of the frequencies ωi = θ̇i for an augmented second
order model to make sense.

Let us recall that in Subsection 3.2.2, the singular Kuramoto model was formally obtained
as singular limit ε → 0 of the scaled regular model (3.2.5)-(3.2.6). Notice that if apart form
heuristically, we rigorously proved the limit ε → 0, then we would achieve an alternative
existence result for the singular models. In this section, we shall inspect to what extend such
idea works and how many exponents we can obtain with such technique. In particular, we will
recover the existence results in Section 3.3. Indeed, this technique will yield a gain of piecewise
W 1,1 regularity of the frequencies ωi in the subcritical case and will provide an equation for
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them in weak sense that will be discussed and related with similar models in Subsection 3.4.4.
However, such idea fails for the more singular cases, where the compactness of frequencies
is very weak. While the singular limit for the subcritical case is straightforward, we need to
develop new ideas to tackle the limiting set-valued Filippov map in the critical and supercritical
cases along with the loss of strong compactness of the frequencies in such cases.

3.4.1 Singular limit in the subcritical case and augmented flocking model

The following result provides a list of a priori estimates for the global-in-time classical solutions
of the regularized system (3.2.5)-(3.2.6), for any ε > 0:

Lemma 3.4.1. Let us consider any initial data Θ0 = (θ1,0, . . . , θN,0) ∈ RN and set the unique global-
in-time classical solution Θε = (θε1, . . . , θ

ε
N ) to (3.2.5)-(3.2.6) in the subcritical case α ∈

(
0, 1

2

)
, for

every ε > 0. Then, there exists some non-negative constant C such that

‖Θ̇ε‖C0,1−2α([0,∞),RN ) ≤ C,
‖Θε‖C1,1−2α([0,T ],RN ) ≤ |Θ0|+ CT,

for every T > 0 and ε > 0. As a consequence, there exists some subsequence of {Θε}ε>0, that we denote
in the same way for simplicity, and some Θ ∈ C1([0,+∞),RN ) such that Θ̇ ∈ C0,1−2α([0,∞),RN ),
it verifies the same estimates as above and

{Θε}ε>0 → Θ in C1([0, T ],RN ),

for every T > 0.

Proof. All the properties directly follow from the first one along with the Ascoli–Arzelà theo-
rem. Recall that there is some constant M > 0 such that

|hε(θ)| ≤M and |hε(θ1)− hε(θ2)| ≤M |θ1 − θ2|1−2α
o ,

for every θ, θ1, θ2 ∈ R and every ε > 0, recall Lemma 3.3.1. Then, the first property is also a
straightforward consequence of such uniform-in-ε boundedness and Hölder-continuity of the
kernel.

The following result holds true as a clear consequence of the uniform equicontinuity of the
sequence hε along with the compactness of the sequence {Θε}ε>0.

Theorem 3.4.2. The limit function Θ of {Θε}ε>0 in Lemma 3.4.1 is a classical global-in-time solution
of the singular model (3.3.1)-(3.3.2) in the subcritical case α ∈

(
0, 1

2

)
.

Notice that we have arrived at a construction of classical global-in-time solutions of the
singular problem with 0 < α < 1

2 through two different techniques: Theorems 3.3.5 and 3.4.2.
However, both techniques are actually very related since originally, the Filippov theory relies
on a similar regularizing procedure. In what follows, we will see that such procedure provides
us with extra a priori estimates for the “acceleration” (derivatives of frequencies). Also, such
procedure will allow us to derive a “piecewise weak equation” for them. This is the rest of the
content of this subsection.

Remark that a necessary and sufficient condition for two oscillators θi and θj that collide at
some time to stick together is that Ωi = Ωj by virtue of Theorem 3.3.6. In some sense, those
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two oscillators are identified in an unique cluster with bigger “mass”. Then, we can quantify
the times of “pure collisions” as follows. Starting with T0 = 0, we define

Tk := inf{t > Tk−1 : ∃ i and j ∈ Si(Tk−1)c such that θ̄i(t) = θ̄j(t)}, (3.4.1)

for every k ∈ N. Recall the notation in Subsection 3.2.3, and see [245] for related notation in
the discrete Cucker–Smale model with singular influence function. Then, taking derivatives in
(3.2.5)-(3.2.6) we can obtain the next split

θ̈εi =
K

N

∑

j /∈Ci(Tk−1)

h′ε(θ
ε
j − θεi )(θ̇εj − θ̇εi )

+
K

N

∑

j∈(Ci\Si)(Tk−1)

h′ε(θ
ε
j − θεi )(θ̇εj − θ̇εi )

+
K

N

∑

j∈Si(Tk−1)

h′ε(θ
ε
j − θεi )(θ̇εj − θ̇εi ), (3.4.2)

where t ∈ [Tk−1, Tk). The idea is to show that we can pass to the limit in the above expressions
in L1([Tk−1, τ ])-weak, for every k ∈ N and for every τ ∈ (Tk−1, Tk). This is the content of the
next theorem. Before going on, let us discuss the possible scenarios for the sequence {Tk}k∈N
and how can we cover the whole interval [0,+∞) with them in any case so that our dynamics
can be reduced to each of them:

1. First, it might happen that there exists some k0 ∈ N such that Tk0+1 = +∞ (then, Tk = +∞
for every k > k0). In this case either all particles have stuck together in finite time or after
some finite time there is no more collision. Then, we recover

[0,+∞) =
⋃

0≤k≤k0−1

[Tk, Tk+1) ∪ [Tk0 ,+∞),

and at each interval there are no further collisions.

2. Also it might happen that {Tk}k∈N is infinite and unbounded, i.e., Tk ↗ +∞. Hence,

[0,+∞) =
⋃

k≥0

[Tk, Tk+1),

and there is no collision in each interval.

3. Finally, it might also be the “odd” case that the sequence {Tk}k∈N is infinite but bounded.
In such case, there exists some T∞ ∈ R+ with right Zeno behavior, i.e. Tk ↗ T∞. Then, a
straightforward argument involving the mean value theorem shows that T∞ is a sticking
point. Then we can split the dynamics up to time T∞ through

[0, T∞) =
⋃

k≥0

[Tk, Tk−1).

Taking T∞ as our initial time, we can repeat each of the steps 1, 2 and 3 above so that we
can globally recover the whole dynamics. Notice that since there just can be N − 1 times
of sticking, then there just can be N − 1 times like T∞.
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For simplicity in our arguments, we shall assume that we always lie in the second case,
although the same result also apply to any other case. Before going to the heart of the result,
let us summarize some good properties of the kernel h′ε.

Lemma 3.4.3. Consider any value α ∈
(
0, 1

2

)
. Then, the following properties hold true:

1. Formula for the derivative:

h′ε(θ) =
1

(ε2 + c|θ|2o)α
[
cos θ − 2αc

sin |θ|0
|θ|0

|θ|20
ε2 + c|θ|2o

]
.

2. Upper bound by L1(T)-function:

|h′ε(θ)|, |h′(θ)| ≤M
1

|θ|2αo
.

3. Strong convergence in L1(T):
h′ε → h′ in L1(T).

4. Weighted Hölder-continuity:

|h′ε(θ1)− h′ε(θ2)| ≤M |θ1 − θ2|βo
min{|θ1|o, |θ2|o}γ

,

for any couple of exponents β, γ ∈ (0, 1) such that γ = 2α+ β.

5. Weighted convergence in L∞(T):

|h′ε(θ)− h′(θ)| ≤M
ε1−2α

|θ|o
.

Proof. The first two results are straightforward and the third one is a clear consequence of the
dominated convergence theorem. The fourth property follows from an obvious application of
the mean value theorem and the fifth one is a standard property of mildly singular kernels (one
can indeed show that M = α/β) .

Theorem 3.4.4. For any initial datum Θ0 ∈ RN , consider Θε, the classical global-in-time solution of
(3.2.5)-(3.2.6) in the subcritical case α ∈

(
0, 1

2

)
. Also, consider the limiting Θ in Theorem 3.4.2 and the

collision times {Tk}k∈N in (3.4.1). Then, the following properties hold true :

1. For every i ∈ {1, . . . , N} and j /∈ Ci(Tk−1)

h′ε(θ
ε
j − θεi )→ h′(θj − θi), as ε→ 0, in C([Tk−1, τ ]).

2. For every i ∈ {1, . . . , N} and j ∈ Ci(Tk−1) \ Si(Tk−1)

h′ε(θ
ε
j − θεi ) ⇀ h′(θj − θi), as ε→ 0, in L1([Tk−1, τ ]).

3. For every i ∈ {1, . . . , N} and j ∈ Si(Tk−1)

d

dt
hε(θ

ε
j − θεi )→ 0, as ε→ 0, in W−1,∞([Tk−1, τ ]).
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Proof. We split the proof in three steps.

• Step 1: In the first case, fix any i ∈ {1, . . . , N} and j /∈ Ci(Tk−1). There exists (by definition)
some positive constant δ0 = δ0(k, τ) < π such that

|θi(t)− θj(t)|o ≥ δ0, for all t ∈ [Tk−1, τ ].

Then, by the uniform convergence in Lemma 3.4.1 there exists some ε0 > 0 such that

|θεi (t)− θεj (t)|o ≥
δ0

2
, for all t ∈ [Tk−1, τ ], (3.4.3)

for every ε ∈ (0, ε0). Consequently, by crossing terms we have

|h′ε(θεj (t)− θεi (t))− h′(θj(t)− θi(t))|
≤ |h′ε(θεj (t)− θεi (t))− h′(θεj (t)− θεi (t))|+ |h′(θεj (t)− θεi (t))− h′(θj(t)− θi(t))|,

for every t ∈ [Tk−1, τ ]. Hence, both two terms converge to zero uniformly in [Tk−1, τ ], as ε→ 0.
This is due to (3.4.3), the third property in Lemma 3.4.3, the uniform continuity of h′ in compact
sets away from 2πZ and the uniform convergence of the phases in Lemma 3.4.1. This ends the
proof of the first part.

• Step 2: In the second case, i ∈ {1, . . . , N} and j ∈ Ci(Tk−1) \ Si(Tk−1). Then,

θ̄j(Tk−1) = θ̄i(Tk−1) but θ̇j(Tk−1) 6= θ̇i(Tk−1).

Thus, it is clear that we again have |θj(t)−θi(t)|o > 0, for t ∈ [τ∗, τ ] and for every τ∗ ∈ (Tk−1, τ).
This amounts to saying that the preceding argument again holds in [τ∗, τ ] and consequently,

h′ε(θ
ε
j − θεi )→ h′(θj − θi) in C([τ∗, τ ]),

for every τ∗ ∈ (Tk−1, τ). Then, we just need to prove the weak convergence in some interval
[Tk−1, τ

∗]. Let us set τ∗. Since θ̇j(Tk−1) 6= θ̇i(Tk−1), we can assume without loss of generality
that δ0 := θ̇j(Tk−1) − θ̇i(Tk−1) > 0. By continuity of θ̇j and θ̇i, there exists some small τ∗ ∈
(Tk−1, τ) such that

θ̇i(t)− θ̇j(t) ≥
δ0

2
, for all t ∈ [Tk−1, τ

∗]. (3.4.4)

Then, by the uniform convergence of the frequencies (see Lemma 3.4.1), we can take a small
enough ε0 > 0 such that if ε ∈ (0, ε0) then

θ̇εi (t)− θ̇εj (t) ≥
δ0

4
, for all t ∈ [Tk−1, τ

∗]. (3.4.5)

In particular, we have well defined inverses of θj − θi and θεj − θεi in [Tk−1, τ
∗], for every ε ∈

(0, ε0). Indeed, the inverse function theorem states that:

((θj − θi)−1)′ =
1

(θ̇j − θ̇i) ◦ (θj − θi)−1
, (3.4.6)

and a similar statement holds for θεj−θεi . In order to show the weak convergence inL1([Tk−1, τ
∗]),

we equivalently claim that the following assertions are true:
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1. Uniform-in-ε L1 bound of h′ε(θεj − θεi ) and h(θj − θi) in [Tk−1, τ
∗], i.e., there exists some

constant M > 0 such that

‖h′ε(θεj − θεi )‖L1([Tk−1,τ∗]), ‖h′(θj − θi)‖L1([Tk−1,τ∗]) ≤M,

for every ε ∈ (0, ε0).

2. Convergence of the mean values over finite intervals, i.e.,

lim
ε→0

∫ τ∗∗

Tk−1

(h′ε(θ
ε
j (t)− θεi (t))− h′(θj(t)− θi(t))) dt = 0,

for every τ∗∗ ∈ (Tk−1, τ
∗).

Let us then prove such claim. Regarding the first assertion, we just focus on h′ε(θ
ε
j − θεi ) (the

other case is similar). Due to a simple change of variables θ = (θεj − θεi )(t) and (3.4.5)-(3.4.6)

∫ τ∗∗

Tk−1

|h′ε(θεj (t)− θεi (t))| dt =

∫ θεj (τ∗∗)−θεi (τ∗∗)

θεj (Tk−1)−θεi (Tk−1)

|h′ε(θ)|dθ
(θ̇εj − θ̇εi )((θεj − θεi )−1(θ))

≤ ‖h′ε‖L1(T)
4

δ0
.

Then the assertion under consideration follows from the second item in Lemma 3.4.3. Regard-
ing the second assertion we split into two terms

∫ τ∗∗

Tk−1

(h′ε(θ
ε
j − θεi )− h′(θj − θi)) dt = Iε + IIε,

where,

Iε :=

∫ τ∗∗

Tk−1

(h′ε(θ
ε
j − θεi )− h′(θεj − θεi )) dt,

IIε :=

∫ τ∗∗

Tk−1

(h′(θεj − θεi )− h′(θj − θi)) dt.

The same change of variables as above allows us restate Iε in the following way

Iε =

∫ θεj (τ∗∗)−θεi (τ∗∗)

θεj (Tk−1)−θεi (Tk−1)
(h′ε(θ)− h′(θ))

dθ

(θ̇εj − θ̇εi )((θεj − θεi )−1(θ))
.

Then, estimate (3.4.5) along with the strong L1(T) convergence of the kernels in (3) of Lemma
3.4.3 shows that Iε vanishes when ε→ 0:

|Iε| ≤
4

δ0

∫ θεj (τ∗∗)−θεi (τ∗∗)

θεj (Tk−1)−θεi (Tk−1)
|h′ε(θ)− h′(θ)|dθ =

4

δ0
‖h′ε(θ)− h′(θ)‖L1(T) → 0, as ε→ 0.

For the term IIε, we use the forth item in Lemma 3.4.3 to show

|IIε| ≤M
∫ τ∗∗

Tk−1

|(θεj − θj)− (θεi − θi)|βo
min{|θεj − θεi |o, |θj − θi|o}γ

dt

≤ 2βM‖Θε −Θ‖β
C([Tk−1,τ∗∗],RN )

∫ τ∗∗

Tk−1

1

min{|θεj − θεi |o, |θj − θi|o}γ
dt
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≤ 2βM‖Θε −Θ‖β
C([Tk−1,τ∗∗],RN )

∫ τ∗∗

Tk−1

max

{
1

|θεj − θεi |
γ
o
,

1

|θj − θi|γo

}
dt

≤ 2βM‖Θε −Θ‖β
C([Tk−1,τ∗∗],RN )

∫ τ∗∗

Tk−1

(
1

|θεj − θεi |
γ
o

+
1

|θj − θi|γo

)
dt.

Then, a new change of variables along with the equations (3.4.5)-(3.4.6) and the local integra-
bility in one dimension of an inverse power of order γ entail the existence of a non-negative
constant C that does not depend on ε such that

|IIε| ≤ C‖Θε −Θ‖C([Tk−1,τ∗∗],RN ).

Then, the second step follows from the uniform convergence of the phases in Lemma 3.4.1.

• Step 3: In the third case, consider i ∈ {1, . . . , N} and j ∈ Si(Tk−1). By the uniqueness in
Theorem 3.3.5, we can ensure that θj(t) = θi(t) for all t ≥ Tk−1. Then, the uniform convergence
of the kernels hε along with the uniform convergence of the phases in Lemma 3.4.1 shows that

hε(θ
ε
j − θεi )→ 0 in C([Tk−1, τ ]),

and then, the result holds true by definition of the norm in W−1,∞([Tk−1, τ ]).

Remark 3.4.5. The preceding results show that the unique global-in-time solution Θ to the problem
(3.3.1)-(3.3.2) with α ∈ (0, 1

2) in Theorem 3.3.5, satisfies that θi ∈ C1,1−2α([0,∞),RN ) and fre-
quencies θ̇i enjoy higher higher regularity. Indeed, they are piece-wise W 1,1 in the sense that θ̇i ∈
W 1,1([Tk−1, τ ]), for every k ∈ N and every τ ∈ (Tk−1, Tk). In addition, they verify the following
equation in weak sense

θ̈i =
K

N

∑

j /∈Si(Tk−1)

h′(θj − θi)(θ̇j − θ̇i), (3.4.7)

in [Tk−1, τ ]. Throughout the proof of the above result we have just used the local integrability in one
dimension of any inverse power of order smaller than 1. However, one might have tried to use that such
inverse powers actually belong to Lploc in order to show that in Steps 2 the convergence take place in
Lp([Tk−1, τ ])-weak for any 1 ≤ p < 1

2α . In this way, the gain of regularity is in reality higher, namely
θ̇i ∈W 1,p([Tk−1, τ ]), for every 1 ≤ p < 1

2α .

In the following, we shall discuss the corresponding singular limit in the critical and super-
critical case. Since the Filippov set-valued map is relatively simpler in that latter case, we will
start with that supercritical case. Later, we will adapt the ideas therein to show a parallel result
in the critical regime.

3.4.2 Singular limit in the supercritical case

Using a similar vector notation to that in (3.2.3) for the singular weighted model, our regular-
ized system (3.2.5)-(3.2.6) can be restated as

{
Θ̇ε = Hε(Θε),
Θε(0) = Θ0,

where the components of the vector field Hε read

Hε
i (Θ) = Ωi +

K

N

∑

j 6=i
hε(θj − θi),
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for every Θ ∈ RN and every i ∈ {1, . . . , N}. Then, one can mimic the ideas in Section 3.2 to
show that the regularized system can also be written as a gradient flow

{
Θ̇ε = −∇V ε(Θε),
Θε(0) = Θ0,

(3.4.8)

where the regularized potential now reads

V ε(Θ) := −
N∑

i=1

Ωiθi + V ε
int(Θ) := −

N∑

i=1

Ωiθi +
K

2N

∑

i 6=j
Wε(θi − θj), (3.4.9)

for every Θ ∈ RN . Again, Wε is the anti-derivative of hε such that Wε(0) = 0, i.e.,

Wε(θ) :=

∫ θ

0
hε(θ

′) dθ′.

Also, it is clear that Wε ≥ 0 in the supercritical case, for every ε > 0. Then, the following result
holds true.

Lemma 3.4.6. In the supercritical case α ∈ (1
2 , 1), consider the unique global-in-time classical solution

Θε to the regularized system (3.4.8). Then,

1

2

∫ t

0
|Θ̇ε(s)|2 ds ≤ C2

Ω

2
t+ Vint(Θ0),

for every t > 0 and every ε > 0, where CΩ := |(Ω1, . . . ,ΩN )| =
√

Ω2
1 + · · ·+ Ω2

N .

The above result shows that {Θε}ε>0 is bounded in H1((0, T ),RN ), for every T > 0. Then,
there exists some subsequence that we denote in the same way so that {Θε}ε>0 weakly converge
to some Θ ∈ H1

loc((0,∞),RN ) in H1((0, T ),RN ) for every T > 0. The Sobolev embedding and
the definition of weak convergence ensure that

Θε → Θ in C([0, T ],RN ),

Θ̇ε ⇀ Θ̇ in L2((0, T ),RN ),

for every T > 0. Before we obtain the desired convergence result of (3.4.8) towards a Filippov
solution, let us introduce the following split of the frequencies:

Θ̇ε(t) = xε(t) + yε(t), (3.4.10)

where, componentwise, each term reads as follows

xεi (t) =
K

N

∑

j /∈Ci(t)
(hε(θ

ε
j (t)− θεi (t))− h(θj(t)− θi(t))),

yεi (t) =
K

N

∑

j /∈Ci(t)
h(θj(t)− θi(t)) +

K

N

∑

j∈Ci(t)
hε(θ

ε
j (t)− θεi (t)).

Then, it is clear by definition that

xε → 0 in C([0, T ],RN ),

yε ⇀ Θ̇ in L2((0, T ),RN ),

for every T > 0, and yε(t) ∈ H(Θ(t)), for every t ≥ 0. As a consequence, we infer that Θε

becomes a Filippov approximate solution in the following sense:

Θ̇ε(t) ∈ H(Θ(t)) + xε(t). (3.4.11)
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Remark 3.4.7. Recall thatH(Θ(t)) is a closed set, for every t ≥ 0, see Proposition D.1.3. Consequently,
in order to prove that the limiting Θ(t) yields a Filippov solution, it would be enough to show the almost
everywhere convergence of the sequence {Θ̇ε}ε>0 towards Θ̇. Unfortunately, it is well known that weak
convergence inL2 is not enough for that purpose. Hence, we must deal only with such weak convergence.

Before going to the heart of the matter, we need to exhibit another characterization of the
Filippov set-valued map in terms of implicit equations. The next technical lemma will be used
for that. For the sake of clarity, a proof has been provided in Lemma 3.B.2 of Appendix 3.B.

Lemma 3.4.8. Consider n ∈ N and any vector x ∈ Rn. Then, the following assertions are equivalent:

1. There exists some Y ∈ Skewn(R) such that

x = Y · j.

2. The following implicit equation holds true

x · j = 0,

where j = (1, · · · , 1)︸ ︷︷ ︸
n pairs

stands for the vector of ones.

Hence, we are ready to obtain the above-mentioned characterization.

Proposition 3.4.9. In the supercritical regime α > 1
2 , the Filippov set-valued map H = H(Θ) associ-

ated with H = H(Θ) consists in the affine subspace of dimension N − κ of points (ω1, . . . , ωN ) ∈ RN
obeying the following implicit equations (recall Subsection 3.2.3)

1

nk

∑

i∈Ek
ωi =

1

nk

∑

i∈Ek


Ωi +

K

N

∑

j /∈Ci
h(θj − θi)


 , (3.4.12)

for every k = 1, . . . , κ.

Proof. By Proposition 3.3.16, H(Θ) consists of the set of points (ω1, . . . , ωN ) ∈ RN such that
for every k = 1, . . . , κ there exist a skew symmetric matrix Y k ∈ Skewnk(R) and a bijection
σk : {1, . . . , nk} −→ Ek such that the following equations hold true

ωσki
= Ωσki

+
K

N

κ∑

m=1
m 6=k

nmh(θιm − θιk) +
K

N

nk∑

j=1

ykij ,

for every i = 1, . . . , nk. Then, the result follows by applying Lemma 3.4.8 to each of the above
sets of nk equations to the particular vectors xk ∈ Rnk(Θ) with components:

xki := ωσki
− Ωσki

− K

N

κ∑

m=1
m 6=k

nmh(θιm − θιk), i = 1, . . . , nk,

when we equivalently restate it using the notation in Subsection 3.2.3.

Remark 3.4.10. Here we discuss why the same approach as in Subsection 3.4.1 to decompose the dy-
namics for α ∈ [1

2 , 1) into subintervals (Tk, Tk+1) with same collisional type cannot be conducted:
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1. Recall that in the subcritical case α ∈ (0, 1
2) in Subsection 3.4.1, any strong limit Θ already

yielded a solution to the limiting system (3.3.1)-(3.3.2). Indeed, there just can be one and only
one such strong limit by the one-sided uniqueness of the limiting system (3.3.1)-(3.3.2) Also, in
that subcritical case one can find a nice split of the dynamics in a sequence of intervals where
no collision happens. Thus, on every such interval, the kind of collisional state of our trajectory
remains unchanged. Let us remember that the reason why that sequence fills the whole half line
in the subcritical case relies on the following facts: first, by uniqueness we can characterize the
sticking of oscillators and once they stick during some time they remain stuck for all times. In
particular, only N − 1 sticking times can exist. Second, when an accumulation of collisions takes
place, it has to be at a sticking time. Hence, there just can be N − 1 such accumulations of
collisions, thus recovering the whole half line.

2. Unfortunately, for α ∈ (1
2 , 1) or α = 1

2 we still do not know at this point whether any limit Θ
becomes a Filippov solution to the limiting system (3.3.1)-(3.3.2). Thus, despite the fact that we
have a clear characterizations of sticking of such solutions, we cannot apply them to any such limit
Θ. In addition, the behavior of anyH1 weak limit can be very wild. Specifically, a possible scenario
of a H1

loc trajectory is that sticking might happen just for a short period of time and, after it, the
cluster detaches. Also, “pure collisions” might accumulate at a non-sticking time exhibiting Zeno
behavior (recall Remark 3.3.15 and Figure 3.5). Thereby, a split of the dynamics into countably
many intervals (Tk, Tk+1) like in the above Subsection 3.4.1, where the collisional state remains
unmodified, is not viable.

As discussed in the above Remark, it is not clear how to achieve a split of the dynamics
into countably many time intervals covering the whole half-line, each of them exhibiting un-
varied collisional state. Then, we require the development of a new approach, where the above
explicit H-representation of the Filippov set-valued map at any collision state will play a role.
One of our main tools here will be the Kuratowski–Ryll–Nardzewski measurable selection theorem,
see [197]. This result guarantees the existence of measurable selections of any set-valued Effros-
measurable map. Sometimes, it is necessary to know how many of these single-valued measur-
able selections do we need in order to essentially have the whole set-valued map “represented”
in an appropriate set sense. This is called Castaign representation, see [69, Theorem III.30], and
it turns out that we only require countably many such measurable selectors to densely fill the
range of the set-valued map. Such results will be directly applied to the critical case in the
next Subsection 3.4.3. However, for the supercritical case, we shall further refinements of the
above theorem to allow for integrable representations of the set-valued map. Specifically, the
Effros-measurability has to be improved to some stronger integrability condition for set-valued
maps. We refer to Appendix E of this thesis for a short introduction to the above results and
the above-mentioned Corollaries to the integrable setting, see Lemma E.0.4 and Remark E.0.5.

Theorem 3.4.11. Consider the classical solutions {Θε}ε>0 to the regularized system (3.4.8) with α ∈
(1

2 , 1) and any weak H1
loc limit Θ. Then,

Θ̇(t) ∈ H(Θ(t)) for a.e. t ≥ 0.

Proof. • Step 1: H-representation of the Filippov map.
By virtue of Proposition 3.4.9

H(Θ(t)) =

κ(t)⋂

l=1

Pl(t), (3.4.13)
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where each of the Pl(t) stands for the hyperplane Pl(t) := {x ∈ RN : al(t) · x = bl(t)}. Here,
the above vector and scalar functions al(t) and bl(t) read as follows

al(t) :=
1

nl(t)

∑

i∈El(t)
ei, bl(t) :=

1

nl(t)

∑

i∈El(t)


Ωi +

K

N

∑

j /∈Ci(t)
h(θj − θi)


 .

• Step 2: Castaing representation of coefficients.
Also, let us define A : R+

0 −→ 2R
N

and B : R+
0 −→ 2R by

A(t) := {al(t) : l = 1, . . . , κ(t)},
B(t) := {bl(t) : l = 1, . . . , κ(t)},

for any t ≥ 0. It is clear that both maps take closed non-empty values and they are Effros-
measurable. Then, Lemma E.0.3 in Appendix E allows obtaining a Castaing representation of
both maps. Indeed, notice that A is strongly essentially bounded, see Remark E.0.5. Hence,
there exists a sequence {An}n∈N ⊆ L∞(0,+∞) such that

A(t) = {An(t) : n ∈ N},

for almost every t ≥ 0. By the finiteness of A(t) we equivalently have

{al(t) : l = 1, . . . , κ(t)} = {An(t) : n ∈ N}, (3.4.14)

for almost every t ≥ 0. However, notice that it is not clear yet whether B is strongly locally
integrable due to the fact that eventual switches of the collisional type for the limiting Θ(t)
(thus on its coefficients bl(t)) is expected.

• Step 3: Strong local integrability of B.
Consider the regularized coefficients in the H-representation as follows

bεl (t) :=
1

nl(t)

∑

i∈El(t)


Ωi +

K

N

∑

j /∈Ci(t)
hε(θ

ε
j − θεi )


 , l = 1, . . . , κ(t).

We can associate a similar set-valued map Bε : R+
0 −→ 2R defined by

Bε(t) = {bεl (t) : l = 1, . . . , κ(t)}.

Notice that, by definition, it is clear that

lim
ε→0

bεl (t) = bl(t),

for every l = 1, . . . , κ(t) since j /∈ Ci(t) in their definitions and, at those θj(t)−θi(t), the limiting
kernel h is continuous. Since both B(t) and Bε(t) consist of finitely many terms, we deduce that

|Bε(t)| −→ |B(t)|, a.e. t ∈ R+
0 . (3.4.15)

Then, Fatou’s lemma on any finite time interval [0, T ] ⊆ R+
0 with T > 0 entails

∫ T

0
|B|(t) dt ≤ lim inf

ε→0

∫ T

0
|Bε|(t) dt. (3.4.16)
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By definition, it is clear that

Θ̇ε(t) · al(t) =
1

nl(t)

∑

i∈El(t)


Ωi +

K

N

N∑

j=1

hε(θ
ε
j − θεi )


 = bεl (t),

where we have cancelled the terms with j ∈ El(t) in the last step by the antisymmetry of hε.
Then, our set-valued maps are strongly dominated as follows

|Bε|(t) ≤ |Θ̇ε(t)| a.e. t ≥ 0. (3.4.17)

Putting (3.4.17) into 3.4.16 we obtain
∫ T

0
|B|(t) dt =

∫ T

0
lim inf
ε→0

|Bε|(t) dt ≤ lim inf
ε→0

∫ T

0
|Θ̇ε(t)| dt

≤ T 1/2 lim inf
ε→0

(∫ T

0
|Θ̇ε(t)|2 dt

)1/2

≤ T 1/2
(
C2

ΩT + 2Vint(Θ0)
)1/2

<∞.

Here, we have used the Cauchy–Schwarz inequality in the second step and the a priori bound
in Lemma 3.4.6 in the last one. Then, Remark E.0.5 yields the existence of a Castaing represen-
tation {Bn}n∈N ⊆ L1

loc(0,+∞) of the map B. Again, we conclude that

{bl(t) : l = 1, . . . , κ(t)} = {Bn(t) : n ∈ N}, (3.4.18)

for almost every t ≥ 0.

• Step 4: Conclusion.
Since yε(t) ∈ H(Θ(t)), for every ε > 0 and every t ≥ 0, then the H-representation (3.4.13) along
with the essentially bounded and locally integrable representations (3.4.14) and (3.4.18) yield
the equations

An(t) · yε(t) = Bn(t), n ∈ N,

for almost every t ≥ 0. In particular,
∫ +∞

0
An(t) · yε(t)ϕ(t) dt =

∫ +∞

0
Bn(t)ϕ(t) dt,

for every ε > 0, each ϕ ∈ Cc(R+) and any n ∈ N. Notice that the boundedness and local
integrability of our selectors allows such expression to make sense. We can now use the weak
convergence in L2 of yε towards Θ̇ to obtain

∫ +∞

0
An(t) · Θ̇(t)ϕ(t) dt =

∫ +∞

0
Bn(t)ϕ(t) dt,

for every ϕ ∈ Cc(R+) and each n ∈ N. The fundamental lemma of calculus of variations along
with the Castaing representations in (3.4.14) and (3.4.18) and the H-representation in (3.4.13)
allow us to conclude the claimed result.

3.4.3 Singular limit in the critical case

In this Subsection, we will address the singular limit of the regularized system (3.2.5)-(3.2.6)
towards a Filippov solution to (3.3.1)-(3.3.2) in the critical regime α = 1

2 . We will mostly apply
a similar approach to that in the supercritical regime. Nevertheless, there are several novelties
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to be considered, that make the study slightly different. First, we will show that we actually
enjoy a better W 1,∞ a priori estimate, apart from the above H1 bound in Lemma 3.4.6. Sec-
ond, the explicit expression of the Filippov map in Proposition 3.4.9 in terms of intersection of
hyperplanes will be adapted to this case.

Lemma 3.4.12. In the critical regime α = 1
2 , consider the unique global-in-time solution Θε to the

regularized system (3.4.8). Then,

‖Θ̇ε‖L∞((0,∞),RN ) ≤ CΩ +K,

for every ε > 0, where CΩ := |(Ω1, . . . ,ΩN ) =
√

Ω2
1 + · · ·Ω2

N .

We omit the proof since it is a clear consequence of the boundedness of h in the criti-
cal case. As a consequence of the above Lemma 3.4.12, we infer the existence of a subse-
quence of {Θε}ε>0 that we denote in the same way so that it weakly-* converges to some
Θ ∈W 1,∞

loc ((0,∞);RN ) in W 1,∞((0, T ),RN ), for every T > 0. In particular

Θε → Θ in C([0, T ],RN ),

Θ̇ε ∗⇀ Θ̇ in L∞((0, T ),RN ),

for every T > 0. In addition, the same split as in (3.4.10) can be considered and we obtain

xε → 0 in C([0, T ],RN ),

yε
∗
⇀ Θ̇ in L∞((0, T ),RN ),

and yε(t) ∈ H(Θ(t)), for every t ≥ 0 and ε > 0. Hence, Θε becomes an approximate solution in
the same sense as in (3.4.11). What is more, the same Remark 3.4.7 is in order. Then, again we
cannot ensure pointwise convergence of Θ̇ε. In order to obtain an analogue characterization of
the Filippov map, we will need the next technical lemma.

Lemma 3.4.13. Consider any n ∈ N and any vector x ∈ Rn. Then, the following two assertions are
equivalent:

1. There exists some Y ∈ Skewn([−1, 1]) such that

x = Y · j.

2. We have
1

k

k∑

i=1

xσi ∈ [−(n− k), (n− k)],

for every permutation σ of {1, . . . , n} and any k ∈ N.

For an easier readability, we postpone the proof to Appendix 3.B in this Chapter. The fol-
lowing result the becomes a straightforward consequence of Lemma 3.4.13 along with the ex-
plicit formula in Proposition 3.3.7.

Proposition 3.4.14. In the critical regime α = 1
2 , the Filippov set-valued map H = H(Θ) associ-

ated with H = H(Θ) is the compact and convex polytope of points (ω1, . . . , ωN ) ∈ RN whose H-
representation consist of the affine inequalities (recall Subsection 3.2.3)

1

m

∑

i∈I
ωi ∈

1

m

∑

i∈I


Ωi +

K

N

∑

j /∈Ci
h(θj − θi)


+

[
−K
N

(nk −m),
K

N
(nk −m)

]
, (3.4.19)

for every k = 1, . . . , κ, and I ⊆ Ek with #I = m.
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Then, we move to the main result, i.e., the convergence of the singular limit towards a
Filippov solution to the critical system.

Theorem 3.4.15. Consider the classical solutions {Θε}ε>0 to the regularized system (3.4.8) with α = 1
2

and any weak-* limit Θ in W 1,∞
loc . Then,

Θ̇(t) ∈ H(Θ(t)) for a.e. t ≥ 0.

Proof. We mimic the proof of Theorem 3.4.11. Recall that by the above Proposition 3.4.14, an
analogue H-representation to that in (3.4.13) holds. Specifically,

H(Θ(t)) =

κ(t)⋂

l=1

⋂

I⊆El
(S+
l,I(t) ∩ S−l,I(t)), (3.4.20)

where the semi-spaces read

S+
l,I(t) := {x ∈ RN : al,I(t) · x ≤ b+l,I(t)},
S−l,I(t) := {x ∈ RN : al,I(t) · x ≥ b−l,I(t)},

for every I ⊆ El(t). We set

al,I(t) :=
1

m

∑

i∈I
ei,

b±l,I(t) :=
1

m

∑

i∈I


Ωi +

K

N

∑

j /∈Ci(t)
h(θj(t)− θi(t))


± (nl(t)−m),

where m = #I . Now, the coefficients are clearly uniformly bounded. Then, a straightfor-
ward application of Remark E.0.5 leads to the existence of essentially bounded selectors for the
coefficients. Namely, we can give an ordering such as

{al,I(t) : l = 1, . . . , κ(t), I ⊆ El(t)} = {An(t) : n ∈ N} (3.4.21)
{b±l,I(t) : l = 1, . . . , κ(t), I ⊆ El(t)} = {B±,n(t) : n ∈ N}, (3.4.22)

for almost every t ≥ 0. Recall that yε(t) ∈ H(Θ(t)), for every ε > 0 and every t ≥ 0. Then, by
virtue of (3.4.20), (3.4.21) and (3.4.22), we equivalently have

An(t) · yε(t) ≤ B+,n(t) and An(t) · yε(t) ≥ B−,n(t),

for all n ∈ N, each ε > 0 and almost every t ≥ 0. In particular,
∫ +∞

0
An(t) · yε(t)ϕ(t) dt ≤

∫ +∞

0
B+,n dt,

∫ +∞

0
An(t) · yε(t)ϕ(t) dt ≥

∫ +∞

0
B−,n dt,

for all n ∈ N, each ε > 0 and any non-negativeϕ ∈ Cc(R+). Then, using the weak-* convergence
in L∞ we obtain that ∫ +∞

0
An(t) · Θ̇(t)ϕ(t) dt ≤

∫ +∞

0
B+,n dt,

∫ +∞

0
An(t) · Θ̇(t)ϕ(t) dt ≥

∫ +∞

0
B−,n dt,

for all n ∈ N and any non-negative ϕ ∈ Cc(R+). Hence, the result follows from the fundamental
lemma of calculus of variations along with the Castaing representations (3.4.21)-(3.4.22) and the
H-representation (3.4.20).
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3.4.4 Comparison with previous results about singular weighted systems

In the previous parts of this Chapter, we studied the existence and one-sided uniqueness for
the singular weighted first order Kuramoto model (3.3.1)-(3.3.2) in all the subcritical, critical
and supercritical regimes. We now compare our result with previous research on the singular
weighted Cucker–Smale model which is a second order system describing the flocking behav-
ior of interacting particles. In order to set these relations, let us recall Section 3.2, where the
first order Kuramoto model (3.2.1) was shown to be equivalent to its second order augmenta-
tion (3.2.4). On the one hand, this is clear for regular weights as studied in Theorem 3.2.1, see
[150, 160]. What is more, it remains true in our case, which is characterized by singular weights.
However, we must be specially careful with the time regularity in order for such heuristic ar-
guments to become true. Let us focus on the subcritical regime, where the rigorous equivalence
between (3.2.1) and (3.2.4) follows from Remark 3.3.20 by virtue of the one-sided uniqueness
in both models. Indeed, in such subcritical case, the “influence function” of the augmented
flocking-type model reads

h′(θ) =
1

|θ|2αo

[
cos θ − 2α

sin |θ|o
|θ|o

]
∼ 1− 2α

|θ|2αo
near θ ∈ 2πZ, (3.4.23)

which enjoys mild singularities of order 2α < 1 in the subcritical case. Such singular second or-
der model (3.2.4)-(3.4.23) shares some similarities with the Cucker–Smale model with singular
weights, 




ẋi = vi,

v̇i =
K

N

N∑

j=1

ψ(|xj − xi|)(vj − vi),
(3.4.24)

where the communication weight ψ is given by

ψ(r) :=
1

rβ
, (3.4.25)

for r > 0 and β > 0. Although some results regarding the asymptotic behavior of such sys-
tem have been established [158], the well–posedness theory has not been addressed until very
recently in [244, 245] for the microscopic model and [60, 226, 255, 275, 276, 277] for some first
and second order kinetic and macroscopic versions of the model. Regarding the microscopic
system (3.4.24)-(3.4.25), the existence of global C1 piece-wise weak W 2,1 solutions (x1, . . . , xN )
has been established in [244] for β ∈ (0, 1), which corresponds to α ∈ (0, 1

2) in our setting (see
Theorem 3.3.5, Theorem 3.4.2 and Remark 3.4.5). Also, in the weakly singular regime β ∈ (0, 1

2)
(i.e., α ∈ (0, 1

4)), the same author proved in [245] that the velocities (v1, . . . , vN ) are indeed
absolutely continuous. Consequently, the C1 weak solutions (x1, . . . , xN ) are actually W 2,1

loc in
such latter case. This latter property was proved through a differential inequality.

The method of proof is similar to ours in Section 3.4 and relies on a regularization process
of the second order model near the collision times. In our case, we have obtained a similar
regularization process of the first order model, entailing the corresponding regularization of
the augmented second order model. Indeed, such method has not only proved successful in
our subcritical case, but also in the critical and supercritical case. Also, we have obtained the
well-posedness results in an alternative way based on the gain of continuity of the kernel in
the first order model along with its particular structure near the points of loss of Lipschitz-
continuity. Indeed, we have succeeded in introducing an analogue well–posedness theory in
Filippov sense for the endpoint case α = 1

2 and the supercritical case α > 1
2 .
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3.5. SYNCHRONIZATION OF THE SINGULAR WEIGHTED SYSTEM

Regarding the more singular cases β ≥ 1 (i.e., α ≥ 1
2 ), one can show that there exists some

class of initial data for (3.4.24)-(3.4.25) such that one can avoid collisions and the solutions
remain smooth for all times. Indeed, such solutions exhibit asymptotic flocking dynamics,
see [3]. Very recently, it was shown in [62] that the loss of integrability of the kernel when
β ≥ 1 actually ensures the avoidance of collisions for general initial data. In such regime, the
asymptotic flocking behavior is not guaranteed for any initial data. However, such ideas for
(3.4.24)-(3.4.25) fails in our model (3.2.4)-(3.4.23) because the kernel h′ with α ≥ 1

2 does no
longer behave like the communication weight ψ with β ≥ 1. Specifically, ψ is always a positive
and decreasing function whereas h′ is negative and increasing (see Figure 3.7). Then, we do
expect our solutions to exhibit finite time collisions as depicted in the results in next Section
3.5. This is the reason for the generalized theory in Filippov sense to come into play in the
critical and supercritical cases.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

θ

h′(θ)

(a) h′(θ)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

θ

ψ(θ)

(b) ψ(θ)

Figure 3.7: Comparison of the functions h′(θ) and ψ(θ) with α = 0.75.

3.5 Synchronization of the singular weighted system

We now analyze the collective behavior in the system (3.3.1)-(3.3.2). We first consider the sys-
tem of two interacting oscillators. We extend the argument to the N-oscillator system in suc-
cession.

3.5.1 Two oscillator case

In this part, we consider the dynamics of two oscillator. The system (3.3.1)-(3.3.2) for two
oscillator becomes

θ̇1 = Ω1 +
K

2

sin(θ2 − θ1)

|θ2 − θ1|2αo
,

θ̇2 = Ω2 +
K

2

sin(θ1 − θ2)

|θ1 − θ2|2αo
.

(3.5.1)

Recall that in the critical and supercritical cases we do expect collisions, see Subsections 3.3.2
an 3.3.3. Then, the above representation of the system is only valid before the first collision.
After that, the right-hand side has to be replaced with the corresponding Filippov set-valued
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map. At this step, we shall focus on the dynamics before the first collision. Let us define the
relative phase and natural frequency by θ := θ2− θ1 and Ω := Ω2−Ω1. Then, the system (3.5.1)
can be rewritten into the following form:

θ̇ = Ω−K sin θ

|θ|2αo
. (3.5.2)

Proposition 3.5.1. Let θ : [0, T )→ R be a maximal classical solution to the differential equation (3.5.2)
with α ∈ (0, 1) such that the oscillators are identical, i.e., Ω = 0, and initial datum 0 < |θ0| < π. Then,
the maximal time of existence T lies in the interval [tmin, tmax], where

tmin =
|θ0|2α
2Kα

and tmax =
|θ0|2α+1

2Kα sin |θ0|
.

In addition, the following lower and upper estimates

|θ0|2α − 2Kαt ≤ |θ|2α ≤ |θ0|2α − 2Kαt
sin|θ0|
|θ0|

t

hold, for all t ∈ [0, T ) and limt→T θ(t) = 0. Hence, two identical oscillators confined to the half-circle
exhibit finite-time phase synchronization.

Proof. First of all, let us note that in the identical case π+ 2πZ are equilibria of (3.5.2) where the
interaction kernel is Lipschitz-continuous. Hence, the maximal solution θ cannot touch such
values if initially started at θ0. Thereby, θ(t) ∈ (−π, π) for every t ∈ [0, T ) and consequently,
|θ(t)|o = |θ(t)| for t ∈ [0, T ). Let us now multiply by (2α+ 1)|θ|2αsgn(θ) on both side to obtain

d

dt
|θ|2α+1 = (2α+ 1)|θ|2αsgn(θ)

d

dt
θ = −K(2α+ 1) sin θ sgn(θ) = −K(2α+ 1) sin |θ|.

Denote y = |θ|2α+1, then the equation becomes

d

dt
y = −K(2α+ 1) sin y

1
2α+1 . (3.5.3)

We now consider upper and lower estimates for (3.5.3) separately.

• Lower estimate: Since |y| ≥ sin |y|, we have

d

dt
y ≥ −K(2α+ 1)y

1
2α+1 .

By multiplying by 2α
2α+1y

− 1
2α+1 on both sides, we obtain

d

dt
y

2α
2α+1 ≥ −2Kα.

This yields

y
2α

2α+1 ≥ y
2α

2α+1

0 − 2Kαt.

Thus, we have a lower estimate

|θ|2α ≥ |θ0|2α − 2Kαt for 0 ≤ t < T.
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In particular, the above lower estimate shows that

T ≥ |θ0|2α
2Kα

≡ tmin.

• Upper estimate: As long as 0 ≤ y < π2α+1, the solution y is non-increasing, i.e., d
dty ≤ 0. Since

the initial data θ0 satisfies |θ0| < π, we have y0 < π2α+1, thus y(t) ≤ y0, for t > 0. Hence, we
have the following inequality

sin y
1

2α+1 ≥ sin y
1

2α+1

0

y
1

2α+1

0

y
1

2α+1 . (3.5.4)

Applying (3.5.4) to (3.5.3), we find

d

dt
y ≤ −K(2α+ 1)

sin y
1

2α+1

0

y
1

2α+1

0

y
1

2α+1 .

Multiplying by 2α
2α+1y

− 1
2α+1 on both sides, we obtain

d

dt
y

2α
2α+1 ≤ −2Kα

sin y
1

2α+1

0

y
1

2α+1

0

,

which yields

y
2α

2α+1 ≤ y
2α

2α+1

0 − 2Kα
sin y

1
2α+1

0

y
1

2α+1

0

t.

This is equivalent to

|θ|2α ≤ |θ0|2α − 2Kα
sin |θ0|
|θ0|

t for 0 ≤ t < T.

Again, the upper estimate shows that

T ≤ |θ0|2α+1

2Kα sin |θ0|
≡ tmax.

Assume that the oscillators are non-identical Ω = Ω2 − Ω1 > 0 and the system (3.5.1) has
a phase-locked state (θ̄1, θ̄2) satisfying 0 < θ̄2 − θ̄1 < π. Then, the equation (3.5.2) has an
equilibrium θ̄ = θ̄2 − θ̄1 ∈ (0, π) such that

Ω−K sin θ̄

|θ̄|2αo
= 0. (3.5.5)

To guarantee the existence of such equilibrium, we need the following conditions for the cou-
pling strength K:

if α <
1

2
, choose K ≥ Ω

h
,
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if α =
1

2
, choose K > Ω,

where h := max0<r<π h(r). Note that the equilibrium exists for the case of α > 1
2 without any

condition on the coupling K > 0. We now investigate the stabilities of the equilibria in each
cases.

Proposition 3.5.2. Let θ be a solution of (3.5.2). We have the following stability results.

1. For α ≥ 1
2 , the equilibrium θ̄ is unstable. Furthermore, if the initial datum θ0 satisfies

θ0 6= 0 and θ0 6= θ̄,

then the solution θ reaches 0 or 2π in finite time.

2. For α < 1
2 , there are a stable equilibrium θ̄ ∈ (0, θ̃) and an unstable equilibrium θ̄∗ ∈ (θ̃, π),

where θ̃ ∈ (0, π2 ) is the solution to θ̃ = 2α tan θ̃. Moreover, if the initial datum θ0 is located in
(−2π + θ̄∗, θ̄∗), the solution θ converges to θ̄ asymptotically.

Proof. We linearize the equation (3.5.2) near θ̄ as

θ̇ = −kh′(θ̄)(θ − θ̄) +R(θ̄).

When α ≥ 1
2 , we have h′(θ̄) < 0, for θ ∈ (0, π). Thus, the equilibrium θ̄ is unstable. For α < 1

2 ,
if the equilibrium θ̄ is located in (0, θ̃), we have h′(θ̄) > 0, i.e., it is stable. By similar argument,
due to h′(θ̄∗) < 0, the equilibrium θ̄∗ located in (θ̃, π) is unstable. We now investigate the
convergence of the solution.

• Step 1: Critical case α ≥ 1
2 .

◦ Case 1 (θ0 > θ̄): Since the function h is decreasing in (0, 2π), we have h(θ) < h(θ̄), for
θ ∈ (θ̄, 2π). Thus, we find

θ̇ = Ω−Kh(θ) > Ω−Kh(θ̄) = 0, for θ ∈ (θ̄, 2π).

Moreover, due to the monotonic increase of θ, we obtain the lower estimate for the frequency:

θ̇ = Ω−Kh(θ) > Ω−Kh(θ0) > 0, for θ ∈ (θ̄, 2π).

Hence, there exists a finite time t1 < 2π−θ0
Ω−Kh(θ0) , for which the solution converges to 2π.

◦ Case 2 (θ0 < θ̄): We can apply an analogous argument for this case. Since the function h is
decreasing, we deduce h(θ) > h(θ̄) for θ ∈ (0, θ̄). Thus, we have

θ̇ = Ω−Kh(θ) < Ω−Kh(θ̄) = 0, for θ ∈ (0, θ̄).

This monotonic decrease of phase yields the upper estimate for the frequency:

θ̇ = Ω−Kh(θ) < Ω−Kh(θ0) < 0, for θ ∈ (0, θ̄).

So, there exists a finite time t2 < θ0
|Ω−Kh(θ0)| , for which the solution converge to zero.

• Step 2: Subcritical case α < 1
2 .

We consider two different steps for the asymptotic convergence to the equilibrium:
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◦ Step 2a: We first show the solution moves into the interval (0, θ̃) in finite time when the
initial datum θ0 is located in (−2π + θ̄∗, 0] ∪ [θ̃, θ̄∗). As long as the solution θ located in [θ̃, θ̄∗),
we have h(θ) > h(θ̄). Thus, the solution is non-increasing:

θ̇ = Ω−Kh(θ) < Ω−Kh(θ̄) = 0, for θ ∈ [θ̃, θ̄∗).

Moreover, the non-increase of solution θ(t) ≤ θ0 gives an upper bound of frequency:

θ̇ = Ω−Kh(θ) < Ω−Kh(θ0) < 0,

while θ is in [θ̃, θ̄∗). So, there exists a finite time t3 := θ0−θ̃
|Ω−Kh(θ0)| such that the solution verifies

θ(t) < θ̃ for t > t3. Analogously, if the initial datum θ0 is given in (−2π + θ̄∗, 0], then we have
h(θ) < h(θ̄), the solution is non-decreasing:

θ̇ = Ω−Kh(θ) > Ω−Kh(θ̄) = 0,

and the frequency has a lower bound

θ̇ = Ω−Kh(θ) > Ω−Kh(θ0) > 0,

as long as θ ∈ (−2π+θ̄∗, 0]. Thus, there exists a finite time t4 := |θ0|
|Ω−Kh(θ0)| such that the solution

verifies θ(t) > 0, for t > t4.
◦ Step 2b: We will show that the solution converges to the stable equilibrium θ̄ asymptoti-

cally, when the initial datum is in (0, θ̃). Suppose the initial data is located in (0, θ̄). Then, the
following inequality

h(θ̄)

θ̄
θ < h(θ) < h′(θ̄)(θ − θ̄) + h(θ̄),

holds for the function h. Thus, the solution satisfies the differential inequality

Ω−K
(
h′(θ̄)(θ − θ̄) + h(θ̄)

)
< θ̇ < Ω− Kh(θ̄)

θ̄
θ.

By Grönwall’s lemma, we obtain

θ̄ − (θ̄ − θ0)e−kh
′(θ̄)t < θ(t) < θ̄ − (θ̄ − θ0)e−

Kh(θ̄)

θ̄
t.

Similarly, if the initial datum θ0 is in (θ̄, θ̃), the function h satisfies

h(θ̃)− h(θ̄)

θ̃ − θ̄
(θ − θ̄) + h(θ̄) < h(θ) < h′(θ̄)(θ − θ̄) + h(θ̄).

Then, we have the following differential inequality:

Ω−K
(
h′(θ̄)(θ − θ̄) + h(θ̄)

)
< θ̇ < Ω−K

(
h(θ̃)− h(θ̄)

θ̃ − θ̄
(θ − θ̄) + h(θ̄)

)
.

Hence, by Grönwall’s lemma, we find

θ̄ − (θ0 − θ̄)e−Kh
′(θ̄)t < θ(t) < θ̄ − (θ0 − θ̄)e−K

h(θ̃)−h(θ̄)

θ̃−θ̄ t
.
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Remark 3.5.3. In the subcritical case α ∈
(
0, 1

2

)
, the emergence of phase-locked state for two non-

identical oscillators occurs asymptotically (see Proposition 3.5.2), whereas the phase synchronization
for two identical oscillators appears in finite time (see Proposition 3.5.1). However, in the critical and
supercritical cases α ∈

[
1
2 , 1
)
, phase synchronization always appears in finite time as depicted in the

above-mentioned Propositions 3.5.2 and 3.5.1 as long as the initial phase configuration does not agree
with the unstable phase-locked state θ. Namely, in the supercritical case both oscillators stick together
into a unique cluster moving at constant frequency Ω̂ = Ω1+Ω2

2 , independently on the chosen natural
frequencies. However, in the critical case, the same only happens under the assumption |Ω1 −Ω2| ≤ K.
In other case, the formed cluster will instantaneously split.

3.5.2 N -oscillator case

In this subsection, we consider the system ofN interacting oscillators. We will first focus on the
dynamics in the simpler subcritical case α ∈

(
0, 1

2

)
, where solutions have proved to be classical,

see Theorem 3.3.5. The reason to start with this case is that the right hand side of (3.3.1)-(3.3.2)
can be considered in the single-valued sense for that case. The dynamics in the critical case
α = 1

2 and some intuition about the dynamics in the supercritical regime α ∈ (1
2 , 1) will be

provided at the end of this Subsection.
Let Θ = (θ1, . . . , θN ) be the solution to the system (3.3.1)-(3.3.2). We first study the phase

synchronization for identical oscillators. Fist, let us set the indices M and m to satisfy

θM (t) := max{θ1(t), . . . , θN (t)} and θm(t) := min{θ1(t), . . . , θN (t)}, (3.5.6)

for each time t ≥ 0. Then, we can define the diameter of phase to be

D(Θ) := θM − θm. (3.5.7)

Theorem 3.5.4. Let Θ = (θ1, · · · , θN ) be the solution to (3.3.1)-(3.3.2) with α ∈
(
0, 1

2

)
for identical

oscillators (Ωi = 0), for i = 1, . . . , N . Assume that the initial configuration Θ0 is confined in a half
circle, i.e., 0 < D(Θ0) < π. Then, there is complete phase synchronization at a finite time not larger
than Tc where

Tc =
D(Θ0)1−2α

2αKh(D(Θ0))
.

Proof. We consider the dynamics of phase diameter:

d

dt
D(Θ) =

K

N

N∑

j=1

(
h(θj − θM )− h(θj − θm)

)
.

Since h(θj − θM ) < 0 and h(θj − θm) > 0 as long as D(Θ) < π, we have

d

dt
D(Θ) ≤ 0 and D(Θ(t)) ≤ D(Θ0) < π, for t > 0.

Due to the contraction of phase, and the fact that θ ∈ (0, π) 7→ h(θ)
θ is decreasing, we have

h(θj − θM ) ≤ h
(
D(Θ0)

)

D(Θ0)
(θj − θM ) and h(θj − θm) ≥ h

(
D(Θ0)

)

D(Θ0)
(θj − θm).

Thus, we attain the following differential inequality:

d

dt
D(Θ) ≤ K

N

N∑

j=1

(h
(
D(Θ0)

)

D(Θ0)
(θj − θM )− h

(
D(Θ0)

)

D(Θ0)
(θj − θm)

)
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=
K

N

h
(
D(Θ0)

)

D(Θ0)

N∑

j=1

(
(θj − θM )− (θj − θm)

)

= −Kh
(
D(Θ0)

)

D(Θ0)
D(Θ).

By Grönwall’s lemma, we obtain

D(Θ) ≤ D(Θ0)e
−K h(D(Θ0))

D(Θ0)
t for t ≥ 0.

Notice that h(θ) behaves like θ1−2α near the origin. Indeed, it is easy to prove that for every
θ∗ ∈ (0, π)

h(θ) ≥ h(θ∗)

θ1−2α
∗

θ1−2α, ∀ θ ∈ [0, θ∗].

The main idea is to show that the mapping

θ 7−→ h(θ)

θ1−2α
,

is nonincreasing in [0, π]. Since the phase diameter D(Θ) is bounded above by D(Θ0) we can
take θ∗ = D(Θ0) and apply the above lower estimate for h to attain the following estimate of
the phase diameter

d

dt
D(Θ) =

K

N

N∑

j=1

(
h(θj − θM )− h(θj − θm)

)

≤ K

N

h(D(Θ0))

D(Θ0)

N∑

j=1

(
− (θM − θj)1−2α − (θj − θm)1−2α

)

≤ −K
N

h(D(Θ0))

D(Θ0)

N∑

j=1

((θM − θj) + (θj − θm))1−2α

= −Kh(D(Θ0))

D(Θ0)
D(Θ)1−2α,

for every t ≥ 0. In the last inequality we have used that 1− 2α ∈ (0, 1) and, consequently,

(a+ b)1−2α ≤ a1−2α + b1−2α,

for every couple of nonnegative numbers a, b ∈ R. Then, integrating the above differential
inequality implies

D(Θ(t)) ≤
(
D(Θ0)2α − 2αK

h(D(Θ0))

D(Θ0)
t

) 1
2α

,

for all t ≥ 0. This implies the convergence to zero at a finite time not larger than Tc.

We now consider the system for non-identical oscillators. The next proposition yields the
structure of phase-locked state of (3.3.1)-(3.3.2) for non-identical oscillators with mutually dis-
tinct natural frequencies in the subcritical regime.

Proposition 3.5.5. Let α ∈
(
0, 1

2

)
and Θ̄ = (θ̄1, · · · , θ̄N ) be an equilibrium of the system (3.3.1)-

(3.3.2) such that maxi,j |θ̄i − θ̄j | < θ̃ where θ̃ ∈ (0, π2 ) is the solution to θ̃ = 2α tan θ̃. Assume the
natural frequencies satisfy the ordering Ω1 < . . . < ΩN . Then, the phase-locked state Θ̄ verifies the
ordering θ̄1 < . . . < θ̄N .
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Proof. First, we show that the equilibria θ̄i’s are mutually distinct, i.e.,

θ̄i 6= θ̄j for i 6= j.

Since Θ̄ is an equilibrium, it satisfies

Ωi +
K

N

∑

k 6=i
h(θ̄k − θ̄i) = 0, (3.5.8)

for every i = 1, . . . , N . If there existed two oscillators having the same equilibria θ̄i = θ̄j , then
we would have

K

N

∑

k 6=i
h(θ̄k − θ̄i) =

K

N

∑

k 6=j
h(θ̄k − θ̄j),

which contradicts with Ωi 6= Ωj . We now show the ordering property. From (3.5.8), we have

Ωi+1 − Ωi = −K
N

∑

j 6=i+1

h(θ̄j − θ̄i+1) +
K

N

∑

j 6=i
h(θ̄j − θ̄i)

=
K

N

( ∑

j 6=i,i+1

h(θ̄i+1 − θ̄j)− h(θ̄i − θ̄j)
)
− K

N

(
h(θ̄i − θ̄i+1)− h(θ̄i+1 − θ̄i)

)

=
K

N

( ∑

j 6=i,i+1

h(θ̄i+1 − θ̄j)− h(θ̄i − θ̄j)
)

+
2K

N
h(θ̄i+1 − θ̄i)

=
K

N

∑

j 6=i,i+1

ci,j(θ̄i+1 − θ̄i) +
2K

N
h(θ̄i+1 − θ̄i),

where the coefficients ci,j read

ci,j :=
h(θ̄i+1 − θ̄j)− h(θ̄i − θ̄j)

θ̄i+1 − θ̄i
.

They are properly defined because all the equilibria are mutually distinct and they are posi-
tive because h is strictly increasing in (−θ̃, θ̃). Thus, the order Ωi+1 > Ωi yields the order of
equilibria θ̄i+1 > θ̄i.

In the subcritical case, we can attain the uniform boundedness of phase differences under
sufficiently large coupling strength.

Lemma 3.5.6. Let Θ be the solution to (3.3.1)-(3.3.2) for α ∈
(
0, 1

2

)
and non-identical oscillators with

initial data Θ0, satisfying D(Θ0) < D∞ < θ̃. If the coupling strength K is sufficiently large such that

K >
D(Θ̇0)

h′(D∞)(D∞ −D(Θ0))
,

then, the phase diameter D(Θ) is uniformly bounded by D∞:

D(Θ(t)) < D∞, for t ≥ 0.

Proof. Suppose there exists a finite time t∗ > 0 such that

t∗ := sup{t : D(Θ(s)) < D∞ for 0 ≤ s ≤ t} and D(Θ(t∗)) = D∞.
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We set indices F and S so that

θ̇F := max{θ̇1, . . . , θ̇N} and θ̇S := min{θ̇1, . . . , θ̇N},

for each time t. We define the frequency difference so that

D(Θ̇(t)) := θ̇F − θ̇S .

We note that

D(Θ̇(t))−D(Θ̇0) =

∫ t

0

d

dt
D(Θ̇(s)) ds. (3.5.9)

By taking time derivative on D(Θ̇), we obtain

d

dt
D(Θ̇) =

K

N

N∑

j=1

(
h′(θj − θF )(θ̇j − θ̇F )− h′(θj − θS)(θ̇j − θ̇m)

)
.

As long as D(Θ) < D∞, we have

h′(θj − θi) ≥ h′(D∞) > 0.

Thus, we get

d

dt
D(Θ̇) ≤ K

N

N∑

j=1

h′(D∞)
(

(θ̇j − θ̇F )− (θ̇j − θ̇S)
)

= −Kh′(D∞)D(Θ̇). (3.5.10)

We combine (3.5.9) and (3.5.10) to obtain

D(Θ̇(t)) ≤ D(Θ̇0)−Kh′(D∞)

∫ t

0
D(Θ̇(s)) ds. (3.5.11)

Setting y(s) :=
∫ t

0 D(Θ̇(s)) ds, we can rewrite (3.5.11) into

y′(t) ≤ y′(0)−Kh′(D∞)y(t).

Hence, we have

y(t) ≤ y′(0)

Kh′(D∞)
(1− e−Kh′(D∞)t) ≤ y′(0)

Kh′(D∞)
.

Since D(Θ(t∗)) = D∞ and K > D(Θ̇0)
h′(D∞)(D∞−D(Θ0)) , we get

D∞ = D(Θ0) +

∫ t∗

0

d

ds
D(Θ(s)) ds

≤ D(Θ0) +

∫ t∗

0
D(Θ̇(s)) ds

≤ D(Θ0) +
D(Θ̇0)

Kh′(D∞)
< D∞,

which is a contradiction. Thus, we have the desired uniform bound for phase difference

D(Θ(t)) < D∞, for t ≥ 0.
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Remark 3.5.7. Note that, in the preceding proof, the solution Θ = Θ(t) is C1 but not necessarily C2

because of the essential discontinuity of h′. Then, one cannot directly argue with two time derivatives
in the computation of d

dtD(Θ̇). However, the preceding arguments can be made rigorous because the
C1 solution of (3.3.1)-(3.3.2) is a piece-wise W 2,1 solution of the augmented model (3.2.4)-(3.4.23) as
discussed in Remark 3.4.5 in the preceding Section 4. Other possible approach is to directly show the
Gröwall inequality (3.5.11) in integral form.

In the following result, we show the collision avoidance when the oscillators are initially
well-ordered.

Lemma 3.5.8. Let Θ be the solution to (3.3.1)-(3.3.2), with α ∈
(
0, 1

2

)
, and initial data Θ0 satisfying

D(Θ0) < D∞ < θ̃. Assume the natural frequencies and the initial configuration satisfy the ordering
Ω1 < · · · < ΩN and θ1,0 < · · · < θN,0, respectively. We assume the coupling strength K is sufficiently
large such that

K >
D(Θ̇0)

h′(D∞)(D∞ −D(Θ0))
.

Then, there is no collision between oscillators, i.e.,

θi(t) 6= θj(t) for i 6= j, t > 0.

Proof. From Lemma 3.5.6, we have a uniform bound of the phase diameter D(Θ(t)) < D∞, for
t ≥ 0. Let ` be an index such that

θ`+1(t)− θ`(t) = min
j=1,...,N−1

θj+1(t)− θj(t),

for each time t ≥ 0. For notationally simplicity, we set ∆ := θ`+1 − θ`. Then, we have

∆̇ = Ω`+1 − Ω` +
K

N

N∑

j=1

(
h(θj − θ`+1)− h(θj − θ`)

)

≥ Ωδ +
K

N

N∑

j=1

(
h(θj − θ`+1)− h(θj − θ`)

)
,

(3.5.12)

where Ωδ := minj=1,...,N−1 Ωj+1 − Ωj > 0. We define the sets of indices such that

S1(`) := {j : j < `} and S2(`) := {j : j > `+ 1}.

Note that h(θ) is convex increasing for θ ∈ (−θ̃, 0) and is concave increasing for θ ∈ (0, θ̃). Thus,
we have

0 < h′(b) ≤ h(b)− h(a)

b− a ≤ h′(a) for 0 ≤ a < b ≤ θ̃,

0 < h′(c) ≤ h(d)− h(c)

d− c ≤ h′(d) for − θ̃ ≤ c < d ≤ 0.

(3.5.13)

From (3.5.12) and (3.5.13), we obtain

∆̇ ≥ Ωδ +
K

N

∑

j∈S1(`)

(
h(θj − θ`+1)− h(θj − θ`)

)
+
K

N
h(θ` − θ`+1)

− K

N
h(θ`+1 − θ`) +

K

N

∑

j∈S2(`)

(
h(θj − θ`+1)− h(θj − θ`)

)
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≥ Ωδ −
K

N

∑

j∈S1(`)

h′(θj − θ`) ∆− K

N

∑

j∈S2(`)

h′(θj − θ`+1) ∆− 2K

N
h(∆)

≥ Ωδ −
K|S1(`)|

N
h′(∆) ∆− K|S2(`)|

N
h′(∆) ∆− 2K

N
h(∆)

≥ Ωδ −Kh′(∆) ∆− 2K

N
h(∆)

≥ Ωδ − C∆γ =: q(∆),

where we have used
h(θ) ≤ C1θ

γ and h′(θ)θ ≤ C2θ
γ ,

for θ ≥ 0 and 0 < γ < 1 − 2α in the last inequality. Since limθ→0+ q(θ) = Ωδ > 0 and q(θ) is
continuous for θ > 0, there exists a positive ε > 0 such that q(θ) > 0, for θ ∈ (0, ε). Hence, the
distance ∆ has a positive lower bound.

In the sequel, we study the stability of the phase-locked state for the system of non-identical
oscillators. We use the center manifold theorem to investigate the stability of linearized system.

Lemma 3.5.9 (Center Manifold Theorem [56]). Consider the system

ẋ = Ax+ fA(x, y)

ẏ = By + fB(x, y)
(3.5.14)

where x ∈ Rn, y ∈ Rm and A and B are constant matrices such that all the eigenvalues of A have zero
real parts while all the eigenvalues of B have negative real parts. Assume that the functions fA and fB
are C2 with fA(0, 0) = 0,∇fA(0, 0) = 0, fB(0, 0) = 0,∇fB(0, 0) = 0. Then, we have the following
results:

1. There exists a center manifold for (3.5.14), y = φ(x), |x| < δ, where φ = φ(x) is C2. The flow on
the center manifold is governed by the n-dimensional system:

u̇ = Au+ fA(u, φ(u)) (3.5.15)

2. Assume the zero solution of (3.5.15) is stable (respectively asymptotically stable/unstable). Then,
the zero solution of (3.5.14) is stable (respectively asymptotically stable/unstable).

Theorem 3.5.10. Let Θ̄ := (θ̄1, · · · , θ̄N ) /∈ C be a collision-less equilibrium of (3.3.1)-(3.3.2).

1. If α ≥ 1
2 , then the phase-locked state Θ̄ is unstable.

2. If α < 1
2 , then the phase-locked state Θ̄ is stable.

Proof. • Step 1: Critical and supercritical regimes α ∈ [1
2 , 1).

We first linearize the system (3.3.1)-(3.3.2):

Θ̇ = A(Θ− Θ̄) +R(Θ̄), (3.5.16)

where the elements of matrix A = (aij)1≤i,j,≤N are determined by

aij =
cos(θ̄j − θ̄i)
|θ̄j − θ̄i|2αo

− 2α
sin |θ̄j − θ̄i|o
|θ̄j − θ̄i|2α+1

o
for i 6= j,

aii = −
∑

j 6=i
aij .

(3.5.17)
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If α ≥ 1
2 , we find aij < 0, for i 6= j, and hence aii > 0, for i = 1, . . . , N . This leads to a matrix

A of Laplacian type and, consequently, all its eigenvalues are non-negative. Indeed, we can
elaborate on this argument and notice that since the matrix A represents all-to-all connected
network, then there exists a zero eigenvalue for which the multiplicity is one (amount of con-
nected components of the network) and all the other eigenvalues are positive, which implies
the unstability of the equilibrium.

• Step 2: Subcritical regime α ∈ (0, 1
2).

Since the equilibrium satisfies maxi,j |θ̄i − θ̄j | < θ̃ and θ̄i 6= θ̄j for i 6= j, the elements of the
matrix have signs so that aij > 0 for i 6= j and aii < 0, for i = 1, . . . , N . By similar argument as
above, we can obtain that the eigenvalues of A are non-positive and there is a zero eigenvalue
with multiplicity 1. Let λ1 = 0 and λ2, . . . , λN < 0 be the eigenvalues for matrix A and let
v1, . . . , vN be the corresponding left eigenvectors such that

viA = λivi for i = 1, . . . , N.

We note that v1 = (1, · · · , 1). We set the matrices P and D so that

P−1 :=




1 · · · 1
v2
...
vN


 and D :=




0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN


 .

Then, we can diagonalize the matrix A:

P−1AP = D. (3.5.18)

We change the variables from Θ = (θ1, . . . , θN ) to X = (x1, . . . , xN ) such that

X := P−1Θ. (3.5.19)

Then, the system (3.5.16) can be transformed into the following form:

Ẋ = D(X − X̄) + R̃(X) (3.5.20)

Let x̂1 := (x2, . . . , xN ) and D̂ be a minor matrix of D such that

D̂ :=



λ2 · · · 0
...

. . .
...

0 · · · λN


 .

Then, we can rewrite the system (3.5.20) in the following form:

(
x1

x̂1

)′
=

(
0 0

0 D̂

)(
x1 − x̄1

x̂1 − ˆ̄x1

)
+

(
R̃1(x1, x̂1)
ˆ̃R1(x1, x̂1)

)
. (3.5.21)

Consider the center manifold in Lemma 3.5.9, that can be written as follows

Wc := {(x, y) ∈ R× RN−1 : y = c(x) for |x| < ε, φ(x̄1) = 0, Dφ(x̄1) = 0},

and consider the equation
ẋ1 = R̃1(x1, φ(x1)). (3.5.22)
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By the Center Manifold Theorem, the stability of (3.5.22) implies the stability of the system
(3.5.21). Since the equality (3.5.19) yields x1 = θ1 + · · ·+ θN and we have

ẋ1 =

N∑

i=1

θ̇i =

N∑

i=1

Ωi = 0.

Thus, the right hand side R̃1 ≡ 0 and the dynamics of (3.5.22) is stable. Therefore, the phase-
locked state Θ̄ is stable for α < 1

2 .

Finally, we are ready to show the emergence of phase locked state for non-identical oscilla-
tors.

Theorem 3.5.11. Let Θ be a solution to (3.3.1)-(3.3.2) with initial data Θ0 satisfying D(Θ0) < D∞ <
θ̃ for α ∈

(
0, 1

2

)
. If the coupling strength is sufficiently large such that

K >
D(Θ̇0)

h′(D∞)(D∞ −D(Θ0))
,

then we can show the emergence of phase-locked state. Moreover, if each oscillator has distinct natural
frequency, i.e., Ωi 6= Ωj for i 6= j, then, the synchronization occurs asymptotically.

Proof. By applying Gronwall’s lemma on (3.5.10), we have an exponential decay of upper esti-
mate on the frequency diameter:

D(Θ̇(t)) ≤ D(Θ̇0)e−Kh
′(D∞)t.

This exponential decay implies the emergence of phase-locked state.
Now, assume that the oscillators have mutually distinct natural frequencies. Since Propo-

sition 3.5.5 gives the structure of phase-locked state, the oscillators draw in descending order
of natural frequencies in finite time. After this time, by Lemma 3.5.8, we have a positive lower
bound ε∆ > 0 of distance between oscillators. Then, we have

d

dt
D(Θ̇) =

K

N

N∑

j=1

(
h′(θj − θF )(θ̇j − θ̇F )− h′(θj − θS)(θ̇j − θ̇S)

)

≥ K

N

N∑

j=1

(
h′(ε∆)(θ̇j − θ̇F )− h′(ε∆)(θ̇j − θ̇S)

)

= −Kh′(ε∆)D(Θ̇).

By Grönwall’s lemma, we have an lower estimate on the frequency diameter:

D(Θ̇(t)) ≥ D(Θ̇0)e−Kh
′(ε∆)t.

Let us now explore the behavior of Filippov solutions to (3.3.1)-(3.3.2) (see Theorems 3.3.12
and 3.3.19) in the most singular cases α = 1

2 and α ∈ (1
2 , 1). Looking at Remark 3.5.3 for

the dynamics of 2 oscillators, we expect global synchronization in finite time for N oscillators.
Specifically, in the supercritical case, the emerged global cluster is hoped to stay stuck indepen-
dently on the chosen natural frequencies. In the critical case, the sticking conditions (3.3.13) are
required for the cluster to remain stuck. To start with, let us prove the finite-time global phase
synchronization of identical oscillators in the critical and supercritical cases. To that end, we
need the following technical results.
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Lemma 3.5.12. Consider α ∈ [1
2 , 1), β ∈ (0, 2α] and θ∗ ∈ (0, π) and define the number

c(α, β) =

(
2α− β
β

)1/2

.

Then, the following lower bound for hε holds true

hε(θ) ≥
hε(θ∗)

θβ∗
θβ, ∀ θ ∈ [c(α, β)ε, θ∗],

for every 0 < ε < c(α, β)−1θ∗.

Proof. Define a scalar function

gε(θ) :=
hε(θ)

θβ
=

sin θ
(ε2+θ2)α

θβ
, θ ∈ (0, π).

We claim that gε is nonincreasing in the interval (c(α, β)ε, π) for every ε ∈ (0, c(α, β)−1θ∗).
Then, the result is apparent once monotonicity of gε is proved. Indeed, taking derivatives we
have

g′ε(θ) =
1

θβ+1(ε2 + θ2)α

[
θ cos θ −

(
2α

θ2

ε2 + θ2
+ β

)
sin θ

]

=
1

θβ+1(ε2 + θ2)α

[
θ cos θ −

(
2α+

βθ2 − (2α− β)ε2

θ2 + ε2

)
sin θ

]
,

for every θ ∈ (0, π2 ). Notice that 2α ≥ 1 and β ≤ 2α. Then, by virtue of the definition of c(α, β)
one checks that

θ cos θ −
(

2α+
βθ2 − (2α− β)ε2

θ2 + ε2

)
sin θ ≤ θ cos θ − sin θ ≤ 0,

for every θ ∈ (c(α, β)ε, π) and the monotonicity of gε becomes clear.

Lemma 3.5.13. Let Θ = (θ1, · · · , θN ) be the solution to (3.3.1)-(3.3.2) with α ∈ [1
2 , 1) for identical

oscillators, Ωi = 0, for i = 1, . . . , N obtained in Theorems 3.4.11 and 3.4.15 as singular limits. Suppose
the initial configuration Θ0 is confined in a half circle, i.e., 0 < D(Θ0) < π. Then,

D(Θ(t)) ≤ D(Θ0)e
−K h(D(Θ0))

D(Θ0) t, if α = 1
2 ,

D(Θ(t)) ≤
(
D(Θ0)1−2α + (2α− 1)22α−1K

h(D(Θ0))

D(Θ0)2α
t

)− 1
2α−1

, if α ∈ (1
2 , 1),

for every t ≥ 0.

Proof. The main idea is to handle the approximate sequence {Θε}ε>0 obtained as solutions to
the regularized system (3.4.8) and to take limits ε → 0 in the phase diameter estimates. First,
notice that by virtue of the assumed initial condition on the diameter one has that

d

dt
D(Θε) ≤ 0 and D(Θε(t)) ≤ D(Θ0) < π, for t > 0.

Indeed, note that we can obtain an explicit decay rate for the diameter by mimicking the ideas
in Theorem 3.5.4. Namely, choosing θ∗ = D(Θ0) and β = 2α in Lemma 3.5.12, we notice that
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c(α, β) = 0. Consequently, the lower bound of the kernel hε is valid in the whole interval
[0, D(Θ0)]. Then,

d

dt
D(Θε) =

K

N

N∑

j=1

(hε(θ
ε
j − θεM )− hε(θεj − θεm))

− K

N

N∑

j=1

(hε(θ
ε
M − θεj ) + hε(θ

ε
j − θεm))

≤ −K
N

hε(D(Θ0))

D(Θ0)2α

N∑

j=1

((θεM − θεj )2α + (θεj − θεm)2α)

≤ −K
N

hε(D(Θ0))

D(Θ0)2α
22α−1

N∑

j=1

((θεM − θεj ) + (θεj − θεm))2α

= −Khε(D(Θ0))

D(Θ0)2α
22α−1D(Θ)2α.

Let us integrate the above differential inequality. We need to distinguish the cases α = 1
2 and

α ∈ (1
2 , 1):

D(Θε(t)) ≤ D(Θ0)e
−K hε(D(Θ0))

D(Θ0) t, if α = 1
2 ,

D(Θε(t)) ≤
(
D(Θ0)1−2α + (2α− 1)22α−1K

hε(D(Θ0))

D(Θ0)2α
t

)− 1
2α−1

, if α ∈ (1
2 , 1),

for every t ≥ 0. Recall that by virtue of Lemmas 3.4.6 and 3.4.12, we obtained Θε ∗
⇀ Θ in

H1((0, T ),RN ). In particular, Θε → Θ in C([0, T ],RN ). Then, we can take the limit ε→ 0 in the
above estimates to attain the desired result.

Under the assumptions in the preceding Lemma 3.5.13 one obtains exponential decay of
the diameter in the critical case and algebraic decay in the supercritical regime. However, a
finite-time global synchronization is expected. This is the content of the following result.

Theorem 3.5.14. Let Θ = (θ1, · · · , θN ) be the solution to (3.3.1)-(3.3.2) with α ∈ [1
2 , 1) for identical

oscillators, Ωi = 0, for i = 1, . . . , N obtained in Theorems 3.4.11 and 3.4.15 as singular limits of the
regularized solutions Θε to (3.4.8). Assume that the initial configuration Θ0 is confined in a half circle,
i.e., 0 < D(Θ0) < π. Then, for every β ∈ (0, 1) there exist two oscillators that collide at some time not
larger than T 1

c , where

T 1
c =

D(Θ0)

(1− β)Kh(D(Θ0))
.

Proof. Let us assume the contrary. Then, by continuity there exists some T > T 1
c so that there is

no collision between oscillators along the time interval [0, T ]. Again, by continuity there exists
δT ∈ (0, D(Θ0)) so that

|θi(t)− θj(t)| ≥
δT
2
,

for all t ∈ [0, T ] and every i 6= j. Since Θε → Θ in C([0, T ],RN ), then there exists ε0 > 0 so that

|θεi (t)− θεj (t)| ≥ δT ,

160



CHAPTER 3. THE SINGULAR KURAMOTO MODEL: AGENT-BASED SYSTEM

for all t ∈ [0, T ] and every i 6= j and every ε ∈ (0, ε0). Take θ∗ = D(Θ0) and consider a
nonnegative

ε1 < min{ε0, c(α, β)θ−1
∗ ), c(α, β)−1δT }.

Then, it is clear that
|θεi (t)− θεj (t)| ∈ [c(α, β)ε, θ∗],

for every t ∈ [0, T ] any ε ∈ (0, ε1) and each i 6= j. Applying Lemma 3.5.12 we obtain

d

dt
D(Θε) =

K

N

N∑

j=1

(hε(θ
ε
j − θεM )− hε(θεj − θεm))

− K

N

N∑

j=1

(hε(θ
ε
M − θεj ) + hε(θ

ε
j − θεm))

≤ −K
N

hε(D(Θ0))

D(Θ0)β

N∑

j=1

((θεM − θεj )β + (θεj − θεm)β)

≤ −K
N

hε(D(Θ0))

D(Θ0)β

N∑

j=1

((θεM − θεj ) + (θεj − θεm))β

= −Khε(D(Θ0))

D(Θ0)β
D(Θ)β,

for every t ∈ [0, T ] and ε ∈ (0, ε1). Integrating the differential inequality yields

D(Θ(t)ε) ≤
(
D(Θ0)1−β − (1− β)K

hε(D(Θ0))

D(Θ0)β
t

) 1
1−β

,

for every t ∈ [0, T ] and ε ∈ (0, ε1). Taking limits when ε→ 0 amounts to

D(Θ(t)) ≤
(
D(Θ0)1−β − (1− β)K

h(D(Θ0))

D(Θ0)β
t

) 1
1−β

,

for each t ∈ [0, T ]. However, it clearly yields a contradiction with the fact that T > T 1
c due to

the definition of T 1
c .

The above result leads to a time estimate for the first collision between a couple of oscillators
in the critical and supercritical cases. However, such idea can be repeated and improved in the
critical case to give a total collision in finite time. The key ideas will be the uniqueness in
Theorem 3.3.12 or, more specifically, the characterization of sticking of oscillators in Corollary
3.3.14.

Theorem 3.5.15. Let Θ = (θ1, · · · , θN ) be the solution to (3.3.1)-(3.3.2) with α = 1
2 for identical

oscillators, Ωi = 0, for i = 1, . . . , N . Assume that the initial configuration Θ0 is confined in a half
circle, i.e., 0 < D(Θ0) < π. Then, there is complete phase synchronization in a finite time not larger
than Tc, where

Tc =
D(Θ0)

Kh(D(Θ0))
.

Proof. Let us assume the contrary, i.e., complete synchronization does not arises along [0, Tc].
By continuity there exists some T > Tc so that it does not happen along [0, T ] neither. Recall
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that by virtue of Corollary 3.3.14, sticking of oscillators takes place in the critical case after any
collision. Then, the collision classes Ci(t) and sticking classes Si(t) in Subsection 3.2.3 agree
each other. Let us list the family of collision (sticking) classes, i.e., the various clusters at time t

E(t) = {C1(t), . . . , CN (t)} = {E1(t), . . . , Eκ(t)}.

As a consequence of the assumed hypothesis κ(t), is nonincreasing with respect to t and bounded
below by 2. Coming back to the initial configuration, we define iM and im in such a way that

max
1≤j≤N

θj,0 = θiM ,0 and min
1≤j≤N

θj,0 = θim,0.

Since the regularized system (3.4.8) enjoys uniqueness in full sense, the oscillators θεi and θεj
cannot cross. Similarly, by the Corollary 3.3.14, the oscillators θi and θj cannot cross neither
unless they keep stuck together after that time. In any case, it is clear that

max
1≤j≤N

θj(t) = θiM (t), min
1≤j≤N

θj(t) = θim(t),

max
1≤j≤N

θεj (t) = θεiM (t), min
1≤j≤N

θεj (t) = θεim(t),

for every t ≥ 0 and any ε > 0. Then, we have

D(Θε(t)) = θεiM (t)− θεim(t) and D(Θ(t)) = θiM (t)− θim(t),

for every t ≥ 0 and any ε > 0. Notice that all the above remarks ensure that for every t ∈ [0, T ]

θj(t)− θim(t) > 0, for all j ∈ CiM (t),
θiM (t)− θj(t) > 0, for all j ∈ Cim(t),
θiM (t)− θj(t) > 0, for all j /∈ CiM ∪ Cim(t),
θj(t)− θim(t) > 0, for all j /∈ CiM ∪ Cim(t).

Since Θε → Θ in C([0, T ],RN ), by continuity we can obtain ε0 > 0 and δT > 0 so that

θεj (t)− θεim(t) > δT , for all j ∈ CiM (t),

θεiM (t)− θεj (t) > δT , for all j ∈ Cim(t),

θεiM (t)− θεj (t) > δT , for all j /∈ CiM ∪ Cim(t),

θεj (t)− θεim(t) > δT , for all j /∈ CiM ∪ Cim(t).

(3.5.23)

for every t ∈ [0, T ] and every ε ∈ (0, ε0). Take θ∗ = D(Θ0), fix β ∈ (0, 1) and consider a
nonnegative

ε1 < min{ε0, c(α, β)θ−1
∗ ), c(α, β)−1δT }.

Then, it is clear that

θεj (t)− θεim(t) ∈ [c(α, β)ε, θ∗], for all j ∈ CiM (t),

θεiM (t)− θεj (t) ∈ [c(α, β)ε, θ∗], for all j ∈ Cim(t),

θεiM (t)− θεj (t) ∈ [c(α, β)ε, θ∗], for all j /∈ CiM ∪ Cim(t),

θεj (t)− θεim(t) ∈ [c(α, β)ε, θ∗], for all j /∈ CiM ∪ Cim(t),

(3.5.24)

for every t ∈ [0, T ] and any ε ∈ (0, ε1). Now, let us split as follows

d

dt
D(Θε) =− K

N

∑

j∈CiM (t)

(hε(θ
ε
iM
− θεj ) + hε(θ

ε
j − θεim))
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− K

N

∑

j∈Cim (t)

(hε(θ
ε
iM
− θεj ) + hε(θ

ε
j − θεim))

− K

N

∑

j /∈CiM (t)∪Cim (t)

(hε(θ
ε
iM
− θεj ) + hε(θ

ε
j − θεm))

≤− K

N

∑

j∈CiM (t)

hε(θ
ε
j − θεim)− K

N

∑

j∈Cim (t)

hε(θ
ε
iM
− θεj )

− K

N

∑

j /∈CiM (t)∪Cim (t)

(hε(θ
ε
iM
− θεj ) + hε(θ

ε
j − θεim)),

for every t ∈ [0, T ] and every ε ∈ (0, ε1). By virtue of Lemma 3.5.12 and the estimates in (3.5.24),
the above chain of inequalities implies

d

dt
D(Θε) ≤− K

N

hε(D(Θ0))

D(Θ0)β

∑

j∈CiM (t)

(θεj − θεim)β − K

N

hε(D(Θ0))

D(Θ0)β

∑

j∈Cim (t)

(θεiM − θ
ε
j )
β

− K

N

hε(D(Θ0))

D(Θ0)β

∑

j /∈CiM (t)∪Cim (t)

((θεiM − θ
ε
j )
β + (θεj − θεim)β).

Let us integrate such differential inequality to obtain

D(Θε(t)) ≤ D(Θ0)− K

N

hε(D(Θ0))

D(Θ0)β

∫ t

0

∑

j∈CiM (s)

(θεj (s)− θεim(s))β ds

− K

N

hε(D(Θ0))

D(Θ0)β

∫ t

0

∑

j∈Cim (s)

(θεiM (s)− θεj (s))β ds

− K

N

hε(D(Θ0))

D(Θ0)β

∫ t

0

∑

j /∈CiM (s)∪Cim (s)

((θεiM (s)− θεj (s))β + (θεj (s)− θεim(s))β) ds,

for every t ∈ [0, T ] and every ε ∈ (0, ε1). Taking limits as ε→ 0 we obtain

D(Θ(t)) ≤ D(Θ0)− K

N

h(D(Θ0))

D(Θ0)β

∫ t

0

∑

j∈CiM (s)

(θiM (s)− θim(s))β ds

− K

N

h(D(Θ0))

D(Θ0)β

∫ t

0

∑

j∈Cim (s)

(θiM (s)− θim(s))β ds

− K

N

h(D(Θ0))

D(Θ0)β

∫ t

0

∑

j /∈CiM (s)∪Cim (s)

((θiM (s)− θj(s))β + (θj(s)− θim(s))β) ds.

for every t ∈ [0, T ]. To sum up, we obtain,

D(Θ(t)) ≤ D(Θ0)−Kh(D(Θ0))

D(Θ0)β

∫ t

0
D(θ(s))β ds.

Hence, we find

D(Θ(t)) ≤
(
D(Θ0)1−β − (1− β)K

h(D(Θ0))

D(Θ0)β
t

) 1
1−β

,
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for all t ∈ [0, T ]. Then, it is clear that

T <
D(Θ0)

(1− β)Kh(D(Θ0))
,

for all β ∈ (0, 1). Taking limits when β → 0 shows that T ≤ Tc and this yields the contradiction.

Remark 3.5.16. Notice that Theorem 3.5.14 also works in the supercritical case. However, the same
proof as in Theorem 3.5.15 is not valid to show finite-time complete phase synchronization of identical
oscillators for α ∈ (1

2 , 1). The reason is that at this point we cannot guarantee whether the Filippov
solutions in Θ obtained as singular limit of the regularized solutions Θε to system (3.4.8) in Theorem
3.4.11 agrees with the solution obtained in Remark 3.3.20 via the “sticking after collision” continuation
procedure of classical solutions. However, if the limiting Θ obtained in Theorem 3.4.11 satisfies such
“sticking after collision” property, we can mimic Theorem 3.5.15 to show that it exhibits complete phase
synchronization at a finite time not larger than

Tc =
D(Θ0)

Kh(D(Θ0))
.

Appendices

3.A Regular interactions

In this Appendix, we study the Kuramoto model with regular coupling weights:

θ̇i = Ωi +
K

N

N∑

j=1

σ2α

(σ2 + c|θj − θi|2o)α
sin(θj − θi) for i = 1, . . . , N, (3.A.1)

where we denote c ≡ cα,ζ = 1 − ζ−1/α for simplicity. Recall that such model comes from
the choice (3.1.5) of Γ as the Hebbian plasticity function in (3.1.6). Since the right hand side
of (3.A.1) is Lipschitz continuous, then the system (3.A.1) has a unique solution by Cauchy–
Lipschitz theory in this case.

For positive σ, we get the following bounds for Γ:

εσ :=
σ2α

(σ2 + cπ2)α
≤ Γ(θ) ≤ 1, Γ(0) = Γ(2π) = 1.

Note that εσ converges to zero as σ → 0. We will study the emergence of synchronization
for identical and non-identical oscillators and, we will use the idea of [145] for the proof of
synchronization.

3.A.1 Identical oscillators

Consider the Kuramoto model (3.A.1) for identical oscillators, which have the same natural
frequency. Without loss of generality, we may assume Ωi = 0 for all i = 1, . . . , N . The system
(3.A.1) becomes as follows:

θ̇i =
K

N

N∑

j=1

σ2α

(σ2 + c|θj − θi|2o)α
sin(θj − θi), i = 1, . . . , N. (3.A.2)
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We can show the complete phase synchronization asymptotically for (3.A.2) with a con-
straint on initial configuration. Let us recall the notation θM (t) and θm(t) in (3.5.6) for the
indices of largest and shortest phases and D(Θ) for the phase diameter defined in (3.5.7).

Theorem 3.A.1. Let Θ = (θ1, . . . , θN ) be the solution to (3.A.2). Assume that the initial configuration
is confined in a half circle, i.e. D(Θ0) < π, and the coupling strength K is positive. Then, the solution
Θ shows the complete phase synchronization asymptotically:

D(Θ0)e−Kt ≤ D(Θ) ≤ D(Θ0)e
−KΓ(D(Θ0)) sinD(Θ0)

D(Θ0)
t
.

Proof. We consider the dynamics of phase diameter

d

dt
D(Θ) =

K

N

N∑

j=1

(
Γ(θj − θM ) sin(θj − θM )− Γ(θj − θm) sin(θj − θm)

)
. (3.A.3)

Since sin(θj − θM ) ≤ 0 and sin(θj − θm) ≥ 0, as long as D(Θ) ≤ π, we have

d

dt
D(Θ) ≤ 0 and D(Θ(t)) ≤ D(Θ0) < π for t > 0.

By this contraction of phase difference, we have

sin(θj − θM ) ≤ sinD(Θ0)

D(Θ0)
(θj − θM ) and sin(θj − θm) ≥ sinD(Θ0)

D(Θ0)
(θj − θm). (3.A.4)

On the other hand, we get
εσ < Γ(D(Θ0)) ≤ Γ(D(Θ)) ≤ 1. (3.A.5)

By applying (3.A.4) and (3.A.5) to (3.A.3), we attain the following differential inequality:

d

dt
D(Θ) ≤ K

N

N∑

j=1

(
Γ(θj − θM )

sinD(Θ0)

D(Θ0)
(θj − θM )− Γ(θj − θm)

sinD(Θ0)

D(Θ0)
(θj − θm)

)

= −K
N

sinD(Θ0)

D(Θ0)

N∑

j=1

(
Γ(θj − θM )(θM − θj) + Γ(θj − θm)(θj − θm)

)

≤ −K
N

Γ(D(Θ0)) sinD(Θ0)

D(Θ0)

N∑

j=1

(
(θM − θj) + (θj − θm)

)

= −KΓ(D(Θ0)) sinD(Θ0)

D(Θ0)
D(Θ).

Grönwall’s lemma yields the desired upper estimate. Similarly, from (3.A.5) and sinx ≤ x for
0 ≤ x ≤ π, we have

d

dt
D(Θ) ≥ K

N

N∑

j=1

(
(θj − θM )− (θj − θm)

)
= −KD(Θ),

which gives the lower estimate.
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3.A.2 Non–identical oscillators

We assume that the diameter of initial configuration is less than D∞ < π
2 . We first show that

the diameter of phase is less than D∞ for all time t ≥ 0 for sufficiently large coupling strength
K. Let us recall that for θ ∈ (−π, π) the plasticity function reads Γ(θ) = σ2α

(σ2+cθ2)α
. Then, we

have

Γ′(θ) = − 2σ2ααcθ

(σ2 + cθ2)α+1
,

Γ′′(θ) = −2σ2ααc
[
σ2 − (2α+ 1)cθ2

]

(σ2 + cθ2)α+2
.

If we set
θ± := ± σ√

c(2α+ 1)
,

then Γ′ attains its global extrema on such points, namely

Γ′(θ−) = max
θ∈(−π,π)

Γ′(θ) > 0 and Γ′(θ+) = min
θ∈(−π,π)

Γ′(θ) < 0.

Indeed, we get

Γ′(θ−) = −Γ′(θ+) =
2α
√
c

σ
√

2α+ 1(1 + 1
2α+1)α+1

.

We first show the boundedness of phase differences.

Lemma 3.A.2. Assume that D(Θ0) < D∞, for some small D∞ < π
2 , and that the coupling strength is

sufficiently large so that

−Γ′(θ+) <
Γ(D∞)

tanD∞
and K >

D(Θ̇0)[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

]
(D∞ −D(Θ0))

.

Then, we have
D(Θ(t)) < D∞ for t ≥ 0.

Proof. Assume that there exists a time for which D(Θ(t)) ≥ D∞. Then, due to the continuity

t∗ := sup{t > 0 : D(Θ(s)) < D∞ for 0 ≤ s ≤ t},

is positive and finite and D(Θ(t∗)) = D∞. We set indices F and S so that

θ̇F (t) := max{θ̇1(t), . . . , θ̇N (t)} and θ̇S(t) := min{θ̇1(t), . . . , θ̇N (t)},

for each time t and define the diameter of frequency so that

D(Θ̇(t)) := θ̇F (t)− θ̇S(t).

Then, we have

D(Θ̇(t))−D(Θ̇0) =

∫ t

0

d

ds
D(Θ̇(s)) ds. (3.A.6)
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By taking time derivative on D(Θ̇), we get

d

dt
D(Θ̇) =

K

N

N∑

j=1

[
Γ′(θj − θF ) sin(θj − θF ) + Γ(θj − θF ) cos(θj − θF )

]
(θ̇j − θ̇F )

− K

N

N∑

j=1

[
Γ′(θj − θS) sin(θj − θS) + Γ(θj − θS) cos(θj − θS)

]
(θ̇j − θ̇S).

(3.A.7)

Then, we get the following couple of upper and lower bounds

Γ′(θ+) sinD∞ ≤ Γ′(θj − θi) sin(θj − θi) ≤ 0, (3.A.8)
Γ(D∞) cosD∞ ≤ Γ(θj − θi) cos(θj − θi) ≤ 1. (3.A.9)

By applying (3.A.8) and (3.A.9) into (3.A.7), we deduce

d

dt
D(Θ̇) ≤ K

N

N∑

j=1

[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

](
(θ̇j − θ̇F )− (θ̇j − θ̇S)

)

= −K
[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

]
(θ̇F − θ̇S)

≤ −K
[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

]

︸ ︷︷ ︸
>0

D(Θ̇),

(3.A.10)

for every t ∈ [0, t∗]. Combining (3.A.6) and (3.A.10), we obtain

D(Θ̇(t)) ≤ D(Θ̇0)−K
[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

] ∫ t

0
D(Θ̇(s))ds, (3.A.11)

for every t ∈ [0, t∗]. Let us define y(t) :=
∫ t

0 D(Θ̇(s))ds. Thus, the inequality (3.A.11) can be
rewritten into

y′(t) ≤ y′(0)− Cy(t).

Here, C := K
[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

]
and t ∈ [0, t∗]. Then, we find

y(t) ≤ y′(0)

C
(1− e−Ct) ≤ y′(0)

C
,

for all t ∈ [0, t∗]. However, since D(Θ(t∗)) = D∞, we get

D∞ = D(Θ0) +

∫ t∗

0

d

ds
D(Θ(s)) ds ≤ D(Θ0) +

∫ t∗

0
D(Θ̇(s)) ds

≤ D(Θ0) + y(t∗) ≤ D(Θ0) +
y′(0)

C
< D∞,

when

K >
D(Θ̇0)[

Γ′(θ+) sinD∞ + Γ(D∞) cosD∞
]
(D∞ −D(Θ0))

,

which yields to a contradiction. Thus, D(Θ(t)) < D∞, for all t ≥ 0.

We are ready to prove the frequency synchronization for non-identical oscillators.
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Theorem 3.A.3. Assume that D(Θ0) < D∞, for some small D∞ < π
2 , and that the coupling strength

is sufficiently large so that

−Γ′(θ+) <
Γ(D∞)

tanD∞
and K >

D(Θ̇0)[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

]
(D∞ −D(Θ0))

.

Then, we deduce a complete frequency synchronization

D(Θ̇(0))e−Kt ≤ D(Θ̇(t)) ≤ D(Θ̇(0))e
−K
[

Γ′(θ+) sinD∞+Γ(D∞) cosD∞
]
t
.

Proof. From (3.A.7)-(3.A.10), we obtain

d

dt
D(Θ̇) ≤ −K

[
Γ′(θ+) sinD∞ + Γ(D∞) cosD∞

]
D(Θ̇).

On the other hand, from (3.A.7)-(3.A.9), we have

d

dt
D(Θ̇) ≥ −KD(Θ̇).

By Gronwall’s lemma, we achieve the exponential estimates for the frequency synchronization.

Since the decay rate of the asymptotic frequency synchronization is exponential, then the
solution Θ shows the emergence of a phase-locked state.

3.B H-representation of the Filippov set-valued maps

In this appendix, we exhibit the proofs of the technical Lemmas 3.4.8 and 3.4.13 that have been
used in Chapter 3. Recall that such results were respectively applied in Propositions 3.4.9 and
3.4.14 in order to characterize explicitly some H-representation of the Filippov set-valued map
in the supercritical and critical cases. We introduce some notation that will be used here on.

Definition 3.B.1. Consider n ∈ N. For every i, j ∈ {1, . . . , n} we define the linear operator

Lij : Skewn(R) −→ R,
Y 7−→ yij ,

Li : Skewn(R) −→ R,
Y 7−→ ∑n

k=1 yik,
L : Skewn(R) −→ Rn,

Y 7−→ Y · j.

By definition, the following relations hold true

Li =
n∑

k=1

Lik and L = (L1, . . . , Ln).

First, we give the simpler proof of Lemma 3.4.8:

Lemma 3.B.2. Consider any n ∈ N and any vector x ∈ Rn. Then, the following assertions are
equivalent:
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1. There exists some Y ∈ Skewn(R) such that

x = Y · j.

2. The following implicit equation holds true

x · j = 0,

where j = (1, . . . , 1)︸ ︷︷ ︸
n pairs

stand for the vector of ones.

Proof. Let us define the following linear operator

L : Skewn(R) −→ Rn,
Y 7−→ Y · j.

Then, the thesis of this lemma is equivalent to

L(Skewn(R)) = j⊥. (3.B.1)

On the one hand, it is clear that the inclusion ⊆ in (3.B.1) fulfils by virtue of the properties of
the skew symmetric matrices. On the other hand, let us define the matrices

Eij :=
1

2
(ei ⊗ ej − ej ⊗ ei), (3.B.2)

for every i 6= j, where {ei : i = 1, . . . , N} is the standard basis of Rn and ⊗ denotes the
Kronecker product. Notice that

L(Eij) =
1

2
(ei ⊗ ej − ej ⊗ ei) · j = ei − ej .

Hence, {L(Ei,i+1) : i = 1, . . . , n−1} = {ei−ei+1 : i = 1, . . . , n−1} consist of n−1 independent
vectors. Consequently, L has rank larger or equal to n− 1. Since j⊥ has rank equal to n− 1 the
full identity in (3.B.1) holds true.

Now, we focus on the proof of Lemma 3.4.13. Our main tool in this part will be the Farkas
alternative from convex analysis that we recall in the subsequent result.

Lemma 3.B.3 (Farkas alternative). Consider any finite-dimensional vector space V , some finite family
of linear operators T1, . . . , Tk : V −→ R and b = (b1, . . . , bk) ∈ Rk. Then, exactly one of the following
statements holds true:

1. There exists v ∈ V such that
Ti(v) ≤ bi, i = 1, . . . , k.

2. There exists q ∈ Rn with qi ≥ 0 for all i = 1, . . . k such that

k∑

i=1

qiTi ≡ 0 and q · b < 0.

This result has several equivalent representations in the literature and it is sometimes called
the Theorem of Alternatives. One clear reference where we can infer our version from can be
found in [284, Lemma 2.54]. We are now ready to give a proof of Lemma 3.4.13.
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Lemma 3.B.4. Consider any n ∈ N and any vector x ∈ Rn. Then, the following two assertions are
equivalent:

1. There exists some Y ∈ Skewn([−1, 1]) such that

x = Y · j.

2. There exists some Y ∈ Skewn(R) such that

Lij(Y ) ≤ 1, Li(Y ) ≤ xi and − Li(Y ) ≤ −xi.

3. The following inequality
n∑

i,j=1

qij + λixi ≥ 0, (3.B.3)

holds, for every Q ∈Mn(R+
0 ) and λ ∈ Rn such that qij + λi = qji + λj .

4. We have that
1

k

k∑

i=1

xσi ∈ [−(n− k), (n− k)],

for every permutation σ of {1, . . . , n} and any k ∈ N.

Proof. For the shake of simplicity in our arguments, we will split the proof into two parts. In
the first part, we establish the equivalence of the first three assertions in the statement. The
main tool to be used in such part is the above Lemma 3.B.3. In the second part, we will focus
on the more convoluted equivalence between the first group of equivalent assertions in the
above-mentioned step and the last assertion.

• Step 1: Equivalence of the first three assertions.
On the one hand, the first two assertion are perfectly equivalent by virtue of Definition

3.B.1. Then, our problem consists in a system of affine inequalities in the vector space Skewn(R)
of skew symmetric matrices. Hence, by Farkas alternative (see Lemma 3.B.3) such assertions
amounts to saying that whenever qij , q+

i , q
−
i are non-negative coefficients verifying

n∑

i,j=1

qijLij +
n∑

i=1

q+
i Li −

n∑

i=1

q−i Li ≡ 0 in Skewn(R),

then
n∑

i,j=1

qij +
n∑

i=1

q+
i xi −

n∑

i=1

q−i xi ≥ 0.

Defining λi = q+
i − q−i , we can simplify an equivalent assertion: for every Q ∈ Mn(R+

0 ) and
λ ∈ Rn such that

n∑

i,j=1

qijLij +

n∑

i=1

λiLi ≡ 0 in Skewn(R), (3.B.4)

then
n∑

i,j=1

qij +
n∑

i=1

λixi ≥ 0.
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Thus, the equivalence with the third assertion follows by evaluating the identity (3.B.4) on
every matrix in the canonical basis of Skewn(R), i.e.,

{ei ⊗ ej − ej ⊗ ei : 1 ≤ i < j ≤ n} ,

and noticing that we obtain the condition qij + λi = qji + λj in such third assertion.

• Step 2: Equivalence with the last assertion.
On the one hand, let us assume that the first assertion is satisfied, i.e., x = Y · j for some

Y ∈ Skewn([−1, 1]). Taking any permutation σ of {1, . . . , n} and any 1 ≤ k ≤ n we obtain

k∑

i=1

xσi =
k∑

i=1

n∑

j=1

yσiσj =
k∑

i=1

k∑

j=1

yσiσj +
k∑

i=1

n∑

j=k+1

yσiσj .

Since the first term becomes zero (by anti-symmetry) and the second term consists of n(n− k)
terms with values in [−1, 1], then

k∑

i=1

xσi ∈ [−k(n− k), k(n− k)].

Conversely, assume that the last assertion is true and let us prove (3.B.3) in the third assertion.
Consider Q ∈Mn(R+

0 ) and λ ∈ Rn such that

qij − qji = λj − λi. (3.B.5)

Without loss of generality we will assume that qii = 0, for every i = 1, . . . , n (notice that in
other case, (3.B.3) is even larger), and let us split

I :=
∑

i 6=j
qij +

n∑

i=1

λixi =: I1 + I2.

On the one hand, let us rewrite I2 and notice that

I2 =
n∑

i=1

λixi =
n∑

i=1

(λi − λj)xi + λj
∑

i=1

xi,

for every j = 1, . . . , n. Since the sum of all the xi becomes zero by hypothesis, taking averages
with respect to all the indices j = 1, . . . , n we obtain that

I2 =
1

n

n∑

i=1

n∑

j=1

(λi − λj)xi.

Finally, changing the indices i with j and taking the average of both expressions we can equiv-
alently write

I2 =
1

2n

n∑

i=1

n∑

j=1

(λi − λj)(xi − xj) =
1

n

∑

i<j

(λj − λi)(xj − xi).

Thus, substituting (3.B.5) into I2 and putting it together with I1 we can rewrite

I =
∑

i 6=j
qij +

1

2n

∑

i 6=j
(qij − qji)(xj − xi) =

∑

i 6=j
qij

(
1 +

1

n
(xj − xi)

)
. (3.B.6)
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Let us consider a permutation σ of {1, . . . , n} so that we can order the coefficients λi in increas-
ing way, i.e.,

λσ1 ≤ λσ2 ≤ · · · ≤ λσn . (3.B.7)

Then,

I =
∑

i 6=j
qσiσj

(
1 +

1

n
(xσj − xσi)

)

=
∑

i<j

(qσiσj − qσjσi)
(

1 +
1

n
(xσj − xσi)

)
+ 2

∑

i<j

qσjσi =: I3 + I4.

It is clear that I4 is non-negative. Hence, we will focus on showing that so is I3 too. By virtue
of (3.B.5), it is easy to show that

qσiσj − qσjσi =

j−1∑

k=i

(qσkσk+1
− qσk+1σk),

for every i < j. Thereby,

I3 =
∑

i<j

j−1∑

k=i

(qσkσk+1
− qσk+1σk)

(
1 +

1

n
(xσj − xσi)

)

=

n−1∑

k=1

ak(qσkσk+1
− qσk+1σk) =

n−1∑

k=1

ak(λσk+1
− λσk), (3.B.8)

where in the last step we have used (3.B.5) again and the coefficients ak read

ak :=
∑

i≤k
j≥k+1

(
1 +

1

n
(xσj − xσi)

)
= k(n− k) +

k

n

n∑

j=k+1

xσj −
n− k
n

k∑

i=1

xσi .

Bearing in mind that the sum of all the xi vanishes by hypothesis, then

ak = k(n− k)−
k∑

i=1

xσi .

Then, ak ≥ 0 by hypothesis. Since we have chosen σ so that (3.B.7) takes place, then the result
follows from the above expression (3.B.8) for I3.

3.C Characterizing the sticking conditions

Our purpose in this appendix is to characterize explicit conditions for the weights specifying
the necessary and sufficient conditions for sticking of particles (3.3.13) and (3.3.14) in the Sub-
sections (3.4.3) and (3.4.1) respectively. The first part is devoted to the latter condition for the
supercritical case and the second part will focus on the former critical case.

Apart form the linear operators in Definition 3.B.1 we will need the following ones.
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Definition 3.C.1. Consider n ∈ N. For every i, j ∈ {1, . . . , n} we define the linear operator

Tij : Skewn(R) −→ R,
Y 7−→ ∑n

k=1(yik − yjk).

Notice that by definition we get the following relation with the operators in Definition 3.B.1

Tij =

n∑

k=1

(Lik − Ljk).

Then, the next result yields a characterization for the sticking condition (3.3.14) to hold.

Lemma 3.C.2. Consider any n ∈ N and any matrix M ∈ Skewn(R). Then, the following assertions
are equivalent:

1. There exists some Y ∈ Skewn(R) such that

M = Y · J + J · Y.

2. There exits some Y ∈ Skewn(R) such that

Tij(Y ) ≤ mij and − Tij(Y ) ≤ −mij .

3. We have
m1i +mij +mj1 = 0, (3.C.1)

for every 2 ≤ i < j ≤ n.

4. The equality
mij +mjk +mki = 0, (3.C.2)

holds, for every 1 ≤ i < j < k ≤ n.

Proof. First, it is clear that the first two assertions are equivalent. Second, let us briefly show
that (3.C.1) and (3.C.2) are equivalent. On the one hand, it is clear that (3.C.1) is a particular
case of (3.C.2). On the other hand, let us assume that (3.C.1) fulfills. Then, we have in particular
the next three equations for 1 ≤ i < j < k ≤ n

m1i +mij +mj1 = 0,

m1j +mjk +mk1 = 0,

m1k +mki +mi1 = 0.

Taking the sum of such equations we obtain (3.C.2) by virtue of the skew-symmetry of M .
Hence, let us just concentrate on proving the equivalence between the second and third asser-
tions. By Lemma 3.B.3, the second assertion amounts to saying that whenever Λ ∈ Mn(R)
verifies

n∑

i,j=1

λijTij ≡ 0,

then the following condition fulfills

n∑

i,j=1

λijmij ≥ 0.
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Evaluating along the basis ei ⊗ ej − ej ⊗ ei we equivalently write the former condition as

n∑

k=1

[(λik − λki)− (λjk − λkj)] = 0.

Hence, if we define pij = λij − λji we can conclude that the second assertion of this Lemma is
completely equivalent to the fact that whenever P ∈ Skewn(R) verifies

n∑

k=1

(pik − pjk) = 0, (3.C.3)

for every i, j ∈ {1, . . . , n}, then
n∑

i,j=1

pijmij ≥ 0. (3.C.4)

• Step 1: Characterizing condition (3.C.3).
Taking the vector x as follows

x =

(
n∑

k=1

pjk

)
j,

and applying Lemma 3.4.8 shows that those matrices P ∈ Skewn(R) fulfilling (3.C.3) agree
with the matrices that lie in the kernel of the operator L = (L1, . . . , Ln). Recall that by virtue
of such result, L has rank equal to n − 1. Since Skewn(R) is a vector space with dimension
d1 := n(n− 1)/2, then we know that

d2 := dim(kerL) =
n(n− 1)

2
− (n− 1) =

(n− 1)(n− 2)

2
.

Consider the following matrices

Pij := E1i + Eij + Ej1 = E1i − Eij + Eij , (3.C.5)

where Eij are the skew symmetric matrices in (3.B.2). Then,

L(Pij) = L(E1i) + L(Eij) + L(Ej1) = (e1 − ej) + (ei − ej) + (ej − e1) = 0.

Hence, the following subset

P := {Pij : 2 ≤ i < j ≤ n} ⊆ kerL,

consists of (n− 1)(n− 2)/2 different elements, which we can be classified via the lexicographic
order of multi-indices (i, j). Let us show that all of them are linearly independent, thus gener-
ating the whole kernel. We first consider the basis of skew-symmetric matrices

B := {Eij : 1 ≤ i < j ≤ n},

and, again, we can list them ordered with respect to the lexicographic order. Let us consider the
matrixM ∈ Md2×d1(R) of coordinates of the elements in P with respect to the basis B. Then,
by the definition (3.C.5) one infers that the d2 × d2 identity matrix appears as the submatrix
of M consisting of all the d2 rows but just the last d2 columns. Hence, rankM = d2 and,
consequently,

kerL = span(P).
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• Step 2: Characterize condition (3.C.4).
Such condition clearly amounts to show that

n∑

i,j=1

pijmij = 0,

for every P ∈ P . Taking P = Pij for 2 ≤ i < j ≤ n we get

n∑

i,j=1

pijmij =
1

2
(m1i −mi1 +mij −mji +mj1 −m1j) = m1i +mij +mj1,

and this concludes the full proof of our result.

Finally, we focus on the sticking condition (3.3.12) in the critical case. The next result ex-
hibits an explicit characterization that follows similar techniques to those in Lemma 3.B.4.

Lemma 3.C.3. Consider any n ∈ N and any matrix M ∈ Skewn(R). Then, the following assertions
are equivalent:

1. There exists some Y ∈ Skewn([−1, 1]) such that

M = Y · J + J · Y.

2. There exists some Y ∈ Skewn(R) such that

Tij(Y ) ≤ mij , −Tij(Y ) ≤ −mij and Lij(Y ) ≤ 1.

3. The following inequality
n∑

i,j=1

qij +
1

2

n∑

i,j=1

pijmij ≥ 0,

holds, for any i, j = 1, . . . , n, and for every P ∈ Skewn(R) and Q ∈ Mn(R+
0 ) such that∑n

k=1(pik − pjk) + qij − qji = 0.

4. The following two conditions fulfill

(a) Condition (3.C.2) holds true.

(b) We have that
m∑

i=1

n∑

j=m+1

mσiσj ∈ [−nm(n−m), nm(n−m)], (3.C.6)

for every permutation σ of {1, . . . , n} and any 1 ≤ m ≤ n.

Proof. The assertions 1 and 2 are apparently equivalent due to the definition of the involved
linear operators. Also, both properties 2 and 3 are equivalent by virtue of an application of
Lemma 3.B.3 that is analogue to that in the proof of Lemma 3.B.4; hence, we skip the proof for
simplicity. Thereby, we will only focus on the equivalence with the former assertion. First, let
us assume that for some Y ∈ Skewn([−1, 1]) the first assertion holds true, i.e.,

mij =
n∑

k=1

(yik − yjk).

175



3.C. CHARACTERIZING THE STICKING CONDITIONS

By Lemma 3.C.2 we arrive at (3.C.2). Moreover,

m∑

i=1

n∑

j=m+1

mσiσj =

m∑

i=1

n∑

j=m+1

n∑

k=1

(yσiσk − yσjσk)

= (n−m)

m∑

i=1

n∑

k=m+1

yσiσk −m
n∑

j=m+1

m∑

k=1

yjk

= n
m∑

i=1

n∑

k=m+1

yik.

Since it is n times the sum of m(n−m) numbers in [−1, 1], then the condition (3.C.6) is also sat-
isfied. Conversely, let us assume that both (3.C.2) and (3.C.6) fulfill and take any P ∈ Skewn(R)
and Q ∈Mn(R+

0 ) such that
n∑

k=1

(pik − pjk) + qij − qji = 0, (3.C.7)

for any couple of indices i, j = 1, . . . , n. Without loss of generality we can assume that qii =
0, for every i = 1, . . . , n. Also, let us define the coefficients λi :=

∑n
k=1 pik and consider a

permutation σ of {1, . . . , n} so that λσi are ordered in a non-decreasing way, i.e.,

λσ1 ≤ λσ2 ≤ · · · ≤ λσn . (3.C.8)

Let us split

I :=
n∑

i,j=1

qσiσj +
1

2

n∑

i,j=1

pσiσjmσiσj =: I1 + I2.

Using (3.C.2) in the second term we can write

I2 =
1

2

n∑

i,j=1

pσiσj (mσiσk −mσjσk),

for any k = 1, . . . , n. Let us take the average with respect to k in the above expression

I2 =
1

2n

n∑

i=1

(
n∑

k=1

mσiσk

)
λσi +

1

2n

n∑

j=1

(
n∑

k=1

mσjσk

)
λσj

=
1

n

n∑

i=1

(
n∑

k=1

mσiσk

)
λσi =

1

n

n∑

i=1

(
n∑

k=1

mσiσk

)
(λσj + qσjσi − qσiσj ),

for any j = 1 . . . , n, where (3.C.7) has been used in the last step. Taking the average with respect
to j we get to

I2 =
1

n2

n∑

i,j=1

(
n∑

k=1

mσiσk

)
(qσjσi − qσiσj )

=
1

2n2

n∑

i,j=1

(
n∑

k=1

(mσiσk −mσjσk)

)
(qσjσi − qσiσj )

=
1

n2

∑

i<j

(
n∑

k=1

(mσiσk −mσjσk)

)
(qσjσi − qσiσj ). (3.C.9)
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On the other hand
I2 =

∑

j>i

qσiσj +
∑

i<j

(qσiσj − qσjσi). (3.C.10)

Putting (3.C.9)-(3.C.10) together we obtain

I = 2
∑

j>i

qij +
∑

i<j

(
1− 1

n2

n∑

k=1

(mσiσk −mσjσk)

)
(qσiσj − qσjσi).

Finally, notice that for every i < j, the condition (3.C.7) entails

qσiσj − qσjσi =

j−1∑

m=i

(qσmσm+1 − qσm+1σm),

and, consequently

I = 2
∑

j>i

qij +
n∑

k=1

am(qσmσm+1 − qσm+1σm),

where the coefficients read

am =
m∑

i=1

n∑

j=m+1

(
1− 1

n2

n∑

k=1

(mσiσk −mσjσk)

)

= m(n−m)− 1

n

m∑

i=1

n∑

j=m+1

mσiσj .

Here, (3.C.2) has been used again in the last identity. Since am are all non-negative by (3.C.6)
and λσi are ordered by (3.C.8), we can conclude that I ≥ 0 and this ends the proof.
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4.1. INTRODUCTION
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4.1 Introduction

In this chapter, we shall continue the analysis of the Kuramoto model with singular coupling
weights that was introduced in Chapter 3 at the agent-based level. Indeed, the above system
of N coupled oscillators in (3.3.1)-(3.3.2) was derived from a singular fast learning limit in the
Kuramoto model with adaptive coupling weights towards a Hebbian-type plasticity function
governing learning of weights. For the sake of easier readability, we recall the system under
consideration: 




θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi),

θi(0) = θi,0.

(4.1.1)

We can think of such model to describe the evolution of the phases θi = θi(t) of neuron sig-
nals located at specific areas in the brain. Hence, θ̇i = θ̇i(t) represent the firing frequencies of
neurons and Ωi appears as an heterogeneity that play the role of a biased tendency of agents to
move at their own frequency while being influenced by their neighbors via the coupling force
h. Recall that if h(θ) = sin θ, then we recover the classical Kuramoto model. In our study, the
proposed periodic coupling force stands for the following non-smooth kernel

h(θ) =
sin θ

|θ|2αo
, θ ∈ R, (4.1.2)

where |θ|o is the Riemannian distance of eiθ towards 1 along the unit circle, that is

|θ|o := dT(eiθ, 1) = |θ̄| for θ̄ ≡ θ mod 2π, θ̄ ∈ (−π, π].

For further details about the well-posedness and dynamical properties of solutions, see the
preceding Chapter 3. For the sake of clarity, we provide here a very brief summary of the main
properties of such system that we shall bear in mind in the sequel. Recall that for the parameter
α there are three different regimes α ∈ (0, 1

2), α = 1
2 and α ∈ (1

2 , 1) that we will respectively
call the subcritical, critical and supercritical cases. In the subcritical case the coupling function
is Hölder-continuos, in the critical case it is bounded but discontinuous, while the supercrit-
ical regime corresponds to an unbounded singular kernel. Therefore, the Cauchy–Lipschitz
theory cannot guarantee existence and uniqueness of global-in-time solutions, then requiring
the concept of Filippov trajectories [14, 130]. In particular, uniqueness of Filippov solutions was
proven to hold forwards-in-time only. Although it might appear a deficiency on the model
at first glance, it actually suggests a new relevant dynamics of oscillators: finite-time sticking
and clustering into groups. Namely, after some phases eventually agree in finite time, there is
a chance that they keep stuck together for all times or they instantaneously disassociate. The
rule governing such behavior only depends upon certain specific conditions on the natural fre-
quencies of the oscillators belonging to the formed cluster. Such sticky behavior suggests that
small clusters can emerge in finite time ending up with the eventual global synchronizations
of all the oscillators in a unique big group (finite-time phase synchronization) under certain ini-
tial assumptions. Also recall that such sticky dynamics was also found in related models like
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Cucker–Smale model with weakly singular influence function (see [244, 245]) or the aggrega-
tion equation with mildly singularity potentials (see [27, 28, 29, 64, 200]).

Closely related to the aforementioned issues, one of the most classical problems in physics
and mathematics is to achieve the perfect fit between such individual-based descriptions and
the associated coarse-grained continuous versions, where systems are explained in an aver-
aged way though a probabilistic distribution function. In kinetic theory, it is called mean-field
limit and, when the amount of individuals is large enough, it yields accurate macroscopic de-
scriptions of the system in terms of a kinetic Vlasov-type equation. As it is already known,
such mean-field methods for particle systems give rise to plenty of relevant models in sta-
tistical physics and fluid mechanics like Boltzmann, Vlasov–Poisson, Euler or Navier–Stokes
equations, that have become the motor of important advances in mathematics. In particular,
one can try to extend the methods to the new class of non-Newtonian interactions coming from
the active soft matter community, see [210]. When the coupling force between any two agents
is Lipschitz, the mean-field limit can be recovered from standard methods [212, 230]. How-
ever, interactions are usually discontinuous or even singular for most of the real systems. In
such cases, the mean-field approximation is not obvious and new methods are required, see
[51, 134, 163, 158, 164, 176, 177, 178, 179, 181, 216, 217, 230, 281] and the discussion in the intro-
ductory Chapter 1.

This chapter is precisely devoted to such subject. Specifically, we shall focus on the rigorous
derivation of the Vlasov-type equation with non-smooth interactions that arises as mean-field
limit of the above agent-based model (4.1.1)-(4.1.2) as N →∞

{
∂f

∂t
+

∂

∂θ
(Ωf −K(h ∗ ρ)f) = 0,

f(0, ·, ·) = f0.
(4.1.3)

Here, f = f(t, θ,Ω) represents the probability distribution of finding an oscillator at time t ≥ 0,
with frequency θ ∈ (−π, π] and natural frequency Ω ∈ R, endowed with periodic boundary
conditions for the variable θ. Due to the periodicity of phases, such kinetic equation will be
identified in a natural way with a nonlinear transport equation along the Riemannian manifold
T × R. This changes the natural phase-space from the standard Euclidean space to a non-
Euclidean ambient space. Specifically (4.1.3) can be restated as follows

{
∂f

∂t
+ div(z,Ω)(V[f ]f) = 0,

f(0, ·, ·) = f0,

for some tangent transport field V[f ] to be defined later in Section 4.2. We remark here that
we will not use any extra gradient-type structure of the system, as it was the case in previous
literature for other models, see e.g. [64, 76, 77, 128, 154, 184]. Contrarily, we will just work
with the non-smooth tangent transport field V[f ] with any extra structure. Such point of view
requires extending the well known analysis of a non-smooth transport field given in [8, 9] from
the classical Euclidean setting to our new phase-space.

Recall that from the dynamic of the agent-based system, we also expect that global phase
synchronization at finite time (emergence of Dirac masses) can also take place at the macro-
scopic scale. Then, we must deal with weak solutions that are merely measure-valued. Our ap-
proach will be supported by the methods of Filippov characteristics and is inspired in [67, 251].
Specifically, we shall try to give some sense to the Filippov flow of this non-smooth tangent
transport field. To such end, we will study conditions on V[f ] in the different regimes of α that
allows constructing the associated characteristic flow globally-in-time. The uniqueness of the
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flow is again one-sided and will be guaranteed by the internal structure of the kernel h at points
of loss of Lipschitz-continuity. In particular, we shall show that although non-smooth, the tan-
gent vector field V[f ] is one-sided Lipschitz-continuous in a rigorous sense to be specified later.
Then, the associated characteristic system

{
dX

dt
(t; t0, x0) ∈ K[V[ft]](X(t; t0, x0)),

X(t0; t0, x0) = x0,

enjoys global solutions in Filippov’s sense that are unique forwards-in-time [14, 130] (recall the
ideas in the above Chapter 3). Here K[V[f ]] stands for the Filippov set-valued tangent field
associated with V[f ] to be defined later in Section 4.6 as an extension of the classical Filippov
set-valued map in Appendix D in the Euclidean space. This will be the first result, that becomes
the cornerstone to construct measure-valued solutions in the subcritical and critical cases.

Our second result is the rigorous derivation of the mean field limit. Specifically, consider
empirical measures supported on Filippov solutions to the discrete system (4.1.1)-(4.1.2) of N
oscillators, that is,

µNt :=
1

N

N∑

i=1

δzNi (t)(z)⊗ δΩNi
(Ω),

where zNi (t) := eiθ
N
i (t). Then under appropriate assumptions coming from the law of large

numbers, we shall show that µN → f in C([0, T ],P1(T × R) −W1) and the limiting f solves
(4.1.3) in the sense of Filippov flow

Xf (t; 0, ·)#f0 = ft, t ≥ 0,

where Xf = Xf (t; 0, z,Ω) is the Filippov flow associated with V[f ]. Here, W1 means the
Rubinstein–Kantorovich distance on T × R and P1 stands for the probability measures with
finite first order moment, see Appendix F for a brief summary of the main necessary tools
inspired in optimal transport theory.

Indeed, this will become a special consequence of our third result, namely, stability with
respect to initial data in Wasserstein-type distances. Specifically, we will introduce some Do-
brushin-type estimate (see [112]) for any two measure-valued solutions f1 = f1

t (θ,Ω) and
f2 = f2

t (θ,Ω) to (4.1.3) with respect to two different metrics on the set of probability mea-
sures: the standard 2-Wasserstein distance W2 and a new version W2,g, specially designed for
this problem, that will be called fiberwise Wasserstein distance:

W2(f1
t , f

2
t ) ≤ e( 1

2
+2KL0)tW2(f1

0 , f
2
0 ), t ≥ 0,

W2,g(f
1
t , f

2
t ) ≤ e2KL0tW2,g(f

1
0 , f

2
0 ), t ≥ 0,

for some constant L0 to appear later. The latter one only works for solutions with the same
distribution g of natural frequencies. In particular, it allows recovering uniqueness results for
any general initial data. Our forth result is the study of asymptotic behavior of solutions.
Namely, we will show that under appropriate conditions, the macroscopic system (4.1.3) enjoys
finite-time global phase synchronization.

Unfortunately, notice that there is no way to extend any (generalized) characteristic method
to the most singular regime α ∈ (1

2 , 1) because V[f ] lacks of sense. To cover such supercritical
case, we shall develop an alternative method that is valid for all α ∈ (0, 1) (at least for iden-
tical oscillators g = δ0). We shall augment the first order singular Kuramoto system into an
auxiliary second order regularized system with inertia, frequency damping and diffusion, see
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[76, 77, 78, 79]. Under an appropriate scaling depending on a parameter ε ↘ 0, the inertia
and noise terms will vanish and singularity of the coupling function will be recovered. This
defines a singular hyperbolic hydrodynamic limit of vanishing inertia type like in [142, 232]
that resembles the one that we have proposed in Chapter 2 for the Cucker–Smale model with
singular influence function. For the application of similar methods in other models both with
regular and singular interaction kernels, see [120, 121, 125, 126]. Via a compactness method,
the sequence of augmented regularized distribution functions P ε = P ε(t, θ, ω,Ω) can be shown
to have bounded zeroth and first order frequency moments that weakly converge to a weak
measure-valued solution of the macroscopic singular system. Like in Chapter 2, the main point
here is an accurate a priori control on the hierarchy of frequency moments of the second order
regularized kinetic description, that in particular, includes time-equicontinuity for the sequence
of reduced regularized distribution functions f ε = f ε(t, θ,Ω) in some negative Sobolev space,
specifically

‖f εt1 − f εt2‖W−1,1(T×R) ≤ C|t1 − t2|1/2.

Although in this chapter we will just illustrate the techniques in the particular setting of
the singular Kuramoto model, we believe that most of the tools can be adapted to other type
systems lacking gradients structure, whose internal variables belong, in a natural way, to more
general Lie groups. In addition, interactions do not need to be necessarily smooth neither, but
at least enjoy similar one-sided Lipschitz properties or sided Osgood-type moduli of continuity.

The remaining sections of this chapter are structured as follows. Sections 4.2, 4.3, 4.4 and
4.5 are devoted to the subcritical regime α ∈ (0, 1

2). Specifically, in Section 4.2 we will introduce
the model (4.1.3) as a nonlinear transport equation along T × R, some regularity properties of
the tangent transport field V[f ] will be derived and we will also revisit the main concepts of
measure-valued solutions in the literature. In Section 4.3 we shall prove the existence of global-
in-time weak measure-valued solutions to (4.1.3). The above-mentioned Dobrushin-type esti-
mates will be discussed in Section 4.4, in particular their applications to obtain uniqueness
results of weak measure-valued solutions and the mean-field limit from the particle system
(4.1.1)-(4.1.2) towards (4.1.3). Finally, we will prove emergence of global phase synchroniza-
tion in finite time for this subcritical regime under appropriate initial assumptions. Section 4.6
will focus on the critical case α = 1

2 . Specifically, we will adapt the above methods to obtain
measure-valued solutions in Filippov’s sense and we will provide analogue results regarding
stability, uniqueness, mean field limit and emergence of synchronization. In Section 4.7 we will
explore the aforementioned singular hyperbolic limit of vanishing inertia type for the super-
critical regime α ∈ (1

2 , 1). The appendices are devoted to some technical observations that we
will use throughout the chapter. In Appendix 4.A we will recall some notation about measures
along T or periodic measures. Finally, Appendix 4.B recalls the differentiability properties of
the squared Riemannian distance in a complete Riemannian manifold. In particular, we will
introduce the concept of one-sided upper Dini differentiability that we will sometimes use to deal
with quadratic Wasserstein distances along manifolds.

4.2 Tangent transport field along T×R and measure-valued solutions

In this section we will introduce some tools and notation for the model that we will use along
the chapter with regards to the subcritical regime of the singularity α ∈ (0, 1

2). On the one hand,
we will reformulate the macroscopic system as a genuine transport equation along a manifold
and will focus on deriving properties of the tangent transport field. That will be the corner-
stone to derive the well-posedness of global-in-time measure-valued solutions to the system
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with α ∈ (0, 1
2) in the forthcoming Sections 4.3 and 4.4. On the other hand, we will revisit

different equivalent concepts of measure-valued solutions ranging from weak measure-valued
solutions to superposition solutions and solutions in the sense of the characteristic flow. Although the
regularity of the tangent transport field will vary (or even may not make sense at all) in the
critical and supercritical regimes, we will later try to adapt this ideas to those more singular
cases in Sections 4.6 and 4.7.

4.2.1 Formal derivation of the Vlasov equation

In this chapter we will not address the problem of propagation of chaos. For that issue, the
reader may be interested in the following related literature [163, 164, 176, 177, 178, 181, 216,
217, 281]. Nevertheless, let us recall a formal derivation of (4.1.3) that may arise form the study
of propagation of chaos in the system, also see the introductory Chapter 1. Specifically, since
the natural frequencies in the discrete model (4.1.1)-(4.1.2) are constant parameters, we can
equivalently state the system as follows





θ̇i = Ωi +
K

N

N∑

j=1

h(θj − θi),

Ω̇i = 0,

θi(0) = θi,0, Ωi(0) = Ωi,0 ≡ Ωi.

Then, not only θi is regarded as a mechanical variable but also Ωi is. Consequently, the joint
laws FNt = FNt (x1, . . . , xN ,Ω1, . . . ,ΩN ) ∈ Psym(RN × RN ) obey the BBGKY hierarchy of Liou-
ville equations

∂FN

∂t
+

N∑

i=1

∂

∂θi




Ωi +

K

N

N∑

j=1

h(θj − θi)


FN


 = 0. (4.2.1)

Let us consider the projection map onto the first k ∈ {1, . . . , N} variables, that is,

πk,N : RN × RN −→ Rk × Rk,
(ΘN ,ΩN ) 7−→ (Θk,N ,Ωk,N ),

where we denote Θk,N := (θ1, . . . , θk) and Ωk,N := (Ω1, . . . ,Ωk), for any ΘN = (θ1, . . . , θN ) ∈
RN and ΩN = (Ω1, . . . ,ΩN ) ∈ RN . Then, we can consider the marginal measures F k,Nt :=

πk,N# (FNt ) ∈ Psym(Rk × Rk). Thanks to the assumed symmetry in the system, integration in
(4.2.1) yields

∂F k,N

∂t
+

k∑

i=1

∂

∂θi




Ωi +

K

N

k∑

j=1

h(θj − θi)


F k,N

+K
N − k
N

∫

R×R
h(θk+1 − θi) d(θk+1,Ωk+1)F

k+1,N

)
= 0. (4.2.2)

Observe that the hierarchy is not necessarily closed yet. Via a diagonal argument we can obtain
weak limits of an appropriate subsequence (that we denote in the same manner)

F k,∞ := weak ∗ − lim
N→∞

F k,N .

184



CHAPTER 4. THE SINGULAR KURAMOTO MODEL: KINETIC EQUATION

For simplicity of the notation, let us denote F := F 1,∞. Let us assume that all the initial values
are tensorized, that is F k,∞0 = F⊗

k

0 . Then, propagation of chaos means that such tensorization
remains true for all times, i.e.,

F k,∞t = F⊗
k

t , for all t ≥ 0.

Conditionally under such property, we can pass to the limit as N → ∞ in (4.2.2) for F 1,N and
close an equation for F as follows

∂F

∂t
+

∂

∂θ

((
Ω +K

∫

R2

h(θ′ − θ) d(θ′,Ω′)F

)
F

)
= 0.

This is the classical Vlasov equation of the system. Finally, since the phases θ ∈ R only make
sense modulo 2π, we can consider the following map projecting each θ ∈ R into its representa-
tive θ̄ ∈ (−π, π] modulo 2π

π̄ : R −→ (−π, π],
θ 7−→ θ̄.

It clearly maps Ft into ft ∈ P((−π, π] × R) through π̄#Ft = ft, and f = ft obviously fulfils
(4.1.3) in distributional sense. As previously stated, we are not interested in the propagation of
chaos topic, but rather on the mean field limit via the empirical measure technique that will be
described throughout the chapter.

4.2.2 Reformulating a nonlinear transport equation along a manifold

In the above part, the kinetic singular Kuramoto model (4.1.3) was formally derived. Solutions
are regarded as periodic measures ft ∈ P((−π, π] × R) with respect to θ. It is clear that we
can equivalently regard them as measures ft ∈ P(T × R) by virtue of the identification of the
interval (−π, π] with the torus T, see Theorem 4.A.10 in Appendix 4.A. Here on, we will think
of both spaces as the same space and will change notation from one to another without any
notice for simplicity of arguments. Before going further in our results, we will introduce some
basic properties and notation with regards to the Riemannian manifold T×R. In the first result
we comment on the structure of the Riemannian distance, its tangent space and tangent vector
fields.

Lemma 4.2.1. Consider the Riemannian manifold T× R endowed with the standard metric. Then,

1. The Riemannian distance in T× R between any couple (z1,Ω1), (z2,Ω2) ∈ T× R is defined by

d((z1,Ω1), (z2,Ω2)) =
(
d(z1, z2)2 + (Ω1 − Ω2)2

)1/2
=
(
|θ1 − θ2|2o + (Ω1 − Ω2)2

)1/2
,

for any θ1, θ2 ∈ R such that z1 = eiθ1 and z2 = eiθ2 . Here, | · |o means the orthodromic distance
in the unit torus, that is |θ|o = |θ̄|, where θ̄ is the representative modulo 2π of θ in (−π, π].

2. The tangent space at (z,Ω) ∈ T× R reads

T(z,Ω)(T× R) = TzT× TΩR = {(p iz, q) : p, q ∈ R}.

As a consequence, the space XC(T × R) of C-regular tangent vectors along T × R, for any given
regularity class C, consist of the fields V with components

V(z,Ω) = (P (z,Ω) iz,Q(z,Ω)), (4.2.3)

for a couple of scalar functions P,Q : T× R −→ R with regularity in the class C.

185



4.2. TANGENT TRANSPORT FIELD ALONG T× R AND MEASURE-VALUED SOLUTIONS

3. Consider V ∈ XC1(T× R) given by (4.2.3) for some P,Q ∈ C1(T× R). Then,

div V =
∂P

∂θ
+
∂Q

∂Ω
≡ iz ∂P

∂z
+
∂Q

∂Ω
, (4.2.4)

where we have used the identifications in the Appendix 4.A and the notation of the complex deriva-
tives in Definition 4.A.2. The same formula (4.2.4) holds true for distributional derivatives.

In the second lemma, we introduce the geodesics and parallel transport in T × R that will
be of interest in some upcoming results.

Lemma 4.2.2. Let us set any point x = (z,Ω) ∈ T×R, where z = eiθ for some θ ∈ R, and any tangent
vector v = (p iz, q) ∈ T(z,Ω)T× R.

1. Define the geodesic γz,p of T issued at z in the direction p iz, i.e.,

γz,p(s) := ei(θ+ps).

Then, the geodesic γ̂x,v of T× R issued at x in the direction v reads

γ̂x,v(s) = (γz,p(s),Ω + qs) = (ei(θ+ps),Ω + qs).

In particular, the Riemannian exponential map reads

êxpx(v) = (expz(p iz),Ω + q) = (ei(θ+p),Ω + q).

2. Let γ̂x,v be the associated geodesic, and set s1, s2 ∈ R. Then, the parallel transport from γ̂x,v(s1)
to γ̂x,v(s2) along γ̂x,v is the linear isometry (see [111])

τ [γ̂x,v]
s2
s1 : Tγ̂x,v(s1)(T× R) −→ Tγ̂x,v(s2)(T× R),

(p′iγz,p(s1), q′) 7−→ (p′iγz,p(s2), q′).

Since the proofs are standard, we omit them.

Definition 4.2.3. Consider α ∈ (0, 1
2) and K > 0. We (formally) define the function P[µ] and the

tangent vector field V[µ] along the manifold T× R by

P[µ](θ,Ω) := Ω−K
∫

T×R
h(θ − θ′) d(θ′,Ω′)µ,

V[µ](z,Ω) := (P[µ](z,Ω) iz, 0),

where µ ∈M(T× R) is any finite Radon measure.

Using such notation and (4.2.4) one can easily check that the kinetic singular Kuramoto
model (4.1.3) can be restated as the following nonlinear transport equation in conservative
form along the manifold T× R:

{ ∂f

∂t
+ div(z,Ω)(V[f ]f) = 0,

f(0, ·, ·) = f0.
(4.2.5)

Of course, now there is no need to impose explicit periodicity conditions because they are
actually considered implicitly in the geometry of the space T× R.
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4.2.3 Properties of the transport field

Here on, most of our effort will be devoted to derive some one-sided modulus of continuity of
V[f ]. In particular, such (weak) regularity will entail that the characteristic flow associated with
V[f ] is well–defined forwards-in-time, for any weak measure-valued solution to (4.4.11). This
will be the cornerstone to show well-posedness of global-in-time weak measure valued solu-
tions to (4.2.5) in Sections 4.3 and 4.4. Before moving to such regularity issues of the transport
field V[f ], let us set the appropriate spaces of time-dependent measures.

Definition 4.2.4. Fix T > 0, then we will consider

CM(0, T ) :=

{
µ ∈ L∞w (0, T ;M(T× R)) : t 7−→

∫

T×R
ϕdµt ∈ C([0, T ]), ∀ϕ ∈ Cc(T× R)

}
,

C̃M(0, T ) :=

{
µ ∈ L∞w (0, T ;M(T× R)) : t 7−→

∫

T×R
ϕdµt ∈ C([0, T ]), ∀ϕ ∈ Cb(T× R)

}
,

TM(0, T ) :=
{
µ ∈ L∞w (0, T ;M(T× R)) : the family (µt)t∈[0,T ] is uniformly tight

}
,

ACM(0, T ) :=

{
µ ∈ L∞w (0, T ;M(T× R)) : t 7−→

∫

T×R
ϕdµt ∈ AC(0, T ), ∀ϕ ∈ C∞c (T× R)

}
,

where the above L∞w denotes the weak-* Lebesgue-Bochner space, see Appendix A. For simplicity of the
notation, we will sometimes remove the dependence on T when it is clear.

Some properties about the preceding spaces of measures are in order:

Proposition 4.2.5. For the spaces in Definition 4.2.4, the following properties hold true:

1. The spaces CM and C̃M can be represented as follows

CM = C([0, T ],M(T× R)− weak ∗),
C̃M = C([0, T ],M(T× R)− narrow).

2. In the above definition of CM, test functions ϕ ∈ Cc(T× R) can be replaced by any intermediate
regularity class being dense in C0(T× R), e.g.,

C∞c (T× R), Ckc (T× R) and W k,p(T× R), with k ∈ N, p > 2.

3. The space C̃M can be represented as follows

C̃M = CM ∩ TM.

4. The next embeddings take place

ACM ⊆ CM and ACM ∩ TM ⊆ C̃M.

5. The next embedding takes place for any 1 ≤ p, q ≤ ∞

L∞w (0, T ;M(T× R)) ∩W 1,q
w (0, T ;W−1,p′(T× R)) ⊆ ACM,

where L∞w and W 1,p
w denote the weak-* Lebesgue and Sobolev Bochner-type spaces in Appendix A.
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Proof. The first assertion is clear and the second one is a straightforward density argument of
the set of smooth and compactly supported functions C∞c (T× R) in C0(T× R). The third item
is nothing but Prokhorov’s compactness theorem, whilst the forth is clear by definition. The last
claim is clear as Sobolev regularity in one dimensions implies absolute continuity.

Let us now recall the concept of weak measure-valued solution to (4.2.5).

Definition 4.2.6. We will say that f ∈ CM is a weak measure-valued solution to (4.2.5) when

∫ T

0

∫

T×R

∂ϕ

∂t
d(z,Ω)ft dt+

∫ T

0

∫

T×R

〈
V[ft],∇(z,Ω)ϕ

〉
d(z,Ω)ft dt = −

∫

T×R
ϕ(0, z,Ω)d(z,Ω)f

0,

for every ϕ ∈ C1
c ([0, T )× T× R).

Notice that the nonlinear term in Definition 4.2.6 makes sense for any f ∈ CM, no matter
whether f also belongs to C̃M or ACM. However, as it is the case for many other models,
solutions end up being more regular in time than simply CM. In such case, we can restate the
above weak formulation for f ∈ ACM as follows.

Proposition 4.2.7. Consider α ∈ (0, 1), K > 0 and fix f ∈ ACM. Then, the following two statement
are equivalent:

1. f is a weak measure-valued solution to (4.2.5) in the sense of Definition 4.2.6.

2. The following identity holds

d

dt

∫

T×R
φd(z,Ω)ft =

∫

T×R

〈
V[ft],∇(z,Ω)φ

〉
d(z,Ω)ft, (4.2.6)

for a.e. t ∈ [0, T ] and f(0, ·, ·) = f0, for every φ ∈ C∞c (T× R).

Proof. First, let us assume that f solves (4.2.5) in the sense of Definition 4.2.6. Take any φ ∈
C∞c (T× R), consider η ∈ C∞c (0, T ) and define the test function

ϕ(t, z,Ω) := η(t)φ(z,Ω).

Since ϕ ∈ C∞c ((0, T )× T× R), then Definition 4.2.6 entails

∫ T

0
η′(t)

(∫

T×R
φd(z,Ω)ft

)
dt+

∫ T

0
η(t)

(∫

T×R

〈
V[ft],∇(z,Ω)φ

〉
d(z,Ω)ft

)
dt = 0.

By the arbitrariness of η, we can identify the weak derivative of t 7→
∫
T×R φd(z,Ω)ft (that exists

since f ∈ ACM) as the right-hand side in (4.2.6) and it concludes the first part. Conversely,
let us assume that f is a solution in the sense of Equation (4.2.6) and consider a test function
ϕ ∈ C∞c ([0, T )× T× R). By density, we can assume that it has separate variables, i.e.,

ϕ(t, z,Ω) = η(t)φ(z,Ω),

for η ∈ C∞c ([0, T )) and φ ∈ C∞c (T × R). Consider any non-increasing cut-off functions ξε ∈
C∞c ([0,∞)) like in (N.2) for any ε > 0 and consider the smooth approximate test functions

ηε(t) := (1− ξε(t))η(t).
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It is clear that ηε ∈ C∞c (0, T ) and, consequently, witting (4.2.6) in weak form amounts to
∫ T

0
η′ε(t)

(∫

T×R
φd(z,Ω)ft

)
dt+

∫ T

0
ηε(t)

(∫

T×R

〈
V[ft],∇(z,Ω)φ

〉
d(z,Ω)ft

)
dt = 0,

i.e., expanding the derivatives of ηε,

∫ T

0
(1− ξε(t))η′(t)

(∫

T×R
φd(z,Ω)ft

)
dt

+

∫ T

0
(1− ξε(t))η(t)

(∫

T×R

〈
V[ft],∇(z,Ω)φ

〉
d(z,Ω)ft

)
dt

=

∫ T

0
ξ′ε(t)η(t)

(∫

T×R
φd(z,Ω)ft

)
dt.

Notice that 1 − ξε → 1 in C([0, T ]) and ξ′ε
∗
⇀ −δ0 inM([0, T )) as ε → 0. Then, taking limits as

ε→ 0 in the above identities yields to the weak formulation in Definition 4.2.6.

Notice that for general f ∈ CM (also for f ∈ C̃M) we do not expect V[f ] to be fully Lipschitz-
continuous since h was proved to be barely Hölder-continuous, see Lemma 3.3.1 in Chapter 3.
Obviously, this causes severe problems with regards to the standard theory. Before introduc-
ing sharper regularity properties for the tangent transport field, let us comment on the basic
properties that we can infer from such uniform continuity of the kernel h.

Theorem 4.2.8. Consider α ∈ (0, 1
2), K > 0 and set µ ∈ C̃M. Then,

P[µ]

1 + |Ω| ∈ Cb([0, T ]× T× R).

In addition, there exists C > 0, that does not depend on µ, such that

|P[µt](z1,Ω1)− P[µt](z2,Ω2)| ≤ |Ω1 − Ω2|+ CK‖µ‖L∞(0,T ;M(T×R))d(z1, z2)1−2α,

for every t ∈ [0, T ] and (z1,Ω1), (z2,Ω2) ∈ T× R.

Proof. First, let us show the second property. Fix t ∈ [0, T ] and (z1,Ω1), (z2,Ω2) ∈ T × R and
notice that

P[µt](z1,Ω1)− P[µt](z2,Ω2) = Ω1 − Ω2 −K
∫

T×R
(h(z1z′)− h(z2z′))d(z′,Ω′)µt.

Then, the triangle inequality together with Lemma 3.3.1 in the preceding Chapter 3 imply

|P[µt](z1,Ω1)− P[µt](z2,Ω2)| ≤ |Ω1 − Ω2|+K coshπ

∫

T×R
d(z1z′, z2z′)1−2αd(z′,Ω′)µT .

Since the Riemannian distance along the torus T is translation invariant, then d(z1z′, z2z′) =
d(z1, z2), for every z′ ∈ T, thus yielding

|P[µt](z1,Ω1)− P[µt](z2,Ω2)| ≤ |Ω1 − Ω2|+K coshπ‖µ‖L∞w (0,T ;M(T×R))d(z1, z2)1−2α.

Second, let us prove the full continuity in all the variables. Consider t ∈ [0, T ] and (z,Ω) ∈ T×R
ant let {tn}n∈N ⊆ [0, T ] and {(zn,Ωn)}n∈N ⊆ T × R such that tn → t and (zn,Ωn) → (z,Ω). We
can split

V[µtn ](zn,Ωn)− V[µt](z,Ω) = An +Bn,
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where each term reads

An := V[µtn ](zn,Ωn)− V[µtn ](z,Ω),

Bn := V[µtn ](z,Ω)− V[µt](z,Ω).

Regarding the first term, the preceding part yields

An ≤ |Ωn − Ω|+ CK‖µ‖L∞w (0,T ;M(T×R))d(zn, z)
1−2α,

where the convergence An → 0 is clear. On the other hand, the second term reads

Bn = −K
∫

T×R
h(zz′) d(z′,Ω′)(µtn − µt).

Now, the convergence Bn → 0 follows from the definition of C̃M in Definition 4.2.4 and the
boundedness and continuity of the map

(z′,Ω′) ∈ T× R 7−→ h(zz′).

This amounts to the desired continuity property. Regarding the growth estimate notice that

sup
(z,Ω)∈T×R

|P[µt](z,Ω)|
1 + |Ω| ≤ sup

(z,Ω)∈T×R

|Ω|+K‖µ‖L∞w (0,T ;M(T×R))‖h‖C(T)

1 + |Ω| <∞.

As a consequence of Lemmas 4.2.1 and 4.2.2 we can achieve a similar result for V[µ]. Given
that it is a tangent vector field, let us recall the definition of Hölder-continuity of tangent vector
fields along a complete Riemannian manifold.

Definition 4.2.9. Consider a complete Riemannian manifold (M, 〈·, ·〉), fix 0 < β ≤ 1 and a tangent
vector field V : M −→ TM . V is said to be β-Hölder continuous when there exists C > 0 such that

∣∣τ [γ]10(Vx)− Vy
∣∣ ≤ Cd(x, y)β,

for every x, y ∈ M and any minimizing geodesic γ : [0, 1] −→ M joining x to y. The smallest such C
is called the β-Hölder constant of the vector field V . Here d(·, ·) is the Riemannian distance (N.4) and

τ [γ]s2s1 : Tγ(s1)M −→ Tγ(s2)M,

stands for the parallel transport from γ(s1) to γ(s2) along the geodesic γ, see [111].

Corollary 4.2.10. Consider α ∈ (0, 1
2), K > 0, and set µ ∈ C̃M. Then,

V[µ]

1 + |Ω| ∈ C([0, T ],XCb(T× R)).

In addition, there exists C > 0, which does not depend on µ, such that
∣∣τ1

0 [γ̂](V[µt](z1,Ω1))− V[µt](z2,Ω2)
∣∣ ≤ |Ω1 − Ω2|+ CK‖µ‖L∞w (0,T ;M(T×R))d(z1, z2)1−α,

for every t ∈ [0, T ], each (z1,Ω1), (z2,Ω2) ∈ T×R and every minimizing geodesic γ̂ : [0, 1] −→ T×R
joining (z1,Ω1) to (z2,Ω2).
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Proof. The first part is clear by the Definition 4.2.3 along with Lemma 4.2.1. Let us focus on the
last part where Lemma 4.2.2 will play a role. Set t ∈ [0, T ], x = (z1,Ω1), y = (z2,Ω2) ∈ T × R
and a minimizing geodesic γ̂ : [0, 1] −→ T× R joining x to y. Then,

τ [γ̂]10(V[µt](z1,Ω1)) = (P[µt](z1,Ω1) iz2, 0).

Consequently,

|τ [γ]10(V[µt](z1,Ω1))−V[µt](z2,Ω2)|
= |((P[µt](z1,Ω1)− P[µt](z2,Ω2)) iz2, 0)| = |P[µt](z1,Ω1)− P[µt](z2,Ω2)|,

and the result clearly follows from Theorem 4.2.8.

Remark 4.2.11. If the tightness condition µ ∈ C̃M is deprived in Corollary 4.2.10 and it is replaced
by the weaker condition µ ∈ CM, then time continuity might be lost. However, we still can obtain the
following properties:

1. P[µt](z,Ω) is continuous in (z,Ω) for any t ∈ [0, T ].

2. P[µt](z,Ω) is measurable in t for any (z,Ω) ∈ T× T.

3. There exists a nonnegative m ∈ L1(0, T ) so that

P[µt](z, ω)

1 + |Ω| ≤ m(t),

for every (t, z,Ω) ∈ [0, T ]× T× R. Indeed

m(t) = max
{

1,K‖µ‖L∞w (0,T ;M(T×R))‖h‖C(T)

}
.

The above set of properties are called Caratheodory’s conditions. Notice that time continuity is only
useful when dealing with classical C1 characteristics associated with the transport field V[µ]. However,
in the case µ ∈ CM, where time continuity is missing but still Caratheodory’s conditions hold true,
the Caratheodory existence theorem guarantee the existence of Caratheodory solution, that is, absolutely
continuous solutions that solve the characteristic system almost everywhere. For simplicity, let us skip
it now although it will come into play in the critical regime, see Section 4.6.

Lemma 4.2.12. Consider α ∈ (0, 1
2), K > 0 and fix µ ∈ C̃M. For any x0 = (z0,Ω0) ∈ T × R let us

consider the characteristic system issued at x0, i.e.,
{

dX

dt
(t; t0, x0) = V[µt](X(t; t0, x0)),

X(t0; t0, x0) = x0.
(4.2.7)

Then, (4.2.7) enjoys at least one global-in-timeC1 solutionX(t; t0, x0) = (Z(t; t0, z0,Ω0),Ω0). Indeed,
if we set z0 = eiθ0 , for some θ0 ∈ R, then

Z(t; t0, z0,Ω0) = eiΘ(t;t0,θ0,Ω0),

where Θ = Θ(t; t0, θ0,Ω0) is a global-in-time C1 solution to
{

dΘ

dt
(t; t0, θ0,Ω0) = P[µt](Θ(t; t0, θ0,Ω0),Ω0),

Θ(t0; t0, θ0,Ω0) = θ0.
(4.2.8)
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Proof. The first part of the result is clear because V[µ]
1+|Ω| ∈ C([0, T ],XCb(T × R)) by virtue of

Corollary 4.2.10. However, let us comment on the above representation in coordinates. By The-
orem 4.2.8 one also has that P[µ], regarded as a function in R×R, is a continuous function with
sub-linear growth. By the classical Peano theorem, there is at least one global-in-time solution
Θ = Θ(t; t0, θ0,Ω0) to (4.2.8). Now, let us define Z(t; t0, z0,Ω0) in terms of Θ(t; t0, z0,Ω0) like in
the statement of this result. Then,

dZ

dt
(t; t0, z0,Ω0) = ieiΘ(t;t0,θ0,Ω0)dΘ

dt
(t; t0, θ0,Ω0) = P[µt](Z(t; t0, z0,Ω0),Ω0) iZ(t; t0, z0,Ω0),

and, consequently, so defined X(t; t0, x0) is a global-in-time solution to the characteristic sys-
tem (4.2.7) thanks to the Definition 4.2.3 of the vector field V[µ].

Notice that in Theorem 4.2.8, a (1 − 2α)-Hölder estimate for P[µ] was obtained. Neverthe-
less, the infinite slope of h at each θ ∈ 2πZ prevent us from a full Lipschitz-estimate for P[µ].
It is well known that Hölder continuity is not enough for the characteristic system (4.2.8) (or
equivalently (4.2.7)) to enjoy a unique global-in-time C1 solution. In the following, we will in-
troduce the key concept that will amount to the forwards uniqueness result, namely, one-sided
Lipschitz-continuity.

Definition 4.2.13. Let (M, 〈·, ·〉) be a complete Riemannian manifold and consider a tangent vector
field V along M . Then, we will say that V is one-sided Lipschitz when there exists a constant L > 0
such that 〈

Vy, γ
′(1)
〉
−
〈
Vx, γ

′(0)
〉
≤ Ld(x, y)2, (4.2.9)

for every x, y ∈M and every minimizing geodesic γ : [0, 1] −→M joining x to y.

Remark 4.2.14. For such a minimizing geodesic γ as in Definition 4.2.13, we can associate the parallel
transport from a point γ(s1) to γ(s2) along the geodesic γ is a linear isometry between the tangent spaces
to M supported at such points

τ [γ]s2s1 : Tγ(s1)M −→ Tγ(s2)M.

In addition, since γ is a geodesic, then the covariant derivative of γ vanishes, that is, Dγ′
ds = 0 and

τ [γ]s2s1(γ′(s1)) = γ′(s2). Then, the condition (4.2.9) can be equivalently restated as follows

−
〈
τ [γ]10(Vx)− Vy, γ′(1)

〉
≤ Ld(x, y)2. (4.2.10)

To the best of our knowledge, such definition has not been clearly proposed previously in
the literature as a generalization of the standard one-sided Lipschitz continuity in Euclidean
spaces. For the sake of clarity, we list some of the main properties supporting its definition.

Proposition 4.2.15. Let (M, g) be a complete Riemannian manifold and consider a tangent vector field
V : M −→ TM and a scalar differentiable function φ : M −→ R.

1. If V is Lipschitz-continuous, then V is one-sided Lipschitz.

2. If M ≡ Rd, the d-dimensional Euclidean space, then V is one-sided Lipschitz in the sense (4.2.9)
(equivalently (4.2.10)) if, and only if, it is one-sided Lipschitz in the standard sense, i.e.,

〈Vx − Vy, x− y〉 ≤ L|x− y|2,

for every couple of vectors x, y ∈ Rd.

3. If φ is λ-convex, then −∇φ is one-sided Lipschitz with constant λ.
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Proof. Consider x, y ∈ M and any minimizing geodesic γ : [0, 1] −→ M joining x to y. First,
assume that V is Lipschitz-continuous with constant L. Then,

−
〈
τ [γ]10(Vx)− Vy, γ′(1)

〉
≤ |τ [γ]10(Vx)− Vy| |γ′(1)| ≤ Ld(x, y)2,

where we have used the Cauchy-Schwarz inequality, the Lipschitz continuity of V and that
|γ′(1)| = d(x, y) because γ is minimizing geodesic between x and y. Second, in the Euclidean
case it is clear that there is a unique such minimizing geodesic, namely,

γ(s) = (1− s)x+ sy = x+ s(y − x), s ∈ [0, 1].

Notice that γ′(0) = γ′(1) = y − x. Hence, our claim is clear. Finally, assume that φ is λ-convex
(see, for instance, [9, 129, 268, 296]). Then, by definition we obtain

φ(γ(s)) ≤ (1− s)φ(x) + sφ(y) +
λ

2
(1− s)sd(x, y)2, s ∈ [0, 1].

Then, we find

φ(γ(s))− φ(x)

s
≤ φ(y)− φ(x) +

λ

2
(1− s)d(x, y)2,

−φ(γ(s))− φ(y)

s− 1
≤ φ(x)− φ(y) +

λ

2
sd(x, y)2.

Taking, limits as s→ 0+ and s→ 1− respectively in the first and second expressions yields

〈
∇φ(x), γ′(0)

〉
≤ φ(y)− φ(x) +

λ

2
d(x, y)2,

−
〈
∇φ(y), γ′(1)

〉
≤ φ(x)− φ(y) +

λ

2
d(x, y)2.

Taking the sum of both terms, we get that −∇φ is one-sided Lipschitz with constant λ.

Our next result will show that although V[µ] is not fully Lipschitz-continuous with respect
to (z,Ω) ∈ T×R, it is one-sided Lipschitz uniformly in t ∈ [0, T ]. The cornerstone in such result
is the following split of −h into a decreasing and a Lipschitz-continuous part, see Fig. 4.1.

Lemma 4.2.16. Consider α ∈ (0, 1
2) and set h̄ and θ̃ ∈ (0, π2 ) such that

h̄ = max
0<θ<π

h(θ) and 2α sin θ̃ = θ̃ cos θ̃.

Define the couple of functions δ, λ : [−2π, 2π] −→ R as follows

δ(θ) :=





2h̄− h(θ), θ ∈ [−2π,−2π + θ̃),

h̄, θ ∈ [−2π + θ̃,−θ̃),
−h(θ), θ ∈ [−θ̃, θ̃],
−h̄, θ ∈ (θ̃, 2π − θ̃],
−h(θ)− 2h̄, θ ∈ (2π − θ̃, 2π],

λ(θ) :=





−2h̄, θ ∈ [−2π,−2π + θ̃),

−h̄− h(θ), θ ∈ [−2π + θ̃,−θ̃),
0, θ ∈ [−θ̃, θ̃],
h̄− h(θ), θ ∈ (θ̃, 2π − θ̃],
2h̄, θ ∈ (2π − θ̃, 2π].

Then, the following properties hold true:
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Figure 4.1: Plot of the function −h(θ) and the functions δ(θ) and λ(θ) in the decomposition for
the value α = 0.25.

1. δ is monotonically decreasing, λ is Lipschitz-continuous and

−h(θ) = δ(θ) + λ(θ), ∀ θ ∈ [−2π, 2π].

2. −h is one-sided Lipschitz in [−2π, 2π], i.e., there exists L0 > 0 such that

((−h)(θ1)− (−h)(θ2)) (θ1 − θ2) ≤ L0(θ1 − θ2)2.

See Figure 4.1, also see Figure 3.2 in the preceding Chapter 3 for a similar split of the kernel
in the smaller fomain [−π, π], that was applied to the agent-based system.

Lemma 4.2.17. Consider α ∈ (0, 1
2), K > 0 and set µ ∈ CM. Then, we have

(P[µt](θ1,Ω1)− P[µt](θ2,Ω2)) (θ1− θ2) ≤ (Ω1−Ω2)(θ1− θ2) +KL0‖µ‖L∞w (0,T ;M(T×R))(θ1− θ2)2,

for every t ∈ [0, T ], each θ1, θ2 ∈ R with θ1 − θ2 ∈ [−π, π] and any Ω1,Ω2 ∈ R. Here, the constant L0

is the one-sided Lipschitz constant in Lemma 4.2.16.

Proof. By the Definition 4.2.3 we can state

(P[µt](θ1,Ω1)− P[µt](θ2,Ω2)) (θ1 − θ2)

= (Ω1 − Ω2)(θ1 − θ2) +K

∫

(θ1−π,θ1+π]

∫

R
((−h)(θ1 − θ′)− (−h)(θ2 − θ′))(θ1 − θ2) d(θ′,Ω′)µt.

For every θ′ ∈ (θ1 − π, θ1 + π] we equivalently have θ1 − θ′ ∈ (−π, π]. Since θ2 − θ1 ∈ [−π, π],
we also obtain that θ2 − θ′ ∈ (−2π, 2π]. Hence, we are in the range of applicability of Lemma
4.2.16, that implies

(P[µt](θ1,Ω1)− P[µt](θ2,Ω2)) (θ1 − θ2)

≤ (Ω1 − Ω2)(θ1 − θ2) +KL0

∫

(θ1−π,θ1+π]

∫

R
(θ1 − θ2)2 d(θ′,Ω′)µt. (4.2.11)
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Theorem 4.2.18. Consider α ∈ (0, 1
2), K > 0 and set µ ∈ CM. Then, V[µ] is one-sided Lipschitz in

T× R uniformly in t ∈ [0, T ], i.e., there exists L = L(α,K, µ) > 0 such that
〈
V[µt](z2,Ω2), γ̂′(1)

〉
−
〈
V[µt](z1,Ω1), γ̂′(0)

〉
≤ Ld((z1,Ω1), (z2,Ω2))2,

for every t ∈ [0, T ], any (z1,Ω1), (z2,Ω2) ∈ T× R and each minimizing geodesic γ̂ : [0, 1] −→ T× R
in the manifold T× R joining (z1,Ω1) to (z2,Ω2).

Proof. Fix any t ∈ [0, T ] and (z1,Ω1), (z2,Ω2) ∈ T× R. Our first step will be to characterize the
minimizing geodesics γ̂ : [0, 1] −→ T× R joining (z1,Ω1) to (z2,Ω2). Let us write z1 = eiθ1 and
z2 = eiθ2 for some θ1, θ2 ∈ R and assume that θ2 − θ1 ∈ (−π, π] without loss of generality.
• Case 1: θ2 − θ1 ∈ (−π, π). In this case, the only minimizing geodesic reads

γ̂(s) = (ei(θ1+s(θ2−θ1),Ω1 + s(Ω2 − Ω1)).

Notice that the directions of the geodesic at the endpoints are

γ̂′(0) = ((θ2 − θ1) iz1,Ω2 − Ω1) and γ̂′(1) = ((θ2 − θ1) iz2,Ω2 − Ω1).

Therefore, we can write
〈
V[µt](z2,Ω2), γ̂′(1)

〉
−
〈
V[µt](z1,Ω1), γ̂′(0)

〉
= (P[µt](z2,Ω2)− P[µt](z1,Ω1)) (θ2 − θ1).

• Case 2: θ2 − θ1 = π. Now z1 and z2 are antipodes and there are exactly two different
minimizing geodesics, namely,

γ̂+(s) = (ei(θ1+πs),Ω1 + s(Ω2 − Ω1)),

γ̂−(s) = (ei(θ1−πs),Ω1 + s(Ω2 − Ω1)).

Its directions at the endpoints read

γ̂′±(0) = (±π iz1,Ω2 − Ω1) and γ̂′±(1) = (±π iz2,Ω2 − Ω1).

Then, it is clear that
〈
V[µt](z2,Ω2), γ̂′±(1)

〉
−
〈
V[µt](z1,Ω1), γ̂′±(0)

〉
= ± (P[µt](z2,Ω2)− P[µt](z1,Ω1))π.

No matter the case, we can always use Lemma 4.2.17 to arrive at
〈
V[µt](z2,Ω2), γ̂′(1)

〉
−
〈
V[µt](z1,Ω1), γ̂′(0)

〉
≤ (Ω1−Ω2)(θ1−θ2)+KL0‖µ‖L∞(0,T ;M(T×R))(θ1−θ2)2.

Notice that θ1 − θ2 ∈ [−π, π] and, consequently, |θ1 − θ2| = |θ1 − θ2|o = d(z1, z2). Applying
Young’s inequality we arrive at the desired result for the value

L =
1

2
+KL0‖µ‖L∞w (0,T ;M(T×R)).

We are now ready to complete the existence part in Lemma 4.2.12 for the characteristic
system (4.2.7) with an appropriate notion of uniqueness, namely, one-sided uniqueness. In this
way, we obtain the following full well-posedness result.
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Theorem 4.2.19. Consider α ∈ (0, 1
2), K > 0 and fix µ ∈ C̃M. The characteristic system (4.2.7)

associated with the transport field V[µ] enjoys a global-in-time C1 solution that is unique forward-in-
time for every given initial data x0 = (z0,Ω0) = (eiθ0 ,Ω0) ∈ T×R. Indeed, the same representation of
the solution holds true, i.e.,

X(t; t0, x0) = (Z(t; t0, z0,Ω0),Ω0) = (eiΘ(t;t0,θ0,Ω0),Ω0), t ≥ t0,

where Θ(t; t0, θ0,Ω0) is the unique forward-in-time C1 solution to (4.2.8).

Although the proof is standard and relies on the one-sided Lipschitz condition in Theorem
4.2.18 and the weak differentiability properties of the squared distance in Appendix 4.B, we
give a simple proof for the sake of completeness because it involves some delicate points.

Proof. Let us assume that there are two different solutions x1 = x1(t) and x2 = x2(t) to (4.2.7)
with same initial data x1(t0) = x0 = x2(t0). Define the following function

I(t) :=
1

2
d(x1(t), x2(t))2, t ≥ t0,

where d(·, ·) means the Riemannian distance in T× R, see (N.4) and Appendix 4.B. Recall that
the distance function d(·, ·) is Lipschitz-continuous, see Proposition 4.B.1. Since x1 and x2 are
C1 trajectories, then I = I(t) is absolutely continuous. Hence, its derivative exists for almost
every t and it agrees with the one-sided Dini upper derivative. Since Theorem 4.B.7 implies
that the one-sided Dini upper directional derivatives (d

+

dt ) of the squared distance are finite,
then the chain rule yields

dI

dt
≡ d+I

dt
= d+

(
1

2
d2
x2(t)

)

x1(t)

(ẋ1(t)) + d+

(
1

2
d2
x1(t)

)

x2(t)

(ẋ2(t)),

for almost every t ≥ t0. Recall that in Theorem 4.B.7 we also got an upper bound for such Dini
directional derivatives that reads as follows

d+

(
1

2
d2
x2(t)

)

x1(t)

(
ẋ1(t)

)
≤ inf

w1∈exp−1
x1(t)

(x2(t))

|w1|=d(x1(t),x2(t))

−〈ẋ1(t), w1〉 ,

d+

(
1

2
d2
x1(t)

)

x2(t)

(
ẋ2(t)

)
≤ inf

w2∈exp−1
x2(t)

(x1(t))

|w2|=d(x1(t),x2(t))

−〈ẋ2(t), w2〉 .

Let us fix any minimizing geodesic γ̂t : [0, 1] −→ T × R joining x1(t) to x2(t), for every t ≥ t0.
Then, we can choose w1 = γ̂′t(0) and w2 = −γ̂′t(1) in the above inequalities. Consequently,

dI

dt
≤
〈
ẋ2(t), γ̂′t(1)

〉
−
〈
ẋ1(t), γ̂′t(0)

〉
=
〈
V[µt](x2(t)), γ̂′t(1)

〉
−
〈
V[µt](x1(t)), γ̂′t(0)

〉
.

Using Theorem 4.2.18 we get the estimate

dI

dt
≤ Ld(x1(t), x2(t)2) = 2LI(t), a.e. t ≥ t0.

Since I(t0) = 1
2d(x1(0), x2(0))2 = 1

2d(x0, x0)2 = 0, Gronwall’s Lemma amounts to the desired
sided-uniqueness, namely,

x1(t) = x2(t), ∀ t ≥ t0.
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The same ideas as above can be used even if x1(0) 6= x2(0) to derive some stability result of
the flow. In fact, although V[µ] is not fully Lipschitz continuous (but merely one-sided Lipschitz
continuous), its characteristic flow is.

Corollary 4.2.20. Consider α ∈ (0, 1
2), K > 0 and fix µ ∈ C̃M. Let X(t; 0, z,Ω) = (Z(t; 0, z,Ω),Ω)

be the flow of the characteristic system (4.2.7) associated with the transport field V[µ]. Then, X is
Lipschitz-continuous in (z,Ω); namely, there exists L = L(α,K, µ) with

d(X(t; 0, (z1,Ω1))−X(t; 0, (z2,Ω2))) ≤ d((z1,Ω1), (z2,Ω2))eLt,

for every (z1,Ω1), (z2,Ω2) ∈ T× R and each t ∈ [0, T ].

Again, like in Theorem 4.2.18, the constant L in Corollary 4.2.20 is

L =
1

2
+KL0‖µ‖L∞w (0,T ;M(T×R)).

4.2.4 Types of measure-valued solutions

In the above Definition 4.2.6 and Proposition 4.2.7, the classical concept of weak measure-
valued solutions f ∈ ACM to (4.2.5) was revisited. It clearly agrees with the standard concept
of measure-valued solution for homogeneous conservative continuity equations (for instance,
see [8] and references therein). Indeed, such concept requires a very weak regularity of the
transport field V[f ] in the continuity equation (4.2.5), specifically,

∫ T

0

∫

C
|V[ft]| dft dt <∞, (4.2.12)

for each compact subset C ⊆ T× R. Although such concepts are not usually considered when
working on general manifolds like T×R, straightforward ideas allow extending them from the
Euclidean space Rd to Riemannian manifolds. Apart from that notion of solution, there are a
couple of related concepts that we recall in the following.

Definition 4.2.21. We will say that a time dependent measure f ∈ C̃M is a measure-valued solution
to (4.2.5) in the sense of the characteristic flow when

ft = Xf (t; 0, ·)#f0, for all t ≥ 0,

where Xf stands for the flow of the transport field V[f ] as introduced in Theorem 4.2.19.

The following result is a straightforward consequence of the definition.

Proposition 4.2.22. Let f ∈ C̃M be a solution to (4.2.5) in the sense of the characteristic flow. Then

1. f ∈ ACM.
2. f is a weak measure-valued solution to (4.2.5).

Definition 4.2.23. Define the space C1([0, T ]) := C1([0, T ],T× R), consider f ∈ C̃M and the set

Sf ([0, T ]) :=
{

(x, γ) ∈ (T× R)× C1([0, T ]) : γ is a characteristic of V[f ] issued at x
}
.

Then, f is said to be a superposition solution to (4.2.5) if f(t = 0) = f0 and there exists some probability
measure η ∈ P((T × R) × C1([0, T ])) such that supp η ⊆ Sf ([0, T ]) and ft = fηt for all t ∈ [0, T ],
where the measure fη is defined as follows

〈fηt , ϕ〉 =

∫

(T×R)×C1([0,T ])
ϕ(γt) d(x,γ)η,

for any test function ϕ ∈ Cb(T× R).
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Mimicking the ideas in [8, Theorem 4.4] we obtain the following result.

Proposition 4.2.24. Let f ∈ ACM ∩ TM be any weak measure-valued solution to (4.2.5). Then, there
exists some probability measure η ∈ P((T× R)× C1([0, T ])) supported on Sf ([0, T ]) such that

ft ≡ fηt , t ≥ 0.

In other words, f is a superposition solution.

Recall that in Remark 4.2.11, we mentioned that an analogue to Lemma 4.2.12 with f ∈ CM
instead of f ∈ C̃M can be derived by means of Caratheodory characteristics. Then, Definitions
4.2.21 and 4.2.23 along with Propositions 4.2.22 and 4.2.24 have analogues with f ∈ CM only.
Again, we will skip it here.

So far, we have not used any special property of the transport field other than those ap-
pearing in Remark 4.2.11. Recall that they guarantee both condition (4.2.12) (making sense of
weak measure-valued solutions) and existence of Caratheodory characteristics (giving sense
to solutions in the sense of the flow and superposition solutions). Let us see that under the
forward-uniqueness property of the characteristic system, that follows in Theorem 4.2.19 from
the one-sided uniqueness property of V[f ], any superposition solution is also a solution in the
sense of the characteristic flow.

Proposition 4.2.25. Let f ∈ C̃M be a superposition solution to (4.2.5). Then, f is a solution to (4.2.5)
in the sense of the charactersitic flow.

Proof. By definition, ft = fηt for t ∈ [0, T ], for some η ∈ P((T × R) × C1([0, T ])) with supp η ⊆
Sf ([0, T ]). Due to Theorem 4.2.19, the one-sided Lipschitz condition of V[f ] implies one-sided
uniqueness of the characteristic system (4.2.7). Then, Sf ([0, T ]) agrees with the graph of the
flow Xf in the following sense

Sf ([0, T ]) = {(x,Xf (· ; 0, x)) : x ∈ T× R} .
Consequently, we can write

〈ft, ϕ〉 = 〈fηt , ϕ〉 =

∫

(T×R)×C1([0,T ])
ϕ(γt) d(x,γ)η =

∫

(T×R)×C1([0,T ])
ϕ(Xf (t; 0, x)) d(x,γ)η, (4.2.13)

for every t ∈ [0, T ] and ϕ ∈ Cb(T× R). Consider the projection

πx : (T× R)× C1([0, T ]) −→ T× R
(x, γ) 7−→ x,

along with the marginal µ := (πx)#η. By the disintegration theorem (see Theorem F.4.1 below),
let us consider the family (ηx)x∈T×R of conditional probabilities or disintegrations of η. Then,

∫

(T×R)×C1([0,T ])
ϕdη =

∫

T×R

(∫

C1([0,T ])
ϕ(x, γ) dγ(ηx)

)
dµ,

for any ϕ ∈ Cb(T× R). In particular, when applied to (4.2.13) we arrive at

〈ft, ϕ〉 =

∫

T×R
ϕ(Xf (t; 0, x)) dxµ,

for any ϕ ∈ Cb(T× R). Therefore,

ft = Xf (t; 0, ·)#µ, for all t ∈ [0, T ].

Taking t = 0 we get µ ≡ f0. Then, f is a solution in the sense of the characteristic flow to
(4.2.5).

198



CHAPTER 4. THE SINGULAR KURAMOTO MODEL: KINETIC EQUATION

Remark 4.2.26. The above Propositions 4.2.22, 4.2.24 and 4.2.25 guarantee that all the above three
concepts of measure-valued solutions are equivalent in our problem because of the properties:

1. Caratheodory’s conditions in Remark 4.2.11.

2. V[f ] is one-sided Lipschitz-continuous uniformly in t ∈ [0, T ].

4.3 Existence of weak measure-valued solutions

In this part, we shall derive existence of global-in-time measure valued solutions to (4.2.5) in
the subcritical regime α ∈ (0, 1

2). The idea does nor rely on any regularization technique of
the kernel. Instead, it will rely on a compactness argument as N → ∞ for any sequences of
empirical empirical measures associated with a sequence of solutions to the N -particle sys-
tem (4.1.1)-(4.1.2) that initially approximates the given initial datum f0 in Wasserstein distance.
Such method will produce weak measure-valued solutions (equivalently, solutions in the sense
of the characteristic flow) to (4.2.5) in the subcritical regime. Similar ideas will be analysed later
in Sections 4.6 and 4.7 for the most singular regimes. Notice that the aforementioned compact-
ness of the empirical measures becomes a first step towards the derivation of the full mean field
limit, that will be proved later in Section 4.4 via a Dobrushin-type inequality.

The rest of this section consists of the following three parts. First, we will revisit the concept
of empirical measures associated with a solution to the discrete model (4.1.1)-(4.1.2) and will
show that they automatically are weak measure-valued solutions to (4.2.5). In the second part,
we will obtain some a priori bounds implying the weak compactness of such sequence of em-
pirical measures. The final step will be to identify the limit as a weak measure-valued solution
to the continuous model (4.2.5).

4.3.1 Empirical measures

In this part we will recall the definition of empirical measures associated with a discrete so-
lution to (4.1.1)-(4.1.2), see [59, 176, 198, 230, 226]. We will also inspect whether they provide
measure-valued solutions to the macroscopic system (4.2.5).

Definition 4.3.1. Fix N ∈ N and consider N oscillators with phases and natural frequencies given by
the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N}.

Let ΘN (t) := (θN1 (t), . . . , θNN (t)) be the unique global-in-time classical solution to the discrete singular
Kuramoto model (4.1.1)-(4.1.2) according to Theorem 3.3.5 in Chapter 3. Then, the associated empirical
measures are given by µN ∈ P(T× R) defined as follows

µNt :=
1

N

N∑

i=1

δzNi (t)(z)⊗ δΩNi
(Ω),

where zNi (t) := eiθ
N
i (t) for any i = 1, . . . , N .

Theorem 4.3.2. Consider α ∈ (0, 1
2) and K > 0. Fix N ∈ N and consider N oscillators with initial

phases and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N}.
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Let µN be the associated empirical measure according to Definition 4.3.1. Then, µN ∈ ACM ∩ TM is a
weak measure-valued solution to (4.2.5) and, in addition,

∣∣∣∣
d

dt

∫

T×R
ϕdµNt

∣∣∣∣ ≤
(

1

N

N∑

i=1

|ΩN
i |+K‖h‖C(T)

)
‖∇ϕ‖C0(T×R), (4.3.1)

for every t ≥ 0 and every ϕ ∈ C1
0 (T× R).

Proof. Let us first prove that µN ∈ ACM ∩ TM. Regarding the tightness condition notice that

‖|Ω|µNt ‖M(T×R) =
1

N

N∑

i=1

|ΩN
i |,

for every t ≥ 0. Regarding the absolute continuity in time, set ϕ ∈ C∞c (T×R) and observe that

t ∈ [0,+∞) 7−→
∫

T

∫

R
ϕdµNt =

1

N

N∑

i=1

ϕ(θNi (t),ΩN
i ) (4.3.2)

is locally absolutely continuous (it is C1 in fact). Indeed, taking derivatives in (4.3.2) yields

d

dt

∫

T
ϕdµNt =

1

N

N∑

i=1

∂ϕ

∂θ
(θNi (t),ΩN

i )θ̇Ni (t). (4.3.3)

As explained in Remark 4.A.3, we assert that for (z = eiθ,Ω) ∈ T× R

∂ϕ

∂θ
(θ,Ω) = −ie−iθ∇zϕ(θ,Ω).

Then, the above equation (4.3.3) can be restated as follows

d

dt

∫

T
ϕdµNt =

1

N

N∑

i=1

<
[
∇zϕ(θNi (t),ΩN

i )(−ie−iθNi (t))θ̇Ni (t)
]

=
1

N

N∑

i=1

〈
∇zϕ(θNi (t),ΩN

i ),
d

dt
eiθ

N
i (t)

〉
,

(4.3.4)

where < means real part of the complex number. To describe the associated transport field,
notice that

P[µNt ](θ,Ω) = Ω−K
∫

(−π,π]

∫

R
h(θ − θ′) d(θ′,Ω′)µ

N
t = Ω− K

N

N∑

j=1

h(θ − θNj (t)),

and, consequently,

P[µNt ](θNi (t),ΩN
i ) = Ωi −

K

N

N∑

j=1

h(θNi (t)− θNj (t)).

Since θNi (t) are solutions to the discrete singular Kuramoto model, then we arrive at

d

dt
(eiθ

N
i (t),ΩN

i ) = (ieiθ
N
i (t)θ̇Ni (t), 0) = V[µNt ](θNi (t),Ωi). (4.3.5)
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Putting (4.3.5) into (4.3.4) implies

d

dt

∫

T

∫

R
ϕdµNt =

1

N

N∑

i=1

〈
∇(z,Ω)ϕ,V[µNt ]

〉
∣∣∣∣∣
(z,Ω)=(eiθ

N
i

(t),ΩNi )

.

Then, it becomes apparent that µNt is a weak solution, namely,

d

dt

∫

T

∫

R
ϕdµNt =

∫

T

∫

R

〈
∇(z,Ω)ϕ,V[µNt ]

〉
dµNt . (4.3.6)

Notice that all the above computations also makes sense for ϕ ∈ C1
0 (T × R). By putting the

sublinear growth of V[µN ] in Theorem 4.2.8 into (4.3.6), we obtain
∣∣∣∣
d

dt

∫

T×R
ϕdµNt

∣∣∣∣ ≤ ‖∇ϕ‖C0(T×R)

∫

T×R
|V[µNt ]| dµNt

= ‖∇ϕ‖C0(T×R)

∫

T×R
|P[µNt ]| dµNt

≤ ‖∇ϕ‖C0(T×R)

∫

T×R

(
|Ω|+K‖h‖C(T)‖µNt ‖M(T×R)

)
dµNt .

Then, the estimate (4.3.1) becomes true.

4.3.2 A priori estimates and compactness

Our main goal now is to derive the required compactness allowing us to pass to the limit in the
weak formulation in Definition 4.2.6. To such end, we will first derive some necessary estimates
in the following result.

Corollary 4.3.3. Consider α ∈ (0, 1
2) andK > 0. SetN oscillators with phases and natural frequencies

given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N},

for any N ∈ N. Assume that there exists a constant M1 > 0 that does not depend on N such that

1

N

N∑

i=1

|ΩN
i | ≤M1, (4.3.7)

for all N ∈ N and consider the associated empirical measures µN according to Definition 4.3.1. Then,

sup
t∈[0,T ]

‖µNt ‖C1
0 (T×R)∗ ≤ 1,

‖µNt1 − µNt2‖C1
0 (T×R)∗ ≤ (M1 +K‖h‖C(T))|t1 − t2|,

for every N ∈ N and every t1, t2 ≥ 0.

We skip the proof that is a clear consequence of the assumption (4.3.7) along with the es-
timate (4.3.1) in Theorem 4.3.2. In the sequel, we will need a stronger version of (4.3.7). The
following result introduces the required equi-sumability condition of the natural frequencies
along with its relation with condition (4.3.7).
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4.3. EXISTENCE OF WEAK MEASURE-VALUED SOLUTIONS

Proposition 4.3.4. Let us consider a configuration of N ∈ N natural frequencies

{ΩN
i : i = 1, . . . , N} ⊆ R,

for every N ∈ N.

1. Assume that the following equi-sumability condition holds true

lim
R→+∞

sup
N∈N

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i | = 0. (4.3.8)

Then the sumability condition (4.3.7) is also fulfilled.

2. Fix k > 1 and assume that the following summability condition holds true

1

N

N∑

i=1

|ΩN
i |k ≤Mk,

for some N -independent Mk > 0 and each N ∈ N. Then, the following condition takes place

lim
R→0

sup
N∈N

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |m = 0, (4.3.9)

for every 1 ≤ m < k. In particular, the equi-sumability condition (4.3.8) holds.

Proof. Regarding the first assertion, fix any arbitrary R > 0 and notice that

1

N

N∑

i=1

|Ωi|N =
1

N

∑

1≤i≤N
|ΩNi |<R

|ΩN
i |+

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i | ≤ R+

1

N
sup

1≤i≤N
|ΩNi |≥R

|ΩN
i |,

for every N ∈ N. By virtue of (4.3.8), the right hand side is bounded with respect to N and

sup
N∈N

1

N

N∑

i=1

|ΩN
i | ≤ R+ sup

N∈N

1

N
sup

1≤i≤N
|ΩNi |≥R

|ΩN
i |. (4.3.10)

The optimal M1 can be achieved by minimizing the right hand side in (4.3.10) with respect to
R. Regarding the second assertion, fix 1 ≤ m < k and notice that

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |m ≤

1

Rk−m
1

N

N∑

i=1

|ΩN
i |k ≤

Mk

Rk−m
,

for every R > 0 and N ∈ N. Taking supremum with respect to N and limits as R → 0 yields
(4.3.9).

Corollary 4.3.5. Let us assume that the hypothesis in Corollary 4.3.3 and that the equi-summability
condition (4.3.8) are fulfilled. Then, the associated empirical measures µN in Corollary 4.3.3 are also
uniformly equicontinuous in C([0,+∞),P1(T× R)−W1).
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Proof. Consider any continuous test function ϕ so that

|ϕ(z,Ω)| ≤ Cϕ(1 + |Ω|), for all (z,Ω) ∈ T× R,

for some Cϕ > 0. Recall the scaled cut-off functions ξR = ξR(Ω) in (N.2), for any R > 0. Fix
ε > 0 and take R > 0 large enough so that

Cϕ

(
1

R
+ 1

)
1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i | ≤

ε

6
. (4.3.11)

Notice that ϕ ξR ∈ C0(T× R). Then, there exists ϕ̂ ∈ C∞c (T× R) so that

‖ϕ ξR − ϕ̂‖C0(T×R) ≤
ε

6
. (4.3.12)

By virtue of Corollary 4.3.3 there exists δ > 0 so that
∣∣∣∣
∫

T×R
ϕ̂ d(µNt1 − µNt2 )

∣∣∣∣ ≤
ε

3
, (4.3.13)

for every |t1 − t2| ≤ δ and each N ∈ N. Now, consider the following split
∫

T×R
ϕd(µNt1 − µNt2 ) = AN (t1, t2) +BN (t1, t2) + CN (t1, t2),

where each term reads

AN (t1, t2) :=

∫

T×R
ϕ (1− ξR) d(µNt1 − µNt2 ),

BN (t1, t2) :=

∫

T×R
(ϕ ξR − ϕ̂) d(µNt1 − µNt2 ),

CN (t1, t2) :=

∫

T×R
ϕ̂ d(µNt1 − µNt2 ).

First, (4.3.11) along with the equi-sumability condition (4.3.8) implies

|AN (t1, t2)| ≤ ε

3
,

for all t1, t2 ≥ 0 and N ∈ N. Second, (4.3.12) amounts to

|BN (t1, t2)| ≤ ε

3
,

for all t1, t2 ≥ 0 and N ∈ N. Finally, (4.3.13) yields

|CN (t1, t2)| ≤ ε

3
,

for all |t1 − t2| ≤ δ and N ∈ N. Putting everything together ends the proof.

Corollary 4.3.6. Consider α ∈ (0, 1
2) and K > 0. For any N ∈ N, set N oscillators with phases and

natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N}.
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Consider the (forward-in-time) unique classical solution ΘN (t) = (θ1(t), . . . , θN (t)) to (4.1.1)-(4.1.2)
as given in Theorem 3.3.5 of Chapter 3 and set the corresponding empirical measures µN according to
Definition 4.3.1. Assume that the equi-sumability condition (4.3.8) holds true, and take M1 fulfilling
(4.3.7) according to Proposition 4.3.4. Then, for every fixed T > 0, there exists a subsequence of µN ,
that we denote in the same way for simplicity, and a limiting measure f ∈ ACM ∩ TM such that

sup
t∈[0,T ]

‖|Ω| ft‖M(T×R) ≤M1, (4.3.14)

lim
R→+∞

sup
t∈[0,T ]

‖|Ω|χ|Ω|≥R ft‖M(T×R) = 0, (4.3.15)

and, in addition,

f ∈W 1,∞
w ([0, T ], C1

0 (T× R)∗) ∩ C([0, T ],P1(T× R)−W1),

for every fixed T > 0. Moreover,

µN → f in C([0, T ],P1(T× R)−W1), (4.3.16)

where W1 means the Kantorovich–Rubinstein distance.

Proof. Recall that the Riesz representation theorem in Theorem A.0.11 in Appendix A allows
substracting a subsequence that converges weakly-* in L∞w (0, T ;M(T× R)). What is more, we
can use the uniform estimates in the above Corollary 4.3.3 along with the weak-star version
of the Ascoli-Arzelà theorem in Appendix B to show that there exists some subsequence and
f ∈ L∞w (0, T ;M(T× R)) ∩ C([0, T ], C1

0 (T× R)∗) so that

µN → f in C([0, T ], C1
0 (T× R)∗ −weak ∗).

Recall that the embedding C1
0 (T × R) ↪→ C0(T × R) is continuous and dense. Then, we can

improve the above convergence into

µN → f in C([0, T ],M(T× R)−weak ∗),

i.e.,

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣
∫

T×R
ϕd(µNt − fNt )

∣∣∣∣ = 0, (4.3.17)

for all ϕ ∈ C0(T×R). In order to augment the weak-star convergence into the Wasserstein one,
we will first show that the other two properties that can be inherited by the limit.
• Step 1: Corollary 4.3.3 yields

∣∣∣∣
∫

T×R
ϕd(µNt1 − µNt2 )

∣∣∣∣ ≤ (M1 +K‖h‖C(T))‖ϕ‖C1
0 (T×R)|t1 − t2|,

for every t1, t2 ∈ [0, T ], each ϕ ∈ C1
0 (T×R), and any N ∈ N. Taking limits as N →∞ and using

(4.3.17), we can obtain
∣∣∣∣
∫

T×R
ϕd(ft1 − ft2)

∣∣∣∣ ≤ (M1 +K‖h‖C(T))‖ϕ‖C1
0 (T×R)|t1 − t2|,

for every ϕ ∈ C1
0 (T× R) and each t1, t2 ∈ [0, T ]. Consequently, f ∈W 1,∞

w ([0, T ], C1
0 (T× R)∗).
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• Step 2: Again, recall the scaled cut-off functions ξR = ξR(Ω) in (N.2). Then, notice that the
function

(z,Ω) ∈ T× R 7−→ |Ω| ξR(Ω)

belongs to C0(T× R). Consequently, (4.3.17) implies

‖|Ω| ft‖M(T×[−R,R]) ≤
∫

T×R
|Ω| ξR(Ω) d(z,Ω)ft = lim

N→∞

∫

T×R
|Ω| ξR(Ω) d(z,Ω)µ

N
t

≤ lim sup
N→∞

‖|Ω|µNt ‖M(T×R) = lim sup
N→∞

1

N

N∑

i=1

|ΩN
i | ≤M1,

for every t ∈ [0, T ], and any R > 0. Taking limit R → +∞ entails (4.3.14). Similarly, take a
couple 0 < R < R′, and consider the test function in C0(T× R) defined as follows

(z,Ω) ∈ T× R 7−→ |Ω| ξR′(Ω)(1− ξR/2(Ω)).

Then, an analogue argument yields

‖|Ω|χR≤|Ω|≤R′ft‖M(T×R) ≤
∫

T×R
|Ω| ξR′(Ω)(1− ξR/2(Ω)) d(z,Ω)ft

= lim
N→∞

∫

T×R
|Ω| ξR′(Ω)(1− ξR/2(Ω)) d(z,Ω)µ

N
t

≤ lim sup
N→∞

‖|Ω|χ|Ω|≥RµNt ‖M(T×R) ≤ sup
N∈N

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |.

Taking limit when R′ → +∞ yields

sup
t∈[0,T ]

‖|Ω|χ|Ω|≥R ft‖M(T×R) ≤ sup
N∈N

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |,

for every R > 0. Finally, we obtain (4.3.15), as R→ +∞. Recall that µN are uniformly equicon-
tinuous in C([0, T ],P1(T × R) −W1) thanks to Corollary 4.3.5. Then, we similarly infer that
f ∈ C([0, T ],P1(T× R)−W1).
• Step 3: Now, take a continuous test function ϕ ∈ C(T× R) with linear growth, that is,

|ϕ(z,Ω)| ≤ Cϕ(1 + |Ω|), ∀ (z,Ω) ∈ T× R,

for some Cϕ > 0. The integral of interest can be split as follows
∣∣∣∣
∫

T×R
ϕd(µNt − ft)

∣∣∣∣ ≤ ARN (t) +BR
N (t),

where each term reads

ARN (t) :=

∣∣∣∣
∫

T×R
ϕ ξR d(µNt − ft)

∣∣∣∣ ,

BR
N (t) :=

∣∣∣∣
∫

T×R
ϕ(1− ξR) d(µNt − ft)

∣∣∣∣ .
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Fix ε > 0 and consider R > 0 large enough so that

Cϕ

(
1

R
+ 1

)



1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |


 ≤

ε

4
.

This can be done by virtue of hypothesis (4.3.8). Then, it is clear that

BR
N (t) ≤ Cϕ

∫

|Ω|≥R
(1 + |Ω|) d(z,Ω)(|µNt |+ |ft|)

≤ Cϕ
(

1

R
+ 1

)∫

|Ω|≥R
|Ω| d(z,Ω)(|µNt |+ |ft|) ≤ 2Cϕ

(
1

R
+ 1

)



1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |


 ≤

ε

2
,

for every N ∈ N, and every t ∈ [0, T ]. Also, notice that the following function

(z,Ω) ∈ T× R 7−→ ϕ(z,Ω) ξR(Ω),

belongs to C0(T× R). Then, applying (4.3.17) to such function, there exists N0 ∈ N so that

ARN (t) =

∣∣∣∣
∫

T×R
ϕ ξR d(µNt − ft)

∣∣∣∣ ≤
ε

2
,

for everyN ≥ N0, and every t ∈ [0, T ]. Putting everything together implies the uniform-in-time
convergence against any continuous function with linear growth, or, equivalently (see [296,
Definition 6.8, Theorem 6.9]), the desired uniform-in-time convergence in the Kantorovich-
Rubinstein distance W1.

Remark 4.3.7. The above convergence in the Kantorovich-Rubinstein distance W1 can be improved to
any other Wasserstein distance Wp with p > 1 when the equi-sumability condition (4.3.8) is replaced
with the general p-equi-sumability condition (4.3.9). Indeed, such assumption implies

sup
t∈[0,T ]

‖|Ω|p ft‖M(T×R) ≤Mp,

lim
R→0

sup
t∈[0,T ]

‖|Ω|p χ|Ω|≥R ft‖M(T×R) = 0.

Moreover,
µN → f in C([0, T ],Pp(T× R)−Wp).

Lemma 4.3.8. Consider α ∈ (0, 1
2) and K > 0. For every N ∈ N, consider N oscillators with phases

and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N}.

Assume the equi-sumability condition (4.3.8), set the associated empirical measures µN according to
Definition 4.3.1 and any limit f according to Corollary 4.3.6. Then,

V[µN ]− V[f ] −→ 0 in C([0, T ],XCb(T× R)).
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Proof. Since both µN and f belong to C̃M, then Corollary 4.2.10 guarantees that

V[µN ]

1 + |Ω| ,
V[f ]

1 + |Ω| ∈ C([0, T ],XCb(T× R)),

for every N ∈ N. Consequently, the continuity of both vector fields is granted. Throughout the
rest of the proof, we will show that the convergence is uniform. By the Stone–Weierstrass theo-
rem (see [131, Theorem 4.45] or [263, Theorem 7.32]) we can approximate h(θ− θ′) by products
of functions with separate variables, that is, there exists m ∈ N and φ1, . . . , φm, ψ1, . . . , ψm ∈
C(T) depending on ε and h so that

∣∣∣∣∣h(θ − θ′)−
m∑

i=1

φi(θ)ψi(θ
′)

∣∣∣∣∣ ≤
ε

2K
, ∀ θ, θ′ ∈ R, (4.3.18)

for every fixed ε > 0. For simplicity, let us define

ĥ(θ, θ′) :=

m∑

i=1

φi(θ)ψi(θ
′), ∀ θ, θ′ ∈ R.

Then, we have

|V[µNt ](θ,Ω)− V[ft](θ,Ω)| = |P[µNt ](θ,Ω)− P[ft](θ,Ω)| ≤ FN (t, θ,Ω) +GN (t, θ,Ω),

where each term reads

FN (t, θ,Ω) := K

∣∣∣∣∣

∫

(−π,π]×R
ĥ(θ, θ′) d(θ′,Ω′)(µ

N
t − ft)

∣∣∣∣∣ ,

GN (t, θ,Ω) := K

∣∣∣∣∣

∫

(−π,π]×R
(h(θ − θ′)− ĥ(θ, θ′)) d(θ′,Ω′)(µ

N
t − ft)

∣∣∣∣∣ .

Regarding the second term, the bound (4.3.18) automatically implies that

GN (t, θ,Ω) ≤ ε,

for every t ∈ [0, T ] and (θ,Ω) ∈ (−π, π] × R. On the other hand, the first term can be bounded
in the following way

FN (t, θ,Ω) ≤ K
m∑

i=1

‖φi‖C(T)

∣∣∣∣∣

∫

(−π,π]×R
ψi(θ

′) d(θ′,Ω′)(µ
N
t − ft)

∣∣∣∣∣ .

Using (4.3.16) in Corollary 4.3.6, one obtains that

lim sup
N→∞

‖V[µN ]− V[f ]‖C([0,T ],XCb(T×R)) ≤ ε.

Since ε > 0 is arbitrary, we conclude the proof of this result.
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4.3.3 Passing to the limit

Here we will show that any limit f obtained in Corollary 4.3.6 yields a weak measure-valued
solution to (4.2.5), thus solving the initial value problem for (4.2.5) with any initial data in
P1(T × R). Our first step is to show that any such initial datum can be approximated by an
empirical measure associated with a discrete configuration that fulfil the above equi-sumability
condition (4.3.8). Although it follows from classical arguments, we will introduce the result in
our particular setting for the sake of completeness.

Lemma 4.3.9. Consider any µ ∈ P1(T × R). Then, there exist N oscillators with phases and natural
frequencies given by the configurations

ΘN = (θN1 , . . . , θ
N
N ) and {ΩN

i : i = 1, . . . , N},

for every N ∈ N, verifying the equi-sumability condition (4.3.8) such that the corresponding empirical
measures µN ∈ P(T× R) in Definition 4.3.1 verify

lim
N→∞

W1(µN , µ) = 0.

Proof. By a standard application of Kolmogorov’s consistency theorem [292], there exists a
probability space (E,F , P ) and a sequence of random variables {Xk}k∈N with values in T×R,
namely,

Xk = (Zk,Ωk) : E −→ T× R,
ξ 7−→ Xk(ξ),

so that Xk are all independent and identically distributed with law µ. Let us define the follow-
ing random probability measure

µN =
1

N

N∑

k=1

δXk =
1

N

N∑

k=1

δZk(z)⊗ δΩk(Ω).

A straightforward application of the strong Law of Large Numbers [291] shows that

lim
N→∞

∫

T×R
ϕdµNξ =

∫

T×R
ϕdµ, P − a.s. (4.3.19)

for every ϕ ∈ L1(T× R, dµ). Let us define for each R > 0 the functions

ϕR(z,Ω) := |Ω|χ|Ω|≥R.

By the assumptions, ϕR ∈ L1(T×R, dµ) and, consequently, there exits {Rn}n∈T ⊆ R+ such that
∫

T×R
ϕRn dµ ≤

1

2n
. (4.3.20)

Let us also set a dense sequence {ψk}k∈N ⊆ C0(T × R) in L1(T × R, dµ). Note that ψk ∈
L1(T× R, dµ) for every k ∈ N. Hence, we can apply the strong Law of Large Numbers (4.3.19)
to the whole family of functions

{ϕRn : n ∈ N} ∪ {ψk : k ∈ N},

to obtain

lim
N→∞

∫

T×R
ϕRn dµ

N
ξ =

∫

T×R
ϕRn dµ, for all ξ ∈ E \ En, (4.3.21)

208



CHAPTER 4. THE SINGULAR KURAMOTO MODEL: KINETIC EQUATION

lim
N→∞

∫

T×R
ψk dµ

N
ξ =

∫

T×R
ψk dµ, for all ξ ∈ E \ Fk, (4.3.22)

for every n, k ∈ N, where En, Fk ⊆ E are P -negligible sets. Let us define the P -negligible set

E′ :=
⋃

n,k∈N
En ∪ Fk.

Then, both (4.3.21) and (4.3.22) simultaneously hold, for all n, k ∈ N and each ξ ∈ E \ E′. On
the one hand, (4.3.21) implies that there exists Nn ∈ N such that

∣∣∣∣
∫

T×R
ϕRn d(µNξ − µ)

∣∣∣∣ ≤
1

2n
, (4.3.23)

for every n ∈ N, every N ≥ Nn, and each ξ ∈ E \ E′. Putting (4.3.20) and (4.3.23) together
yields ∫

T×R
ϕRn dµ

N
ξ ≤

1

n
, (4.3.24)

for every N ≥ Nn, each ξ ∈ E \ E′ and any n ∈ N. Finally, let us pick a realization ξ0 ∈ E \ E′
and set

R′n := max

{
Rn, max

1≤k≤Nn
|Ωk(ξ0)|

}
,

for every n ∈ N. Note that (4.3.24) amounts to

sup
N∈N

∫

T×R
ϕR dµ

N
ξ0 = sup

N≥Nn

∫

T×R
ϕR dµ

N
ξ0 ≤

1

n
,

for each R > R′n and any n ∈ N, thus yielding the equi-sumability condition (4.3.8) for

{Ωk(ξ0) : 1 ≤ k ≤ N}, N ∈ N.

In addition, (4.3.22) implies that

µNξ0
∗
⇀ µ in M(T× R), (4.3.25)

as a consequence of the density of {ψk}k∈N in C0(T × R). Let us improve such weak-star con-
vergence into convergence in the Rubinstein-Kantorovich metric W1. Consider any continuous
test function ϕ with

|ϕ(z,Ω)| ≤ C(1 + |Ω|), for all (z,Ω) ∈ T× R,

for some constant C > 0. Again, the main trick is to consider a sequence of truncations. To do
so, recover the cut-off functions ξR = ξR(Ω) in (N.2) and consider the split

∫

T×R
ϕd(µNξ0 − µ) =: AN +BN ,

where each term reads

AN :=

∫

T×R
ϕ ξR d(µNξ0 − µ),

BN :=

∫

T×R
ϕ (1− ξR) d(µNξ0 − µ).
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On the one hand, note that

BN ≤ C
∫

T×R
(1 + |Ω|) dµNξ0 + C

∫

T×R
(1 + |Ω|) dµ.

Fix ε > 0. Taking R > 0 large enough, the assumption µ ∈ P1(T × R) along with the equi-
sumability condition (4.3.8) show that BN ≤ ε

2 , for every N ∈ N. For such R, note that ϕ ξR ∈
C0(T × R). Using the above weak-star convergence (4.3.25) of µNξ0 , one obtains N0 ∈ N so that
AN ≤ ε

2 , for every N ≥ N0. Putting everything together, we conclude the proof.

We are now ready to obtain the mean field limit that, in particular, yields the following
existence result.

Theorem 4.3.10. Consider α ∈ (0, 1
2), K > 0 and set any initial datum f0 ∈ P1(T × R). Then, for

every T > 0 there exists a weak measure-valued solution f ∈ ACM ∩ TM to the initial value problem
(4.2.5). In addition, (4.3.14)-(4.3.15) holds and

f ∈W 1,∞
w ([0, T ], C1

0 (T× R)∗) ∩ C([0, T ],P1(T× R)−W1).

Proof. Our first step is to take a discrete approximation like in Lemma 4.3.9. Namely, consider
N oscillators with phases and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N},

for every N ∈ N so that they verify the equi-sumability condition (4.3.8) and the associated
empirical measures µNt ∈ P(T× R) in Definition 4.3.1 verify

lim
N→∞

W1(µN0 , f0) = 0.

Using Theorem 4.3.2, we infer that µN are weak-measure valued solutions to (4.2.5) issued at
µN0 . Then, they verify the following weak formulation (see Definition 4.2.6)

∫ T

0

∫

T×R

∂ϕ

∂t
d(z,Ω)µ

N
t dt+

∫ T

0

∫

T×R

〈
V[µNt ],∇(z,Ω)ϕ

〉
d(z,Ω)µ

N
t dt

= −
∫

T×R
ϕ(0, z,Ω)d(z,Ω)µ

N
0 , (4.3.26)

for every ϕ ∈ C1
c ([0, T ) × T × R). Using Corollary 4.3.6, consider any weak limit f of a subse-

quence of µN , that we still denote in the same way for simplicity. In particular, recall that

µN → f in C([0, T ],P1(T× R)−W1).

Now, we can pass to the limit in the weak formulation (4.3.26) as N → ∞. Specifically, re-
garding the first and third term, the passage to the limit is clear by linearity. Regarding the
nonlinear term, let us show that the following term vanishes in the limit N →∞

IN :=

∫ T

0

∫

T×R

〈
V[µNt ],∇(z,Ω)ϕ

〉
dµNt dt−

∫ T

0

∫

T×R

〈
V[ft],∇(z,Ω)ϕ

〉
dft dt,

for any given ϕ ∈ C1
c ([0, T )× T× R). Indeed, consider the following split

IN = I1
N + I2

N ,
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where each term reads

I1
N :=

∫ T

0

∫

T×R

〈
V[µNt ]− V[ft],∇(z,Ω)ϕ

〉
dµNt dt,

I2
N :=

∫ T

0

∫

T×R

〈
V[ft],∇(z,Ω)ϕ

〉
d(µNt − ft) dt.

On the one hand, note that

|I1
N | ≤ ‖ϕ‖Cb([0,T )×T×R)‖V[µN ]− V[f ]‖C([0,T ],XCb(T×R)) → 0,

by virtue of Corollary 4.3.6. On the other hand, notice that 〈V[f ],∇ϕ〉 ∈ Cc([0, T ) × T × R)
thanks to Corollary 4.2.10. Then, we can also pass to the limit in I2

N to show that I2
n → 0, thus

ending the proof.

4.4 Uniqueness and rigorous mean field limit

The purpose of this part is to derive an upper bound for the growth of some Wasserstein-type
distance between any two weak measure-valued solutions of (4.2.5). This is a Dobrushin-type
inequality that has long been studied to show stability in mean-field equations. It is originally
devoted to R. Dobrushin and H. Neunzert when the ambient space is Rd and the kernel is
Lipschitz, see [112, 230]. In that case, the bounded-Lipschitz distance fits with the Lipschitz-
continuity property of the kernel. Mimicking the ideas in the above-mentioned paper, an
analogue result has been explored for the classical Kuramoto-Sakaguchi equation in [58, 198],
where the kernel is still Lipschitz-continuous (it agrees with the sine function). However, such
approach fails in our case because the singularly-weighted kernel h is no longer Lipschitz-
continuous but barely Hölder-continuous in the subcritical case. Indeed, it is even discontinu-
ous in the critical and supercritical regimes, that will be studied later in forthcoming sections.

Very recently, the case of non-Lipschitz kernels has been explored for the aggregation equa-
tions in Rd. This is a gradient-flow system governed by the negative gradient of a λ-convex
potential, see [64, 67] and the introductory Chapter 1. In such case, the quadratic Wasserstein
distance W2 has been considered instead of the bounded-Lipschitz distance for Lipschitz inter-
actions. In our case (4.2.5), we will not use any gradient structure. Also, the natural frequencies
have introduce extra heterogeneities in the system that does not appears in the aggregation
equation. That requires turning the ambient Euclidean space Rd for the aggregation equation
into the Riemannian manifold T × R, that involves both periodicity in θ and heterogeneity Ω.
Despite the above differences with the classical Lipschitz mean-field models and the aggrega-
tion equation, we shall recover Dobrushin-type estimates.

On the one hand, we will prove such estimate for an adapted version of the quadratic
Wasserstein distance that we call fiberwise quadratic Wasserstein distance and any couple of gen-
eral weak measure-valued solutions issued at initial data with the same distribution of natural
frequencies g. This will be the cornerstone in our uniqueness result. On the other hand, for ini-
tial data whose distribution of natural frequencies differ, we will obtain an analogue estimate
for the classical quadratic Wasserstein distance as long as such distributions of natural frequencies
have bounded second order moments. The latter estimate will be used to derive the rigorous
mean field limit.

4.4.1 Stability of fiberwise quadratic Wasserstein distance and uniqueness result

We refer to Appendix F for the introduction of the above-mentioned fiberwise quadratic Wasser-
stein distance. Also, the necessary properties of optimal transport theory that we require to
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construct such distance have been provided in such appendix for the reader’s convenience.
To the best of our knowledge, this is the first time that this distance has been introduced in
the literature and has been applied to derive stability estimates of kinetic systems with hetero-
geneities. For its relation with the classical quadratic distance and equivalent representations
that will be used in forthcoming chapters, see also Appendix F.

In the following result, we show that the conditional probabilities f(·|Ω) of a solution to
(4.2.5) with respect to a given value of the natural frequency Ω ∈ R behave in a fiberwise way
in the sense that they propagate fiber by fiber along the characteristic flow of the system.

Lemma 4.4.1. Consider α ∈ (0, 1
2), K > 0 and let f ∈ ACM ∩ TM be a weak mesure-valued so-

lution to (4.2.5) with initial datum f0 ∈ P(T × R), according to Theorem 4.3.10. Let X(t; 0, z,Ω) =
(Z(t; 0, z,Ω),Ω) be the flow associated with the transport field V[f ], according to Theorem 4.2.19. Then,

1. The solution remains normalized, i.e.,

ft ∈ P(T× R), for all t ≥ 0.

2. The Ω-marginal remains unchanged, i.e.,

(πΩ)#ft = (πΩ)#f0 ≡ g, for all t ≥ 0.

3. The disintegrations or conditional probabilities {ft(·|Ω)}Ω∈R ⊆ P(T) with respect to Ω ∈ R (see
Theorem F.4.1) propagate through the flow, i.e.,

ft(·|Ω) = Z(t; 0, ·,Ω)#f0(·|Ω), for all t ≥ 0, g-a.e. Ω ∈ R.

Here, πΩ is the projection in Ω, see (N.1).

Proof. Recall that, as discussed in Remark 4.2.26, f is also a solution in the sense of the flow,
that is ft = X(t; 0, ·)#f0, for every t ≥ 0. Recall that it is characterized by the following identity

∫

T×R
ϕ(z,Ω) d(z,Ω)ft =

∫

T×R
ϕ(Z(t; 0, z,Ω),Ω) d(z,Ω)f0, (4.4.1)

for any ϕ ∈ Cb(T × R). In particular, taking ϕ ≡ 1 the first assertion becomes clear. Regarding
the second assertion, consider any text function φ ∈ Cb(R) and notice the following chain of
identities

∫

R
φ(Ω) dΩ[(πΩ)#ft] =

∫

T×R
φ(Ω) d(z,Ω)ft =

∫

T×R
φ(Ω) d(z,Ω)f0 =

∫

Ω
φ(Ω)dΩ[(πΩ)#f0],

where we have used the bounded-continuous test function ϕ(z,Ω) = φ(Ω) in Equation (4.4.1).
Hence, the second claim is apparent by definition. Finally, consider any φ ∈ C(T) and ψ ∈
Cb(R) and define ϕ(z,Ω) = φ(z)ψ(Ω). Using the disintegration formula (F.4.1) in both members
of (4.4.1) implies

∫

R
ψ(Ω)

(∫

T
φ(z,Ω) dzft(·|Ω)

)
dΩg =

∫

R
ψ(Ω)

(∫

T
φ(Z(t; 0, z,Ω))dzf0(·|Ω)

)
dΩg.

Since ψ is arbitrary we get
∫

T
φ(z,Ω) dzft(·|Ω) =

∫

T
φ(Z(t; 0, z,Ω))dzf0(·|Ω),

g-a.e. Ω ∈ R, for every t ≥ 0, thus ending the proof of the result.
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Theorem 4.4.2. Consider α ∈ (0, 1
2), K > 0 and let f1, f2 ∈ ACM ∩ TM be weak measure-valued

solutions to (4.2.5) with initial data f1
0 , f

2
0 ∈ P(T × R) according to Theorem 4.3.10. Let us set their

distributions of natural frequencies gi = (πΩ)# f
i
0 for i = 1, 2. If g1 ≡ g2 =: g, then

W2,g(f
1
t , f

2
t ) ≤W2,g(f

1
0 , f

2
0 )e2KL0t,

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h in Lemma 4.2.16.

Proof. Again, f1, f2 are solutions in the sense of the flow by Remark 4.2.26. For g-a.e. Ω ∈ R
fixed, let us consider the corresponding term of the family of disintegrations at the initial time,
i.e., f1

0 (·|Ω) and f2
0 (·|Ω). Set an optimal transference plan from the former probability measure

in T to the latter one, i.e.,

µ0,Ω ∈ Π(f1
0 (·|Ω), f2

0 (·|Ω)) :=
{
µ ∈ P(T× T) : (π1)#µ = f1

0 (·|Ω) and (π2)#µ = f2
0 (·|Ω)

}
,

so that the 2-Wasserstein distance is attained

W2(f1
0 (·|Ω), f2

0 (·|Ω))2 =

∫

T

∫

T
d(z1, z2)2d(z1,z2)µ0,Ω.

Here, we are denoting the projections π1(z, z′) = z and π2(z, z′) = z′. The existence of an
optimal transference plan is granted by Theorem F.1.3 in Appendix F (see also the textbooks
[9, 268, 296]). Then, we can define a competitor transference plan at time t as push-forward of
the initial one, that is,

µt,Ω := (Zf1(t; 0, ·,Ω)⊗ Zf2(t; 0, ·,Ω))#µ0,Ω ∈ P(T× T),

where Xf i(t; 0, z,Ω) = (Zf i(t; 0, z,Ω),Ω) is the characteristic flow associated with the transport
field V[f i] according to Theorem 4.2.19 for i = 1, 2. Notice that by definition

(π1)#µt,Ω = Zf1(t; 0, ·,Ω)#((π1)#µ0,Ω) = Zf1(t; 0, ·,Ω)#f
1
0 (·|Ω),

(π2)#µt,Ω = Zf2(t; 0, ·,Ω)#((π2)#µ0,Ω) = Zf2(t; 0, ·,Ω)#f
2
0 (·|Ω).

Using the third statement in Lemma 4.4.1 we conclude that

(π1)#µt,Ω = f1
t (·|Ω) and (π2)#µt,Ω = f2

t (·|Ω).

Thus, µt,Ω ∈ Π(f1
t (·|Ω), f2

t (·|Ω)) and, consequently,

1

2
W2(f1

t (·|Ω), f2
t (·|Ω))2 ≤

∫

T

∫

T

1

2
d(z1, z2)2 d(z1,z2)µt,Ω

=

∫

T

∫

T

1

2
d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))2 d(z1,z2)µ0,Ω.

Integrating the above inequality against g yields

1

2
W2,g(f

1
t , f

2
t )2 ≤

∫

R

∫

T

∫

T

1

2
d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))2 d(z1,z2)µ0,Ω dΩg =: I(t).

We are interested in proving some Grönwall-type inequality for I = I(t). For every z1 =
eiθ1 , z2 = eiθ2 ∈ T and g-a.e. Ω ∈ R fixed, let us define the trajectories

Z1(t) = Zf1(t; 0, z1,Ω) = eiΘ1(t) and Z2(t) = Zf2(t; 0, z2,Ω) = eiΘ2(t),
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where Θ1(t) = Θf1(t; 0, θ1,Ω) and Θ2(t) = Θf2(t; 0, θ2,Ω) are the unique solutions to (4.2.8)
in Lemma 4.2.12 with initial data θ1 and θ2 respectively. Consider a minimizing geodesic γt :
[0, 1] −→ T joining Z1(t) to Z2(t), for every fixed t ≥ 0. Since the map

t 7−→ 1

2
d2(Z1(t), Z2(t)),

is clearly absolutely continuous, we can use previous arguments like in the proof of Theorem
4.2.19 to achieve the following estimate

d

dt

1

2
d2(Z1(t), Z2(t)) ≤ −

〈
P[f1

t ](Z1(t),Ω)iZ1(t), γ′t(0)
〉
−
〈
P[f2

t ](Z2(t),Ω)iZ2(t),−γ′t(1)
〉
.

Recall that to obtain it we need to use the one-sided Dini upper directional differentiability
of the squared distance in T, see Appendix 4.B. Now, let us describe such geodesics in γt.
The way to go is analogous to that in the proof of Lemma 4.2.17, namely, consider θ21(t) :=
Θ2(t)−Θ1(t), the representative of Θ2(t) − Θ1(t) modulo 2π that lies in the interval (−π, π].
There are two different cases.
• Case 1: θ21(t) ∈ (−π, π). In this case there exists only one such minimizing geodesic and it

reads
γt(s) = ei(Θ1(t)+sθ21(t)), s ∈ [0, 1].

Hence, the above inequality can be restated as

d

dt

1

2
d2(Z1(t), Z2(t)) ≤

(
P[f2

t ](Θ2(t),Ω)− P[f1
t ](Θ1(t),Ω)

)
θ21(t).

• Case 2: θ21(t) = π. In this second case there are exactly two minimizing geodesics

γt,±(s) = ei(Θ1(t)±πs), s ∈ [0, 1].

In such case, the above inequality reads

d

dt

1

2
d2(Z1(t), Z2(t)) ≤

(
P[f2

t ](Θ2(t),Ω)− P[f1
t ](Θ1(t),Ω)

)
(±π).

Putting everything together, we arrive at the following inequality

d

dt

1

2
d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))

≤ (P[f1
t ](Θf1(t; 0, θ1,Ω),Ω)− P[f2

t ](Θf2(t; 0, θ2,Ω),Ω))Θf1(t; 0, θ1,Ω)−Θf2(t; 0, θ2,Ω),

for every θ1, θ2 and almost every t ≥ 0. By virtue of the dominated convergence theorem, we
show that I is absolutely continuous and we take derivatives under integral sign to obtain

dI

dt
≤
∫

R

∫

(−π,π]

∫

(−π,π]
(P[f1

t ](Θf1(t; 0, θ1,Ω),Ω)− P[f2
t ](Θf2(t; 0, θ2,Ω),Ω))

×Θf1(t; 0, θ1,Ω)−Θf2(t; 0, θ2,Ω) d(θ1,θ2)µ0,Ω dΩg, (4.4.2)

for almost every t ≥ 0. Now, we need to identify V[µ] as push-forward of initial data. Indeed,
notice that by (disintegration) Theorem F.4.1 and Lemma 4.4.1

P[f it ](θ,Ω) = Ω−K
∫

(−π,π]

∫

R
h(θ − θ′) d(θ′,Ω′)f

i
t
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= Ω−K
∫

R

(∫

(−π,π]
h(θ − θ′) dθ′f it (·|Ω′)

)
dΩ′g

= Ω−K
∫

R

(∫

(−π,π]
h(θ −Θf i(t; 0, θ′i,Ω

′)) dθ′if
i
0(·|Ω′)

)
dΩ′g,

for i = 1, 2. Recall that (π1)#µ0,Ω′ = f1
0 (·|Ω′) and (π2)#µ0,Ω′ = f2

0 (·|Ω′). Then, we obtain

P[f1
t ](θ,Ω) = Ω−K

∫

R

(∫

(−π,π]

∫

(−π,π]
h(θ −Θf1(t; 0, θ′1,Ω

′)) d(θ′1,θ
′
2)µ0,Ω′

)
dΩ′g, (4.4.3)

P[f2
t ](θ,Ω) = Ω−K

∫

R

(∫

(−π,π]

∫

(−π,π]
h(θ −Θf2(t; 0, θ′2,Ω

′)) d(θ′1,θ
′
2)µ0,Ω′

)
dΩ′g. (4.4.4)

Putting (4.4.3)-(4.4.4) into (4.4.2), we obtain the following expression

dI

dt
≤ −K

∫

((−π,π]2×R)2

(h(Θf1(t; 0, θ1,Ω)−Θf1(t; 0, θ′1,Ω
′))−h(Θf2(t; 0, θ2,Ω)−Θf2(t; 0, θ′2,Ω

′)))

×Θf1(t; 0, θ1,Ω)−Θf2(t; 0, θ2,Ω) d(θ1,θ2)µ0,Ω dΩg d(θ′1,θ
′
2)µ0,Ω′ dΩ′g (4.4.5)

for almost every t ≥ 0. Now, let us change variables (θ1, θ2,Ω) with (θ′1, θ
′
2,Ω

′)

dI

dt
≤−K

∫

((−π,π]2×R)2

−(h(Θf1(t; 0, θ1,Ω)−Θf1(t; 0, θ′1,Ω
′))−h(Θf2(t; 0, θ2,Ω)−Θf2(t; 0, θ′2,Ω

′)))

×Θf1(t; 0, θ′1,Ω
′)−Θf2(t; 0, θ′2,Ω

′) d(θ1,θ2)µ0,Ω dΩg d(θ′1,θ
′
2)µ0,Ω′ dΩ′g, (4.4.6)

for almost every t ≥ 0, where the antisymmetry of the kernel h around the origin has been
used. Taking the mean value of both expressions (4.4.5) and (4.4.6) yields

dI

dt
≤ K

2

∫

((−π,π]2×R)2

−(h(Θf1(t; 0, θ1,Ω)−Θf1(t; 0, θ′1,Ω
′))−h(Θf2(t; 0, θ2,Ω)−Θf2(t; 0, θ′2,Ω

′)))

×
(

Θf1(t; 0, θ1,Ω)−Θf2(t; 0, θ2,Ω)−Θf1(t; 0, θ′1,Ω
′)−Θf2(t; 0, θ′2,Ω

′)
)

× d(θ1,θ2)µ0,Ω dΩg d(θ′1,θ
′
2)µ0,Ω′ dΩ′g, (4.4.7)

for almost every t ≥ 0. Denote

Θ1 := Θf1(t; 0, θ1,Ω), Θ′1 := Θf1(t; 0, θ′1,Ω
′),

Θ2 := Θf2(t; 0, θ2,Ω), Θ′2 := Θf2(t; 0, θ′2,Ω
′),

for almost every t ≥ 0, each θ1, θ2, θ
′
1, θ
′
2 ∈ (−π, π] and any Ω,Ω′ fixed, then the integrand reads

(
(−h)(Θ1 −Θ′1)− (−h)(Θ2 −Θ′2)

) (
Θ1 −Θ2 −Θ′1 −Θ′2

)
.

Let us now make a choice of representatives modulo 2π for such phases Θ̂1, Θ̂2, Θ̂
′
1, Θ̂

′
2 ∈ R

with

Θ̂1 − Θ̂2 ∈ (−π, π], Θ̂′1 − Θ̂′2 ∈ (−π, π],

Θ̂1 − Θ̂′1 ∈ [−2π, 2π], Θ̂2 − Θ̂′2 ∈ [−2π, 2π].
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Then, the integrand can be rewritten as follows

((−h)(Θ̂1−Θ̂′1)− (−h)(Θ̂2 − Θ̂′2))
(

(Θ̂1 − Θ̂2)− (Θ̂′1 − Θ̂′2)
)

= ((−h)(Θ̂1 − Θ̂′1)− (−h)(Θ̂2 − Θ̂′2))
(

(Θ̂1 − Θ̂′1)− (Θ̂2 − Θ̂′2)
)
.

Since all the terms lie in [−2π, 2π], then Lemma 4.2.16 yields

(
(−h)(Θ̂1 − Θ̂′1)− (−h)(Θ̂2 − Θ̂′2)

)(
(Θ̂1 − Θ̂2)− (Θ̂′1 − Θ̂′2)

)

≤ L0 |(Θ̂1 − Θ̂′1)− (Θ̂2 − Θ̂′2)|2 ≤ 2L0 (|Θ̂1 − Θ̂2|2 + |Θ̂′1 − Θ̂′2|2)

= 2L0

(
|Θ1 −Θ2|2o + |Θ′1 −Θ′2|2o

)
.

Thus, it becomes apparent that

dI

dt
≤ 4KL0 I, for a.e. t ≥ 0.

By virtue of Grönwall’s lemma, we end up with

I(t) ≤ I(0)e4KL0 t, t ≥ 0.

Notice that

I(0) =

∫

R

(∫

T

∫

T

1

2
d(z1, z2)2 d(z1,z2)µ0,Ω

)
dΩg =

1

2
W2,g(f

1
0 , f

2
0 )2,

which ends the proof.

Remark 4.4.3. In Theorem 4.4.2, we have not shown any differential inequality for the Wasserstein
distance W2,g(f

1
t , f

2
t ) between two measure valued solutions to (4.1.3). However, it is clear that we can

come back to some sort of differential inequality. Specifically, notice that Theorem 4.4.2 amounts to the
inequality

W2,g(f
1
t , f

2
t )−W2,g(f

1
t0 , f

2
t0)

(t− t0)
≤W2,g(f

1
t0 , f

2
t0)
e2KL0(t−t0)−1

t− t0
,

for any t ≥ t0 ≥ 0. Then, taking lim sup as t↘ t0 in the left hand side and using L’Hôpital rule in the
right hand side, we obtain

d+

dt
W2,g(f

1
t , f

2
t ) ≤ 2KL0W2,g(f

1
t , f

2
t ),

for any t ≥ 0, where d+

dt is the one sided upper Dini derivative (recall Definition 4.B.4 in Appendix 4.B).

As a clear consequence, we obtain the following uniqueness result for general initial data.

Corollary 4.4.4. Consider α ∈ (0, 1
2), K > 0 and let f1, f2 ∈ ACM ∩ TM be weak measure-valued

solutions to (4.2.5) with initial data f1
0 , f

2
0 ∈ P(T× R). If f1

0 = f2
0 , then

f1
t = f2

t , for every t ≥ 0.
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4.4.2 Stability of quadratic Wasserstein distance and mean field limit

When the distributions of natural frequencies of both solutions do not agree, then the metric
space (Pg(T×R),W2,g) cannot be used. In such general case, we will simply resort on the stan-
dard quadratic Wasserstein distance W2 in both variables (z,Ω). Nevertheless, such approach
requires the solutions to lie in P2(T × R). The next result shows that we only need to require
that on the initial datum.

Lemma 4.4.5. Consider α ∈ (0, 1
2), K > 0 and let f ∈ ACM ∩TM be a weak measure-valued solution

to (4.2.5). Assume that the distribution g = (πΩ)#f of natural frequencies has bounded second order
moment, i.e., Ω2g ∈M(R), then

sup
t≥0
‖Ω2ft‖M(T×R) ≤ ‖Ω2g‖M(R) <∞.

Proof. Consider the scaled cut-off functions {ξR}R>0 in (N.2) and the compactly supported test
functions ϕR(z,Ω) = ξR(Ω)Ω2. Since f is a solution in the sense of the flow by Remark 4.2.26,
then we claim

∫

T×R
ϕR(z,Ω) d(z,Ω)ft =

∫

T×R
ϕR(Zf (t; 0, z,Ω),Ω) d(z,Ω)f0

=

∫

T×R
ξR(Ω)Ω2 d(R,Ω)f0

=

∫

R
ξR(Ω)Ω2 dΩg,

for every R > 0. On the one hand, the right hand side has a limit by virtue of the dominated
convergence theorem. Then, Fatou’s lemma implies

∫

T×R
Ω2 d(z,Ω)ft ≤ lim inf

R→+∞

∫

T×R
ϕR(z,Ω) d(z,Ω)ft = lim

R→+∞

∫

R
ξR(Ω)Ω2 dΩg =

∫

R
Ω2 dΩg,

thus, proving our assertion.

Theorem 4.4.6. Consider α ∈ (0, 1
2), K > 0 and let f1, f2 ∈ ACM ∩ TM be weak measured-valued

solutions to (4.2.5) with initial data f1
0 , f

2
0 ∈ P2(T× R). Then,

W2(f1
t , f

2
t ) ≤ e( 1

2
+2KL0)tW2(f1

0 , f
2
0 ),

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h in Lemma 4.2.16.

The proof resembles that in Theorem 4.4.2. However, instead we use a full quadratic
Wasserstein distance in both variables (z,Ω), i.e., take M = T × R in Appendix F to construct
the Wasserstein space (P2(T×R),W2). That makes the proof comparable to that in [67] for the
aggregation equation except for the fact that our system is no longer a gradient flow due to the
heterogeneity imposed by the natural frequencies Ω. Again, the one-sided Lipschitz property
in Lemma 4.2.16 will be the cornerstone in the proof.

Proof. Since f1
0 , f

2
0 ∈ P2(T × R), then Theorem F.1.3 in Appendix F ensures the existence of an

optimal transference plan µ0 joining them both, i.e.,

µ0 ∈ P(f1
0 , f

2
0 ) :=

{
µ ∈ P((T× R)× (T× R)) : (π1)#µ = f1

0 and (π2)#µ = f2
0

}
,
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such that
W2(f1

0 , f
2
0 )2 =

∫

T×R

∫

T×R
d((z1,Ω1), (z2,Ω2))2 d((z1,Ω1),(z2,Ω2))µ0.

Now the projection are π1((z,Ω), (z′,Ω′)) = (z,Ω) and π2((z,Ω), (z′,Ω′)) = (z′,Ω′). Again, we
can construct a competitor at time t via push-forward, namely,

µt := (Xf1(t; 0, ·)⊗Xf2(t; 0, ·))#µ0 ∈ P((T× R)× (T× R)),

where Xf i(t; 0, z,Ω) = (Zf i(t; 0, z,Ω),Ω) for i = 1, 2 is the characteristic flow associated with
the transport field V[f i] according to Theorem 4.2.19. Since µt ∈ Π(f1

t , f
2
t ), then

1

2
W2(f1

t , f
2
t )2 ≤

∫

T×R

∫

T×R

1

2
d((z1,Ω1), (z2,Ω2))2 d((z1,Ω1),(z2,Ω2))µt

=

∫

T×R

∫

T×R

1

2
d(Xf1(t; 0, z1,Ω1), Xf2(t; 0, z2,Ω2))2 d((z1,Ω1),(z2,Ω2))µ0 =: I(t).

Again, we seek a Gönwal-type inequality for I , that in turns would yield the claimed estimate
on the Wasserstein distance. Fix (z1 = eiθ1 ,Ω1), (z2 = eiθ2 ,Ω2) ∈ T× R and define

Θ1(t) := Θf1(t; 0, θ1,Ω1) and Θ2(t) := Θf2(t; 0, θ2,Ω2),

the unique forward-in-time solutions to (4.2.8) in Lemma 4.2.12. Also, consider the following
curves in T

Z1(t) := Zf1(t; 0, z1,Ω1) = eiΘ1(t),

Z2(t) := Zf2(t; 0, z2,Ω2) = eiΘ2(t),

and the associated curves in T× R,

X1(t) := Xf1(t; 0, z1,Ω1) = (Z1(t),Ω1),

X2(t) := Xf2(t; 0, z2,Ω2) = (Z2(t),Ω2).

Set a minimizing geodesic γ̂t : [0, 1] −→ T × R joining X1(t) to X2(t), for every fixed t > 0.
Again, the following map

t 7−→ 1

2
d2(X1(t), X2(t)),

is absolutely continuous at least. Taking one-sided upper Dini directional derivatives given in
Definition 4.B.4 of Appendix 4.B entails

d

dt

1

2
d2(X1(t), X2(t)) ≤ −

〈
V[f1

t ](X1(t)), γ̂′t(0)
〉
−
〈
V[f2

t ](X2(t)),−γ̂′t(1)
〉
,

for almost every t ≥ 0. Let us now consider θ21(t) := Θ2(t)−Θ1(t), the representative of
Θ2(t)−Θ1(t) modulo 2π that lies in (−π, π]. Again, we distinguish two cases:
• Case 1: θ21(t) ∈ (−π, π). In this case, the only minimizing geodesic reads

γ̂t(s) = (γt(s),Ω1 + s(Ω2 − Ω1)) = (ei(Θ1(t)+sθ21(t)),Ω1 + s(Ω2 − Ω1)), s ∈ [0, 1].

Then, the inequality reads

d

dt

1

2
d2(X1(t), X2(t)) ≤ (P[f2

t ](Θ2(t),Ω2)− P[f1
t ](Θ1(t),Ω1))θ21(t).
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• Case 2: θ21(t) = π. In that second case there are exactly two minimizing geodesics

γ̂t,±(s) = (γt,±(s),Ω1 + s(Ω2 − Ω1)) = (ei(Θ1(t)±πs),Ω1 + s(Ω2 − Ω1)), s ∈ [0, 1].

Then, we restate the above inequality as follows

d

dt

1

2
d2(X1(t), X2(t)) ≤ (P[f2

t ](Θ2(t),Ω2)− P[f1
t ](Θ1(t),Ω1))(±π),

for almost every t ≥ 0. To sum up, we achieve the following estimate

d

dt

1

2
d2(Xf2(t; 0, z1,Ω1), Xf2(t; 0, z2,Ω2))

≤ (P[f1
t ](Θf1(t; 0, θ1,Ω1),Ω1)−P[f2

t ](Θf2(t; 0, θ2,Ω2),Ω2))Θf1(t; 0, θ1,Ω1)−Θf2(t; 0, θ1,Ω2),

for every θ1, θ2,Ω1,Ω2 ∈ R and almost every t ≥ 0. Using the dominated convergence theorem,
we show that I is absolutely continuous and taking derivatives under the integral sign implies

dI

dt
≤
∫

(−π,π]×R

∫

(−π,π]×R
(P[f1

t ](Θf1(t; 0, θ1,Ω1),Ω1)− P[f2
t ](Θf2(t; 0, θ2,Ω2),Ω2))

×Θf1(t; 0, θ1,Ω1)−Θf2(t; 0, θ1,Ω2) d((θ1,Ω1),(θ2,Ω2)µ0, (4.4.8)

for almost every t ≥ 0. Also, note that

P[f it ](θ,Ω) = Ω−
∫

(−π,π]

∫

R
h(θ − θ′) d(θ′,Ω′)f

i
t

= Ω−K
∫

(−π,π]

∫

R
h(θ −Θf i(t; 0, θ′i,Ω

′
i)) d(θ′i,Ω

′
i)
f i0,

for i = 1, 2. Since (π1)#µ0 = f1
0 and (π2)#µ0 = f2

0 , then

P[f1
t ](Θ,Ω) = Ω−K

∫

(−π,π]×R

∫

(−π,π]×R
h(θ −Θf1(t; 0, θ′1,Ω

′
1)) d((θ′1,Ω

′
1),(θ′2,Ω

′
2))µ0, (4.4.9)

P[f2
t ](Θ,Ω) = Ω−K

∫

(−π,π]×R

∫

(−π,π]×R
h(θ −Θf2(t; 0, θ′2,Ω

′
2)) d((θ′1,Ω

′
1),(θ′2,Ω

′
2))µ0. (4.4.10)

Putting (4.4.9)-(4.4.10) into (4.4.8) amounts to

dI

dt
≤
∫

((−π,π]×R)4

(Ω1−Ω2) Θf1(t; 0, θ1,Ω1)−Θf2(t; 0, θ2,Ω2) d((θ1,Ω1),(θ2,Ω2))µ0 d((θ′1,Ω
′
1),(θ′2,Ω

′
2))µ0

−K
∫

((−π,π]×R)4

(h(Θf1(t; 0, θ1,Ω1)−Θf1(t; 0, θ′1,Ω
′
1))− h(Θf2(t; 0, θ2,Ω2)−Θf2(t; 0, θ′2,Ω

′
2)))

×Θf1(t; 0, θ1,Ω1)−Θf2(t; 0, θ2,Ω2) d((θ1,Ω1),(θ2,Ω2))µ0 d((θ′1,Ω
′
1),(θ′2,Ω

′
2))µ0, (4.4.11)

for almost every t ≥ 0. By virtue of the Young inequality in the first term and an analogue
symmetrization trick to that in (4.4.7) in the second term, we obtain

dI

dt
≤ I(t)

− K

2

∫

((−π,π]×R)4

(h(Θf1(t; 0, θ1,Ω1)−Θf1(t; 0, θ′1,Ω
′
1))− h(Θf2(t; 0, θ2,Ω2)−Θf2(t; 0, θ′2,Ω

′
2)))
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×
(

Θf1(t; 0, θ1,Ω1)−Θf2(t; 0, θ2,Ω2)−Θf1(t; 0, θ1,Ω1)−Θf2(t; 0, θ2,Ω2)
)

× d((θ1,Ω1),(θ2,Ω2))µ0 d((θ′1,Ω
′
1),(θ′2,Ω

′
2))µ0,

for almost every t ≥ 0. Mimicking the idea in Theorem 4.4.2 that uses the one-sided Lipschitz
property of −h in Lemma 4.2.16 implies

dI

dt
≤ (1 + 4KL0)I, for a.e. t ≥ 0.

Using Grönwall’s lemma
I(t) ≤ I(0)e(1+4KL0)t, t ≥ 0.

Finally, notice that

I(0) =

∫

T×R

∫

T×R

1

2
d((z1,Ω1), (z2,Ω2))2 d((z1,Ω1),(z2,Ω2))µ0 =

1

2
W2(f1

0 , f
2
0 )2,

and that ends the proof.

Remark 4.4.7. Again, we recover the differential inequality

d+

dt
W2(f1

t , f
2
t ) ≤

(
1

2
+ 2KL0

)
W2(f1

t , f
2
t ),

for every t ≥ 0.

The above Theorem 4.4.6 along with Theorem 4.3.2 implies the rigorous local-in-time mean
field limit as depicted in the following result.

Corollary 4.4.8. Consider α ∈ (0, 1
2), K > 0 and let f ∈ ACM ∩ TM be the unique weak measure-

valued solution in the sense of the flow to (4.2.5) with initial datum f0 ∈ P2(T × R). Consider N
oscillators with phases and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N},

for everyN ∈ N. Let ΘN (t) := (θN1 (t), . . . , θNN (t)) be the unique global-in-time classical solution to the
discrete singular Kuramoto model according to [241, Theorem 3.1] and define the associated empirical
measures in T× R

µNt :=
1

N

N∑

i=1

δzNi (t)(z)⊗ δΩNi
(Ω),

where zNi (t) := eiθ
N
i (t). If limN→∞W2(µN0 , f0) = 0, then,

lim
N→∞

sup
t∈[0,T ]

W2(µNt , ft) = 0, for all T > 0.

4.5 Global phase-synchronization of identical oscillators in finite time

In this section we shall analyze the dynamics and emergent behavior of solutions to the macro-
scopic model (4.2.5) in the subcritical regime of the parameter, i.e., α ∈ (0, 1

2). Our goal is to
extend the result in Theorem 3.5.4 of the above Chapter 3 towards the kinetic equation.

220



CHAPTER 4. THE SINGULAR KURAMOTO MODEL: KINETIC EQUATION

Remark 4.5.1. Consider Θ(t) = (θ1, . . . , θN (t)) a solution to (4.1.1)-(4.1.2) in the subcritical regime
α ∈ (0, 1

2) with Ωi = 0 for all i = 1, . . . , N and consider its average phase

θav(t) :=
1

N

N∑

i=1

θi(t), t ≥ 0.

We shall sometimes regard such quantity, originally living in the real line, as its projection over the unit
circle, that is, zav(t) = eiθav(t). Notice that thanks to the dynamics of (3.3.1)(3.3.2), we know that it a
conserved quantity of the system. Then, an equivalent statement of Theorem 3.5.4 is that if the identical
oscillators are initially confined to a half circle, then

θi(t) = θav(0), for all t ≥ Tc,

where Tc = D(Θ0)1−2α

2αKh(D(Θ0)) .

Our intuition is that the above should remain true for measure-valued solutions to the
macroscopic system (4.2.5) due to the fact that Tc does not depend on the number N of os-
cillators. Before introducing the main result of this section, we need to define an analogue
concept of average phase at the continuum level. Notice that centers of mass can be built on
any Riemannian manifold more general that the Euclidean space.

Definition 4.5.2. Let (M, 〈·, ·〉) be a Riemannian manifold and consider a probability measure µ ∈
P2(M). A point x0 ∈M is called a center of mass for µ if it solves the minimization problem

min
x∈M

∫

M

1

2
d(x, x0)2 dxµ, (4.5.1)

where d(·, ·) stands for the Riemannian distance on M .

If M = Rd it is clear that (4.5.1) has a unique solution and it agrees with the standard
definition of center of mass in Rd, i.e.,

x0 =

∫

Rd
x dxµ,

Indeed, one simple way to show uniqueness is by strict convexity of the function under con-
sideration, that is strictly convex because the squared distance so is in the Euclidean space.
However, for general manifold this is not true and one might find that the center of mass may
be non-unique depending on the probability measure µ.

Lemma 4.5.3. Let (M, 〈·, ·〉) be a complete Riemannian manifold and set

ιM : injectivity radius of M,

∆M : upper bound of the sectional curvatures of M.

Define the following parameter

δM := min

{
ιM ,

π√
∆M

}
, (4.5.2)

and consider µ ∈ P2(M) with suppµ ⊆ Br(x0) (where Br(x0) = expx0
(Br(0)) is the geodesic ball of

radius r centered at some x0). If r < δM
2 , then there is a unique center of mass of µ and it lies in Br(x0).
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See [2] for a comprehensive presentation of this topic and also references therein. In par-
ticular, notice that if M = T, then ιT = π, ∆T = 1 and consequently, δT = π (see (4.5.2)). This
shows the uniqueness of center of mass along with its location on the unit torus if µ ∈ P(T)
has support with diameter smaller that π. This is the content of the following result, where we
also obtain a explicit formula for the center of mass.

Proposition 4.5.4. Let us consider µ ∈ P(T) and assume that D0 = diam(suppµ) < π. Then, there
exists a unique center of mass of µ and it reads Zav = eiΘav , with

Θav :=

∫

[θ∗,θ∗]
θdθµ,

where C = {eiθ : θ ∈ [θ∗, θ∗]} is the geodesic convex hull of suppµ, that is the smallest geodesically
convex subset of T containing suppµ.

Notice that the above C exists and is unique by virtue of the assumption D0 < π. When
D0 ≥ π there might be two (or any) such smallest geodesically convex sets. Moreover, Θav is
not uniquely defined, but it depends on the choice of representatives that we make for θ∗ and
θ∗. However, Zav is uniquely defined since all those representatives agree modulo 2π.

Proof of Proposition 4.5.4. • Step 1: Reducing to the set C.
Consider the function

F(z) :=

∫

T

1

2
d(z′, z)2 dz′µ,

for any z ∈ T. By virtue of Lemma 4.5.3 we obtain that

min
z∈T
F(z) = min

z∈C
F(z). (4.5.3)

• Step 2: Solving the problem on C.
Let us call Θav ∈ [θ∗, θ∗] and Zav = eiθav the unique center of mass of µ and consider any

θ ∈ [θ∗, θ∗] and the associated z = eiθ ∈ C. Then,

F(z) =

∫

(θ−π,θ+π]

(θ − θ′)2

2
dθ′µ =

∫

[θ∗,θ∗]

(θ − θ′)2

2
dθ′µ.

Since θ = Θav is a minimizer of the above function, by differentiation we obtain that
∫

[θ∗,θ∗]
(Θav − θ′) dθ′µ = 0,

and that ends the proof.

Definition 4.5.5. Consider f0 ∈ P(T× R). Assume that D0 = diam(supp ρ0) < π and let us set

C0 = {eiθ : θ ∈ [θ∗(0), θ∗(0)]},

withD0 = θ∗(0)−θ∗(0) to be the geodesic convex hull of supp ρ0 in T. We will define the average phase
of the initial configuration by the center of mass in T of the density ρ0, that is, Zav(0) := eiΘav(0) where

Θav(0) :=

∫

[θ∗(0),θ∗(0)]

∫

R
θ d(θ,Ω)f0 =

∫

[θ∗(0),θ∗(0)]
θ dθρ0.

For the reader convenience, let us introduce an alternative representation of Zav(0).
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Figure 4.2: Plot of ϑθ0,ε with θ0 = −π and values ε = 1 (blue), ε = 0.8 (green) and ε = 0.6 (red)
respectively.

Lemma 4.5.6 (Periodified phase). Let us consider the following cut-off function

ξδ1,δ2(r) :=





1, r ∈ [0, δ1),
1

1+exp
(

2r−(δ1+δ2)
(δ2−r)(r−δ1)

) , r ∈ [δ1, δ2),

0, r ∈ [δ2,+∞),

for any 0 < δ1 < δ2. Fix any ε > 0 and define (see Figure 4.2)

ϑθ0,ε(θ) := θ ξπ−2ε,π−ε(|θ − θ0 − π|), θ ∈ [θ0, θ0 + 2π].

Then, ϑθ0,ε(θ) is a periodic function of class C∞ such that |ϑε(θ)| ≤ |θ| and

ϑθ0,ε(θ) =

{
θ, |θ − θ0 − π| ≤ π − 2ε,
0, π − ε ≤ |θ − θ0 − π| ≤ π.

Lemma 4.5.7. Consider f0 ∈ P(T × R). Assume that D0 = diam(supp ρ0) < π and fix any point
away from the support z0 = eiθ0 ∈ T \ supp ρ0. Then, there exists ε0 > 0 such that

Θav(0) =

∫

(−π,π]
ϑθ0,ε(θ) dθρ0 =

∫

T
ϑθ0,ε(z) dzρ0, ∀ ε ∈ (0, ε0).

Theorem 4.5.8. Consider any initial datum f0 ∈ P(T × R) with identical distribution of natural
frequencies, namely, g = (πΩ)#f0 = δ0(Ω), where πΩ is the projection (N.1). Let f = ft be the
unique global-in-time weak measure-valued solution to (4.2.5) issued at f0 with α ∈ (0, 1

2) and assume
D0 := diam(supp ρ0) < π. Then,

ft = f∞ for all t ≥ Tc,

where Tc =
D1−2α

0
2αKh(D0) and the equilibrium f∞ is given by the monopole f∞ := δZav(0)(z)⊗ δ0(Ω).

Proof. Consider the smallest geodesically convex subset C0 of T that contains supp ρ0 as given
in Definition 4.5.5. Let us recall that in the existence Theorem 4.3.10, the weak measure-valued
solution f arose as the limit

µN → f in P1(T× R)−W1, (4.5.4)
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of some sequence of empirical measures

µNt =
1

N

N∑

i=1

δzNi (t)(z)δΩNi
(Ω),

with zNi (t) = eiθ
N
i (t). Recall that ΘN (t) = (θN1 (t), . . . , θNN (t)) are global classical solutions to

(4.1.1)-(4.1.2). Without loss of generality, Lemma 4.3.9 allows assuming that ΩN
i = 0 for all

i = 1, . . . , N and N ∈ N. Also, the same result allows ensuring that µN0 can be taken so that
suppµN0 ⊆ Cδ0 , where

Cδ0 :=

{
eiθ : θ ∈

[
θ∗(0)− δ

2
, θ∗(0) +

δ

2

]}
,

and δ is any arbitrary value δ ∈ (0, π −D0). By virtue of Theorem 3.5.4 and Remark 4.5.1, we
obtain that

ΘN
i (t) = zNav(0), for all t ≥ T δc ,

for every i = 1, . . . , N , every N ∈ N and T δc is given by

T δc =
(D0 + δ)1−2α

2αKh(D0 + δ)
.

Hence, we obtain that
µNt = δzNav(0)(z)δ0(Ω), for all t ≥ T δc . (4.5.5)

Consider z0 ∈ T \ supp ρ0 and ε0 > 0 as given in Lemma 4.5.7. Then, it is clear that

Θav(0) =

∫

T×R
ϑθ0,ε(z) d(z,Ω)f0 = lim

N→∞

∫

T×R
ϑθ0,ε(z) d(z,Ω)µ

N
0 = lim

N→∞
θNav(0). (4.5.6)

Taking limits in (4.5.5) and using (4.5.4) and (4.5.6) we obtain that

ft = δZav(0)(z)δ0(Ω), for all t ≥ T δc .

Since δ ∈ (0, π −D0), the result holds true.

4.6 The critical regime

This section is devoted to the critical case, α = 1
2 . Notice that most of the ideas in Sections 4.2,

4.3, 4.4 and 4.5 break down due to the jump discontinuity of the kernel h. However, an appro-
priate concept of measure-valued solution can be considered, thus yielding well-posedness of
(4.2.5) like in Theorem 4.3.10, analogue Dobrushin-type estimates in Wasserstein distance like
in Theorems 4.4.2 and 4.4.6, rigorous mean field limit and a similar analysis of the dynamics
like in Theorem 4.5.8.

4.6.1 Solutions in the sense of the Filippov flow

In this section, we will extend the above existence results in Section 4.3 to the critical regime.
Note that the vector field V[µ] in Definition 4.2.3 does not make sense when α = 1

2 for general
finite Radon measures µ ∈M(T× R). The reason relies on the fact that in such case the kernel
h is no longer continuous, but it exhibits a jump discontinuity at θ ∈ 2πZ. Consequently,
Definition 4.2.3 is wrong due to the possible presence of atoms in the Radon measure µ. Hence,
the above regularity theory for V[µ] in Section 4.2 fails when α = 1

2 and it requires to be adapted.
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This part will be split in several steps. First, we will adapt Definition 4.2.3 so that the trans-
port field also makes sense for α = 1

2 . Second, although the classical theory cannot solve the
characteristic system due to the discontinuity of the transport field, we can obtain a generalized
concept of solutions to the characteristic system. Namely, we will consider Filippov solutions
of the characteristic system and will show that they exist and are global and unique forward-
in-time. Third, we will show that the unique forward-in-time solutions to the discrete model
(4.1.1)-(4.1.2) that were obtained in Theorem 3.3.12 in Chapter 3 give rise to solutions in the sense
of the Filippov flow to the macroscopic system (4.2.5) by considering the corresponding empirical
measures like in Definition 4.3.1. To end this part, we derive appropriate a priori bounds on
the sequence of empirical measures so that we can pass to the limit and obtain solutions in the
sense of the Filippov flow to the macroscopic system (4.2.5) for any general initial datum.

Definition 4.6.1. Consider α = 1
2 and K > 0. We will formally define the function P[µ] and the

tangent vector field V[µ] along the manifold T× R given by

P[µ](θ,Ω) := Ω−K
∫

T\{eiθ}

∫

R
h(θ − θ′) d(θ′,Ω′)µ,

V[µ](z,Ω) := (P[µ](z,Ω) iz, 0),

where µ ∈M(T× R) is any finite Radon measure.

Notice that in this definition for the critical case, we have removed z′ = eiθ. It is consistent
with that of the subcritical case in Definition 4.2.3 because, in such case, h(0) = 0. Moreover,
since the function

z′ ∈ T \ {z} 7−→ h(zz̄′),

is bounded and continuous, then the above integral also makes sense in the critical case.

The Filippov set-valued tangent vector field

In this part we will introduce the concept of Filippov set-valued tangent vector field associated
with a given single-valued tangent vector field. It will be required in order to define the appro-
priate concept of generalized characteristic trajectories of (4.2.5). The definition is a standard
translation of the standard concept for the Euclidean case [14, 130] to the Riemannian case via
local charts. We will first give a general definition that is valid for any complete Riemannian
manifold and extends the classical Filippov convexification or Filippov set-valued map of a given
measurable vector field in the Euclidean space [14, 130]. Our second step will be to identify a
clear characterization in our particular Riemannian manifold T× R.

Definition 4.6.2. Let (M, 〈·, ·〉) be a d-dimensional Riemannian manifold. Fix x0 ∈M , and set a local
chart (U , ϕ) around x0 and any local frame U1, . . . , Ud ∈ XC∞(U) on U . For any locally essentially
bounded tangent vector field V ∈ XL∞loc(M), let us consider its local expression

V = f1U1 + · · · fdUd in U ,

where f1, . . . , fd ∈ L∞loc(U). Define D := ϕ(U) ⊆ Rd, Fi := fi ◦ ϕ−1 and the vector field

F = (F1, . . . , Fd) : D ⊆ Rd −→ Rd.

Then, we define the Filippov set-valued tangent vector field at x0 by the formula

K[V ]x0 =

{
d∑

i=1

βiUi(x0) : β = (β1, . . . , βd) ∈ K[F ](ϕ(x0))

}
,
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where K[F ](ϕ(x0)) is the Filippov set-valued map associated with F , that is,

K[F ](ϕ(x0)) :=
⋂

δ>0

⋂

|N |=0

co(F (Bδ(x0) \ N )).

Recall its main properties in Appendix D and also see [14, 130].

Remark 4.6.3. Notice that given any local chart (U , ϕ) around x0 with coordinates ϕ = (x1, . . . , xd),
we can construct the associated local frame whose basis of tangent vector fields read as follows

Ui :=
∂

∂xi
, for all i = 1, . . . , d.

In such particular local frame we can set the local coordinates of the vector field to be

V = f1
∂

∂x1
+ · · · fd

∂

∂xd
in U .

The associated representation of the Filippov set-valued tangent field then reads

K[V ]x0 =

{
d∑

i=1

βi
∂

∂xi

∣∣∣∣
x0

: β = (β1, . . . , βd) ∈ K[F ](ϕ(x0))

}
.

Our interest in considering general local frames will be clarified later in Lemma 4.6.17.

Let us show that the hypothesis V ∈ XL∞loc(M) guarantee the independence of the above
definition on the given local charts and frames. We will require the following technical result.

Lemma 4.6.4. Consider a couple of open set D1,D2 ⊆ Rd, a C1 diffeomorphism Φ : D1 −→ D2 and a
measurable vector field F : D2 −→ Rd. Then, the following formula takes place

K[F ◦ Φ](x) = K[F ](Φ(x)),

for every x ∈ D1.

Proof. Since Φ is a diffeomorphism, then one inclusion follows from the other one when applied
to Φ−1. Then, we will just focus on one inclusion; specifically: K[F ◦ Φ] ⊆ K[F ] ◦ Φ. Consider
x ∈ D1, set any arbitrary δ > 0 and any negligible set N ⊆ D2. Since Φ is a diffeomorphism
there exists δ′ > 0 and another negligible set N ′ ⊆ D1 so that

Φ(Bδ′(x) \ N ′) ⊆ Bδ(Φ(x)) \ N .

Consequently,

K[F ◦ Φ](x) ⊆ co((F ◦ Φ)(Bδ′(x) \ N ′)) ⊆ co(F (Bδ(Φ(x)) \ N )).

Since δ and N are arbitrary, then the desired inclusion holds true.

Lemma 4.6.5. Consider an open set D ⊆ Rd, a continuous map A : D −→ Md(R) and a locally
essentially bounded vector field F : D −→ Rd. Then, the following formula takes place

K[AF ](x) = A(x)K[F ][x],

for every x ∈ D.
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Proof. Fix x0 ∈ D. The proof is split into two parts that correspond to each of the inclusions

A(x0)K[F ](x0) ⊆ K[AF ](x0) and K[AF ](x0) ⊆ A(x0)K[F ](x0).

• Step 1: Consider z0 ∈ A(x0)K[F ](x0) and set y0 ∈ K[F ](x0) so that z0 = A(x0)y0. Fix any arbi-
trary δ > 0 and any negligible set N ⊆ D. Our goal here is to show that z0 ∈ co(AF )(Bδ(x0) \
N ). Consider any small enough δ′ > 0 so that δ′ < δ and F ∈ L∞(Bδ′(x0),Rd). Take any arbi-
trary n ∈ N and note that y0 ∈ co(F (Bδ′/n(x0)\N )). Then, there exists yn ∈ co(F (Bδ′/n(x0)\N ))

so that |yn − y0| ≤ 1
n . In addition, Caratheodory’s theorem of convex analysis provides

q1
n, . . . , q

d+1
n ∈ Bδ′/n(x0) \ N and λ1

n, . . . , λ
d+1
n ∈ [0, 1],

so that
∑d+1

k=1 λ
k
n = 1 and yn can be written as follows

yn =
d+1∑

k=1

λknF (qkn),

for every n ∈ N. Let us define the following vectors

zn :=
d+1∑

k=1

λknA(qkn)F (qkn),

for every n ∈ N. By definition, zn ∈ co((AF )(Bδ(x0) \ N )). Let us see that zn → z0 and that
ends the proof. To that end, let us split as follows

zn =

d+1∑

k=1

λkn(A(qkn)−A(x0))F (qkn) +

d+1∑

k=1

λknA(x0)F (qkn)

=

d+1∑

k=1

λkn(A(qkn)−A(x0))F (qkn) +A(x0)yn.

On the one hand, the second term converges towards A(x0)y0 = z0. On the other hand, let us
note that the first one vanishes as n→∞. Indeed, taking norms, it can be bounded above by

d+1∑

k=1

λkn|A(qkn)−A(x0)|‖F‖L∞(Bδ′ (x0),Rd).

Now the convergence to zero becomes apparent since the coefficients λkn sum up to 1 and
A(qkn) → A(x0) for every k = 1, . . . , d + 1 by virtue of the continuity of A along with the
convergence qkn → x0 as n→∞.
• Step 2: Now, consider z0 ∈ K[AF ](x0), fix any arbitrary δ > 0 and any negligible set N ⊆

D. Our goal is to show that there exists y0 ∈ co(F (Bδ(x0) \ N )) so that z0 = A(x0)y0. Consider
a small enough δ′ > 0 so that δ′ < δ and F ∈ L∞(Bδ′(x0),Rd). Take any arbitrary n ∈ N and
note that z0 ∈ co((AF )(Bδ′/n(x0) \N )). Then, there exists zn ∈ co((AF )(Bδ′/n(x0) \N )) so that
|zn − z0| ≤ 1

n . Again, Caratheodory’s theorem implies the existence of

q1
n, . . . , q

d+1
n ∈ Bδ′/n(x0) \ N and λ1

n, . . . , λ
d+1
n ∈ [0, 1],

so that
∑d+1

k=1 λ
k
n = 1 and yn can be written as follows

zn =
d+1∑

k=1

λknA(akn)F (qkn),
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for every n ∈ N. Now, consider the following vectors

zn :=
d+1∑

k=1

λknF (qkn),

for every n ∈ N. Notice that yn ∈ co(F (Bδ(x0) \ N )). By the boundedness of F in Bδ′(x0) it is
clear that {yn}n∈N is a bounded sequence. Hence, Weierstrass theorem, provides a subsequence
yσ(n) that converges towards some y0 ∈ co(F (Bδ(x0) \ N )). In addition, let us note that the
following split holds true

A(x0)yσ(n) =

d+1∑

k=1

λkσ(n)A(x0)F (qkσ(n))

=

d+1∑

k=1

λkσ(n)(A(x0)−A(qkσ(n)))F (qkσ(n)) +

d+1∑

k=1

λkσ(n)A(qkσ(n))F (qkσ(n))

=

d+1∑

k=1

λkσ(n)(A(x0)−A(qkσ(n)))F (qkσ(n)) + zσ(n),

for every n ∈ N. Taking limits as n → ∞ and using the boundedness of F in Bδ′(x0) and the
continuity of A show that A(x0)y0 = z0 and that ends the proof.

Remark 4.6.6. As a simple consequence of the above Lemmas 4.6.4 and 4.6.5 we will show that the
above Definition 4.6.2 does not depend on the chosen local frames. To that end, consider a couple of local
frames (U , ϕ, U1, . . . , Ud) and (W, ψ,W1, . . . ,Wd). Write V in both basis

V =
d∑

i=1

fiUi =
d∑

j=1

gjWj .

Let us set the matrix P of change from basis {W1, . . . ,Wd} to {U1, . . . , Ud}, i.e., the continuous map
P : U ∩W −→Md(R) whose coordinates P = (pij)1≤i,j≤d fulfil

Wj =
d∑

i=1

pijUi in U ∩W,

for all j = 1, . . . , d. Then, the change of basis formula provide the relations

fi =
d∑

j=1

pijgj in U ∩W, (4.6.1)

for all i = 1, . . . , d. Consider Fi = fi ◦ ϕ−1 and Gi = gj ◦ ψ−1 and the associated Filippov maps

K[F ](ϕ(x0)) =
⋂

δ>0

⋂

|N |=0

co(F (Bδ(ϕ(x0)) \ N )),

K[G](ψ(x0)) =
⋂

δ>0

⋂

|N |=0

co(G(Bδ(ψ(x0)) \ N )).

Consider the associated Filippov set-valued tangent fields, where we use upper scripts for distinction

K[V ]ϕx0
=

{
d∑

i=1

βiUi(x0) : β = (β1, . . . , βd) ∈ K[F ](ϕ(x0))

}
,
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K[V ]ψx0
=





d∑

j=1

γjVj(x0) : γ = (γ1, . . . , γd) ∈ K[G](ψ(x0))



 .

Our goal is to show that K[V ]ϕx0 = K[V ]ψx0 . On the one hand, recall that (4.6.1) amounts to

F ◦ (ϕ ◦ ψ−1) = (P ◦ ψ−1)G in ψ(U ∩W), (4.6.2)

Taking D1 = ψ(U ∩ V),D2 = ϕ(U ∩ V) along with Φ = ϕ ◦ ψ−1 and A = P ◦ ψ−1 we can apply
Lemmas 4.6.4 and 4.6.5 to (4.6.2) and we infer that

K[F ](ϕ(x0)) = P (x0)K[G](ψ(x0)).

Then, the claimed independence on the chosen local frame follows.

We are interested in introducing the Filippov set-valued tangent vector in T×R associated
with the transport fields in Definition 4.6.1 for the critical regime α = 1

2 . Notice that it can be
done since V[µ] is locally essentially bounded in T× R for any given µ ∈M(T× R).

Proposition 4.6.7. Consider α = 1
2 , K > 0 and any µ ∈ M(T × R). Then, the Filippov set-valued

tangent field associated with V[µ] reads as follows

K[V[µ]](z0,Ω0) = {(p iz0, 0) : p ∈ K[P[µ](·,Ω0)](θ0)},

for every (z0 = eiθ0 ,Ω0) ∈ T×R. Here, the set K[P[µ](·,Ω0)](θ0) is nothing but the standard Filippov
set-valued map at θ = θ0 associated with the map θ ∈ R 7−→ P[µ](eiθ,Ω0) with fixed Ω0.

Proof. Consider any (z0 = eiθ0 ,Ω0) and take some local chart around it, e.g.,

(θ,Ω) ∈ (θ0 − π, θ0 + π)× R 7−→ (eiθ,Ω).

Consider the local frame ∂
∂θ and ∂

∂Ω , see Remark 4.6.3. Then, we can write the transport field
V[µ] in local coordinates as follows

V[µ](z,Ω) = P[µ](z,Ω)(iz, 0) + 0 (0, 1),

for every z ∈ T \ {z̄0} and Ω ∈ R. Set the vector field

F : (θ0 − π, θ0 + π)× R −→ R2,
(θ,Ω) 7−→ (P[µ](eiθ,Ω), 0).

Then, Definition 4.6.2 shows that

K[V[µ]](z0,Ω0) = {(p iz0, q) : (p, q) ∈ K[F ](θ0,Ω0)}.

Notice that the q-component in any vector in (p, q) ∈ K[F ](θ0,Ω0) vanishes by virtue of the
definition of F and that F is continuous in the second variable. A straightforward computation
then shows that

K[F1](θ0,Ω0) = K[F1(·,Ω0)](θ0) ≡ K[P[µ](·,Ω0)](θ0),

and that ends the proof.
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The Filippov flow of the transport field

In this part we will recover some regularity properties of the Filippov set-valued vector field
that extend those in Subsection 4.2.3 to the critical case and will be useful throughout the next
parts. Our final goal will be to show the well-posedness of a Filippov flow associated with the
transport field V[µ] for α = 1

2 .

Lemma 4.6.8. Consider α = 1
2 , K > 0 and µ ∈ L∞w (0, T ;M(T× R)). Then,

P[µ]

1 + |Ω| ∈ L
∞([0, T ]× T× R).

Proof. By analogue arguments to those in Corollary 4.2.10 we show that

ess sup(t,z,Ω)∈[0,T ]×T×R
|P[µt](z,Ω)|

1 + |Ω| ≤ sup
(z,Ω)∈T×R

|Ω|+K‖µ‖L∞(0,T ;M(T×R))‖h‖L∞(T)

1 + |Ω| <∞,

what proves the claimed results.

Recall that in Subsection 4.2.3 the existence of classical solutions in the subcritical case when
µ ∈ C̃M relied on the following continuity property (see Corollary 4.2.10)

V[µ]

1 + |Ω| ∈ C([0, T ],XCb(T× R)).

There, time continuity came from the continuity of µ in C([0, T ],M(T×R)− narrow) and was
lost when µ ∈ CM only. Nontheless, as noticed in Remark 4.2.11, Caratheodory’s conditions
(in particular continuity in z) were found under such weaker assumptions where tightness is
deprived. Such conditions prove sufficient to obtain solutions in the sense of Caratheodory.
Unfortunately, in our setting for α = 1

2 , we expect to lose continuity both in t and z due to the
jump discontinuity of h. Indeed, note that since the microscopic system shows global phase
synchronization in finite time under certain regimes of the natural frequencies (see Chapter 3),
it is possible that Dirac masses emerge and gain mass as times goes on. It justifies that time
continuity might also be lost at certain times and the velocity field becomes discontinuous at
such phase value. Our next result clarifies to what extend time continuity can be preserved, see
[67, Lemma A.1] for similar results.

Theorem 4.6.9. Consider α = 1
2 , K > 0 and let {µn}n∈N and µ be in P(T× R) so that

µn → µ in P(T× R)− narrow.

Then, the following convergence takes place

lim
n→∞

sup
Ω∈R
|V[µn](z,Ω)− V[µ](z,Ω)| = 0,

for each continuity point z ∈ T of the marginal measure (πz)#µ, where πz is the projection (N.1). In
particular, it happens a.e. in T.

Proof. Let us define ρn := (πz)#µn and ρ := (πz)#µ. Then, notice that

|V[µn](z,Ω)− V[µ](z,Ω)| = |P[µn](z,Ω)− P[µ](z,Ω)| =
∣∣∣∣∣K
∫

(−π,π]\{θ}
h(θ − θ′) dθ′(ρn − ρ)

∣∣∣∣∣ ,
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for z = eiθ ∈ T such that θ ∈ (−π, π] and Ω ∈ R. Define

Fn(θ) := K

∫

(−π,π]\{θ}
h(θ − θ′) dθ′(ρn − ρ) = F 1

n(θ) + F 2
n(θ) + F 3

n(θ),

for every θ ∈ (−π, π] and n ∈ N, where each term reads

F 1
n(θ) := K

∫

(−π,π]\{θ}
hε(θ − θ′) dθ′(ρn − ρ),

F 2
n(θ) := K

∫

(−π,π]\{θ}
χ|θ′−θ|o≥ε1/2(h(θ − θ′)− hε(θ − θ′)) dθ′(ρn − ρ),

F 3
n(θ) := K

∫

(−π,π]\{θ}
χ|θ′−θ|o<ε1/2(h(θ − θ′)− hε(θ − θ′)) dθ′(ρn − ρ).

Here ε > 0 is any fixed but arbitrary parameter. First, notice that ρn → ρ narrow in P(T). Since
hε is continuous, then,

lim
n→∞

F 1
n(θ) = 0,

for every θ ∈ (−π, π]. Second, by a clear application of the mean value theorem, we obtain

|h(θ)− hε(θ)| ≤
1

2

ε

|θ|o
, (4.6.3)

for all θ ∈ R \ 2πZ. As an application of (4.6.3) we obtain the upper bound

lim sup
n→∞

|F 2
n(θ)| ≤ ε1/2, (4.6.4)

for all θ ∈ (−π, π]. Finally, consider any cut-off function ξ ∈ C∞c ([0,+∞)) like in (N.2) and
notice that

|F 3
n(θ)| ≤ 2

∫

(−π,π]\{θ}
ξ

( |θ′ − θ|o
ε1/2

)
dθ′(ρn + ρ)

≤ 2

∫

(−π,π]
ξ

( |θ′ − θ|o
ε1/2

)
dθ′(ρn − ρ) + 4

∫

(−π,π]
χ|θ′−θ|o≤ε1/2 dθ′ρ.

Consequently,

lim sup
n→∞

|F 3
n(θ)| ≤ 4

∫

(−π,π]
χ|θ′−θ|o≤ε1/2 dθ′ρ. (4.6.5)

Putting (4.6.3), (4.6.4) and (4.6.5) together yields

lim sup
n→∞

|Fn(θ)| ≤ ε1/2 + 4

∫

(−π,π]
χ|θ′−θ|o≤ε1/2 dθ′ρ,

for every ε > 0. The fist term vanishes as ε → 0. Since θ is a continuity point of ρ, i.e.,
ρ({θ}) = 0, so does the second term. Thus,

lim sup
n→∞

|Fn(θ)| = 0,

and that ends the first part. The second part is clear and follows, for instance, from the Lebesgue
decomposition theorem.
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Corollary 4.6.10. Consider α = 1
2 , K > 0 and let µ be in C([0, T ],P(T× R)− narrow). Then,

lim
τ→t

sup
Ω∈R
|V[µτ ](z,Ω)− V[µt](z,Ω)| = 0, (4.6.6)

for almost every (t, z) ∈ [0, T ]× T.

Proof. Theorem 4.6.9 provides a negligible set Nt ⊆ T so that (4.6.6) takes place, for every
z ∈ T \ Nt and each t ∈ [0, T ]. Consider the set

N := {(t, z) : t ∈ [0, T ], z ∈ Nt}.

It is a negligible set of T× R and the claimed convergence takes place in ([0, T ]× T) \ N .

Similarly we obtain.

Corollary 4.6.11. Consider α = 1
2 , K > 0 and set {µn}n∈N and µ in C([0, T ],P(T × R) − narrow)

so that the following narrow convergence takes place

µn → µ in C([0, T ],P(T× R)− narrow).

Then, we obtain that
lim
n→∞

sup
Ω∈R
|V[µnt ](z,Ω)− V[µt](z,Ω)| = 0,

for almost every (t, z) ∈ [0, T ]× T.

In the sequel, we will resort on the concept of solutions in the sense of Filippov, to be under-
stood in the sense of absolutely continuous solutions that solve the differential inclusion into
the Filippov set-valued tangent field almost everywhere. See Appendix D for the necessary
tools to construct such solutions and also [14, 130, 205, 249]. Indeed, using Lemma D.2.3 in
Appendix D, we derive the following existence result.

Lemma 4.6.12. Consider α = 1
2 , K > 0 and fix µ ∈ L∞(0, T ;M(T× R)). For any x0 = (z0,Ω0) ∈

T× R let us consider the characteristic system issued at x0, i.e.,
{

dX

dt
(t; t0, x0) ∈ K[V[µt]](X(t; t0, x0)),

X(t0; t0, x0) = x0.
(4.6.7)

Then, (4.6.7) has at least one global-in-time Filippov solution X(t; t0, x0) = (Z(t; t0, z0,Ω0),Ω0). In-
deed, if we set z0 = eiθ0 for some θ0 ∈ R, then

Z(t; t0, z0,Ω0) = eiΘ(t;t0,θ0,Ω0),

where Θ = Θ(t; t0, θ0,Ω0) is a global-in-time Filippov solution to
{

dΘ

dt
(t; t0, θ0,Ω0) ∈ K[P[µt](·,Ω0)](Θ(t; t0, θ0,Ω0)),

Θ(t0; t0, θ0,Ω0) = θ0.
(4.6.8)

Our next step is to show the uniqueness of the above Filippov trajectories. Our approach
mimics that in Subsection 4.2.3, specifically, we will show an analogue decomposition to that in
Lemma 4.2.16 (see also Figure 4.3) that implies one-sided Lipschitz condition. Also see Figure
3.4 in the preceding Chapter 3 for a similar split of the kernel in the smaller fomain [−π, π], that
was applied to the agent-based system.
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Figure 4.3: Plot of the function −h(θ) and the functions δ(θ) and λ(θ) in the decomposition for
the value α = 0.5.

Lemma 4.6.13. Consider α = 1
2 and define the couple of functions δ, λ : [−2π, 2π] −→ R as follows

δ(θ) :=

{
−1− h(θ), θ ∈ [−2π, 0),
1− h(θ), θ ∈ (0, 2π].

λ(θ) :=

{
1, θ ∈ [−2π, 0),
−1, θ ∈ (0, 2π].

Then, the following properties hold true

1. δ is monotonically decreasing, λ is Lipschitz-continuous and

−h(θ) = δ(θ) + λ(θ), ∀θ ∈ [−2π, 2π].

2. −h is one-sided Lipschitz in [−2π, 2π], i.e., there exists L0 > 0 such that

((−h)(θ1)− (−h)(θ2)) (θ1 − θ2) ≤ L0(θ1 − θ2)2.

Hence, we are ready to introduce the following results.

Lemma 4.6.14. Consider α ∈ 1
2 , K > 0 and set µ ∈ L∞(0, T ;M(T × R)). Then, for L0 given in

Lemma 4.6.13 we obtain that

(P[µt](θ1,Ω1)− P[µt](θ2,Ω2)) (θ1− θ2) ≤ (Ω1−Ω2)(θ1− θ2) +KL0‖µ‖L∞(0,T ;M(T×R))(θ1− θ2)2,

for every t ∈ [0, T ], each θ1, θ2 ∈ R with θ1 − θ2 ∈ [−π, π] and any Ω1,Ω2 ∈ R.

Theorem 4.6.15. Consider α = 1
2 , K > 0 and set µ ∈ L∞(0, T ;M(T× R)). Then, V[µ] is one-sided

Lipschitz in T× R uniformly in t ∈ [0, T ], i.e., there exists L = L(α,K, µ) > 0 such that
〈
V[µt](z2,Ω2), γ̂′(1)

〉
−
〈
V[µt](z1,Ω1), γ̂′(0)

〉
≤ Ld((z1,Ω1), (z2,Ω2))2,

for every t ∈ [0, T ], any (z1,Ω1), (z2,Ω2) ∈ T× R and each minimizing geodesic γ̂ : [0, 1] −→ T× R
in the manifold T× R joining (z1,Ω1) to (z2,Ω2).
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The proofs follow similar arguments to those in Lemma 4.2.17 and Theorem 4.2.18, then
we omit them. Let us finally transform the point-wise one-sided Lipschitz condition into an
analogue one-sided condition in the multivalued sense for the associated Filippov set-valued
map.

Definition 4.6.16. Let (M, 〈·, ·〉) be a complete Riemannian manifold and V : M −→ 2TM a set-valued
tangent vector field along M . Then, we will say that V is one-sided Lipschitz (in multivalued sense)
when there exists a constant L > 0 such that

〈
vy, γ

′(1)
〉
−
〈
vx, γ

′(0)
〉
≤ Ld(x, y)2,

for each x, y ∈ M , each vx ∈ Xx, vy ∈ Xy and any minimizing geodesic γ : [0, 1] −→ M joining x to
y.

Lemma 4.6.17. Let (M, 〈·, ·〉) be a complete Riemannian manifold and consider an essentially locally
bounded tangent field V ∈ XL∞loc(M). If V is one-sided Lipschitz a.e. with constant L > 0, then so is
its Filippov set-valued tangent field K[V ] given by Definition 4.6.2 with same constant L.

The starting point of the proof is that the analogue result with the general (M, 〈·, 〉) replaced
by the Euclidean space with the flat metric is clearly true and, in particular, was shown in
Lemma D.1.6. Then, we will use the local description in coordinates appearing in Definition
4.6.2 to augment our local result into a global one.

Proof. Consider x, y ∈ M , set any minimizing geodesic γ : [0, 1] −→ M joining x to y and fix
any vx ∈ K[V ]x and vy ∈ K[V ]y. Our goal is to show that

〈
vy, γ

′(1)
〉
−
〈
vy, γ

′(0)
〉
≤ Ld(x, y)2. (4.6.9)

• Step 1: Local normal orthonormal frame around x.
We can construct a local frame (U , ϕ,E1, . . . , Ed) centered at x where {E1, . . . , Ed} is an

orthonormal basis at each point and (U , ϕ) is a normal neighborhood. The existence of normal
neighborhoods around any points is classical in Riemannian Geometry (see [111, 191, 246]) and
follows from the inverse function theorem. Indeed, let us consider the injectivity radius of M
at x, that is defined by

ι(x) := dist(x, cut(x)) = sup{δ > 0 : expx : Bδ(0) −→ expx(Bδ(0)) is a diffeomorphism},

that is a positive number. Then, any δ < ι(x) provides a geodesic ball expx(Bδ(0)). Take
U = expx(Bδ(0)) as normal neighborhood of x.

Regarding the local chart, let us consider ϕ := (expx ◦L)−1 for any linear isometry L :
Rd −→ TxM , that maps the standard basis {e1, . . . , ed} of Rd into some orthonormal basis
{u1, . . . , ud} of TxM , i.e., L(ei) = ui for every i = 1, . . . , d. Obviously, the associated local frame
∂
∂x1

, . . . , ∂
∂xd

is not necessarily orthonormal in the full U . In fact, only locally flat Riemannian
manifolds (likeM = T×R) can enjoy such property. Nevertheless, we can augment {u1, . . . , ud}
into a complete local frame on U through the next procedure. Consider the unique minimizing
geodesic γx,z : [0, 1] −→M joining x to z, i.e.,

γx,z(s) := expx(s exp−1
x (z)), s ∈ [0, 1],

for any z ∈ U . Then, we can define the local frame at z via paralleling transporting {u1, . . . , ud}
along γx,z , that is,

Ui(z) := τ [γx,z]
1
0(ui),
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for all i = 1, . . . , d. Since the parallel transport is a linear isometry between tangent spaces
we recover the local orthonormal character of the frame U1, . . . , Ud. In addition, the following
property holds true by definition

∇γ′x,z(s)Ui(γx,z(s)) = 0,

for all s ∈ [0, 1] and every z ∈ U . In other words, the tangent fields Ui are all parallel along any
radial geodesic issued at x within the normal neighborhood U .
• Step 2: One-sided Lipschitz property of F .
Using such local frame (U , ϕ,E1, . . . , Ed), we can locally write the tangent field V as follows

V =
d∑

i=1

fiEi in U .

Again, define Fi = fi ◦ ϕ−1 and the vector field F = (F1, . . . , Fd). Our goal is to see that F is
one-sided-Lipschitz at ϕ(x) = 0 with constant L. To that end, set any z ∈ U and consider the
local coordinates

Vx =

d∑

i=1

Fi(ϕ(x))Ei(x) =

d∑

i=1

Fi(ϕ(x))ei,

Vz =

d∑

i=1

Fi(ϕ(z))Ei(z) =

d∑

i=1

Fi(ϕ(z))τ [γx,z]
1
0(ei) = τ [γx,z]

(
d∑

i=1

Fi(ϕ(z))ei

)
.

Since V is one-sided Lipschitz at x with constant L, then
〈
Vz, γ

′
x,z(1)

〉
−
〈
Vx, γ

′
x,z(0)

〉
≤ Ld(x, z)2.

Notice that γ′x,z(0) = exp−1
x (z) = L(ϕ(z)) and, consequently,

(F (ϕ(z))− F (ϕ(x))) · (ϕ(z)− ϕ(0)) =
〈
τ [γx,z]

0
1(Vz)− Vx, γ′x,z(0)

〉

=
〈
Vz, γ

′
x,z(1)

〉
−
〈
Vx, γ

′
x,z(0)

〉

≤ Ld(x, z)2 = L |ϕ(z)− ϕ(x)|2,

for every z ∈ U . As advanced in the above comment, Lemma D.1.6 shows that K[F ] is one-
sided Lipschitz continuous at ϕ(x) with constant L, i.e.,

(βz − βx) · (ϕ(z)− ϕ(x)) ≤ L|ϕ(z)− ϕ(x)|2, (4.6.10)

for every z ∈ U and every βx ∈ K[F ](ϕ(x)) and βz ∈ K[F ](ϕ(z)).
• Step 3: Local result.
In this step we will assume that the whole minimizing geodesic γ joining x to y lies in U ,

i.e., γ(s) ∈ U for all s ∈ [0, 1]. By the uniqueness, we obtain γ = γx,y. In that case, we write

vx =

d∑

i=1

βiUi(x) =

d∑

i=1

βiui,

vy =

d∑

i=1

γiUi(y) =

d∑

i=1

γiτ [γx,y]
1
0(ui) = τ [γx,y]

1
0

(
d∑

i=1

γiui

)
,
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for some coefficients βx = (βx1 , . . . , β
x
d ) ∈ K[F ](ϕ(x)) and βy = (βy1 , . . . , β

y
d) ∈ K[F ](ϕ(y)). Note

that γ′(0) = exp−1
x (y) = L(ϕ(y)) and γ is a geodesic. Then, we infer

〈
vy, γ

′(1)
〉
−
〈
vx, γ

′(0)
〉

=

〈
d∑

i=1

(βyi − βxi )ui, γ
′(0)

〉
= (βy − βx) · (ϕ(y)− ϕ(0)).

Hence, (4.6.9) follows from (4.6.10).
• Step 4: Global result.
Now, let us assume that the minimizing geodesic γ does not necessarily lies in the normal

neighborhood U . Notice that for every s ∈ [0, 1] we can repeat Step 1 to find a normal orthonor-
mal frame (Us, ϕs, Es1, . . . , Esd) around γ(s). Indeed, recall that Us = expγ(s)(Bδs(0)), for any
0 < δ < ι(γ(s)) and each s ∈ [0, 1]. Notice that we can choose all the δs to be the same δ in-
dependently on s. To such end, recall that the injectivity radius ι : M −→ R+ is a continuous
function, see [191, Proposition 2.1.10]. Since γ([0, 1]) is compact, then

δ0 := min
s∈[0,1]

ι(γ(s)) > 0,

and we choose any 0 < δ < δ0 as the radii of each geodesic ball about γ(s). Fix n ∈ N the
smallest integer with d(x, y) ≤ kδ and define the numbers

sk =

{
kδ, k = 0, . . . , n− 1,
1, k = n.

Since γ is a minimizing geodesic we infer

γ([sk, sk+1]) ⊆ Usk ,

for all k = 0, . . . , n− 1. Hence, for all k = 0, . . . , n− 1 the piece of geodesic γ([sk, sk+1]) satisfies
the same properties as in Step 1 for the normal local orthonormal frame (Usk , ϕsk , Esk1 , . . . , Eskd ).
Let us consider any vγ(sk) ∈ K[V ]γ(sk), for every k = 1, . . . , n− 1. Thus, we have

〈
vγ(sk+1), γ

′(sk+1)
〉
−
〈
vγ(sk), γ

′(sk)
〉
≤ Ld(γ(sk), γ(sk+1))2,

for every k = 0, . . . , n− 1. Then,

〈
vy, γ

′(1)
〉
−
〈
vx, γ

′(0)
〉

=
n−1∑

k=0

〈
vγ(sk+1), γ

′(sk+1)
〉
−
〈
vγ(sk), γ

′(sk)
〉

≤ L
n−1∑

k=0

d(γ(sk), γ(sk+1))2 ≤ L
(
n−1∑

k=0

d(γ(sk), γ(sk+1))

)2

= Ld(x, y)2,

where we have used that γ is minimizing in the last step.

As a direct consequence of Theorem 4.6.15 and Lemma 4.6.17 we obtain the following result.

Corollary 4.6.18. Consider α = 1
2 , K > 0 and set µ ∈ L∞w (0, T ;M(T × R)). Then, the Filippov

set-valued vector field K[V[µ]] associated with the transport field V[µ] is one-sided Lipschitz in T × R
in multivalued sense uniformly in t ∈ [0, T ], i.e., there exists L = L(α,K, µ) > 0 such that

〈
v(z2,Ω2), γ̂

′(1)
〉
−
〈
v(z1,Ω1), γ̂

′(0)
〉
≤ Ld((z1,Ω1), (z2,Ω2))2,

for every t ∈ [0, T ], each (z1,Ω1), (z2,Ω2) ∈ T × R, any couple v(z1,Ω1) ∈ K[V[µt]](z1,Ω1) and
v(z2,Ω2) ∈ K[V[µt]](z2,Ω2), and each minimizing geodesic γ̂ : [0, 1] −→ T × R joining the point
(z1,Ω1) to the point (z2,Ω2).
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We are now ready to recover a one-sided uniqueness property for Filippov characteristics
solving (4.6.7).

Theorem 4.6.19. Consider α = 1
2 , K > 0 and fix µ ∈ L∞w (0, T ;M(T×R)). The characteristic system

(4.6.7) associated with the transport field V[µ] enjoys a global-in-time absolutely continuous Filippov
solution that is unique forward-in-time for every given initial data x0 = (z0,Ω0) = (eiθ0 ,Ω0) ∈ T×R.
Indeed, the same representation of the solution holds true, i.e.,

X(t; t0, x0) = (Z(t; t0, z0,Ω0),Ω0) = (eiΘ(t;t0,θ0,Ω0),Ω0), t ≥ t0,

where Θ(t; t0, θ0,Ω0) is the unique forward-in-time absolutely continuous Filippov solution to (4.6.8).

We will say that X(· ; t0, x0) is the Filippov characteristic issued at x0 at time t0 and X(t; t0, ·)
is the Filippov flow from t0 to t. The proof is a simple adaptation to that of Theorem 4.2.19, when
classical solutions are replaced with Filippov solutions. Again, the proof relies on the one-sided
Lipschitz condition in multivalued sense for the Fillippov set-valued tangent field associated
with the transport field (recall Theorem 4.6.15). Also, the weak differentiability properties of
the squared distance in Appendix 4.B will be used. For clarity, we just provide a sketch.

Proof. Consider two different solutions in the sense of Filippov x1 = x1(t) and x2 = x2(t) to the
characteristic system (4.6.7) issued at x1(t0) = x0 = x2(t0) and define

I(t) :=
1

2
d(x1(t), x2(t))2, t ≥ t0.

Since the Filippov trajectories are at least locally absolutely continuous, then so is I = I(t).
Again, we compute it in terms of the one-sided Dini upper derivative

dI

dt
≡ d+I

dt
= d+

(
1

2
d2
x2(t)

)

x1(t)

(ẋ1(t)) + d+

(
1

2
d2
x1(t)

)

x2(t)

(ẋ2(t)),

for almost every t ≥ t0. By virtue of Theorem 4.B.7

d+

(
1

2
d2
x2(t)

)

x1(t)

(ẋ1(t)) ≤ inf
w1∈exp−1

x1(t)
(x2(t))

|w1|=d(x1(t),x2(t))

−〈ẋ1(t), w1〉 ,

d+

(
1

2
d2
x1(t)

)

x2(t)

(ẋ2(t)) ≤ inf
w2∈exp−1

x2(t)
(x1(t))

|w2|=d(x1(t),x2(t))

−〈ẋ2(t), w2〉 .

Fix a minimizing geodesic γ̂t : [0, 1] −→ T × R joining x1(t) to x2(t), for almost every t ≥ t0.
Then, we can choose w1 = γ̂′t(0) and w2 = −γ̂′t(1) in the above inequalities. Consequently,

dI

dt
≤
〈
ẋ2(t), γ̂′t(1)

〉
−
〈
ẋ1(t), γ̂′t(0)

〉
, a.e. t ≥ 0,

where, recall that ẋ1(t) ∈ K[V[µt]](x1(t)) and ẋ2(t) ∈ K[V[µt]](x2(t)). Then, Theorem 4.2.18
implies

dI

dt
≤ Ld(x1(t), x2(t)2) = 2LI(t), a.e. t ≥ t0,

and Grönwall’s lemma concludes the proof.
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Empirical measures as solutions in the sense of the Filippov flow

Our next goal is to recover an analogue of Theorem 4.3.2 for the critical regime α = 1
2 , where

the classical solutions to (4.1.1)-(4.1.2) are considered in Filippov’s sense as it was introduced
in Theorem 3.3.12 in the above Chapter 3. More specifically, we will no longer obtain weak-
measure valued solutions like in the preceding theorem for the subcritical regime, but measure
valued solutions in the sense of the Filippov flow, to be introduced in the sequel. Throughout this
part, we shall use the notation in Chapter 3 to describe collision classes, formation of clusters
and sticking. We refer to Subsection 3.2.3 for an easier readability.

Theorem 4.6.20. Consider α = 1
2 and K > 0. Fix N ∈ N and consider N oscillators with initial

phases and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N}.

Consider the (forward-in-time) unique solution ΘN (t) = (θN1 (t), . . . , θNt ) to (4.1.1)-(4.1.2) in the sense
of Filippov associated with such initial configuration as given in Theorem 3.3.12 and set the correspond-
ing empirical measures µN according to Definition 4.3.1. Then, µN ∈ ACM ∩ TM and

XN (t; 0, ·)#µ
N
0 = µNt , (4.6.11)

for every t ≥ 0, where XN (t; 0, ·) is the Filippov flow associated with the transport field V[µN ]. In
addition, an analogue of (4.3.1) holds true, namely,

∣∣∣∣
d

dt

∫

T×R
ϕdµNt

∣∣∣∣ ≤
(

1

N

N∑

i=1

|ΩN
i |+K

)
‖∇ϕ‖C0(T×R), (4.6.12)

for almost every t ≥ 0 and every ϕ ∈ C1
0 (T× R).

Proof. The proof that µN ∈ ACM ∩ TM is parallel to that of Theorem 4.3.2. However, the time
regularity is much tighter now. Specifically, fix any ϕ ∈ C∞c (T× R) and consider the map

t ∈ [0,+∞) 7−→
∫

T×R
ϕdµNt =

1

N

N∑

i=1

ϕ(θNi (t),ΩN
i ). (4.6.13)

Since ϕ is Lipschitz-continuous and ΘN = ΘN (t) is a Filippov solution (then, it is merely ab-
solutely continuous), such map is not necessarily C1 like in the subcritical case, but it is locally
absolutely continuous at least. The tightness condition is again clear since µN has a bounded
first order Ω-moment uniformly-in-time like in the subcritical regime. Our next goal is to prove
that (4.6.11) holds true. Take any ϕ ∈ Cb(T× R) and note that, by definition,

∫

T×R
ϕd(XN (t; 0, ·)#µ

N
0 ) =

1

N

N∑

i=1

ϕ(XN (t; 0, zNi (0),ΩN
i )).

Consequently, we just must check that

XN (t; 0, zNi (0),ΩN
i ) = (zNi (t),ΩN

i ),

for every t ≥ 0. By the one-sided uniqueness of Filippov trajectories (recall Theorem 4.6.19),
we only need to show that

d

dt
(zNi ,Ω

N
i ) ∈ K[V[µNt ]](zNi ,Ω

N
i ).
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Using the representation of the Filippov set-valued tangent field in Proposition 4.6.7, notice
that we equivalently need to show that

θ̇Ni ∈ K[P[µNt ](·,ΩN
i )](θNi ), (4.6.14)

for almost every t ≥ 0. Using the notation in Subsection 3.2.3, we obtain

P[µNt ](θ,ΩN
i ) = ΩN

i −
K

N

N∑

j=1
θ̄Nj (t) 6=θ̄

h(θ − θNj (t)) = ΩN
i −

K

N

κN (t)∑

k=1
θ̄Nιk

(t) 6=θ̄

nk(t)h(θ − θNιk (t)),

where θ̄ is the representative of θ in (−π, π] modulo 2π. Then, one clearly obtains that

K[P[µNt ](·,ΩN
i )](θ) =





ΩN
i −

K

N

N∑

j=1
θ̄Nj (t) 6=θ̄

h(θ − θNj (t))− K

N

N∑

j=1
θ̄Nj (t)=θ̄

ŷi : ŷi ∈ [−1, 1]




. (4.6.15)

In particular, if we evaluate (4.6.15) at θ = θNi (t) we obtain the set

K[P[µNt ](·,ΩN
i )](θNi (t))

=



ΩN

i −
K

N

∑

j /∈Ci(ΘN (t))

h(θNi (t)− θNj (t))− K

N
#Ci(ΘN (t))ŷi : ŷi ∈ [−1, 1]



 . (4.6.16)

On the other hand, since ΘN = ΘN (t) is a Filippov solution to (4.1.1)-(4.1.2), then the character-
ization in Proposition 3.3.7 for the Filippov set-valued map associated with the discrete system
shows that there exists Y N = (yNij )1≤i,j≤N with yNij ∈ L∞(0,+∞) and Y N (t) ∈ SkewN ([−1, 1])
for a.e. t ≥ 0 so that

θ̇Ni (t) = ΩN
i −

K

N

∑

j /∈Ci(ΘN (t))

h(θNi (t)− θNj (t))− K

N

∑

j∈Ci(ΘN (t))

yNij (t), (4.6.17)

for almost every t ≥ 0 and every i = 1, . . . , N . Let us define the following mean value

ŷNi (t) :=
1

#Ci(ΘN (t))

∑

j∈Ci(ΘN (t))

yNij (t) ∈ [−1, 1].

Then, such choice along with the representation (4.6.16) and (4.6.17) imply that (4.6.14) holds
true. Finally, let us conclude (4.6.12). Fix any ϕ ∈ C1

0 (T × R) and take derivatives almost
everywhere in (4.6.13)

d

dt

∫

T×R
ϕdµNt =

d

dt

(
1

N

N∑

i=1

ϕ(θNi (t),ΩN
i )

)
=

1

N

∑

i=1

∂ϕ

∂θ
(θNi (t),ΩN

i )θ̇Ni (t).

Since θNi (t) are solutions in the sense of Filippov to the discrete singular system (4.1.1)-(4.1.2),
then

|θ̇Ni (t)| ≤ |ΩN
i |+K, for a.e. t ≥ 0,

and that ends the proof.
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Notice that we can repeat all the ideas of the compactness result in Corollary 4.3.6 for α = 1
2 .

Corollary 4.6.21. Consider α = 1
2 and K > 0. For every N ∈ N, set N oscillators with initial phases

and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N}.

Consider the (forward-in-time) unique Filippov solution ΘN (t) = (θ1(t), . . . , θN (t)) to (4.1.1)-(4.1.2)
as given in Theorem 3.3.12 of Chapter 3 and set the corresponding empirical measures µN according to
Definition 4.3.1. Assume that the equi-sumability condition (4.3.8) holds true and take M1 fulfilling
(4.3.7) according to Proposition 4.3.4. Then, for every fixed T > 0, there exists a subsequence of µN ,
that we denote in the same way for simplicity, and a limiting measure f ∈ ACM∩TM such that (4.3.14)
and (4.3.15) hold true. In addition,

f ∈W 1,∞
w ([0, T ], C1

0 (T× R)∗) ∩ C([0, T ],P1(T× R)−W1),

for every fixed T > 0 and
µN → f in C([0, T ],P1(T× R)−W1),

where W1 means the Kantorovich–Rubinstein distance.

Notice that the strong uniform convergence in Lemma 4.3.8 cannot hold in the critical
regime. Nevertheless, the sequence |V[µN ] − V[f ]| is essentially uniformly bounded. Conse-
quently it enjoys a subsequence, that we denote in the same way, so that it converges weakly-
star in L∞. Using a standard application of Banach–Saks’ theorem, we claim that the weak-star
limit agrees with the a.e. limit in Corollary 4.6.11, thus obtaining the following result.

Corollary 4.6.22. Under the assumptions in Corollary 4.3.6 the following convergence takes place

|V[µN ]− V[f ]| ∗⇀ 0 in L∞((0,+∞)× T× R).

Before showing our final result, that allows concluding the mean field limit and the exis-
tence of measure-valued solutions in the sense of the Filippov flow, we need to guarantee that
the above weak-star convergence implies uniform convergence of the flows. In the sequel, we
adapt the result in [32, Theorem 4.3] to vector fields in Riemannian manifolds.

Lemma 4.6.23. Let (M, 〈·, ·〉) be a complete Riemannian manifold and consider {V n}n∈N and V in
L∞((0,+∞),XL∞loc(M)) that are one-sided Lipschitz with same constant L > 0. Assume that

|V n − V |⇀ 0 in L1
loc((0,+∞)× T× R).

Then, the associated Filippov flows Xn = Xn(t; 0, x) and X = X(t; 0, x) verify

Xn → X in Cloc((0,+∞)× T× R).

Since the proof is clear, we omit it. It simply relies on Definition 4.6.2, where the Filippov
set-valued tangent field is introduced using local coordinates, and the analogue result in [32,
Theorem 4.3] for quasi-monotone operators in the Euclidean spaces.

Theorem 4.6.24. Consider α = 1
2 , K > 0 and set any initial datum f0 ∈ P1(T× R). Then, for every

T > 0 there exists a measure-valued solution f ∈ ACM ∩ TM in the sense of the Filippov flow to the
initial value problem (4.2.5), i.e.,

X(t; 0, ·)#ft = f0, for all t ∈ [0, T ],

where X = X(t; 0, z,Ω) is the Filippov flow of V[f ]. In addition, (4.3.14)-(4.3.15) holds true and

f ∈W 1,∞
w ([0, T ], C1

0 (T× R)∗) ∩ C([0, T ],P1(T× R)−W1).
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Proof. Consider a discrete approximation like in Lemma 4.3.9. Namely, consider N oscillators
with phases and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N},

for every N ∈ N so that they verify the equi-sumability condition (4.3.8) and the associated
empirical measures µNt ∈ P(T× R) in Definition 4.3.1 verify

lim
N→∞

W1(µN0 , f0). (4.6.18)

By virtue of Theorem 4.6.20, µN are measure-valued solutions to (4.2.5) in the sense of the
Filippov flow issued at µN0 , i.e.,

XN (t; 0, ·)#µ
N
0 = µNt , for all t ≥ 0. (4.6.19)

By Corollary 4.6.21, there exists a limiting measure f so that

µN → f in C([0, T ],P1(T× R)−W1).

Using Corollary 4.6.22 we claim that

|V[µN ]− V[µ]| ∗⇀ 0 in L∞((0,+∞)× T× R).

In particular, the convergence takes place weakly in L1
loc((0,+∞)×T×R). Using Lemma 4.6.23

we obtain
XN → X in Cloc((0,+∞)× T× R). (4.6.20)

Let us finally show that we can pass to the limit in (4.6.19). Writing (4.6.19) in weak form against
any test function ϕ ∈ Cc(T× R) we can write

∫

T×R
ϕ(XN (t; 0, z,Ω)) d(z,Ω)µ

N
0 =

∫

T×R
ϕ(z,Ω) d(z,Ω)µ

N
t ,

for every t ≥ 0. First, it is clear that by the above convergence of the empirical measures we
can pass to the limit in the right hand side. Regarding the left hand side, we need to prove that
the following sequence

IN (t) :=

∫

T×R
ϕ(XN (t; 0, z,Ω)) d(z,Ω)µ

N
0 −

∫

T×R
ϕ(X(t; 0, z,Ω)) d(z,Ω)f0,

vanishes as N → 0 for every t ≥ 0. Consider the following split

IN (t) = ANR (t) +BN
R (t) + CN (t),

for any R > 0, where each of the terms reads

ANR (t) :=

∫

T×R
ξ

( |Ω|
R

)
(ϕ(XN (t; 0, x,Ω))− ϕ(X(t; 0, z,Ω))) d(z,Ω)µ

N
0 ,

BN
R (t) :=

∫

T×R

(
1− ξ

( |Ω|
R

))
(ϕ(XN (t; 0, x,Ω))− ϕ(X(t; 0, z,Ω))) d(z,Ω)µ

N
0 ,

CN (t) :=

∫

T×R
ϕ(X(t; 0, z,Ω)) d(z,Ω)(µ

N
0 − f0).
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Here ξ ∈ Cc([0,+∞)) is again any cut-off function like in (N.2). First, (4.6.20) guarantees that

lim
N→∞

ANR (t) = 0,

for each R > 0 and every t ≥ 0. Second, notice that

BN
R (t) ≤ 2‖ϕ‖C0(T×R)‖|Ω|χ|Ω|≥RµN0 ‖M(T×R) ≤ 2‖ϕ‖C0(T×R)

1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |,

for every N ∈ N and each t ≥ 0. Third (4.6.18) shows that

lim
N→∞

CN (t) = 0,

for all t ≥ 0. Putting everything together yields,

lim sup
t→∞

IN (t) ≤ 2‖ϕ‖C0(T×R)
1

N

∑

1≤i≤N
|ΩNi |≥R

|ΩN
i |,

for every R > 0. Therefore, the equi-sumability condition (4.3.8) ends the proof.

4.6.2 Uniqueness of solutions in the sense of the Filippov flow

In this part, we shall show that the ideas in Theorem 4.4.2 of Subsection 4.4.1 for the bound
on the fiberwise quadratic Wasserstein distance can be extended to the critical regime. As
a byproduct, we will recover an uniqueness result for solutions in the sense of the Filippov
flow to the non-linear transport equation (4.2.5). Our proof relies on an approximation of the
discontinuous kernel h through the regularized kernels hε. In the sequel, we provide some
technical lemma that will be used along the proof.

Definition 4.6.25. Consider α = 1
2 , K > 0 and ε > 0. We will formally define the function Pε[µ] and

the tangent vector field Vε[µ] along the manifold T× R given by

Pε[µ](θ,Ω) := Ω−K
∫

T

∫

R
hε(θ − θ′) d(θ′,Ω′)µ,

Vε[µ](z,Ω) := (Pε[µ](z,Ω) iz, 0),

where µ ∈M(T× R) is any finite Radon measure.

In a similar way to the decompositions in Lemmas 4.2.16 and 4.6.26 for the kernels of the
subcritical and critical regimes, we need an appropriate split of the regularized kernels of the
critical case in a consistent way so that we obtain a common one-sided-Lipschitz constant both
for h and hε. Notice that the standard Lipschitz constant of hε, obtained via a uniform bound
of the first derivative h′ε, should be avoided as it blows up when ε→ 0.

Lemma 4.6.26. Consider α = 1
2 , ε > 0 and set h̄ε and θ̃ε ∈ (0, π2 ) such that

h̄ε := max
0≤θ≤π

hε(θ) and θ̃ε tan(θ̃ε)− θ̃2
ε = ε2.
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Define the couple of functions δε, λε : [−2π, 2π] −→ R as follows

δε(θ) :=





2h̄ε − hε(θ), θ ∈ [−2π,−2π + θ̃ε),

h̄ε, θ ∈ [−2π + θ̃ε,−θ̃ε),
−hε(θ), θ ∈ [−θ̃ε, θ̃ε],
−h̄ε, θ ∈ (θ̃ε, 2π − θ̃ε],
−hε(θ)− 2h̄ε, θ ∈ (2π − θ̃ε, 2π],

λε(θ) :=





−2h̄ε, θ ∈ [−2π,−2π + θ̃ε),

−h̄ε − hε(θ), θ ∈ [−2π + θ̃ε,−θ̃ε),
0, θ ∈ [−θ̃ε, θ̃ε],
h̄ε − hε(θ), θ ∈ (θ̃ε, 2π − θ̃ε],
2h̄ε, θ ∈ (2π − θ̃ε, 2π].

Then, there exists 0 < Lε ≤ − infθ∈(0,π) h
′(θ) such that following properties hold true

1. δε is monotonically decreasing, Λε is Lipschitz-continuous with constant Lε and

−hε(θ) = δε(θ) + λε(θ), ∀θ ∈ [−2π, 2π].

2. −hε is one-sided Lipschitz in [−2π, 2π] with same constant Lε, namely,

((−hε)(θ1)− (−hε)(θ2)) (θ1 − θ2) ≤ Lε(θ1 − θ2)2.

Proof. Everything is clear except, at most, the estimate of the Lipschitz constant of λε. Since
such function is piecewise smooth, it is enough to compute the Lipschitz constant on any of the
pieces of its domain. We will only focus on the interval (θ̃ε, 2π − θ̃ε) where the functions is not
constant. In the other non-constant piece the estimate follows from similar arguments. Let us
compute

λ′ε(θ) =
d

dθ

(
h̄ε − hε(θ)

)
= −h′ε(θ) =

1

(ε2 + |θ|2o)1/2

[ |θ|o sin |θ|o
ε2 + |θ|2o

− cos θ

]
,

for every θ ∈ (θ̃ε, 2π − θ̃ε). Since λε is increasing in the whole interval (θ̃ε, 2π − θ̃ε) as a conse-
quence of the definition of θ̃ε, then λ′ε is non-negative along it and we conclude that

sup
θ∈(θ̃ε,2π−θ̃ε)

|λ′ε(θ)| = sup
θ∈(θ̃ε,2π−θ̃ε)

λ′ε(θ) = sup
θ∈(θ̃ε,2π−θ̃ε)

1

(ε2 + |θ|2o)1/2

[ |θ|o sin |θ|o
ε2 + |θ|2o

− cos θ

]

≤ sup
θ∈(θ̃ε,2π−θ̃ε)

1

|θ|o

[ |θ|o sin |θ|o
|θ|2o

− cos θ

]
= sup

θ∈(θ̃ε,2π−θ̃ε)
(−h′(θ)) = − inf

θ∈(θ̃ε,2π−θ̃ε)
h′(θ).

The proof then follows from the mean value theorem.

Theorem 4.6.27. Consider α = 1
2 , K > 0 and let {µε}ε>0 and µ be in P(T× R) so that

µε → µ in P(T× R)− narrow.

Then, the following convergence takes place

lim
ε→0

sup
Ω∈R
|Vε[µε](z,Ω)− V[µ](z,Ω)| = 0,

for each continuity point z ∈ T of the marginal measure (πz)#µ. In particular, it happens a.e. in T.
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Proof. Let us consider

Fε(θ) := |Vε[µε](θ,Ω)−V[µ](θ,Ω)| =
∣∣∣∣∣K
∫

(−π,π]\{θ}
hε(θ − θ′) dθ′ρε −K

∫

(−π,π]\{θ}
h(θ − θ′) dθ′ρ

∣∣∣∣∣ ,

for every θ ∈ (−π, π] and ε > 0, where ρε = (πz)#µε and ρ = (πz)#µ. Let us consider the
following spit

Fε(θ) ≤ F 1
ε (θ) + F 2

ε,δ(θ) + F 3
ε,δ(θ),

for every δ > ε1/2, where each term looks like

F 1
ε (θ) :=

∣∣∣∣∣K
∫

(−π,π]\{θ}
h(θ − θ′) dθ′(ρε − ρ)

∣∣∣∣∣ ,

F 2
ε,δ(θ) :=

∣∣∣∣∣K
∫

(−π,π]\{θ}
χ|θ−θ′|o≥δ(hε(θ − θ′)− h(θ − θ′)) dρε

∣∣∣∣∣ ,

F 3
ε,δ(θ) :=

∣∣∣∣∣K
∫

(−π,π]\{θ}
χ|θ−θ′|<δ(hε(θ − θ′)− h(θ − θ′)) dρε

∣∣∣∣∣ .

Let us fix θ ∈ (−π, π] any continuity point of ρ. On the one hand, Theorem 4.6.9 implies that

lim
ε→0

F 1
ε (θ) = 0.

Second, the estimate (4.6.3) in the proof of such result entails

F 2
ε,δ(θ) ≤

K

2

ε

δ
≤ Kε1/2

2
,

for every δ > ε1/2. Then, taking limits ε→ 0 we obtain

lim
ε→0

F 2
ε,δ(θ) = 0.

To deal with the third term, let us consider any cut-off function ξ ∈ Cc([0,+∞)) like in (N.2).
Then,

F 3
ε,δ(θ) ≤ K

∫

(−π,π]\{θ}
ξ

( |θ − θ′|o
δ

)
dρε

= K

∫

(−π,π]\{θ}
ξ

( |θ − θ′|o
δ

)
d(ρε − ρ) +K

∫

(−π,π]\{θ}
ξ

( |θ − θ′|o
δ

)
dρ

≤ K
∫

(−π,π]\{θ}
ξ

( |θ − θ′|o
δ

)
d(ρε − ρ) +K

∫

(−π,π]\{θ}
χ|θ−θ′|o≥2δ dρ.

Taking limits yields

lim sup
ε→0

F 3
ε,δ(θ) ≤ K

∫

(−π,π]\{θ}
χ|θ−θ′|o≥2δ dρ.

Putting everything together, we obtain

lim sup
ε→0

Fε(θ) ≤ K
∫

(−π,π]\{θ}
χ|θ−θ′|o≥2δ dρ,

for any arbitrary δ > 0. Since θ is a continuity point of ρ we conclude the desired result by
taking limits δ → 0.
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Theorem 4.6.28. Consider α = 1
2 , K > 0 and let f1, f2 ∈ ACM ∩ TM be solutions in the sense of

the Filippov flow to (4.2.5) with initial data f1
0 , f

2
0 ∈ P(T×R) according to Theorem 4.6.24. Let us set

their distributions of natural frequencies gi = (πΩ)# f
i
0 for i = 1, 2. If g := g1 ≡ g2, then

W2,g(f
1
t , f

2
t ) ≤W2,g(f

1
0 , f

2
0 )e2KL0t,

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h in Lemma 4.6.13 and W2,g is the
fiberwise quadratic Wasserstein distance in Proposition F.4.2.

Proof. Using similar arguments to those in Section 4.3 for the Lipschitz-continuous regularized
kernel hε, we can construct global classical solutions f1,ε, f2,ε ∈ ACM ∩ TM to the regularized
systems





∂f1,ε

∂t
+ div(Vε[f1,ε]f1,ε) = 0,

f1,ε
0 = f1

0 ,
and





∂f2,ε

∂t
+ div(Vε[f2,ε]f2,ε) = 0,

f2,ε
0 = f2

0 .

For g-a.e. Ω ∈ R fixed, let us consider the corresponding term of the family of disintegrations
at the initial time, i.e., f1

0 (·|Ω) and f2
0 (·|Ω). Set an optimal transference plan from the former

probability measure in T to the latter one, i.e.,

µ0,Ω ∈ Π(f1
0 (·|Ω), f2

0 (·|Ω)) :=
{
µ ∈ P(T× T) : (π1)#µ = f1

0 (·|Ω) and (π2)#µ = f2
0 (·|Ω)

}
,

so that the 2-Wasserstein distance is attained

W2(f1
0 (·|Ω), f2

0 (·|Ω))2 =

∫

T

∫

T
d(z1, z2)2d(z1,z2)µ0,Ω.

Again, we are denoting the projections π1(z, z′) = z and π2(z, z′) = z′. We then can define the
following competitor transference plans at time t

µt,Ω := (Zf1(t; 0, ·,Ω)⊗ Zf2(t; 0, ·,Ω))#µ0,Ω ∈ P(T× T),

µεt,Ω := (Zf1,ε(t; 0, ·,Ω)⊗ Zf2,ε(t; 0, ·,Ω))#µ0,Ω ∈ P(T× T),

whereXf i(t; 0, z,Ω) = (Zf i(t; 0, z,Ω),Ω) is the Filippov flow associated with the transport field
V[f i] for i = 1, 2 according to Theorem 4.6.15 and Xf i,ε(t; 0, z,Ω) = (Zf i,ε(t; 0, z,Ω),Ω) is the
classical flow of Vε[f i,ε] according to Theorem 4.2.18. Notice that µt,Ω, µεt,Ω ∈ Π(f1

t (·|Ω), f2
t (·|Ω)).

Hence,

1

2
W2(f1

t (·|Ω), f2
t (·|Ω))2 ≤

∫

T

∫

T

1

2
d(z1, z2)2 d(z1,z2)µt,Ω

=

∫

T

∫

T

1

2
d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))2 d(z1,z2)µ0,Ω.

Integrating the above inequality against g yields

1

2
W2,g(f

1
t , f

2
t )2 ≤

∫

R

∫

T

∫

T

1

2
d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))2 d(z1,z2)µ0,Ω dΩg =: I(t).

Let us define

Iε(t) :=

∫

R

∫

T

∫

T

1

2
d(Zf1,ε(t; 0, z1,Ω), Zf2,ε(t; 0, z2,Ω))2 d(z1,z2)µ0,Ω dΩg.
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Since the kernel hε is globally Lipschitz-continuous, we can mimic the proof of Theorem 4.4.2
and obtain

Iε(t) ≤ Iε(0)e4KLεt,

for every t ≥ 0, where Lε is the one sided-Lipschitz constant of −hε in Lemma 4.6.26. On the
one hand, Iε(0) = I(0) = 1

2W2,g(f
1
0 , f

2
0 ). On the other hand, recall that

Lε ≤ − inf
θ∈(0,π)

h′(θ) = L0,

for every ε > 0. Consequently,

Iε(t) ≤
1

2
W2,g(f

1
0 , f

2
0 )2e4KL0t,

for every t ≥ 0 and ε > 0. Our last goal is to show that limε→0 Iε(t) = I(t). Consider the scaled
cut-off functions ξR = ξR(Ω) in (N.2) and define the decomposition

Iε(t)− I(t) = ARε (t) +BR
ε (t),

where both terms are given by the formulas

ARε (t) :=

∫

R

∫

T

∫

T
ξR(Ω)

1

2

(
d(Zf1,ε(t; 0, z1,Ω), Zf2,ε(t; 0, z2,Ω))2

−d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))2
)
d(z1,z2)µ0,Ω dΩg,

BR
ε (t) :=

∫

R

∫

T

∫

T
(1− ξR(Ω))

1

2

(
d(Zf1,ε(t; 0, z1,Ω), Zf2,ε(t; 0, z2,Ω))2

−d(Zf1(t; 0, z1,Ω), Zf2(t; 0, z2,Ω))2
)
d(z1,z2)µ0,Ω dΩg.

Since the vector fields Vε[f i,ε] and V[f i] are all essentially uniformly bounded, then Theorem
4.6.27, the Alaoglu–Bourbaki theorem and a standard application of Banach–Saks’ theorem
show that

|Vε[f i,ε]− V[f i]| ∗⇀ 0 in L∞((0,+∞)× T× R),

for every i = 1, 2. Then, Lemma 4.6.23 implies that

Xf i,ε → Xf i in Cloc([0,+∞)× T× R),

for every i = 1, 2. Since the squared distance is uniformly continuous, then we claim that

lim
ε→0

ARε (t) = 0,

for every R > 0 and each t ≥ 0. On the other hand,

|BR
ε (t)| ≤ π2‖χ|Ω|≥2Rg‖M(R),

for every R > 0 and each t ≥ 0. Putting everything together yields

lim sup
ε→0

|Iε(t)− I(t)| ≤ π2‖χ|Ω|≥2Rg‖M(R).

Taking limits R→ +∞ concludes the proof by tightness of g.

Remark 4.6.29. Again, the above implies the following differential inequality

d+

dt
W2,g(f

1
t , f

2
t ) ≤ 2KL0W2,g(f

t
1, f

t
2), for all t ≥ 0.

Corollary 4.6.30. Consider α = 1
2 , K > 0 and let f1, f2 ∈ ACM ∩ TM be solutions in the sense of

the Filippov flow to the non-linear transport equation (4.2.5) with initial data f1
0 , f

2
0 ∈ P(T × R). If

f1
0 = f2

0 , then
f1
t = f2

t , for every t ≥ 0.
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4.6.3 Mean field limit towards solutions in the sense of the Filippov flow

This part is devoted to adapt the bound of the quadratic Wasserstein distance in 4.4.6 of Sub-
section 4.4.2 to the critical case. As a byproduct, we will recover a quantitative version of the
local-in-time mean field limit towards solutions in the sense of the Filippov flow.

Theorem 4.6.31. Consider α = 1
2 , K > 0 and let f1, f2 ∈ ACM ∩ TM be solutions in the sense of the

Filippov flow to the non-linear transport equation (4.2.5) with initial data f1
0 , f

2
0 ∈ P2(T × R). Then,

there exists C = C(α,K, f1
0 , f

2
0 ) > 0 such that

W2(f1
t , f

2
t ) ≤ e( 1

2
+2KL0)tW2(f1

0 , f
2
0 ),

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h in Lemma 4.6.13.

The proof follows a similar approximation argument like in Theorem 4.6.28 and we omit it.

Corollary 4.6.32. Consider α = 1
2 , K > 0 and let f ∈ ACM ∩ TM be the unique solution in the sense

of the Filippov flow to (4.2.5) with initial datum f0 ∈ P2(T × R). Consider N oscillators with initial
phases and natural frequencies given by the configurations

ΘN
0 = (θN1,0, . . . , θ

N
N,0) and {ΩN

i : i = 1, . . . , N},

for everyN ∈ N. Let ΘN (t) := (θN1 (t), . . . , θNN (t)) be the unique global-in-time Filippov solution to the
discrete singular Kuramoto model according to Theorem 3.3.12 in Chapter 3 and define the associated
empirical measures in T× R

µNt :=
1

N

N∑

i=1

δzNi (t)(z)⊗ δΩNi
(Ω),

where zNi (t) := eiθ
N
i (t). If limN→∞W2(µN0 , f0) = 0, then

lim
N→∞

sup
t∈[0,T ]

W2(µNt , ft) = 0, for all T > 0.

4.6.4 Global phase-synchronization of identical oscillators in finite time

Recall that in the agent-based system (4.1.1)-(4.1.2) enjoys finite-time global phase synchroniza-
tion of identical oscillators, see Theorem 3.5.1 in Chapter 3. Mimicking the ideas in Theorem
4.5.8, we obtain the following analogue.

Theorem 4.6.33. Consider any initial datum f0 ∈ P(T × R) with identical distribution of natural
frequencies, namely, g = (πΩ)#f0 = δ0(Ω), where πΩ is the projection (N.1). Let f = ft be the
unique global-in-time measure-valued solution in the sense of the Filippov flow to (4.2.5) issued at f0

with α = 1
2 and assume D0 := diam(supp ρ0) < π. Then,

ft = f∞ for all t ≥ Tc,

where Tc = D0
Kh(D0) and the equilibrium f∞ is given by the monopole f∞ := δZav(0)(z)⊗ δ0(Ω).
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4.7 The supercritical regime

This part is devoted to the derivation of weak measure-valued solutions via a different tech-
nique. Namely, we will explore a singular hyperbolic limit of vanishing inertia type on a ki-
netic second order regularized system. Once the regularized model with inertia is presented,
we will introduce an appropriate scaling where the inertia term is neglected and singulariza-
tion of the weights emerges as the scaling parameter ε tends to zero in a sort of overdamped
or Smoluchowski limit. The proposed scaling is reminiscent of the ideas in Chapter 2, see also
[22, 57, 126, 175, 232, 252]. As a consequence of the rigorous hydrodynamic limit ε → 0, we
obtain weak measure-valued solutions of the macroscopic singular system in the supercritical
regime α ∈ (1

2 , 1) for identical oscillators, i.e., g = δ0. Of course, the idea also works in the most
regular regime α ∈ (0, 1

2) even for non-identical oscillators, that is g 6= δ0, thus recovering the
above weak measure-valued solutions in Theorems 4.3.10.

4.7.1 Second order regularized system

This part is structured as follows. First, we will introduce the agent-based second order Ku-
ramoto model with inertia endowed with regular weighted coupling, frequency damping and
noise. Second, we will recall the derivation of the Vlasov–McKean kinetic equation associated
with the second order stochastic regular system.

The second order agent-based system

Let us consider the following scaled second order stochastic system for the dynamics of the N
oscillators under the effect of inertia, frequency damping and noise:





dθi = ωidt,

εdωi = Ωidt+
ν

N

N∑

j=1

hε(θj − θi)dt− ωidt+
√

2ε dW i
t ,

θi(0) = θi,0, ωi(0) = ωi,0.

(4.7.1)

for i = 1, . . . , N . Here, W i = W i
t are independent Brownian motions. Again, θi = θi(t) are

phase values of the signals whilst ωi = ωi(t) yields the evolution of their frequencies, to be
distinguished from the static natural frequencies Ωi. We have introduced an inertia term mod-
ulated by the “inertia parameter” ε > 0 that makes the transient to the original first-order
dynamics faster as ε → 0. In turns, the noise disappears and singularity in the coupling func-
tions hε emerges as ε → 0. Hence, we formally recover the singular Kuramoto model as the
reduced first order dynamics when ε = 0. Introducing inertia is not an artificial method and
one can indeed find a large literature concerning the original second order Kuramoto model
with inertia as a suitable model of synchronization of coupled oscillators, see [76, 77, 78, 79]
and references therein.

The second order Vlasov-McKean equation

As mentioned in Subsection 4.2.1 and the introductory Chapter 1, classical mean field and
propagation of chaos methods [163, 164, 176, 177, 178, 181, 216, 217, 281] allow deriving the
kinetic equation as N →∞ associated with the stochastic agent based model (4.7.1):

∂P ε

∂t
+ ω

∂P ε

∂θ
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=
1

ε

∂

∂ω

(
(ω − Ω)P ε +

∂P ε

∂ω
+K

∫

(−π,π]×R×R
hε(θ − θ′)P ε(θ′, ω′,Ω′)P ε dθ′ dω′ dΩ′

)
, (4.7.2)

for every t ≥ 0, θ ∈ (−π, π], ω ∈ R and Ω ∈ R. Here, P ε(t, θ, ω,Ω) describes the probability
distribution of finding an oscillator at time t with phase θ, frequency ω and natural frequency
Ω, respectively. Again, we endow (4.7.2) with periodic boundary conditions

P ε(t,−π, ω,Ω) = P ε(t, π, ω,Ω). (4.7.3)

Using Appendix 4.A to identify θ ∈ (−π, π] with z ∈ T via the formula z = eiθ. An important
fact to be remarked is that the interaction term in (4.7.2) can be simplified. Specifically, consider
the associated macroscopic quantities

f ε(t, θ,Ω) :=

∫

R
P ε dω,

ρε(t, θ) :=

∫

R2
P ε dω dΩ =

∫

R
f ε dΩ,

g(Ω) :=

∫

T×R
P ε dθ dω =

∫

T
f ε dθ,

(4.7.4)

and note that such term is the following convolution
∫

(−π,π]×R×R
hε(θ − θ′)P ε(t, θ′, ω′,Ω′) dθ′ dω′ dΩ′ = (hε ∗ ρε)(t, θ, ω,Ω),

where the convolution is considered as periodic functions, that is, as functions in T. Then,
(4.7.2)-(4.7.3) can be restated as follows

∂P ε

∂t
+ ω

∂P ε

∂θ
=

1

ε

∂

∂ω

(
(ω − Ω)P ε +

∂P ε

∂ω
+K(hε ∗ ρε)P ε

)
. (4.7.5)

Let us now set the desired hypothesis on the sequence of initial data f0
ε and the distribution

gε of natural frequencies. Depending on the degree of integrability that we wish to recover
on the limiting distribution, i.e., g ∈ Lp(R) or just for g ∈ M(R), we respectively assume that
either 




f0
ε = f0

ε (θ, ω,Ω) ≥ 0 and f0
ε ∈ C∞c (T× R×R),

‖f0
ε ‖L1(T×R×R) = 1 and f0

ε
∗
⇀ f0 inM(T× R),

‖f0
ε ‖LpΩ(R;L1

(θ,ω)
(T×R)) ≤ C0 and f0

ε
∗
⇀ f0 in Lpw(R,M(T)),

‖Ω2gε‖L1(R) ≤ V0 and 1
2‖ω2f0

ε ‖L1(T×R) ≤ E0,

(4.7.6)

fulfil for some 1 < p <∞, or the limiting assumptions with p→ 1 hold true, i.e.,





f0
ε = f0

ε (θ, ω,Ω) ≥ 0 and f0
ε ∈ C∞c (T× R×R),

‖f0
ε ‖L1(T×R×R) = 1 and f0

ε
∗
⇀ f0 in M(T× R),

‖Ω2gε‖L1(R) ≤ V0 and 1
2‖ω2f0

ε ‖L1(T×R) ≤ E0.

(4.7.7)

Again, we are using the notation Lpw for the weak-* Lebesgue–Bochner spaces in Appendix A.

Remark 4.7.1. Note that both (4.7.7) and (4.7.6) indirectly impose some assumptions on gε = (πΩ)#fε
and g = (πΩ)#g. Specifically, the following properties take place:
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1. If (4.7.7) holds, then the following properties of gε fulfil





gε = gε(Ω) ≥ 0,
gε ∈ C∞c (Ω),
‖gε‖L1(R) = 1,

gε
∗
⇀ g in M(R).

(4.7.8)

2. Similarly, if in addition (4.7.6) holds then not only do we recover (4.7.8) but also

{
‖gε‖Lp(R) ≤ C0,

gε ⇀ g in Lp(R),
(4.7.9)

due to the fact that Lpw(0, T ;M(T)) ≡ Lp′(0, T ;C(T))∗, see Theorem A.0.11 in Appendix A.

Notice that under the assumptions (4.7.7) or (4.7.6), for the above compactly supported
initial data f0

ε , classical techniques assure the existence of a global-in-time classical solution
fε = fε(t, θ, ω,Ω) to such system (4.7.5). The remaining parts are structured as follows. First,
we introduce the hierarchy of frequency moments that for positive ε is not a closed system,
as usual. Second, we introduce some a priori bounds. Finally, we will show that the above a
priori bounds allow passing to the limit in a weak sense, closing such hierarchy of frequency
moments and obtaining weak measure-valued solutions to the singular Kuramoto model in the
subcritical regime α ∈ (0, 1

2).

4.7.2 A priori estimates

Apart from (4.7.4), we will be concerned with the following set of frequency moments of the
distribution function P ε = P ε(t, θ, ω,Ω)

jε(t, θ,Ω) :=

∫

R
ωP ε(t, θ, ω,Ω) dω,

Sε(t, θ,Ω) :=

∫

R
ω2P ε(t, θ, ω,Ω) dω,

T ε(t, θ,Ω) :=

∫

R
ω3P ε(t, θ, ω,Ω) dω.

The corresponding hierarchy of frequency moments can be easily derived from (4.7.5) if one
multiplies it by 1, ω and ω2 and integrates with respect to ω. The regularity of the global-in-time
solution P ε along with the periodicity conditions with respect to θ yields the equations

∂fε

∂t
+
∂jε

∂θ
= 0, (4.7.10)

ε
∂jε

∂t
+ ε

∂Sε
∂θ

+ jε − Ωf ε + (hε ∗ ρε)f ε = 0, (4.7.11)

ε
∂Sε
∂t

+ ε
∂Tε
∂θ

+ 2(Sε − Ωjε)− 2f ε + 2(hε ∗ ρε)jε = 0. (4.7.12)

Let us now focus on deriving some a priori estimates of the system (4.7.5). To such end,
we first introduce the primitive function of the kernel, that will give some insight about the
inter-particle interactions of our system.
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Definition 4.7.2. Let us define

Wε(θ) :=

∫ θ

0
hε(θ

′) dθ′ =
∫ θ̄

0
hε(θ

′) dθ′,

for every α ∈ (0, 1) and ε > 0. As usual, θ̄ denotes the representative modulo 2π of θ in (−π, π].

By definition, Wε enjoy nice regularity properties in the whole range of the parameter α ∈
(0, 1) by virtue of the mild singularity of hε, although we will focus on α ∈ (1

2 , 1) in this sections.

Proposition 4.7.3. The following properties hold true

1. Wε is 2π-periodic.

2. If α ∈
(
0, 1

2

)
and 1 ≤ p < 1

2α , there exists a positive constant Mα,p such that

‖Wε‖W 2,p(T) ≤Mα,p, ∀ε > 0.

3. If α = 1
2 , there exists a positive constant M such that

‖Wε‖W 1,∞(T) ≤M, ∀ε > 0.

4. If α ∈
(

1
2 , 1
)

and 1 ≤ p < 1
2α−1 , there exists a positive constant Mα,p such that

‖Wε‖W 1,p(T) ≤Mα,p, ∀ε > 0.

5. Wε is a primitive function of hε.

6. Wε ≥ 0 and the identity only holds at θ ∈ 2πZ.

Remark 4.7.4. Recall that the Sobolev embedding theorem entails the compact inclusion

W 1,p(T) ⊂⊂ C(T), ∀ p > 1.

In particular, there is some constant Mα > 0 that does not depend on ε > 0 such that

‖Wε‖C(T) ≤Mα, for all ε > 0.

Lemma 4.7.5. Consider the strong solution P ε to (4.7.5) whose initial data P ε0 fulfil the assumptions
(4.7.7). Then, the next formula holds true for every ε > 0

d

dt

(
ε

∫

T

∫

R
Sε dθ dΩ +K

∫

T
(Wε ∗ ρε)ρε dθ

)
+ 2

∫

T

∫

R
Sε dθ dΩ = 2

∫

T

∫

R
Ωjε dθ dΩ + 2.

Proof. Let us integrate (4.7.12) with respect to θ and Ω to obtain

d

dt

(
ε

∫

T

∫

R
Sε dθ dΩ

)
+ 2

∫

T

∫

R
(hε ∗ ρε)jε dθ dΩ + 2

∫

T

∫

R
Sε dθ dΩ = 2

∫

T

∫

R
Ωjε dθ dΩ + 2.

The only effort to be done is to identify the second term. To such end, we notice that ∂Wε
∂θ = hε

and consequently,
∫

T

∫

R
(hε ∗ ρε)jε dθ dΩ =

∫

T

∫

R

(
∂Wε

∂θ
∗ ρε

)
jε dθ dΩ =

∫

T

∫

R

∂

∂θ
(Wε ∗ ρε)jε dθ dΩ
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= −
∫

T

∫

R
(Wε ∗ ρε)

∂jε

∂θ
dθ dΩ =

∫

T

∫

R
(Wε ∗ ρε)

∂fε

∂t
dθ dΩ,

where an integration by parts and the continuity equation (4.7.10) have been used. Now, let us
restate the last term
∫

T

∫

R
(Wε ∗ ρε)

∂fε

∂t
dθ dΩ =

∫

T2

∫

R2

Wε(θ − θ′)
∂fε

∂t
(t, θ,Ω)f ε(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

=
d

dt

∫

T
(Wε ∗ ρε)ρε dθ −

∫

T2

∫

R2

Wε(θ − θ′)f ε(t, θ,Ω)
∂fε

∂t
(t, θ′,Ω′) dθ dθ′ dΩ dΩ′.

Since Wε is an even function, then the left hand side agrees with the second term of the right
hand side and consequently,

2

∫

T
(hε ∗ ρε)jε dθ dΩ =

d

dt

∫

T
(Wε ∗ ρε)ρε dθ.

This ends the proof of this lemma.

Theorem 4.7.6. Consider the strong solution P ε to (4.7.5) whose initial data P ε0 fulfill the assumptions
(4.7.6), for some p ∈ [1,+∞). Then, the following estimates

‖f ε‖L∞(0,T ;Lp(R,L1(T))) ≤ C0,

‖jε‖L2(0,T ;Lq(R,L1(T))) ≤ C1/2
0 (2εE0 +KMα + T (V0 + 2))1/2 ,

‖Sε‖L1(0,T ;L1(T×R)) ≤ 2εE0 +KMα + T (V0 + 2),

hold for every ε > 0, where q := 2p
1+p .

Proof. • Step 1: By integration with respect to θ in the continuity equation (4.7.5) we achieve

d

dt

∫

T
f ε dθ = 0 =⇒

∫

T
f ε dθ =

∫

T
f ε0 dθ = gε.

Then, the first a priori estimate for f ε follows from Remark 4.7.1 (with C0 = 1 if p = 1).

• Step 2: Using the Cauchy–Schwarz and Young inequalities on the first term in the right
hand side of the formula obtained in Lemma 4.7.5 we arrive at

d

dt

(
ε

∫

T

∫

R
Sε dθ dΩ +K

∫

T
(Wε ∗ ρε)ρε dθ

)
+2

∫

T

∫

R
Sε dθ dΩ ≤ ‖Ω2gε‖L1(R)+

∫

T

∫

R
Sε dθ dΩ+2.

Now, let us integrate with respect to time in [0, T ]. Using the fundamental theorem of calculus
and neglecting the terms corresponding to time t = T (notice that Wε ≥ 0 by Remark 4.7.4), we
obtain

∫ T

0

∫

T

∫

R
Sε dt dθ dΩ ≤ ε0

∫

T

∫

R
Sε0 dθ dΩ +K

∫

T
(Wε ∗ ρε0)f ε0 dθ + T

(
‖Ω2gε‖Lp(R) + 2

)
.

Using the assumptions (4.7.6) and the uniform-in-ε bound ofWε in Remark 4.7.4, we obtain the
third a priori estimate.
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• Step 3: The second a priori estimate is a consequence of the first one that we can obtain by
interpolation in Lp spaces. Indeed,

∫

T
|jε| dθ ≤

∫

T

∫

R
|ω|f ε dω ≤

(∫

T
f ε dθ

)1/2(∫

T
Sε dθ

)1/2

= (gε)1/2

(∫

T
Sε dθ

)1/2

,

where the Cauchy-Schwarz inequality has been used. Define q = 2p
1+p and notice that

1

2p
+

1

2
=

1

q
.

Then, we can take Lq norms in the above expression and use the generalized Hölder inequality
with exponents 2p and 2 to obtain

‖jε(t, ·)‖Lq(R,L1(T)) ≤ ‖gε‖1/2Lp(R)‖S
ε(t, ·)‖1/2

L1(T×R)
,

for every t ∈ [0, T ]. Finally, let us take L2 norms with respect to time to achieve the second a
priori estimate for jε in L2(0, T ;Lq(R, L1(T))).

4.7.3 Compactness of the regularized system

In this part, we will derive the corresponding weak-star compactness as a consequence of The-
orem 4.7.6. We will do it for both type of assumptions (4.7.7) and (4.7.6) that we can assume on
the initial data. Then, we obtain the following two Corollaries for each of the two cases:

Corollary 4.7.7. Consider the strong solution P ε to (4.7.5) whose initial data P ε0 fulfill the assumptions
(4.7.7). Then, there exists f ∈ L∞w (0, T ;M(T× R)) and j ∈ L2

w(0, T ;M(T× R)) such that

f ε
∗
⇀ f in L∞w (0, T ;M(T× R)),

jε
∗
⇀ j in L2

w(0, T ;M(T× R)),

up to a subsequence that we denote the same for simplicity.

Corollary 4.7.8. Consider the strong solution P ε to (4.7.5) whose initial data P ε0 fulfill the assumptions
(4.7.6), for some 1 < p < ∞. Then, the above weak-star limits f ∈ L∞w (0, T ;M(T × R)) and j ∈
L2
w(0, T ;M(T× R)) in Corollary 4.7.7 also satisfy

f ε
∗
⇀ f in L∞w (0, T ;Lpw(R,M(T))),

jε
∗
⇀ j in L2

w(0, T ;L
2p

1+p
w (R,M(T))).

The proofs are straightforward consequences of the a priori estimates in the above Theo-
rem 4.7.6 along with the Alaoglu–Bourbaki theorem and the Riesz representation theorem for
Lebesgue–Bochner spaces in A.0.11, then we skip them. Indeed, apart from the above weak
convergence in time, we can recover a stronger convergence result of the density f ε. This is the
content of the next result.

Theorem 4.7.9. Consider the strong solution P ε to (4.7.5) with initial data P ε0 .

1. If P ε0 fulfils the assumptions (4.7.7), then

f ε → f in C([0, T ],M(T× R)− narrow).
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2. If P ε0 fulfils the assumptions (4.7.6), for some 1 < p <∞, then

f ε → f in C([0, T ], Lpw(R,M(T))− weak ∗).

Proof. Since both proofs are similar, we just focus on the most involved one, that is, the first
one. The second result follows a parallel train of thoughts. Let use the continuity equation
(4.7.10) that we write in weak form against a test function ϕ(t, θ,Ω) = η(t)φ(θ,Ω), where η and
φ are smooth and compactly supported

∫ T

0

∂η

∂t

∫

T

∫

R
f ε(t, θ,Ω)φ(θ,Ω) dt dθ dΩ

= −
∫ T

0

∫

T

∫

R
jε(t, θ,Ω)η(t)

∂φ

∂θ
(θ,Ω) dt dθ dΩ

≤ ‖jε‖L2(0,T ;L1(T×R))‖φ‖W 1,∞
0 (T×R)

.

Then, the standard characterization of Sobolev spaces yields

∥∥∥∥
∫

T

∫

R
f ε(·, θ,Ω)φ(θ,Ω) dθ dΩ

∥∥∥∥
H1(0,T )

≤ (T 1/2‖f ε‖L∞(0,T ;L1(T×R)) + ‖jε‖L2(0,T ;L1(T×R)))‖φ‖W 1,∞
0 (T×R)

.

By the Sobolev embedding theorem and the first and second estimates in Theorem 4.7.6 we
can also claim that there exists C > 0 that does not depend neither on ε nor in the chosen test
functions so that

∣∣∣∣
∫

T

∫

R
(f ε(t1, θ,Ω)− f ε(t2, θ,Ω))φ(θ,Ω) dθ dΩ

∣∣∣∣ ≤ C|t1 − t2|1/2‖φ‖W 1,∞
0 (T×R)

,

for every t1, t2 ∈ [0, T ] and each ε > 0. Since the chosen test functions are arbitrary, then we
obtain

‖f ε(t1, ·, ·)− f ε(t2, ·, ·)‖W−1,1(T×R) ≤ C|t1 − t2|1/2,
for every t1, t2 ∈ [0, T ] and each ε > 0. Also notice that

‖f ε‖C([0,T ],W−1,1(T×R)) ≤ C,

for every ε > 0 for another constant C that, without loss of generality, we denote in the same
way. Such assertion is nothing but a consequence of the first a priori estimate in Theorem 4.7.6
and the chain of continuous embeddings

L1(T× R) ↪→M(T× R) ↪→W−1,1(T× R),

where the last embedding is a consequence of the dense embedding ofW 1,∞
0 (T×R) intoC0(T×

R). Then, we can use the weak-* verison of the Ascoli–Arzelà theorem to the space

C([0, T ], (W 1,∞
0 (T× R))∗) ∼= C([0, T ],W−1,1(T× R)),

(see Appendix B) to and obtain a subsequence of fε that we denote in the same way so that

f ε → f in C([0, T ],W−1,1(T× R)−weak∗).
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By the first estimate in Theorem 4.7.6 along with the above-mentioned density of W 1,∞
0 (T×R)

into C0(T× R) we can actually improve the above convergence into

f ε → f in C([0, T ],M(T× R)−weak∗). (4.7.13)

Let us finally show that the above weak-star convergence can be improved into narrow con-
vergence in the spaces of finite Radon measuresM(T × R). To such end, fix any test function
ϕ ∈ Cb(T× R) and recall the cut-off functions ξR in (N.2). Then, we obtain

sup
t∈[0,T ]

∣∣∣∣
∫

T×R
ϕ(θ,Ω) d(θ,Ω)(fε − f)

∣∣∣∣

≤ sup
t∈[0,T ]

∣∣∣∣
∫

T×R
ϕ(θ,Ω)(1− ξR(Ω)) d(θ,Ω)(fε − f)

∣∣∣∣+ sup
t∈[0,T ]

∣∣∣∣
∫

T×R
ϕ(θ,Ω)ξR(Ω) d(θ,Ω)(fε − f)

∣∣∣∣

≤ 1

R
‖ϕ‖Cb(T×R) sup

t∈[0,T ]

∫

T×R
|Ω| d(θ,Ω)(f

ε
t + ft) + sup

t∈[0,T ]

∣∣∣∣
∫

T×R
ϕ(θ,Ω)ξR(Ω) d(θ,Ω)(fε − f)

∣∣∣∣ .

By virtue of the above convergence (4.7.3) and the following uniform tightness condition
∫

T

∫

R
|Ω|f ε dθ dΩ =

∫

T

∫

R
|Ω|f ε0 dθ dΩ ≤ V

1
2

0 ,

for every ε > 0 and t ∈ [0, T ], we can take lim sup in the above inequality as ε→ 0 to obtain

lim sup
ε→0

sup
t∈[0,T ]

∣∣∣∣
∫

T×R
ϕ(θ,Ω) d(θ,Ω)(fε − f)

∣∣∣∣ ≤
2V

1/2
0

R
‖ϕ‖Cb(T×R).

Since R > 0 is arbitrary we conclude that

f ε → f in C([0, T ],M(T× R)− narrow).

As a simple consequence, we can prove that the tensor product f ε ⊗ f ε also enjoys good
compactness properties.

Corollary 4.7.10. Consider the strong solution P ε to (4.7.5) with initial data P ε0 .

1. If P ε0 fulfils the assumptions (4.7.7), then

f ε ⊗ f ε ∗⇀ f ⊗ f in L∞w (0, T ;M(T2 × R2)− narrow).

2. If f0
ε fulfils the assumptions (4.7.6), for some 1 < p <∞, then

f ε ⊗ f ε ∗⇀ f ⊗ f in L∞w (0, T ;Lpw(R2,M(T2))− weak ∗).

Our next step is to show that we can pass to the limit in the balance laws for the phase
density and phase current (4.7.10)-(4.7.11). To such end, let us write them in weak form by
multiplication against any test function ϕ ∈ C1

0 ([0, T )× T× R) and integrate by parts:

∫ T

0

∫

T

∫

R
f ε
∂ϕ

∂t
dt dθ dΩ +

∫ T

0

∫

T

∫

R
jε
∂ϕ

∂θ
dt dθ dΩ = −

∫

T

∫

R
f ε0 ϕ(0, ·, ·) dθ dΩ, (4.7.14)
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ε

∫ T

0

∫

T

∫

R
jε
∂ϕ

∂t
dt dθ dΩ + ε

∫ T

0

∫

T

∫

R
Sε∂ϕ
∂θ

dt dθ dΩ = −ε
∫

T

∫

R
jε0 ϕ(0, ·, ·) dθ dΩ

+

∫ T

0

∫

T

∫

R
(jε − Ωf ε)ϕdt dθ dΩ +

∫ T

0

∫

T

∫

R
(hε ∗ ρε)f εϕdt dθ dΩ.

(4.7.15)

Note that under the weak assumptions (4.7.7), Corollary 4.7.7 and the a priori estimate of Sε
in Theorem 4.7.6 allow passing to the limit all the terms except at most two of them; namely,
the nonlinear term and the term involving Ωf ε. Let us first address the latter one and we shall
discuss about the most difficult convergence result for the nonlinear term later.

Proposition 4.7.11. Consider the strong solution P ε to (4.7.5) with initial data P ε0 .

1. If P ε0 fulfil the assumptions (4.7.7), then

‖Ωf ε‖L∞(0,T ;L1(T×R)) ≤ V 1/2
0 ,

‖Ωf‖L∞w (0,T ;M(T×R)) ≤ V 1/2
0 .

Moreover, the following weak-star convergence takes place

Ωf ε
∗
⇀ Ωf in L∞w (0, T ;M(T× R)).

2. If P ε0 fulfil the assumptions (4.7.6), for some 1 < p <∞, then

‖Ωf ε‖
L∞(0,T ;L

2p
1+p (R,L1(T)))

≤ V 1/2
0 C

1/2
0 ,

‖Ωf‖
L∞w (0,T ;L

2p
1+p
w (R,M(T)))

≤ V 1/2
0 C

1/2
0 .

Moreover, the following weak-star convergence takes place

Ωf ε
∗
⇀ Ωf in L∞w (0, T ;L

2p
1+p
w (R,M(T))).

Proof. Since both proofs are similar, we just focus on the second one. Notice that by the conti-
nuity equation we obtain that

d

dt

∫

T
|Ω|f ε dθ = 0 =⇒

∫

T
|Ω|f ε dθ =

∫

T
|Ω|f ε0 dθ = |Ω|gε.

Again, we can take L
2p

1+p -norms and use the generalized Hölder inequality to arrive at

‖f ε(t, ·)‖
L

2p
1+p (R,L1(T))

≤ ‖Ω2gε‖1/2
L1(R)

‖gε‖1/2Lp(R),

for every t ∈ [0, T ]. Taking supreme yields the desired estimate of Ωf ε by virtue of the assump-
tions (4.7.6).

Regarding the limiting estimate, let us first note that

(t,Ω) ∈ (0, T )× R 7−→ ‖Ωft(·,Ω)‖M(T) = |Ω|‖ft(·,Ω)‖M(T)

belongs toL1
loc((0, T )×R). In order to get theL∞w (0, T ;Lqw(R,M(R)))-estimate with q = 2p

1+p , we
consider a test function ϕ ∈ L1(0, T ;Lq

′
(R, C(T))) and, without loss of generality, assume that
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it takes the form ϕ(t, θ,Ω) = η(t)φ(θ)ψ(Ω) with appropriate test functions of separate variables
η ∈ L1(0, T ), ψ ∈ Cc(R) and φ ∈ C(T). Then,

∫ T

0
η(t)

∫

R
ψ(Ω)

(∫

T
φ(z)|Ω| dzft(·,Ω)

)
dΩ dt =

∫ T

0

∫

R
|Ω|ψ(Ω)

(∫

T
φ(z) dzft(·,Ω)

)
dΩ dt

= lim
ε→0

∫ T

0

∫

R
|Ω|ψ(Ω)

(∫

T
φ(z)f εt dz(·,Ω)

)
dΩ dt

≤ lim sup
ε→0

‖Ωf ε‖L∞(0,T ;Lq(R,L1(T)))‖ϕ‖L1(0,T ;Lq′ (R,C(T))),

where we have used the above estimate for Ωf ε and the weak-star convergence in Corollary
4.7.8. Since ϕ is arbitrary we can conclude the desired estimate on Ωf by the Riesz representa-
tion theorem for weak Lebesgue–Bochner spaces, see Theorem A.0.11.

The proof of the convergence result follows similar arguments. Fix a test function ϕ ∈
L1(0, T ;Lq

′
(R, C(T))). By density, we can assume that ϕ ∈ Cc((0, T )× T× R). Then,

∫ T

0

∫

T

∫

R
ϕ(t, θ,Ω)(Ωf ε(t, θ,Ω)− Ωft(θ,Ω)) dt dθ dΩ

=

∫ T

0

∫

T

∫

R
Ωϕ(t, θ,Ω)(f ε(t, θ,Ω)− ft(θ,Ω)) dt dθ dΩ.

Since Ωϕ(t, θ,Ω) belongs to L1(0, T ;Lq
′
(R, C(T)), then we can apply Corollary (4.7.8) and ob-

tain that the last integral converges towards zero when ε→ 0, thus concluding the proof.

Notice that the above result allows passing to the limit in the term Ωf ε in (4.7.15). Then, the
only term that remains to be studied is the nonlinear one.

4.7.4 Convergence of the nonlinear term and hydrodynamic limit

In this part, we will discuss about the nonlinear term (4.7.15). On the one hand, we will show
that we cannot pass to the limit for general g. The main reason is that the proposed cancellation
property would fail for α ∈ (1

2 , 1). On the other hand, we will show that it proves useful in
the identical case g = δ0. Although we will not comment on the more regular regime α ∈
(0, 1

2) here, it is clear that hε ∗ ρε converges strongly for general g although f ε is just narrowly
convergent. In such way, we can recover the weak measure-valued solutions to (4.2.5) like in
Section 4.3, but we will skip it here for simplicity.

The main idea is to write the nonlinear term in (4.7.15) appropriately using a well known
symmetrization idea, like in Chapter 2. Specifically, note that

∫ T

0

∫

T

∫

R
(hε ∗ ρε)f εϕdt dθ dΩ

=

∫ T

0

∫

T2×R2

hε(θ − θ′)ϕ(t, θ,Ω)f ε(t, θ,Ω)f ε(t, θ′,Ω′) dt dθ dθ′ dΩ dΩ′

= −
∫ T

0

∫

T2×R2

hε(θ − θ′)ϕ(t, θ′,Ω′)f ε(t, θ,Ω)f ε(t, θ′,Ω′) dt dθ dθ′ dΩ dΩ′,

where we have changed variables (θ,Ω) with (θ′,Ω′) and we have used the antisymmetry of
the kernel hε in the last line. Taking the mean value of both expressions we obtain
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∫ T

0

∫

T

∫

R
(hε ∗ ρε)f εϕdt dθ dΩ

=

∫ T

0

∫

T2×R2

Hϕ
ε (t, θ, θ′,Ω,Ω′)f ε(t, θ,Ω)f ε(t, θ′,Ω′) dt dθ dθ′ dΩ dΩ′, (4.7.16)

where the function Hϕ
ε reads

Hϕ
ε (t, θ, θ′,Ω,Ω′) :=

1

2
hε(θ − θ′)(ϕ(t, θ,Ω)− ϕ(t, θ′,Ω′)).

Notice that when ε → 0, the above function Hϕ
0 is not continuous at θ = θ′ unless Ω = Ω′.

Here, the Lipschitz continuity of the test function ϕ in the variable θ plays a role to cancel the
full singularity of h in the whole range α ∈ (1

2 , 1). Then, it is not clear at all that (4.7.16) makes
sense in the limit ε→ 0, as the limiting measure f is expected to have atoms. However, we can
solve the problem at least for identical oscillators, i.e., g = δ0. This is the content of the main
result in this part.

Theorem 4.7.12. Fix α ∈ (1
2 , 1) and consider the strong solution P ε to (4.7.5) whose initial data P ε0

fulfil the assumptions (4.7.7). Assume that the limiting oscillators are all identical, that is, g = δ0. Then,
there is a subsequence of f ε, denoted in the same way, and f ∈ ACM ∩ TM so that

f ε → f in C([0, T ],M(T× R)− narrow),

and its associated macroscopic density ρ is a weak measure-valued solution (in the symmetrized sense)
to (4.2.5) in the identical case {

∂ρ

∂t
− ∂

∂θ
((h ∗ ρ)ρ) = 0,

ρ(0, ·, ·) = ρ0.

Specifically, in weak form
∫ T

0

∫

T

∂φ

∂t
dθρ−

∫ T

0

∫

T2

1

2
h(θ − θ′)

(
∂φ

∂θ
(t, θ)− ∂φ

∂θ
(t, θ′)

)
d(θ,θ′)(ρ⊗ ρ) = −

∫

T
φ(0, θ)dθρ0,

for any test function φ ∈ C1
c ([0, T )× T). If in addition (4.7.6) holds true, for some 1 < p <∞, then

f ε → f in C([0, T ], Lpw(R,M(T))− weak ∗).

Proof. Let us recover the weak formulation (4.7.15) and use the symmetrized version (4.7.16) of
the nonlinear term. Then, we obtain

ε

∫ T

0

∫

T

∫

R
jε
∂ϕ

∂t
dt dθ dΩ + ε

∫ T

0

∫

T

∫

R
Sε∂ϕ
∂θ

dt dθ dΩ

= −ε
∫

T

∫

R
jε0 ϕ(0, ·, ·) dθ dΩ +

∫ T

0

∫

T

∫

R
(jε − Ωf ε)ϕdt dθ dΩ

+

∫ T

0

∫

T2

∫

R2

Hϕ
ε (t, θ, θ′,Ω,Ω′)f ε(t, θ,Ω)f ε(t, θ′,Ω′) dt dθ dθ′ dΩ dΩ′, (4.7.17)

for any test function ϕ ∈ C1
c ([0, T ) × T × R). The main idea is to get rid of the Ω variable in

(4.7.17), as it becomes irrelevant in the limit ε → 0 due to the assumed hypothesis g = δ0. To
simplify notation, denote

ĵε(t, θ) :=

∫

R
jε(t, θ,Ω) dΩ = (πθ)#j

ε, Ŝε(t, θ) :=

∫

R
Sε(t, θ, ω) dΩ = (πθ)#Sε,
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ĵt(θ) := (πθ)#jt.

Recall that Theorem 4.7.9, Corollaries 4.7.10, 4.7.7 along with Theorem 4.7.6 respectively imply

ρε → ρ in C([0, T ],M(T)− narrow),

ĵε
∗
⇀ ĵ in L2

w(0, T ;M(T)− narrow),

‖Ŝε‖L1(0,T ;L1(T)) ≤ 2εE0 +KMα + T (V0 + 2),

ρε ⊗ ρε ∗⇀ ρ⊗ ρ in L∞w (0, T ;M(T2)).

(4.7.18)

Now, we can take ϕ(t, θ,Ω) = φ(t, θ) in (4.7.17) with φ ∈ C1
c ([0, T ) × T). Notice that it can

be done without loss of generality by virtue of the tightness a priori estimates in Proposition
4.7.11, thus yielding

ε

∫ T

0

∫

T
ĵε
∂φ

∂t
dt dθ + ε

∫ T

0

∫

T
Ŝε∂φ
∂θ

dt dθ

= −ε
∫

T
ĵε0 φ(0, ·) dθ +

∫ T

0

∫

T
ĵε φdt dθ −

∫ T

0

∫

T

∫

R
Ωf ε φdt dθ dΩ

+

∫ T

0

∫

T2

Ĥφ
ε (t, θ, θ′)ρε(t, θ)ρε(t, θ′) dt dθ dθ′, (4.7.19)

for the bounded and continuous function

Ĥφ
ε (t, θ, θ′) =

1

2
hε(θ − θ′)(φ(t, θ)− φ(t, θ′)).

Then, (4.7.18) clearly allows passing to the limit in all the terms of (4.7.19) (including the non-
linear term)

∫ T

0

∫

T
φdθ ĵ dt =

∫ T

0

∫

T

∫

R
Ω d(θ,Ω)f dt+

∫ T

0

∫

T2

Hφ
0 (t, θ, θ′)d(θ,θ′)ρ⊗ ρ. (4.7.20)

To finish, let us just identify the first term in the right hand side of (4.7.20), which has not been
closed in terms of the macroscopic quantities ρ and ĵ yet. To such end, notice that ρε → ρ in
C([0, T ],M(T) − narrow) and also gε

∗
⇀ g ≡ δ0 narrowly. Similarly, notice that f ε → f in

C([0, T ],M(T× R)− narrow). Hence, uniqueness implies

ft(θ,Ω) = ρt(θ)⊗ δ0(Ω), for all t ∈ [0, T ].

Consequently, ∫ T

0

∫

T

∫

R
Ω d(θ,Ω)f dt =

∫ T

0

∫

T

∫

R
Ω d(θ,Ω)(ρt ⊗ δ0) = 0,

thus ending the proof.

Appendices

4.A Periodic finite Radon measures

In this appendix we recall the relations between some spaces of finite Radon measures, that
are used throughout the whole thesis, in general, and this chapter in particular. Our aim is to
appropriately set the space of measures with periodic properties to be used. First, note that the
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spaces of densities L1(T), L1(−π, π), L1((−π, π]) and L1([−π, π]) can be mixed up since such
functions are defined on the whole torus T except at most at −1 + 0 i ≡ (−1, 0). However, it is
no longer valid for the spaces of finite Radon measures:

M(T), M(−π, π), M((−π, π]) and M([−π, π]).

The main reason is that all such spaces contain the Dirac mass δπ except the second one. Also,
the last measure space might duplicate the Dirac masses at δ−π and δπ, that can be identified in
M(T) though. Naturally, one has to rule out such doubling of point masses by appropriately
setting the good spaces. The main idea is to note that if one unfolds the torus T into the inter-
val (−π, π], then each measure in M(T) can be identified with a measure in M((−π, π]) and
conversely. This is the content of the next straightforward result:

Theorem 4.A.1. The next Banach spaces of finite Radon measures are topologically isomorphic when
endowed with the total variation norm:

M(T) ∼=Mp([−π, π]) ∼= R ⊕1M(−π, π) ∼=M((−π, π]).

Although it is straightforward, we will sketch the proof of such result for the readers con-
venience.

4.A.1 Periodic functions

Before we sketch the proof, we will first introduce some natural identification between Banach
spaces of regular functions with analogue periodicity properties.

Definition 4.A.2. For any derivable function f : T −→ R along T, we define the associated derivatives

∂f

∂z
(eiθ) := −ie−iθ d

dθ
f(eiθ),

∂f

∂z̄
(eiθ) := ieiθ

d

dθ
f(eiθ),

Remark 4.A.3. The above derivatives have long been used in complex analysis. Consider z = eiθ,
z̄ = e−iθ and define g(z) = f(z̄). Then, the motivation underlying the above definition is simply a
formal chain rule, namely,

d

dθ
f(eiθ) =

∂f

∂z

dz

dθ
= ieiθ

∂f

∂z
,

d

dθ
f(eiθ) =

d

dθ
g(e−iθ) =

∂g

∂z̄

dz̄

dθ
=
∂f

∂z̄

∂z̄

∂z̄

dz̄

dθ
= −ie−iθ ∂f

∂z̄
.

Notice that one can go from one to the other by taking complex conjugation, i.e., ∂f∂z̄ = ∂f
∂z . Using only

one of the above derivatives we can recover the other one (along with the full differential map), thus
avoiding redundancy of information. Indeed, T is a Riemannian manifold with the standard metric and
one can easily check that

〈∇f(z), iz〉 = dfz(iz) =
∂f

∂z
iz =⇒ ∇f(z) = 〈∇f(z), iz〉 iz = −z2∂f

∂z
=
∂f

∂z̄
.

Definition 4.A.4. We will set the next Banach spaces of test functions:
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1. C1(T) will denote the Banach space of continuously differentiable functions f : T −→ R. It is
endowed with the complete norm

‖f‖C1(T) := ‖f‖C(T) +

∥∥∥∥
∂f

∂z

∥∥∥∥
C(T)

.

2. C1
p([−π, π]) will denote the Banach space of continuously differentiable functions g : [−π, π] −→

R such that g and its derivatives have same values at the endpoints of the interval. It is endowed
with the complete norm

‖g‖C1
p([−π,π]) := ‖g‖C([−π,π]) +

∥∥∥∥
dg

dθ

∥∥∥∥
C([−π,π])

.

3. As it is usual, C1
0 ((−π, π]) (respectively, C1

0 (−π, π)) denote the Banach space of continuously
differentiable functions such that g and its derivatives vanish at−π (respectively at−π and π). It
is endowed with the preceding complete norm.

The spaces C(T), Cp([−π, π]), C0((−π, π]) and C0(−π, π) are also Banach spaces when endowed with
the uniform norm. Similarly, spaces with higher order derivatives can also be considered.

By definition, the next results are clear:

Proposition 4.A.5. For every f ∈ C1(T), let us define Φ[f ](θ) := f(eiθ). Then, the following map is
an isometric isomorphism

Φ : C(T) −→ Cp([−π, π]),
f 7−→ Φ[f ].

Proposition 4.A.6. For every g ∈ Cp([−π, π]), let us define

Ψ1[g] := g(−π) = g(π) ∈ R,
Ψ2[g] := g −Ψ1[g] ∈ C0(−π, π).

Then, the next map is a topological isomorphism

Ψ : Cp([−π, π]) −→ R ⊕∞C0(−π, π),
g 7−→ Ψ[g] := (Ψ1[g],Ψ2[g]).

Proposition 4.A.7. Let us set any cut-off function η ∈ C([−π, π]) such that η(−π) = 0, η(π) = 1
and 0 ≤ η ≤ 1. For every g ∈ C0((−π, π]), let us define

Λη1[g] := g(π) ∈ R,
Λη2[g] := g − Λη1[g]η ∈ C0(−π, π).

Then, the next map is a topological isomorphism

Λη : C0((−π, π]) −→ R ⊕∞C0(−π, π),
g 7−→ (Λη1[g],Λη2).
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4.A.2 Periodic measures

Definition 4.A.8. As it is usual, taking duals of the Banach spaces in Definition 4.A.4 we arrive at the
next Banach spaces of finite Radon measures endowed with the (dual) total variation norm:

M(T) := C(T)∗,

Mp([−π, π]) := Cp([−π, π])∗,

M(−π, π) := Cc(−π, π)∗,

M((−π, π]) := Cc((−π, π])∗.

Proof of Theorem 4.A.1. The proof is just a simple consequence of Propositions 4.A.5, 4.A.6 and
4.A.7 that follows from taking dual operators to Φ, Ψ and Λη

Φ∗ : Mp([−π, π]) −→ M(T),
µ 7−→ Φ∗(µ),

Ψ∗ : R ⊕1M(−π, π) −→ Mp([−π, π]),
(b, ν) −→ Ψ∗(b, ν),

(Λη)∗ : R ⊕1M(−π, π) 7−→ M((−π, π]),
(b, ν) 7−→ (Λη)∗(b, ν).

Indeed, given µ ∈ Mp([−π, π]), b ∈ R and ν ∈ M(−π, π) and setting f ∈ C(T) and g ∈
Cp([−π, π]), the duality read

〈Φ∗(µ), f〉 = 〈µ,Φ[f ]〉 ,
〈Ψ∗(b, ν), g〉 = Ψ1[g]b+ 〈ν,Ψ2[g]〉 ,

〈(Λη)∗(b, ν), g〉 = Λη1[g]b+ 〈ν,Λη2[g]〉 .

Remark 4.A.9. In particular, the next identification takes place under the above topological isomor-
phisms:

M(T) ∼= R ⊕M(−π, π) ∼= M((−π, π]),
δ(−1,0) ≡ (1, 0 dθ) ≡ δπ.

Notice that we have only provided topological isomorphisms between the above spaces of
measures in Theorem 4.A.1. In particular, we can identify the spaces M(T) with M((−π, π])
via the composition

Iη := (Λη)∗ ◦ (Ψ∗)−1 ◦ (Φ∗)−1 = ((Ψ ◦ Φ)−1 ◦ Λη)∗.

Specifically, it means that, given µ ∈M(T), the measure Jη[µ] ∈M((−π, π]) acts as follows

〈Jη[µ], φ〉 =
〈
µ, fηφ

〉
,

for any φ ∈ C0((−π, π]), where the continuous function fηφ := ((Ψ ◦ Φ)−1 ◦ Λη)[φ] ∈ C(T) reads

fηφ(eiθ) = φ(θ) + (1− η(θ))φ(π), θ ∈ (−π, π].

Although Jη is not an isometry, we still can do better and introduce a simpler isometry between
the particular spacesM(T) andM((−π, π]). This will be the content of our last result.
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Theorem 4.A.10. Let us consider the bijective and continuous mapping

ι : (−π, π] −→ T
θ 7−→ eiθ.

Then, the associated push-forward mapping is a surjective isometry

ι# : M((−π, π]) −→ M(T)
µ 7−→ ι#µ.

Proof. First, it is clear that ι# is bijective because so is ι. Let us now prove that it is a linear
isometry. On the one hand, consider any µ ∈M((−π, π]). Then,

‖ι#µ‖M(T) = sup
‖ϕ‖C(T)≤1

∫

T
ϕd(ι#µ) = sup

‖ϕ‖C(T)≤1

∫

(−π,π]
(ϕ ◦ ι) dµ

≤ sup
‖φ‖C0((−π,π])≤1

∫

(−π,π]
φdµ = ‖µ‖M((−π,π]).

On the other hand, let us show the reverse inequality. Take any φ ∈ C0((−π, π]) with the
property ‖φ‖C0((−π,π]) ≤ 1. By density, we can assume that φ ∈ Cc((−π, π]). Then, there exists
some M0 ∈ (−π, π) such that

φ(θ) = 0, for all θ ∈ (−π,M0].

For every ε ∈ (0, π+M0) let us consider a cut-off function ηε ∈ C([−π, π]) with 0 ≤ ηε ≤ 1 such
that

ηε(−π) = 0 and ηε|[−π+ε,π] ≡ 1.

For any ε > 0, let us define

fε(e
iθ) := fηεφ (eiθ) = φ(θ) + (1− ηε)φ(π), θ ∈ (−π, π],

as in the proof of Theorem 4.A.1. Then, it is clear that
∫

(−π,π]
φdµ =

∫

(−π,π]
(fε ◦ ι) dµ−φ(π)

∫

(−π,π]
(1− ηε) dµ =

∫

T
fε d(ι#µ)−φ(π)

∫

(−π,π]
(1− ηε) dµ.

Notice that due to the boundedness of 1 − ηε we have that it belongs to L1(µ) and the above
terms make sense. In fact

∫

(−π,π]
φdµ ≤

∫

T
|fε| d|ι#µ|+ ‖φ‖C0((−π,π])

∣∣∣∣∣

∫

(−π,π]
(1− ηε) dµ

∣∣∣∣∣ ,

for every ε > 0. Regarding the first term, it is clear that ‖fε‖C(T) = ‖ϕ‖C(T) ≤ 1 for every
ε ∈ (0, π + M0). On the other hand, notice that the second term vanishes as ε → 0 due to the
dominated convergence theorem. Then, putting both facts together we can conclude

∫

(−π,π]
φdµ ≤ ‖ι#µ‖M(T),

and it ends the proof.
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4.B Differentiability properties of the squared distance

In this appendix we will revisit some well known results about (non)-differentiability of the
squared distance in a Riemannian manifold. Most of them are folklore in Riemannian Geom-
etry and require no comment. Nevertheless, we will comment on the appropriate concept of
differentiability that we are interested in, namely, the one-sided Dini upper derivative.

Proposition 4.B.1. Let (M, 〈·, ·〉) be a d-dimensional complete Riemannian manifold and consider the
Riemannian distance as recalled in (N.4). Fix any y ∈M and define the distance function dy : M → R
towards some point y ∈M by the rule

dy(x) = d(x, y), ∀x ∈M.

Then, following properties hold true:

1. dy is Lipschitz in M .

2. dy is derivable at almost every y ∈M .

3. dy is derivable in M \ {cut(y) ∪ {y}} and

(∇dy)(x) = − exp−1
x (y)

| exp−1
x (y)|

.

4. 1
2d

2
y fails to be everywhere directionally derivable unless M is diffeomorphic to the flat space Rd.

However, it is derivable at any x ∈M \ (cut(x) ∪ {x}) and

∇
(

1

2
d2
y

)
(x) = − exp−1

x (y).

Here, cut(x) denotes the cut locus of the point x in M and expx : TxM → M is nothing but the
Riemannian exponential map at such x.

Since the proofs are standard, we do not provide proofs here. They can be found in any
textbook of Riemannian Geometry. Instead, we just focus on the later assertion that is the
less apparent one. According to such result not only 1

2d
2
y fails to be derivable at some points

x ∈ cut(y), but also the lateral directional derivatives might not agree at points x ∈M that can
be joined with y through several minimizing geodesics. The proof is apparently hidden in the
litterature; however, one can find a short proof following simple arguments in [304].

Remark 4.B.2. Just to illustrate a meaningful example, consider M = T with the (standard) induced
metric. Recall that for z1 = eiθ1 and z2 = wiθ2 where θ1, θ2 ∈ R one has the clear identity

d(z1, z2) = |θ1 − θ2|o.

Also, consider some z = eiθ, where θ ∈ R, and its antipode z̄ = −z = ei(θ+π). For every ω > 0, one
can define a geodesic with speed ω as follows

γz,ω(s) := ei(θ+ωs), s ∈ R,

Indeed, γz,ω(0) = z and it is minimizing in any interval whose length is not larger than π
ω . Conse-

quently,
1

2
d2
z̄(γω(s)) =

{
1
2(π + ωs)2, s ∈ (−π

ω , 0],
1
2(π − ωs)2, s ∈ [0, πω ).
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Hence, both one-sided derivatives exist but they differ from each other, namely,

d

ds

∣∣∣∣
s=0∓

1

2
d2
z̄(γz,ω(s)) = ±ωπ.

Apart from the above differentiability properties, others have been explored in the litera-
ture with applications to optimal mass transportation and Wasserstein distances. We address
some of them in the following result, see [129, Proposition 2.9], [211, Proposition 6], [296, Third
Appendix of Chapter 10] for more details.

Proposition 4.B.3. Let (M, 〈·, ·〉) be a complete Riemannian manifold, fix y ∈ M and the squared
distance function 1

2d
2
y towards the point y. Then,

1. 1
2d

2
y is superdifferentiable at every x ∈ M and for every w ∈ exp−1

x (y) with |w| = d(x, y) one
has that −w is an upper gradient, i.e.,

1

2
d2
y(expx(v)) ≤ 1

2
d2
y(x)− 〈w, v〉+ o(|v|), as |v| → 0.

2. If in addition M has non-negative sectional curvatures then 1
2d

2
y is 1-semiconcave, i.e.,

1

2
d2
y(γ(s)) ≥ (1− s)1

2
d2
y(x1) + s

1

2
d2
y(x2) + s(1− s)1

2
d2(x1, x2), s ∈ [0, 1],

for any couple x1, x2 ∈M and any geodesic γ : [0, 1] −→M joining x1 to x2.

Both superdifferentiability and semiconcavity are locally equivalent, see [296] for further
information. On the one hand, the non-negativity condition on the sectional curvatures is re-
quired in order to obtain uniform estimates in term of the quadratic modulus of semiconcavity
and it is certainly a very imposing hypothesis. On the other hand, the superdifferentiability is
not enough for our purpose since the o(|v|) term in the right hand-side is not necessarily uni-
form. For the purposes in this thesis we will resort on an slightly different tool coming form
non-smooth analysis, namely, the one-sided upper Dini directional derivative of a function.

Definition 4.B.4. Let (M, 〈·, ·〉) be a finite-dimensional complete Riemannian manifold and consider
some function f : M → R, any x ∈ M and any direction v ∈ TxM . Then, the one-sided upper and
lower Dini derivatives of f at x in the direction v stand for

(d+f)x(v) :=
d+

ds

∣∣∣∣
s=0

f(expx(sv)) = lim sup
s→0+

f(expx(sv))− f(x)

s
,

(d+f)x(v) :=
d+

ds

∣∣∣∣
s=0

f(expx(sv)) = lim inf
s→0+

f(expx(sv))− f(x)

s
.

By definition both derivatives are ordered

−∞ ≤ (d+f)x(v) ≤ (d+f)x(v) ≤ +∞,

and we will say that f is one-sided upper (respectively lower) Dini derivable at x in the direction v
if the corresponding one-sided upper (respectively lower) Dini derivative is finite. If in addition both
derivatives agree, then f is also one-sided directionally derivable at x in the direction v in the standard
sense and all the derivatives agree.
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An important fact to be remarked is that the geodesic s 7→ expx(sv) has been chosen as a
representative of a curve with direction v at x. However, one might have taken any other C1

curve and apparently it would have provided a “different” definition of directional derivative.
Since it will be of interest for our purposes, let us show that any such curve representing the
direction v at x could have been chosen, yielding the same definition.

Lemma 4.B.5. Let (M, 〈·, ·〉) be a Riemannian manifold and fix any x ∈ M and any couple v, w ∈
TxM . Consider a couple of C1 curves γ1 : (−s0, s0) → M and γ2 : (−s0, s0) → M such that
γ1(0) = x = γ2(0), γ′1(0) = v and γ′2(0) = w. Then,

lim sup
s→0

d(γ1(s), γ2(s))

s
≤ |v − w|.

Proof. Although the proof is standard, we provide a simple proof for the sake of completeness.
Consider some R > 0 smaller enough than the radius of injectivity at x (e.g. half of it) and con-
sider the ball BR(0) ⊆ TxM along with the associated geodesic ball BR(x) := expx(BR(0)). By
definition one has that expx : BR(0) −→ BR(x) is a diffeomorphism. Without loss of generality,
we will assume that s0 is small enough so that γi(s) ∈ BR(x) for all s ∈ (−s0, s0) and i = 1, 2.
Hence, we can define the curves in BR(0)

γ̄i(s) := exp−1
x (γi(s)), s ∈ (−s0, s0), i = 1, 2.

Equivalently, γi(s) = expx(γ̄i(s)) and taking derivatives one has

γ′i(0) = (d expx)0(γ̄′i(0)) =⇒ γ̄′1(0) = v and γ̄′2(0) = w,

where we have used that (d expx)0 is nothing but the identity map in TxM and γ′1(0) = v,
γ′2(0) = w. Also, consider the interpolating curves between γ̄1(s) and γ̄2(s)

γ̄s(ε) = (1− ε)γ̄1(s) + εγ2(s), ε ∈ [0, 1],

for every s ∈ (−s0, s0). They have associated interpolating curves between γ1(s) and γ2(s)

γs(ε) = expx(γ̄s(ε)) = expx((1− ε)γ1(s) + εγ2(ε)), ε ∈ [0, 1].

Then, we can estimate

d(γ1(s), γ2(s))

s
=
d(expx(γ̄1(s)), expx(γ̄2(s)))

s
≤ [expx]C0,1(BR(x))

|γ̄1(s)− γ̄2(s)|
s

,

where [ · ]C0,1(BR(x)) stands for the Lipschitz constant in BR(x). Taking lim sup and using that
γ̄1 and γ̄2 are both derivable at s = 0 with derivatives v and w respectively we obtain

lim sup
s→0

d(γ1(s), γ2(s))

s
≤ [expx]C0,1(BR(x))|v − w|.

Now, notice that R > 0 can be chosen arbitrarily small. Taking lim inf with respect to such
radius we obtain

lim sup
s→0

d(γ1(s), γ2(s))

s
≤ lim inf

R→0
[expx]C0,1(BR(x))|v − w|.

Also, the mean value theorem implies

lim inf
R→0

[expx]C0,1(BR(x)) ≤ lim inf
R→0

sup
ξ∈BR(0)

|(d expx)ξ|T ∗xM .
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Since (d expx)0 agrees with the identity map in TxM , that has operator norm equals to 1, we
deduce the following estimate

lim inf
R→0

[expx]C0,1(BR(x)) ≤ 1,

and that ends the proof of our result.

As a consequence we obtain the following characterizations of the one-sided Dini deriva-
tives.

Theorem 4.B.6. Let (M, 〈·, ·〉) be a complete Riemannian manifold, consider some x ∈ M and v ∈
TxM and choose any C1 curve γ : (−s0, s0) −→M such that γ(0) = x and γ′(0) = v. If f : M −→ R
is locally Lipschitz map around x, then

(d+f)x(v) = lim sup
s→0∗

f(γ(s))− f(x)

s
,

(d+f)x(v) = lim inf
s→0∗

f(γ(s))− f(x)

s
.

Proof. Let us define the auxiliary C1 curve γ̃(s) = expx(sv) for s ∈ (−s0, s0). According to the
above Definition 4.B.4 we only need to prove that

lim
s→0+

f(γ(s))− f(γ̃(s))

s
= 0.

Consider R smaller enough that the radius of injectivity at x and set BR(0) ⊆ TxM along
with the geodesic ball BR(x) := expx(BR(0)) that is a relatively compact set. Consider LR the
Lipschitz constant of f in BR(x) and assume that s0 is small enough so that γ(s), γ̃(s) ∈ BR(x)
for every s ∈ (−s0, s0). Thus,

∣∣∣∣
f(γ(s))− f(γ̃(s))

s

∣∣∣∣ ≤ LR
d(γ(s), γ̃(s))

s
, s ∈ (−s0, s0).

Since γ′(0) = v = γ̃′(0) we conclude the proof of this result by virtue of Lemma 4.B.5.

We are now ready to give a simple proof of the one-sided uper Dini directional differentia-
bility of the distance.

Theorem 4.B.7. Let (M, 〈·, ·〉) be a complete Riemannian manifold, fix y ∈M and the squared distance
1
2d

2
y towards the point y. Then, 1

2d
2
y is one-sided upper Dini directionally derivable in all M and

d+

(
1

2
d2
y

)

x

(v) ≤ inf
w∈exp−1

x (y)
|w|=d(x,y)

−〈v, w〉 ,

for any x ∈M and any direction v ∈ TxM .

Proof. Consider x ∈ M and v ∈ TxM and set w ∈ exp−1
x (y) with |w| = d(x, y). Also, consider

a minimizing geodesic γ0 : [0, 1] −→ M such that γ0(0) = x, γ0(1) = y and γ′0(0) = w. Then,
there exists some smooth variation {γs}s∈(−s0,s0) of γ0 such that

γs(0) = expx(sv) and γs(1) = y,
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for every s ∈ (−s0, s0). Such a variation enjoys an associated variational field

V (ξ) :=
∂γ

∂s
(s = 0, ξ) =

d

ds

∣∣∣∣
s=0

γs(ξ), ξ ∈ [0, 1].

Also, we can define the associated energy functional

E [γs] :=
1

2

∫ 1

0
|γ′s(ξ)|2 dξ.

Then, the first variation formula of energy (see [111, Proposition 2.4]) around the geodesic γ0

amounts to

d

ds

∣∣∣∣
s=0

E [γs] =
〈
γ′0(1), V (1)

〉
−
〈
γ′0(0), V (0)

〉
=
〈
γ′0(1), 0

〉
− 〈w, v〉 = −〈w, v〉 .

Since γ0 is minimizing then we can equivalently restate

lim
s→0

E [γs]− 1
2d

2
y(x)

s
= −〈w, v〉 , (4.B.1)

and it is clear that

1
2d

2
y(expx(sv))− 1

2d
2
y(x)

s
≤
E [γs]− 1

2d
2
y(x)

s
, s ∈ (−s0, s0),

Taking lim sup as s→ 0+ and using the above formula (4.B.1) implies

d+

(
1

2
d2
y

)

x

(v) ≤ −〈v, w〉 ,

where w ∈ exp−1
x (y) such that |w| = d(x, y) is arbitrary. This ends the proof.
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5.1. INTRODUCTION

5.1 Introduction

In the present chapter, we quantify the rate of convergence to the global equilibrium for C1 so-
lutions to the Kuramoto–Sakaguchi equation from generic initial data, providing a first quan-
titative result in this context. As a by-product, we derive a quantitative statistical estimate,
on the rate of concentration for the original agent-based Kuramoto model. Such a model
was introduced by Y. Kuramoto several decades [195, 196] ago and is one of the paradigms
to study collective synchronization phenomena in biological and mechanical systems in na-
ture. It has gained extensive attention from the physics and mathematics community, see
[1, 11, 24, 45, 58, 75, 109, 145, 157, 155, 209, 248, 280, 297].

The main motivation to perform our study on the Kuramoto–Sakaguchi equation is three-
fold. First, such a model has become a starting point for a broad family of models in collective
dynamics. Historically, many of the central analytical techniques developed to study such
models were first applied to the Kuramoto model and later generalized to the rest of the field.
Second, the Kuramoto model provides a concrete example of a gradient flow structure in which
the energy functional is not convex. Such lack of convexity generates challenges to use theory
of gradient flows to derive rates of convergence. Third, we are interested in quantifying the
relaxation time of a nondeterministic event. Indeed, in a large coupling strength regime, one
expects relaxation to the global equilibrium of the particle system with almost sure probability.
However, such relaxation fails for some well prepared initial data.

In the case of identical oscillators, the Kuramoto–Sakaguchi equation exhibits a gradient
flow structure in the space of probability measure under the Wasserstein distance. Nowadays,
it is well-known that transportation distances between measures can be successfully used to
study evolutionary equations. More precisely, one of the most surprising achievements of [180,
237, 236] has been that many evolutionary equations of the form

∂ρ

∂t
= div

(
∇ρ+ ρ∇V + ρ(∇W ∗ ρ)

)
,

can be seen as gradient flows of some entropy functional in the spaces of probability measures
with respect to the Wasserstein distance. When such entropy functionals are convex with re-
spect to the Wasserstein distance, such an interpretation allows proving entropy estimates and
functional inequalities (see [296] for more details on this area). Such tools, in turns, can be used
to obtain convergence rates and stability estimates of the corresponding equations.

There are two main difficulties when one tries to use such a theory in the Kuramoto–
Sakaguchi equation. First, even in the identical case, as for the Kuramoto model, the entropy
functional associated with the equation does not satisfy the necessary convexity hypothesis.
Second, in the nonidentical case, the Wasserstein gradient flow structure of the equation is not
available. On the other hand, the Kuramoto–Sakaguchi equation has the virtue that the broad
family of unstable equilibria is characterized easily. Thus, it provides an ideal setting in which
to develop techniques to attack the lack of convexity.

In this chapter, we adapt the techniques developed by L. Desvilletes and C. Villani in [104]
to derive quantitative convergence rates for a nonconvex gradient flow in the particular context
of the Kuramoto–Sakaguchi equation. We hope that this provides insight on how to attack this
difficulty in more general situations.

The rest of the section is devoted to introduce the model. Then, we will recall the current
state of the art regarding the asymptotics of the system in a strong coupling strength regime.
Finally, we will state our main result, the proof of which will be the object of the rest of the
chapter.
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5.1.1 The Kuramoto model

The Kuramoto model governs the synchronization dynamics of N oscillators - each identified
by its phase and natural frequency pair (θi(t),Ωi) in T × R. Such dynamics is given by the
system 




θ̇i = Ωi +
K

N

N∑

j=1

sin(θj − θi),

θi(0) = θi,0,

(5.1.1)

for i = 1, · · · , N . The large crowd dynamics, N → ∞, is captured by the kinetic description,
given by the Kuramoto–Sakaguchi equation, which governs the probability distribution of os-
cillators f(t, θ,Ω) at (t, θ,Ω) ∈ R+ × T× R





∂f

∂t
+

∂

∂θ
(v[f ]f) = 0, (θ,Ω) ∈ T× R, t ≥ 0,

f(0, θ,Ω) = f0(θ,Ω), (θ,Ω) ∈ T× R.
(5.1.2)

We denote the velocity field by v[f ], that is,

v[f ](t, θ,Ω) := Ω +K

∫

T
sin(θ′ − θ)ρ(t, θ′) dθ′, (5.1.3)

and we define

ρ(t, θ) :=

∫

R
f(t, θ,Ω) dΩ, g(Ω) :=

∫

T
f(t, θ,Ω) dθ =

∫

T
f0(θ,Ω) dθ.

Here, K is the positive coupling strength and measures the degree of the interaction between
oscillators, and ρ and g respectively describe the macroscopic phase density and natural fre-
quency distribution. The rigorous derivation from (5.1.1) to (5.1.2) was done by Lancellotti
[198] using Neunzert’s method [230].

5.1.2 The gradient flow structure and stationary solutions

The Kuramoto model in TN can be lifted to a dynamical system in RN . J. L. van Hemmen and
W. F. Wreszinki [290] observed that by doing this the Kuramoto model can be formulated as a
gradient flow of the energy

V (Θ) = − 1

N

N∑

j=1

Ωjθj +
K

2N2

N∑

k,j=1

(
1− cos(θj − θk)

)
, (5.1.4)

under the metric of RN induced by the scaled inner product

〈v, w〉N =
v · w
N

. (5.1.5)

Here, Θ = (θ1, ..., θN ), v, and w belong to RN . Specifically, (5.1.1) solves the gradient flow
problem {

Θ̇(t) = −∇NV (Θ(t)),

Θ(0) = Θ0,
(5.1.6)
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where ∇N denotes the gradient with respect to the scaled inner product. Let us also recall that
if we define the order parameters Θ 7−→ r(Θ), φ(Θ) by the relation

r(Θ)eiφ(Θ) =
1

N

N∑

k=1

eiθk ,

then, we have that the potential reads

V (Θ) = − 1

N

N∑

j=1

Ωjθj +
K

2

(
1− r2(Θ)

)
, (5.1.7)

and the gradient slope take the form

|∇NV (Θ)|2N =
1

N

N∑

j=1

∣∣∣∣Ωj −Kr sin(θj − φ)

∣∣∣∣
2

. (5.1.8)

The main interest of the order parameter is that r(Θ) represents a measure of coherence for the
ensemble of oscillators. Specifically, when r(Θ) is close to 1, then all the phases θi within Θ
tend to be synchronized around the same phase value. Moreover, using them we can rewrite
system (5.1.1) as follows

θ̇i = Ωi −Kr sin(θi − φ),

for every i = 1, · · · , N . Without lost of generality we may assume that, the natural frequencies
are centered, i.e.,

1

N

N∑

i=1

Ωi = 0. (5.1.9)

We observe that such a condition is not restrictive because we can always perform a linear
change of the reference frame to guarantee it. However, such condition is necessary to show
the existence of stationary states and we shall assume it throughout the chapter. For any such a
stationary state Θ∞ so that r∞ > 0, we must have that ∇V (Θ∞) = 0. Using (5.1.8), we readily
obtain that at equilibria the following condition holds

max
1≤j≤N

|Ωj | ≤ Kr∞,

and phases θj must take some of the following two forms

θj,∞ = φ∞ + arcsin

(
Ωj

Kr∞

)
,

θj,∞ = φ∞ + π − arcsin

(
Ωj

Kr∞

)
,

(5.1.10)

for every j = 1, . . . , N .
In the same spirit, the Hessian operator of the potential V is given by

〈D2
NV (Θ)v, v〉N =

K

N

N∑

j=1

r cos(θj − φ)|vj |2 −K
∣∣∣∣

1

N

N∑

j=1

vje
iθj

∣∣∣∣
2

, (5.1.11)
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D2
NV denotesthe Hessian operator with respect to the scaled inner product (5.1.5) and v =

(v1, ...vN ) is contained in RN . From this, after accounting for the rotational invariance of the
model, we deduce that the stable equilibrium must satisfy that

θj,∞ = φ+ arcsin

(
Ωj

Kr∞

)
,

for every j = 1, . . . , N .

Remark 5.1.1. When r = 0 there are plenty more equilibria. In the identical case it can be shown that
they are non-isolated even after accounting for rotation invariance.

For the Kuramoto–Sakaguchi equation, in the case of identical oscillators, the equation en-
joys a Wasserstein gradient flow structure (we refer the reader to Appendix A from [154]). In
the nonidentical case, this structure is not strictly available. Nonetheless, in our analysis, we
use several techniques and objects inspired by theory of gradient flows in the space of proba-
bility measures. Similarly, if we consider the continuous version of the order parameters

Reiφ =

∫

T×R
eiθf(t, θ,Ω) dθ dΩ, (5.1.12)

equation (5.1.2) can be restated as follows

{
∂f

∂t
+

∂

∂θ
(Ωf −KR sin(θ − φ)f) = 0, (θ,Ω) ∈ T× R, t ≥ 0,

f(0, θ,Ω) = f0(θ,Ω), (θ,Ω) ∈ T× R.

Again, without loss of generality, we can assume that g is centered as well, i.e.,
∫

R
Ωg(Ω) dΩ = 0. (5.1.13)

Again, this is a necessary condition for equilibria to exist and we shall assume it throughout
the chapter. For any such equilibria f∞ with corresponding R∞ > 0, we obtain that

supp g ⊆ [−KR∞,KR∞],

and f∞ takes the form

f∞(θ,Ω) = g+(Ω)⊗ δϑ+(Ω)(θ) + g−(Ω)⊗ δϑ−(Ω)(θ), (5.1.14)

where,
g = g− + g+,

for some non-negative g−, and g+ and

ϑ+(Ω) = φ∞ + arcsin

(
Ω

KR∞

)
,

ϑ−(Ω) = φ∞ + π − arcsin

(
Ω

KR∞

)
,

for each Ω ∈ supp g. As it will become apparent later along the chapter, the stable equilibria
with R∞ > 0 correspond to the case g− = 0 where there is no antipodal mass.
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5.1.3 Statement of the problem and main results

By direct inspection of the Hessian of the energy (5.1.11), one can see that, in a large coupling
strength regime, out of all of the possible equilibria up to rotations; there is only one that is
stable. That is the equilibrium in which the Hessian operator is strictly positive on the sub-
space orthogonal to rotations. One expects that with probability one, the system (5.1.1) should
converge to such equilibria if the coupling strength is sufficiently large. Such phenomenon
has been widely observed in numerical simulations. However, to the date, this result is absent
from the literature. It has only been verified for restricted initial configurations where all of the
oscillators are constrained in an arc of the circle [75].

There have been many approaches in the literature to show the convergence of the system
to the critical points of (5.1.11) in the large coupling strength regime. Since stable equilibria
have oscillators contained within an interval of size less than π, convergence results have been
mainly addressed in the particular case where initial data is originally confined to such a basin
of attraction, namely a half-circle. Specifically, in [75, 145] a system of differential inequalities
was found for the phase and frequency diameter, that yields the convergence of the system
to a phase-locked state. Recall that (5.1.1) is a gradient flow (5.1.6) governed by a potential
energy (5.1.4). In [157, 202] the authors derived the convergence to phase-locked states using
Łojasiewicz gradient’s inequality for analytic potentials [204] and it was used to obtain conver-
gence rates (after some unquantified initial time) in some particular cases where the Łojasiewicz
exponent can be explicitly computed. For general initial data along the whole circle, the liter-
ature is rare and the main contribution is [147], but rates are not available. One of the main
difficulties when trying to use standard theory from dynamical systems to show this is the fact
that critical points of (5.1.11) are not isolated (see Remark 5.1.1).

In the continuum case, accumulation of oscillators in the hemisphere opposite of the order
parameter was excluded in [154]. However, convergence towards a stationary solution was not
established yet for generic initial data. See [58] for a particular proof when the phase diameter
is smaller than π. Additionally, see [24] for a description of the equilibrium in the kinetic case,
where a conditional convergence result is presented, without rates. To date, regarding generic
initial data, there are only arguments based on compactness that do not give any bound on the
rate of convergence.

Our goal here is precisely to investigate the long-time relaxations of solutions to the global
equilibrium. We are interested in the study of rates of convergence for the Kuramoto–Sakaguchi
equation towards the stable equilibria from generic initial data. Additionally, we wish to de-
rive constructive bounds for this convergence and use them to obtain quantitative information
about the convergence of the particle system to the global equilibria as well. There are several
reasons why one may be interested in explicit bounds on the rate of convergence. In particular,
one may look for the qualitative properties of solutions. More importantly, only after getting
convergence rates, we can use the dynamics of the kinetic equations to deduce quantitative
statistical information about the particle system.

The first thing that one might be tempted to do is to apply linearization techniques around
the equilibria. This analysis has been done in [106, 107, 108, 109], and is connected with the
methods in Landau Damping. However, there is a fundamental reason not to be content with
that analysis, which has to do with the nature of linearization. Quoting L. Desvillettes and C.
Villani :

This technique is likely to provide excellent estimates of convergence only after the solution has
entered a narrow neighborhood of the equilibrium state, narrow enough that only linear terms are pre-
vailing in the equation. But by nature, it cannot say anything about the time needed to enter such a
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neighborhood; the later has to be estimated by techniques which would be well-adapted to the nonlinear
equation.

Here is where our contribution takes places, and this is why we shall not rely on lineariza-
tion techniques. Instead, we shall stick as close as possible to the physical mechanism of en-
tropy production. Our main result is here:

Theorem 5.1.2. Let f0 be contained in C1(T × R) and let g be compactly supported in [−W,W ].
Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then, there exists a
universal constant C such that if

W

K
≤ CR3

0, (5.1.15)

then we can find a time T0 with the property that

T0 .
1

KR2
0

log

(
1 +W 1/2‖f0‖L2 +

1

R0

)
, (5.1.16)

and
W2,g(ft, f∞) . e−

1
40
K(t−T0), for all t in [T0,∞).

Here, W2,g represents the fiberwise Wasserstein distance that we introduced in Chapter 4 (see also Ap-
pendix F) and f∞ is the unique global equilibrium of the Kuramoto–Sakaguchi equation up to rotations
(see Proposition 5.3.8).

In the above theorem and throughout the rest of the chapter, given two function h1 and h2

involving the different parameters in our system, we say that h1 . h2 if there exists a universal
constant C such that h1 ≤ Ch2. Since our argument is constructive, every time we use such a
notation, we could compute C explicitly. Additionally, because we often deal with absolutely
continuous measures, by abuse of notation, we will sometimes use f to denote the measure
f dx.

As a direct consequence of our main theorem, we obtain the following quantitative concen-
tration estimate for the particle system.

Corollary 5.1.3. Let µNt be a sequence of empirical measures associated to solutions of the particle
system (5.1.1) starting at independent and identically distributed random initial data with law f0 (see
Section 5.6 for further details). Assume that f0, R0, K, and W satisfy the hypotheses of Theorem 5.1.2
and let L be an interval with diameter 2/5 centered around the phase φ∞ of the global equilibrium f∞.
Then, there exists a positive time T0 satisfying (5.1.16) and an integer N∗ with the property that

logN∗ .
1

R2
0

log

(
1 +W 1/2‖f0‖L2 +

1

R0

)
,

and for any N ≥ N∗ and any s contained in the interval
[
T0, T0 +

1

25K
log

(
N

N∗

)]
,

we can quantify the probability of mass concentration and diameter contraction of the particle system
with N oscillators. Indeed, we have that

P
(
∀ t ≥ s, ∃LNs (t) ⊆ T : LNs (s) = L and (M)− (D) holds

)
≥ 1− C1e

−C2N
1
2 .

275



5.2. STRATEGY

Here, conditions (M) and (D) yield mass concentration and diameter contraction. More precisely, such
properties are given by

µNt (LNs (t)× R) ≥ 1− 1

5
e−

1
20
K(s−T0), for every t in [s,∞), (M)

diam(LNs (t)) ≤ max

{
4

5
e−

K
20

(t−s), 12
W

K

}
, for every t in [s,∞). (D)

Additionally, C1 and C2 are universal positive constants which could be explicitly computed.

5.1.4 Ingredients

The proof of Theorem 5.1.2 is the first quantitative proof for the relaxation problem for Ku-
ramoto oscillators with generic initial data. It is intricate but rests on a few well-identified
principles. Such principles apply with a lot of generalities to many variants of the Kuramoto
model. The proof builds upon the following ingredients.

- A quantitative entropy production estimate inspired by the formal Riemannian calculus
of the probability measures under the Wasserstein distance, first introduced by F. Otto in
[237], which we address in Subsection 5.2.3 and Section 5.5. See also [154, Appendix A]
for an overview in the context of Kuramoto–Sakaguchi with identical oscillators.

- The fiberwise Wasserstein distance W2,g introduced in Appendix F of the thesis and also
used in the above Chapter 4. Such a distance is well adapted to the nonlinear problem. By
using this distance, in Section 5.3 we will derive new logarithmic Sobolev and Talagrand
type inequalities associated with it (see [238]).

- A quantitative instability estimate excluding the equilibria with mass in the opposite pole
of the order parameter, that we derive in Section 5.4. A form of such an estimate was
originally presented in [154], but we use a more refined version in this work.

- A new estimate on the norms of the solution on sets evolving by the flow of the continuity
equation that allows us to propagate information along the different parts of the system.
We discuss these estimates in Subsection 5.4.1.

For pedagogical reasons, before entering into the details of the proof, we shall provide first
a summary of the strategy. Such a summary will be the objective of the next section.

5.2 Strategy

In this section, we shall describe the plan of the proof of Theorem 5.1.2, and the system of
differential inequalities upon which our estimates of convergence are based.

Two of the most attractive features of our proof are the fact that it follows the intuition
derived from the mechanism of entropy production, and it is systematic. Additionally, it cap-
italizes on the behavior observed in numerical simulations under a large coupling strength
regime.

We shall overcome three crucial difficulties. First, the order parameter R defined in (5.1.12)
is not monotonic and when it vanishes so does the mean-field force between particles. Addi-
tionally, our description of the equilibria is only valid when it is positive (this difficulty plays
an essential role in the particle system as well). The second difficulty is the fact that Kuramoto–
Sakaguchi equation tends to concentrate the density, which produces exponential growth of
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the global Lp norms for p > 1. The third difficulty, related to the second one, is that a large
family of equilibria with mass in the opposite hemisphere of the order parameter appears in
which the entropy production vanishes.

In the particle system (5.1.1), the potential function V plays the role of the entropy. Conse-
quently, since the particle system is a gradient flow (see (5.1.6)), we have that

d

dt
V (Θ(t)) = −|∇NV (Θ(t))|2N .

Thus, we can see from this expression that when the particle system slope |∇NV (Θ(t))|2N , is
large, then the potential function V (Θ(t)) should decrease locally. To quantify the rate of in-
crease of the slope, the starting point is the Hessian operator (5.1.11) of the energy functional
for the particle system. Such an expression implies that D2

NV (Θ(t)) is bounded from above (as
a quadratic form) by Kr(Θ(t)), that is,

〈D2
NV (Θ(t))v, v〉N ≤ Kr(Θ(t))|v|2N ,

for any (v1, . . . , vN ) in RN , which implies the differential inequality

−2Kr(Θ(t))|∇NV (Θ(t))|2N ≤
d

dt
|∇NV (Θ(t))|2N ≤ 2K|∇NV (Θ(t))|2,

along solutions of the Kuramoto model (5.1.1). Notice that by (5.1.7)

V (Θ(t))

K
and 1− r2(t),

are related up to lower-order terms that can be neglected thanks to condition (5.1.15). Simi-
larly, considering the time derivative of the above quantities, we have that the following two
expressions

|∇NV (Θ(t))|2N
K

and
dr2

dt
(t),

should also differ by a lower-order term that, again, can be controlled using (5.1.15). This
justifies that, in the large coupling strength regime, we indistinctly call dR

2

dt and |∇NV (Θ(t))|2N
the dissipation.

In the continuous case, those objects were extended to the setting of the Kuramoto–Sakaguchi
equation (5.1.2) with identical oscillators using the Riemannian structure introduced by F. Otto
for the space of probability measures (see [154, Appendix A]). However, in the non-identical
case the Kuramoto–Sakaguchi equation (5.1.2) is not a Wasserstein gradient flow and this
presents an obstacle to try to use the above objects. By analogy, let us define the continuum
analog of the particles’ slope (5.1.8) given, by,

I[f ] :=

∫

T×R
(Ω−KR sin(θ − φ))2 f dθ dΩ. (5.2.1)

We shall again call this quantity the dissipation. Indeed, notice that taking derivatives in
(5.1.12), one clearly obtains the following dynamics of the order parameters

Ṙ = −
∫

T×R
sin(θ − φ)(Ω−KR sin(θ − φ))f dθ dΩ,

φ̇ =
1

R

∫

T×R
cos(θ − φ)(Ω−KR sin(θ − φ))f dθ dΩ.

(5.2.2)
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Using it, we will show, in Lemma 5.3.12, that dissipation and time derivative of the order
parameter are again related up to lower-order terms that can be controlled by condition (5.1.15),
i.e.,

I[ft]−W 2 ≤ K d

dt
(R2) ≤ 3 I[ft] +W 2.

Indeed, in Corollary 5.3.2 we show that we can again control the growth of the dissipation in
the continuous description in a similar way, namely,

−2KRI[f ] ≤ d

dt
I[f ] ≤ 2KI[f ].

In Subsection 5.2.3, we will describe how this relationship along with the principle of en-
tropy production, can be used to provide a universal lower bound of R(t) of the form λR0, for
some λ in (0, 1). In fact, we will show that by making K sufficiently large we can make λ as
close to one as needed.

5.2.1 Displacement concavity and entropy production

Before entering into the details of the entropy production principle, we set some necessary
notation. We define a dynamic neighborhood of the order parameter φ and its antipode as
follows.

Definition 5.2.1. Given an angle α in (0, π2 ), we denote by L+
α (t) the interval (arc) in T that is centered

around φ(t), and has a diameter π − 2α, that is,

L+
α (t) =

(
φ(t)− π

2
+ α, φ(t) +

π

2
− α

)
.

Similarly, we denote by L−α (t) the interval (arc) in T of the same diameter that is centered around the
antipode φ(t) + π, that is,

L−α (t) =

(
φ(t) +

π

2
+ α, φ(t) +

3π

2
− α

)
.

In this way, L+
α (t) ∪ L−α (t) is a neighborhood of the average phase and its antipode.

Also, here and throughout the rest of the chapter, given a measurable set B ⊆ T we define

ρt(B) =

∫

B
ρ(t, θ) dθ,

and more generally, we will, let

ρ(A(t)) =

∫

A(t)
ρ(t, θ) dθ,

for any time-dependent family of measurable sets t→ A(t).
Now we describe the entropy production principle in our context. Roughly speaking, it will

quantify the following fact:

If at some time t the system is far from the family of equilibria with positive order parameter, then
the order parameter will increase a lot in the next few instants of time.
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To make it rigorous, let us come back to the dissipation functional (5.2.1). As for the particle
system (5.1.8), notice that I[f ] vanishes if, and only if, f is an equilibrium. Hence, I[f ] can
be thought of a natural measure of how close a given f is to the family of equilibria (5.1.14).
Notice that such expression of equilibria (5.1.14) guarantees that, by our assumption (5.1.15) on
W
K , all the possible equilibria in our analysis have phase support confined to small arcs centered
around φ and its antipode φ+π. Since the diameter of the neighborhood can be made arbitrarily
small due to hypothesis (5.1.15), then we can fix any small enough value of α for the size of the
neighborhood L+

α (t) ∪ L−α (t). For simplicity, we will set α = π/6 all along the chapter.
The entropy production principle then shows that, in the large coupling strength regime,

if entropy production is small (i.e., the time derivative of the order parameter is small), then
most of the mass of the system lies in the neighborhood L+

α (t) ∪ L−α (t) of φ(t) and its antipode.
Specifically, in the proof of Proposition 5.3.14, we will quantify such assertion as follows

ρ(T\L+
α (t) ∪ L−α (t)) ≤ 1

KR2 cos2 α

d

dt
R2 +

W 2

K2R2 cos2 α
. (5.2.3)

In other words, (5.2.3) suggests that when f is sufficiently far from the family of equilibria
(5.1.14) (i.e. it has enough mass outside the time-dependent neighborhood L+

α (t)∪L−α (t)), then
the dissipation I[f ] is large. Consequently, the time derivative of the order parameter is large
in this case as well, and this produces an entropy production of the system.

In the Lemma below, we quantify the corresponding gain in the order parameter.

Lemma 5.2.2. (Semiconcavity and entropy production) Assume that f0 is contained in C1(T×R)
and that g is compactly supported in [−W,W ]. Consider the unique global-in-time classical solution
f = f(t, θ,Ω) to (5.1.2). Let α = π/6, t0 be a positive time, and λ be contained in (0, 1). Additionally,
suppose that

√
2R0 ≥ R(t0) > λR0 and Ṙ(t0) ≥ K

4
cos2 αλ3R3

0.

Then, there exists a universal constant C such that if

W

K
≤ Cλ2R2

0, (5.2.4)

then,
R2(t0 + d)−R2(t0) ≥ 1

40
λ4R3

0. (5.2.5)

Moreover, we can select d in such a way that

d ≤ 1

3KR0
log 10,

and
R ≤ 3

2
R0 in [t0, t0 + d].

5.2.2 Small dissipation regime and lower bound of R

When the dissipation is large, the above entropy production principle quantifies the gain of
the order parameter in the next few instants of time. Regarding the reverse regime with small
dissipation, Proposition 5.3.14 in Section 5.3 will show that when Ṙ is below a critical threshold,
we achieve the following differential inequality

d

dt
R2 >

K

2

(
−R3 + [λR0 +

3

5
(1− λ)R0]R2 − 3

5
(1− λ)λ2R3

0

)
, (5.2.6)
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which hold in any time interval [t1, t2] such that

Ṙ(t) ≤ K

4
cos2 αλ3R3

0 in [t1, t2].

The estimate (5.2.3) will be crucial to derive such a proposition. Additionally, note that the
right-hand side of (5.2.6) vanishes when R = λR0. In Corollary 5.3.15, we will combine this
inequality with the above entropy production in Lemma 5.2.2 to quantify a universal lower
bound R(t) ≥ λR0 of the order parameter.

5.2.3 Instability of the antipodal equilibria

The main obstacle to use the above entropy production estimate to show the convergence to
the global equilibrium is the fact that it does not exclude the possibility that Ṙ may vanish or
alternate signs over long periods. To overcome such difficulty we need to quantify the instabil-
ity of the antipodal equilibrium, that roughly speaking states the following:

If the system is eventually close enough to a critical point and such a critical point has mass in the
opposite hemisphere of the order parameter, then the system would depart from such equilibria and mass
will leave the opposite hemisphere exponentially fast.

To quantify this instability, let us first introduce some necessary notation. We consider a
smooth regularization of the characteristic function of L−α (t) as follows

χ−α,δ0(θ) = ξα,δ0(θ − φ− π),

where δ0 > 0 is a small fixed parameter and ξα,δ0 is a smooth regularization of the characteristic
function of [−(π2 − α), (π2 − α)], namely,

ξα,δ0(r) :=





1, if |r| ≤ π
2 − α,

1

1 + exp
(

2|r|−(π−2α+δ0)
(π

2
−α+δ0−|r|)(|r|−π2 +α)

) , if π
2 − α ≤ |r| ≤ π

2 − α+ δ0,

0, if |r| ≥ π
2 − α+ δ0.

(5.2.7)

As for α, we can take δ0 as small as desired. For notational simplicity we will set

ξα := ξα,1/2 and χ−α := χ−α,1/2.

Additionally, we will use the notation

f2
t (B) =

∫

A
f2(t, θ,Ω) dθ dΩ,

for any measurable set B ⊆ T and, more generally,

f2(ϕ) =

∫
ξ(t, θ,Ω)f2 dθ dΩ,

for any function ϕ : R+×T×R→ R. Bearing all the above notation in mind, the main inequality
quantifying the instability of equilibria with antipodal mass reads as follows

d

dt
f2(χ−α (t)) ≤ −KR sinαf2(χ−α (t))) + 4Kf2

t

(
T
)[W
K

+

√
2Ṙ

KR
+

1

R2

W 2

K2
−R cosα

]+

.
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Although this inequality is a variant of an estimate previously introduced in [154], we prove it
in Proposition 5.4.1 because it fits better the approach in this chapter.

Notice that when the system is close enough to an equilibrium so that the dissipation is be-
low a critical threshold, the second term of this inequality vanishes and, indeed, it establishes
the instability of equilibria with antipodal mass. However, when one tries to use such inequal-
ity to quantify the convergence rates, but the dissipation is not sufficiently small, one sees that
the term f2

t

(
T
)

represents an obstacle. Specifically, it stands to reason that one can produce
examples in which f2

t

(
T
)

grows exponentially fast because the Kuramoto–Sakaguchi equation
concentrates mass. We solve this difficulty by adopting a Lagrangian viewpoint in which we
analyze norms of the solution along sets evolving according to the continuity equation. That is
the content of the next subsection.

5.2.4 Sliding norms

The key ingredient that allows us to relate the different functionals appearing in our estimates
is the notion of sliding norms along the flow of the continuity equation. For this purpose, we
let X(t; t0, θ,Ω) = (Θ(t; t0, θ,Ω),Ω) be the forward flow associated to the continuity equation
(5.1.2) like in Chapter 4. That is





d

dt
Θ(t; t0, θ,Ω) = KR(t) sin(Θ(t; t0, θ, ω)− φ),

Θ(t0; t0, θ,Ω) = θ,

for any t, t0 ≥ 0. Throughout this chapter we will use the following shorter notation

Xt0,t(θ,Ω) ≡ X(t; t0, θ,Ω) and Θt0,t(θ,Ω) ≡ Θ(t; t0, θ,Ω),

for every (θ,Ω) ∈ T × R and every t, t0 ∈ R. Using such notation, for any measurable subset
A ⊆ T× R we will denote

At0,t := Xt0,t(A),

for each t ≥ t0 ≥ 0. Similarly, given a measurable set B ⊆ T, we will denote

Bt0,t := Θt0,t(B × [−W,W ]),

for each t ≥ t0 ≥ 0. In particular, notice that Bt0,t is nothing but the projection on T of the set
(B × [−W,W ])t0,t. Finally, if the above subsets depend on time, i.e. A = A(t) and B = B(t),
then we will sometimes simplify our notation as follows

A(t0)t ≡ A(t0)t0,t and B(t0)t ≡ B(t0)t0,t,

for every t ≥ t0 ≥ 0. Now, we are a position to state our sliding norm estimate which is given
by

d

dt
f2(At0,t) ≤ KR

(
sup

(θ,Ω)∈At0,t
cos(θ − φ(t))

)
f2(At0,t),

and holds for any measurable set A ⊆ T × R. We prove such inequality in Lemma 5.4.2.
To use this inequality effectively, one must obtain a control on the dynamics of sets evolving
according to the characteristic flow, both in the large and small dissipation regime. We perform
this analysis in Subsection 5.4.1.
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5.2.5 The system of differential inequalities

All the above-mentioned bounds lead to a system of coupled differential inequalities and func-
tional inequalities. For convenience, let us recast it explicitly here:

d

dt
f2(At0,t) ≤ KR

(
sup

(θ,Ω)∈At0,t
cos(θ − φ(t)

)
f2(At0,t), (5.2.8)

− 2KRI[f ] ≤ d

dt
I[f ] ≤ 2KI[f ], (5.2.9)

I[ft]−W 2 ≤ K d

dt
R2 ≤ 3 I[ft] +W 2, (5.2.10)

d

dt
f2(χ−α (t)) ≤ −KR sinαf2(χ−α (t))) + 4Kf2

t

(
T
)[W
K

+

√
2Ṙ

KR
+

1

R2

W 2

K2
−R cosα

]+

, (5.2.11)

d

dt
R2 > K

(
−R3 + [λR0 +

3

5
(1− λ)R0]R2 − 3

5
(1− λ)λ2R3

0

)
, (5.2.12)

where the first inequality holds for any measurable set A ⊆ T × R, the last inequality holds in
any interval [t1, t2] satisfying the hypotheses of Proposition 5.3.14, and all of the other inequal-
ities above holds for every t in [0,∞).

The goal of such a system is to derive an explicit bound on the time T0 in Theorem 5.1.2.
To achieve this, we use two main components. On the one hand, we study the dynamics of
sets along the characteristic flow in Subsection 5.4.1. On the other hand, we recover the ap-
proach developed by L. Desvillettes and C. Villani in [104] in our setting. Such an argument is
described in detail in Section 5.5 and it consists of performing a subdivision into time intervals
subordinated to different scales of values of the order parameter. Such intervals are classified
into intervals where the dissipation is above and below a certain threshold. If the dissipation is
large on an interval, we use the lower bound (5.2.9) in the form of our entropy production esti-
mate to quantify the increase of the order parameter. Conversely, if the dissipation is small, we
use (5.2.11) to quantify the departure of the system from the family of equilibria with antipodal
mass. To do this effectively, we communicate information between the different regimes using
inequality (5.2.8) and our analysis on the dynamics of sets from Subsection 5.4.1.

As a result of the above analysis, we obtain the following corollary:

Corollary 5.2.3. Let f0 be contained in C1(T × R) and let g be compactly supported in [−W,W ].
Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2) and let β = π/3. Then,
there exists a universal constant C such that if

W

K
≤ CR3

0,

then we can find a time T0 with the property that

T0 .
1

KR2
0

log

(
1 +W 1/2‖f0‖L2 +

1

R0

)
,

and
R(t) ≥ 3

5
and ρ

(
T\L+

β (t)
)
≤ e− 1

20
K(t−T0), (5.2.13)

for every t in [T0,∞).

Such a Corollary is the starting point of the last part of our strategy.
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5.2.6 Local displacement convexity and Talagrand type inequalities

At the particle level, we see that the Hessian operator (5.1.11) is positive definite in the subspace
orthogonal to rotation whenever the oscillators are strictly contained one a suitable interval.
As mentioned in Section 5.1, the classical theory of gradient flows allows deriving convergence
rates towards equilibrium when the energy is strictly convex. Thus, once the mass enters expo-
nentially fast to the region of convexity after T0, one may hope to recover such a convergence
result for our system. Indeed, inspired by the arguments in [238] on their proof of the log-
arithmic Sobolev and Talagrand inequalities, we derive analogous inequalities that yield the
exponential convergence result and uniqueness of the global equilibrium. Since our system is
not a Wasserstein gradient flow, we derive such inequalities for the fiberwise transportation
distance W2,g, that has been introduced in Chapter 4 (also see Appendix F) and is well adapted
to the nonlinear problem. The proof of such inequalities is the content of the next section.

5.3 Functional inequalities

As discussed before, the proof of Theorem 5.1.2 will be split into two distinguished parts that
capture two qualitatively different features of the dynamics of Kuramoto–Sakaguchi equation
(5.1.2). Firstly, recall that from many preceding works (see e.g., [24, 58, 154]) it is apparent
that the entropy functional of the equation does not satisfy the necessary convexity properties
for the classical theory of gradient flows to work and show convergence towards the global
equilibrium. Thus, we need to prove, using different tools, that the dynamics of the equation
itself drives the system towards an appropriate “convexity area” exponentially fast after some
quantified time T0 > 0. This is the content of Corollary 5.2.3 where such a convexity area is
described by a dynamic neighborhood of the order parameter φ.

The proof of such result is postponed to forthcoming sections and becomes the cornerstone
of this chapter. We devote this part to study the other main feature of the dynamics. Specif-
ically, we show that although the system is not a Wasserstein gradient flow, the generalized
dissipation functional that has been introduced in (5.2.1) satisfies an appropriate Hessian-type
inequality after the solution has entered into the concentration regime quantified in Corollary
5.2.3. The final step is inspired in [238] about the derivation of the logarithmic Sobolev and Ta-
lagrand inequalities for gradient flows in then Wasserstein space. Indeed, we shall show that
despite the fact that our system is not a Wasserstein gradient flow due to the presence of het-
erogeneities introduced by Ω, some dissipation-transportation inequality still can be achieved
for an adequate distance on the space of probability measures. Such inequality along with
the exponential decay of the dissipation guarantee the exponential convergence to the global
equilibrium in Theorem 5.1.2.

To start, we first study the dynamics of the dissipation functional (5.2.1) along the flow of
the Kuramoto–Sakaguchi equation.

Theorem 5.3.1. Assume that f0 is contained in C1(T×R) and g is compactly supported in [−W,W ].
Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then,

d

dt
I[f ] = −K

∫

T2×R2

(
(Ω−KR sin(θ − φ))− (Ω′ −KR sin(θ′ − φ))

)2

× cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′.

Proof. Taking derivatives yields the Wasserstein two terms

d

dt
I[f ] = I1 + I2,
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where each of them takes the form

I1 := 2

∫

T×R
(Ω−KR sin(θ − φ))(−KṘ sin(θ − φ) +KR cos(θ − φ)φ̇)f dθ dΩ,

I2 :=

∫

T×R
(Ω−KR sin(θ − φ))2∂tf dθ dΩ.

Let us use (5.2.2) and substitute the formulas for Ṙ and φ̇ in each term. By doing this, we get
that

I1 = 2K

∫

T2×R2

(Ω−KR sin(θ − φ))(Ω′ −KR sin(θ′ − φ))

× (sin(θ − φ) sin(θ′ − φ)− cos(θ − φ) cos(θ′ − φ))f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

= 2K

∫

T2×R2

(Ω−KR sin(θ − φ))(Ω′ −KR sin(θ′ − φ))

× cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′,
(5.3.1)

and

I2 =

∫

T×R
∂θ
[
(Ω−KR sin(θ − φ))2

]
(Ω−KR sin(θ − φ))f dθ dΩ

= −2K

∫

T×R
(Ω−KR sin(θ − φ))2R cos(θ − φ)f dθ dΩ,

where we have used the Kuramoto–Sakaguchi equation (5.1.2) and integration by parts. Notice
that by definition of the order parameter (5.1.12), we obtain

R cos(θ − φ) =

∫

T×R
cos(θ − θ′)f(t, θ′,Ω′) dθ′ dΩ′. (5.3.2)

Using such identity in the above formula for I2 implies

I2 = −2K

∫

T2×R2

(Ω−KR sin(θ − φ))2 cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′. (5.3.3)

Let us now change variables (θ,Ω) with (θ′,Ω′) in (5.3.3) and take the mean value of both
expressions for I2. Since the cosine is an even function, we equivalently write

I2 = −K
∫

T2×R2

((Ω−KR sin(θ − φ))2 + (Ω′ −KR sin(θ′ − φ))2)

× cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′.
(5.3.4)

Finally, putting (5.3.1) and (5.3.4) together and completing the square yield the desired result.

As a consequence of the previous theorem, we obtain the following quantitative behavior
of the dissipation.

Corollary 5.3.2. Assume that f0 is contained in C1(T×R) and g is compactly supported in [−W,W ].
Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then,

− 2KR I[f ] ≤ d

dt
I[f ] ≤ 2KI[f ], (5.3.5)
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for all t ≥ 0. In particular,

I[f ](t0)e
−2K

∫ t
t0
R(s) ds ≤ I[f ](t) ≤ I[f ](t0)e2K(t−t0),

for all t ≥ t0 ≥ 0.

Proof. Note that the second chain of inequalities follows from by integration on (5.3.5) with
respect to time. Then, we focus on the proof of (5.3.5), that we divide in two steps associated
with the upper and lower bound respectively.

• Step 1: Upper bound.
Using Theorem 5.3.1 and bounding cos(θ− θ′) by 1, we achieve the following upper bound for
the derivative of the dissipation functional along f :

d

dt
I[f ] ≤

∫

T2×R2

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2
f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

= 2K

∫

T×R
(Ω−KR sin(θ − φ))2f dθ dΩ− 2K

(∫

T×R
(Ω−KR sin(θ − φ))f dθ dΩ

)2

.

Using the definition (5.1.12) of R and φ along with the assumption (5.1.13), we clearly obtain
that the second term vanishes and we conclude the upper bound.

• Step 2: Lower bound.
Again, we shall use Theorem 5.3.1 and expand the square to obtain

d

dt
I[f ] = −2K

∫

T2×R2

(Ω−KR sin(θ − φ))2 cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

+ 2K

∫

T2×R2

(Ω−KR sin(θ − φ))(Ω′ −KR sin(θ′ − φ)) cos(θ − θ′)

× f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

= −2KR

∫

T×R
(Ω−KR sin(θ − φ))2 cos(θ − φ)f dθ dΩ

+ 2K

∣∣∣∣
∫

T×R
(Ω−KR sin(θ − φ))ei(θ−φ)f dθ dΩ

∣∣∣∣
2

≥ −2KR

∫

T×R
(Ω−KR sin(θ − φ))2f dθ dΩ,

where in the second identity we have used (5.3.2) while in the last inequality we have bounded
cos(θ−θ′) by 1 and we have neglected the non-negative term. Hence, the desired result follows.

5.3.1 The fiberwise Wasserstein distance and relation to dissipation

The fiberwise Wasserstein distance W2,g was presented in Chapter 4 (see also Appendix F)
through a gluing procedure of the standard quadratic Wasserstein distance in T between con-
ditional probabilities at any fiber Ω ∈ R. Since it will be used throughout this section, we refer
the reader to that Appendix. In particular, we call the attention of its definition in terms of con-
ditional probabilities in Proposition F.4.2. Also, we recall its Benamou–Brenier representation
in Proposition F.4.3 and its relation with the standard quadratic Wasserstein distance on the

285



5.3. FUNCTIONAL INEQUALITIES

product T× R in Proposition F.4.4. Indeed, according to such last result, the fiberwise Wasser-
stein distance dominates the quadratic Wassetstein distance. Before we move to the heart of
the matter, let us remark the following essential fact.

Remark 5.3.3. The classical quadratic Wasserstein distance W2 in P2(T × R) is defined as the trans-
portation cost associated with the standard Riemannian distance in the product space T × R. That
is,

W2(µ1, µ2) =

(
inf

γ∈Π(µ1,µ2)

∫

T2×R2

(d(θ, θ′)2 + (Ω− Ω′)2) dγ

)1/2

,

for any µ1, µ2 ∈ P2(T × R), where d(θ, θ′) denotes the canonical Riemannian distance between any
θ and θ′ in T. For our purposes, such a distance is not appropriate as it is not dimensionally correct.
Indeed, θ and Ω have different physical units and considering W2 causes problems to derive asymptotic
behavior of solutions in a large coupling strength regime.

Notice that W2 was used though in Theorems of Chapter 4. However, this is not a problem because
we only used them to derive the mean field limit of the particle system towards the kinetic equation. By
doing so, we only move N and K is regarded as a fixed coefficient that plays no real role.

The above remark suggests considering the following correction of the classical quadratic
Wasserstein distance in P2(T× R).

Definition 5.3.4 (Scaled quadratic Wasserstein distance). Let us consider the scaled Riemannian
distance on the product space T× R, i.e.,

dK((θ,Ω), (θ′,Ω′)) =

(
d(θ, θ′)2 +

(Ω− Ω′)2

K2

) 1
2

.

We define the scaled quadratic Wasserstein distance on P2(T×R) by the transportation costs associated
with the above scaled Riemannian distance, that is,

SW2(µ1
0, µ

2) =

(
inf

γ∈Π(µ1,µ2)

∫

T2×R2

(
d(θ, θ′)2 +

(Ω− Ω′)2

K2

)
dγ

)1/2

,

for any µ, ν ∈ P2(T× R).

Indeed, a completely analogue argument to Proposition F.4.4 provides the following rela-
tion.

Proposition 5.3.5. Consider g ∈ P2(T). Then we obtain

SW2(µ1, µ2) ≤W2,g(µ
1, µ2),

for any µ1, µ2 ∈ Pg(T× R).

We are now ready to state the main relation between this fiberwise transportation distance
(F.4.2) and the dissipation functional (5.2.1).

Lemma 5.3.6. Assume that f0 is contained in C1(T × R) and g is compactly supported in [−W,W ].
Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then,

d

ds

1

2
W2,g(ft, fs)

2 ≤ I[f ]
1
2W2,g(ft, fs),

for every t ≥ 0 and almost every s ≥ 0.
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Proof of Lemma 5.3.6. Since f satisfies the Kuramoto–Sakaguchi equation (5.1.2), then each con-
ditional probability with respect to Ω ∈ T verifies the following continuity equation

∂

∂t
f(θ|Ω) + divθ((Ω−KR sin(θ − φ))eiθf(θ|Ω)) = 0,

for all t ≥ 0 and θ ∈ T. That is, the disintegrations themselves are driven by the following
tangent transport field

θ ∈ T 7−→ vΩ
t (θ) := (Ω−KR sin(θ − φ))eiθ.

Since f is smooth, it is clear that the family s ∈ [0,+∞) 7−→ fs(·|Ω) is locally absolutely contin-
uous with respect to the quadratic Wasserstein distance on T. This clearly guarantees that the
following function is also locally absolutely continuous

s ∈ [0,+∞) −→W2(ft(·|Ω), fs(·|Ω))2,

for every Ω ∈ supp g, see [9, Theorem 8.4.6] or [296, Theorem 23.9]. In particular, we can take
derivatives almost everywhere and obtain the formula

d

ds

1

2
W2(ft(·|Ω), fs(·|Ω))2 = −

∫

T

〈
vΩ
s (θ),∇ψs,tτ=0(θ,Ω)

〉
fs(θ|Ω) dθ, (5.3.6)

for almost every t ≥ 0, where the family τ ∈ [0, 1] 7−→ (hs,tτ , ψ
s,t
τ ) has been chose according to

(F.4.3) in Proposition F.4.3 so that it represents a Wasserstein geodesic joining the conditional
probabilities of fs to those of ft. By the dominated convergence theorem, we can then show
that the following function is also absolutely continuous

s ∈ [0,+∞) −→W2,g(ft, fs)
2.

Integrating by parts and using (5.3.6) we obtain that

d

ds

1

2
W2,g(ft, fs)

2 = −
∫

T×R

〈
vΩ
s (θ),∇ψs,tτ=0(θ,Ω)

〉
fs(θ|Ω)g(Ω) dθ dΩ

= −
∫

T×R

〈
vΩ
s (θ),∇ψs,tτ=0(θ,Ω)

〉
fs(θ,Ω) dθ dΩ.

(5.3.7)

Using the Cauchy–Schwarz inequality in (5.3.7) along with the definition of the dissipation
function (5.2.1) and the representation of the fiberwise quadratic Wasserstein distance in Propo-
sition F.4.3 of Appendix F we obtain that

d

ds

1

2
W2,g(ft, fs)

2 ≤ I[f ]
1
2W2,g(ft, fs),

for almost every s ≥ 0. Hence, the desired result follows.

As a direct consequence of the above Lemma, we obtain the following dissipation-transportation
inequality.

Corollary 5.3.7. Assume that f0 is contained in C1(T×R) and g is compactly supported in [−W,W ].
Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then,

W2,g(ft, fs) ≤
∫ s

t
I[fτ ]1/2 dτ, for all s ≥ t.
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5.3.2 Convergence and uniqueness of the global equilibria

In this section, we shall show the claimed result about convergence to the global equilibria.
Before we proceed with the proof, let us first show that such equilibrium is unique up to phase
rotations. That result is not new and was first proved in [58] via a strict contractivity estimate in
such region of convexity for an appropriate Wasserstein distance W̃p in P2([0, 2π)× R). Notice
that the geometry of T has been disregarded in W̃p. Indeed, the distance W̃2 is strictly larger
W2,g because the geometry of the T reduces the transportation cost of mass between phases
separated by distances larger that π (when viewed in the real line). We show that the unique-
ness result is also true using this new fiberwise distance and we leave the full study of similar
strict contractivity of W2,g to future works.

Proposition 5.3.8. Let f∞ and f ′∞ be stationary measure-valued solutions to (5.1.2) and assume that
they have the same distribution g of natural frequencies and, diam(suppθ f∞) and diam(suppθ f

′
∞) are

less than π/2. Then, they agree up to phase rotations, that is, there exists a constant c ∈ R such that

f ′∞(θ,Ω) = f∞(θ − c,Ω).

Proof. For any c ∈ R we consider the rotation operator in the variable θ

Tc[f ′∞](θ,Ω) := f ′∞(θ − c,Ω),

and define the following optimization problem

min
c∈R

W2,g(f∞, Tc[f ′∞])2. (5.3.8)

Such minimum of (5.3.8) exists from straightforward arguments and will be achieved at some
c = c0 ∈ R. Without loss of generality, let us assume that c0 = 0. Indeed, otherwise we can
replace f ′∞ with Tc0 [f ′∞] and it does not change thesis of this result. On the one hand, let us
consider the following continuity equation

{
∂
∂sf
′
s + divθ(e

iθf ′s) = 0,
f ′s=0 = f ′∞,

(5.3.9)

whose solution clearly describes the above family of phase shifts, namely, f ′s = Ts[f ′∞]. Since
W2,g(f∞, f ′∞) minimizes the problem (5.3.8), then we obtain a critical value at c = 0, i.e.,

d

ds

∣∣∣∣
s=0

W2,g(f∞, f ′s)
2 = 0. (5.3.10)

Let us write down condition (5.3.10) more explicitly. Indeed, consider a Wasserstein geodesic
that joins the conditional probability f ′∞(·|Ω) to f ′s(·|Ω) and represent it through a family

τ ∈ [0, T ] −→ (hsτ , ψ
s
τ ) with

hsτ=0(·|Ω) = f ′∞(·|Ω),
hsτ=1(·|Ω) = f ′s(·|Ω),

(5.3.11)

as in (F.4.3) in Proposition F.4.3 of Appendix F. Here, notice that (F.4.3) only holds in the vis-
cosity/distributional sense due to the fact that equilibria have atoms. In particular, we cannot
guarantee that ψτ has second order derivatives (that we require in the sequel). Such fact can
be handled by nowadays standard regularization arguments. In particular, notice that the dis-
sipation functional I[f ] is continuous with respect to W2,g, which makes it well behaved with
respect to regularizations.
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Now observe that, by construction f ′s(·|Ω), verifies the continuity equation (5.3.9) that is
driven by the trivial tangent transport field θ ∈ T −→ eiθ. Then, the same ideas in the proof of
Lemma 5.3.6 (see [9, Theorem 8.4.6] or [296, Theorem 23.9]), we obtain

d

ds

∣∣∣∣
s=0

1

2
W2(f∞(·|Ω), f ′s(·|Ω))2 =

∫

T

〈
eiθ,∇θψs=0

τ=1(θ,Ω)
〉
dθf
′
∞(·|Ω).

for almost every s ≥ 0. Taking integrals in Ω against g and using (5.3.10) we obtain
∫

T×R

〈
eiθ,∇θψs=0

τ=1

〉
d(θ,Ω)f

′
∞ = 0.

Indeed, using the equations for hs=0
τ and ϕs=0

τ in (F.4.3), it is clear that the above implies
∫

T×R

〈
eiθ,∇θψs=0

τ

〉
d(θ,Ω)h

s=0
τ = 0, (5.3.12)

for every τ ∈ [0, 1]. On the other hand, by hypothesis f∞ and f ′∞ verify the (stationary)
Kuramoto–Sakaguchi equation (5.1.2), that is,

∂

∂t
f∞ + divθ((Ω−KR∞ sin(θ − φ∞))eiθf∞) = 0,

∂

∂t
f ′∞ + divθ((Ω−KR′∞ sin(θ − φ′∞))eiθf ′∞) = 0.

Since the solutions are stationary, then we can again use the same ideas as before to arrive at
the identity

0 =
d

dt

1

2
W2(f∞(·|Ω), f ′∞(·|Ω))2 =

∫

T

〈
(Ω−KR′∞ sin(θ − φ′∞))eiθ,∇θψs=0

τ=1(·,Ω)
〉
dθf
′
∞(·|Ω)

−
∫

T

〈
(Ω−KR∞ sin(θ − φ∞))eiθ,∇θψs=0

τ=0(·,Ω)
〉
dθf∞(·|Ω),

Here on we shall omit the superscripts s = 0 of hs=0
τ and ψs=0

τ for simplicity, as it is clear from
the context. Then, integrating against g and using the fundamental theorem of calculus in τ
yields ∫ 1

0

d

dτ

∫

T×R

〈
(Ω−KRτ sin(θ − φτ ))eiθ,∇θϕτ

〉
d(θ,Ω)hτ dτ = 0, (5.3.13)

where Rτ and φτ are order parameters associated with the displacement interpolation hτ . Let
us now expand the derivative in (5.3.13) and use the Hamilton–Jacobi equation for ψτ and the
continuity equation for hτ in (F.4.3). Then we obtain that

A+B + C = 0,

where each term reads

A :=

∫ 1

0

∫

T×R

〈
∇θ
(
−1

2
|∇θψτ |2

)
, (Ω−KRτ sin(θ − φτ )eiθ

〉
d(θ,Ω)hτ dτ,

B :=

∫ 1

0

∫

T×R

〈
d

dτ
[Ω−KRτ sin(θ − φτ )] eiθ,∇θψτ

〉
d(θ,Ω)hτ dτ,

C :=

∫ 1

0

∫

T×R

〈
∇θ
〈
∇θψτ , (Ω−KRτ sin(θ − φτ ))eiθ

〉
,∇θψτ

〉
d(θ,Ω)hτ dτ.
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On the one hand, taking the sum of A and C we can simplify into

A+ C = −K
∫ 1

0

∫

T×R
Rτ cos(θ − φτ ) |∇θψτ |2 d(θ,Ω)hτ dτ

= −K
∫ 1

0

∫

T×R

∫

T×R
cos(θ − θ′) |∇θψτ |2 d(θ,Ω)hτ d(θ′,Ω′)hτ dτ

= −K
2

∫ 1

0

∫

T×R

∫

T×R
cos(θ − θ′)

(
|∇θψτ (θ,Ω)|2 +

∣∣∇θψτ (θ′,Ω′)
∣∣2
)
d(θ,Ω)hτ d(θ′,Ω′)hτ dτ,

(5.3.14)

where in the second line we have used the properties of the order parameters Rτ and φτ of the
interpolation hτ , namely

Rτ =

∫

T×R
cos(θ′ − φτ ) d(θ′,Ω′)hτ ,

0 =

∫

T×R
sin(θ′ − φτ ) d(θ′,Ω′)hτ .

and in the third line we have used a clear symmetrization argument. Let us now differentiate
with respect to τ and use the continuity equation for hτ to obtain the formulas

dRτ
dτ

= −
∫

T×R
sin(θ′ − φτ )

〈
eiθ
′
,∇θψτ (θ′,Ω′)

〉
d(θ′,Ω′)hτ ,

Rτ
dφτ
dτ

=

∫

T×R
cos(θ′ − φτ )

〈
eiθ
′
,∇θψτ (θ′,Ω′)

〉
d(θ′,Ω′)hτ .

Then, the term B can be written as follows

B =

∫ 1

0

∫

T×R

〈
eiθ,∇θψτ

〉 d

dτ

(
−KdRτ

dτ
sin(θ − φτ ) +KRτ

dφτ
dτ

cos(θ − φτ )

)
d(θ,Ω)hτ dτ

= K

∫ 1

0

∫

T×R

∫

T×R
cos(θ − θ′)

〈
eiθ,∇θψτ (θ,Ω)

〉〈
eiθ
′
,∇θψτ (θ′,Ω′)

〉
d(θ,Ω)hτ d(θ′,Ω′)hτ dτ

(5.3.15)

Putting the formulas(5.3.14) and (5.3.15) into (5.3.13) entails

0 = −K
2

∫ 1

0

∫

T×R

∫

T×R
cos(θ − θ′)

(〈
eiθ,∇θψτ (θ,Ω)

〉
−
〈
eiθ
′
,∇θψτ (θ′,Ω′)

〉)2

× d(θ,Ω)hτ d(θ′,Ω′)hτ dτ. (5.3.16)

Since there exists 0 < δ < π/2 such that

diam(suppθf∞) < δ and diam(suppθf
′
∞) < δ.

The same is true for the interpolations hτ and, consequently. Indeed, this is a consequence of
the monotone rearrangement property of the 1-dimensional transport on each fiber. Hence, we
can take upper bounds in (5.3.16) and obtain that

0 ≤ −K
2

cos δ

∫ 1

0

∫

T×R

∫

T×R

(〈
eiθ,∇θψτ (θ,Ω)

〉
−
〈
eiθ
′
,∇θψτ (θ′,Ω′)

〉)2
d(θ,Ω)hτ d(θ′,Ω′)hτ dτ
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= −K cos δ

∫ 1

0

∫

T×R
|∇θψτ |2 d(θ,Ω)hτ dτ +K cos δ

∫ 1

0

(∫

T×R

〈
eiθ,∇θψτ

〉
d(θ,Ω)hτ

)2

dτ.

Notice that the condition (5.3.12) allows neglecting the second term. Also, notice that the cosine
has positive sign and hence,

∇θψs=0
τ = 0, for dτ ⊗ hs=0

τ -a.e. (τ, θ,Ω) ∈ [0, 1]× T× R.

In particular, the continuity equation for hs=0
τ implies that

f∞ = hs=0
τ = f ′∞, for all τ ∈ [0, 1],

thus ending the proof.

We now come back to the proof of Theorem 5.1.2. First, we show that once the concentration
regime in Corollary 5.2.3 takes place, Theorem 5.3.1 guaranteed that the dissipation decays
exponentially fast.

Corollary 5.3.9. Assume that f0 is contained in C1(T×R) and g is compactly supported in [−W,W ]
and centered (i.e., (5.1.13)). Consider the unique global-in-time classical solution f = f(t, θ,Ω) to
(5.1.2). Then, the following holds true

dI[f ]

dt
≤ −2K cos(β) I[f ] + 24K(W +K)2ρt(T \ L+

β (t)),

for every t ≥ 0.

Proof. Set β = π
3 and use Theorem 5.3.1 to split the derivative of the dissipation functional into

two parts as follows
dI[f ]

dt
= I1 + I2,

where each factor reads

I1 = −K
∫

L+
β (t)×L+

β (t)×R×R

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′,

I2 = −K
∫

((T×T)\(L+
β (t)×L+

β (t)))×R×R

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× cos(θ − θ′)f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′.

On the one hand, it is clear that

I1 ≤ −K cos(β)

∫

L+
β (t)×L+

β (t)×R×R

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

= −K cos(β)

∫

T2×R2

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

+K cos(β)

∫

((T×T)\(L+
β (t)×L+

β (t)))×R×R

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

=: I11 + I12,

(5.3.17)
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where in the second identity we have added and subtracted the second term in order to com-
plete an integral in T2 × R2. Indeed, notice that doing so and using (5.1.13) we get

I11 = −K cos(β)

∫

T2×R2

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′

= −2K cos(β)

∫

T×R
(Ω−KR sin(θ − φ))2f dθ dΩ = −2K cos(β)I[f ].

Here, we have used the cancellation of the crossed term after we expand the square appearing
in the first factor. Let us call I3 = I12 + I2 and notice that

I3 ≤ 2K

∫

((T×T)\(L+
β (t)×L+

β (t)))×R×R

(
(Ω−KR sin(θ − φ)− (Ω′ −KR sin(θ′ − φ)))

)2

× f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′.

In other words, we achieved the estimate

dI[f ]

dt
≤ −2K cos(β) I[f ] + I3. (5.3.18)

Our last goal is to estimate the remainder I3. Define the following time-dependent sets

A1 := L+
β (t)× (T \ L+

β (t))× R× R,

A2 := (T \ L+
β (t))× L+

β (t)× R× R,

A3 := (T \ L+
β (t))× (T \ L+

β (t))× T× R.

Since we have that ((T× T) \ (L+
β (t)× L+

β (t)))×R×R = A1 ∪A2 ∪A3, then we can split I3 as
follows

I3 ≤ I31 + I32 + I33,

where each integral takes the following form

I3i := 2K

∫

Ai

(
(Ω−KR sin(θ − φ)

− (Ω′ −KR sin(θ′ − φ))
)
f(t, θ,Ω)f(t, θ′,Ω′) dθ dθ′ dΩ dΩ′,

for every i = 1, 2. Changing variables we observe that I31 = I32. Then we can focus on
estimating I31 and I33 only. Notice that the integrand can be bounded as follows

(
(Ω−KR sin(θ − φ))− (Ω′ −KR sin(θ′ − φ))

)2 ≤ 4(W +K)2.

Then, we obtain
I31(t) ≤ 8K(W +K)2ρt(T \ L+

β (t)),

for every t ≥ 0. Exactly the same argument allows estimating I33 and obtaining an identical
bound. Putting everything together into (5.3.18) finishes the proof.

Now, we can apply Gronwall’s lemma in order to derive the desired quantitative estimate
on the decay rate of the dissipation.
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Corollary 5.3.10. Assume that f0 is contained in C1(T×R) and g is compactly supported in [−W,W ]
and centered (i.e., (5.1.13)). Consider the unique global-in-time classical solution f = f(t, θ,Ω) to
(5.1.2). Then, there is a universal constant C such that if

W

K
≤ CR3

0,

then there exists a time T0 with the property that

T0 .
1

KR2
0

log

(
1 +

1

R0
+W 1/2‖f0‖L2

)
,

and
I[ft] . K2e−

1
20
K(t−T0),

for all t in [T0,∞).

Proof. Let us adjust C small enough so that we meet the hypotheses of Corollary 5.2.3. Then,
there exists such a time T0 so that

ρt(T \ L+
α (t)) ≤Me−

1
20
K(t−T0),

for every t ≥ T0 and some universal constant M . This along with Corollary 5.3.9 implies

d

dt
I[f ] ≤ −2K cos(β)I[f ] + 24K(W +K)2Me−

1
20
K(t−T0),

for any t ≥ T0. Integrating the inequality, we obtain that

I[ft] ≤ I[fT0 ]e−2K cos(β)(t−T0) +
24K(W +K)2M

2K cos(β)− 1
20K

(
e−

K
20

(t−T0) − e−2K cos(β)(t−T0)
)
,

. (W +K)2e−
K
20

(t−T0) . K2e−
K
20

(t−T0),

where in the second inequality we have used that

I[fT0 ] ≤ (W +K)2,

by the definition (5.2.1) and in the second inequality we have used the hypothesis on W
K .

Using the transportation-dissipation inequality in Corollary 5.3.7 and the above exponential
decay of the dissipation in Corollary 5.3.10 we obtain the following result.

Corollary 5.3.11. Assume that the hypotheses in Corollary 5.3.10 hold true. Then,

W2,g(ft, fs) . e−
1
40
K(t−T0) − e− 1

40
K(s−T0),

for every s ≥ t ≥ T0.

We are now ready to conclude the proof of the main theorem of this chapter.

Proof of Theorem 5.1.2.

• Step 1 Convergence.
By the above Corollary 5.3.11, the net (ft)t≥0 verifies the Cauchy condition in the metric space
(Pg(T × R),W2,g). Notice that it is a complete metric space. Consequently, there exists some
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probability measure f∞ ∈ Pg(T× R) such that W2,g(ft, f∞)→ 0 as t→∞. Taking limits in the
inequality in Corollary 5.3.11 as s→∞ yields

W2,g(ft, f∞) . e−
1
40
K(t−T0), (5.3.19)

for every t ≥ T0 and using the order relation in Proposition 5.3.5 between the standard quadratic
Wasserstein distance and the fiberwise quadratic Wasserstein distance concludes the exponen-
tial convergence in Theorem 5.1.2.

• Step 2 Uniqueness of the equilibrium.
Notice that, in particular, f∞ is an equilibrium of the Kuramoto–Sakaguchi equation (5.1.2) and
the asymptotic concentration estimate in Corollary 5.2.3 guarantees that

diam(suppθ f∞) ≤ β =
π

3
<
π

2
.

Hence, by Proposition 5.3.8 it is unique up to phase shifts.

5.3.3 Semiconcavity, entropy production estimate and lower bound of R

The main objective of this part is the proof of the entropy production estimate Lemma 5.2.2. As
a byproduct in Corollary 5.3.15 we will obtain a universal lower bound on the order parameter.
Before we begin the proof of the entropy production estimate, we will need a relationship
between the time derivative of the order parameter and the dissipation (5.2.10). That is the
content of the following lemma.

Lemma 5.3.12. Assume that f0 is contained in C1(T × R) and that g is compactly supported in
[−W,W ]. Then, the inequality

I[ft]−W 2 ≤ K d

dt
(R2) ≤ 3 I[ft] +W 2, (5.3.20)

holds.

Proof. By (5.2.2) we have that

1

2

d

dt
KR2 = −

∫
KR sin(θ − φ)(Ω−KR sin(θ − φ))fdθdΩ

= I[f ]−
∫

Ω(Ω−KR sin(θ − φ))fdθdΩ.

Consequently, by young’s inequality, we obtain that

1

2

d

dt
KR2 ≤ I[f ] +

1

2

∫
(Ω−KR sin(θ − φ))2fdθdΩ +

1

2

∫
Ω2fdθdΩ,

and
1

2

d

dt
KR2 ≥ I[f ]− 1

2

∫
(Ω−KR sin(θ − φ))2fdθdΩ− 1

2

∫
Ω2fdθdΩ.

Hence, the desired result follows.

Now we are ready to prove our entropy production estimate in Lemma 5.2.2.
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Proof of Lemma 5.2.2. Without loss of generality, we can assume that

R <
3

2
R0 in

[
t0, t0 +

1

3KR0
log 10

]
. (5.3.21)

Otherwise, if this condition fails for some s in the above interval, then we set d = s − t0 and
(5.2.5) would follow. Thanks to the inequalities (5.3.5) and (5.3.20), we arrive at the following
estimate

dR2

dt
≥ I[ft]

K
− W 2

K
≥ I[ft0 ]e−3KR0(t−t0)

K
− W 2

K

≥ 1

K

(
K

3

dR2

dt

∣∣∣∣
t=t0

− W 2

3

)
e−3KR0(t−t0) − W 2

K

=
2

3
R(t0)Ṙ(t0)e−3KR0(t−t0) − 4W 2

3K

≥ K

6
cos2 αλ3R3

0R(t0)e−3KR0(t−t0) − 4W 2

3K
.

Let us integrate the above inequality on the interval [t0, t0 + d] for some d in [0, 1
3KR0

log 10),
which we will choose appropriately after the calculations below. By doing this and using
(5.3.21), we deduce that

R2(t0 + d)−R2(t0) ≥ 1

18
cos2 αλ4R3

0

[
1− e−3KR0d

]
− 4

3

W 2

K
d.

Thus, by choosing d = 1
3KR0

log 10, we obtain that

R2(t0 + d)−R2(t0) ≥ 1

20
cos2 αλ4R3

0 −
4

9

W 2

K2R0
log 10.

Consequently, by selecting C appropriately in (5.2.4) we conclude that

R2(t0 + d)−R2(t0) ≥ 1

21
cos2 αλ4R3

0.

Hence, since α = π/6 the desired result follows.

Before showing the lower bound in the order parameter, we will need control in its angular
velocity in the small dissipation regime. We achieve this in the following lemma

Lemma 5.3.13. Assume that f0 is contained in C1(T × R) and that g is compactly supported in
[−W,W ]. Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then, we
have that

|φ̇| ≤ 1

R

√
K
d

dt
R2 +W 2.
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Proof. By (5.2.2), and Jensen inequality, we have that

R|φ̇| ≤
∫
| cos(θ − φ)(Ω−KR sin(θ − φ))|f dθ dΩ

≤
∫
|(Ω−KR sin(θ − φ))|f dθ dΩ

≤
(∫
|(Ω−KR sin(θ − φ))|2fdθdΩ

) 1
2

= I
1
2

≤
√
K
d

dt
R2 +W 2,

where in the last inequality, we have used (5.3.20). Thus, the desired result follows.

We will derive a global lower bound on the order parameter as an application of the entropy
production estimate (5.2.2). To achieve this, we consider the following lemma, which controls
the rate at which the order parameter can decrease.

Lemma 5.3.14. (Rate of decrease and mass monotonicity) Let λ be contained in (2/3, 1), assume
that f0 is contained C1(T × R) and that g is compactly supported in [−W,W ]. Consider the unique
global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Additionally, let γ be a positive number in
(π/6, π/2), and let α be as specified in Section 5.2. Then, we have that

d

dt
R2 ≥ KR2 cos 2γ

2

(
1− 2W 2

K2R2 cos2 γ
− R

sin γ
− 1 + sin γ

sin γ
f(χ−α )

)
, (5.3.22)

and
d

dt
f(χ−α ) ≤ 4K

[
W

K
+

√
2Ṙ

KR
+

1

R2

W 2

K2
−R cosα

]+

, (5.3.23)

for all t ≥ 0.

Moreover, suppose that Ṙ(t0) ≤ 0, R(t0) ≥ R0,

Ṙ ≤ K cos2 αλ3R3
0

4
in [t0, t0 + d] and cos2 γ=

1− λ
5

R0,

for some non-negative numbers d and t0. Then, there exist a universal constant C such that if we take

W

K
≤ C(1− λ)λ2R2

0, (5.3.24)

then,
d

dt
R2 >

K cos2 γ

2 sin γ

(
−R3 + [λR0 +

3

5
(1− λ)R0]R2 − 3

5
(1− λ)λ2R3

0

)
, (5.3.25)

in [t0, t0 + d]. Consequently,
R ≥ λR0 in [t0, t0 + d).

Proof. We divide the proof into the following steps:

• Step 1: Derivation of estimate (5.3.23).
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Recall that χ−α (θ) = ξα(θ − φ − π), with ξα as defined in (5.2.7). Then, by direct computation,
we have that

d

dt
f(χ−α ) =

d

dt

∫

T×R
ξα(θ − φ− π)f dθ dΩ

=

∫

T×R
ξ′α(θ − φ− π)[Ω−KR sin(θ − φ)− φ̇]f dθ dΩ

≤ f(|ξ′α|)[W + |φ̇|] +KR

∫

T×R
ξ′α(θ − φ− π) sin(θ − φ− π)f dθ dΩ

≤ f(|ξ′α|)[W + |φ̇| −KR cosα]

≤ f(|ξ′α|)
[
W +

1

R

√
2KR

d

dt
R+W 2 −KR cosα

]
.

Notice that in the last inequality we have used Lemma 5.3.13 in order to estimate |φ̇| and the
only thing that remains to show is the bound of the second term in the third line. Firstly, the
support of ξ′α(θ − φ− π) consists of S+ ∪ S− where each set stands for

S+ :=

[
φ+

3π

2
− α, φ+

3π

2
− α+

1

2

]
and S− :=

[
φ+

π

2
+ α− 1

2
, φ+

π

2
+ α

]
.

Since ξ′α(θ − φ− π) is non-increasing in S+ and non-decreasing in S−, we then obtain

θ ∈ S+ =⇒ ξ′α(θ − φ− π) ≤ 0 and sin(θ − φ− π) ≥ cosα,
θ ∈ S− =⇒ ξ′α(θ − φ− π) ≥ 0 and sin(θ − φ− π) ≤ − cosα.

Consequently,
ξ′α(θ − φ− π) sin(θ − φ− π) ≤ −|ξ′α(θ − φ− π)| cosα,

for all θ ∈ S+ ∪ S−, thus yielding the aforementioned bound Hence, (5.3.23) follows.

• Step 2: Derivation of estimate (5.3.22).
By the first equation in (5.2.2), we obtain the following lower bound on Ṙ

K

2

d

dt
R2 = −

∫

T×R
KR sin(θ − φ)(Ω−KR sin(θ − φ))f dθ dΩ

≥
∫

T×R
(KR sin(θ − φ))2f dθ dΩ−

∫
Ω(KR sin(θ − φ))f dθ dΩ

≥ 1

2

∫

T×R
(KR sin(θ − φ))2f dθ dΩ− W 2

2

≥ 1

2
K2R2 cos2 γf(T \ (L+

γ (t) ∪ L−γ (t))− W 2

2
.

Then, we obtain

f(T \ (L+
γ (t) ∪ L−γ (t)) ≤ 1

KR2 cos2 γ

d

dt
R2 +

W 2

K2R2 cos2 γ
. (5.3.26)

Additionally, using a similar argument on (5.1.12), where we split the integral into the sectors
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L+
γ , L−γ and T \ (L+

γ ∪ L−γ ), allows getting the lower bound

R ≥ sin γ f(L+
γ )− sin γ f(T \ (L+

γ ∪ L−γ ))− f(L−γ )

= sin γ
(
1− f(L−γ )− f(T \ (L+

γ ∪ L−γ ))
)
− sin γ f(T \ (L+

γ ∪ L−γ ))− f(L−γ )

= sin γ − 2 sin γ f(T \ (L+
γ ∪ L−γ ))− (1 + sin γ)f(L−γ )

≥ sin γ − 2 sin γ

(
1

KR2 cos2 γ

d

dt
R2 +

W 2

K2R2 cos2 γ

)
− (1 + sin γ)f(L−γ ).

Here, we have used the estimate (5.3.26) in the last inequality. Then, (5.3.22) follows.

• Step 3: Upper bound on f(L−γ ).
Let us first achieve a lower bound of f(L+

γ ). To such end, we use a similar procedure and
reverse the inequalities that we have considered in the preceding step. Specifically, notice that
a similar split in (5.1.12) allows obtaining

R ≤ f(L+
γ ) + sin γf(T \ (L+

γ ∪ L−γ ))− sin γf(L−γ )

= f(L+
γ ) + sin γf(T \ (L+

γ ∪ L−γ ))− sin γ(1− f(L+
γ )− f(T \ (L+

γ ∪ L−γ )))

= (1 + sin γ)f(L+
γ ) + 2 sin γf(T \ (L+

γ ∪ L−γ ))− sin γ.

In particular, we obtain the lower bound

f(L+
γ ) ≥ R

1 + sin γ
− 2 sin γ

1 + sin γ
f(T \ (L+

γ ∪ L−γ )) +
sin γ

1 + sin γ
.

Hence, we obtain the upper bound

f(L−γ ) = 1− f(L+
γ )− f(T \ (L+

γ ∪ L−γ ))

≤ 1− sin γ

1 + sin γ
− R

1 + sin γ
− 1− sin γ

1 + sin γ
f(T \ (L+

γ ∪ L−γ ))

≤ 1

1 + sin γ
− R

1 + sin γ
.

(5.3.27)

Notice that since Ṙ(t0) ≤ 0 we can select C appropriately in 5.3.24 to guarantee that

W

K
+

√
2Ṙ(t0)

KR(t0)
+

1

R(t0)2

W 2

K2
−R(t0) cosα ≤ W

K
+

√
1

R2
0

W 2

K2
− λR0 cosα < 0. (5.3.28)

Then, estimate (5.3.23) implies
d

dt

∣∣∣∣
t=t0

f(χ−α )(t) ≤ 0.

By continuity, and, inequalities (5.3.23) and (5.3.28), f(χ−α )(t) remains non increasing along
[t0, t0 + δ] for small enough δ > 0. Hence, we obtain that

f(L−γ )(t) ≤ f(χ−α )(t)

≤ f(χ−α )(t0)

≤ f(L−γ )(t0) + f(T \ (L+
γ ∪ L−γ ))(t0)

≤ 1

1 + sin γ
− R(t0)

1 + sin γ
+

W 2

K2 cos2 γR2(t0)
,

(5.3.29)
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for all t in [t0, t0 + δ]. Here, we have used the estimates (5.3.26) and (5.3.27) along with the
hypothesis Ṙ(t0) ≤ 0.

• Step 4: Derivation of (5.3.25) and lower bound of R in [t0, t0 + δ].
Putting the last estimate (5.3.29) and (5.3.22) together, we obtain the differential inequality

dR2

dt
≥ KR2 cos2 γ

2 sin γ

[
R(t0)−R− (1− sin γ)− 2 sin γW 2

K2 cos2 γR2
− 1 + sin γW 2

K2 cos2 γR2(t0)

]

>
K cos2 γ

2 sin γ

[
−R3 + b(t0)R2 − c(t0)

]
,

(5.3.30)

for all t in [t0, t0 + δ]. Here, the coefficients read

b(t0) := R(t0)− cos2 γ − 2W 2

K2 cos2 γR2(t0)
,

c(t0) :=
2W 2

K2 cos2 γ
.

Notice that in the last inequality in (5.3.30) we have used

1− sin γ < cos2 γ, sin γ < 1, and 1 + sin γ < 2.

By making C smaller if necessary in (5.3.24) we can guarantee that

b(t0) = R(t0)− cos2 γ − 2W 2

K2 cos2 γR2(t0)

≥ R0 −
(1− λ)

5
R0 − 10

W 2

K2

1

R3
0(1− λ)

≥ R(t0)− 2(1− λ)

5
R0

= λR0 + (1− λ)R0 −
2(1− λ)

5
R0

= λR0 +
3

5
(1− λ)R0.

Arguing in a similar way and making C smaller if necessary in (5.3.24), we can guarantee that

c(t0) :=
2W 2

K2 cos2 γ

=

(
W

K

)2 10

(1− λ)R0

≤ 3

5
(1− λ)λ2R3

0.

Consequently, we have that

d

dt
R2 >

K cos2 γ

2 sin γ

[
−R3 +

[
λR0 +

3

5
(1− λ)R0

]
R2 − 3

5
(1− λ)λ2R3

0

]
.

in [t0, t0 + δ]. Since λR0, is the biggest root of the polynomial

p(r) = −r3 + [λR0 +
3

5
(1− λ)R0]r2 − 3

5
(1− λ)λ2R3

0,
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we obtain desire lower bound R ≥ λR0 in [t0, t0 + δ] by an elementary continuity method ar-
gument (we can see that λR0 is the biggest root of p from the inequality p(0) < 0 and the fact
that λ being contained in (2/3, 1) implies that p′(λR0) < 0)).

• Step 5: Propagation of (5.3.25) and the lower bound of R in [t0, t0 + d].
The main idea is supported by a continuity method. We proceed by contradiction. Specifically,
define the time

t∗ := inf

{
t ∈ (t0 + δ, t0 + d] :

d

dt
R2 <

K cos2 γ

2 sin γ
p(R)

}
,

and assume that t∗ < t0 + d. Notice that, by definition, it implies

d

dt
R2 ≥ K cos2 γ

2 sin γ
p(R), for all t ∈ [t0, t∗].

In particular, by the same ideas in Step 4, we have that

R(t) ≥ λR0, for all t ∈ [t0, t∗].

By (5.3.23) and the fact that

Ṙ ≤ K cos2 αλ3R3
0

4
in [t0, t0 + d],

making C smaller in (5.3.24) if necessary, we can guarantee that,

W

K
+

√
2Ṙ(t)

KR(t)
+

1

R(t)2

W 2

K2
−R(t) cosα

≤ W

K
+

√
λ2R2

0 cos2 α

2
+

1

λ2R2
0

W 2

K2
− λR0 cosα < 0, (5.3.31)

for all t in [t0, t∗]. In particular the, by (5.3.23) and continuity we have that f(χ−α ) is non increas-
ing in [t0, t∗ + δ∗] and some small enough δ∗ > 0. Hence, we can repeat the train of thoughts in
Step 4 to extend the upper bound of f(χ−γ )(t) in (5.3.29) to the larger interval [t0, t∗+ δ∗]. Again,
the same ideas as in Step 4 imply that

d

dt
R2 >

K cos2 γ

2 sin γ
p(R), for all t ∈ [t0, t∗ + δ∗],

and it contradicts the definition of t∗.

We close this section by showing that we can obtain a universal lower bound on the order
parameter. That is the objective of the following corollary.

Corollary 5.3.15. Suppose that 1 − λ is contained in (0, R0/120). Then, there exists a universal
constant C such that if

W

K
< Cλ2(1− λ)R2

0, (5.3.32)

then, we have that
R ≥ λR0,

for every t in [0,∞).
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Proof. We begin by choosing C small enough so that it can be taken simultaneously as the
corresponding universal constants in Lemma 5.2.2 and 5.3.14. We claim that either one of the
following two conditions holds:

(i) We have that Ṙ < K/4λ3R3
0 cos2 α in [0,∞).

(ii) There exist a time t∗ and an increasing and strictly positive universal function h, satisfying
that R ≥ λR0 in [0, t∗] and R(t∗)2 ≥ R2

0 + h(R0).

We divide the proof of the corollary into two steps. The second of which is the proof of the
claim.

• Step 1: We show how the claim implies the Corollary.
To see this, we use the following iterative argument based on the fact that R is bounded and
the system is autonomous. If condition (ii) of the claim holds, we use the fact that the system
is autonomous in time to translate the initial condition of the system to be the configuration at
t∗. Since by assumption the value of the order parameter at t∗ is bigger than R0 we are free to
apply the claim again with the same value of C to the corresponding shifted initial condition.
We can do this iteratively as many time as needed provided that condition (ii) still holds after
the time translation.

To conclude this step, note that since R is bounded and the function h is positive, increas-
ing, and universal condition (ii) can hold consecutively after each time translation only a finite
number of times. Hence, after finitely many time shifts, condition (i) will hold. Finally, once
condition (i) holds, the global lower bound follows by applying Lemma 5.3.14.

• Step 2: We show the claim.
For this purpose suppose that (i) does not hold, that is the set

{
t ≥ 0 : Ṙ(t) ≥ Kλ3R3

0 cos2 α

4

}
,

is not empty. To show that (ii) holds in this case, let us consider the smallest time t1 such that
Ṙ(t1) ≥ K/4λ3R3

0 cos2 α. Now, let t2 denote the biggest time t2, bigger or equal to t1, such that
Ṙ ≥ K/4λ3R3

0 cos2 α in [t1, t2]. Notice that the existence of t2 follows by the boundedness of R.
Now, observe that, by definition of t1 Lemma 5.3.14 implies that R ≥ λR0 in [0, t1]. More-

over, by construction

Ṙ ≥ K

4
λ3R3

0 cos2 α in [t1, t2].

Consequently, R ≥ R(t1) ≥ λR0 in [t1, t2]. Now, we consider two cases:

◦ Case 2.1. R(t2) ≤
√

2R0.

In this case, observe that Lemma 5.2.2 implies that we can find a constant d such that

R2(t2 + d)−R2(t2) =
λ4

40
R3

0.
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Consequently, by our assumptions on λ, we have that

R(t2 + d)2 = R(t2)2 +
λ4

40
R3

0

≥ λ2R2
0 +

λ4

40
R3

0

≥ R2
0 +

λ4

40
R3

0 − (1− λ2)R2
0

> R2
0 +

(
5

240
R0 − 2(1− λ)

)
R2

0

> R2
0 +

1

240
R3

0.

Here, on the third line, we have used the fact that λ4 > 9/10. Thus, the desired result follows
by setting t∗ = t2 + d and

h(r) :=
r3

240
.

◦ Case 2.2. R(t2) >
√

2R0.

In this case, we obtain that R(t2)2 − R2
0 > R2

0 > R3
0/240. Hence, the desired result holds for

t∗ = t2.

5.4 Instability of antipodal equilibria and sliding norms

We now start implementing the program outlined in Sections 5.2.3 and 5.2.4. To do this, we
first derive inequalities (5.2.8) and (5.2.11).

Proposition 5.4.1. (Instability of antipodal equilibria) Assume that f0 is contained in C1(T×R)
and g is compactly supported in [−W,W ]. Consider the unique global-in-time classical solution f =
f(t, θ,Ω) to (5.1.2) and let α be as specified in Section 5.2. Then, we have that

d

dt
f2(χ−α (t)) ≤ −KR sinαf2(χ−α (t))) + 4Kf2

(
T
)[W
K

+

√
2Ṙ

KR
+

1

R2

W 2

K2
−R cosα

]+

,

and
d

dt
f2
(
T
)
≤ KRf2

(
T
)
. (5.4.1)

Moreover, with the hypothesis (5.3.24) and notation from Proposition 5.3.14, if [t1, t2] is a time interval
such that

Ṙ ≤ Kλ3R3
0 cos2 α

4
in [t1, t2], (5.4.2)

then, we have that

d

dt
f2(L−α (t)) ≤ −KλR0 sinαf2(L−α (t))) in [t1, t2]. (5.4.3)

Proof. We begin with the first inequality in the Proposition. Arguing as in Step 1 of the proof of
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Lemma 5.3.14 we obtain that

d

dt

∫

T×R
χ−α (θ − φ+ π)f2 dθ dΩ =

∫

T×R
φ̇χ−′α (θ − φ+ π)f2 dθ dΩ

+ 2

∫

T×R
χ−α (θ − φ+ π)f∂tf dθ dΩ

=

∫

T×R
[φ̇+ 2Ω− 2KR sin(θ − φ)]χ−′α (θ − φ+ π)f2 dθ dΩ

+ 2

∫

T×R
χ−α (θ − φ+ π)[Ω−KR sin(θ − φ)]f∂θf dθ dΩ

≤
∫

T×R
[φ̇+ Ω−KR sin(θ − φ)]χ−′α (θ − φ+ π)f2 dθ dΩ

−
∫

T×R
χ−α (θ − φ+ π)KR sinαf2 dθ dΩ.

(5.4.4)

The first inequality in the proposition follows from Lemma 5.3.13 and the same arguments as
in Step 1 from Proposition 5.3.14. Inequality (5.4.1) follows from similar arguments to those of
(5.4.4) by replacing χα with the constant function that is equal to one in T. Finally, to derive
inequality (5.4.3), recalling the notation introduced in Section 5.2.3, replacing χ−α with χ−α,ε in
(5.4.4) and arguing as in Step 1 from Proposition 5.3.14 we get that

d

dt
f2(χ−α,ε(t)) ≤ −KR sinαf2(χ−α,ε(t))) +KCε,αf

2
(
T
)[W
K

+

√
2Ṙ

KR
+

1

R2

W 2

K2
−R cosα

]+

.

Now, we observe that as in (5.3.31), we can see that the second term of the above inequality
vanishes on the interval [t1, t2]. Consequently, such a term is independent of ε and thus (5.4.3)
follows by letting ε→ 0.

A form of the above Lemma was one of the main tools used to derive the main result in
[154]. However, to obtain our convergence rates, we work with a sliding version of theL2 norm.
Such sliding norms allow us to propagate the above estimate analog the flow of the continuity
equation. This technique turns out to be one of the crucial components in our arguments in
Section 5.5.

Lemma 5.4.2. (Sliding norms) Assume that f0 is contained in C1(T × R) and g is compactly sup-
ported. Consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2). Then, for any
measurable set A we have that

d

dt
f2(At0,t) ≤ KR

(
sup

(θ,Ω)∈At0,t
cos(θ − φ(t))

)
f2(At0,t).

303



5.4. INSTABILITY OF ANTIPODAL EQUILIBRIA AND SLIDING NORMS

Proof. By the change of variable theorem, we have that

d

dt

1

2

∫

At0,t

f2 dθ dΩ =
d

dt

∣∣∣∣
t=t0

1

2

∫

A
f2
t (Θt0,t(θ,Ω),Ω)∂θΘt0,t dθ dΩ

=

∫

A
ft(Θt0,t(θ,Ω),Ω)

[
∂tf(Θt0,t(θ,Ω),Ω)

+ Θ̇t0,t(θ,Ω)∂θf(Θt0,t0(θ,Ω),Ω)
]
∂θΘt0,t dθ dΩ

− 1

2
KR

∫

A
cos(Θt(θ,Ω)− φ)∂θΘt0,tf

2 dθ dΩ

=

∫

A
ft(Θt0,t(θ,Ω),Ω)

[
− ∂θ(Ωf −KR sin(Θt0,t(θ,Ω)− φ)f)

+ (Ω−KR sin(Θt0,t(θ,Ω)− φ)∂θf(Θt0,t(θ,Ω),Ω)
]
∂θΘt0,t dθ dΩ

+
1

2
KR

∫

A
cos(Θt0,t(θ,Ω)− φ)f2∂θΘt0,t dθ dΩ

=
1

2
KR

∫

A
cos(Θt0,t(θ,Ω)− φ)f2

t (θ,Ω)∂θΘt0,t dθ dΩ.

where for t and each Ω, ∂θΘt0,t(·,Ω) denotes the Jacobian of the map θ → Θt0,t(θ,Ω). Hence,
the desired result follows.

To make full use of the above control, we need to understand the dynamics of the La-
grangian flow associated with the continuity equation. That is the objective of the next part.

5.4.1 Emergence of attractor sets

In this section, we will show the emergence of time-dependent sets that will act as attractors
along the characteristic flow. Such sets, in combination with our analysis on sliding norms in
the previous section, will allow us to propagate information between the different parts of the
system.

Before showing the emergence of attractor sets, we state the following Lemma, which we
will repeatedly use throughout the rest of the chapter. Additionally, in this part, we will use
the notation introduced in Subsection 5.2.3.

Lemma 5.4.3 (Emergence of invariant sets). Assume that f0 is contained in C1(T × R), g has
compact support in [−W,W ], and consider the unique global-in-time classical solution to (5.1.2) f =
f(t, θ,Ω). Let t0 ≥ 0 be an initial time in [0,∞) and L ⊆ T be an interval. Now, assume that, initially
we have that

ρt0(L) ≥ m, and p = inf
θ,θ′∈L

cos(θ − θ′),

for some positive numbers m and p in (0, 1). Additionally, suppose that

mp− (1−m) ≥ σ and
W 2

K2
≤ (1− p)σ2

4
, (5.4.5)

for some σ > 0. Then, if we set
P (t) = inf

θ,θ′∈Lt0,t
cos(θ − θ′),

the following bounds hold true

ρ(Lt0,t) ≥ m, (5.4.6)
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inf
θ∈Lt0,t

R cos(θ − φ) ≥ mP − (1−m), (5.4.7)

1− P (t) ≤ max

(
(1− p)e−Kσ4 (t−t0),

4

σ2

W 2

K2

)
, (5.4.8)

for every t in [t0,∞)

Proof. The proof of (5.4.8) is based on a continuity method argument that holds under the con-
dition (5.4.5). Such an argument is based on inequalities (5.4.6), (5.4.7), and

dP

dt
≥ 2K

√
1− P 2

[
R

(
inf

θ∈Lt0,t
cos(θ − φ)

)√
1− P

2
− W

K

]
, ∀t ≥ t0, (5.4.9)

which hold when
P = cos(Θs,t(θ,Ω)−Θs,t(θ

′,Ω′)), (5.4.10)

for any s ≥ t0 such that t ≥ s, and any couple of points (θ,Ω) and (θ′,Ω′) contained in Lt0,s ×
[−W,W ].
We will first proof inequality (5.4.8) first and then prove the remaining inequalities afterward.
Indeed, let us define t′ as the supremum of the set of times t∗ ≥ t0 such that inequality (5.4.8)
holds, for every t in [t0, t

∗]. We begin by noting that, by continuity

1− P (t′) = max

(
(1− p)e−Kσ4 (t′−t0),

4

σ2

W 2

K2

)
.

Now, we must prove that there exists δ > 0 such that (5.4.8) holds in [t0, t
′ + δ]. More precisely,

our goal is to show that there exists a uniform time δ > 0 such that for any pair of characteristics
starting atLt0,t′×[−W,W ] we have that the corresponding P (given by 5.4.10) satisfies that 1−P
is bounded by the right-hand side of (5.4.8) in [t′, t′ + δ].
To do this, let s = t′ in the definition of P. Now observe that by (5.4.7) and (5.4.9), when t = t′,
we have that

dP

dt

∣∣∣∣
t=t′
≥ 2K

√
1− P 2

[
R

(
inf

θ∈Lt0,t′
cos(θ − φ)

)√
1− P

2
− W

K

]

≥ 2K
√

1− P 2

[
[mP − (1−m)]

√
1− P

2
− W

K

]

≥ 2K
√

1 + P

[√
2

2
σ(1− P )− W

K

√
1− P

]
.

(5.4.11)

Here, all the time-dependent expressions are evaluated at t = t′. Additionally, in the last in-
equality, we have used our assumption that (5.4.8) holds on the interval [t0, t

′], which together
with (5.4.5) implies the uniform lower bound p ≤ P . Now, let (θ,Ω) and (θ′,Ω′) be any couple
of points contained in Lt0,t′ × [−W,W ] such that the corresponding P satisfies that

1− P (t′) = 1− P (t′) = max

(
(1− p)e−Kσ4 (t′−t0),

4

σ2

W 2

K2

)
. (5.4.12)

Note that since L is compact, then Lt0,t′ × [−W,W ] is compact as well. Thus, the set of such
pairs (θ,Ω) and (θ′,Ω′) in Lt0,t′ whose corresponding P (obtained via (5.4.10)) satisfies (5.4.12)
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is a compact set as well. We shall denote such a set by P ⊆ Lt0,t′ × [−W,W ]×Lt0,t′ × [−W,W ].
To continue our proof observe that by using the assumption (5.4.12), we get that

σ
√

1− P (t′)
2

≥ W

K
,

for any couple of characteristics in P and, consequently, by (5.4.11) we obtain that

d

dt

∣∣∣∣
t=t′

(1− P ) ≤ −2K
√

1 + P

[√
2

2
σ(1− P )− σ(1− P (t′))

2

]

≤ −2

5
Kσ((1− P (t′)).

<

{
−2

5Kσ(1− p)e−Kσ4 (t′−t0) if 4
σ2

W 2

K2 < 1− P (t′),

0 if 4
σ2

W 2

K2 = 1− P (t′),

Since the right-hand side of the above inequality is uniform in the set of pairs in P and the set
P is compact, we can find ε > 0 such that if Pε is an ε-neighborhood of P, then we have that

d

dt

∣∣∣∣
t=t′

(1− cos(Θt′,t(θ,Ω)−Θt′,t(θ
′,Ω′))) ≤ −1

3
Kσ((1− P (t′))

<

{
−K

4 σ(1− p)e−Kσ4 (t′−t0), if 4
σ2

W 2

K2 < 1− P (t′),

0 if 4
σ2

W 2

K2 = 1− P (t′),

(5.4.13)

for any (θ,Ω),(θ′,Ω′) in Pε. This implies the existence of δ and thus concludes the continuity
method argument. Indeed, for characteristics with initial data in Pε the existence of the time
interval [t′, t′ + δ), follows by the fact that the inequality in (5.4.13) is strict and uniform in Pε.
Similarly, for characteristics in (Lt0,t′ × [−W,W ] × Lt0,t′ × [−W,W ])\Pε, the existence of the
uniform time δ follows by the fact that the characteristics have uniformly bounded speed and ε
provides a uniform separation distance. Indeed, by continuity and compactness, we can find a
uniform time neighborhood of t′, in which the infimum for P is attained in Pε/2, and we have
already shown the existence of δ in such a case.

Hence, to complete the proof of the lemma it suffices to derive inequalities (5.4.6), (5.4.7),
and (5.4.9). We achieve this in the following steps:

• Step 1: Proof of inequalities (5.4.6) and (5.4.7).
Inequality (5.4.6) follows from the fact that the continuity equation preserves the mass of sets
along the characteristic flow. To derive inequality (5.4.7), we observe that

inf
θ∈Lt0,t

R cos(θ − φ) = inf
θ∈Lt0,t

〈
eiθ,

∫

T×R
eiθ
′
f ′ dθ′ dΩ′

〉

≥ inf
θ∈Lt0,t

∫

T×R
cos(θ − θ′)f ′ dθ′ dΩ′

≥ inf
θ∈Lt0,t

[ ∫

(L×[−W,W ])t0,t

cos(θ − θ′)f ′ dθ′ dΩ′

+

∫

T×R\(L×[−W,W ])t0,t

cos(θ − θ′)f ′ dθ′ dΩ′
]

≥ mP − (1−m).

(5.4.14)
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This completes Step 1.

• Step 2: Proof of inequality (5.4.9).
To obtain (5.4.9) let us fix t in [t0,∞), and let (θ,Ω) and (θ′,Ω′) be contained in L × [−W,W ].
Additionally, let us set

Θ(s) := Θt0,s(θ,Ω), and Θ′(s) := Θt0,s(θ
′,Ω′).

Then,

d

ds

∣∣∣∣
s=t

cos(Θ−Θ′) = − sin(Θ−Θ′)(Θ̇− Θ̇′)

= − sin(Θ−Θ′)
(
(Ω− Ω′)−KR(sin(Θ− φ)− sin(Θ′ − φ))

)

= − sin(Θ−Θ′)
[
(Ω− Ω′)− 2KR cos

(
Θ + Θ′

2
− φ

)
sin

(
Θ−Θ′

2

)]

= −2 cos

(
Θ−Θ′

2

)[
(Ω− Ω′) sin

(
Θ−Θ′

2

)

− 2KR cos

(
Θ + Θ′

2
− φ

)
sin2

(
Θ−Θ′

2

)]

≥ 4KR cos

(
Θ−Θ′

2

)[
cos

(
Θ + Θ′

2
− φ

)
1− cos (Θ−Θ′)

2

− W

KR

√
1− cos(Θ−Θ′)

2

]
,

(5.4.15)

where we have used several standard trigonometric formulas. Now, notice that

Θt0,t(θ,Ω) + Θt0,t(θ
′,Ω′)

2
belongs to Lt0,t,

since it is a convex combination of two points in Lt0,t. Thus, when s = t0 (5.4.9) follows by
standard trigonometric identities. In the case when s is contained in [t0, t] we can easily derive
(5.4.9) by the same argument and the semigroup property of the characteristic flow.

As a first application of the above lemma, we quantify below the first time in which the
system forms an attractor.

Lemma 5.4.4 (First invariant set). Assume that f0 is contained in C1(T × R) and g has compact
support in [−W,W ]. Consider the unique global-in-time classical solution to (5.1.2) f = f(t, θ,Ω) and
let us set an angle 0 < γ < π

2 so that

cos2 γ =
1

30
R0. (5.4.16)

Then, we can find a universal constant C such that if

W

K
≤ CR2

0, (5.4.17)

then there exists a positive time T−1 satisfying that

T−1 .
1

KR3
0

, (5.4.18)
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and the bounds

ρ(L+
γ (T−1)t) ≥

1 + 4
5R0

2
, (5.4.19)

inf
θ∈L+

γ (T−1)t

R cos(θ − φ) ≥ 3

5
R0, (5.4.20)

inf
θ,θ′∈L+

γ (T−1)t

cos(θ − θ′) ≥ 1− 1

15
R0, (5.4.21)

hold true for every t in [T−1,∞).

Proof. Define the time

T−1 = inf

{
t ≥ 0 : Ṙ ≤ KR3

0

4 · 302

}
, (5.4.22)

and note that by construction, (5.4.18) follows by the fact that R is bounded by 1 and the fun-
damental theorem of calculus. The proof of the remaining parts of the Lemma will follow
directly from an application of Lemma 5.4.3 by setting L = L+

γ (T−1) and t0 = T−1. To verify the
corresponding hypotheses, first, we begin by controlling the mass in L+

γ (T−1). Indeed, by the
decomposition of the integral (5.1.12) that defines R into three parts L+

γ , L−γ , and T\ (L+
γ ∪L−γ ),

we obtain the inequality:

R ≤ (1 + sin γ)ρ(L+
γ )− sin γ + 2 sin γρ(T \ (L+

γ ∪ L−γ )). (5.4.23)

Consequently, using (5.3.26) to control ρ(T \ (L+
γ ∪ L−γ )), we deduce that

ρ(L+
γ ) ≥ R+ sin γ

1 + sin γ
− 2 sin γ

1 + sin γ
ρ(T \ (L+

γ ∪ L−γ ))

≥ 1

1 + sin γ

[
R+ sin γ − 2

(
1

KR2 cos2 γ

d

dt
R2 +

W 2

K2R2 cos2 γ

)]

=
1

1 + sin γ

[
R+ 1 + (sin γ − 1)− 2

(
2Ṙ

KR cos2 γ
+

W 2

K2R2 cos2 γ

)]
.

for any t ≥ 0. Then, evaluating the above expression at t = T−1, using the fact that by construc-
tion R(T−1) ≥ R0, and selecting C < 1/30) in (5.4.17), we deduce that

ρ(L+
γ (T−1)) ≥ 1

2

[
R0 + 1 + (sin γ − 1)− 2

(
2Ṙ(T−1)

KR cos2 γ
+

W 2

K2R2 cos2 γ

)]

≥ 1

2

[
R0 + 1− R0

30
− 2

(
30

2Ṙ(T−1)

KR2
0

+
30

R0

W 2

K2R2
0

)]

≥ 1

2

(
1 +

4

5
R0

)
,

(5.4.24)

where we have used the fact that 1− sin γ ≤ 1− sin γ2 = cos2 γ = R0
30 .

Second, we estimate the infimum of the cosine of the difference of angles in L+
γ (T−1), that is

inf
θ,θ′∈L+

γ (T−1)
cos(θ − θ′) = cos(π − 2γ)

= cos

(
2
(π

2
− γ
))

= 2 cos2
(π

2
− γ
)
− 1 = 2 sin2 γ − 1 = 1− 1

15
R0. (5.4.25)

308



CHAPTER 5. ON THE TREND TO GLOBAL EQUILIBRIUM IN KS EQUATION

Finally, considering Lemma 5.4.3 with m = ρ(L+
γ (T−1)) and p = cos(π − 2γ), and using the

bounds in (5.4.24) and (5.4.25), we obtain

mp− (1−m) ≥ 1 + 4R0
5

2

(
1− 1

15
R0

)
+

( 4R0
5 − 1

2

)

≥ 1

2

(
8

5
R0 −

1

15
R0 −

4

75
R2

0

)
>

3

5
R0.

Thus, the desired result follows by applying Lemma 5.4.3 with σ = 3
5R0 and noticing that the

hypothesis in (5.4.5) follows by the assumption (5.4.17) taking C small enough.

In the next corollary, we shall explain in which sense the sets whose formation we showed
above have an attractive property. Before stating it we will need the following notation:

Definition 5.4.5. Given positive times t0 ≤ t1, we will define the new time-dependent interval in
[t1,∞), which will be a dynamic neighborhood of L+

γ (t0)t1 , as follows. First, we define

(
L+
γ (t0)t1

)
ε

=

{
θ ∈ T : inf

θ∗∈L+
γ (t0)t1

cos(θ − θ∗) ≥ 1− ε
}
,

for any ε in [R0/15, 1). Second, using the notation in Subsection 5.2.3, we will denote the θ-projection
of the image of

(
L+
γ (t0)t1

)
ε
× [−W,W ] under the characteristic flow as follows

(
L+
γ (t0)t1

)
ε,t

:= Θt1,t

((
L+
γ (t0)t1

)
ε
× [−W,W ]

)
,

for any t > t1. When t0 is clear from the context, we will avoid referring to it in the above notation.

Now, we are ready to state the corollary.

Corollary 5.4.6 (Emergence of attractor sets). Assume the hypothesis in Lemma 5.4.4 and consider
non-negative times t ≥ t1 ≥ T−1 and ε = R0/15. Then, there exists a universal constant C such that if

W

K
≤ CR2

0, (5.4.26)

then we obtain the bounds

ρ
(
(L+

γ (T−1)t1)ε,t
)
≥ 1 + 4

5R0

2
, (5.4.27)

inf
θ∈(L+

γ (T−1)t1 )ε,t

R cos(θ − φ) ≥ 1

2
R0, (5.4.28)

inf
θ,θ′∈(L+

γ (T−1)t1 )ε,t

cos(θ − θ′) ≥ 1− 1

3
R0, (5.4.29)

hold true for every t in [t1,∞).

Proof. We will show how to select C appropriately at the end of the proof, for the moment,
let us make it small enough so that we can use Lemma 5.4.4. The proof will follow directly
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from Lemma 5.4.3 by setting L := L+
γ (T−1)t1,ε. To verify the corresponding hypotheses; first,

we begin by controlling the mass in L. Indeed, by Lemma 5.4.4 we have that

ρ(L+
γ (T−1)t1,ε) ≥ ρ

(
L+
γ (T−1)t1

)
≥ 1 + 4

5R0

2
. (5.4.30)

Second, we estimate the infimum over the cosine of the difference of angles in L+
γ (T−1)t1,ε for

this purpose let θ̄ be contained in L+
γ (T−1)t1 . Then, for any θ and θ′ in

(
L+
γ (T−1)t1

)
ε
, we have

that

cos
(
θ − θ′

)
= cos

(
θ − θ̄ + θ̄ − θ′

)

= cos
(
θ − θ̄

)
cos
(
θ′ − θ̄

)
− sin

(
θ − θ̄

)
sin(θ′ − θ̄)

≥
[
1− 1

15
R0

]2

−
[
1−

[
1− 1

15
R0

]2]

≥ 2

[
1− 1

15
R0

]2

− 1 ≥ 1− 1

3
R0.

Thus, since θ and θ′ were arbitrary, we deduce that

inf
θ,θ′∈L+

γ (T−1)t1,ε

cos(θ − θ′) ≥ 1− 1

3
R0. (5.4.31)

Finally, considering m =
1+ 4

5
R0

2 and p = 1− 1
3R0 and using the bounds in (5.4.30) and (5.4.31),

we obtain that

mp− (1−m) ≥ 1 + 4R0
5

2

(
1− 1

3
R0

)
+

( 4R0
5 − 1

2

)

≥ 1

2

(
8

5
R0 −

1

3
R0 −

4

15
R2

0

)

>
1

2

(
24− 5− 4

15

)
R0 =

1

2
R0.

Therefore, the desired result follows by choosingC appropriately in (5.4.26) so that (5.4.5) holds
and applying Lemma 5.4.3 with σ = R0

2 .

In the next Lemma, we derive an estimate that we will use in Section 5.5. Such an estimate
shows that if the entropy production vanishes over sufficiently long intervals of time, then L2

norm of the solution in T\
(
L+
γ (T−1)t

)
ε
, will begin to decrease exponentially.

Lemma 5.4.7. Let [t1, t2] be a time interval in [T−1,∞), such that

Ṙ ≤ Kλ3R3
0 cos2 α

4
and R < 2R0, in [t1, t2].

with α as specified in Section 5.2. Assume that ε = R0/15 and λ is contained in (2/3, 1). Then there
exists a universal constant C and some δ > 0 such that if

W

K
≤ Cλ2R2

0(1− λ), and t2 − t1 ≥ δ (5.4.32)

then, we have that

f2(T\
(
L+
γ (T−1)t

)
ε
) ≤ f2(L−α (t1))e

K
(

2δR0− (t−t1−δ)R0 sinα
2

)
, (5.4.33)
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for all t in [t1 + δ, t2]. Moreover, we can choose δ so that

δ .
1

KλR0 cos2 α
+

sinα

KλR0
log

1

R0
. (5.4.34)

Proof. We will show how to select C appropriately at the end of the proof, for the moment, let
us make it small enough so that we can use Lemma 5.3.14 and Lemma 5.4.4. The proof is based
on Lemma 5.3.14, Proposition 5.4.1, Lemma 5.4.4, and the following differential inequalities:

d

dt
P ≥ KλR0

√
1− P 2

(√
1− P 2 − 4 cosα

5

)
, t ∈ [t1, t2] ∩ {|P | ≤ sinα},

d

dt
(1− P ) ≤ −1

4
sinαKλR0(1− P ), t ∈ [s, t2] ∩ {P ≤ 1−R0/15}.

(5.4.35)

Such inequalities hold when P = cos(Θr,t(θ,Ω) − φ) for any r and for any θ satisfying that
cos(θ − φ(r)) = − sinα in [t1, t2], and when P = cos(Θr′,t(θ,Ω) − ΘT−1,t(θ

′,Ω′)) for any r′ in
[t1, t2] and any θ and θ′ such that cos(θ − φ(r′)) ≥ sinα and θ′ is contained in L+

γ (T−1). Here, Ω
and Ω′ are contained in [−W,W ].

We claim such inequalities imply that there exists δ > 0 satisfying (5.4.34) such that

T\
(
L+
γ (T−1)s

)
ε
⊆ L−α (s− δ)s,

for any s in [t1 + δ, t2]. Here, we are using the notation introduced in Subsection 5.2.3 and in
Definition 5.4.5. We divide the proof into three steps, the second of which will be the proof of
the claim:

• Step 1: We show that the claim implies (5.4.33).
To achieve this let s be contained in [t1 + δ, t2]. Then, using Lemma 5.3.14 and Proposition 5.4.1,
on the interval [t1, s− δ] we obtain that

f2(L−α (s− δ)) ≤ f2(L−α (t1))e−K(
(s−δ−t1)KR0 sinα

2
).

Consequently, once the claim is proved, the lemma would follow by the above inequality and
Lemma 5.4.2.

• Step 2: We show how the inequalities in (5.4.35) imply the claim.
Consider a time r contained in [t1, t2 − δ]. Since we are assuming that P (r) = − sinα, the first
inequality in (5.4.35) implies that there exists δ > 0 such that

d

dt
P ≥ KλR0 cos2 α

5
in [r, r + δ].

Consequently, in particular we can find δ such that the above property holds, P (r + δ) = sinα
and

δ ≤ 10α

KλR0 cos2 α
.

By the definition of P this implies that

T\L+
α (s) ⊆ L−α (s− δ)s,

for any s in [t1 + δ, t2]. To derive such implication, we have set s = r+ δ. Consequently, if we let
θ be any element T\L−α (s− δ)s and we set r′ = r+ δ in the definition of P then, by Lemma 5.4.4
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and construction, we have that P (r′) > −1. Moreover, by integrating the second inequality in
(5.4.35) we have that we can find δ > 0 such that P (s+ δ + δ) ≥ 1− R0

15 and

δ .
sinα

KλR0
log

1

R0
.

Thus, by the construction of P we obtain that

T\
(
L+
γ (T−1)r+δ+δ

)
ε
⊆ T\L+

α (r + δ̄)r+δ+δ.

Consequently, the claim follows by selecting s = r + δ + δ and δ = δ + δ.

• Step 3: We derive (5.4.35).
Let us denote:

Θ = Θr,t(θ,Ω), Θ = Θr′,t(θ,Ω), and, Θ′ = ΘT−1,t(θ
′,Ω′),

for θ, θ′,Ω,Ω′ as described in the above definition of P and P . To derive the first inequality,
observe that thanks to Lemma 5.3.13 and our assumption on Ṙ, we can select the constant in
(5.4.32) appropriately so that we can guarantee that

d

dt
cos
(
Θ− φ) = − sin(Θ− φ(t))(Θ̇− φ̇)

= − sin(Θ− φ)(Ω−KR sin(Θ− φ))− φ̇)

≥ −| sin(Θ− φ)|
(

1

R

√
K
d

dt
R2 +W 2 +W −KR| sin(Θ− φ)|

)

≥ | sin(Θ− φ)|
(
KR| sin(Θ− φ)| − 4KλR0 cosα

5

)
.

Here, in the third inequality, we have used Lemma 5.3.13. Consequently, P satisfies the in-
equality

d

dt
P ≥ KλR0

√
1− P 2

(√
1− P 2 − 4 cosα

5

)
.

Thus, the first inequality in (5.4.35) follows. Finally, to derive the second inequality we use the
same argument in the derivation of (5.4.9) to obtain that

dP

dt
≥ 2K

√
1− P 2

[
R cos

(
Θ + Θ′

2
− φ

)√
1− P

2
− W

K

]
in [t1, t2],

Now, using the same arguments as in the proof of inequality in (5.4.35) and equation (5.4.20),
we obtain that

cos

(
Θ + Θ′

2
− φ

)
= cos

(
(Θ− φ) + (Θ′ − φ)

2

)

≥ cos(Θ− φ) + cos(Θ′ − φ)

2
≥ sin(α) + 3

5R0

2
≥ sinα

2
.

Here, we have used the fact that the first inequality in (5.4.35) implies that cos(Θ − φ) ≥ sinα
in [r′, t2]. Thus, we deduce that, whenever, 1− P ≥ R0/15, we have that

dP

dt
≥ 2K

√
1− P 2

[
R0λ sinα

2

√
1− P

2
− W

K

]

≥ 2K
√

1 + P

[√
2

4
R0λ sinα(1− P )− W

K

√
1− P

]
.
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Consequently, by choosing C appropriately in (5.4.32) so that

W

K

√
1− P < CR2

0 <
R0λ sinα

20
(1− P ) whenever 1− P ≥ R0/15,

we can guarantee that

d

dt
P ≥ KλR0

4
(1− P ), whenever P ≤ 1− R0

15
.

Hence, the desired result follows.

We close this section with a lemma that will allow us to control the L2 norm of the solution
in T\

(
L+
γ (T−1)t

)
ε

in the intervals of high entropy production.

Lemma 5.4.8. Let [t1, t2] be a time interval contained in [T−1,∞) with the property that

R < 2R0, in [t1, t2].

Then, we have that
f2(L−α (t)) ≤ f2(T\

(
L+
γ (T−1)t1

)
ε
)e2KR0(t−t1),

for all t ∈ [t1, t2].

Proof. This Lemma follows directly from Lemma 5.4.2 and Corollary 5.4.6.

5.5 Average entropy production via differential inequalities

In this section, we analyze the system of inequalities presented in Subsection 5.2.5 and derived
in Sections 5.3 and 5.4. We shall demonstrate that this system implies the control on the time T0

presented in Theorem 5.1.2. We begin by describing a subdivision of the interval [0, T0] inspired
by the treatment of L. Desvillettes and C. Villani in [104].

We first subordinate the subdivision to different scales of values of the order parameter.
Then, we classify the intervals (of such subdivision) into intervals where dissipation is above
and below a certain threshold. Such threshold depends on the scale of the order parameter.

5.5.1 The subdivision

Now, we give the precise construction of our subdivision. Before we enter into details, we shall
introduce further notation that we will use along this part.

• The dyadic hierarchy.
Let us consider an auxiliary time partition into subintervals [rk, rk+1) whose endpoints are enu-
merated in the sequence {rk}k∈N. Such a partition will be used in this part and is set according
to a dyadic behavior of the square of the order parameter R2. Namely, such sequence provides
the first times at which R2 doubles its value. To such an end, let us set R0 = R(0) and r0 = 0.
Additionally, assume that Rk and rk are given for certain k ∈ N and let us define

R2
k+1 = 2R2

k and rk+1 := inf{t ≥ rk : R2(t) ≥ 2R2
k = R2

k+1}. (5.5.1)

Since R is bounded by 1, then the sequence consists of finitely many terms

0 = r0 < r1 < · · · < rk∗ < rk∗+1 =∞.
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Here and throughout this section, we will assume that

W

K
≤ CR3

0 and 1− λ ≤ cos2 α

180
R0, (5.5.2)

with C small enough so that all the results in Subsections 5.3.3 and Section 5.4 hold (note that
our assumption in λ implies the lower bound λ > 179/180 and thus we can suppress λ from
the previous constraints on the universal constant C). Now, let us set

µk :=
cos2 α

4
λ3R3

k, dk :=
1

3KRk
log 10, and δk :=

1

KRk
log

(
1

Rk

)
. (5.5.3)

Observe that (5.5.2) implies that W
K ≤ Cλ2(1 − λ)R2

k, for any k = 0, . . . , k∗ with the same
universal constant C. In particular, we can use Lemma 5.3.14 and obtain that

R(t) ≥ λRk, for all t in [rk,rk+1). (5.5.4)

• Initial time of the subdivision.
Let us use Lemma 5.4.4 to define the corresponding times of formation of attractors that is, we
set

T k−1 := inf

{
t ≥ rk :

dR

dt
≤ KQR3

k

}
, (5.5.5)

where k = 0, . . . , k∗ and Q is chosen so that we meet condition (5.4.22) when one applies
Lemma 5.4.4 after translating the system in time. Here, for each k, we select the time trans-
lation so that the configuration of the system at time rk is the new initial condition (recall that,
by the definition of rk, we can use Lemma 5.4.4 with the same universal constant C. Then, we
define

t0 := min{T k−1 : k = 0, . . . , k∗}, (5.5.6)

and also
k0 := max{k ∈ Z+

0 : rk ≤ t0}.
Notice that since t0 is the first time in the subdivision, Lemma 5.4.4 and Corollary 5.4.6 will
apply at any later step. Thus, we will obtain a controlled behavior of the characteristic flow
close to the attractor set (L+

γ (t0)t)ε. Here, and throughout the rest of this section we will choose
γ by the condition

cos2 γ =
1

30
Rk0 . (5.5.7)

We have done so according to condition (5.4.16).

• The subdivision.
Subordinated to the “dyadic” sequence {rk}k∗k=0, we will construct the sequence of times {tl}l∈N
describing the subdivision in the following way. We start at the time t0 specified in Lemma
5.5.1. Assume that for some l in N the time tl is given and let us proceed with the construction
of tl+1. First, consider the only k(l) in {0, . . . , k∗} such that tl is contained in [rk(l), rk(l)+1). Then,
we will distinguish between two different situations:

1. If Ṙ(tl) < Kµk(l), then we set

tl+1 := sup{t ∈ [tl, rk(l)+1) : Ṙ(s) < Kµk(l), ∀ s ∈ [tl, s)}. (5.5.8)
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2. If Ṙ(tl) ≥ Kµk(l), then we first compute

t̃l+1 := sup{t ∈ [tl, rk(l)+1) : Ṙ(s) ≥ Kµk(l), ∀ s ∈ [tl, s)}, (5.5.9)

and set tl+1 via the following correction:

tl+1 =

{
t̃l+1 + dk(l) if t̃l+1+dk(l)≤ rk(l)+1,

rk(l)+1 otherwise.
(5.5.10)

• The good and the bad sets.
We can think of the intervals [tl, tl+1) obeying the above first item as bad sets as they are subject
to “small” slope of the order parameter. On the contrary, those sets obeying the second item
can be thought of good sets, as they involve “large” slope of the order parameter in comparison
with the critical value Kµk(l). The critical value itself depends on the size of R2

k(l) in the above
dyadic hierarchy as depicted in (5.5.3). For this reason, we shall collect all the indices l of good
and bad sets associated to the index k of the dyadic hierarchy as follows.

Gk := {l ∈ Z+
0 : tl ∈ [rk, rk+1) and Ṙ(tl) ≥ Kµk},

Bk := {l ∈ Z+
0 : tl ∈ [rk, rk+1) and Ṙ(tl) < Kµk},

(5.5.11)

for every k = 0, . . . , k∗. Equivalently, we will say that [tl, tl+1) is of type Gk if l ∈ Gk and it is of
type Bk if l ∈ Bk. For notational purposes, we will denote their sizes

gk := #Gk,

bk := #Bk,
(5.5.12)

for every k = 0, . . . , k∗. Notice that as a consequence of the definition (5.5.11), after any interval
of type Bk whose closure is properly contained in [rk, rk+1) there is an interval of type Gk. The
reverse statement is not necessarily true. Namely, notice that for any l in Gk, we need first to
compute the interval [tl, t̃l+1) according to (5.5.9) and later we extend it into the interval of type
Gk [tl, tl+1). Unfortunately, the slope Ṙ can both grow or decrease in [t̃t+1, tl+1) and we then
lose the control of what is next: either Gk or Bk set. Nevertheless, this is enough to show that

bk ≤ gk + 1, for all k = 0, . . . , k∗. (5.5.13)

Of course, by definition g0 = · · · = gk0−1 = 0. The size of gk for k = k0, . . . , k∗ will be estimated
in Lemma 5.5.3. Finally, for notational simplicity, we shall sometimes enumerate the indices in
Gk in an increasing manner, namely,

Gk = {lkm : m = 1, . . . , gk},

where {lkm}1≤m≤gk is an increasing sequence for each k = 0, . . . , k∗.

Bound of the size of t0.

By Lemma 5.4.4 we have that that each T k−1 can be estimated via (5.4.18). However, we will
show that our dyadic choice allows us to get a sharper estimate of t0. More specifically, the
cubic exponent for R0 in (5.4.18) can be relaxed to a quadratic one. This is the content of the
following Lemma.
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Lemma 5.5.1 (Bound of t0). Let t0 be defined as above and suppose condition (5.5.2) holds. Then, we
have that

t0 .
1

KR2
0

.

Proof. By construction, it is clear that k0 ≤ k∗. By the fundamental theorem of calculus and the
definition of t0, we obtain that

R(rk+1)−R(rk) =

∫ rk+1

rk

Ṙ(t) dt ≥ KQR3
k(rk+1 − rk),

and

R(t0)−R(rk0) =

∫ t0

k0

Ṙ(t) dt ≥ KQR3
k0

(t0 − rk0),

for any k = 0, . . . , k0−1. Here, we have used the fact that rk ≤ t0 ≤ T k−1 for every k = 0, . . . , k0.
By estimate (5.5.6) and the definition of T k−1 in (5.5.5) we can control the time derivative of
the order parameter in the above integrals. Using the dyadic definition of rk we arrive at the
bounds

rk+1 − rk ≤ Q
(R(rk+1)−R(rk))

KR3
k

≤ 1

2

Q

KR2
k

, (5.5.14)

and

t0 − rk0 ≤
Q(R(t0)−R(rk0))

KR3
k0

≤ 1

2

Q

KR2
k0

, (5.5.15)

for any k = 0, . . . , k0 − 1. To conclude the proof of the lemma, we represent t0 via a telescopic
sum

t0 = t0 − rk0 +

k0−1∑

k=0

(rk+1 − rk) ≤
1

2

Q

KR2
k0

k0∑

k=0

(
1

2

)k
≤ Q

KR2
0

.

Gain vs loss

In the forthcoming parts, we compare the growth of the order parameter R along intervals of
type Gk with its loss on intervals of type Bk. To do this precisely, for each k in {k0, ..., k∗}, we
have to give special consideration to the last interval of the subdivision in each [rk, rk+1). We
will denote such terminal intervals by [tl(k), tl(k)+1) in such a way that tl(k) is in [rk, rk+1) and
tl(k)+1 = rk+1. We will use the ideas in Collorary 5.3.15. In the following Lemma, we will see
that assumption (5.5.2) implies that the loss in R2 in smaller than 4/5 of the gain (except on
possibly the last interval of [tl(k), tl(k)+1).)

Lemma 5.5.2 (Gain vs loss). Assume that condition (5.5.2) holds. Then we have that

R2(tl)−R2(tl+1) ≤ 4

5

(
R2(tlkm+1)−R2(t̃lkm+1)

)
≤ 4

5

(
R2(tlkm+1)−R2(tlkm)

)
,

for any l in Bk and any lkm in Gk\l(k).

Proof. Thanks to Corollary 5.3.15 and Lemma 5.2.2 we have that

R2(tl)−R2(tl+1) ≤ (1− λ2)R2(tl) ≤ 4(1− λ)R2
k and R2

(
tlkm+1

)
−R2

(
t̃lkm+1

)
≥ 1

40
λ4R3

k.
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In particular, our thesis holds true as long as one checks the inequality

4(1− λ) ≤ 1

50
λ4Rk.

Such inequality is true due to our choice of λ. Here, we have used the fact that α = π/6 and
condition (5.5.2) implies that λ > 179/180.

Number of intervals of type Gk

Our objective here is to obtain an estimate on the numbers gk for k = k0, . . . , k∗. Recall that due
to (5.5.13), this will yield a control in the number of sets of type Bk.

Lemma 5.5.3 (Bound on gk). Assume that condition (5.5.2) holds. Then, we have that

max(bk, gk) .
1

Rk
.

Proof. To prove this, recall that by Lemma 5.2.2, we have that

∑

l=Gk\l(k)

(
R2(tl+1)−R2

(
tl
))
≥ (gk − χ{l(k)∈Gk})

λ4R3
k

40
. (5.5.16)

Thus, Lemma 5.5.2 implies

∑

l∈Bk
(R2(tl+1)−R2(tl)) ≥ −gk

λ4R3
k

50
. (5.5.17)

Taking the sum of both the oscillations at good and bad sets, we recover a telescopic sum
involving the evaluation ofR2 at the largest and smallest of the times tl in [rk, rk+1). Recall that
by construction, the oscillation of R2 in [tl(k), tl(k)+1) is positive, independently on whether l(k)
is in Bk or Gk. By doing this, we obtain that

R2
k+1 − λ2R2

k ≥
gk
200

λ4R3
k −

1

40
χ{l(k)∈Gk}λ

4R3
k.

Hence, we deduce the bound

gk ≤
200(2− λ2)R2

k

R3
k

+ 5. (5.5.18)

Here, we have used the fact that assumption (5.5.2) implies that λ > 179/180. Hence, the de-
sired result follows.

Sum of lengths of intervals of type Gk.

In this section, we control the total diameter of the intervals in Gk. To do this we will consider
the sets G̊k and B̊k. The set G̊k is obtained by deleting the biggest element from Gk if the last
interval in [rk, rk+1) is of type Gk. Otherwise, we let G̊k = Gk. On the other hand, the set B̊k is
obtaining by deleting the last element in Bk in the case where the intervals in [rk, rk+1) do not
end with two or more intervals of type Gk. Otherwise, we let B̊k = Bk. Now, we are ready to
state our control.
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Lemma 5.5.4. The sum of the lengths of the interval [tlkm , tlkm+1] satisfies

gk∑

m=1

(
tlkm+1 − tlkm

)
.

1

KR2
k

.

Proof. Let us first bound the length of each time interval [tlkm , tlkm+1) of typeGk form = 1, . . . , gk.
Notice that as defined in (5.5.10), we have the identity

tlkm+1 − tlkm = (t̃lkm+1 − tlkm) + dk. (5.5.19)

Our next goal is to estimate the first term. To such end, we shall use the idea in Lemma 5.5.3
and the fundamental theorem of calculus to write

R
(
t̃lkm+1

)
−R

(
tlkm
)

=

∫ t̃
lkm+1

t
lkm

Ṙ(t) dt ≥ cos2 α

4
Kλ3R3

k

(
t̃lkm+1 − tlkm

)
,

for all m = 1, . . . , gk. Here, we have used (5.5.9) to bound the time derivativeof R. Hence, we
obtain

t̃lkm+1 − tlkm ≤
4

cos2 αKλ3R3
k

(
R
(
t̃lkm+1

)
−R

(
tlkm
))
, (5.5.20)

for all m = 1, . . . , gk. By summing over all the intervals of type G̊k we obtain that

∑

l∈G̊k

(
t̃l+1 − tl

)
≤ 4

cos2 αKλ3R3
k

∑

l∈G̊k

(
R
(
t̃l+1

)
−R

(
tl
))

=
4

cos2 αKλ3R3
k

∑

l∈G̊k

[(
R
(
tl+1

)
−R

(
tlkm
))
−
(
R
(
tl+1

)
−R

(
t̃l+1

))]
,

(5.5.21)

Let us add and subtract to the first term in (5.5.21) the oscillations of R over all the sets of type
B̊k. Notice that after doing so the first term becomes a telescopic sum of evaluations of R at
points tl in [rk, rk+1) and it can be easily bounded by the oscillation of R between the largest
and smallest tl that lie in [rk, rk+1). In turns, it can be easily bounded by Rk+1−λRk due to the
definition of rk+1 in (5.5.1) and the lower bound of the order parameter given by (5.5.4). Then,
we obtain
∑

l∈G̊k

(
t̃l+1 − tl

)
≤ 4

cos2 αKλ3R3
k

(Rk+1 − λRk)

− 4

cos2 αKλ3R3
k


∑

l∈B̊k

(R(tl)−R(tl+1)) +
∑

l∈G̊k

(
R
(
tl+1

)
−R

(
t̃l+1

))

 .

(5.5.22)

Our goal is to show that the term in the second line is non-positive. Indeed, let us use lemmas
5.2.2 and 5.5.2 in the second term of (5.5.22) to obtain that

∑

l∈G̊k

(
t̃l+1 − tl

)
≤ 4(2− λ)

K cos2 αλ3R2
k

− 4

5 cos2 αKλ3R3
k

∑

l∈G̊k

(
R
(
tl+1

)
−R

(
t̃l+1

))

≤ 4(2− λ)

cos2 αKλ3R2
k

.
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Hence, by lemmas 5.2.2 and 5.5.3 and (5.5.19) we deduce that

gk∑

m=1

(
tlkm+1 − tlkm

)
≤ dkgk + t̃lkgk+1

− tlkgk +
∑

l∈G̊k

(
t̃l+1 − tl

)
.

1

KR2
k

,

where we have used (5.5.20) and our usual bound on the oscillation to control the difference

t̃lkgk+1
− tlkgk .

Thus, the desired result follows.

Growth of f2(T \ (L+
γ (t0)t)ε)

Our goal here is to control the growth of f2(T \ (L+
γ (t0)t)ε) in each interval [rk, rk+1), where the

parameter ε of the neighborhood is set once for all as follows

ε :=
R0

15
.

Notice that ε has been set so that the attractive property in Corollary 5.4.6 holds true. To ini-
tialize the iterative method, we need to control f2(T \ (L+

γ (t0)t)ε) at t = t0. Hence, we begin by
providing a control of the growth of f2

t (T) during the transient [0, t0].

Lemma 5.5.5. Assume condition (5.5.2) holds. Then, we have that

‖ft0‖22 ≤ ||f0||22e
4Q
R0 .

Proof. Thanks to Proposition 5.4.1 we obtain that

‖ft0‖22 ≤ ||f0||22 exp

(
K

∫ t0

0
R(s) ds

)
.

Then, the main objective is to estimate the time integral of the order parameter. To that end,
observe that

∫ t0

0
R(s) ds =

k0−1∑

k=0

∫ rk+1

rk

R(s) ds+

∫ t0

rk0

R(s) ds

≤
k0−1∑

k=0

Rk+1(rk+1 − rk) +Rk0+1(t0 − rk0)

≤ Q
k0∑

k=0

Rk
KR2

k

= Q

k0∑

k=0

1

KR0

(√
2

2

)k
≤ 4Q

KR0
.

Notice that we have used (5.5.14) and (5.5.15) to estimate the lengths of the intervals [rk, rk+1).
Hence, the desired result follows.

Let us now begin our study on the primary goal of this section. To do this, let us introduce
the following notation that we will use in this part. Define the parameters

Dk := max(bk, gk)(δk + dk) +

gk∑

l=1

(t̃lkm+1 − tlkm), (5.5.23)
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for any k = k0, . . . , k∗. Notice that its size can be controlled in the following way due to lemmas
5.5.3 and 5.5.4 and the values in (5.5.3):

Dk .
1

KR2
k

+
1

Rk

[
1

KRk
log

(
1

Rk

)
+

1

KRk

]

.
1

KR2
k

log

(
1 +

1

Rk

)
.

(5.5.24)

Let us also introduce the following sequence of functions {Fk}k∗k=k0
. We proceed by induction.

For k = k0, we define

Fk0(t) :=




‖f0‖2L2e

4Q
R0 e2KRk0

(t−t0), for t ∈ [t0, t0 +Dk0 ],

‖f0‖2L2e
4Q
R0 e2KRk0

Dk0e−K
Rk0

sinα

2
(t−t0−Dk0

), for t ∈ [t0 +Dk0 , rk0+1).

Assume that Fk−1 is given in the interval [rk−1, rk) and let us define Fk in the interval [rk, rk+1)
through the formula

Fk(t) :=

{
Fk−1(rk)e

2KRk(t−rk), for t ∈ [rk, rk +Dk],

Fk−1(rk)e
2KRkDke−K

Rk sinα

2
(t−rk−Dk), for t ∈ [rk +Dk, rk+1).

Lemma 5.5.6. Assume condition (5.5.2) holds, then we have that

Fk(t) ≤ ||f0||22e
B

KR0
log
(

1+ 1
R0

)
, t ∈ [rk, rk+1),

for some universal constant B and for each k = k0, . . . , k∗.

Proof. By definition, we note that

Fk(t) ≤ Fk−1(rk)e
2KRkDk , for all t ∈ [rk, rk+1),

and for every k = k0 + 1 . . . , k∗. Also, notice that by contruction, we have that

Fk0(rk0+1) ≤ ||f0||22 e
4Q
R0 e2KRk0

Dk0 .

Then, a simple induction shows that

Fk(t) ≤ ||f0||22 e
4Q
R0

k∏

q=k0

e2KRqDq = ||f0||22 exp


4Q

R0
+

k∑

q=k0

2KRqDq


 . (5.5.25)

Finally, let us use the bound (5.5.24) on the above sum to achieve

k∑

q=k0

2KDqRq .
k∑

q=k0

Rq
KR2

q

log

(
1 +

1

Rq

)
.

1

KR0
log

(
1 +

1

R0

) k∑

q=k0

(√
2

2

)q
.

Hence, the desired result follows.

The sequence {Fk}k∗k=k0
has been constructed as a barrier in order to control the map t →

f2(T \ (L+
γ (t0)t)ε) at each interval [rk, rk+1). We achieve this in the following theorem. Such a

theorem is the main result in this section. As a byproduct, we derive corollaries 5.5.8 and 5.2.3,
which provide the basis for our discussion in Subsection 5.3.1 and Section 5.3.2.
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Theorem 5.5.7. Assume that condition (5.5.2) holds, then we have that

f2(T \ (L+
γ (t0)t)ε) ≤ Fk(t), t ∈ [rk, rk+1),

for each k = k0, . . . , k∗.

Proof. We proceed by induction:

• Step 1: Base case (k = k0).
Notice that the inequality is true at t = t0 thanks to Lemma 5.5.5. Let us now look at each of the
intervals of type Gk0 and Bk0 and quantify the growth or decay rate of f2(T \ (L+

γ (t0)t)ε) via
lemmas 5.4.2, 5.4.7 and 5.4.8. Specifically, we shall distinguish between three different scenarios
for each interval [tl, tl+1) with tl in [rk0 , rk0+1) :

1. If the interval is of type Gk0 , then Ṙ(tl) ≥ Kµk0 and Lemma 5.4.7 cannot be used to
quantify a decrease estimate of the L2 norm. Fortunately, we can at least use Lemma 5.4.8
on the sliding L2 norm in combination with Corollary 5.4.6 to obtain that

f2
(
L−α (t)

)
≤ f2(T \ (L+

γ (t0)tl)ε,t)

≤ f2(T \ (L+
γ (t0)tl)ε)e

2KRk0
(t−tl)

≤ f2(T \ (L+
γ (t0)tl)ε)e

2KRk0
(tl+1−tl),

for every t in [tl, tl+1).

2. If the interval is of type Bk0 , then two different possibilities can take place: either [tl, tl+1)
is small or it is large.

(a) If [tl, tl+1) is small (i.e., tl+1 − tl ≤ δk0 ), then Lemma 5.4.7 cannot be used either.
Then, we have to rely on a similar argument to that of type Gk, and it implies

f2
(
L−α (t)

)
≤ f2(T \ (L+

γ (t0)tl)ε)e
2KRk0

(t−tl)

≤ f2(T \ (L+
γ (t0)tl)ε)e

2KRk0
δk0 ,

for every t in [tl, tl+1).

(b) Finally, if [tl, tl+1) is large (i.e., tl+1 − tl > δk0 ) then, we can apply Lemma 5.4.7.
However, notice that it can only be applied for t in [tl+δk0 , tl+1) and, in the remaining
part of the interval [tl, tl + δk0) we can only apply the same argument as before
supported by Lemma 5.4.2 about sliding L2 norm. Specifically, for any t in [tl, tl+δk)
Lemma 5.4.2 implies

f2
(
L−α (t)

)
≤ f2(T \ (L+

γ (t0)tl)ε)e
2Kδk0

Rk0 ,

Now, for any t in [tl + δk, tl+1) lemmas 5.4.7 and 5.4.8 yield

f2(T\(L+
γ (t0)t)ε)

≤ f2(L−α (tl))e
K

(
2Rk0

δk0
−

(t−tl−δk0
)Rk0

sinα

2

)

≤ f2
tl

(T \ (L+
γ (t0)tl)ε)e

K

(
2Rk0

δk0
−

(t−tl−δk0
)R0 sinα

2

)
.
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Bearing all those possibilities in mind, let us now show the inequality for Fk0 in (t0, rk0+1). Fix
any time t in (t0, rk0+1) and consider the index

p := max{l ∈ N : tl ≤ t}.

Then, we shall repeat the above classification at each [tl, tl+1) with l in {0, . . . , p − 1} ending
with [tp, t). Also, let us split the indices of intervals of type Bk0 into two parts corresponding to
small or large intervals as in the above discussion, namely,

BS
k0

:= {l ∈ Bk0 : tl+1 − tl ≤ δk0},
BL
k0

:= {l ∈ Bk0 : tl+1 − tl > δk0}.

Notice that we then have the disjoint union

{0, . . . , p− 1} = Gk0,p ∪BS
k0,p ∪BL

k0,p,

where Gk0,p = Gk0 ∩ {0, . . . , p− 1}, BS
k0,p

= BS
k0
∩ {0, . . . , p− 1}, and

BL
k0,p = BL

k0
∩ {0, . . . , p− 1}.

By applying the above discussion in a recursive way, we obtain that

f2
tp(T \ (L+

γ (t0)tp)ε)

≤ f2
t0(T) exp

{
2Rk0K

[ ∑

l∈Gk0,p

(tl+1 − tl) +
∑

l∈BSk0,p

δk0

]

+
∑

l∈BLk0,p

(
2Rk0δk0 −

(tl+1 − tl − δk0)Rk0 sinα

2

)}
.

(5.5.26)

Similarly, for any t in (tp, tp + δk0) we have that

f2(T \ (L+
γ (t0)t)ε)

≤ f2
tp(T \ (L+

γ (t0)tp)ε) exp
{

2KRk0

[
(tp+1 − tp)χ{p∈Gk0

}

+ δk0χ{p∈BSk0
} + δk0χ{p∈BLk0

}
]}

≤ f2
tp(T \ (L+

γ (t0)tp)ε) exp
{

2KRk0

[
(tp+1 − tp)χ{p∈Gk0

} + δk0χ{p∈Bk0
}
]}

.

(5.5.27)

Thus, for any t in [tp + δk0 , tp+1) we obtain that

f2(T \ (L+
γ (t0)t)ε)

≤ f2
tp(T \ (L+

γ (t0)tp)ε) exp
{

2KRk0

[
(tp+1 − tp)χ{p∈Gk0

} + δk0χ{p∈BSk0
}

+

(
δk0 −

(t− tp − δk0) sinα

4

)
χ{p∈BLk0

}

]}

≤ f2
tp(T \ (L+

γ (t0)tp)ε) exp
{

2KRk0

[
(tp+1 − tp)χ{p∈Gk0

} + δk0χ{p∈Bk0
}

−(t− tp − δk0)R0 sinα

4
χ{p∈BLk0

}

]}
.

(5.5.28)
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Putting (5.5.26), (5.5.27) and (5.5.28) together and recalling Dk in (5.5.23) implies

f2
t (T \ (L+

γ (t0)t)ε)

≤ f2
t0(T) exp

{
2KDk0Rk0 −

∑

l∈Bk0,p

K
(tl+1 − tl)Rk0 sinα

2

−K (t− tp)Rk0 sinα

2
χ{p∈Bk0

}

}
,

(5.5.29)

where we have absorbed the δk0 in the las term into Dk0 . On the other hand, notice that we can
recover t from the following telescopic sum

t = t− tp +

p−1∑

l=0

(tl+1 − tl) + t0

= t0 + (t− tp)χ{p∈Gk0
} + (t− tp)χ{p∈Bk0

} +
∑

l∈Gk0,p

(tl+1 − tl) +
∑

l∈Bk0,p

(tl+1 − tl)

≤ t0 +Dk0 + (t− tp)χ{p∈Bk0
} +

∑

l∈Bk0,p

(tl+1 − tl).

Consequently,
−(t− tp)χ{p∈Bk0

} −
∑

l∈Bk0,p

(tl+1 − tl) ≤ −(t− t0 −Dk0),

which can be used to bound the last two terms in the above exponential of (5.5.29). Then, we
obtain,

f2
t (T \ (L+

γ (t0)t)ε) ≤
{
f2
t0(T)e2KDk0 , for t ∈ (tp, tp + δk0),

f2
t0(T)e2KDk0

−KR0 sinα
2

(t−t0−Dk0
), for t ∈ [tp + δk0 , tp+1).

(5.5.30)

Notice that the worst situation is the one where there is no intermediate fall-off, that is, BL
k0,p

=
∅. Since such scenario dominates all the other possibilities, we shall restrict to it without loss of
generality. This amounts to the chain of inequalities

tp + δk0 = t0 + δk0 +
∑

l∈Gk0,p

(tl+1 − tl) +
∑

l∈BSk0,p

(tl+1 − tl) +
∑

l∈BLk0,p

(tl+1 − tl)

≤ t0 +
∑

l∈Gk0

(tl+1 − tl) + max(gk, bk)δk ≤ t0 +Dk0 ,

that is, tp + δk0 ≤ t0 +Dk0 , that leads to restating (5.5.30) as follows

f2
t (T \ (L+

γ (t0)t)ε) ≤
{
f2
t0(T)e2KDk0

Rk0 , for t ∈ (t0, t0 +Dk0),

f2
t0(T)e2KDk0

Rk0
−
KRk0

sinα

2
(t−t0−Dk0

), for t ∈ [t0 +Dk0 , rk0+1).

Finally, use Lemma 5.5.5 to relate the L2 norm at t = t0 and at t = 0. Thus, we have showed the
claimed bound.

• Step 2: Inductive hypothesis.
Let us assume that for certain k0 < k < k∗ we have

f2(T \ (L+
γ (t0)t)ε) ≤ Fq(t), t ∈ [rq, rq+1),
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for any q < k.

• Step 3: Induction step.
The proof for the index k becomes a simple consequence of the inductive hypothesis where we
need to apply again Lemmas 5.4.2, 5.4.7 and 5.4.8 repeatedly in the spirit as in Step 1 for the
base step.

As a consequence of Theorem 5.5.7 we obtain the following two Corollaries.

Corollary 5.5.8. Suppose assumption (5.5.2) holds. Then, we have that

rk+1 − rk .
1

KRk

1

R0
log

(
1 +

1

R0
+W 1/2||f0||2

)
,

for any k ≤ k∗.
Proof. Thanks to (5.5.24), we may assume, without lost of generality that rk+1− rk ≥ Dk. Now,
observe that, by Theorem 5.5.7 and (5.5.25) we have that

f2(T\
(
L+
γ (t0)

)
ε
) ≤ Fk(t)

≤ ‖f0‖2L2 e
4Q
R0

( k∏

q=k0

e2KRqDq

)
e−K

Rk sinα

2
(t−rk−Dk).

≤ ‖f0‖2L2 e

Q′
R0

log

(
1+ 1

R0

)

e−K
Rk sinα

2
(t−rk−Dk),

for every t in [rk + Dk, rk+1) and some universal constant Q′. On the other hand, by Jensen
inequality, we have that

ρ(T\(L+
γ (t0)t)ε) ≤

√
4πWf2(T\(L+

γ (t0)t)ε).

Consequently, if we let m(s) = 1− ρ(T\(L+
γ (t0)s

)
ε
), using Theorem 5.5.7, we deduce that

1−m(s) ≤ 2
√
π||f0||2e

Q′
2KR0

log
(

1+ 1
R0

)
e−K

Rk sinα

4
(s−rk−Dk). (5.5.31)

For any s in [Dk + rk, rk+1]. On the other hand, by Lemmas 5.4.3, 5.4.4, and Corollary 5.4.6, if
we let

P (t) = inf
θ,θ′∈

(
L+
γ (t0)s

)
ε,t

cos(θ − θ′), (5.5.32)

we then obtain that

1− P (t) ≤ max

[
1

3
Rk0e

−K
8
Rk0

(t−s),
16

R2
k0

W 2

K2

]
,

for every t in [s, rk+1]. Additionally, using Lemmas 5.4.3 and 5.4.4, and Corollary 5.4.6, if we let
L =

(
L+
γ (t0)s

)
ε

then we have that

R(t) ≥ inf
θ,θ′∈Ls,t

R cos(θ − θ′)

≥ m(s)P (t)− (1−m(s))

=
(
1− (1−m(s))

)
P (t)− (1−m(s))

≥ P (t)− 2(1−m(s))

≥ 1− (1− P (t))− 4
√
πW

1
2 ‖f0‖L2e

Q′
2R0

log
(

1+ 1
R0

)
e−K

Rk sinα

4
(s−rk−Dk).

(5.5.33)
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Now, observe that, by construction
√

2

2
≥ R in [rk, rk+1).

Consequently, by (5.5.31) and (5.5.32), if we set

t = rk+1 and s = rk+1 −
8

KRk0

log
1

10Rk0

,

in (5.5.33), and make C smaller within the constrains of (5.5.2) if necessary, we obtain that

1

3
Rk0e

− log 1
10Rk0

+ 4
√
πW

1
2 ‖f0‖L2e

Q′
2R0

log
(

1+ 1
R0

)
e
−K Rk sinα

4

(
rk+1−rk−Dk− 8

KRk0
log 1

10Rk0

)

≥ 1−
√

2

2
. (5.5.34)

Thus,

4
√
π||f0||2W 1/2e

C1
R0

log
(

1+ 1
R0

)
e−K

Rk sinα

4
(rk+1−rk−Dk) ≥ 1−

√
2

2
− 1

30
≥ 1

10
.

for some universal constant C1. Hence,

4

KRk sinα
log
(
40
√
πW

1
2 ‖f0‖L2

)
+

4C1

KR0

1

Rk sinα
log

(
1 +

1

R0

)
+Dk ≥ rk+1 − rk.

Consequently, using (5.5.24) the desired result follows.

5.5.2 Emergence of mass concentration

We now prove Corollary 5.2.3. Apart from what is stated there, we will indeed show that

ρ
(
T\
(
L+
γ (t0)s

)
ε,t

)
≤ e− 1

10
K sinα(t−T0), (5.5.35)

(
L+
γ (t0)s

)
ε,t
⊆ L+

β (t),

for every t in [T0,∞). Here,

s = t− 8

KRk∗
log

1

40Rk∗
.

Additionally, recall that γ was chosen in (5.5.7).

Proof of Corollary 5.2.3. We begin by showing the first equation in (5.2.13). To do this, we control
rk∗ via the following telescopic sum and Corollary 5.5.8

rk∗ = t0 +

k∗∑

k=k0

rk+1 − rk

.
1

KR2
0

+

k∗∑

k=k0

1

KRk

1

R0
log

(
1 +

1

R0
+W 1/2||f0||2

)

.
1

KR2
0

+

k∗∑

k=k0

(√
2

2

)k 1

KR2
0

log

(
1 +

1

R0
+W 1/2||f0||2

)
.

.
1

KR2
0

log

(
1 +

1

R0
+W 1/2||f0||2

)
.
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Consequently, by construction, to guarantee the first equation in (5.2.13) it suffices to take,

rk∗ ≤ T0 .
1

KR2
0

log

(
1 +

1

R0
+W 1/2||f0||2

)
.

Indeed, recall that by definition R(rk∗) ≥
√

2/2 and consequently, by (5.5.4) we have that

R(t) ≥
√

2

2
λ ≥ 3

5
,

for every t in [rk∗ ,∞). Now, we proceed to show that we can guarantee the second equation in
5.2.13 by selecting T0 within the desired constraints. To achieve this, we argue as in equation
(5.5.33) and (5.5.34) from the proof of Corollary 5.5.8, with

s = t− 8

KRk∗
log

1

40Rk∗
,

to obtain that,

ρ
(
T\
(
L+
γ (t0)s

)
ε,t

)

≤ 4
√
πW 1/2‖f0‖L2e

Q′
2R0

log
(

1+ 1
R0

)
e
−K Rk∗ sinα

4

(
t−rk∗−Dk∗− 8

KRk∗
log 1

40Rk∗

)
, (5.5.36)

and, additionally,

inf
θ∈
(
L+
γ (t0)s

)
ε,t

cos(θ − φ) ≥ 1− 1

3
Rk∗e

− log 1
40Rk∗

− 4
√
πW 1/2‖f0‖L2e

Q′
2R0

log
(

1+ 1
R0

)
e
−K Rk∗ sinα

4

(
t−rk∗−Dk∗− 8

KRk∗
log 1

40Rk∗

)
, (5.5.37)

for any t in
[
rk∗ +Dk∗ + 8

KRk∗
log 1

40Rk∗
,∞
)

. Thus, since Rk∗ ≥
√

2/2 we see that, if we choose
T0 in such a way that

1

KR2
0

log

(
1 +

1

R0
+W 1/2||f0||2

)
& T0

≥ 4

KRk∗ sinα

[
log

4
√
πW 1/2‖f0‖L2

Rk∗/120

]
+
Q′ + 16

2KR0
log

(
1 +

1

40R0

)
+ rk∗ +Dk∗ . (5.5.38)

then, we can guarantee that condition (5.5.35) holds for every t in [T0,∞). Indeed, by (5.5.36),
such a choice of T0 together with Lemma 5.4.3 and Corollary 5.4.6 implies that

inf
θ∈
(
L+
γ (t0)s

)
ε,t

cos(θ − φ) ≥ 59

60
, (5.5.39)

ρ
(
T\
(
L+
γ (t0)s

)
ε,t

)
≤ 1

120
e−K

Rk∗ sinα

4
(t−T0),

for every t in [T0,∞). Consequently, the desired result follows from the fact that (5.5.39) in
particular implies that

(
L+
γ (t0)s

)
ε,t
⊆ L+

β (t) for β = π
3 .
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5.6 Applications to the particle system

The main objective of this section is to prove Corollary 5.1.3. Before we proceed with the proof,
let us introduce some necessary tools and notation. Along this section, we will set a probability
density f0 that belongs to C1 and will assume that g has compact support in [−W,W ]. Indeed,
we will assume that f0, K and W satisfies the hypotheses of Theorem 5.1.2. Also, we will
consider the unique global-in-time classical solution f = f(t, θ,Ω) to (5.1.2).

Definition 5.6.1 (The random empirical measures). By the consistency theorem of Kolmogorov
(see [292, Theorem 3.5]), let us consider a probability space (E,F ,P) and set some sequence of random
variables for k ∈ N

(θk(0),Ωk(0)) : E −→ T× R,

that are i.i.d. with law f0. For every N ∈ N, let us consider the random variables

t 7−→ (θN1 (t),Ω1(0)), . . . , (θNN (t),ΩN (0))

solving the agent-based system (5.1.1) issued at the above random initial data. Then, we define the
associated random empirical measures as follows

µNt :=
1

N

N∑

i=1

δ(θNi (t),Ωi(0))(θ,Ω), (5.6.1)

for every t ≥ 0.

The proof of Corollary 5.1.3 gathers three different tools:

- First, we shall use our main Theorem 5.1.2, that quantifies the rate of convergence of the
solution f = f(t, θ,Ω) towards the global equilibrium f∞ as t→∞.

- Second, we require a concentration inequality to quantify the law of large numbers. More
specifically, we need to quantify the rate of convergence in probability P of µN0 towards
f0 as the number of oscillators N tends to infinity.

- Finally, in order to propagate the above quantification for larger times, we require some
stability estimate for the transportation distance between µNt and ft.

Those tools will allow us to quantify a time in which a sufficient number of oscillators of the
particle system is concentrated around a neighborhood of the support of the global equilibrium
f∞. This, along with Lemma 5.4.3 (which also holds for the particle system), will guarantee
that the concentration property of oscillators propagates for larger times. Additionally, we will
derive the contraction of the diameter if the configuration of oscillators. Before beginning the
rigorous proof, let us elaborate on the concentration and stability inequalities.

5.6.1 Wasserstein concentration inequality

It is apparent from the literature that the above random empirical measures µN0 in Definition
5.6.1 approximate the initial datum f0 as N → ∞. Specifically, by the strong Law of Large
Numbers (see [291]) we obtain that

µN0
∗
⇀ f0, P-a.s,
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in the narrow topology of P(T× R) as N → ∞. Unfortunately, this is not enough for our pur-
poses as we seek quantitative estimates for the rate of convergence. Such a quantitative control
is called concentration inequality and there have been many approaches to it in the literature.
Most of them require some special structure on the initial data f0 and the sequence of random
empirical measures µN0 , see [38, 39, 41]. Specifically, some transportation-entropy inequality
is required. To the best of our knowledge, the first result where those assumptions on can be
removed was recently introduced in [132]. In our particular setting, it reads as follows.

Lemma 5.6.2. Let f0 be contained inP(T×R) be any probability measure with a distribution of natural
frequencies g = (πΩ)#f0 and assume that

E(g) :=

∫

R
eΩ4

dg <∞. (5.6.2)

Take any sequence {(θk(0),Ωk(0))}k∈N of i.i.d. random variables with law f0 and set the random em-
pirical measures µN0 according to Definition 5.6.1. Then,

P
(
W2(µN0 , f0) ≥ ε

)
≤ C1e

−C2Nε4 ,

for every ε > 0 and N in N. Here, C1 and C2 are two positive constants that depend neither on ε nor
on N , but only depend on E(g).

Proof. Take d = 2, p = 2, γ = 1 and β = 4 in [132, Theorem 2].

In the above result, we used the classical quadratic Wasserstein distance W2, namely,

W2(µN0 , f0) =

(
inf

γ∈Π(µN0 ,f0)

∫

T2×R2

(d(θ, θ′)2 + (Ω− Ω′)2) dγ

)1/2

.

However, as discussed in Remark 5.3.3 in Section 5.3, such distance is not appropriate for this
problem due to the fact that the standard quadratic distance on the product Riemannian mani-
fold T× R provides a cost functional which is not dimensionally correct. Indeed, we corrected
such situation by scaling Ω. Let us recall the scaled quadratic Wasserstein distance (see Defini-
tion 5.3.4),

SW2(µN0 , f0) =

(
inf

γ∈Π(µ,ν)

∫

T2×R2

(
d(θ, θ′)2 +

(Ω− Ω′)2

K2

)
dγ

)1/2

.

Let us note that by scaling, we can straightforwardly adapt the above Lemma 5.6.2 to the right
transportation distance SW2.

Remark 5.6.3. Consider the dilation map of the variable Ω with factor K

DK(Ω) :=
Ω

K
, for Ω ∈ R.

Then, we can define the following scaled objects:

f0,K := (Id⊗DK)#f0 and µN0,K := (Id⊗DK)#µ
N
0 .

Notice that f0,K is contained in P(T×R) and the empirical measures µN0,K are i.i.d. variables with law
f0,K . Interestingly, we obtain the relation

SW2(µN0 , f0) = W2(µN0,K , f0,K).
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Then, by applying Lemma 5.6.2 and the above Remark to the scaled objects, we obtain the
following result.

Lemma 5.6.4. Let f0 be a probability density in C1(T × R), assume that the distribution of natural
frequencies g = (πΩ)#f0 has compact support in [−W,W ] and that condition (5.1.15) in Theorem 5.1.2
holds true. Take any sequence {(θk(0),Ωk(0))}k∈N of i.i.d. random variables with law f0 and set the
random empirical measures µN0 according to Definition 5.6.1. Then,

P
(
SW2(µN0 , f0) ≥ ε

)
≤ C1 exp

(
−C2Nε

4
)
, (5.6.3)

for every ε > 0 and N in N. Here, C1 and C2 are two positive universal constants.

Remark 5.6.5. Notice that, according to Lemma 5.6.2, the above C1 and C2 only depend upon E(gK)
where gK := DK#g. Since g has compact support in [−W,W ] we obtain that

1 ≤ E(gK) ≤ e
W4

K4 ,

so that C1 and C2 will ultimately depend only on W
K . However, under the assumptions (5.1.15) in

Theorem 5.1.2 W
K is smaller than a universal constant. Consequently, E(gK) can be made smaller than

a universal constant arbitrarily close to 1. This justifies that C1 and C2 can be considered universal
constants.

5.6.2 Wasserstein stability estimate

In Theorems 4.4.6 and 4.6.31 of Chapter 4, we proved the following Dobrushin-type stability
estimate for the classical quadratic Wasserstein distance in T× R

W2(ft, f̄t) ≤ e
(

2K+ 1
2

)
tW2(f0, f̄0), (5.6.4)

for any two measured valued solution of the Kuramoto model with singular weights (4.2.5). In
particular, notice that the same idea holds true for any two measured valued solution to (5.1.2).
However, notice that units are not correct in the above inequality due to the fact that W2 is not
dimensionally correct in this problem (recall Remark 5.3.3). Since this time, a correct dimension
of the Wasserstein distance is necessary (as we tackle the regime where the physical parameter
K is large compared to W ), we shall swap the role of W2 in the above results with its correct
scaled version SW2 (see Definition 5.3.4) to recover the following result.

Lemma 5.6.6. Consider K > 0 and let f and f̃ be weak measured-valued solutions to (5.1.2) with
initial data f0 and f̃0 ∈ P2(T× R). Then, we have that

SW2(ft, f̃t) ≤ e
5
2
KtSW2(f0, f̃0),

for every t ≥ 0.

The proof follows the same lines as Theorems 4.4.6 and 4.6.31, then we omit it.

5.6.3 Probability of mass concentration and diameter contraction

This part is devoted to derive the proof of Corollary 5.1.3 supported by all the above results.
Let L and L1/2 be intervals of diameter 2/5 and 1/5 centered around the order parameter

φ∞ of f∞. Recall that by Corollary 5.2.13 we obtain

R∞ = lim
t→∞

R(t) ≥ 3/5.
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Looking at the structure of the stable equilibria f∞ in (5.1.14) (that corresponds to g− = 0, that
is, no antipodal mass), we observe that for any (θ,Ω) in supp f∞ we have the relation

θ = φ∞ + arcsin

(
Ω

KR∞

)
.

In particular,

|θ − φ∞| ≤ arcsin

(
W

KR∞

)
≤ arcsin

(
5

3

W

K

)
.

Then, we can select C in (5.1.15), so that we have that

supp f∞ ⊆ L 1
2
× [−W,W ]. (5.6.5)

Notice that the choice of the diameter of L is somehow arbitrary and is subordinated to the size
of the universal constant C in Theorem 5.1.2 (the smaller C, the smaller the diameter of L). For
simplicity, we have set it to 2/5 but it can be generalized to sharper values. We divide the proof
into the following steps:

• Step a: We control the mass of µNt and ft in T\L, namely,

µNt ((T\L)× R) ≤ 25SW2(µNt , f∞)2, (5.6.6)

ρt(T\L) ≤ 25SW2(ft, f∞)2, (5.6.7)

for any t > 0.

Fix t > 0 and let γt ∈ P
(
(T × R) × (T × R)

)
be an optimal transport plan between µNt and f∞

for the scaled Wasserstein distance SW2. Then, we have that

SW2(µNt , f∞)2 =

∫

(T×R)2

dK((θ,Ω), (θ′,Ω′))2dγt

≥
∫

((T\L)×R)×(L1/2×R)
d(θ, θ′)2dγt

≥ 1

25
γt
(
(T\L)× R

)
×
(
L1/2 × R)

)

=
1

25

[
γt
(
((T\L)× R)× (T× R)

)
− γt

(
((T\L)× R)× ((T\L1/2)× R)

)]

≥ 1

25

[
(γt
(
((T\L)× R)× (T× R)

)
− γt

(
(T× R)×

(
(T\L1/2)× R)

)]

=
1

25

[
µNt ((T\L)× R)− f∞((T\L1/2)× R)

]
.

Thus, using the inclusion (5.6.5), we observe that the second term in the last line of the above
inequality vanishes and we obtain (5.6.6). Similarly, using the above argument with µNt re-
placed with ft, we deduce that (5.6.7).

• Step b: We claim that we can select T0 satisfying that

T0 .
1

KR2
0

log

(
1 +W 1/2‖f0‖L2 +

1

R0

)
, (5.6.8)
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and with the additional property that

SW2(ft, f∞) ≤ 1√
500

e−
1
40
K(t−T0), (5.6.9)

for every t in [T0,∞).

To show this, take Q1 large enough and T0 verifying

T0 ≤
Q1

KR2
0

log

(
1 +W 1/2‖f0‖L2 +

1

R0

)
,

so that we meet the constraints in Theorem 5.1.2. Then, using (5.3.19) and Proposition 5.3.5 we
obtain that

SW2(ft, f∞) ≤ Q2e
− 1

40
K(t−T0), (5.6.10)

for all t in [T0,∞) and some universal constant Q2. Notice that by taking Q1 large enough, we
can make Q2 arbitrarily small (e.g. Q2 = 1√

500
). This concludes the proof of the claim.

• Step c: We compute N in N and dN > 0 for each N ≥ N∗ so that

P
(
SW2(µNt , ft) ≤

1√
500

e−
1
40
K(t−T0)

)
≥ 1− C1e

−C2N
1
2 , (5.6.11)

for any t in [T0, T0 + dN ] and any N ≥ N∗.

First, for each N in N let us set the scale

εN := N−
1
8 . (5.6.12)

Now, we define N∗ as follows

N∗ := min

{
N ∈ N : εNe

5K
2
T0 ≤ 1√

500

}
, (5.6.13)

so that, by definition, we get the bound

N∗ ≥ 5004e20KT0 .

Fix any N ≥ N∗. Notice that N∗ has been defined in (5.6.13) so that there exists dN > 0 with
the property

εNe
5K
2

(T0+dN ) =
1√
500

e−
1
40
KdN , (5.6.14)

Indeed, by dividing (5.6.14) over (5.6.13), we can quantify dN in terms of N∗ as follows

εN
εN∗

e
5K
2
dN ≥ e− 1

40
KdN .

Consequently, we have that

dN ≥
5

101K
log

N

N∗
.

By construction, letting ε = εN in the concentration inequality (5.6.3) of Lemma 5.6.4, we obtain
the following quantification

P
(
SW2(µN0 , f0) ≥ εN

)
≤ C1e

−C2N
1
2 , (5.6.15)
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for every N ∈ N. Thus, by monotonicity of the exponential function, we conclude that for any
t ∈ [T0, T0 + dN ] we have that

C1e
−C2N

1
2 ≥ P

(
SW2(µN0 , f0) ≥ εN

)

≥ P
(
SW2(µNt , ft) ≥ εNe

5K
2
t
)

≥ P
(
SW2(µNt , ft) ≥ εNe

5K
2

(T0+dN )
)

= P
(
SW2(µNt , ft) ≥

1√
500

e−
1
40
KdN

)

≥ P
(
SW2(µNt , ft) ≥

1√
500

e−
1
40
K(t−T0)

)
,

where in the first inequality we have used the concentration inequality (5.6.15), in the second
one we have used the stability estimate in Lemma 5.6.6 and the remaining ones follow from
our choice of dN in (5.6.14) and t in [T0, T0 + dN ]. That ends the proof of (5.6.11).

• Step d: We quantify the probability of mass concentration of µNt in the interval L, namely,

P
(
µNt (L× R) ≥ 1− 1

5
e−

1
20
K(t−T0)

)
≥ 1− C1e

−C2N
1
2 , (5.6.16)

for every t in [T0, T0 + dN ) and any N ≥ N∗.

Now, by (5.6.6), (5.6.9) and triangular inequality we have that

µNt ((T\L)× R) ≤ 25SW2(µNt , f∞)2

≤ 50

[
SW2(µNt , ft)

2 + SW2(ft, f∞)2

]

≤ 50

[
SW2(µNt , ft)

2 +
1

500
e−

1
20
K(t−T0)

]
,

for every t in [T0, T0 + dN ). Hence, we obtain

µNt (L× R) ≥ 1− 1

10
e−

3
10
K(t−T0) − 50SW2(µNt , ft)

2,

for each t in [T0, T0 + dN ]. This, along with (5.6.11) concludes the proof of (5.6.16)

• Step e: We quantify the probability of mass concentration and diameter contraction along the
time interval [s,∞) for any s in [T0, T0 + dN ].

We are now ready to finish the proof of Corollary 5.1.3. Let us consider N ≥ N∗, s in [T0, T0 +
dN ], and any realization of the random empirical measure µN (recall Definition 5.6.1) so that
the condition within (5.6.16) holds. Hence, by construction, we obtain that at such realization

p := inf
θ,θ′∈L

cos(θ − θ′) ≥ 4

5
and m := µNs (L× R) ≥ 1− 1

5
e−

1
20
K(s−T0) ≥ 4

5
.

Then, we obtain the relation

mp− (1−m) =
4

5
· 4

5
−
(

1− 4

5

)
=

11

25
.
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In particular, take σ := 2/5 and notice that the above relations along with the assumption
(5.1.15) in Theorem 5.1.2 guarantee the condition (5.4.5) within the hypotheses of Lemma 5.4.3.
Notice that such result also holds true for the particle system. Consequently, it asserts that
for such realization of µN we can consider a time-dependent interval LNs (t) with t ≥ s so that
LNs (s) = L and

µNt (LNs (t)× R) ≥ 1− 1

5
e−

1
20
K(s−T0),

1− inf
θ,θ′∈LNs (t)

cos(θ − θ′) ≤ max

{
1

5
e−

K
10

(t−s), 25
W 2

K2

}
,

(5.6.17)

for any t ≥ s. Indeed, we have that LNs (t) = πθ(X
N
s,t(L × [−W,W ])), where XN

s,t represents
the flow of the particle system, that is, the flow of v[µN ]. Our final goal is to simplify the last
condition in (5.6.17). To such an end, let us consider DN

s (t) := diam(LNs (t)) and notice that
such inequality implies that

2
(DN

s (t))2

5
≤ 1− cos(DN

s (t)) ≤ max

{
1

5
e−

K
10

(t−s), 25
W 2

K2

}
, (5.6.18)

for any t ≥ s. In particular, we obtain (D). Thus, Corollary 5.1.3 follows.
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CHAPTER 6

Stability results of generalized Beltrami fields and knotted vortex
structures in the Euler equations
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6.1 Introduction to the problem

Beltrami fields, that is, three dimensional vector fields whose curl is proportional to the field
itself, are a particularly important class of smooth stationary solutions of the three-dimensional
incompressible Euler equations:

{
∂u

∂t
+ (u · ∇)u = −∇p,

div u = 0.
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In a way, what makes them so special is the celebrated structure theorem of Arnold [13], which
asserts that, under suitable technical hypotheses, the velocity field of a smooth stationary so-
lution to the Euler equations is either a Beltrami field or “laminar”, in the sense that it admits
a regular first integral whose smooth level sets provide “layers” to which the fluid flow is tan-
gent. In fluid mechanics, a Beltrami field is interpreted as a fluid whose velocity field is parallel
to its vorticity.

Understanding the knot and link type of stream lines and tubes in stationary fluids has
also attracted the attention of many researchers, both from the theoretical and the experimental
points of view [115, 116, 190, 301], because knotted stationary vortex structures turned out to
play a key role in the so called Lagrangian theory of turbulence. From a numerical point of
view, the description of the flows in the literature that allow for arbitrary vortex structures is
mainly based on an active vector formulation of Euler’s equations (see [86] and the references
therein). The existence of knotted and linked vortex lines and tubes in stationary solutions to
the Euler equations was established in [115, 116] using strong Beltrami fields, that is, Beltrami
fields with a constant proportionaly factor λ ∈ R \{0}:

curlu = λu. (6.1.1)

Notice that the Beltrami fields in [115, 116] can be assumed to fall off as 1/|x| at infinity, and
that this decay rate is optimal (see the global obstructions in the form of a Liouville-type the-
orem in [72, 227]). Concrete examples of Beltrami fields with constant proportionality factor
are the ABC flows, whose analysis has yielded considerable insight into the aforementioned
phenomenon of Lagrangian turbulence [113].

The main objective of this chapter is to study the existence, regularity and stability results
of generalized Beltrami fields (i.e., Beltrami fields with nonconstant proportionality factor). This
vector fields play a fundamental role in the understanding of turbulence. The idea that turbu-
lent flows can be understood as a superposition of Beltrami flows has already been proposed in
[87, 242]. They are also relevant in magnetohydrodynamics in the context of vanishing Lorentz
force (force-free fields) and they can be used to model magnetic relaxation, which is relevant in
some astrophysical applications [182, 193, 219, 218]. Indeed, to the best of our knowledge there
are just a handful of explicit examples, all of which have Euclidean symmetries, and the anal-
ysis of Beltrami fields with nonconstant factor has proved extremely hard. The heart of the
matter is that, as it was recently proved in [117], the equation for a generalized Beltrami field,

{
curlu = fu,
div u = 0,

(6.1.2)

does not admit any nontrivial solution, even locally, for a “generic” nonconstant function f .
In a very precise sense, it shows that Beltrami fields with a nonconstant factor are rare and
such obstruction is of a purely local nature. These results have been carefully stated in the
introductory Chapter 1.

One of the aims of this chapter is to show that, although generalized Beltrami fields are
indeed rare, one can still prove some kind of partial stability result. Specifically, we will show
that for each nontrivial Beltrami field, there are “many” close enough nonconstant proportion-
ality factor with associated close nontrivial generalized Beltrami fields. The stabilility result is
“partial” in the sense that a “full” stability result cannot be expected since the space of factors
that enjoy nontrivial generalized Beltrami fields does not contain any ball in the Ck,α norm by
the above-mentioned obstructions. The analysis of stability can be crucial to shed some light
on the interactions between the different scales in the study of relevant configurations in a fully
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turbulent state. More concretely, we shall prove two stability results for generalized Beltrami
fields:

The first one (Theorem 6.4.7) is an “almost global” perturbation result for strong Beltrami
fields defined on R3. Roughly speaking, it asserts that given any nontrivial solution of (6.1.1)
on R3 with optimal fall-off at infinity (i.e., 1/|x|) and any arbitrarily small ball G, there are
infinitely many nonconstant factors f , as close to the constant λ as one wishes in Ck,α(R3), such
that the corresponding equation (6.1.2) admits nontrivial solutions on the complement R3 \G.
This can be combined with the results in [116, 115] about robustness of the strong Beltrami
fields therein to construct almost global Beltrami fields with a nonconstant factor that feature
vortex lines and vortex tubes of arbitrarily complicated topology (Theorem 6.5.1). The second
stability result (Theorem 6.6.3) states an analogue for perturbations of nontrivial Beltrami fields
with both constant or nonconstant factor defined in a small enough open set where the field
does not to vanish.

The point of these stability results is that the perturbation of the initial proportionality factor
is defined by recursively propagating a two-variable function along the integral curves of a
velocity vector field. Indeed, the flexibility in choosing the proportionality factor is granted
by the method of our proof. Notice that the idea of constructing the proportionality factor
by dragging along the integral curves of a field is somehow inherent to the problem, as the
incompressibility condition div u = 0 implies that, if it is nonconstant, the factor f must be a
first integral of the generalized Beltrami field, i.e.,

u(x) · ∇f(x) = 0, for all x ∈ R3.

6.2 The modified Grad–Rubin method

Let us outline the key aspects of the proofs. For concreteness, since all the ideas involved in
the proof of the local partial stability result are essentially present in that of the almost global
theorem, we shall restrict to discussing only discuss the latter result here. As we have already
mentioned, the point of the partial stability result is to develop a perturbation technique allow-
ing us to deform the initial factor f , which, for the purpose of this discussion, can be taken to
be a nonzero constant λ. This requires analyzing a related boundary value problem, namely,
the Neumann boundary value problem for the inhomogeneous Beltrami equation with constant pro-
portionality factor λ in an exterior domains. To our best knowledge, this problem has not been
directly studied in the literature. Our analysis is based on a boundary integral equation method
for complex-valued solutions which requires some potential theory estimates for generalized
volume and single layer potentials and an analysis of the decay properties and radiation con-
ditions of the solutions. They will be determined through the natural connections between the
complex-valued solutions of the Beltrami, Helmholtz and Maxwell systems.

One of the fist results where a perturbation method for Beltrami fields was obtained is [182].
In such paper, the authors showed that one can perturb Beltrami fields with very specific factor
λ = 0 (that is, a harmonic field) defined in an exterior domain and construct a generalized
Beltrami field with a small nonconstant factor. Apart from the smallness assumption on f , one
of the inconveniences of their proof is that the perturbed fields and factors are of low regularity
(of class C1,α and C0,α, respectively). In view of the relevance and important applications
of Beltrami fields with nonzero λ, we have striven to extend the result for harmonic fields
to general Beltrami fields, and also to show the existence of perturbations of arbitrarily high
regularity (the field will be in Ck+1,α and the factor in Ck,α for any fixed integer k). It should
be stressed that the passing from λ = 0 to λ 6= 0 is not a trivial matter, since the behavior of
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the equations at infinity is completely different. Indeed, oversimplifying a little, for λ = 0 the
behavior of the fields at infinity is that of a harmonic function, so one gets uniqueness simply
from a decay condition, while for nonzero λ, Beltrami fields solve Helmhotz’s equation, so
radiation conditions must be specified to obtain uniqueness. Since we consider that they are
of independent interest, we will present a detailed treatment of these topics in Section 6.3 and
Appendix H of this thesis.

The gist of the proof of the almost global partial stability result for strong Beltrami fields is
to study the convergence in Ck,α of an iterative scheme that, roughly speaking, takes the form

{
∇ϕn · un = 0, x ∈ Ω,
ϕn = ϕ0, x ∈ Σ,

{
curlun+1 − λun+1 = ϕnun, x ∈ Ω,
un+1 · η = u0 · η, x ∈ S.

Here, Ω stands for an exterior domain with smooth boundary S, η is its outward unit normal
vector field and Σ is some open subset of the boundary. We will call it modified Grad–Rubin
method, see [6, 33] for the original Grad–Rubin method in the setting of force-free fields per-
turbations of harmonic fields. Such iterative method will be started up with an initial strong
Beltrami field u0 of constant proportionality factor λ (which indeed can be assumed to exhibit
knotted and linked vortex structures according to [115, 116]) and we will prescribe the value
ϕ0 of the perturbation of the proportionality factor λ over subset Σ. Notice that {ϕn}n∈N and
{un}n∈N are taken in a consistent way so that whenever we get some compactness and take
limits ϕ and u, then ϕ is formally a global first integral of u and such vector field verifies the
Beltrami equation (6.1.2) with f = λ+ ϕ.

Consequently, our approach will be based on the study of two distinguished problems: 1)
stationary transport equations along stream tubes, and 2) inhomogeneous problems of div-curl
type that we will call inhomogeneous Beltrami equations and which are intimately linked to the
Helmhotz equation. In fact, regarding the second problem, we will start with the complex-
valued fundamental solution of the Helmholtz equation in R3

Γλ(x) =
eiλ|x|

4π|x| , x ∈ R3 \{0},

and will arrive at a representation formula of Helmholtz–Hodge type for their complex-valued
solutions. In doing so, it will be necessary to specify the optimal decay and radiation conditions
that allow handling the associated generalized volume and single layer potentials. Indeed,
such conditions will read as follows∫

∂BR(0)
|u(x)| dxS = o(R2), R→ +∞, (6.2.1)

∫

∂BR(0)

∣∣∣i x
R
× u(x)− u(x)

∣∣∣ dxS = o(R), R→ +∞. (6.2.2)

Here, (6.2.1) is nothing but a weak decay condition of the velocity field u in L1 and (6.2.2) will
be called the L1 Silver–Müller–Beltrami radiation condition (L1 SMB) and will be deduced from
both the classical Sommerfeld and Silver–Müller radiation conditions, whose connections with
the Helmholtz equation and the Maxwell system are classical.

Summing up, we will be interested in analyzing the existence and uniqueness of complex-
valued smooth solutions with high order Hölder-type regularity of the general Neumann bound-
ary value problem for the inhomogeneous Beltrami equation (NIB)





curlu− λu = w, x ∈ Ω,
u · η = g, x ∈ Ω,
+ L1 decay property (6.2.1),
+ L1 SMB radiation condition (6.2.2).

(6.2.3)
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Notice that although we were originally interested in real-valued Beltrami fields, we will be
concerned with complex-valued solutions to (6.2.3) and we will then take real parts to obtain
the real-valued ones. The reason to do it is twofold. Firstly, this will allow us to employ a rep-
resentation formula for complex-valued radiating fields. Secondly, this presents no problems
related to the application to knotted structures as one can realize the fields in [115, 116] as real
parts of complex-valued radiating Beltrami fields. Problem (6.2.3) was previously studied in
[193], where the author proved C1 regularity results in bounded domains. We introduce some
potential theory estimates of high order for generalized potentials associated with inhomoge-
neous kernels in exterior domains and adapt the boundary integral method to the unbounded
setting. We will also improve regularity from C1 to Ck+1,α.

Consequently, our final modified Grad–Rubin method is described as follows:

{
∇ϕn · un = 0, x ∈ Ω,
ϕn = ϕ0, x ∈ Σ,





curl vn+1 − λvn+1 = ϕnun, x ∈ Ω,
vn+1 · η = u0 · η, x ∈ S,
+ L1 Decay property (6.2.1),
+ L1 SBM radiation condition (6.2.2),

(6.2.4)

where un = <vn are the real parts of the complex-valued solutions vn. The compactness of
{un}n∈N in Ck+1,α(Ω,R3) follows from some Schauder estimates of Equation (6.2.3) in Hölder
spaces. Similarly, {ϕn}n∈N will be shown to be compact in Ck,α(Ω) too. Concerning the appli-
cation to solutions u0 with knotted vortex structures of the type constructed in [115, 116], we
will see that the solution u inherits the knotted vortex structures from u0 (up to a small defor-
mation) by virtue of structural stability. This is a straightforward consequence of the fact that
u can be chosen close to u0 as long as the prescribed value ϕ0 is small enough.

The rest of this chapter is organized as follows. On the one hand, Problem (6.2.3) will be
studied in Section 6.3 by extending the results in [193, 229, 298]. By comparison with the vector-
valued divergence-free Helmhotz equation, the reduced Maxwell system and the Beltrami equation,
we will deduce the apropriate radiation and decay conditions. The SMB radiation condition
(6.2.2) will then be connected with the classical Silver–Müller and Sommerfeld radiation con-
ditions and we will then present a representation formula of Helmholtz–Hodge type which
involves these radiation conditions and that will be extremely useful to obtain our existence,
uniqueness and regularity results. On the other hand, the analysis of the linear transport equa-
tions in the left hand side of (6.2.4) is obtained in Section 6.4 and we shall then conclude the
convergence of the iterative scheme by putting both components together. In Section 6.5 we
combine the above results to construct small perturbations of the constant proportionality fac-
tor λ leading to nontrivial generalized Beltrami fields that exhibit the same kind of knots and
links and so to construct stationary solutions to the Euler equations. The local partial stability
result for generalized Beltrami fields will be discussed in Section 6.6. Finally, Appendix 6.A
contains the technicalities of the proof of regularity for parametrizations of stream tubes of
velocity fields with Hölder-type regularity, that is introduced in Proposition 6.4.3.

We recall that, in order to support the involved regularity results, Appendix H of this thesis
provides the necessary Hölder estimates of high order for volume and single layer potentials
associated with the inhomogeneous kernel Γλ(x). The underlying ideas can be adapted to
many other general inhomogeneous kernels with an appropriate decay at infinity. Also, we
refer to Appendix G for some useful list of identities regarding the differential operators ∇S ,
divS and curlS on hypersurfaces of the Euclidean space that will be systematically used in this
chapter.
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Specific notation for this chapter

We shall consider domains G,Ω and surfaces S fulfilling the properties below:

- G is a Ck+5 bounded domain homeomorphic to an Euclidean ball and contain-
ing the origin, i.e., 0 ∈ G.

- Ω := R3 \G is its exterior domain and S := ∂Ω = ∂G is the boundary surface.

- η denotes the outward unit normal vector field of S.

(6.2.5)

We remark that most of our results hold under weaker assumption on the boundary regu-
larity (specifically Ck+1,α boundaries). However, there are certain very specific results which
require S to be at least Ck+5, because higher order derivatives of the normal vector field η are
involved, see for instance Theorem H.2.1) in Appendix .

Along this chapter, we will mainly use the inhomogeneous Hölder spaces of higher order
Ck,α(Ω). They have been set in the introductory section Conventions and notation of this thesis.
To avoid confussion, we recall them here. Let us agree to say thatCk(Ω) is the space of functions
of class Ck on Ω with finite Ck norm (meaning that all their derivatives up to order k are
bounded). We will replace Ω by Ω when the function and all its derivatives up to order k
can be continuously extended to the closure of Ω. The space Ck,α(Ω) is the Hölder space with
exponent α ∈ (0, 1) and k-th order regularity endowed with the inhomogeneous norm (N.5).
Vector-valued analogs of these spaces are denoted in the usual fashion, e.g. Ck,α(Ω,R3). We
will use similar notation Ck(S), Ck,α(S) for functions defined on S and Xk,α(S) ≡ Xk,α(S,R3)
for tangent vector fields along S of regularity Ck,α.

6.3 Neumann problem for the inhomogeneous Beltrami equation

In this section we analyze the existence and uniqueness of solutions in Ck+1,α of the NIB prob-
lems (6.2.3) arising in the modified Grad–Rubin iterative method (6.2.4). The key tool is a rep-
resentation formula of Helmholtz–Hodge type for its solutions, which we will combine with
the well-posedness of the underlying boundary integral equation for the tangential compo-
nents in the space of Ck+1,α tangent vector fields to the boundary. For this we will need to
deal with some regularity results for high order derivatives of generalized volume and sin-
gle layer potentials arising in the classical potential theory, which will require some potential-
theoretic estimates for inhomogeneous singular integral kernels that are relegated to Appendix
H for simplicity of exposition. Regarding the representation formula, we will introduce and
discuss in detail the weakest decay and radiation conditions under which this formula holds
(namely, (6.2.1) and (6.2.2)), as this topic is of independent interest. Notice that many other
radiation conditions have been used in the literature for related models: the natural one for
the scalar complex-valued Helmholtz equation is the Sommerfeld radiation condition and those
of the reduced Maxwell system are called the Silver–Müller radiation conditions (SM) (see e.g.
[84, 85, 228, 302]).

Let us first recall some previous results in the literature about the exterior NIB boundary
value problem (6.2.3). Although the same problem is studied in [193] for bounded domains
and C1 vector fields, the technique that we present in this section has not been studied in
the case of exterior domains and Ck,α-regularity. We recall that in [193] it was essential to
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assume that λ is “regular” with respect to the interior problem. This is the case when λ is not
a Dirichlet eigenvalue of the Laplacian in the interior domain, or if it is a simple eigenvalue
whose eigenfunction has non-zero mean. Then, such a condition is not restrictive and it holds
generically, as it can be seen e.g. by considering arbitrarily small rescalings of the domain.
Related results for exterior domains are proved in [229]. Indeed, the technique used in bounded
domain by [298] and [193] (for λ = 0 and λ 6= 0, respectively) goes through to the case of λ = 0
and exterior domains via sharp estimates of harmonic volume and single layer potentials in
C1,α. In our case λ is a nonzero constant, which leads to inhomogeneous kernels where the
estimates in unbounded domains are much harder to obtain.

There is some literature regarding Laplace’s equation in less regular settings (e.g. Lp data
and Lipschitz domains). For C1 domains, [93, 94] solved it via the analysis of harmonic mea-
sures and [123] introduced a method of layer potentials. The latter looks like the method that
we propose and is supported by Fredholm’s theory: some boundary singular integral operator
is shown to be compact and one to one in the C1 setting, leading to biyectivity and an useful
lower estimate that entails the well posedness. For purely Lipschitz domains, compactness
does no longer hold [122] whilst biyectivity is preserved [95]. Regarding non-symmetric ellip-
tic operators L = −div(A(x)∇·) in the half-space (x, t) ∈ Rn×R+, the well posedness of the
Dirichlet problem with Lp data [171] follows from the method of “ε-approximability” and the
absolute continuity of the L-harmonic measure with respect to the surface measure.

Let us now analyze the representation formula, the radiation conditions and some existence
and uniqueness results for the scalar complex-valued Helmholtz equation. We will introduce
some classical notation and powerful tools like the far field pattern of a radiating solution not
only in the homogeneous setting but also in the inhomogeneous one. All these results will be
later used and extended to the NIB problem (6.2.3) in the subsequent parts of this section.

6.3.1 Inhomogeneous Helmholtz equation in the exterior domain

The Helmholtz equation with wave number λ ∈ R in the exterior domain Ω stands for the
elliptic PDE

∆a+ λ2a = 0, x ∈ Ω,

where the unknown is a possibly complex-valued scalar function a ∈ C2(Ω,C). This equation
arises in acoustic and electromagnetic mathematics [85, 228] and in the study of Beltrami fields
arising either from the incompressible Euler equation or from the force-free field system of
magnetohydrodynamics. Indeed, it can be derived from (6.1.1) by taking curl and noting that
Beltrami fields are divergence-free when λ 6= 0.

This relation with the Beltrami equation suggests studying the representation formulas,
radiation conditions and uniqueness result for the Helmholtz equation.

Definition 6.3.1. We will say that a complex-valued scalar function a ∈ C1(Ω,C) verifies

• the L1 Sommerfeld radiation condition if
∫

∂BR(0)

∣∣∣∇a(y) · y
R
− iλa(y)

∣∣∣ dyS = o (R) , R→ +∞. (6.3.1)

• the L1 decay property at infinity if
∫

∂BR(0)
|a(y)| dyS = o(R2), when R→ +∞. (6.3.2)
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Other stronger radiation conditions may be assumed to obtain representation formulas and
certain uniqueness results [85, 228]. For instance, the L2 Sommerfeld radiation condition

∫

∂BR(0)

∣∣∣∇a(y) · y
R
− iλa(y)

∣∣∣
2
dyS = o(1), R→ +∞, (6.3.3)

implies (6.3.1) and, in turns, the classical (L∞) Sommerfeld radiation condition

sup
y∈∂BR(0)

∣∣∣∇a(y) · y
R
− iλa(y)

∣∣∣ = o

(
1

R

)
, R→ +∞, (6.3.4)

implies (6.3.3). There is another stronger link between the L2 and L1 conditions that will be
exhibited in the next results. The proof follows from a simple expansion of the square in the L2

condition (6.3.3) and an integration by parts argument in the Helmholtz equation multiplied
by the solution itself.

Remark 6.3.2. Let a ∈ C2(Ω,C)∩C1(Ω,C) be any complex-valued solution to the Helmholtz equation
such that (6.3.3) holds. Then

lim
R→+∞

∫

∂BR(0)

(∣∣∣∣
∂a

∂η

∣∣∣∣
2

+ λ2|a|2
)
dxS = −2λ=

(∫

S
a
∂a

∂η
dxS

)
.

In particular, (6.3.3)⇒ (6.3.1) + (6.3.2) for each complex-valued solution of the Helmholtz equation.

Before showing that this radiation condition leads to the aforementioned formula, let us
analyze it in the case of the fundamental solution to the 3-D Helmholtz equation,

Γλ(x) =
eiλ|x|

4π|x| =
cos(λ|x|)

4π|x| + i
sin(λ|x|)

4π|x| . (6.3.5)

Taking derivatives we obtain

∇Γλ(x) =

(
iλ− 1

|x|

)
Γλ(x)

x

|x| . (6.3.6)

Then, a straightforward inductive argument shows that all the partial derivatives of Γλ(x) up
to second order verify an even stronger version of the Sommerfeld radiation condition (6.3.4).
Hence we easily infer:

Proposition 6.3.3. The fundamental solution of the Helmholtz equation, together with its partial
derivatives up to order 2 satisfy the identities

∇Γλ ·
x

|x| − iλΓλ = −Γλ(x)

|x| ,

∇
(
∂Γλ
∂xi

)
· x|x| − iλ

∂Γλ
∂xi

=

(
2

|x| − iλ
)

Γλ
xi
|x|2 ,

∇
(
∂2Γλ
∂xi∂xj

)
· x|x| − iλ

∂2Γλ
∂xi∂xj

= −∇
(
∂Γλ
∂xi

)
· ∂

∂xj

(
x

|x|

)
+

∂

∂xj

((
2

|x| − iλ
)

Γλ
xi
|x|2

)
,

for every i, j ∈ {1, 2, 3}. Consequently,

sup
x∈∂BR(0)

∣∣∣∇(DγΓλ)(x) · x
R
− iλDγΓλ(x)

∣∣∣ = O

(
1

R2

)
, for R→ +∞,

for every multi-index with |γ| ≤ 2.

344



CHAPTER 6. STABILITY AND KNOTTED VORTEX STRUCTURES IN FLUID MECHANICS

In particular, Γλ(x) together with its partial derivatives up to order two verify the (L∞)
Sommerfeld radiation condition (6.3.4). It is then an easy task to obtain new complex-valued
solutions to the homogeneous Helmholtz equation enjoying such radiation condition through
the definition of the generalized single layer potentials associated with the kernel Γλ(x).

Proposition 6.3.4. Let a be the generalized single layer potential with density ζ ∈ C(S) associated
with the Helmholtz equation, i.e.,

a(x) := (Sλζ)(x) =

∫

S
Γλ(x− y)ζ(y) dyS,

for every x ∈ Ω. Then, a solves the homogeneous Helmholtz equation ∆a + λ2a = 0 in the exterior
domain Ω. Moreover, a and all its partial derivatives up to second order verify the Sommerfeld radiation
condition (6.3.4).

The same result remains true for generalized volume potential with compactly supported
densities. In this case, radiating solutions for the inhomogeneous complex-valued Helmholtz
equation can be obtained.

Proposition 6.3.5. Let a be the generalized volume potential with density ζ ∈ Cc(Ω) associated with
the Helmholtz equation, i.e.,

a(x) := (Nλζ)(x) =

∫

Ω
Γλ(x− y)ζ(y) dyS,

for every x ∈ Ω. Then, a solves the inhomogeneous Helmholtz equation−(∆a+λ2a) = ζ in the exterior
domain Ω. Moreover, a and all its partial derivatives up to second order verify the Sommerfeld radiation
condition (6.3.4).

To establish the representation formula for the inhomogeneous Helmholtz equation, we
study the radiation conditions for the volume and single layer potentials, as well as its decay
properties at infinity (see Theorem C.0.4 in Appendix C for the fall-off at infinity of the frac-
tional integral operator Iβf ). Using it, the above result permit obtaining a Stokes-type formula
to represent the solutions to the inhomogeneous Helmholtz equation. We will skip the proof,
since it is completely analogous to the more important result for complex-valued solutions of
the inhomogeneous Beltrami equation that we present in the next subsection (Theorem 6.3.11).
We also refer to [85, Theorem 2.4] and [228, Theorem 3.1.1] for a proof with more restrictive
radiation conditions that can be recovered from the next stronger version via Remark 6.3.2.

Theorem 6.3.6. Let a ∈ C2(Ω,C) ∩ C1(Ω,C) be any function which verifies the L1 Sommerferld
radiation condition (6.3.1) and the L1 decay property at infinity (6.3.2). Assume that ∆a + λ2a =
O(|x|−ρ) when |x| → +∞, for some exponent 2 < ρ < 3. Then,

a(x) =−
∫

Ω
Γλ(x− y)(∆a(y) + λ2a(y)) dy

+

∫

S

∂Γλ(x− y)

∂η(y)
a(y) dyS

−
∫

S
Γλ(x− y)

∂a

∂η
(y) dyS,

(6.3.7)

for every x ∈ Ω and, as a consequence,

a = O(|x|−(ρ−2)), when |x| → +∞.
Indeed, when ∆a+ λ2a has compact support, we recover the optimal decay at infinity, namely,

a = O(|x|−1), when |x| → +∞.
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The decay property follow from Theorem C.0.4 and they may also be found in [85, 228].
Notice that the decay rates |x|−(ρ−2) (for the inhomogeneous equation) and |x|−1 (for the ho-
mogeneous one) are straighforward consequences of the representation formula.

An immediate consequence of the representation formulas in Theorem 6.3.6 is that a far
field pattern at infinity exists for each solution to the Helmholtz equation (see [85] for details).
It is a very powerful tool since it provides a description of the asymptotic behavior at infin-
ity and easy uniqueness criteria for radiating solutions. Although most of the literature is
only devoted to far field patterns of complex-valued radiating solutions to the homogeneous
Helmholtz equation, our problem concerns the inhomogeneous setting. For this, consider any
solution a ∈ C2(Ω,C) ∩ C1(Ω,C) to the inhomogeneous Helmholtz equation

−(∆a+ λ2a) = f, x ∈ Ω,

where f is compactly supported in Ω and a verifies both the decay condition (6.3.2) and the L1

Sommerfeld radiation condition (6.3.1). Then, Theorem 6.3.6 leads to

a(x) =

∫

Ω
Γλ(x− y)f(y) dy +

∫

S

∂Γλ(x− y)

∂η(y)
a(y) dyS −

∫

S
Γλ(x− y)

∂a

∂η
(y) dyS.

Consider the compact subset K := suppf and notice the asymptotic behavior

Γλ(x− y) = Γλ(x)

{
e
−iλ x

|x| ·y +O

(
1

|x|

)}
, when |x| → +∞,

∂Γλ(x− y)

∂η(y)
= Γλ(x)

{
∂e
−iλ x

|x| ·y

∂η(y)
+O

(
1

|x|

)}
, when |x| → +∞,

where O
(
|x|−1

)
is uniform in y ∈ K ∪S in the first formula and uniform in y ∈ S in the second

one. From here we deduce the asymptotic behavior

a(x) = Γλ(x)

{
a∞

(
x

|x|

)
+O

(
1

|x|

)}
, when |x| → +∞, (6.3.8)

where a∞ is called the far field pattern of a, and reads as

a∞(σ) =

∫

Ω
e−iλσ·yf(y) dy +

∫

S

∂e−iλσ·y

∂η(y)
a(y) dyS −

∫

S
e−iλσ·y

∂a

∂η
(y) dyS,

for each point σ ∈ ∂B1(0). It is apparent that a∞ is uniquely determined from formula (6.3.8).
Hence, we can define the following well-defined linear and one to one map

D∞ −→ C∞(∂B1(0))
a 7−→ a∞,

(6.3.9)

where the domain of the far field pattern mapping is

D∞ := {a ∈ C2(Ω,C) ∩ C1(Ω,C) : ∆a+ λ2a has compact support and (6.3.1)− (6.3.2) hold}.

A similar reasoning leads to an explicit formula for the far field pattern of the derivatives of a,
namely,

(∇a)∞(σ) = iλa∞(σ)σ, ∀σ ∈ ∂B1(0). (6.3.10)
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The split in (6.3.8) ensures that

lim
R→+∞

∫

∂BR(0)
|a(x)|2 dx =

1

4π

∫

∂B1(0)
|a∞(σ)|2 dσS. (6.3.11)

By Rellich’ Lemma [85, Lemma 2.11], the only complex-valued solution a ∈ C2(Ω,C) to the
exterior homogeneous Helmholtz equation such that the limit in the left hand side of (6.3.11)
becomes zero is the zero function identically. Therefore, whenever a solution a to the homo-
geneous Helmholtz equation verifies (6.3.1)-(6.3.2) and its far field pattern a∞ vanishes, then a
vanishes everywhere. This can be used, in combination with Remark 6.3.2, to achieve the fol-
lowing uniqueness result, that, in particular, can be used for Dirichlet and Neumann boundary
value problems in the exterior domain (see [85, Theorem 2.12]).

Lemma 6.3.7. Consider any solution a ∈ C2(Ω,C) ∩ C1(Ω,C) to the complex-valued homogeneous
Helmholtz equation in the exterior domain Ω fulfilling the L2 Sommerfeld radiation condition (6.3.3).
Then, a verifies

λ=
(∫

S
a(x)

∂a

∂η
(x) dxS

)
≤ 0.

If the equality holds, then a vanishes everywhere in Ω.

In the case of vector-valued solutions, the decay property and radiation conditions can be
considered componentwise. For instance, given any vector-valued solution u ∈ C2(Ω,C3) ∩
C1(Ω,C3) to

−(∆u+ λ2u) = F, x ∈ Ω,

where F is compactly supported, then the decay property and radiation condition read
∫

∂BR(0)
|u(x)| dx = o(R2), when R→ +∞,

∫

∂BR(0)

∣∣∣Jacu(x)
x

R
− iλu(x)

∣∣∣ dx = o(R), when R→ +∞.

One can wonder whether there are more natural radiation conditions for vector-valued solu-
tions to Helmholtz equation, see [84, Theorem 4.13] and [302, Section 5, Theorem 2]. Straight-
forward computations using curl(curlu) − ∇(div u) − λ2u = F in Ω, and curl(curl(curlu)) −
λ2 curlu = curlF in Ω show that the terms associated with the far field patterns vanish and we
obtain the radiation conditions

sup
x∈∂BR(0)

∣∣∣ x
R
× curlu(x)− div u(x)

x

R
+ iλu(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞,

sup
x∈∂BR(0)

∣∣∣λ x
R
× u(x) + i curlu(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞.

When u is a divergence-free solution to the Helmholtz equation (as in our case), the radiation
condition are simpler and read

sup
x∈∂BR(0)

∣∣∣ x
R
× curlu(x) + iλu(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞, (6.3.12)

sup
x∈∂BR(0)

∣∣∣λ x
R
× u(x) + i curlu(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞. (6.3.13)
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6.3.2 Inhomogeneous Beltrami equation in the exterior domain

Now, we move to the complex-valued inhomogeneous Beltrami equation. In order to under-
stand where the natural radiation condition (6.2.2) comes from, we will connect three different
systems that will provide an appropriate terminology. The heuristic idea is summarized in Fig-
ure 6.1. Through the relations between the vector fields u and B in the left hand side of such

Div–Free Helmholtz Reduced Maxwell

Beltrami

B := u, E := −

curl u

iλ

u := B

SMH SM

SMB

u
B := u

E := −

curl u

iλ

Figure 6.1: Sketch of the connections between the three related models: divergence-free Helmholtz
equation, reduced Maxwell system and Beltrami equation. The picture in the left shows the bonds
between such models whilst the picture in the right exhibits the associated relations between
its natural radiation conditions.

pictures, we find (see [85, Theorem 6.4] and [302]) that the divergence-free Helmholtz equation
and the reduced Maxwell system [85, Definition 6.5] are completely equivalent, i.e.,

{
∆u+ λ2u = 0, x ∈ Ω,
div u = 0, x ∈ Ω,

⇐⇒
{

curlE − iλB = 0, x ∈ Ω,
curlB + iλE = 0, x ∈ Ω.

In order that the solutions to this system could be represented through the classical Stratton–
Chu formulas [85, Theorem 6.6], the Silver–Müller radiation conditions (SM) have to be considered:

sup
x∈∂BR(0)

∣∣∣B(x)× x

R
− E(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞,

supx∈∂BR(0)

∣∣∣E(x)× x

R
+B(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞.

Due to our choice ofB andE, the SM radiation conditions leads to (6.3.12)–(6.3.13) again. Thus,
the natural radiation conditions for the divergence-free vector-valued Helmholtz equation are
actually a consequence of the SM radiation conditions for the reduced Maxwell system. There-
fore, we will call them the Silver–Müller–Helmholtz radiation conditions (SMH).

Let us now consider the case of the Beltrami equation

curlu− λu = 0, x ∈ Ω.

When λ 6= 0, then u is a solution to the divergence-free Helmholtz equation, and consequently
it also solves the reduced Maxwell system. Therefore, one may want to transfer the SMH or
the original SM radiation condition to the Beltrami framework. An easy substitution in (6.3.12)
and (6.3.13) leads to the Silver–Müller–Beltrami radiation condition (SMB):

sup
x∈∂BR(0)

∣∣∣i x
R
× u(x)− u(x)

∣∣∣ = o

(
1

R

)
, when R→ +∞.
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It might seem that the only connection between the Beltrami equation and the divergence-
free vector-valued Helmholtz equation is the first implication sketched in Figure 6.1, but the
connection is actually much stronger. The reason is the following. Given any solution u to the
Beltrami equation, it is obviously a solution to the divergence-free Helmholtz equation. The
point is that, conversely, given any solution û to the divergence-free Helmholtz equation,

u :=
curl û+ λû

2λ
. (6.3.14)

is a solution to the Beltrami equation, and all the solutions can be constructed this way.
In view of this converse relation, it is natural to wonder about the radiation conditions that

one should assume on û in order for u to verify the SMB radiation condition. For this, notice
that

i
x

R
× u(x)− u(x) =

i

2λ

( x
R
× curl û(x) + iλû(x)

)
+

i

2λ

(
λ
x

R
× û(x) + i curl û(x)

)
,

for every x ∈ ∂BR(0). Therefore, the SMB radiation condition on u is recovered form the SMH
radiation conditions on û, so all the possible links between the three models and its correspond-
ing radiation conditions in Figure 6.1 follow.

Remark 6.3.8. The complex-valued Beltrami fields u satisfying the SMB radiation condition take the
form (6.3.14) for some solution û of the divergence-free Helmholtz equation satisfying the SMH radiation
conditions.

Definition 6.3.9. We will say that u verify

1. the L1 Silver–Müller–Beltrami condition if
∫

∂BR(0)

∣∣∣i x
R
× u(x)− u(x)

∣∣∣ dxS = o(R), when R→ +∞; (6.3.15)

2. the L1 decay property at infinity if
∫

∂BR(0)
|u(x)| dxS = o(R2), when R→ +∞. (6.3.16)

Analogously to the case of the Helmholtz equation, one might consider the L2 SMB radiation
condition ∫

∂BR(0)

∣∣∣i x
R
× u(x)− u(x)

∣∣∣
2
dxS = o(1), R→ +∞, (6.3.17)

or the (L∞) SMB radiation condition

sup
x∈∂BR(0)

∣∣∣i x
R
× u(x)− u(x)

∣∣∣ = o

(
1

R

)
, R→ +∞. (6.3.18)

As in the Helmholtz equation, similar reasonings yield the next remark that links (6.3.17) to
(6.3.15) and (6.3.16).

Remark 6.3.10. Let u ∈ C1(Ω,C3) be any complex-valued solution to the Beltrami equation such that
(6.3.17) holds. Then

lim
R→+∞

∫

∂BR(0)

(∣∣∣ x
R
× u(x)

∣∣∣
2

+ |u(x)|2
)
dxS = 2=

(∫

S
u(x) · (η(x)× u(x)) dxS

)
.

In particular, (6.3.17)⇒ (6.3.15) + (6.3.16) for each complex-valued solution of the Beltrami equation.
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b
x

Gε

R Ω(x, ε, R)
b

0

Figure 6.2: Domain Ω(x, ε,R).

In the next result we show the desired decomposition theorem of Helmholtz–Hodge type
is proved under the above L1 decay and radiation hypotheses:

Theorem 6.3.11. Let u ∈ C1(Ω,C3) be any vector field which verifies the L1 SMB condition (6.3.15)
and the decay condition (6.3.16). Assume that div u, curlu − λu = O(|x|−ρ) when |x| → +∞ for
2 < ρ < 3. Then, u can be decomposed as u(x) = −∇φ(x) + curlA(x) + λA(x), for every x ∈ Ω,
where φ and A are the scalar and vector fields

φ(x) =

∫

Ω
Γλ(x− y) div u(y) dy +

∫

S
Γλ(x− y)η(y) · u(y) dyS,

A(x) =

∫

Ω
Γλ(x− y)(curlu(y)− λu(y)) dy +

∫

S
Γλ(x− y)η(y)× u(y) dyS.

As a consequence,
u = O(|x|−(ρ−2)), when |x| → +∞.

Indeed, when both div u and curlu − λu are compactly supported, one obtains the optimal decay at
infinity, namely,

u = O(|x|−1), when |x| → +∞,
and u satisfies the Sommerfeld radiation condition (6.3.4) componentwise.

Proof. Consider any x ∈ Ω and fix any couple of radii ε0, R0 > 0 such that

Bε0(x) ⊆ Ω and Bε0(x) ∪G ⊆ BR0(0).

Define the subdomain Ω(x, ε,R) := Ω∩ (BR(0) \Bε(x)) for R > R0 and ε > ε0, as in Figure 6.2.
Let e ∈ C3 be fixed. Since Γλ solves the scalar homogeneous Helmholtz equation outside

the origin, then Γλe is a solution to the vector-valued Helmholtz equation too. Therefore, the
following identity

0 = −
∫

Ω(x,ε,R)
(∆(Γλ(x− y)e) + λ2(Γλ(x− y)e)) · u(y) dy

holds. As in the classical Helmholtz–Hodge theorem, having in mind curl(curl) = ∇(div)−∆,
removing the dot product by e, and subtracting and adding appropriate terms, we obtain the
following formula

0 =−
∫

∂Ω(x,ε,R)
∇xΓλ(x− y)(ν · u)(y) dyS +

∫

Ω(x,ε,R)
∇xΓλ(x− y) div u(y) dy
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+

∫

∂Ω(x,ε,R)
∇xΓλ(x− y)× (ν × u)(y) dyS −

∫

Ω(x,ε,R)
∇xΓλ(x− y)× (curlu− λu)(y) dy

+ λ

(
−
∫

Ω(x,ε,R)
Γλ(x− y)(curlu− λu)(y) dy +

∫

∂Ω(x,ε,R)
Γλ(x− y)(ν × u)(y) dyS

)
.

(6.3.19)

Taking limits when ε → 0 and R → +∞ shows that the volume integrals converges to the
integral over the whole exterior domain due to the dominated convergence theorem, the fall-
off of the Riesz potential in Theorem C.0.4 and the hypotheses on div u and curlu− λu:

∫

Ω(x,ε,R)
∇xΓλ(x− y) div u(y) dy −→

∫

Ω
∇xΓλ(x− y) div u(y) dy,

∫

Ω(x,ε,R)
∇xΓλ(x− y)× (curlu− λu)(y) dy −→

∫

Ω
∇xΓλ(x− y)× (curlu− λu)(y) dy,

∫

Ω(x,ε,R)
Γλ(x− y)(curlu− λu)(y) dy −→

∫

Ω
Γλ(x− y)(curlu− λu)(y) dy,

when ε → 0 and R → +∞. Regarding the boundary integrals, it is worth splitting them into
the three connected components of the boundary surface of Ω(x, ε,R), that is, ∂Ω(x, ε,R) =
S∪∂Bε(x)∪∂BR(0). Since the integrals over S are not relevant in the limit ε→ 0 andR→ +∞,
we focus on the two remaining terms. On the one hand, using (6.3.6) and Lagrange’s formula
v = (e · v) e− e× (e× v), for any unitary vector e and any general vector v, the boundary terms
over the sphere ∂Bε(x) can be written as

Iε :=−
(
iλ− 1

ε

)
eiλε

4πε

∫

∂Bε(x)
u(y) dyS − λ

eiλε

4πε

∫

∂Bε(x)

y − x
ε
× u(y) dyS

=iλ
eiλε

4πε

∫

∂Bε(x)

(
i
y − x
ε
× u(y)− u(y)

)
dyS +

eiλε

4πε2

∫

∂Bε(x)
u(y) dyS.

Consequently, the first term converges to zero as ε → 0 while the second term converges to
u(x) due to the properties of the mean value over spheres of continuous functions.

In addition, the boundary terms over ∂BR(0) may also be written in a similar way

IR:=

∫

∂BR(0)

{
−∇xΓλ(x− y)

y

R
· u(y) +∇xΓλ(x− y)×

( y
R
× u(y)

)
+ λΓλ(x− y)

y

R
× u(y)

}
dyS

=

∫

∂BR(0)

(
iλ− 1

|x− y|

)
eiλ|x−y|

4π|x− y|
y − x
|y − x|

y

R
· u(y) dyS

−
∫

∂BR(0)

{(
iλ− 1

|x− y|

)
eiλ|x−y|

4π|x− y|
y − x
|y − x| ×

( y
R
× u(y)

)
+ λ

eiλ|x−y|

4π|x− y|
y

R
× u(y)

}
dyS.

Lagrange’s formula for the triple vector product cannot be directly applied since BR(0) is not
centered at x. See Remark 6.3.12 below for the behavior of this boundary integrals if we had
defined Ω(x, ε,R) = Ω ∩ BR(x) ∩ (R3 \Bε(x)) instead of Ω(x, ε,R) = Ω ∩ BR(0) ∩ (R3 \Bε(x)).
Adding and subtracting appropriate terms in order to apply Lagrange’s formula for the triple
vector product

IR :=− iλ
∫

∂BR(0)

eiλ|x−y|

4π|x− y|
(
i
y

R
× u(y)− u(y)

)
dyS −

∫

∂BR(0)

eiλ|x−y|

4π|x− y|2u(y) dyS

351



6.3. NEUMANN PROBLEM FOR THE INHOMOGENEOUS BELTRAMI EQUATION

+

∫

∂BR(0)

(
iλ− 1

|x− y|

)
eiλ|x−y|

4π|x− y|

(
y − x
|y − x| −

y

R

)
y

R
· u(y) dyS

−
∫

∂BR(0)

(
iλ− 1

|x− y|

)
eiλ|x−y|

4π|x− y|

(
y − x
|y − x| −

y

R

)
×
( y
R
× u(y)

)
dyS.

Then, a mean value argument leads to the following bound of the norm of IR for R > |x|

|IR| ≤
|λ|

4π(R− |x|)

∫

∂BR(0)

∣∣∣i y
R
× u(y)− u(y)

∣∣∣ dyS

+
1

4π(R− |x|)2

∫

∂BR(0)
|u(y)| dyS +

2C|x|
4π(R− |x|)2

∫

∂BR(0)
|u(y)| dyS. (6.3.20)

Thereby, IR → 0 when R → +∞, thanks to the L1 SMB radiation condition (6.3.15) and the
decay property (6.3.16).

Now that we have the representation formula in the statement of the theorem, the asymp-
totic behavior at infinity follows from the decay properties of the Riesz potential in Theorem
C.0.4 and the componentwise Sommerfeld radiation condition in the compactly supported case
is a direct consequence of Propositions 6.3.4 and 6.3.5.

Remark 6.3.12. Consider Ω(x, ε,R) = Ω∩BR(x)∩(R3 \Bε(x)) instead of Ω(x, ε,R) = Ω∩BR(0)∩
(R3 \Bε(x)) in Eq. (6.3.19). We can argue in the same way both for the boundary terms over ∂Bε(x)
and for those over ∂BR(x). Then, the former has already been studied in the above proof and the later
reads

IR :=

(
iλ− 1

R

)
eiλR

4πR

∫

∂BR(x)
u(y) dyS + λ

eiλR

4πR

∫

∂BR(x)

y − x
R
× u(y) dyS

=− iλe
iλR

4πR

∫

∂BR(x)

(
i
y − x
ε
× u(y)− u(y)

)
dyS −

eiλR

4πR2

∫

∂BR(x)
u(y) dyS. (6.3.21)

Therefore, the same representation theorem might have been obtained from the following radiation and
decay conditions

∫

∂BR(x)

(
i
y − x
ε
× u(y)− u(y)

)
dyS = o(R), when R→ +∞,

∫

∂BR(x)
u(y) dyS = o(R2), when R→ +∞,

for every x ∈ Ω. The hypotheses are stronger than (6.3.15) and (6.3.16) in the sense that they have to
be assumed on every x ∈ Ω. However, they are weaker in the sense that norms can be removed here.
Therefore, one might take advantage of certain geometric cancellations of our vector fields to ensure these
conditions.

An obvious but interesting feature of the above boundary terms is that in both cases, when Ω(x, ε,R) =
Ω ∩BR(0) ∩ (R3 \Bε(x)) (6.3.20) and Ω(x, ε,R) = Ω ∩BR(x) ∩ (R3 \Bε(x)) (6.3.21), the harmonic
case λ = 0 does not need to prescribe any radiation condition at infinity, as it is the case in the classical
Helmholtz–Hodge theorem and in [229, 298].

Again, Remark 6.3.10 and the Rellich’ lemma [85, Lemma 2.11] yields an uniqueness result,
which is similar to that for the reduced Maxwell system in [85, Theorem 6.10]:
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Lemma 6.3.13. Consider any solution u ∈ C1(Ω,C3) to the complex-valued homogeneous Beltrami
equation in the exterior domain satisfying the L2 SMB radiation condition (6.3.17). Then, u verifies the
inequality

=
(∫

S
u(x) · (η(x)× u(x)) dxS

)
≥ 0.

If the equality holds, then u vanishes everywhere in Ω.

To conclude, let us state the existence result for the complex-valued inhomogeneous Bel-
trami equation that will be needed in the modified Grad–Rubin iterative scheme in Section 6.4.
Since this iterative method only involves compactly supported inhomogeneities, we will focus
on this case although it is easy to extend it to general inhomogeneous terms with an appropriate
fall off at infinity.

Theorem 6.3.14. Let 0 6= λ ∈ R be any constant that is not a Dirichlet eigenvalue of the Laplace
operator in the interior domain, w ∈ Ck,αc (Ω,C3) and g ∈ Ck+1,α(S,C) such that divw ∈ Ck,α(Ω,C)
and the following compatibility condition

∫

S
(λg + w · η) dS = 0 (6.3.22)

is satisfied. Consider any solution ξ ∈ Xk+1,α(S,C3) to the boundary integral equation
(

1

2
I − Tλ

)
ξ = µ, x ∈ S, (6.3.23)

where Tλξ and µ are defined by

(Tλξ)(x) =

∫

S
η(x)× (∇xΓλ(x− y)× ξ(y)) dyS + λ

∫

S
Γλ(x− y)η(x)× ξ(y) dyS, (6.3.24)

µ(x) =
1

λ

∫

Ω
η(x)×∇xΓλ(x− y) divw(y) dy −

∫

S
η(x)×∇xΓλ(x− y)g(y) dyS

+

∫

Ω
η(x)× (∇xΓλ(x− y)× w(y)) dy + λ

∫

S
Γλ(x− y)η(x)× w(y) dyS. (6.3.25)

Define the complex-valued vector field

u(x) := −∇φ(x) + curlA(x) + λA(x), x ∈ Ω, (6.3.26)

where φ and A stand for the scalar and vector fields

φ(x) = − 1

λ

∫

Ω
Γλ(x− y) divw(y) dy +

∫

S
Γλ(x− y)g(y) dyS, (6.3.27)

A(x) =

∫

Ω
Γλ(x− y)w(y) dy +

∫

S
Γλ(x− y)ξ(y) dy. (6.3.28)

Then, u is a complex-valued solution to the exterior NIB problem




curlu− λu = w, x ∈ Ω,
u · η = g, x ∈ Ω,
+ L1 SMB radiation condition (6.3.15),
+ L1 decay property (6.3.16).

(6.3.29)

Furthermore, the decay and radiation conditions are stronger since u behaves as O
(
|x|−1

)
at infinity

and the Sommerfeld radiation condition (6.3.4) holds componentwise.
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Proof. Since the divergence of any solution u can be recovered from the equation through the
identity div u = − 1

λ divw, then one arrives at the next expression for the candidate to be a
solution to (6.3.29)

u(x) = −∇φ(x) + curlA(x) + λA(x),

where φ and A are defined as follows

φ(x) = − 1

λ

∫

Ω
Γλ(x− y) divw(y) dy +

∫

S
Γλ(x− y)g(y) dyS,

A(x) =

∫

Ω
Γλ(x− y)w(y) dy +

∫

S
Γλ(x− y)η(y)× u+(y) dyS.

Consider ξ := η × u+, where u± denotes the limits of u at S from Ω and G respectively. In
order to obtain a more manageable formula for ξ, one can use the well known jump relations
for the derivatives of a single layer potential associated with the fundamental solution to the
Helmholtz equation, Γλ(x) (see e.g. [84]). This formulas lead to the following identity

u±(x) =
1

λ

∫

Ω
∇xΓλ(x− y) divw(y) dy − PV

∫

S
∇xΓλ(x− y)g(y) dyS

+

∫

Ω
∇xΓλ(x− y)× w(y) dy + PV

∫

S
∇xΓλ(x− y)× ξ(y) dyS

+ λ

∫

Ω
Γλ(x− y)w(y) dy + λ

∫

S
Γλ(x− y)ξ(y) dyS ±

1

2
η(x)g(x)∓ 1

2
η(x)× ξ(x),

(6.3.30)

where PV stands for the Cauchy principal value integral. It is clear that the sum of the last
two term in last line is actually ±1

2u±(x). Consequently, one can take cross products by η(x)
and arrive at the boundary integral equation in (6.3.23) for the tangential component ξ. There,
we have intentionally avoided the PV signs because the η(x) factor in such integrals provides
certain geometrical cancellations (see Appendix H) leading to absolutely convergent integrals.

Now, let us show that the field u so defined is a solution to (6.3.29) as long as ξ solves the
boundary integral equation (6.3.23). We will prove later that ξ is unique and, consequently,
(6.3.29) is uniquely solvable. First, let us obtain some PDEs for the potentials φ and A both
in the interior and the exterior domain. Since volume and single layer potentials are indeed
complex-valued solutions to such PDEs, we have

∆φ+ λ2φ =

{
1
λ divw, x ∈ Ω
0, x ∈ G ∆A+ λ2A =

{
−w, x ∈ Ω
0, x ∈ G (6.3.31)

Therefore,

curlu− λu = ∇(divA)−∆A+ λ curlA+ λ∇φ− λ curlA− λ2A

= −(∆A+ λ2A) +∇ (divA+ λφ)︸ ︷︷ ︸
a

.

A direct substitution of (6.3.31) leads to the following PDE for u at any side of the boundary
surface S:

curlu− λu =

{
w +∇a, x ∈ Ω,
∇a, x ∈ G. (6.3.32)

In order to show that u solves (6.3.29), it remains to check that ∇a is zero in the exterior do-
main and u satisfies the boundary condition u+ · η = g (the decay and radiation conditions will
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be studied later). To this end, it might be useful to find first a PDE for a. The same reason-
ing as above shows that a solves the homogeneous Helmholtz equation both in Ω and in G,
specifically

∆a+ λ2a = div(∆A) + λ∆φ+ λ2 divA+ λ3φ = div(∆A+ λ2A) + λ(∆φ+ λ2φ) = 0. (6.3.33)

Let us show first the jump relations for the scalar potential a. Straightforward computations
on the explicit formulas for φ and A involving the divergence theorem lead to

a(x) = divA(x) + λφ(x)

=

∫

Ω
{∇xΓλ(x− y) · w(y)− Γλ(x− y) divw(y)} dy

+

∫

S
{∇xΓλ(x− y) · ξ(y) + λΓλ(x− y)g(y)} dyS

= −
∫

Ω
divy(Γλ(x− y)w(y)) dy +

∫

S
∇xΓλ(x− y) · ξ(y) dyS + λ

∫

S
Γλ(x− y)g(y) dyS

=

∫

S
Γλ(x− y)(λg(y) + w(y) · η(y)) dyS +

∫

S
∇xΓλ(x− y) · ξ(y) dyS.

Finally, notice that ∇xΓλ(x − y) · ξ(y) = −(∇S)y [Γλ(x− y)] · ξ(y) for every y ∈ S because of ξ
being a tangent vector field along S. Hence, the integration by parts formula over S yields the
next simpler expression for a:

a(x) =

∫

S
Γλ(x− y) (λg(y) + w(y) · η(y) + divS ξ(y)) dyS,

For the sake of clarity, we refer to Appendix G for some of the main properties of the operators
∇S , divS and curlS that shall be used throughout this proof. Then, a is nothing but a new single
layer potential. As such, the first and second jumps relations read

a+ − a− ≡ 0,

(
∂a

∂η

)

+

−
(
∂a

∂η

)

−
≡ − (λg + w · η + divS ξ) , (6.3.34)

on the surface S. In particular, a is continuous across S but its normal derivative exhibits a
jump discontinuity with height λg+w · η+ divS ξ. The same kind of reasoning yields the jump
relation for u

u+ − u− = g η − η × ξ, x ∈ S. (6.3.35)

Consequently, the boundary integral equation (6.3.23) along with the jump relation (6.3.35)
ensure that

η × u+ = ξ, η × u− = 0, (6.3.36)

on S. Regarding a, let us show that it is indeed constant on S and to this end, define the next
vector field in the interior domain G:

v := λu+∇a, x ∈ G.

Notice that v is a strong Beltrami field with factor λ by virtue of (6.3.32). Then, one can re-
peat the same kind of uniqueness criterion as in Lemma 6.3.13 in the simpler bounded setting,
specifically

λ

∫

G
|v|2 dx =

∫

G
v · curl v dx =

∫

G
div(v × v) dx =

∫

S
(η × v) · v dS.
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Now, notice that we can substitute both v and v in the above formula with its tangential parts
thanks to the presence of a cross product by the unit normal vector field η and

−η × (η × v) = −λη × (η × u−) +∇Sa = ∇Sa,

by virtue of (6.3.36). Thereby, an integration by parts leads again to

λ

∫

G
|v|2 dx =

∫

S
(η ×∇Sa) · ∇Sa dS = −

∫

S
a curlS (∇Sa) dS = 0,

where the well know formula curlS ∇S = 0 has been used in the last step. Consequently, v
vanishes everywhere in G and, in particular,∇Sa ≡ 0, i.e., a± ≡ a0 = const on S.

We will next prove that a vanishes everywhere in the exterior domain Ω using the unique-
ness result in Lemma 6.3.7. Notice that since a can be written as a sum of volume and single
layer potentials with compactly supported densities together with its first order partial deriva-
tives, then a satisfies a stronger Sommerfeld radiation condition due to Propositions 6.3.4 and
6.3.5. Consequently, this lemma can be applied. We therefore want to show that

=
(∫

S
a+

(
∂a

∂η

)

+

dS

)
= 0 . (6.3.37)

To derive (6.3.37), we first pass from the exterior to the interior trace values using the jump
relations (6.3.34)

∫

S
a+

(
∂a

∂η

)

+

dS = a0

∫

S
(λg + w · η + divS ξ) dS +

∫

S
a−

(
∂a

∂η

)

−
dS =I +II.

On the one hand, I becomes zero because of the divergence theorem over surfaces and the
compatibility condition (6.3.22) in the hypothesis. On the other hand, integrate by parts in II
to arrive at

II :=

∫

S
div (a∇a) dS =

∫

G
|∇a|2 dx+

∫

G
a∆a dx =

∫

G
|∇a|2 dx− λ2

∫

G
|a|2 dx,

where the Helmholtz equation (6.3.33) has being used. Therefore, one arrives at

=
(∫

S
a+

(
∂a

∂η

)

+

dS

)
= =

(∫

G
|∇a|2 dx− λ2

∫

G
|a|2 dx

)
= 0,

and consequently a = 0 in Ω and u solves the inhomogeneous Beltrami equation.
Before proving the boundary condition and the decay and radiation properties, let us show

that a also vanishes in the interior domain. On the one hand, a solves the homogeneous
Helmholtz equation in such domain and it also satisfies the interior homogeneous Dirichlet
conditions in S since a− = a+ on S and a = 0 in Ω. Moreover, λ is prevented from being a
Dirichlet eigenvalue of the Laplacian in the interior domain, so a also vanishes in G. In partic-
ular, the jumps relations (6.3.34) yields

λg + w · η + divS ξ ≡ 0. (6.3.38)

Furthermore, since u is now a solution to the next inhomogeneous Beltrami equation, curlu −
λu = w, x ∈ Ω, taking trace values at S one gets η · (curlu)+ − λη · u+ = w · η. Now, one can
write the first term in an intrinsic way through η · (curlu)+ = −divS(η × u+) = −divS ξ, and,
consequently, we have

η · u+ + w · η + divS ξ ≡ 0. (6.3.39)
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Then, comparing (6.3.38) and (6.3.39) entails the boundary condition η · u+ = g.
Finally, let us show the decay and radiation conditions on u. First, since

Γλ(x),∇Γλ(x) = O
(
|x|−1

)
, when |x| → +∞,

and w has compact support, then u enjoys the optimal decay u = O
(
|x|−1

)
when |x| → +∞

according to Theorem C.0.4. Second, as u is again a sum of single and volume layer potential
associated with the Helmholtz equation along with some partial derivatives, then u satisfies
Sommerfeld radiation condition componentwise thanks to Propositions 6.3.4 and 6.3.5. There-
fore, one can show that u verifies SMH conditions (6.3.12) and (6.3.13). Since curlu − λu = w
and w is compactly supported, then u actually satisfies the strong SMB radiation condition and
this finishes the proof.

6.3.3 Well-posedness of the boundary integral equation

One should also notice that, in addition to the uniqueness result proved in Theorem 6.3.14, we
will also need a study of the regularity of the solution, which is obviously in C1(Ω,C3) by the
decomposition (6.3.26). We will prove in this next subsection that the regularity assumptions
on the data w and g actually leads to Ck+1,α(Ω,C3) regularity on u. Some necessary potential
theoretic estimates have been relegated to Appendix H of the thesis to streamline the exposi-
tion. Let us start by studying the well-posedness of (6.3.23) using the Riesz–Fredholm theory
for compact operators, which follows easily from our previous estimates:

Proposition 6.3.15. The linear operator Tλ : Xk+1,α(S) −→ Xk+1,α(S) is compact.

Proof. The gain of regularity proved in Theorem H.2.1 implies that Tλ defines a continuous
linear operator

Tλ : Xk,α(S) −→ Xk+1,α(S).

Since Xk+1,α(S) ↪→ Xk,α(S) is compact by the Ascoli–Arzelà theorem, the proposition follows.

The proposition ensures that it is possible to apply Riesz–Fredholm theory to the operator
1
2I − Tλ. In particular, 1

2I − Tλ is one to one if, and only if, it is onto, i.e.,

Ker

(
1

2
I − Tλ

)
= 0⇐⇒ Im

(
1

2
I − Tλ

)
= Xk+1,α(S).

As it is hard to show explicitly that such operator is onto, let us equivalently show that it is
one to one. This is a consequence of the uniqueness Lemma 6.3.13 and the existence Theorem
6.3.14.

Proposition 6.3.16. The bounded linear operator 1
2I − Tλ on Xk+1,α(S) is one to one and onto.

Consequently, the boundary integral equation (6.3.23) has a unique solution ξ ∈ Xk+1,α(S) for any
µ ∈ Xk+1,α(S).

Proof. According to the preceding argument, we only have to show that Ker
(

1
2I − Tλ

)
= 0. To

this end, let us consider an arbitrary ξ ∈ Ker
(

1
2I − Tλ

)
and show that ξ ≡ 0. By definition,

ξ ∈ Xk+1,α(S) solves the boundary integral equation 1
2ξ − Tλξ = 0 on S. Define u(x) :=

curlA(x)+λA(x), where A is the vector potential A(x) :=
∫
S Γλ(x−y)ξ(y) dyS. Thus, Theorem

6.3.14 for w ≡ 0 and g ≡ 0 leads to a solution u ∈ C1(Ω,C3) to the homogeneous Beltrami
equation in Ω {

curlu = λu, x ∈ Ω,
η · u+ = 0, x ∈ S,
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that satisfies the Dirichlet boundary condition η×u+ = ξ on S and the SMB radiation condition.
We would like to show that this boundary value problem has a unique solution, but this

does not follow directly from Lemma 6.3.13. However, since η · u+ = 0 on S, then u+ =
−η × (η × u+) on S and we have the following relation between the curl operator on S, curlS ,
and the curl operator on R3:

curlS u+ = curlS (−η × (η × u+)) = η · curlu+ = λ η · u+ = 0,

see Appendix G. Since S is homeomorphic to a sphere, Poincaré’s lemma shows that u+ has a
potential ψ ∈ C2(S) on the surface, u+ = ∇Sψ on S, where ∇S stands for the gradient vector
on the surface S. Consequently,

=
(∫

S
u+ · (η × u+) dS

)
= =

(∫

S
∇Sψ · (η ×∇Sψ) dS

)
= −=

(∫

S
curlS (∇Sψ)ψ dS

)
= 0.

The identity follows from an integration by parts on S and the classical property curlS(∇Sψ) =
0. Therefore, Lemma 6.3.13 yields the desired result.

Remark 6.3.17. The importance of the above result lies on the following facts.

1. First, the existence part of the above result ensures that it is possible to choose some ξ solving
(6.3.23). Obviously, it is essential to rigurously establish the existence Theorem 6.3.14.

2. Second, the uniqueness result shows that since ξ can be uniquely chosen, then (6.3.29) has a
unique solution too.

3. Finally, it provides a very useful estimate for the subsequent result. Since 1
2I − Tλ is linear,

continuous and bijective, then
(

1
2I − Tλ

)−1 is continuous by virtue of the Banach isomorphism
theorem. Consequently, there exists a positive constant c (which depends on G and λ) such that

c‖ξ‖Ck+1,α(S) ≤
∥∥∥∥
(

1

2
I − Tλ

)
ξ

∥∥∥∥
Ck+1,α(S)

, (6.3.40)

for any ξ ∈ Xk+1,α(S).

We conclude by proving the following regularity result for the solution u of (6.3.29) ac-
cording to Theorem 6.3.14. It is an immediate consequence of the decomposition (6.3.26), the
estimates for the volume and single layer potentials in Appendix H (Lemmas H.1.10 and H.1.1)
and the estimate (6.3.40).

Corollary 6.3.18. Assume that the hypothesis in Theorem 6.3.14 are satisfied, fix any R > 0 such that
G ⊆ BR(0) and assume that the closure of ΩR := BR(0) \ G contains the support of w. Then, there
exists some nonnegative constant C0 = C0(k, α,G,R, λ) such that the next estimate

‖u‖Ck+1,α(Ω) ≤ C0

{
‖w‖Ck,α(Ω) + ‖ divw‖Ck,α(Ω) + ‖g‖Ck+1,α(S)

}
. (6.3.41)

holds. In particular, not only does u belong to C1(Ω,C3), but also to Ck+1,α(Ω,C3).
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6.3.4 Optimal fall-off in exterior domains

It is worth discussing the differences between the optimal fall-off |x|−1 of the solutions to inho-
mogeneous Beltrami equation and that of the solutions of the div-curl problem. First, it is well
know that the exterior Neumann boundary value problem associated with the div-curl system





curlu = w, x ∈ Ω,
div u = f, x ∈ Ω,
u · η = g, x ∈ S,
u = O(|x|1−ρ), x ∈ Ω,

(6.3.42)

where w, f = O(|x|−ρ) and ρ ∈ (1, 3), is uniquely solvable when appropriate regularity spaces
are considered (see [182, 229]) and w has zero flux in the exterior domain. Moreover, the solu-
tion inherits the optimal fall-off |x|−2 when w and f are assumed to have compact support. In
particular, any harmonic field (w = 0, f = 0) so obtained decays at infinity as |x|−2. Such result
is an easy consequence of the Helmholtz–Hodge representation formula in [229, Theorem 4.1]
and the natural fall-off of the fundamental solution of the Laplace equation, Γ0(x).

In our case, the exterior Neumann boundary value problem associated with the inhomoge-
neous Beltrami equation (6.3.29) has an associated representation formula of Helmholtz–Hodge
type (6.3.26) that transfers the “optimal fall-off” |x|−1 to the solution in Theorem 6.3.14 when w
is assumed to have compact support. Let us show that it is indeed the optimal decay rate. To
this end, assume that u solves the equation

curlu− λu = w, x ∈ Ω,

(not necessarily fulfilling neither (6.3.16) nor (6.3.15)) for some divergence-free vector field w.
Then, the solution u is divergence-free too. Hence, taking curl in the inhomogeneous Beltrami
equation, we are led to the vector-valued Helmholtz equation

−(∆u+ λ2u) = λw + curlw, x ∈ Ω.

Consider K := suppw ⊆ Ω and notice that λw + curlw is also compactly supported in K.
Imagine that u decayed as |x|−(1+ε) for some small ε > 0. Hence, a straightforward computa-
tion leads to

lim
R→+∞

∫

∂BR(0)
|u(x)|2 = 0.

Consequently, Rellich’s Lemma would show that u vanishes outside some sufficiently large
ball centered at the origin and containing K. Then, the unique continuation principle of the
Helmholtz equation allow proving that u is also compactly supported in K (see [203] for the
study of such property in many other linear PDEs with constants coefficients). In particular, g
would vanish outside K ∩ S. In an equivalent way, the next result holds.

Corollary 6.3.19. Let u ∈ Ck+1,α(Ω,R3) be a solution to

curlu− λu = w, x ∈ Ω,

for a divergence-free compactly supported w and some λ ∈ R \{0}. If u is transverse to S at some point
outside the support of w, then u cannot decay faster than |x|−1 at infinity.

The above Corollary can be interpreted in two different ways. First, it establishes the op-
timal fall-off of a “transverse” strong Beltrami field (w = 0). Second, it also deals with some
kind of “transverse” generalized Beltrami fields in exterior domains (w = ϕu) that will be of
a great interest in our work. We restrict to the second result since it contains the first one as a
particular case.
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Corollary 6.3.20. Let u ∈ Ck+1,α(Ω,R3) be a generalized Beltrami field, i.e.,
{

curlu− fu = 0, x ∈ Ω,
div u = 0, x ∈ Ω,

whose proportionality factor is a compactly supported perturbation of a constant proportionality factor
λ ∈ R \{0}, i.e., f = λ + ϕ for some ϕ ∈ Ck,αc (Ω). If u is transverse to S at some point outside the
support of the perturbation ϕ, then u cannot decay faster than |x|−1 at infinity.

Remark 6.3.21. In particular, the above result leads to the natural counterpart for exterior domain of
the Liouville theorem in [72, 227] about the fall-off of entire generalized Beltrami fields. Such theorem
states that there is no globally defined generalized Beltrami field decaying faster than |x|−1 at infinity.
As many others Liouville type results, it strongly depends on the solution being defined in the whole R3.
In our case we remove this hypothesis but, in return, we need to argue with generalized Beltrami fields
with constant proportionality factor outside a compact set enjoying some trasversality condition on the
boundary surface of the exterior domain.

6.4 An iterative scheme for strong Beltrami fields

Our objective in this section is to set the iterative scheme that we will use to establish the partial
stability of strong Beltrami fields that will yield the existence of almost global Beltrami fields
with a non-constant factor and complex vortex structures.

6.4.1 Further notation and preliminaries

On the differentiable surface S, we will consider local charts of the same regularity as S (that
is, maps µ covering open subsets Σ ⊆ S of the form

µ : D −→ R3,

where µ(D) = Σ and D is a disk in the plane). We will assume µ to be a local parametrization
up to the boundary so that µ can be homeomorphically extended to the closure D, Σ = µ(D).

We will also consider the corresponding Ck and Ck,α spaces of functions defined on a co-
ordinate neighborhood Σ of S provided with a local chart µ. Up to the degree of smoothness
of the surface, by compactness they are known to be independent of the choice of the chart, so
one can write

Ck(Σ) := {f : Σ −→ R : f ◦ µ ∈ Ck(D)}, and Ck,α(Σ) := {f : Σ −→ R : f ◦ µ ∈ Ck,α(D)}

and similarly for spaces on Σ. These spaces can be respectively endowed with the complete
norms

‖f‖Ck(Σ,µ) := ‖f ◦ µ‖Ck(D), ‖f‖Ck,α(Σ,µ) := ‖f ◦ µ‖Ck,α(D),

where the dependence on µ will be removed if it is apparent from the context.
An useful result is Calderón’s extension theorem for Ck,α functions, see e.g. [138, Lemma 6.37]:

Proposition 6.4.1. Let O ⊆ R3 be a Ck,α domain with bounded boundary ∂O, and let O′ be any open
subset such that O ⊆ O′. Then, there exists a linear operator

P : Ck,α(O) −→ Ck,α(O′),

P (f) ≡ f , such that
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1. P is an extension operator, i.e., P (f)|O = f, ∀f ∈ Ck,α(O).

2. The support of P(f) is contained in the open subset O′ for evey f ∈ Ck,α(Ω).

3. P is continuous in the Ck,α topology, i.e.,

‖P(f)‖Ck,α(O′) ≤ CP‖f‖Ck,α(O), ∀f ∈ Ck,λ(O).

4. P is also continuous in the Cm topology for any 0 ≤ m ≤ k, i.e.,

‖P(f)‖Cm(O′) ≤ CP‖f‖Cm(O), ∀f ∈ Ck,α(O).

In the above inequalities, CP stands for a constant which depends on k,O and O′.

To describe the stream lines and tubes associated with a velocity field u ∈ Ck+1,α(Ω,R3)
in presence of a boundary surface which u is not tangent to, it is convenient to consider an
extension of the field to obtain the following characterization from the Picard–Lindelöf theorem
on Hölder spaces:

Proposition 6.4.2. Let O ⊆ R3 be a Ck+1,α bounded domain, where k ≥ 0 and 0 < α ≤ 1. Consider
any vector field u ∈ Ck+1,α(O,R3), its associated extension u = P(u) ∈ Ck+1,α(R3,R3) according to
Proposition 6.4.1, any point x0 ∈ R3 and an initial time t0 ∈ R. Consider the associated characteristic
system {

dX

dt
(t; t0, x0) = u(X(t; t0, x0)), t ∈ R,

X(t0; t0, x0) = x0.
(6.4.1)

Then, such problem has a unique global-in-time solution X(t; t0, x0). In addition, X(t; t0, ·) is a Ck+1

global diffeomorphism of the Euclidean space for every t, t0 ∈ R and its inverse is X(t0; t, ·). The
solutions to these problems represent the stream lines of the extended velocity field u.

Since a sharper result will be discussed later, we omit the proof.
Consider any vector field u ∈ Ck+1,α(Ω,R3), its extension u = P(u) ∈ Ck+1,α(R3,R3)

according to Calderón’s extension theorem and its associated flow map X(t; t0, x0) through
Proposition 6.4.2. Then, for any x0 ∈ Ω we shall define T (x0) ≥ 0 to be the largest time for
which the stream line X(t; 0, x0), t > 0 remains inside the open subset Ω, i.e.,

T (x0) := sup{T > 0 : X(t; 0, x0) ∈ Ω, for all t ∈ (0, T )}.
Notice that, by definition, X(t; 0, x0), 0 < t < T (x0) represents a stream line of u, i.e., it solves

{
dX

dt
(t; t0, x0) = u(X(t; t0, x0)), 0 < t < T (x0),

X(0; 0, x0) = x0.

We will also consider stream tubes which emanate from the surface S. Specifically, consider
an open subset Σ ⊆ S together with a local chart µ : D −→ S. The stream tube of u which
emanates from Σ is the collection of all stream lines of u radiating from the points in the open
subset Σ, i.e.,

T (Σ, u) := {X(t; 0, µ(s)) : s ∈ D, 0 < t < T (µ(s))}.
For our purpose, it will also be useful to consider truncations at “height” T > 0 of the above
tube, i.e.,

T (Σ, u, T ) := {X(t; 0, µ(s)) : s ∈ D, 0 < t < min{T, T (µ(s))}}.
Notice that in order for a stream line of u to be well defined, it is necessary that the velocity

field points towards the exterior domain. The same condition leads to well defined stream
tubes emanating from Σ.
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G

Ω

Σ

T (Σ, u)
b

b

µ(s)

X(T ; 0, µ(s))

Figure 6.3: Stream lines and tubes of the velocity field u.

Proposition 6.4.3. Consider G,Σ, and µ verying the hypothesis (6.2.5), u ∈ Ck+1,α(Ω,R3), and
assume that the vector field u points towards the exterior domain at any point of Σ, i.e., there exits a
positive ρ0 > 0 such that u · η ≥ ρ0 on Σ. Then, T (Σ, u) emanates from Σ and it is smoothly foliated
by streamlines of u. Specifically, let us define the following map

φ : D(Σ, u) −→ T (Σ, u)
(t, s) 7−→ φ(t, s) := X(t; 0, µ(s)),

where the domain is the straight tube

D(Σ, u) := {(t, s) : s ∈ D, 0 < t < T (µ(s))}.

Then, the following properties hold true:

1. T (µ(s)) > 0, for each s ∈ D.

2. φ is bijective.

3. φ is a Ck+1 diffeomorphism.

4. Jac(φ) and Jac(φ)−1 belongs to Ck,α locally in t, i.e.,

‖ Jac(φ)‖
Ck,α(D(Σ,µ,T ))

, ‖ Jac(φ)−1‖
Ck,α(T (Σ,µ,T ))

≤ κ
(
‖u‖Ck+1,α(Ω), T

)
,

for every positive number T , where κ : R+
0 ×R+

0 −→ R+
0 is an increasing function with respect

to each variable, and we denote, the truncated straight tube at “height” T as follows

D(Σ, u, T ) := {(t, s) : s ∈ D, 0 < t < min{T, T (µ(s))}} .

For an easier readability, the proof is postponed to Appendix 6.A.
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The analysis in the next sections requires stream tubes of u that are bounded and have both
ends on S. These structures were considered (although its existence was not proved) in [182].
In our setting, we will say that the stream tube of u arising from Σ is a (ρ0, T, δ)-stream tube of
u when

- u · η ≥ ρ0 on Σ.

- For every s ∈ D there exist two associated positive numbers 0 < T0(s), Tδ(s) <
T
2 such

that X(T0(s); 0, µ(s)) ∈ S and X(Tδ(s); 0, µ(s)) ∈ Sδ.

Here ρ0, T, δ are positive constants which measure the initial angle of the streams lines over Σ,
the time at which the whole tube has returned to the surface and the depth that the stream lines
achieve into the interior domain G, while Sδ stands for the boundary of the subdomain of G
made of the points in G at distance at least δ from S, i.e., Gδ := {x ∈ G : dist(x, S) > δ} (see
Figure 6.4).

T (Σ, u)

µ(s)

X(Tδ(s); 0, µ(s))

X(T0(s); 0, µ(s))

G

Sδ

S

Figure 6.4: (ρ0, T, δ)-stream tube of u.

Since a stream tube consists of integral curves, the diameter of a (ρ0, T, δ)-stream tube is
bounded in terms of the sup norm of the vector field, the flow time T and the diameter at
time 0 as

diam(T (Σ, u)) ≤ T‖u‖C0(Ω) + diam(Σ). (6.4.2)

A detailed proof of such assertion can be found in [182, Lemma 4.6]. In a similar way, [182,
Lemma 4.7] provides a criterion to obtain “almost” (ρ0, T, δ)-stream tubes for velocity fields
which are “close enough” to any other given velocity field enjoying this kind of stream tubes.
This merely asserts that, as it is well known, a C0-small perturbation of the initial vector field
will not prevent the integral curves of the perturbed field from intersecting a surface to which
the initial flow was transverse. This can be written as follows:

Lemma 6.4.4. Let G,Σ, µ verify (6.2.5) and consider u1, u2 ∈ Ck+1,α(Ω,R3). Define the associated
stream tubes Ti := T (Σ, ui) emanating from Σ and suppose that T1 is a (ρ0, T, δ)-stream tube of u1 and
the following two assumption are fulfilled:

1. u1 · η = u2 · η on Σ.
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2. There exits θ ∈ (0, 1) such that

‖u1 − u2‖C0(Ω) < 2
(1− θ)δ
CPT

e
− 1

2
CPT‖u1‖C1(Ω) ,

where CP is the constant in Calderón’s extension theorem (see Proposition 6.4.1),

Then, T2 is also a (ρ0, T, θδ)-stream tube of u2.

6.4.2 Iterative scheme

In this section we discuss the Grad–Rubin iterative method (see, the review [301]) used to obtain
nonlinear force-free fields in the magnetohydrodynamical setting. An implementation of the
Grad–Rubin method was obtained through the decomposition of the Beltrami equation with
small proportionality factor f into a hyperbolic part, which transports the proportionality fac-
tor f along the magnetic field lines, and an elliptic one, to correct the magnetic field step by
step using Ampere’s law [6]. This method was used in [33] to obtain small perturbations of
harmonic fields in bounded domains, leading to a strategy to generate generalized Beltrami
fields with small non-constant proportionality factors. It was also analyzed in [182] to obtain
small perturbations of harmonic fields in exterior domains. The C0,α regularity of the small
proportionality factors and the C1,α regularity of the magnetic fields were also addressed in
such paper. A natural question is to ascertain whether these results can be adapted to get
perturbations of strong Beltrami fields with any constant proportionality factor λ 6= 0.

Assume that u0 is a strong Beltrami field with constant proportionality factor in the exterior
domain Ω. We will restrict ourselves to strong Beltrami fields u0 with optimal decay at infinity,
say |x|−1 (in contrast with the shap fall-off for harmonic fields |x|−2). Now, we would like to
solve 




curlu = (λ+ ϕ)u, x ∈ Ω,
div u = 0, x ∈ Ω,
u · η = u0 · η, x ∈ S,
|u(x)| ≤ C

|x| , x ∈ Ω,

(6.4.3)

where ϕ is a “small” perturbation of the constant proportionality factor λ. To solve this prob-
lem, we move the term λu in the equation for curlu from the inhomogeneous side, to the homo-
geneous one and we propose the following modification of the classical Grad–Rubin iterative
method





curlun+1 − λun+1 = ϕnun, x ∈ Ω,
un+1 · η = u0 · η, x ∈ S,
|un+1(x)| ≤ C

|x| , x ∈ Ω,

{
∇ϕn · un = 0, x ∈ Ω,
ϕn = ϕ0, x ∈ Σ.

(6.4.4)

We have intentionally removed the divergence-free conditions div un+1 = 0 in the left hand
side. The reason is twofold. First, note that if one computes the divergence in the first equation
and assumes λ 6= 0, one recovers div un+1 = − 1

λ div(ϕnun) from the first equation. Therefore, it
is an easy task to check that as soon as u0 is divergence-free and ϕn is a fist integral of un, then
un+1 is also divergence-free in each step of the iteration. Second, as it has been shown in the pre-
ceding section, the exterior inhomogeneous Beltrami equation is generally an overdetermined
system if one also prescribes the value of the divergence of the vector field. In particular, for the
inhomogeneous Beltrami equation to have nontrivial divergence-free solutions it is necessary
that the inhomogeneity is also divergence-free.

The inhomogeneous Beltrami equations in the left hand side was studied in the preced-
ing section through the analysis of the complex-valued solutions satisfying both the L1 decay
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condition (6.3.16) and the L1 SMB radiation condition (6.3.15). The stationary problem along a
(ρ0, T, δ)-stream tube of un in the right hand side of (6.4.4) will be studied in the Ck+1,α setting
in the next subsection. Finally, we will glue both steps to show the convergence of the modified
Grad–Rubin iterative method in Equation (6.2.4) at the end of this section.

6.4.3 Linear transport problem

We begin with the steady transport equations along (ρ0, T, δ)-stream tubes in the right hand
side of (6.2.4). The main idea to find a solution is to transport ϕ0 along the foliated stream tube
in Proposition 6.4.3 and to check that this definition leads to regular enough factors fn of un
due to the regularity of the tube.

Theorem 6.4.5. Let G,Σ, µ satisfy the hypotheses (6.2.5), consider any u ∈ Ck+1,α(Ω,R3) such that
T (Σ, u) is a (ρ0, T, δ)-stream tube of such a velocity field and assume that ϕ0 ∈ Ck+1,α

c (Σ). Consider
the first integral equation associated with u

{
u · ∇ϕ = 0 in Ω

ϕ = ϕ0 on Σ.
(6.4.5)

Then, there exists an unique solution ϕ along T (Σ, u), its support lies in the closure of T (Σ, u) and
it can be extended to a global solution in Ω with zero value outside T (Σ, u). Moreover, it belongs to
Ck+1,α(Ω) and the estimate

‖ϕ‖Ck+1,α(Ω) ≤ ‖ϕ0‖Ck+1,α(Σ) κ
(
‖u‖Ck+1,α(Ω), T

)

holds, for some continuous and separately increasing function κ : R+
0 ×R+

0 −→ R+
0 .

Proof. The proof of this result can be found in [182, Lemmas 4.8, 4.9 and 5.2] for the restricted
case k = 0. Let us then sketch the proof of the general case k 6= 0. Define the Calderón exten-
sion of u, u := P(u), according to Proposition 6.4.1 and denote its flow map by X(t; t0, x0).

• Step 1. Uniqueness.
Notice that as long as ϕ is a smooth first integral of u, then

d

dt
ϕ(X(t; 0, µ(s))) = (u · ∇ϕ)(X(t; 0, µ(s))) = (u · ∇ϕ)(X(t; 0, µ(s))) = 0,

for every (t, s) ∈ D(Σ, u). Therefore, ϕ(x) = ϕ0(µ(s(x))) for every x ∈ T (Σ, u), where here on
we will denote

(t(x), s(x)) = φ−1(x), x ∈ T (Σ, u).

• Step 2. Existence.
Noitce that the previous formula for ϕ defines a smooth function in T (Σ, u) (by virtue of the

bijectivity and regularity of the parametrization φ in Proposition 6.4.2) which obviously solves
(6.4.5) along the stream tube. Furthermore, with the exception of the endpoints, it is compactly
supported in the interior of the tube. The extension of ϕ by zero outside the tube yields a global
smooth solution of (6.4.5) in Ω.

• Step 3. Bound for ‖ϕ‖Ck+1,α(Ω).
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Since ϕ is extended by zero outside the tube, let us equivalently obtain an estimate for
‖ϕ‖Ck+1,α(T (Σ,u)). To this end, let us fix any multi-index γ = (γ1, γ2, γ3) such that |γ| ≤ k + 1
and note that

Dγϕ(x) = γ!
∑

(l,β,δ)∈D(γ)

(Dδ(ϕ0 ◦ µ))(s(x))
l∏

r=1

1

δr!

(
1

βr!
Dβrs(x)

)δr
.

for every x ∈ T (Σ, u). The above formula is nothing but a chain rule for high order partial
derivatives in high dimension. It can be found in [206], also see (N.3) in the introductory
part of Conventions and notation of this thesis. Here, D(γ) stands for the set of all possible
decompositions

γ =
l∑

r=1

|δr|βr,

where δr, βr are multi-indices, δ :=
∑l

r=1 δr and for every r = 1, . . . , l − 1 there exists some
ir ∈ {1, 2, 3} such that (βr)i = (βr+1)i for every i 6= ir and (βr)ir < (βr+1)ir . First of all, it is nec-
essary to know how to handle Dβrs(x). To this end, note that Jac(φ−1)(x) = Jac(φ)−1(φ−1(x))
and, consequently,

Dρ(Jac(φ−1)i,j)(x) =

nρ∑

n=1

∏

β∈Γn
1≤p,q≤3

Ai,jn,p,q(ρ, β)(Dβ(Jac(φ)−1
p,q))(φ

−1(x)),

for every multi-index ρ such that |ρ| ≤ k. Here, Ai,jn,p,q(ρ, β) stand for constant coefficients and
Γn is a set of 3-multi-indices of order at most |ρ| ≤ k. Expanding the products of sums by
distributivity, each term in Dγϕ takes the form

(Dδ(ϕ0 ◦ µ))(s(x))
∏

β∈Γ
1≤p,q≤3

Bi,j
p,q(γ, β)(Dβ(Jac(φ)−1

p,q))(φ
−1(x)),

where Γ is a set of multi-indices with degree at most k. The first factor can be bounded by
‖ϕ0‖Ck+1,α(Σ) whilst the terms in the second factor are bounded by κ(‖u‖Ck+1,α(Ω), T ) as stated
in Proposition 6.4.2. Hence, it is clear that

‖ϕ‖Ck+1(Ω) ≤ ‖ϕ0‖Ck+1,α(Σ)κ(‖u‖Ck+1,α(Ω), T ).

Finally, for any multi-index with maximum order k + 1, the α-Hölder seminorm of Dγϕ
can be estimated as follows. Take x1, x2 ∈ T (Σ, u) and appropriately add and subtract the
crossed terms. Since Dδ(ϕ0 ◦ µ) is bounded by ‖ϕ0‖Ck+1,α(Σ) and Dβ(Jac(φ)−1

pq ) is bounded by
κ(‖u‖Ck+1,α(Ω), T ), then it only remains to obtain estimates for

I : = (Dδ(ϕ0 ◦ µ))(s(x))
∣∣∣
x2

x1

,

II : = (Dβ(Jac(φ)−1
p,q))(φ

−1(x))
∣∣∣
x2

x1

.

First, we distinguish the cases |δ| < k + 1 and |δ| = k + 1. In the former case, the mean value
theorem, the estimates in Proposition 6.4.2 for Jac(φ)−1 and the estimate (6.4.2) of the diameter
of the stream tube T (Σ, u) yield the upper bound

I ≤ ‖ϕ0‖Ck+1,α(Σ)κ(‖u‖Ck+1,α(Ω), T )|x1 − x2|
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≤ ‖ϕ0‖Ck+1,α(Σ)κ(‖u‖Ck+1,α)(T‖u‖C0(Ω) + diam(Σ))1−α|x1 − x2|α.

In the later case, the α-Hölder continuity of Dδ(ϕ0 ◦ µ) gives rise to an analogous estimate

I ≤ ‖ϕ0‖Ck+1,α(Σ)κ
(
‖u‖Ck+1,α(Ω), T

)α
|x1 − x2|α.

Second, note that Dβ(Jac(φ)−1
p,q) is α-Hölder continuous with Hölder’s constant that can be

bounded above by κ(‖u‖Ck+1,α(Ω), T ) by virtue of Proposition 6.4.2. Thus,

II ≤ κ(‖u‖Ck+1,α(Ω), T )|φ−1(x1)− φ−1(x2)|α.

The mean value theorem then leads to the desired upper estimate

|Dγϕ(x1)−Dγϕ(x2)| ≤ κ(‖u‖Ck+1,α(Ω), T )|x1 − x2|α,

by accounting for an appropriately modification of the function κ if needed.

Apart from existence and uniqueness results of (6.4.5), we also need some stability property
for the problem (6.4.5) with respect to the generating vector field u. In such a way, after we
show some compactness on {un}n∈N in Ck+1,α(Ω,R3) we readily obtain further compactness
of {ϕn}n∈N in Ck,α(Ω).

Corollary 6.4.6. Let G, Σ, µ satisfy the properties (6.2.5). Consider any couple of vector fields u1, u2 ∈
Ck+1,α(Ω,R3), and denote by T1 := T (Σ, u1) and T2 := T (Σ, u2) the associated stream tubes which
emanate from Σ. Assume that Ti is a (ρ0, T, δi)-stream tube of ui. Consider any boundary data
ϕ0 ∈ Ck+1,α

c (Σ) and the solutions ϕ1 and ϕ2 (according to Theorem 6.4.5) to each transport prob-
lem associated with u1 and u2 respectively:

{
∇ϕ1 · u1 = 0, x ∈ Ω,
ϕ1 = ϕ0, x ∈ Σ,

{
∇ϕ2 · u2 = 0, x ∈ Ω,
ϕ2 = ϕ0, x ∈ Σ.

Then,

‖ϕ1−ϕ2‖Ck,α(Ω) ≤ ‖ϕ0‖Ck+1,α(Σ) ·κ
(
‖u1‖Ck+1,α(Ω), T

)
·κ
(
‖u2‖Ck+1,α(Ω), T

)
‖u1− u2‖Ck+1,α(Ω),

where κ : R+
0 ×R+

0 −→ R+
0 is continuous, separately increasing and does not depend on ui, ϕ0 or T .

The proof follows the same train of thoughts as Theorem 6.4.5 and we omit it here. We refer
the reader to [182, Lemma 5.3] where it was proved for C1,α regularity and to the master thesis
[253, Corolario 2.4.4], where it has been extended to Ck+1,α regularity.

6.4.4 Limit of the approximate solutions

The existence and uniqueness results in Theorems 6.4.5 and 6.3.14 together with the stability
result for the transport problem in Corollary 6.4.6 now allow us to take the limit as n→ +∞ in
the modified Grad–Rubin iterative scheme (6.2.4). Therefore, we obtain a generalized Beltrami
field which is close to the initial strong Beltrami field and whose proportionality factor is a
non-constant small enough perturbation of the initial constant proportionality factor λ:
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Theorem 6.4.7. Let G,Σ, µ satisfy the hypotheses (6.2.5) and assume that 0 6= λ ∈ R is not a Dirichlet
eigenvalue of Laplace operator in the interior domain G. Consider any complex-valued strong Beltrami
field v0 ∈ Ck+1,α(Ω,C3) which satisfy the L1 SMB radiation condition (6.3.15) and the L1 decay
property (6.3.16) in the exterior domain. Set its real part u0 := <v0 and assume that T (Σ, u0) is a
(ρ0, T, δ)-stream tube of the velocity field u0. Then, for every ε0 > 0 there exists δ0 > 0 so that if
ϕ0 ∈ Ck+1,α

c (Σ) with ‖ϕ0‖Ck+1,α(Σ) < δ0 we have that the real parts un+1 of the solutions vn+1 ∈
Ck+1,α(Ω,C3) together with the solutions ϕn ∈ Ck+1,α(Ω) of the modified Grad–Rubin scheme (6.2.4)
(see Theorems 6.4.5 and 6.3.14) strongly converge, namely,

un → u in Ck+1,α(Ω,R3) and ϕn → ϕ in Ck,α(Ω),

as n → +∞. In addition, (u, λ + ϕ) solves the boundary value problem (6.4.3), u has optimal decay
|x|−1 and ϕ = ϕ0 in Σ. Moreover, T (Σ, u) is a (ρ0, T, δ/2)-stream tube of u, ϕ has compact support
inside the closure of such stream tube and u is close enough to u0, specifically

‖u− u0‖Ck+1,α(Ω) ≤ ε0‖u0‖Ck+1,α(Ω).

Proof. For simplicity of notation, we will denote the stream tubes associated with each vector
field un which emanates from Σ by Tn := T (Σ, un).

• Step 1. Well definition of un, ϕn and a priori estimates.
First of all, it is necessary to check whether the hypothesis of Theorems 6.4.5 and 6.3.14 hold

and they can be deduced in each step from the corresponding hypotheses in the previous step
in the iteration.

◦ Step 1.1. Base step of induction. Let us begin with the step n = 0:

{
∇ϕ0 · u0 = 0, x ∈ Ω,
ϕ0 = ϕ0, x ∈ Σ,





curl v1 − λv1 = ϕ0u0, x ∈ Ω,
v1 · η = u0 · η, x ∈ S,
+ L1 Decay property (6.2.1),
+ L1 SBM radiation condition (6.2.2).

The hypotheses imply that T0 is a (ρ0, T, δ)-stream tube of u0 and ϕ0 ∈ Ck+1,α
c (Σ). Hence,

there exists a global solution ϕ0 to the transport equation (Theorem 6.4.5). Moreover, ϕ0u0 ∈
Ck+1,α
c (Ω,R3) ⊆ Ck,αc (Ω,R3) and its compact support is contained in the stream tube T0. In

particular, the estimate (6.4.2) ensures that supp(ϕ0u0) ⊆ T0 ⊆ ΩR, where ΩR := BR(0) \ G
and R := 2T‖u0‖Ck+1,α(Ω) + diam(Σ). On the other hand, as S is regular enough, so is η and,
consequently, u0 · η ∈ Ck+1,α(S). An integration by parts leads to the following expression

∫

S
(λu0 · η + ϕ0u0 · η) dS = λ

∫

S
u0 · η dS +

∫

∂BR′ (0)
ϕ0u0 · η dS −

∫

ΩR′
div(ϕ0u0) dx

For R′ > R, the second term vanishes as a consequence of the previous estimate for the diame-
ter of the initial stream tube. Regarding the third term, notice that the same argument as above
leads to

div(ϕ0u0) = ∇ϕ0 · u0 + ϕ0 div u0 = 0.

We have u0 ·η = − 1
λ divS(η×u0). Thus, the divergence theorem concludes that the first term

vanishes too. Therefore, the hypotheses of Theorem 6.3.14 are satisfied, so there is a unique so-
lution v1 to the corresponding complex-valued inhomogeneous Beltrami equation in the right
hand side of the step n = 0.
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Let us prove an estimate for u1 − u0 that will be useful to prove the Cauchy condition in
Ck+1,α(Ω,R3) for the sequence {un}n∈N. This vector field is the real part of v1 − v0, which
satisfies the complex-valued exterior Neumann problem





(curl−λ)(v1 − v0) = ϕ0u0, x ∈ Ω,
(v1 − v0) · η = 0, x ∈ S,
+ L1 decay condition (6.2.1),
+ L1 SMB radiation conditon (6.2.2).

Therefore, the uniqueness of the solution to this problem (Proposition 6.3.16), the Ck+1,α esti-
mates of such solutions (Corollary 6.3.18), and the Ck,α estimates for the solution of the steady
transport equation (Theorem 6.4.5) allow us to obtain the following estimate for v1 − v0 and,
consequently, for u1 − u0:

‖u1 − u0‖Ck+1,α(Ω) = ‖<(v1 − v0)‖Ck+1,α(Ω) ≤ ‖v1 − v0‖Ck+1,α(Ω) ≤ C0‖ϕ0u0‖Ck,α(Ω).

Here C0 > 0 depends on k, α, λ,G and R. The Leibniz rule for the derivative of a product reads

Dγ(ϕ0u0) =
∑

β≤γ

(
γ

β

)
Dβϕ0D

γ−βu0,

for any multi-index γ. Therefore, the estimates in Theorem 6.4.5 for the derivatives up to order
k of ϕ0 and the combination of the mean value theorem and the Calderón’s extension theorem
(Proposition 6.4.1) to estimate the C0,α-norm of the derivatives of u0 up to order k allow us to
arrive at the inequality

‖Dγ(ϕ0u0)‖C0(Ω) ≤ Ck‖ϕ0‖Ck+1,α(Σ)κ
(
‖u0‖Ck+1,α(Ω), T

)
‖u0‖Ck+1,α(Ω),

for every multi-index γ with |γ| ≤ k, and

‖Dγ(ϕ0u0)‖C0,α(Ω) = ‖Dγ(ϕ0u0)‖C0,α(T0)

≤ CkCP‖ϕ0‖Ck+1,α(Σ)κ (‖u0‖Ck+1,α , T ) ‖u0‖Ck+1,α(Ω)(T‖u0‖Ck,α(Ω) + diamΣ)1−α,

for every multi-index γ so that |γ| = k and a nonnegative constant Ck depending on k. To
derive the last estimate, we have used that

|Dγ−βu0(x)−Dγ−βu0(y)| ≤ ‖Dγ−βu0‖C1(R3)|x− y| ≤ CP‖u0‖Ck+1,α(Ω)|x− y|α(diamT0)1−α,

for every x, y ∈ T0 and the estimate (6.4.2) for the diameter of the (ρ0, T, δ)-stream tube of T0.
Hence the following inequality

‖u1 − u0‖Ck+1,α(Ω)

≤ K
{

1 + (T‖u0‖Ck+1,α(Ω) + diamΣ)1−α
}
‖ϕ0‖Ck+1,α(Σ)κ

(
‖u0‖Ck+1,α(Ω), T

)
‖u0‖Ck+1,α(Ω),

holds, with a constant K = K(k, α, λ,G,R). Now, we can fix the small parameter δ0 such that
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it satisfies the following two conditions:

K
{

1 + (4T‖u0‖Ck+1,α(Ω) + diamΣ)1−α
}

×
{
κ
(

2‖u0‖Ck+1,α(Ω), T
)

+ ‖u0‖Ck+1,α(Ω)κ
(

2‖u0‖Ck+1,α(Ω), T
)2
}
δ0 <

min{ε0, 1}
2

.

K
{

1 + (4T‖u0‖Ck+1,α(Ω) + diamΣ)1−α
}

×
{
κ
(

2‖u0‖Ck+1,α(Ω), T
)

+ ‖u0‖Ck+1,α(Ω)κ
(

2‖u0‖Ck+1,α(Ω), T
)2
}
‖u0‖Ck+1,α(Ω) δ0

<
1

4

2δ

CPT
e
− 1

2
CP‖u0‖Ck+1,α(Ω)

T
.

(6.4.6)

Then we infer 



‖u1 − u0‖Ck+1,α(Ω) < min{ε0, 1}
1

2
‖u0‖Ck+1,α(Ω),

‖u1 − u0‖Ck+1,α(Ω) <
1

4

2δ

CPT
e
− 1

2
CPT‖u0‖Ck+1,α(Ω) ,

‖u1‖Ck+1,α(Ω) ≤
3

2
‖u0‖Ck+1,α(Ω).

(6.4.7)

◦ Step 1.2. Induction hypothesis.
Our goal is to show by induction that the following conditions hold true for any n ∈ N:





‖un+1 − un‖Ck+1,α(Ω) ≤
1

2n
‖u1 − u0‖Ck+1,α(Ω) < min{ε0, 1}

1

2n+1
‖u0‖Ck+1,α(Ω),

‖un+1 − un‖Ck+1,α(Ω) <
1

2

1

2n+1

2δ

CPT
e
− 1

2
CPT‖u0‖Ck+1,α(Ω) ,

‖un+1 − u0‖Ck+1,α(Ω) < min{ε0, 1}
n+1∑

i=1

1

2i
‖u0‖Ck+1,α(Ω),

‖un+1 − u0‖Ck+1,α(Ω) <
1

2

n+1∑

i=1

1

2i
2δ

CPT
e
− 1

2
CP‖u0‖Ck+1,α(Ω) ,

‖un+1‖Ck+1,α(Ω) <
n+1∑

i=0

1

2i
‖u0‖Ck+1,α(Ω).

(6.4.8)

Notice that this is true for n = 0 due to the above step (6.4.7). Let us assume that the inductive
hypotheses holds for all indices less than n. Specifically, we assume that ϕm, vm+1 are well de-
fined, i.e., the corresponding problems have a unique solution, that um+1 are divergence-free
and (6.4.8) hold for indices m < n.

◦ Step 1.3. Proof for m = n.
The inductive hypotheses imply the existence of a vector field vn ∈ Ck+1,α(Ω,C3) and

ϕn−1 ∈ Ck,α(Ω). Moreover, Tn is a
(
ρ0, T,

(
1− 1

2

∑n
i=1

1
2i

)
δ
)
)-stream tube of the real part

un = <vn because of the third inequality in (6.4.8). Consequently, there exists a unique solution
ϕn ∈ Ck,α(Ω) to the transport problem in the left hand side of (6.2.4) according to Theorem
6.4.5. The last estimate in (6.4.8) along with (6.4.2) lead to Tn ⊆ ΩR. Therefore, ϕn is com-
pactly supported in ΩR ⊆ Ω and the same argument as in the step n = 0 ensures the existence
and uniqueness of a solution vn+1 ∈ Ck+1,α(Ω,C3) to the complex-valued exterior Neumann
problem for the inhomogeneous Beltrami equation in the right hand side of (6.2.4).
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Notice that the vanishing flux hypothesis in Theorem 6.3.14 is satisfied. To check it we get
∫

S
(λu0 · η + ϕnun · η) dS = λ

∫

S
u0 · η dS +

∫

∂BR′ (0)
ϕnun · η dS −

∫

ΩR′
div(ϕnun) dx.

The first term is zero as before, the second one also vanishes for a choice R′ > R and the last
one is zero too because ϕn is a first integral of un and un is divergence-free according to the
induction hypothesis. Consequently, it is easy to verity that un+1 is also divergence-free.

To conclude, let us prove the inductive hypothesis (6.4.8) for un+1−un. Taking the difference
of the corresponding complex-valued exterior boundary value problems we have that vn+1−vn
solves 




(curl−λ)(vn+1 − vn) = ϕnun − ϕn−1un−1, x ∈ Ω,
(vn+1 − vn) · η = 0, x ∈ S,
+ L1 decay conditions (6.2.1),
+ L1 SMB radiation condition (6.2.2).

Again, thanks to the uniqueness property (Proposition 6.3.16), the Ck+1,α estimates for these
solutions (Corollary 6.3.18) and theCk,α estimates for the solution of the steady transport equa-
tion (Theorem 6.4.5), we obtain the following estimate for vn+1 − vn and, consequently, for the
real parts un+1 − un

‖un+1 − un‖Ck+1,α(Ω) = ‖<(vn+1 − vn)‖Ck+1,α(Ω)

≤ ‖vn+1 − vn‖Ck+1,α(Ω) ≤ C0‖ϕnun − ϕn−1un−1‖Ck,α(Ω).

Now, observe that the right hand side ϕnun − ϕn−1un−1 of the above inhomogeneous Beltrami
equation has compact support inside Tn ∪ Tn−1 ⊆ ΩR (see estimate (6.4.2) and the last inequal-
ities for the Ck+1,α norms of un and un−1 in the inductive hypothesis). This is a crucial fact
because it guarantees that C0 is independent on the iteration number n. Indeed by the regular-
ity Theorem H.1.10 in Appendix H, the constant C0 only depends on k, α, λ,G,R because all
the supports of the inhomogeneous terms in the complex-valued exterior Neumann problems
lie within the same bounded subset ΩR of the exterior domain. Notice that

‖ϕnun − ϕn−1un−1‖Ck,α(Ω) ≤ ‖(ϕn − ϕn−1)un‖Ck,α(Ω) + ‖ϕn−1(un − un−1)‖Ck,α(Ω).

Since Tn is a
(
ρ0, T,

(
1− 1

2

∑n
i=1

1
2i

)
δ
)
-stream tube of un, Tn−1 is a

(
ρ0, T,

(
1− 1

2

∑n−1
i=1

1
2i

)
δ
)

-
stream tube of un−1 and un−1 · η = u0 · η = un · η on S, we can apply both estimates in Theorem
6.4.5 and Corollary 6.4.6 to obtain the inequality

‖ϕnun − ϕn−1un−1‖Ck+1,α(Ω) ≤ K‖ϕ0‖Ck+1,α(Σ)

{
1 + (4T‖u0‖Ck+1,α(Ω) + diamΣ)1−α

}

×
{
κ(2‖u0‖Ck+1,α(Ω), T ) + ‖u0‖Ck+1,α(Ω)κ

(
2‖u0‖Ck+1,α(Ω), T

)2
}
‖un − un−1‖Ck+1,α(Ω).

Consequently, the estimate

‖un+1 − un‖Ck+1,α(Ω) ≤ K‖ϕ0‖Ck+1,α(Σ)

{
1 + (4T‖u0‖Ck+1,α(Ω) + diamΣ)1−α

}

×
{
κ(2‖u0‖Ck+1,α(Ω), T ) + ‖u0‖Ck+1,α(Ω)κ

(
2‖u0‖Ck+1,α(Ω), T

)2
}
‖un − un−1‖Ck+1,α(Ω)
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holds, with K independent of n. Since ‖ϕ0‖Ck+1,α(Σ) < δ0 and δ0 is small enough to ensure
(6.4.6), one has

‖un+1 − un‖Ck+1,α(Ω) <
1

2
‖un − un−1‖Ck+1,α(Ω),

and the inductive hypothesis for indices less than n leads to the first two inequalities in (6.4.8).
The last three estimates can be obtained as follows. Firstly, the preceding two estimates

together with the induction hypotheses lead to

‖un+1 − u0‖Ck+1,α(Ω) ≤
n∑

i=0

‖ui+1 − ui‖Ck+1,α(Ω) ≤ min{ε0, 1}
n+1∑

i=1

1

2i
‖u0‖Ck+1,α(Ω).

Similarly, we have

‖un+1 − u0‖Ck+1,α(Ω) ≤
n∑

i=0

‖ui+1 − ui‖Ck+1,α(Ω) ≤
1

2

n+1∑

i=1

1

2i
2δ

CPT
e
− 1

2
CPT‖u0‖Ck+1,α(Ω) .

The last inequality in (6.4.8) is obvious by the triangle inequality:

‖un+1‖Ck+1,α(Ω) ≤ ‖u0‖Ck+1,α(Ω) + ‖un+1 − u0‖Ck+1,α(Ω) ≤
n+1∑

i=0

1

2i
‖u0‖Ck+1,α(Ω).

• Step 2. Strong compactness.
Using the above inequalities in (6.4.8) one can show that {un}n∈N and {ϕn}n∈N are Cauchy

sequences in Ck+1,α(Ω, R3) and Ck,α(Ω), respectively. On the one hand, we find

‖un+m − un‖Ck+1,α(Ω) ≤
n+m−1∑

i=n

‖ui+1 − ui‖Ck+1,α(Ω) <
n+m−1∑

i=n

1

2i+1
‖u0‖Ck+1,α(Ω) ≤

1

2n
‖u0‖Ck+1,α(Ω).

Likewise, the third inequality in (6.4.8) along with the property un ·η = u0 ·η on S, shows that Tn
are

(
ρ0, T,

(
1− 1

2

∑n
i=0

1
2i

)
δ
)
-stream tubes of un. Therefore, {ϕn}n∈N also satisfies the Cauchy

condition in Ck,α(Ω) due to Corollary 6.4.6. Thus, it converges in Ck,α to some ϕ ∈ Ck,α(Ω).

• Step 3. Identification of the limit and properties.
Let us now take the limit as n→ +∞ in the iterative scheme to deduce

div un+1 = 0 curlun+1 − λun+1 = ϕnun un+1 · η = u0 · η
↓ ↓ ↓ ↓ ↓ ↓

div u = 0 curlu− λu = ϕu u · η = u0 · η.

Moreover, the L1 SMB radiation condition (6.3.15) and the decay property (6.3.16) lead to
complex-valued solutions vn to the exterior Neumann problem for the inhomogeneous Bel-
trami equations in the iterative scheme with the asymptotic behavior |vn(x)| ≤ C|x|−1, x ∈ Ω,
for every n and C independent of n. To check it, notice that Theorem 6.3.14 provides a decom-
position of vn+1 into generalized volume and single layer potentials whose densities are u0 · η,
ϕnun and the sequence ξn of solutions to the boundary integral equations (6.3.23). The single
layer potentials and its first order partial derivarives are dominated by the corresponding in-
tegral kernels Γλ and ∇Γλ for x far enough from the surface S. This leads to an upper bound
C|x|−1 where C depends on the C0 norm of u0 · η and ξn. Both quantities can be bounded
above by ‖u0 · η‖Ck,α(S) and ‖ϕnun‖Ck,α(Ω), which are uniformly bounded with respect to n.
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Furthermore, the volume layer potentials and its first order partial derivatives can be bounded
byC|x|−1 for an n-independent constant thanks to Theorem C.0.4 in Appendix C and the above
argument. Consequently, we get the same asymptotic behavior at infinity for the limit vector
field u.

Let us show now that T (Σ, u) is a (ρ0, T, δ/2)-stream tube of u and that the support of ϕ lies
in it. To do so, take limits in the fourth inequality in (6.4.8) and notice that

‖u− u0‖Ck+1,α(Ω) ≤
1

2

2δ

CPT
e
− 1

2
CPT‖u0‖Ck+1,α(Ω) ,

Then, Corollary 6.4.6 yields the first assertion. The second one is clear by taking into account
that suppϕn ⊆ Tn, for every n ∈ N. Finally, to check that the limit solution is close to the initial
strong Beltrami field u0, it suffices to take limits in the third inequality in (6.4.8) to get

‖u− u0‖Ck+1,α(Ω) ≤ min{ε0, 1}
+∞∑

i=1

1

2i
‖u0‖Ck+1,α(Ω) ≤ ε0‖u0‖Ck+1,α(Ω).

Remark 6.4.8. The generalized Beltrami field u ∈ Ck+1,α(Ω,R3) obtained in the preceding Theorem
has proportionality factor f = λ + ϕ, for some compactly supported perturbation ϕ ∈ Ck,α(Ω). More-
over, it decays as |x|−1 at infinity. To check that it is optimal note first that div(ϕu) = 0 and consider
any open subset Σ′ ⊆ S such that suppϕ0 ⊆ Σ′ ⊆ Σ′ ⊆ Σ. Notice that the preceding proof indeed
shows that ϕ is compactly supported in T (Σ′, u), that is a (ρ0, T, δ/2)-stream tube. Take any x ∈ Σ\Σ′

and notice that u(x) · η(x) ≥ ρ0 > 0. This means that u is transverse to S at some point outside the
support of ϕ0. Hence,

u = O(|x|−1) when |x| → ∞,
is the optimal decay by virtue of Corollary 6.3.20.

A related remark in the harmonic case (λ = 0) is in order now.

Remark 6.4.9. Recall that a similar result to that in Theorem 6.4.7 was previously proved in [182] to
obtain generalized Beltrami fields u ∈ C1,α(Ω,R3) (nonlinear force-free fields), i.e., solutions to

curlu = fu, x ∈ Ω,

with compactly supported small proportionality factors f ∈ C0,α(Ω).

- On the one hand, the low regularity C1,α and C0,α is not a weakness in such result since despite
not being directly considered in [182], our regularity results in Appendix H of this thesis provide
the necessary background to promote the existence theorem therein to a higher regularity setting.

- On the other hand, such generalized Beltrami fields in [182] decay as |x|−2 at infinity. There is no
contradiction neither with Corollary 6.3.20 (since it holds under the assumption λ 6= 0) nor with
the Liouville theorem in [227] (since it just holds for globally defined generalized Beltrami fields).

- On the contrary, the latter can be used to show an interesting property of such generalized Beltrami
fields obtained as perturbations of harmonic fields: they cannot be globally extended to the whole
space by virtue of the fall-off obstructions in [227]. Unfortunately, the same cannot be directly
said for generalized Beltrami fields obtained as perturbations of strong Beltrami fields and it is
still an open problem to elucidate if the generalized Beltrami fields in exterior domains that we
have constructed by perturbation in Theorem 6.4.7 can be actually extended to entire solutions to
the Beltrami equation.
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6.5 Knotted and linked stream lines and tubes in generalized Bel-
trami fields

Our objective in this section is to apply the convergence result for the modified Grad–Rubin
method (6.2.4) that we established in the previous section (Theorem 6.4.7) to show the existence
of almost global Beltrami fields of class Ck+1,α with a nonconstant factor that realize any given
configuration of vortex tubes and vortex lines, modulo a small diffeomorphism. Here k is an
arbitrary integer.

6.5.1 Knots and links in almost global generalized Beltrami fields

Our goal here is to show that the partial stability result for almost global Beltrami fields al-
lows us to conclude the existence of Beltrami fields with a non-constant proportionality factor
that are defined in all of R3 but, say, in the complement of an arbitrarily small ball, and which
have a collection of vortex tubes and lines of arbitrary topology. Let us recall that, as discussed
before, a stream tube (or invariant torus) of a divergence-free velocity field u is structurally
stable if any divergence-free field that is close enough to u in C3,α has an invariant torus given
by a C0,α-small diffeomorphism of the initial tube. Although we shall not state these prop-
erties explicitly here, just as in [116] the vortex tubes that we construct are accumulated on
by a positive-measure set of invariant tori on which the vortex lines are ergodic, see also the
introductory Chapter 1 of the thesis for further information.

Theorem 6.5.1. Let G be an exterior domain satisfying (6.2.5) and consider any collection of disjoint
knotted and linked thin tubes Tε(Γ1), . . . , Tε(Γn) whose closure is contained in the exterior domain Ω.
Then, for ε small enough and any k, α there exists a nonzero constant λ, an open subset Σ ⊆ S and
some δ0 > 0 with the following property: for any function ϕ0 ∈ Ck+1,α

c (Σ) with ‖ϕ0‖Ck+1,α(Σ) < δ0

there is a Beltrami field u ∈ Ck+1,α(Ω,R3) with factor λ + ϕ, where ϕ ∈ Ck,α(Ω) satisfies ϕ|Σ = ϕ0

so that {
curlu = (λ+ ϕ)u, x ∈ Ω,
div u = 0, x ∈ Ω.

Furthermore, u = O
(
|x|−1

)
as |x| → +∞, the support of ϕ is compact and lies in the (ρ0, T, δ)-stream

tube T (Σ, u) of u radiating from Σ (with the exception of the endpoints) and Tε(Γ1), . . . , Tε(Γn) can
be modified (by a diffeomorphism Φ close enough to the identity in any Cm norm) into a collection of
structurally stable vortex tubes of u, Φ(Tε(Γ1)), . . . ,Φ(Tε(Γn)), (possibly) knotted and linked with the
tube T (Σ, u).

Proof. Take a curve Γ0 intersecting S transversally and such that Tε(Γ0) ∩ Ω has only a con-
nected component. We also assume that Γ0 does not intersect any of the other curves Γj , so
that the setup is then as depicted in Figure 6.5. For ε > 0 small enough, [116] asserts the ex-
istence of some diffeomorphism Φ′ arbitrarily close to the identity map in any Cm norm such
that Φ′(Tε(Γ0)), . . . ,Φ′(Tε(Γn)) are vortex tubes of a strong Beltrami field u0 which satisfies the
equation curlu0 = λu0 in R3 for some non-zero constant λ (of order ε3), see also the introduc-
tory Chapter 1. By construction, these tubes are structurally stable and Φ′ can be assumed to be
arbitrarily close to the identity in anyCm norm, so the new thin tubes enjoy the same geometric
features as we had assumed on the initial ones. Let x0 ∈ S∩Φ′(Γ0) be where u0 points outwards
and consider any open and connected neighborhood Σ of x0 in S such that Σ ⊆ S ∩Φ′(Tε(Γ0)).

Recall that u0 in [116] is of the form

u0 =
curl(curl +λ)

2λ2

L∑

l=0

l∑

m=−l
cml jl(λ|x|)Y m

l

(
x

|x|

)
.
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A)

B) C)

Figure 6.5: A) Collection of knotted and linked vortex tubes {Φ′(Tε(Γ0)),Φ′(Tε(Γ1))} of the
strong Beltrami field u0, respectively homeomorphic to a ring and a to the trefoil tube. B)
Transverse intersection of the vortex tube Φ′(Tε(Γ0)) and the interior domain G. Here we have
zoomed in the squared region on the left side of the above figure, showing the smaller outward
pointing (ρ0, T, δ)-stream tube of u0 that emerges from Σ. The perturbation ϕ of λ will be
supported there. C) Zoom of the vortex tube Φ′(Tε(Γ1)) with trefoil knot. It shows the internal
structure of such vortex tube of u0, which contains uncountably many nested tori and knotted
vortex lines.

Since u0 is obviously real-valued, it is the real part of the vector field

v0 =
curl(curl +λ)

2λ2

L∑

l=0

l∑

m=−l
cml h

(1)
l (λ|x|)Y m

l

(
x

|x|

)
,

where h(1)
l := jl + iyl is the spherical Hankel function of l-th order and yl denotes the spherical

Bessel function of the second kind and l-th order. By construction, v0 satisfies the Beltrami
equation (and in particular is smooth) in R3 \{0}, while it diverges at the origin due to the
presence of a Bessel function of the second kind. In particular, it is a Beltrami field in Ω.

As the Hankel function h(1)
l has been chosen to satisfy the scalar radiation condition

(∂r − iλ)h
(1)
l (λr) = o(r−1),

it is straightforward to check that v0 ∈ Ck+1,α(Ω,C3) is a complex-valued solution to the Bel-
trami equation in the exterior domain Ω, which satisfies the L1 SMB radiation condition (6.3.15)
and the weak L1 decay property (6.3.16) (see [84, Equation 2.41] along with Remark 6.3.8 and
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Figure 6.1). It is also apparent that T (Σ, u0) ⊆ Φ′(Tε(Γ0)) is a (ρ0, T, δ)-stream tube of u0 by con-
struction (see Figure 6.5), and that λ ∼ ε3 can be prevented from being a Dirichlet eigenvalue of
the Laplace operator in the interior domain G as long as ε is taken small enough. Then, we are
ready to apply the convergence Theorem 6.4.7 for the modified Grad–Rubin method starting
up with the strong Beltrami field u0. This result ensures the existence of δ0 > 0 so that when-
ever ‖ϕ0‖Ck+1,α(Σ) ≤ δ0, then there exists a generalized Beltrami field u ∈ Ck+1,α(Ω,R3) and
a perturbation ϕ ∈ Ck,α(Ω) solving the exterior boundary value problem (6.4.3) with ϕ = ϕ0,
x ∈ Σ. T (Σ, u) is a (ρ0, T, δ/2) stream tube of u, ϕ is compactly supported in the closure of
such stream tube and ‖u− u0‖Ck+1,α(Ω) can be made arbitrarily small. In view of the structural
stability of the vortex tubes of u0, the theorem follows.

6.6 Local stability of generalized Beltrami fields

Our objective in this section is to show that, in fact, any generalized Beltrami field possesses
a local partial stability property which can be essentially regarded as a local version of Theo-
rem 6.4.7. We recall that, in view of the results in [117], one cannot prove a full stability result
even in arbitrarily small open sets, so we regard this partial stability (where partial is under-
stood in a very precise sense) as a satisfactory counterpart to the results in this paper.

6.6.1 A local stability theorem

We shall next present the local stability result that constitutes the core of this section. The
philosophy of this result is that, as one is able to perturb strong Beltrami fields, one should
also be able to perturb generalized Beltrami fields in small domains, since in a small region
a Ck,α function behaves as a constant plus a small perturbation. Somehow, this reduces our
effort to estimates similar to the ones that we have already obtained, so our presentation of the
proof of this result will be a little sketchier than before. The gist will be to show that, although
the strong convergence of the modified Grad–Rubin scheme cannot be granted in Ck+1,α for un
and Ck,α for fn, we can pass to the limit in C1,α and C0,α provided that both the domain and
the perturbation of the proportionality factor are small enough. Elliptic regularity will then
yield the high order regularity by a bootstrap argument.

In order to support our argument, let us first sketch the effect of the size of the domain on the
solutions of the next Neumann boundary value problem associated with the inhomogeneous
Beltrami equation in some open ball BR(x0)

{
curlu− λu = w, x ∈ BR(x0),
u · η = 0, x ∈ ∂BR(x0),

(6.6.1)

where w ∈ C0,α(BR(x0),R3) has zero flux. We will be interested in the case where R becomes
very small.

This problem has being carefully analyzed in [298] for bounded domains and in [182] for
exterior unbounded domains in the harmonic case (λ = 0). The non-harmonic counterpart
was studied in [193] and Section 6.3 for the inhomogeneous Beltrami equation in bounded
and exterior domains respectively. In the bounded setting, λ has to be assumed “regular” (see
[193]). To this end, notice that taking |λ| < c/R (for an appropriate universal constant c > 0)
prevents λ from being an eigenvalue of the Laplacian inBR(x0). Hence, |λ| < c/R is a sufficient
condition ensuring the well-posedness of (6.6.1). All the above results provide an estimate for
the unique solution u to (6.6.1) in terms of w of the form

‖u‖C1,α(BR(x0)) ≤ Cλ,R‖w‖C0,α(BR(x0)),
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where the dependence of the constant Cλ.R on λ and R is not explicit. The next technical result
aims to provide some explicit R-dependent estimate for u in some space.

Lemma 6.6.1. Let u ∈ C1,α(BR(x0),R3) be the unique solution to the Neumann boundary value
problem associated with the Beltrami equation (6.6.1) for |λ| < c/R and R ∈ (0, 1). Then,

‖u‖C1,α(BR(x0)) ≤ CR−α‖w‖C0,α(BR(x0)), (6.6.2)

for some positive constant C depending on α but not on u,w, x0 or R.

Proof. To obtain an explicitR-dependent estimate of u in some space, let us perform the change
of variables y = x−x0

R . Then, one obtains the following vector fields in the unit ball centered at
the origin:

U(y) = u(x), W (y) = w(x),

solving the Neumann boundary value problem for the Beltrami equation in B1(0):
{

curlU − λRU = RW, y ∈ B1(0),
U · η = 0, y ∈ ∂B1(0).

Thus, the above-mentioned results yield the following bound for some R-independent C > 0

‖U‖C1,α(B1(0)) ≤ CR‖W‖C0,α(B1(0)),

where |λ| < c/R has been used to avoid the λ-dependence of the constant C. Note that by
definition

‖W‖C0,α(B1(0)) = ‖w‖C0(BR(x0)) +Rα[w]α,BR(x0),

‖U‖C1,α(B1(0)) = ‖u‖C0(BR(x0)) +R

3∑

i=1

‖∂xiu‖C0(BR(x0)) +R1+α
3∑

i=1

[∂xiu]α,BR(x0).

Since R ∈ (0, 1), then we are led to (6.6.2).

Another key ingredient is to show that C1,α vector fields near a non-equilibrium point ver-
ify a “structurally stable” flow box theorem, to be understood in the next precise sense.

Lemma 6.6.2. Let u ∈ C1,α(Ω,R3) be a (nontrivial) vector field and consider some x0 ∈ Ω such that
u(x0) 6= 0. Then, there exist R0 > 0 and δ0 > such that B2R0(x0) ⊆ Ω, u vanishes nowhere in the
ball and for every 0 < R < R0 and there exists some surface ΣR ⊆ ∂BR(x) and a positive function
TR ∈ C(ΣR) such that for every v ∈ C1,α(BR(x0),R3) with ‖u− v‖C1,α(BR(x0)) < δ0, then

BR(x0) ⊆ T (ΣR, v, TR) ⊆ B2R(x0).

Here, the above stream tube reads

T (ΣR, v, TR) := {Xv(t; 0, x) : x ∈ ΣR, t ∈ (0, TR(x))},

v is the Calderón extension of v from BR(x0) to B2R0(x0) (see Proposition 6.4.1) and the height
TR of the stream tube is not constant but it continuously depends, stream line by stream line,
on the base point x ∈ ΣR (see Figure 6.6). Furthermore, the parametrizations µR of ΣR can be
normalized by choosing

µR(s) = Rµ(s), s ∈ DR,

for some open subsetDR ⊆ D1(0) of the unit disc centered at 0, and some local parametrization
of the unit sphere µ : D1(0) −→ ∂B1(x0). Since the proof follows the same lines as Lemma 6.4.4
in Section 6.4, we skip it and pass to the central result of this section.
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b
x0

ΣR

T (ΣR, v, TR)

BR(x0)

B2R(x0)

Ω

Figure 6.6: Flow box T (ΣR, v, TR) covering the small ball BR(x0).

Theorem 6.6.3. Let u0 be a nontrivial generalized Beltrami field of class Ck+1,α(Ω,R3), where k ∈
N and α ∈ (0, 1), and consider its (nonconstant) proportionality factor f0 ∈ Ck,α(Ω). Take some
nonequilibrium point x0 ∈ Ω of u0 and fix some ε0 > 0. Then, for each small enough radius R > 0
there is some surface ΣR ⊆ ∂BR(x0) and some constant δR > 0 so that for every ϕ0 ∈ Ck+1,α(ΣR)
with ‖ϕ0‖Ck+1,α(ΣR,µR) < δR there exist ϕ ∈ Ck,α(BR(x0)) and u ∈ Ck+1,α(BR(x0),R3) such that
ϕ = ϕ0 on ΣR and u is a strong Beltrami field with proportionality factor f0 + ϕ enjoying the same
normal component as u0 in ∂BR(x0):





curlu = (f0 + ϕ)u, x ∈ BR(x0),
div u = 0, x ∈ BR(x0),
u · η = u0 · η, x ∈ ∂BR(x0).

Furthermore,
‖u− u0‖Ck+1,α(BR(x0)) ≤ ε0‖u0‖Ck+1,α(BR(x0)).

Proof. The proof has two steps. First, we will prove the theorem for low Hölder exponents and
regularity (namely, α ∈ (0, 1/2) and k = 0). Second, we will show a bootstrap argument based
on elliptic gain of regularity that will raise the estimates in the first step to its full strength and
will conclude the proof of the theorem for general regularity and Hölder exponents.

Let us first assume that α ∈ (0, 1/2), define λ0 := f0(x0) and fix some radius R0 > 0 so
that B2R0(x0) ⊆ Ω, u0 vanishes nowhere in B2R0(x0) and the assertions in Lemma 6.6.2 fulfil.
Without loss of generality, we can assume that R0 < min{1, c/|λ0|}. Moreover, note that the
homogeneous generalized Beltrami equation can be restated as an inhomogeneous Beltrami
equation with constant proportionality factor and an inhomogeneous term taking the form of
a small remainder, i.e.,

curlu0 − λ0u0 = R(x− x0)u0, x ∈ Ω, (6.6.3)

where f0(x) = λ0 +R(x− x0) for every x ∈ B2R0(x0), i.e.,

R(z) :=

(∫ 1

0
∇f0(x0 + θz) dθ

)
· z, z ∈ B2R0(0).
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Next, consider the following modified iterative scheme of Grad–Rubin type. It consists of a
sequence of transport equations

{
∇ϕn · un = −∇f0 · un, x ∈ BR(x0),
ϕn = ϕ0, x ∈ ΣR.,

(6.6.4)

along with a sequence of boundary value problems associated with the inhomogeneous Bel-
trami equation

{
curlun+1 − λ0un+1 = R(x− x0)un + ϕnun, x ∈ BR(x0),
un+1 · η = u0 · η, x ∈ ∂BR(x0).

(6.6.5)

Note that they have been chosen in a consistent way so that as long as {un}n∈N and {ϕn}n∈N
have limits (in some sense), then the limits u and ϕ give rise to a generalized Beltrami field
whose proportionality factor is a perturbation f0 + ϕ of the initial factor f0. Without loss of
generality, we can assume that λ0 6= 0 (in the case λ0 = 0 we would need the additional condi-
tion div un+1 = 0).

• Step 1. Good definition and a priori estimates.
Let us show that both un+1 ∈ C1,α(BR(x0),R3) and fn ∈ C0,α(BR(x0)) are well defined and

that the following properties




‖un+1 − un‖C1,α(BR(x0)) ≤
1

2n
‖u1 − u0‖C1,α(BR(x0)) <

min{ε0, 1}
2n+1

‖u0‖C1,α(BR(x0)),

‖un+1 − u0‖C1,α(BR(x0)) ≤ min{ε0, 1}
n+1∑

i=1

1

2i
‖u0‖C1,α(BR(x0)),

‖un+1‖C1,α(BR(x0)) ≤ min{ε0, 1}
n+1∑

i=0

‖u0‖C1,α(BR(x0)),

(6.6.6)

are fulfilled for every n ∈ N.

◦ Step 1.1. Let us start with the base case n = 0.
On the one hand, the transport problem (6.6.4) with n = 0 can be solved in BR(x0) as

BR(x0) ⊆ T (ΣR, u0, TR) ⊆ B2R(x0) by virtue of Lemma 6.6.2. Indeed,

ϕ0(Xu0(t; 0, x)) = ϕ0(x)−
∫ t

0
(∇f0 · u0)(Xu0(τ, 0, x)) dτ, x ∈ ΣR, t ∈ (0, TR(x))

defines a solution in T (ΣR, u0, TR) and, in particular, in BR(x0). Now, notice that
∫

∂BR(x0)
(R(· − x0)u0 + ϕ0u0 + λ0u0 ) · η dS + λ0

∫

∂BR(x0)
u0 · η dS

=

∫

BR(x0)
(∇(f0 + ϕ0) · u0 + (f0 + ϕ0) div u0) dx = 0,

and λ is regular (see [193]) with respect to the inhomogeneous problem (6.6.5) with n = 0
because R < R0 < c/|λ0|. Hence, (6.6.5) has an unique solution u1 ∈ C1,α(BR(x0),R3) by
virtue of the existence theorem in [193]. Notice that since div u0 = 0 and the first integral
equations in (6.6.4) hold, then

−λ0 div u1 = (f0 + ϕ0) div u0 +∇(f0 + ϕ0) · u0 = 0.
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Furthermore, u1 − u0 solves the Neumann boundary value problem
{

(curl−λ0)(u1 − u0) = R(x− x0)u0 + ϕ0u0, x ∈ BR(x0),
(u1 − u0) · η = 0, x ∈ BR(x0).

Consequently,

‖u1 − u0‖C1,α(BR(x0)) ≤
C

Rα
(
‖R(· − x0)‖C0,α(BR(x0)) + ‖ϕ0‖C0,α(BR(x0))

)
‖u0‖C0,α(BR(x0)).

A similar result to that in Theorem 6.4.5 yields the estimate

‖ϕ0‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(ΣR,µR) +R1−α + ‖TR‖C0(ΣR)

)

× κ
(
‖u0‖C1,α(BR(x0)), ‖TR‖C0(ΣR), ‖µR‖C1,α(BR(x0))

)
,

for some separately increasing function κ. Regarding the remainder, it is clear that

‖R(· − x0)‖C0,α(BR(x0)) ≤ CR1−α, (6.6.7)

which is indeed the reason behind the estimate for ϕ0 that we stated above. Notice that al-
though R is clearly bounded above by R in BR(0), the α-Hölder constant is O(R1−α). Specifi-
cally, take z1, z2 ∈ BR(0) and splitR as follows

R(z1)−R(z2) = I + II,

where each term reads

I :=

(∫ 1

0
∇f0(x0 + θz1) dθ

)
· (z1 − z2),

II :=

(∫ 1

0
(∇f0(x0 + θz1)−∇f0(x0 + θz1)) dθ

)
· z2.

By virtue of the α-Hölder continuity of∇f0, II can be bounded as follows:

|II| ≤ ‖f0‖C1,α(BR(x0))|z2|
∫ 1

0
|z1 − z2|αθα dθ ≤

‖f0‖C1,α(BR(x0))

α+ 1
R|z1 − z2|α.

The first term enjoys the bound

|I| ≤ ‖∇f0‖C0(BR(x0))|z1 − z2| ≤ 21−α‖∇f0‖C0(BR(x0))R
1−α|z1 − z2|α,

which then leads to the desired estimate (6.6.7). Notice that one could have raised the R1−α

power to R if one assumed that∇f0(x0) = 0.
Also, note that ‖µR‖C1,α(DR), ‖TR‖C0(ΣR) ≤ C0R for some universal constant C0 > 0. Then,

the above estimate for u1 − u0 can be written as

‖u1 − u0‖C0,α(BR(x0))

≤ C

Rα
(
‖ϕ0‖C1,α(ΣR,µR) + 2R1−α) {1 + κ

(
‖u0‖C1,α(BR(x0)), C0, ‖µ‖C1,α(D1(0))

)}
‖u0‖C0,α(BR(x0)).

Hereafter we will assume that
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C

(
δR
Rα

+ 2R1−2α

){
1 + κ

(
2‖u0‖C1,α(BR(x0)), C0, ‖µ‖C1,α(D1(0))

)
.

+ 2κ
(
2‖u0‖C1,α(BR(x0)), C0, ‖µ‖C1,α(D1(0))

)2 ‖u0‖C1,α(BR(x0))

}
<
ε0

2
, (6.6.8)

with ε0 ∈ (0, 1) small enough so that ε0‖u0‖C0,α(BR(x0)) < δ0. Since we are considering low
Hölder exponents α ∈ (0, 1/2), then we can ensure the existence of small enough R ∈ (0, R0)
and δR > 0 enjoying the above property.

◦ Step 1.2. Inductive hypothesis.
Assume that we have already defined fm ∈ C0,α(BR(x0)) and um+1 ∈ C1,α(BR(x0),R3) for

every m < n such that they verify (6.6.4)–(6.6.6) and um = 0 is divergence-free for every index
m < n.

◦ Step 1.3. We prove the result for m = n.
First, the transport problem (6.6.4) can be uniquely solved in BR(x0) by virtue of Lemma

6.6.2, the inductive hypothesis (6.6.6) and the assumption on ε0 since

‖un − u0‖C1,α(BR(x0)) ≤ ε0‖u0‖C1,α(BR(x0)) < δ0.

Second, the boundary value problem (6.6.5) can also be uniquely solved since

∫

∂BR(x0)
(R(· − x0)un + ϕnun) · η dS + λ0

∫

∂BR(x0)
u0 · η dS

=

∫

BR(x0)
(∇(f0 + ϕn) · un + (f0 + ϕn) div un) dx = 0,

by the inductive hypothesis and λ is assumed to be a regular value. Furthermore, a similar
argument to that in the step n = 0 shows that un+1 is divergence-free again. Let us finally
obtain the desired estimates for un+1−un. To this end, note that un+1−un solves the boundary
value problem {

(curl−λ0)(un+1 − un) = wn, x ∈ BR(x0),
(un+1 − un) · η = 0, x ∈ ∂BR(x0),

where the right hand side is given by

wn := R(· − x0)(un − un−1) + (ϕn − ϕn−1)un + ϕn−1(un − un−1).

Hence, we arrive at the following bound

‖un+1 − un‖C1,α(BR(x0)) ≤
C

Rα
(
‖R(· − x0)‖C0,α(BR(x0))‖un − un−1‖C0,α(BR(x0))

+ ‖ϕn − ϕn−1‖C0,α(BR(x0))‖un‖C0,α(BR(x0)) + ‖ϕn−1‖C0,α(BR(x0))‖un − un−1‖C0,α(BR(x0))

)
.

On the one hand, the remainder can be bounded above as in (6.6.7). On the other hand,
‖ϕn‖C0,α(BR(x0)) and ‖ϕn − ϕn−1‖C0,α(BR(x0)) can be estimated as follows

‖ϕn−1‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(ΣR,µR) +R1−α + ‖TR‖C0(ΣR)

)

× κ
(
‖un−1‖C1,α(BR(x0)), ‖TR‖C0(ΣR), ‖µR‖C1,α(BR(x0))

)
,

‖ϕn − ϕn−1‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(ΣR,µR) +R1−α + ‖TR‖C0(ΣR)

)
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× κ
(
‖un‖C1,α(BR(x0)), ‖TR‖C0(ΣR), ‖µR‖C1,α(BR(x0))

)

× κ
(
‖un−1‖C1,α(BR(x0)), ‖TR‖C0(ΣR), ‖µR‖C1,α(BR(x0))

)
‖un − un−1‖C1,α(BR(x0)).

Consequently, the inductive hypothesis along with our choice (6.6.8) leads to the first inequal-
ity in (6.6.6) and the remaining two inequalities obviously follows from the first one by virtue
of the triangle inequality.

• Step 2. Strong compactness.
As in Section 6.4, the first inequality in (6.6.6) shows that {un}n∈N is a Cauchy sequence in

C1,α(BR(x0),R3). By completeness, consider u ∈ C1,α(BR(x0)) such that un → u in the space
C1,α(BR(x0,R3)). Moreover, the same reasoning as above yields the estimate

‖ϕn − ϕm‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(ΣR,µR) +R1−α + ‖TR‖C0(ΣR)

)

× κ
(
‖un‖C1,α(BR(x0)), ‖TR‖C0(ΣR), ‖µR‖C1,α(BR(x0))

)

× κ
(
‖um‖C1,α(BR(x0)), ‖TR‖C0(ΣR), ‖µR‖C1,α(BR(x0))

)
‖un − um‖C1,α(BR(x0)),

for every indices n,m ∈ N. Then, there exists some constant K = K(δR, R, ‖u0‖C0,α) > 0 so
that

‖ϕn − ϕm‖C0,α(BR(x0)) ≤ K‖un − um‖C1,α(BR(x0)).

Hence, {ϕn}n∈N is also a Cauchy sequence inC0,α(BR(x0)) and one can considerϕ ∈ C0,α(BR(x0))
such that ϕn → ϕ in C0,α(BR(x0)).

• Step 3. Identification of the limit.
Taking limits in (6.6.4)–(6.6.5) we are led to a generalized Beltrami field u ∈ C1,α(BR(x0),R3)

solving 



curlu = (f0 + ϕ)u, x ∈ BR(x0),
div u = 0, x ∈ BR(x0),
u · η = u0 · η, x ∈ ∂BR(x0),

for a perturbation ϕ ∈ C0,α(BR(x0)) of the factor such that ϕ = ϕ0 on ΣR.

• Step 4. Gain of regularity.
Let us finally show that u ∈ Ck+1,α(BR(x0),R3) and ϕ ∈ Ck,α(BR(x0)) by a bootstrap

argument based on the elliptic gain of regularity. The key observation now is that, by acting
with the curl operator on the equation for u, it follows that





∆u = − curl((f0 + ϕ)u), x ∈ BR(x0),
u · η = u0 · η, x ∈ ∂BR(x0),
curlu× η = (f0 + ϕ)u× η, x ∈ ∂BR(x0).

Then, the next hierarchy of inequalities

‖u‖Cl+1,α(BR(x0))

≤ C(‖(f0 + ϕ0)u‖Cl,α(BR(x0)) + ‖u0 · η‖Cl+1,α(∂BR(x0)) + ‖(f0 + ϕ)u× η‖Cl,α(BR(x0))).

hold for every l ≥ 0. We then get that the fact that u is of classC1,α implies that ϕ is of classC0,α.
In turns, it ensures that u is in C2,α and, repeating the argument as many times as necessary
(up to the regularity on ϕ0 and u0, i.e., Ck+1,α) we derive the desired gain of regularity. Indeed,
the estimate

‖u− u0‖C1,α(BR(x0)) ≤ ε0‖u0‖C1,α(BR(x0)),
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can be promoted to its Ck+1,α version, i.e.,

‖u− u0‖Ck+1,α(BR(x0)) ≤ ε0‖u0‖Ck+1,α(BR(x0)).

• Step 5. General exponents α ∈ (0, 1
2).

So far, we have only taken low Hölder exponents α ∈ (0, 1/2). Assume now that u0 ∈
Ck+1,α′(Ω,R3) and f0 ∈ Ck,α

′
(Ω) for some α′ ∈ (α, 1). In particular, we obtain that u0 ∈

Ck+1,α(B2R0(x0),R3) and ϕ0 ∈ Ck,α(B2R(x0)). The above argument, yields a strong Beltrami
field u ∈ Ck+1,α(BR(x0),R3) with proportionality factor f0 + ϕ for some perturbation ϕ ∈
Ck,α(BR(x0)) such that ϕ = ϕ0 on ΣR as long as R is small enough and ‖ϕ0‖Ck+1,α′ (ΣR) < δR.
Since

‖ϕ0‖Ck+1,α(ΣR) = ‖ϕ0 ◦ µR‖Ck+1,α(DR) ≤ ‖ϕ0 ◦ µR‖Ck+1,α′ (DR) = ‖ϕ0‖Ck+1,α′ (ΣR),

then, the above smallness assumption on theCk+1,α(ΣR) norm ϕ0 follows from the correspond-
ing assumption on the Ck+1,α′(ΣR) norm, i.e., ‖ϕ0‖Ck+1,α′ (ΣR) < δR. Since ϕ solves

{
∇ϕ · u = −∇f0 · u, x ∈ BR(x0),
ϕ = ϕ0, x ∈ ΣR,

then, a similar result to that in Theorem 6.4.5 leads to ϕ ∈ C1,α(BR(x0)) because so is u, f0 and
ϕ0. In particular ϕ ∈ C0,α′(BR(x0)) and u ∈ C0,α′(BR(x0),R3). Then, the above bootstrap in
the Beltrami equation yields ϕ ∈ Ck,α′(BR(x0)) and u ∈ Ck+1,α′(BR(x0)), thereby concluding
the proof.

Appendices

6.A Sketch of proof of Proposition 6.4.3

We sketch the proof of this result for the reader’s convenience. Also, we refer to [182, Lemma
5.1] for the case k = 0 and [253, Proposición 2.1.7] for the general proof with k ≥ 1.

• Step 1. Proof of the first three items.
The first assertion is apparent: since u points outwards at any point in Σ, then the stream

line of u arising from µ(s) points towards Ω at t = 0. Hence, a small piece of such stream line
must stay in Ω. Regarding the second assertion, φ is clearly onto by virtue of the definition of
T (Σ, u). To check that φ is one to one, note that different stream lines cannot touch because of
the uniqueness part in Proposition 6.4.2, and that the streamlines of u emerging from Σ cannot
be closed loops because u points outwards at Σ.

• Step 2. Regularity of Jac(φ) and Jac(φ)−1.
TheCk+1 regularity of φ is clear because so isX(t; t0, x0) by Peano’s differentiability theorem as

stated in Proposition 6.4.2. Let us show that its Jacobian matrix is regular at any point inD(Σ, u)
to obtain the same regularity of φ−1 through the inverse mapping theorem. This matrix takes
the form

Jac(φ)(t, s) =

(
∂φ

∂t
(t, s)

∣∣∣∣
∂φ

∂s1
(t, s)

∣∣∣∣
∂φ

∂s2
(t, s)

)
.

For fixed s ∈ D, each column vector is a solution to the linear ODE

ẋ(t) = Jac(u)(φ(t, s))x(t).
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Thus, Jac(φ)(·, s) is a solution matrix to such linear ODE, whose determinant at t = 0 equals

det(Jac(φ)(0, s)) =

∣∣∣∣
∂µ

∂s1
(s)× ∂µ

∂s2
(s)

∣∣∣∣u(µ(s)) · η(µ(s)) ≥ ρ1ρ0 > 0. (6.A.1)

Here ρ1 stands for any positive uniform lower bound of the first factor. Thus, Jac(φ)(t, s) is reg-
ular for all t by the Jacobi–Liouville formula. In particular, the derivatives of Jac(φ) and Jac(φ)−1

up to order k can be continuously extended to D(Σ, u, T ) by the analogous properties of u and
µ.

• Step 3. Derivation of Ck bounds for Jac(φ).
Let us finally recursively show that all of them are bounded and the k-th order ones are

α-Hölder continuous indeed. We proceed by induction.

◦ Step 3.1. Base step.
First, notice that
∣∣∣∣
∂φ

∂t
(t, s)

∣∣∣∣ ≤ ‖u‖C0(Ω),

∣∣∣∣
∂φ

∂si
(t, s)

∣∣∣∣ ≤
∣∣∣∣
∂µ

∂si
(s)

∣∣∣∣+

∫ t

0
‖ Jac(u)‖C0(Ω)

∣∣∣∣
∂φ

∂si
(τ, s)

∣∣∣∣ dτ,

for every (t, s) ∈ D(Σ, u, T ). As a consequence, Grönwall’s lemma amounts to the upper bound

‖ Jac(φ)‖C0(D(Σ,u,T )) ≤ ‖u‖C0(Ω) + ‖µ‖C1(D,R3)e
T‖ Jac(u)‖C0(Ω) ≤ κ(‖u‖Ck+1,α(Ω), T ),

for some function κ which is separately increasing.

◦ Step 3.2. Inductive hypothesis.
Now, assume that

‖ Jac(φ)‖Cm(D(Σ,u,T )) ≤ κ(‖u‖Ck+1,α(Ω), T ), (6.A.2)

holds true for some n such that 0 < n ≤ k and all m with 0 ≤ m < n.

◦ Step 3.3. We prove (6.A.2) for m = n.
Fix any multi-index γ such that |γ| = n and take derivatives on the characteristic system

(6.4.1) to arrive at

Dγ

(
∂φi
∂t

)
= Dγ(ui(φ(t, s))) = γ!

∑

(l,β,δ)∈D(γ)

(Dδui)(φ(t, s))
l∏

r=1

1

δr!

(
1

βr!
Dβrφ(t, s)

)δr
.

The above formula is a chain rule for high order partial derivatives that can be found in [206].
Here, D(γ) stands for the set of all the possible decompositions of γ of the form

γ =
l∑

r=1

|δr|βr,

where δr, βr are multi-indices, δ :=
∑l

r=1 δr and for every r = 1, . . . , l − 1 there exists some
ir ∈ {1, 2, 3} such that (βr)i = (βr+1)i for every i 6= ir and (βr)ir < (βr+1)ir . Similarly

∂

∂t
Dγ

(
∂φi
∂sj

)
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=

l∑

q=1

∑

ρ≤γ

∑

(l,β,δ)∈D(ρ)

(
γ

ρ

)
ρ!

(
Dδ ∂ui

∂xq

)
(φ(t, s))

l∏

r=1

1

δr!

(
1

βr!
Dβrφ(t, s)

)δr
Dγ−ρ∂φk

∂sj
(t, s).

Notice that the first derivative formula only involves derivatives of φ(t, s) and u up to order
n. Regarding the second formula, the only term involving a derivative of φ(t, s) of order n+ 1
is the associated with the multi-index ρ = 0. Hence, the next estimates hold true by virtue of
(6.A.2)

∣∣∣∣Dγ

(
∂φi
∂t

)
(t, s)

∣∣∣∣ ≤ κ(‖u‖Ck+1,α(Ω), T ),

∣∣∣∣Dγ

(
∂φi
∂sj

)
(t, s)

∣∣∣∣ ≤ κ(‖u‖Ck+1,α(Ω), T )

3∑

q=1

(
1 +

∫ t

0

∣∣∣∣Dγ

(
∂φq
∂sj

)
(τ, s)

∣∣∣∣ dτ
)
,

for every (t, s) ∈ D(Σ, u, T ). Again, Grönwall’s lemma shows that (6.A.2) holds true when
m = n.

• Step 4. Derivation of Ck,α bounds for Jac(φ).
Finally, let us obtain the aforementioned α-Hölder estimate of the higher order derivatives

of Jac(φ). To this end, take any column vector xj(t, s) of the Jacobian matrix Jac(φ)(t, s) and
note that when γ = (γ1, γ2, γ3) is a multi-index of the highest order k, then all the preceding
derivative formulas can be added up to obtain the PDE

∂

∂t
Dγxji (t, s) =

3∑

q=1

Ai,jq (γ)
∂ui
∂xq

(φ(t, s))Dγxjq(t, s) + Fi(t, s)

+
∑

β∈Γγ

∑

(j1,...,jk+1)∈Jγ

∑

(i1,...,ik+1)∈Iγ
B
j1,...,jk+1

i1,...,ik+1
(β)(Dβui)(φ(t, s))xj1i1 (φ(t, s)) · · ·xjk+1

ik+1
(φ(t, s)).

(6.A.3)

Here Ai,jq (γ) and Bj1,...,jk+1

i1,...,ik+1
(β) denote nonnegative constant coefficients and Fi(t, s) consists of

finitely many sums and products of both derivatives of u up to order k and derivatives of φ
up to order k. Furthermore, Γγ is a set of 3-multi-indices with order k + 1 depending on γ and
Iγ , Jγ are sets of (k + 1)-multi-indices also depending on γ.

Let us first prove the α-Hölder continuity in the variable s using the integral version of the
above equation. Specifically, take s1, s2 ∈ D, t ∈ (0, T ) and notice that

Dγxji (t, s1)−Dγxji (t, s2) = I + II + III + IV,

where

I := Dγxji (0, s1)−Dγxji (0, s2),

II :=

∫ t

0
(Fi(τ, s1)− Fi(τ, s2)) dτ,

III :=

3∑

q=1

Ai,jq (γ)

∫ t

0

(
∂ui
∂xq

(φ(τ, s1))Dγxjq(τ, s1)− ∂ui
∂xq

(φ(τ, s2))Dγxjq(τ, s2)

)
dτ,

IV :=
∑

β∈Γγ
(i1,...,ik+1)∈Iγ
(j1,...,jk+1)∈Jγ

B
j1,...,jk+1

i1,...,ik+1
(β)

∫ t

0
(Dβui)(φ(τ, s))xj1i1 (φ(τ, s)) · · ·xjk+1

ik+1
(φ(τ, s))

∣∣∣
s2

s1
dτ.
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Regarding the terms I, II , one can easily see that

I ≤ κ
(
‖u‖Ck+1,α(Ω), T

)
|s1 − s2|α, II ≤ Tκ(‖u‖Ck+1,α(Ω), T )|s1 − s2|α.

In the first case, the estimate obviously follows from the regularity of µ in the particular case
when Dγxji involves no derivative of φ(t, s) with respect to t. A straightforward recursive
argument on the order of the derivatives with respect to t yields the general assertion. The
second case is obvious by the definition of Fi(t, s) and the mean value theorem. Furthermore,
adding and subtracting crossed terms in III , it is clear that it can be bounded by the mean
value theorem as follows

III ≤ κ(‖u‖Ck+1,α(Ω), T )|s1 − s2|α + κ
(
‖u‖Ck+1,α(Ω), T

) 3∑

q=1

∫ t

0
|Dγxjq(τ, s1)−Dγxjq(τ, s2)| dτ.

So far, only low order derivatives of u have being involved, and therefore the mean value
theorem has sufficed to obtain Lipschitz conditions of such derivatives (terms I, II and III).
In contrast, IV contains the derivatives of u of the highest order, k + 1. Since they cannot
be handled again by the mean value theorem, then the α-Hölder continuity of Dk+1u must
be used. By appropriately adding and subtracting crossed terms, using the above-mentioned
Hölder continuity of Dβui on the first factor and the mean value theorem on the second one,
one easily obtains the upper bound

IV ≤
∑

β∈Γγ

∑

(j1,...,jk+1)∈Jγ

∑

(i1,...,ik+1)∈Iγ
B
j1,...,jk+1

i1,...,ik+1
(β)

×T
(
κ(‖u‖Ck+1,α(Ω, T )α+k+1[Dβui]α,Ω|s1 − s2|α + κ(‖u‖Ck+1,α(Ω, T )k+2‖Dβui‖C0(Ω)|s1 − s2|

)
.

To conclude, let us combine all the above estimates and use Grönwall’s lemma to arrive at

|Dγxji (t, s1)−Dγxji (t, s2)| ≤ κ(‖u‖Ck+1,α(Ω, T )|s1 − s2|α,

for an appropriately function κ. Regarding the α-Hölder condition in the variable t, one only
needs to note that ∂tDγxji (t, s) is uniformly bounded by virtue of (6.A.3).

• Step 5. Derivation of the bounds for Jac(φ)−1.
Finally, note that

Jac(φ)−1 =
1

det(Jac(φ))

(
∂φ

∂s1
× ∂φ

∂s2

∣∣∣∣
∂φ

∂s2
× ∂φ

∂t

∣∣∣∣
∂φ

∂t
× ∂φ

∂s1

)>
,

and that the Jacobi–Liouville formula along with the lower bound in (6.A.1) yield a uniform
lower bound for the Jacobian determinant:

det(Jac(φ)(t, s)) = det(Jac(φ)(0, s)) exp

(∫ t

0
Tr(Jac(u)(φ(τ, s))) dτ

)

≥ ρ0ρ1 exp
(
−3T‖ Jac(u)‖C0(Ω)

)
.

Hence, the Ck+1,α(D(Σ, u, T )) estimate for Jac(φ)−1 easily follows from that of Jac(φ).
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CHAPTER 7

Further developments

7.1 Hydrodynamic limits of the thermomechanical Cucker–Smale model
with fast and slow temperature relaxation

In this section, we return to the study of collective dynamics models in the spirit of the ones
presented in the introductory Chapter 1. Specifically, we shall analyze a new version of the
already studied Cuker–Smale model (1.1.7) in Part I, that has recently raised in the literature as
an interesting non trivial modification of the classical flocking dynamics.

7.1.1 Introduction to the TCS model

The model under consideration is usually called the thermomechanical Cucker–Smale model in the
literature and takes the following form:





dxi
dt

= vi,

dvi
dt

=
Kv

N

N∑

j=1

φ(|xi − xj |)
(
vj
θj
− vi
θi

)
,

dθi
dt

=
Kθ

N

N∑

j=1

ζ(|xi − xj |)
(

1

θi
− 1

θj

)
,

(7.1.1)

for any i = 1, 2, · · · , N . Here, xi, vi ∈ Rd represent positions and velocities of agents, whilst
the new variable θi ∈ R+ is regarded as temperature or internal energy of individuals, to be
distinguished from phases of oscillators in Part II of this thesis.

On the one hand, notice that the second equation in (7.1.1) is reminiscent of the standard
Cucker–Smale model with influence function φ, where temperatures have an effect on the align-
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ment of velocities of the individual itself. However, notice that it can be restated as follows

dvi
dt

=
Kv

N

N∑

j=1

φ(|xi − xj |)
1

2

(
1

θi
+

1

θj

)
(vj − vi)

+
Kv

N

N∑

j=1

φ(|xi − xj |)
(

1

θj
− 1

θi

)
vi + vj

2
.

(7.1.2)

In particular, when all agents’ temperatures take the same value, the second term of (7.1.2)
vanishes and we readily recover the classical Cucker–Smale model. However, if agents’ tem-
peratures are not homogeneous, then the second term of (7.1.2) represents a fully different
dynamics. Indeed, in such a case agents are subject to an acceleration (deceleration) in the
direction of the mean velocity, what distorts the original flocking dynamics.

On the other hand, by the third equation in (7.1.1) we observe that temperatures are dy-
namic and we equivalently can restate their evolution in the following way

dθi
dt

=
Kθ

N

N∑

j=1

ζ(|xi − xj |)
θj − θi
θiθj

. (7.1.3)

This is nothing but relaxation of temperatures towards the values of their neighbors in a weighted
way that is mediated by a new influence function ζ that, again, depends on distances between
agents.

Then, according to (7.1.3), the expected dynamics for temperatures is that they must con-
verge to a common value. In turns, in such a case (7.1.2) amounts to a simple flocking dy-
namics for velocities. Then, one expects that they must align to achieve a common value.
Consequently, under mild assumptions we eventually expect that the final coupled collective
behavior is the full alignment of agent’s velocity towards the mean value and the homogeniza-
tion of all temperatures around the average one, both processes taking place at comparable
scales.

The thermomechanical Cucker–Smale model (7.1.1) was proposed by S.-Y. Ha and T. Rug-
geri in [161]. This is a thermodynamically consistent particle model motivated by the theory
of multi-temperature mixtures of fluids [264, 265] in the case of spatially homogeneous pro-
cesses. Indeed, the thermomechanical Cucker–Smale model is the unique one in the absence of
chemical reactions that is compatible with entropy principle of thermodynamics and exhibits
the natural Galilean invariance.

The mathematical analysis of the emergent phenomena was analyzed in [153]. In addition,
using the mean field methods that we reviewed in Subsection 1.1.2 of the introductory Chapter
1, the authors also derived in [148] the associated kinetic description:

∂f

∂t
+ v · ∇xf + divx (F [f ]f) +

∂

∂θ
(G[f ]f) = 0. (7.1.4)

for the distribution function f = f(t, x, v, θ) of particles. Here, the functionals F [f ] and G[f ]
are defined as the following integral operators

F [f ](t, x, v, θ) := Kv

∫

R2d+1

φ(|x− x′|)
(
v′

θ′
− v

θ

)
f(x′, v′, θ′) dx dv dθ,

G[f ](t, x, θ) := Kθ

∫

R2d+1

ζ(|x− x′|)
(

1

θ
− 1

θ′

)
f(x′, v′, θ′) dx dv dθ.

(7.1.5)
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Later, the monokinetic ansatz of (7.1.4) was proposed in [149] and the authors derived the
following macroscopic model





∂ρ

∂t
+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) = Kv

[
φ ∗
(ρu
e

)
ρ− (φ ∗ ρ)

ρu

e

]
,

∂

∂t
(ρe) + div(ρue) = Kθ

[
(ζ ∗ ρ)

ρ

e
− ζ ∗

(ρ
e

)
ρ
]
.

(7.1.6)

Indeed, a well posedness theory was also derived in the same literature. Regarding the rigorous
hydrodynamic limit from (7.1.4) to (7.1.6), the first partial result in the literature was recently
derived in [146] using analogue methods to those developed in [127] for the simpler Cucker–
Smale model. Indeed, strong local alignment was again introduced with the hope that it can
provide better control in terms of relative entropy methods. Specifically, in [146] the authors
introduced the scaled system

∂fε
∂t

+ v · ∇xfε + divx (F [fε]fε) +
∂

∂θ
(G[fε]fε) =

1

ε
divv ((v − uε)fε) . (7.1.7)

Unfortunately, the complicatedness of the new nonlinearities in (7.1.5) causes serious problems
to identify the limit of some macroscopic moments of the distribution function f for general
initial data f ε0 due to the fact that such hierarchy appear in a non closed form. Then, in practice,
only the particular case where the initial datum f0 is isothermal was recovered in such a paper.
More specifically, the authors assumed a specific rate of homogenization of initial temperatures
as follows

diam(suppθ f
ε
0 ) = O(ε) as ε→ 0. (7.1.8)

In such a particular case, the associated macroscopic model trivially agrees with the classical
Euler- alignment system:





∂ρ

∂t
+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) =

Kv

θe
[φ ∗ (ρu) ρ− (φ ∗ ρ)ρu] ,

(7.1.9)

and the dynamics of temperatures is lost. We remark, that most of the analysis has been con-
ducted only for the case of regular weights

φ(r) =
1

(1 + r2)β/2
and ζ(r) =

1

(1 + r2)γ/2
. (7.1.10)

The case of singular weights

φ(r) =
1

rβ
and ζ(r) =

1

rγ
, (7.1.11)

remains mostly unexplored.
In this section we propose some new versions of the agent-based model (7.1.1) and new

scalings of the kinetic equation (7.1.4) so that new dynamics for temperatures can be preserved
in the hydrodynamic limit (7.1.9). Our scaling is inspired in that of Chapter 2 and can be
regarded as vanishing inertia limits. We introduce them in the subsequent subsection.
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7.1.2 TCS particles that interact with environment

The main intuition behind the new models that we propose is that, in general, agents are not
isolated but they are affected by the environment that they occupy. Indeed, those individuals
can feel physical stress induced by medium, which can be modelled in many different ways.
Along this section, the main modification of (7.1.1) arises after we account for the well known
Newton’s law of cooling. Specifically: if the heat transfer coefficient is relatively independent of the
temperature difference between objects and environment, then the rate of heat loss of a body is propor-
tional to the difference in temperatures between such a body and its surroundings. We here propose
two main variants of (7.1.1) that bear those new effects in mind.

Uniform ambient temperature

On the one hand, when the ambient space has uniform temperature, then we shall consider the
following agent-based model described in terms of a coupled system of SODEs:





dxi = vi dt,

dvi =
Kv

N

N∑

j=1

φ(|xi − xj |)
(
vj
θj
− vi
θi

)
dt− µvvi dt−∇xψ dt+

√
2σW i

t ,

dθi =
Kθ

N

N∑

j=1

ζ(|xi − xj |)
(

1

θi
− 1

θj

)
dt+ µθ(θ

∞ − θi) dt.

(7.1.12)

Regarding the second equation, notice that we have introduced some linear damping of
velocities due to friction with medium with coefficient µv, the effect of an external force ∇xψ
and stochastic movement in terms of some Brownian motion W i

t . For the second equation, we
have only adjusted a new term, that can be though of relaxation of temperatures towards the
uniform value θ∞ of the temperatures of the environment with heat transfer coefficient µθ.

Non-uniform ambient temperature

A second possibility is that the environment is not in isothermal equilibrium and, consequently,
ambient temperature is not uniform, but it is described in terms of some temperature field
T = T (t, x), that can be either stationary or time-dependent. In such a case, we propose the
following modification of (7.1.12).





dxi = vi dt,

dvi =
Kv

N

N∑

j=1

φ(|xi − xj |)
(
vj
θj
− vi
θi

)
dt− µvvi dt−∇xψ dt+

√
2σW i

t ,

dθi =
Kθ

N

N∑

j=1

ζ(|xi − xj |)
(

1

θi
− 1

θj

)
dt+ µθ(T (t, xi)− θi) dt.

(7.1.13)

Notice that the main change appears in the third equation of (7.1.13), where the temperature
field T (t, x) plays a role in Newton’s law of cooling. Let us remark that if T (t, x) is a uniform
temperature field, then (7.1.13) reduces to (7.1.12). However, T (t, x) is not necessarily uniform,
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but may arise from different physical laws, e.g. Fourier’s law. In such case, the dynamics of
T (t, x) is reduced to the heat equation:

∂T

∂t
= D∆T, (7.1.14)

for t ≥ 0, x ∈ Rd, where D is the thermal conductivity of the medium.
Since mathematical technicalities are similar to those in Chapter 2, we do not stick to many

rigorous arguments along this section. Instead, we simply state the main results and macro-
scopic limits that we can derive with such methods and the fundamental ideas behind them.

7.1.3 The case of uniform ambient temperature

In this part, we focus on the study of (7.1.12). In such a case we formally can repeat the mean-
field techniques that we reviewed in Subsection 1.1.2 to derive the corresponding Vlasov–
McKean equations. We introduce two possible scaling of the system that we respectively call
fast temperature relaxation and slow temperature relaxation regimes:

Fast temperature relaxation

∂fε
∂t

+ v · ∇xfε +
1

ε
divv (F [fε]fε − vfε −∇xψfε −∇vfε)

+
1

ε

∂

∂θ
(G[fε]fε + (θ∞ − θ)fε) = 0.

(7.1.15)

On the one hand, notice that we are assuming that collective alignment of velocities, fric-
tion with medium, collective alignment of temperatures and relaxation towards the ambient
uniform temperature take all place very fast. This is a new overdamped limit or Smoluchoski
dynamics, where we expect inertia terms to disappear as ε → 0 and also temperature variable
should degenerate to a single value θ∞ without the extra hypothesis (7.1.8), the reason being
that relaxation towards ambient temperatures is large enough in this regime independently of
φ and ζ being regular of singular functions.

For convenience, hereafter we will assume that the initial configurations have compact tem-
perature support away from zero, namely,

suppθ f
0
ε ⊆ [θm, θM ] ⊆ R+.

In addition, we define the temperature diameter by

Dε
θ(t) := diam(suppθ fε),

for all t ≥ 0 and ε > 0.
Let us now compute the hierarchy of equations associated to the following velocity and

temperature moments:
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ρε(t, x) :=

∫

Rd×R+

f(t, x, v, θ) dv dθ,

jε(t, x) :=

∫

Rd×R+

vfε(t, x, v, θ) dv dθ,

hε(t, x) :=

∫

Rd×R+

θfε(t, x, v, θ) dv dθ,

Aε(t, x) :=

∫

Rd×R+

v

θ
fε(t, x, v, θ) dv dθ,

Bε(t, x) :=

∫

Rd×R+

1

θ
fε dv dθ,

Eε(t, x) :=

∫

Rd×R+

1

2
|v|2fε dv dθ.

(7.1.16)

Then, the first three macroscopic quantities obey the following equations

∂ρε
∂t

+ divx jε = 0,

ε
∂jε
∂t

+ εdivx

(∫

Rd×R+

v ⊗ vfε dv dθ
)

+ ρε∇xψε + jε − ρε(φ ∗Aε) +Aε(φ ∗ ρε) = 0,

ε
∂hε
∂t

+ εdivx

(∫

Rd×R+

vθfε dv dθ

)
+ hε − θ∞ρε + ρε(ζ ∗Bε)−Bε(ζ ∗ ρε) = 0,

(7.1.17)

Notice that the hierarchy is not closed. Also, it is not apparent how to identify the limits
of Aε and Bε as ε → 0 in terms of ρ, j and h, that is the main issue in [146] for the TCS as
well. In order the provide some answer to our problem, we need to control three main aspects:
diameters Dε

θ(t), total kinetic energy
∫
Rd Eε dx, limits of Aε, Bε and hε.

• Step 1. On the one hand, by inspection we obtain that

d

dt
Dε
θ(t) ≤ −

1

ε
Dε
θ(t), for all t > 0,

thanks to the scaling of Newton’s rule of cooling. Then, no matter (7.1.8) is assumed or not, we
readily recover it instantaneously after a small time layer, that is,

Dε
θ(t) ≈ O(εκ), for all t > εδ, (7.1.18)

where κ > 0 and 0 < δ < 1 are any couple of parameters.

• Step 2. Looking at the equation of Eε we obtain

Eε +

∫

Rd×R+

F (fε) ·
v

2
fε dv dθ

= ε
∂Eε
∂t

+ ε divx

(∫

R2×R+

|v|2
2
vfε dv dθ

)
−
∫

Rd×R+

∇ψε · vfε dv dθ + dρε. (7.1.19)
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Taking integrals with respect to x and t and splitting the second term in the left hand side of
(7.1.19) into negative and positive parts (use the ideas in (7.1.2)), we observe that its negative
part is bounded as long as we assume

sup
ε>0

Dε
θ(0) < θ2

m.

Then, we derive uniform-in-ε bounds of Eε. Notice that this argument is clear for regular
weights (7.1.10), but requires some explanation for the singular case (7.1.11). Indeed, in order
to ensure that the negative part of that integral term is bounded, notice that we require the
hypothesis (7.1.8) because the influence function ζ is no longer bounded at the origin in that
later case.

In any case, we derive a bound of Eε, that in turns, amounts to weak compactness of all the
terms of the hierarchy (7.1.16). Then, we can pass to the limit ε→ 0 in the equations (7.1.17) of
ρε, jε and hε. However, it is not clear yet how we can identify the limits of Aε and Bε in terms
of the above quantities, so that we can close the hierarchy of the limiting system.

• Step 3. This is where (7.1.18) comes to play and shows that

Aε −
j

θ(t)

∗
⇀ 0, in L2

w(ε0, T ;M(Rd)),

Bε −
ρ

θ(t)

∗
⇀ 0, in L∞w (ε0, T ;M(Rd)),

hε − θ(t)ρ ∗⇀, in L∞w (ε0, T ;M(Rd)),

for each 0 < ε0 < T , where θ(t) is the only value on the temperature support of f . Taking
special care of the nonlinear terms in the singular cases in the same lines as in Chapter 2, we
obtain that both for regular (7.1.10) and singular (7.1.11) (with β, γ ∈ (0, 1]) influence function,
the macroscopic dynamic is governed by the following system





∂ρ

∂t
+ divx(ρu) = 0,

∇xψ + u =
1

θ(t)
[φ ∗ (ρu)− (φ ∗ ρ)u] ,

θ(t) = θ∞,

(7.1.20)

that is reminiscent of the model (2.1.1) in Chapter 2 with isothermal configuration of tempera-
tures. Notice that, like in (7.1.9), the system has lost all the dynamics of temperatures that are
constant and agrees with the value of the environment temperature.

Slow temperature relaxation

Instead of imposing such a strong relaxation of temperatures in Newton’s law of cooling, we
can let it evolve at the same scale as inertia of the system. Then, a plausible scaling of the
Vlasov–McKean equation of (7.1.12) is:

∂fε
∂t

+ v · ∇xfε +
1

ε
divv (F [fε]fε − vfε −∇xψfε −∇vfε)

+
∂

∂θ

(
1

ε
G[fε]fε + (θ∞ − θ)fε

)
= 0.

(7.1.21)
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This time, the hierarchy of equations for moments takes the form:

∂ρε
∂t

+ divx jε = 0,

ε
∂jε
∂t

+ εdivx

(∫

Rd×R+

v ⊗ vfε dv dθ
)

+ ρε∇xψε + jε − ρε(φ ∗Aε) +Aε(φ ∗ ρε) = 0,

ε
∂hε
∂t

+ εdivx

(∫

Rd×R+

vθfε dv dθ

)
+ ε(hε − θ∞ρε) + ρε(ζ ∗Bε)−Bε(ζ ∗ ρε) = 0.

(7.1.22)

Notice that the main difference is that the dynamics of Dε
θ(t) has a substantially different

scale. Specifically, we obtain that

d

dt
Dε
θ(t) ≤ −

1

ε
ζ(Dε

x(t))Dε
θ(t)−Dε

θ(t),

for every t > 0.

◦ Regular case. If influence functions are regular (7.1.10), then we can achieve bounds for the
position diameter Dε

x(t). Indeed, by disregarding the second term, that is non-positive, we
obtain

d

dt
Dε
θ(t) ≤ −

1

ε
ζ(Dε

x(t))Dε
θ(t),

for every t > 0. Then, an analogue argument as in the above fast relaxation case allows obtain-
ing a unique temperature after a finite time layer, that is, (7.1.18) holds true again. We remark
that this time it is not Newton’s rule of cooling, but collective alignment of temperatures which
guarantees an isothermal distribution of temperatures.

◦ Singular case. In such a case, we can no longer control the first term of the above decay
rate of Dε

θ(t). Fortunately, since such a term is non-positive, we can neglect it and achieve the
inequality

d

dt
Dε
θ(t) ≤ −Dε

θ(t),

for every t > 0. Then, in order to recover a uniform temperature, we require the initial hy-
pothesis (7.1.8). This time, we are using again Newton’s rule of cooling as main mechanism of
isothermality, but since the scale is not fast enough, we are setting isothermal initial data via
the above hypothesis.

In any case, we obtain that (7.1.18) takes place. Steps 2 and 3 remain the same and produce
weak limits ρ, j and h. Indeed, if we call θ(t) the uniform temperature of the limiting f , we can
again identify limits as follows

Aε −
j

θ(t)

∗
⇀ 0, in L2

w(ε0, T ;M(Rd)),

Bε −
ρ

θ(t)

∗
⇀ 0, in L∞w (ε0, T ;M(Rd)),

hε − θ(t)ρ ∗⇀ 0, in L∞w (ε0, T ;M(Rd)),

for each 0 < ε0 < T . Taking limits in the hierarchy (7.1.22), we now obtain a non trivial
dynamics for the uniform temperature θ(t) of the population:
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∂ρ

∂t
+ divx(ρu) = 0,

∇xψ + u =
1

θ(t)
[φ ∗ (ρu)− (φ ∗ ρ)u] ,

d

dt
θ(t) = θ∞ − θ(t).

(7.1.23)

This means that population’s temperatures are uniform but relax slowly via Newton’s rule of
cooling towards the uniform constant value of the ambient’s temperature.

7.1.4 The case of non-uniform ambient temperature

Now, we return to the more general case (7.1.13), where Newton’s rule of cooling has been
modified to account for a non-uniform temperature field of the environment. In this case,
we do not provide further technical details. Instead, we restrict to providing the associated
macroscopic equations for each of the fast and slow temperature relaxation scalings. For more
details we refer to a forthcoming publication.

Fast temperature relaxation

In this case, we propose the following analogue fast temperature relaxation scaling for the
Vlasov–McKean equation associated with (7.1.13)

∂fε
∂t

+ v · ∇xfε +
1

ε
divv (F [fε]fε − vfε −∇xψfε −∇vfε)

+
1

ε

∂

∂θ
(G[fε]fε + (T (t, x)− θ)fε) = 0.

(7.1.24)

Under appropriate hypothesis, its macroscopic dynamics is governed by the following hydro-
dynamic model:





∂ρ

∂t
+ divx(ρu) = 0,

∇xψ + u =
1

θ(t)
[φ ∗ (ρu)− (φ ∗ ρ)u] ,

θ(t) =

∫

Rd
T (t, x)ρ(t, x) dx.

(7.1.25)

Hence, the population is isothermal again and the value of the temperature is instantaneously
described by the average value of the temperature of the environment. However, in this case
we have lost the dynamics of agents’ temperatures and it passively evolves according to the
distribution T (t, x) itself.

Slow temperature relaxation

∂fε
∂t

+ v · ∇xfε +
1

ε
divv (F [fε]fε − vfε −∇xψfε −∇vfε)

+
1

ε

∂

∂θ
(G[fε]fε + (T (t, x)− θ)fε) = 0.

(7.1.26)

This time, we obtain the following macroscopic equation:
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∂ρ

∂t
+ divx(ρu) = 0,

∇xψ + u =
1

θ(t)
[φ ∗ (ρu)− (φ ∗ ρ)u] ,

d

dt
θ(t) =

∫

Rd
T (t, x)ρ(t, x) dx− θ(t).

(7.1.27)

In this case the dynamics is richer due to the fact that the uniform temperature of the popu-
lation is dynamic and evolves, via Newton’s rule of cooling towards the average value of the
temperature of the environment. In turns, it is dynamic. In particular, recall that an acceptable
choice for its dynamics is given by the heat equation (7.1.14).
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7.2 Modeling of morphogen transportation along moving cytonemes
in Droshophila melanogaster

In this section, we introduce another work in process. This is an interdisciplinary collaboration
with biologists from Centro de Biologı́a Molecular Severo Ochoa (Madrid) in the laboratory of
Isabel Guerrero. Our objective is to derive a mathematical model of cytonemes in Drosophila
melanogaster, as main responsible for cellular communication and direct transportation of Hh
morphogen from cell to cell. First, we will introduce the biological background of the problem.
Later, we formulate our model, that consists of several different processes, all of them taking
place simultaneously during the real complex dynamics. For an easier readability, we have
decided to present each of the components separately.

7.2.1 Introduction to cytonemes and morphogen transportation

Since A. Turing [289] proposed a pioneering mathematical model of morphogenesis, the princi-
pal mechanism of the cell communication processes that explain the transport of morphogens
in a living organism has always been associated with free diffusion processes, see [199, 300,
274]. According to this old conception, morphogenes are proteins that spread througout the
extracellular matrix. In its path, they determine a concentration gradient that reach cells within
the forming tissues. It has been experimentally verified that the expossure of cells to different
levels of morphogen has the ability to activate the corresponding target genes. In turns, these
genes are responsible for the appropriate specialization of cells and other biological mecha-
nisms involved in patterning and the proper formation of organs and tissues, see [303]. Our
goal along this part is to propose an alternative description to the above one according to the
more recent experimental evidence.

Morphogenesis does not only occur at the early stages of the formation living of organisms
(that is called embryogenesis), but it also plays a determining role throughout its whole life, e.g.,
correct maintenance of organs, tissue renewal, etc. In particular, a deregulation of the correct
communication mechanisms is often associated with the formation and growth of cancerous
cells. Thereby, determining the precise formation of morphogen concentration gradients has
an incalculable value from the point of view of real medical applications. In particular, it may
be use to determine the mechanisms of duplication of stem cancerous cells and their differenti-
ation into tumoral tissues.

Due to the relative facilities to design in vivo experiments, Drosophila melanogaster is the
most studied organism in this context. Here, we will mostly focus on a specific process that
has been deeply analyzed during the last years: the formation of wings from the primordial
imaginal disc of lavae. A closely related process that, for simplicity, we will not address here is
the formation of abdomen after migration of histoblast cells. Both processes are qualitatively
equivalent, and the methods developed for the former, can be adapted to the latter.

In the morphogenetic proces of wing formation, the main signalling mechanism is mediated
by Hedgehog (Hh) morphogen, that activates its target gene Cubitus interruptus (ci) (analogue
for vertebrates are Shh and gli). In this mechanism, the geometrical disposition of each compo-
nent plays a role. Wing imaginal discs are bags of epithelial cell. They represent the primordial
structures of larvae that, during metamorphosis of pupae, will become the final wings of an
adult fly. It consists of nearly 60.000 undifferentiated cells that arranged into two distinguished
compartments: anterior (A) and posterior (P), separated by a boundary that is often called A\P
border, see Figure 7.1. Cells of P-compartment secrete Hh proteins. These Hh proteins deter-
mine a gradient of concentration, that spreads through the extracellular matrix, crosses the
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Figure 7.1: On the left, location of wing discs on larvae of Drosophila melanogaster. On the
right, zoom of an imaginal disc and division into A\P compartments. Pictures are taken from
and the website http://guerreroslab.cbm.uam.es/wp/ and from [271].

A\ P border and invades the cells in the A compartment. In a very simplified manner, it is
known that in the reception process, Ptc receptors protein and glipicans like Dally and Dlp are
involved, as well as the adhesion molecule Ihog.

Recently, it has been experimentally observed [34, 141, 192, 260, 267] that Hh proteins do
not spread randomly through the medium, unlike the initial idea of Turing. Specifically, Hh
proteins travels inside vesicles along specialized small actin-based filament structures that are
called signalling filipodia or cytonemes. Those filopodia emerge from cell membranes of both
Hh emitting and receiving cells. They have been identified as dynamic structures with the
ability to grow, retract and orient, driven by some mechanisms that we shall describe later.
As a consequence of the dynamics, cytonemes from emitting and receiving cells stablish a sort
of synapse (connection) and vesicles with Hh proteins (among others) are transferred. Once
cargo has been absorbed by the receiving filopodium, the connection is broken, proteins travel
back along the new cytoneme towards the receiving cell and the filament-like structures retract
towards the corresponding cell membranes, see Figure 7.2. This direct transportation mech-
anism clearly contradicts the preceding literature based on linear diffusion and represents a
new paradigm with regard to morphogene spreading. Our goal here is to introduce a solid
mathematical model that accounts for all these microscopic phenomena based on experimental
evidence.

Some attempts to provide a more realistic mathematical description of such a communi-
cation mechanism has already been developed in the literature in terms of macroscopic PDE
models based on flux-saturated and/or porous-media mechanisms [53, 54, 55, 266, 294]. Nev-
ertheless, any of those models takes into account the abovementioned microscopic description.
Very recently, the modelling of cytonemes has been addressed by several authors in terms of
both deterministic and stochastic models [46, 47, 187, 188, 285], but none of them provide a
description of the underlying microscopic dynamics of such structures: growth, orientation,
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Figure 7.2: Zoom at Hh emitting cells in P compartment near the A\ B border. We observe
that cytonemes emanate from cell membranes towards the opposite A compartment to stablish
connections with Hh receiving cells. Indeed, concentration of Hh is higher in P-cells that A-
cells. Also, we observe that vesicles are transported along the filament-like structures. This
picture has been taken from [266].

synapses, transportation and transference of morphogene, detachment, contraction, etc. This is
the goal of this section. Since it is a work in progress, we just aim at modelling the early stages
of the process, namely: dynamics of cytonemes, orientation mechanisms and propagation of
proteins along such moving structures. All the others step of the modeling will be provided
later in a forthcoming publication, where we will also contrasts the existing experimental data
with predictions coming from numerical simulations of this model.

7.2.2 Mechanical description of cytonemes dynamics

There are several types of filament-type structures playing a role on the mechanics of cell mem-
branes and cytoplasms of cells, see [35]. For instance, the cortex is a specialized layer of the
cytoplasm on the inner face of the cell membrane that functions as a modulator of membrane
behavior. Stress fibers play an important role in cellular contractivity, providing force for a num-
ber of functions such as cell adhesion or migration. A lamellipodium is a cytoskeletal projection
on the leading edge of the cell that determines a mesh helping cells to propel across a sub-
strate, see Figure 7.3. All of those structures are made of actin proteins that grow and break via
polimerization or depolimerization of actin dimers. In our case, we are interested in filopodia,
that are thin cytoplasmic projections extending from cell membranes of many sort of migrating
cells. They consist in actin filaments cross-linked into bundles by actin-binding proteins and
they help on the cell adhesion to substrate. Many types of migrating cells exhibit some type
filopodia. In our case, our filipodia have signaling functions and they are called cytonemes for
distinction.

Discrete cytonemes with finite length

A first approach to model a cytoneme is as a chain of finitely many connected actin molecules
at positions

x0(t), x1(t), . . . , xN (t) ∈ R3,

where the first one x0(t) is always attached to a fixed point x0 in the cell membrane and all
of them are subject to the effect of some orientation force F = −∇φ (to be described later) as
displayed in Figure 7.4. Since actin filaments are plastic, but non-elastic, then we assume that
xi(t) and xi+1(t) are linked but separated by a fixed distance l. This produces a simple problem
from Lagrangian mechanics where we minimize action subject to the holonomic constraints:
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Figure 7.3: Different types of actin-based structures in the membrane of a cell: cortex, stress
fibers, lammelipodium and filipodium. Cartoon taken from [35].
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Figure 7.4: Cytoneme regarded as a chain of actin molecules.
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min L[x1, . . . , xN ] :=

∫ T

0

(
1

2
m|ẋi|2 − φ(t, xi)

)
dt,

s.t. Ci(x1, . . . , xN ) := |xi − xi−1|2 − l2 = 0, i = 1, . . . , N.

(7.2.1)

To solve it, we use the Euler–Lagrange equations with Lagrange multipliers λ1(t), . . . , λN (t),
that yields the equations of motion:





m
d2xi
dt2

= −∇φ(t, xi) + 2λi(xi − xi−1)− 2λi+1(xi+1 − xi), 1 ≤ i ≤ N − 1,

m
d2xN
dt2

= −∇φ(t, xN ) + 2λN (xN − xN−1), i = N,

|xi(t)− xi−1(t)| = l, 1 ≤ i ≤ N,

x0(t) = x0.

(7.2.2)

This is nothing but Newton’s second law for each note xi(t), whose acceleration is deter-
mined both by they orientation force and a constraint fictitious force due to the inelastic link.
However, this is a too ideal situation due to three different reasons:

1. Cytonemes are not discrete structures, but continuous ones.

2. The discrete cytoneme has length N · l but, in reality, cytonemes have variable lengths as
they grow and retract by (de)polimerization of actin dimers.

3. The extracellular matrix is viscous and it imposes friction with substrate.

We will address the first two questions later. Regarding the third one, the solution is easy
because we can actually modify system (7.2.2) to account for such friction with medium. For
instance, we can introduce linear velocity damping in the spirit of the overdamped dynamics
that we presented in the introductory Chapter 1, namely,





m
d2xi
dt2

=
m

τ

dxi
dt
−∇φ(t, xi) + 2λi(xi − xi−1)− 2λi+1(xi+1 − xi), 1 ≤ i ≤ N − 1,

m
d2xN
dt2

=
m

τ

dxN
dt
−∇φ(t, xN ) + 2λN (xN − xN−1), i = N,

|xi(t)− xi−1(t)| = l, 1 ≤ i ≤ N,

x0(t) = x0,

(7.2.3)

where τ stands for relaxation time under friction.

Discrete generalized variables

Before we solve the other two issues of this approach, we recall that we can often get rid of
multipliers if we introduce appropriate generalized variables. For simplicity, we shall only do
this in a two-dimensional setting. Specifically, we will restrict to a single z-layer of the imaginal
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Figure 7.5: Representation of generalized coordinates

disc. This suggests that in our case, the natural choice is given by the corresponding angles
between any two link of the chain, like in Figure 7.5, that is,

|xi − xi−1| = l⇐⇒ xi = xi−1 + l(cos θi, sin θi),

for all i = 1, . . . , N . By inspection in (7.2.3), observe that we obtain the following equivalent
representation without multipliers

(
N∑

i=k

mẍi

)
· (xk − xk−1)⊥ =

(
−

N∑

i=k

∇φ(t, xi)−
m

τ

N∑

i=k

ẋi

)
· (xk − xk−1)⊥,

for any k = 1, . . . , N . This allows restating System (7.2.3) in the following equivalent form:

m
N∑

i=k

i∑

j=1

(
cos(θj − θk)θ̈j − sin(θj − θk)θ̇2

j

)

= −1

l

N∑

i=k

((− sin θk)∂xφ(t, xi) + (cos θk)∂yφ(t, xi))−
m

τ

N∑

i=k

i∑

j=1

cos(θj − θk)θ̇j ,

for any k = 1, . . . , N . This is a system of implicit second order equations for the angles
θ1 . . . , θN that we can write in a more explicit way as follows. First, consider the vector of
angles Θ := (θ1, . . . , θN ) and define the matrix M(Θ) and vector b(Θ) described by the follow-
ing components

Mij(Θ) =m(N + 1−max{i, j}) cos(θi − θj),

bk(Θ, Θ̇) =− 1

l

N∑

i=k

((− sin θk)∂xφ(t, xi) + (cos θk)∂yφ(t, xi))

+m
N∑

i=k

i∑

j=1

sin(θj − θk)θ̇2
j −

m

τ

N∑

i=k

i∑

j=1

cos(θj − θk)θ̇j ,

for all 1 ≤ i, j, k ≤ N . Then, the system can be identified with a coupled system of explicit
nonlinear ODEs (

Θ

Θ̇

)′
=

(
Θ̇

M(Θ)−1b(Θ, Θ̇)

)
.
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The main relevance of the above expression for the dynamics of the angles of each cytoneme
is from the numerical point of view. Specifically, after we use an inversion numerical method
for the matrices M , we can readily obtain simulations based on simple Euler or Runge–Kutta
methods.

We remark that once angles θi have been computed, real positions are recovered from the
following formula:

xi = x0 + l
i∑

j=1

(cos θj , sin θj),

for any i = 1, . . . , N .

Continuous cytonemes with fixed length

We now focus on the derivation of a continuous description for the discrete model (7.2.3). We
start with the case of constant-in-time length L. First, we define the following continuous
objects associated with the discrete ones:

γN (t, ξ) :=
N∑

i=1

χ(ξNi−1,ξ
N
i ](ξ)x

N
i (t),

λN (t, ξ) := l2
N∑

i=1

χ(ξNi−1,ξ
N
i ](ξ)λ

N
i (t).

ρN (t, ξ) :=

N∑

i=1

χ(ξNi−1,ξ
N
i ](ξ)

m

L
≡ Nm

L
=
m

l
,

for ξ ∈ (0, LN ), where the nodes read ξNi := li for all i = 1, . . . , N , and LN := Nl determines
the total length of the chain of N molecules.

By definition, γN and λN are continuous descriptions of positions and multipliers in a
parametrized way in terms of ξ. Indeed, as we move such a parameter from subinterval
(ξNi−1, ξ

N
i ] to next one (ξNi , ξ

N
i+1], the parametrization jumps from particle xNi to particle xNi+1 and

so on. Intuitively, we will make the link l between nodes small and we will take the amount N
of nodes large enough so that we smoothly fill a whole curve on the plane. Also, notice that all
masses had been set to m, which suggest that the continuous cytoneme will be homogeneous
and density of actin is constant as well. Indeed, notice that the above associated continuous
density ρN is a constant functions of ξ.

In order to prove such intuition, let us observe that γN and λN fulfil the following system
of coupled equations in a weak sense:

ρ(t, ξ)γ̈N (t, ξ) =− 1

l
∇φ(t, γN (t, ξ))− ρ(t, ξ)

τ
γ̇N (t, ξ)

+

{
1

l
λN (t, ξ)

γN (t, ξ)− γN (t, ξ − l)
l

−1

l
λN (t, ξ + l)

γN (t, ξ + l)− γN (t, ξ)

l

}
χ(ξN1 ,ξ

N
N−1](ξ)

+
1

l2
λN (t, ξ)

γN (t, ξ)− γN (t, ξ − l)
l

χ(ξNN−1,ξ
N
N ](ξ),

(7.2.4)
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for any ξ ∈ (0, LN ). In addition, we also obtain the corresponding constraints

|γN (t, ξ)− γN (t, ξ − l)|
l

χ(ξN1 ,LN ](ξ) = 1,

|x0 − γN (t, l)|
l

= 1.

(7.2.5)

Let us set the following natural hypothesis during the continuous limit

L = Nl, Nm = Lρ, and φ = lψ,

that sets the total length and density of the cytoneme to L and ρ respectively and appropriately
rescales the potential φ. Then, taking limits formally as N → ∞ (thus l → 0) in (7.2.4)-(7.2.5),
we obtain the following continuous system:





ργ̈ +
∂

∂ξ
(λ γ′) +

ρ

τ
γ̇ = −∇ψ(t, γ),

γ(t, 0) = x0,
γ(0, ξ) = γ0(ξ) and γ̇(0, ξ) = γ̇0(ξ),
|γ′(t, ξ)| = 1,
λ(t, L) = 0,

(7.2.6)

for every t ≥ 0 and ξ ∈ (0, L), where we denote

γ̇ =
∂γ

∂t
and γ′ =

∂γ

∂ξ
.

Notice that constraints Ci = 0 in the discrete system translates into the condition that the
limiting curve γ is parametrized by arc length. In turns, this guarantees that length is preserved
for all times and equals L. On the other hand, the last condition of the multiplier is natural due
to the fact that the last term of (7.2.4) has a different scale with regards to l. This suggests that
the endpoint γ(t, L) of the cytoneme moves freely and is not affected by the fictitious force.

Continuous description of cytonemes with variable length

In this part, we address the case where cytoneme γ can grow and reduce its length by polimer-
ization or depolimerization of actin dimers at the free endpoint γ(t, L). This means that the
above value L = L(t) depends on time and L̇(t) is described by the corresponding polimeriza-
tion rates of actin, that has to be set according to experimental data.

Let us formulate an analogue continuous minimization problem to the discrete one in
(7.2.1). This time, curves γ = γ(t, ξ) are defined for (t, ξ) ∈ ΩT , where the domain is

ΩT := {(t, ξ) : t ∈ [0, T ], ξ ∈ [0, L(t)]},

in order to account for variable lengths of the cytoneme, see Figure 7.6. Then, the continuous
problem of minimization of action takes the following form





min L[γ] =

∫∫

ΩT

(
1

2
ρ(t, ξ)|γ̇(t, ξ)|2 − ψ(t, γ(t, ξ))

)
dt dξ,

s.t. C(γ′) = |γ′| = 1.

(7.2.7)
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Figure 7.6: Domain ΩT for the case of variable length

Again, we can solve it in terms of the Euler–Lagrange equations. Before we state it, notice
that, according to the shape of ΩT in Figure 7.6, we have prescribed conditions on the piece of
boundary with ξ = 0 and t ≥ 0, namely,

γ(t, 0) = 0, for all t ≥ 0.

Also, for t = 0 and ξ ∈ (0, L(0)), we need to set the initial shape and velocity configurations of
the cytoneme, that is,

γ(0, ξ) = γ0(ξ) and γ̇(0, ξ) = γ̇0(ξ), for all ξ ∈ (0, L(0)).

However, we do not have any clear constraint on the upper piece of boundary with ξ = L(t)
and t ≥ 0. Using standard tools from calculus of variations, we shall consider the natural
free-boundary condition that arises from the minimization problem (7.2.7). Putting everything
together, we achieve the following system:





∂

∂t
(ργ̇) +

∂

∂ξ
(λγ′) +

ρ

τ
γ̇ = −∇ψ(t, γ),

γ(t, 0) = x0,
γ(0, ξ) = γ0(ξ) and γ̇(0, ξ) = γ̇0(ξ),
|γ′(t, ξ)| = 1,

ρ(t, L(t))γ̇(t, L(t))L̇(t) = 2λ(t, L(t))γ′(t, L(t)),

(7.2.8)

for any t ≥ 0 and ξ ∈ (0, L(t)). Notice that for constant length, i.e., L̇ ≡ 0, the free boundary
condition reduces to λ(t, L) = 0 and we recover the above case (7.2.6). Also notice that actin
density ρ along the cytoneme does not need to be uniform in this case. However, experiments
suggest that it is indeed nearly uniform.

Continuous generalized variables

By using similar ideas to the discrete case, we can eliminate the multiplier from de the con-
tinuous equations of motion (7.2.8) in terms of appropriate continuous generalized variables. By
analogy with the discrete case, we set those variables θ(t, ξ) to be the angles of the tangent
vector γ′(t, ξ) to the curve, that is,

γ′(t, ξ) = (cos θ(t, ξ), sin θ(t, ξ)),
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for any t ≥ 0 and ξ ∈ (0, L(t)). Using them, we can deduce the following implicit integro-
differential equation for θ(t, ξ):

∂

∂t

∫ L(t)

ξ

∫ ξ′

0
cos(θ(t, ξ′′)− θ(t, ξ))θ̇(t, ξ′′)ρ(t, ξ′) dξ′′ dξ′

−
∫ L(t)

ξ

∫ ξ′

0
sin(θ(t, ξ′′)− θ(t, ξ))θ̇(t, ξ′′)θ̇(t, ξ)ρ(t, ξ′) dξ′′ dξ′

= −1

τ

∫ L(t)

ξ

∫ ξ′

0
cos(θ(t, ξ′′)− θ(t, ξ))θ̇(t, ξ′′)ρ(t, ξ′) dξ′′ dξ′

−
∫ L(t)

ξ

∫ ξ′

0

(
(− sin θ(t, ξ))∂xψ(t, γ(t, ξ′′)) + (cos θ(t, ξ))∂yψ(t, γ(t, ξ′′))

)
dξ′′ dξ′. (7.2.9)

Such an equivalent equation arises from an analogue argument like in the above discrete
case, where sums have to be replaced by the corresponding integrals, and the free-boundary
condition is used to cancel boundary terms during integration by parts. The interest of such a
formula is again from a numerical point of view. Indeed, we can again discretize such equa-
tion and solve it with appropriate numerical methods, adapted to the fact that L is no longer
constant, but dynamic.

7.2.3 Orientation forces

Once we have described the equations of motion (7.2.8) for each cytoneme, along this section
we will focus on describing the orientation forces F that we assumed in the above part. It
will be responsible for the guidance of both families of cytonemes (Hh emitting and receiving)
towards the appropriate contact sites where synapses will take place.

The current experimental evidence [34, 141, 271] supports the hypothesis that the main
proteins involved in the communication mechanism are Hh, Ihog, Ptc and gliplicans Dally and
Dlp. For the sake of clarity, we introduce a brief summary of the main relations between such
proteins. This outline has been set according to recent experiments.

1. Hh level in P compartment is larger than in A compartment.

2. Ihog level in P compartment is larger than in A compartment.

3. Hh and Ptc do not directly affect orientation of cytonemes.

4. Ihog and glipicans are the main responsible for the orientation mechanism.

5. Cytonemes with high levels of Ihog repel cytonemes with high levels of Ihog.

6. Cytonemes with low levels of Ihog repel cytonemes with low levels of Ihog.

7. Cytonemes with high levels of Ihog attract cytonemes with low levels of Ihog.

8. Cytonemes at large distances do not interact.

9. A single cytoneme does not interact with itself.
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RECEIVING CELL EMITTING CELLA\P

Figure 7.7: In red, emitting cytonemes that emanate from the cell membranes of the P com-
parment. In blue, receiving cytonemes emerging from cell membranes of the A compartment.
Emitting cytonemes grow and invade the A compartment to stablish synapses with receiving
cytonemes near the A\ P border.

Short range interactions: cytonemes potentials

We first introduce the orientation forces that are self-generated by the complete ensemble of
cytonemes themselves. According to the above experimental insight, those interactions must
be of short range since far apart filopodia do not feel the presence of each other. Also, the
above heuristics suggests that cytonemes can be split into two different families according to
the levels of Ihog that they carry, see Figure 7.7. The family of cytonemes with larger levels of
Ihog corresponds to cytonemes that emerge from emitting cells in the P compartment, whilst
the other family of cytonemes with lower Ihog corresponds to receiving cells located in the A
compartment. For simplicity, we call them Hh emitting and receiving cytonemes. Here on, we
shall use the following notation to denote the main quantities associated to cytonemes of each
family:

Quantities Receiving Emitting
Parametrization γrj (t, ξ) γei (t, ξ)

Lengths Lrj(t) Lei (t)

Charge qrj (t, ξ) qei (t, ξ)

Orientation forces F rj (t, x) F ei (t, x)

Signature σr = −1 σe = +1

Here superscripts denote “receiving” or “emitting” cytonemes, whilst subscripts j and i
range along the total amount nr, ne ∈ N of receiving and emitting filopodia. By charges qrj and
qei , we refer to an appropriate weighted sum of the total densities of all the proteins inside each
cytoneme that are involved in the orientation mechanism: namely, Ihog, Dally and Dlp both
inside vesicles and over the filaments’ membranes. Specifically, we shall define

q = βIhog[Ihog]ves − βDally[Dally]ves − βDlp[Dlp]ves

+ βIhog[Ihog]cyt − βDally[Dally]cyt − βDlp[Dlp]cyt,

for some non-negative weights βIhog, βDally and βDlp. Interestingly, we observe that, for emitting
cytonemes, the chage qei has positive sign, whilst for receiving cytonemes qrj is negative. This
allow us to distinguish both families by using different “signatures” (or labels) +1 and −1 for
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each of them. Then σr and σe are reminiscent of the sign of charges in electrodynamics. Like in
that setting, the repelling or attractive character of interactions is determined by the product of
signatures. Indeed, as mentioned before, cytonemes belonging to the same family interact in a
repulsive way whilst those belonging to opposite families exhibit attractive interactions.

Finally, F rj (t, x) and F ri (t, x) represent the corresponding orientation forces for cytonemes
γrj (t, ξ) and γri (t, ξ), which will determine the final equations of motion (7.2.8) for each cy-
toneme. Our final goal along this part is to describe those self-generated forces by accounting
for the above attractive and repulsive relations between both families of filopodia. With all the
above information in mind, we first describe the following single layer potentials:

ψei (t, x) :=−
ne∑

l=1
l 6=i

∫ Lel (t)

0
WR(|x− γel (t, ξ)|)qel (t, ξ) dξ

−
nr∑

m=1

∫ Lrm(t)

0
WA(|x− γrm(t, ξ)|)qrm(t, ξ) dξ,

ψrj (t, x) :=−
ne∑

l=1

∫ Lel (t)

0
WA(|x− γel (t, ξ)|)qel (t, ξ) dξ

−
nr∑

m=1
m6=j

∫ Lrm(t)

0
WR(|x− γrm(t, ξ)|)qrm(t, ξ) dξ,

(7.2.10)

for i = 1, . . . , ne and j = 1, . . . , nr. Notice that we have omitted the interaction of any cytoneme
with itself according to experiments. These corresponds to the potentials of orientation fields
inspired by electrodynamic. Indeed, the corresponding orientation forces on each cytoneme
can by obtained from the fields after multiplication by sources, namely,

F ei (t, γei (t, ξ)) := qei (t, ξ)∇ψei (t, γei (t, ξ)),
F rj (t, γrj (t, ξ)) := qrj (t, ξ)∇ψrj (t, γrj (t, ξ)),

(7.2.11)

for each i = 1, . . . , ne and j = 1, . . . , nr. In (7.2.10), WR = WR(r) and WA = WA(r) stand for
the precise interaction potentials that mediate attractive and repulsive interactions. We shall
assume that they take the following specific form, see Figure 7.8

W ′M (r) :=





Kδα0
rα

, r ∈ (0, δ0),

K, r ∈ [δ0, δ1),

K

1 + e
2r−(δ1+δ2)

(δ2−r)(r−δ1)

, r ∈ [δ1, δ2),

0, r ∈ [δ2,∞).

(7.2.12)

K is the coupling strength, α > 0 is a parameter that measures a singular interaction at the
origin and 0 < δ0 < δ1 < δ2 are small distances that we shall describe in the sequel. The reason
behind that choice is supported by experimental evidence. Specifically,
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Figure 7.8: Plot of the interaction potentialW (r) forK = 5, α = 1
2 , δ0 = 0.5, δ1 = 2.5 and δ2 = 3.

1. Cytoneme-cytoneme interactions have short range. Indeed, according to experimental
evidence, there exists a minimal size δ2 so that cytonemes located at larger distances do
no feel the presence of each other.

2. Once inside that range, interactions do not seem to depend on distances between cy-
tonemes, but just on the concentration itself. This has been modelized in terms of a flat
part of the forcing kernel W ′ for distances ranging from a small δ0 to δ1.

3. Below that small range δ0, cytonemes must feel an intense force that either repels them, to
guarantee the separation property by Reynolds in Chapter 1, or attracts them, depending
on whether they belong to same or opposite families. Indeed, attractive interactions need
to be strong enough to allow for finite-time contacts. Bearing in mind our results in Chap-
ter 3, we have decided to set an inverse power low near the origin, that is compatible with
finite-time sticking behavior.

However, we still need to experimentally verify whether the repulsive interactions between
both families of emitting and receiving cytonemes are comparable and can represented in terms
of a unique kernel WR or require different coefficients. Also, we do not know if the attractive
interactions are given by a similar interaction potential WA. We are working on the description
of the involved constants to verify whether they are functionally or computationally similar.

Long-range interactions: the membrane potential

As mentioned before, cytoneme to cytoneme interactions have short range. Notice that this
may cause a severe problem since A and P compartments might stay unconnected when, ini-
tially, cytonemes lengths are too short. In that case, we do not expect any contact between emit-
ting and receiving cytonemes. However, we experimentally observe that despite cytonemes
being far apart initially, they already feel a sort of attraction towards the membrane of the A\P
border, see Figure 7.9. To find it, let us compute the similar charge associated to the background
concentration of Ihog, Dally and Dlp throughout the extracellular matrix, namely,

qback = βIhog[Ihog]back − βDally[Dally]back − βDlp[Dlp]back.
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1	

2

3	
4	

Figure 7.9: Both cytonemes emanating from cells in the A and P compartment orient towards
the membrane of the A\P border.

If we plot that quantity, then we find an interesting change of signs of the charge qback so that
both families get attracted by the cell membrane via a similar mechanism. Then, we shall
accompany the above sort range orientation forces F ei and F rj in (7.2.10)-(7.2.11) with a longer
range orientation force towards the membrane generated by such background charges. Indeed,
we first describe the orientation potential towards the membrane in terms of the following
volume potentials

ψ̂(t, x) := −
∫

D
WM (|x− y|)qback(y) dy, (7.2.13)

whereD ⊆ R2 represents the domain occupied by the wing imaginal disc. Then, the orientation
force will be described in an analogue way

F̂ ei (t, γei (t, ξ)) := qei (t, ξ)∇ψ̂(t, γei (t, ξ)),

F̂ rj (t, γrj (t, ξ)) := qrj (t, ξ)∇ψ̂(t, γrj (t, ξ)),
(7.2.14)

for each i =, 1, . . . , ne and j = 1, . . . , nr. This time, the interaction potential WM has longer
range interactions. However, at short ranges WR and WA dominate, that is, cytonemes do
not stick to the cell membrane. A plausible way of modelling such fact is by eliminating the
singular sticking force at the origin in (7.2.12), that is,

W ′M (r) :=





K, r ∈ [0, δ1),

K

1 + e
2r−(δ1+δ2)

(δ2−r)(r−δ1)

, r ∈ [δ1, δ2),

0, r ∈ [δ2,∞),

(7.2.15)

see Figure 7.10 for a comparison of the type of kernels. Finally, to conclude, let us summarize
the final global dynamics of cytonemes
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Figure 7.10: Plot of the interaction potentials WA, WR and WM for the values K = 5, α =
1
2 , δ0 = 0.2, δ1 = 4, δ2 = 5 (for WA), K = 4, α = 1

2 , δ0 = 0.2, δ1 = 0.3, δ2 = 0.5 (for WR) and
K = 2, δ1 = 7, δ2 = 8 (for WM ).





∂

∂t
(ρei γ̇

e
i ) +

∂

∂ξ
(λeiγ

e′
i ) +

ρei
τ
γ̇ei = F ei (t, γei ) + F̂ ei (t, γei ),

γei (t, 0) = xei , and |γe′i (t, ξ)| = 1,

ρ(t, Lei (t))γ̇
e
i (t, L

e
i (t))L̇

e
i (t) = 2λei (t, L

e
i (t))γ

e′
i (t, Lei (t)),

for any i = 1, . . . , ne, and





∂

∂t
(ρrj γ̇

r
j ) +

∂

∂ξ
(λrjγ

r′
j ) +

ρrj
τ
γ̇rj = F rj (t, γrj ) + F̂ rj (t, γrj ),

γrj (t, 0) = xrj , and |γr′j (t, ξ)| = 1,

ρ(t, Lrj(t))γ̇
r
j (t, L

r
j(t))L̇

r
j(t) = 2λrj(t, L

r
j(t))γ

r′
j (t, Lrj(t)),

for each j = 1, . . . , nr, where the orientation forces are given by (7.2.11) and (7.2.14).

7.2.4 Transportation of proteins along moving cytonemes

In this last part, we shall derive appropriate transport equations for the propagation of pro-
teins along the above dynamical cytonemes. In particular, we shall focus on the propagation
of Hh morphogen, but a similar approach can be applied to other types of proteins (e.g., Ihog,
Dally, Dlp, Ptc, etc). As observed in experiments, proteins travel inside vesicles that move
along filopodia, recall Figure 7.2. However, the underlying mechanical description for such
transportation has not been clarified experimentally. It seems that it should involve some in-
ternal miosin-based motor of filopodia to carry vesicles along actin wires. For simplicity, along
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|

u = u(t, x)

j(t, γ(t, ξ1))
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j(t, γ(t, ξ2))

γ(t, ξ1)

γ(t, ξ2)

CELL

Figure 7.11: Conservation of Hh morphogen along the cytoneme

this first stage, we have preferred to simplify the microscopic dynamics. Instead of a descrip-
tion vesicle by vesicle, we shall introduce a macroscopic continuous approach in terms of the
concentration gradient of proteins along cytonemes.

Fix any emitting cytoneme γ = γei and denote the concentration of Hh morphogen along it
by u = u(t, x). Now, take any arch of the cytoneme as in Figure 7.11, i.e.,

A(t, ξ1, ξ2) = {γ(t, ξ) : ξ ∈ [ξ1, ξ2]},

for 0 < ξ1 < ξ2 < L(t), and observe that by the conservation of mass, we can claim that the rate
of decrease of protein concentration on such an arch is determined by the outwards flux at the
endpoints. Specifically, we obtain the following integral form of the continuity equation

∂

∂t

∫

A(t,ξ1,ξ2)
u dxS = − j(t, γ(t, ξ)) · γ′(t, ξ)

∣∣ξ=ξ2
ξ=ξ1

,

where j denotes such an outwards flux of proteins. To simplify, let us define

u(t, ξ) = u(t, γ(t, ξ)),

and notice that the above integral formulation, that is valid for any arch, is equivalent to the
following PDE 




∂ū

∂t
+

∂

∂ξ
(j(t, γ) · γ′) = 0, ξ ∈ [0, L(t)],

ū(0, ξ) = ū0(ξ), ξ ∈ [0, L(0)],

−j(t, x0) · γ′(t, 0) = β(t), t ≥ 0.

(7.2.16)

Here, β = β(t) represent the inwards flux of Hh morphogen at the base endpoint γ(t, 0) = x0

that the corresponding emitting cell transfers to its cytoneme. In order to determine a final
closed form of (7.2.16), we need to set the relation between the outwards flux j and the concen-
tration of proteins u itself.

On the one hand, we recall that, according to previous literature [199, 300, 274], the classical
choice would be to set j according to Fick’s law

j = ν∇γu. (7.2.17)

This represents that proteins spread towards the areas of the cytoneme with lowest concentra-
tion with diffusion coefficient ν > 0. Here, ∇γ represents the Riemannian gradient of u(t, ·)
along the curve γ(t, ·). i.e.,

(∇γu)(t, γ(t, ξ)) = u′(t, ξ)γ′(t, ξ).
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Figure 7.12: Inverse dependence of speed of propagation on curvature of cytonemes for the
choice ω = 1 and cmax = 1.

Notice that in such a case, transport of proteins would be governed by a linear heat equation
along the cytoneme. However, this choice is not acceptable from a biological point of view
because it yields infinite speed of propagation.

Instead of (7.2.17) and, inspired by the flux-saturated mechanisms in [53, 54, 55, 266, 294],
we can consider a porous-medium flux-saturated type description of j as follows

j = −ν um∇γu√
u2 + ν2

c2
|∇γu|2

, (7.2.18)

where the coefficient m represents porosity of the cytoneme, ν is called the kinematic viscosity
and c is a bound for the maximum speed of propagation along the cytoneme. Such a choice
amounts to the following nonlinear conservation law for the concentration of Hh morphogen





∂ū

∂t
= ν

∂

∂ξ


 ūmū′√

ū2 + ν2

c2
(ū′)2


 , ξ ∈ [0, L(t)],

ū(0, ξ) = ū0(ξ), ξ ∈ [0, L(0)],

− ūm(t, 0)ū′(t, 0)√
ū2(t, 0) + ν2

c2
(ū′(t, 0))2

= β(t), t ≥ 0.

Regarding the speed of proteins propagation, it still must be determines according to ex-
perimental data. However, we have observed an interesting functional dependence: near very
curved points of the cytoneme, there is congestion of vesicles that slow down their movement.
A possible way of modelling it is though inverse dependence of speed of propagation on cy-
toneme’s curvature κ(t, ξ) = |γ′′(t, ξ)|. In particular, we can set

c(t, ξ) = c(|κ(t, ξ)|) =
ωcmax

ω + cmax|γ′′(t, ξ)|
.

Notice that for that choice, the speed of propagation c = c(κ) is always bounded by cmax.
On the one hand, if the cytoneme is very flat (that is κ ' 0) then speed is close to cmax. On the
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Figure 7.13: Formation of synaptic buttons at contacts sites. Taken from [141].

other hand, if the cytoneme is very curved (that is κ ' ∞), then speed is closed to 0, see Figure
7.12.

7.2.5 Further modeling steps and related works

In future works, we would like to address the remaining steps of the dynamics: synapsis, trans-
ference of proteins and contraction of cytonemes. Indeed, it has been experimentally observed
[141] that synapses take place in a polarized way so that emitting cytonemes stay below re-
ceiving cytonemes, see [143]. Also, contacts occur at very specific sites of cytonemes, where a
sort of synaptic button is formed, see [141] and Figure 7.13. In addition, there are plenty of free
parameters that we need to set according to current experiments (e.g., δi, L̇, c, α, etc).

From a mathematical point of view, some relevant question is the rigorous mean field limit
(see Subsection 1.1.2 of Chapter 1) of the above microscopic models when the amount of cy-
tonemes (ne and nr) is large enough. This question also has biological implications since nor-
mally there are so many cytonemes that continuous descriptions may be of interest. In turns,
that would allow us to compare this new dynamics with previous PDE models in the literature.
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Conclusions and perspectives

In this part we present some ongoing projects and future works that have arisen as a con-
sequence of the results developed during this dissertation. Some of them have already been
mentioned along this pages. Here, we will focus on a specific short list containing some of the
most challenging problems from our point view.

In Chapter 2 we derived a hyperbolic hydrodynamic limit of vanishing inertia type for
the kinetic Cucker–Smale model towards singular influence functions. In doing so, we ob-
tained the limiting macroscopic system (2.1.1) for all the values of the singularity α ∈ (0, 1

2 ].
Indeed, the dissipation inequality (2.2.19) in Corollary 2.2.8 proved useful to derive appropri-
ate non-concentration estimates. In particular, such bounds allowed us to identity the limit of
the commutators (φε ∗ ρε)jε − (φε ∗ jε)ρε in (2.2.9) for the critical case α = 1

2 . It was done via
an appropriate cancellation of the kernel’s singularity in a symmetrized weak form of such a
nonlinear term. However, notice that the dissipation inequality (2.2.19) is actually true for all
the values of the exponent α > 0. In particular, as discussed in Remark 2.2.19, it can be used to
show that the above weak formulation of the commutators admits a uniform-in-ε bound of the
following form

∣∣∣∣
∫ T

0

∫

R2d

φε(|x− y|)(ϕ(t, x)− ϕ(t, y)) (ρε ⊗ jε − jε ⊗ ρε) dx dy dt
∣∣∣∣ ≤ C,

for any smooth test function ϕ. Here, the valid range of parameters turns to be larger (namely,
α ∈ (0, 1)) that the smaller range α ∈ (0, 1

2 ] where we could identify the limit. This suggests that
it should be also possible to identify the limit for the whole of range of parameters α ∈ (0, 1)
despite the fact that the above expression does not makes a clear sense for α ∈ (1

2 , 1) (notice
that in such a case, no extra cancellation of the kernel can be achieved and the limiting ρ and
j are merely measure-valued solutions). Then, it is an interesting problem to elucidate if the
dissipation inequality (2.2.19) actually hides a more important cancellation property that has
not appeared along our approach.

In Chapter 3 we introduced a new type of agent-based model of Kuramoto type for cou-
pled oscillators arising from neuroscience. It emerged from a fast learning regime of a suitable
adaptive rule for the weights that is governed by a Hebbian-type plasticity functions with sin-
gularities. We presented a well-posedness theory of classical solutions (respectively Filippov
solutions) for the subcritical an critical regimes α ∈ (0, 1

2 ] and derived complete phase syn-
chronization estimates for identical oscillators that are confined to a half circle. Interestingly, in
such a case phase synchronization takes place in finite time. Regarding the supercritical regime
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α ∈ (1
2 , 1), we developed two different existence results of Filippov solutions: 1) singular limit

of regular interactions and 2) continuation criterion after collisions. However, we could not
prove uniqueness of Filippov solutions for general amount of oscillators N ≥ 3 . Then, it may
be possible that both methods provide different type of solutions. Only when they agree, we
obtained analogue finite-time phase synchronization of identical oscillators within a half circle.
There are several open problems that we would like to solve related to this topic. We list some
of them:

1. Recall that for the subcritical case α ∈ (0, 1
2) we achieved emergence of phase-locked

states in the large coupling regime for small enough initial diameter of the system. Like
in the case of the classical Kuramoto model [147], we are interested in eliminating the last
constraint to recover general convergence for diameters beyond the basin of attraction.
A similar question arises in the critical and supercritical regimes α ∈ [1

2 , 1). However,
such cases must be harder to tackle according to Theorem 3.5.10 because collision-less
phase-locked states are unstable.

2. If coupling strength is not large enough, the scenario is much more convoluted. In-
deed, recall that for the Cucker–Smale model in one dimension, the complete cluster
predictability was characterized in [151] and the authors computed the final amount of
emergent flocks. In that case, regular influence functions were assumed, thus discard-
ing sticking behavior of particles. We recall that in our case, we could characterized the
explicit necessary and sufficient conditions of natural frequencies so that oscillators stick
together after collisions. When those conditions are violated, then oscillators instanta-
neously detach. We are interested in characterizing the final amount of clusters in our
model by extending the above literature to singular coupling weights.

3. Like for the original Kuramoto model, one can augment the first-order system towards a
second-order model under the effect of inertia (recall the introductory Chapter 1). The
presence of an inertia term introduces a kind of time-delay in the dynamics that has
proved relevant in certain real situations. We are interested in characterizing the type
of solutions along with the expected dynamics when we include the effects of singular
weights like in Chapter 3.

These are joint works with Juan Soler (University of Granada) and Jinyeong Park (Hanyang
University, Seoul).

In Chapter 4, we introduced the kinetic equation associated with the above singular Ku-
ramoto model. Indeed, we showed the local-in-time mean field limit of the particles system as
the amount N of oscillators tends to infinity. This helped us to derive the emergence of finite-
time phase synchronization of identical oscillators for measure-valued (Filippov) solutions in
the subcritical and critical regimes. By accordance with the above open problems of the parti-
cle system, we also propose related questions associated with the kinetic model. First, for the
subcritical and critical regimes we are interested in deriving uniform contractivity estimates
for the Wasserstein distance in the spirit of [58] (for the Kuramoto–Sakaguchi equation). Such
result restricted again to phase supports confined to a half circle but allows obtaining uniform
mean field limits for such restricted regime. Our next step would be to get rid of such hy-
pothesis and show the convergence of solutions towards a global equilibrium like we did in
Chapter 5 for the Kuramoto–Sakaguchi equation. Indeed, we seek an analogue uniform con-
tractivity estimate of the fiberwise Wasserstein distance W2,g and similar explicit concentration
rates for general initial data. As mentioned before, the critical regime must be a special case
due to Theorem 3.5.10 because collision-less phase-locked states are unstable. Our intuition is
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that some type of continuous sticking conditions must select the type of final equilibrium (that
is not necessarily a collision-less state).

In Chapter 5, we proved the convergence towards a global equilibrium for the Kuramoto–
Sakaguchi equation issued at general initial data with phase support not necessarily contained
within a half circle. Recall that the Kuramoto–Sakaguchi equation for identical oscillators is a
Wasserstein gradient flow in the sense of Otto calculus. However, if oscillators are not identical,
the equation loses such a gradient flow structure and convergence towards a global equilibrium
cannot be conducted through extension of the standard ideas in [238]. Fortunately, we found
a key dissipation functional I[f ] and an appropriate transportation distance W2,g so that, like
for real gradient flows, the same relations take place in terms of analogue logarithmic Sobolev
and Talagrand inequalities. This has suggested to us that there must exist an abstract infinite-
dimensional Riemannian structure on the space of probability measures (Pg(T × R),W2,g), so
that the Kuramoto–Sakaguchi equation can be regarded as a W2,g-gradient flow. Our goal is to
make such argument rigorous and apply it to more general models in the literature, where the
main obstructions to apply the classical theory of gradient flows in the presence of some type
of heterogeneity in the model. This is a joint project with J. Morales (CSCAMM, College Park)
and J. Peszek (IMPAN, Warsaw).

Let us recall that, in Section 7.2, we proposed a new mathematical model to explain the
propagation of morphogene in Drosophila melanogaster. It consists in a microscopic coupled
description for the orientation mechanism of cytonemes and the transportation of proteins
along such signaling filopodia. We are interested in achieving a macroscopic approximation
of the model using the scaling limits introduced in Chapter 1, i.e., mean field and hydrody-
namic limits. Notice that in this problem there are two different objects to look at: filaments
and morphogene. First, we are interested in obtaining the mean-field limit of the system of
interacting filaments as the amount of them tends to infinity. We emphasize that, to the best
of our knowledge, there are only two related results that have recently raised in that litera-
ture [30, 31]. In those works, the authors tackled the particular case of first order dynamics
governed either by regular forcing terms or by Euler-type interactions described by a molli-
fied Biot-Savart kernel. Our case is second order dynamics with singular interactions and, in
addition, dynamics is coupled to morphogene propagation. Second, after the mean field de-
scription of cytonemes is achieved, we would like to accordingly obtain a unique equation for
morphogene propagation, that must be subordinated to the above kinetic description of filopo-
dia. Notice that the interest of such problems is not only from a mathematical point of view, but
it also has important implications in biology in order to describe the formation and evolution of
morphogene concentration gradients from first principles. This is a joint proyect with Manuel
Cambón, Juan Soler (Universidad de Granada), Adrián Aguirre-Tamaral and Isabel Guerrero
(CBMSO, Madrid).

Finally, but not less challenging, let us mention another project closely related to the preced-
ing one that has emerged during a research stay of the candidate in CSCAMM (University of
Maryland, USA), under the supervision of Prof. Pierre-Emanuel Jabin. The heart of the matter
is the study of mean-field methods and nonstandard propagation of chaos for many-particle
models with new effects in the dynamics. We are specially interested in the particular type of
dynamics that gave rise to the Kuramoto model with singular coupling weights in Chapters 3
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and 4. Specifically, we propose the following system:





dxi
dt

=
1

N

N∑

j=1

aijF (xi, xj),

daij
dt

= G(xi, xj , aij),

xi(0) = xi,0, aij(0) = aij,0,

for any i, j = 1, . . . , N . Here, F describes the forcing term between particles and G determines
the specific mechanisms for the adaptation of weights. It stands to reason that the second equa-
tion for the evolution of weights imposes a strong time-correlation on agents positions. This
is the main reason why the standard propagation of chaos is not expected to work for this
system. As mentioned in Subsection 1.1.2, these methods are very sensitive to eventual loss
of the standard symmetries ans structures in the equation. In particular, notice that the stan-
dard mean-field approach using empirical measures fails. Indeed, let us denote the empirical
measure of positions by

µN1 (y1) :=
1

N

N∑

i=1

δxi(t)(y1).

Then, it verifies the following transport equation in distributional sense

∂µN1
∂t

+ divy1



∫

Rd
F (y1, z)

1

N2

N∑

i,j=1

aij δxi(y1)δxj (z) dz


 = 0.

Obviously, the presence of weights prevents from writing such equation in closed form in terms
of µN1 , like for the simpler agent-based systems in Chapter 1. This suggests that we should
define the following (generalized) empirical measure of two particles

µN2 (y1, y2) :=
1

N2

N∑

i,j=1

aijδxi(y1)δxj (y2),

and restate the above equation as follows

∂µN1
∂t

+ divy1

(∫

Rd
F (y1, z)µ

N
2 (y1, z) dz

)
= 0.

We emphasize that it is not a closed equation in terms of µN1 . By looking at the equation of
µN2 , we observe that we require two new (generalized) empirical measures of three particles.
It is apparent that, by repeating this process, we end up with an infinite family of generalized
empirical measures that can be constructed in a recursive way. On the one hand, notice that
passing to the limit in the whole hierarchy as N →∞ is not an appropriate description for the
macroscopic dynamics as it depends on an infinite hierarchy of coupled PDEs. Our intuition
is that those terms of the hierarchy must be finite-dimensional projections of the real (probably
infinite-dimensional) object that describes the macroscopic dynamics. The objective of this
project is to explore such idea and describe conditions on weights so that we can find such
an infinite-dimensional representation of the dynamics. Indeed, a extremely important related
question is to compute the order of complexity during the approximation of the real complex
macroscopic dynamics by that simpler dynamics of N particles. Such a question has a clear
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answer for standard systems without weights and it represents a nice way to compare the
increase of complexity implied by the inclusion of adaptive coupling weights. This is a joint
project with Pierre-Emmanuel Jabin (CSCAMM, College Park) and Juan Soler (University of
Granada).
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APPENDIX A

Lebesgue–Bochner-type spaces and duality

In this appendix, we recall some notation and basic concepts that are used systematically along
this thesis regarding Banach-valued Lp-type spaces and its duals representability. Specifically,
we shall first recall the concept of Bochner integral of Banach-valued functions and Lebesgue–
Bochner spaces Lp(0, T ;X) for any Banach space X . The main goal here is to recall the corre-
sponding representability of their topological dual spaces Lp(0, T ;X)∗. This is an intriguing
topic where one has to be specially careful as the standard representability through Riesz-type
theorems (that is, Lp(0, T ;X)∗ = Lp

′
(0, T ;X∗)) is governed by the well known Radon–Nikodym

property (RNP) of the topological dual X∗ (that is known to fulfil if X is reflexive or X∗ is sep-
arable). Hence, we shall introduce here two different branches of result that can be applied
to substantially different situations: namely, the classical result for spaces with the RNP and
the Dinculeanu–Foias theorem when the RNP is failing. Of course, the space representing the
topological dual of Lp(0, T ;X) will be much more exotic if RNP is missing and, to that end, we
shall introduce the weak-* Bochner-Lebesgue spaces Lp

′
w (0, T ;X∗).

Definition A.0.1 ([105]). Let X be a Banach space and consider f : [0, T ] −→ X .

1. f is called simple if there exists x1, . . . , xk ∈ X and measurable subsets E1, . . . , Ek ⊆ [0, T ] such
that f can be expressed as the piece-wise constant function

f(t) =
k∑

i=1

χEi(t)xi, for all t ∈ [0, T ].

2. f is called (strongly) measurable if there is a sequence {fn}n∈N of simple functions so that

lim
n→∞

‖fn(t)− f(t)‖X = 0, for a.e. t ∈ [0, T ].

3. f is called weakly measurable if the following function is measurable

t ∈ [0, T ] 7−→ 〈x∗, f(t)〉 ,

for any x∗ ∈ X∗.
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4. Assume that X = Y ∗ is the dual space of some Banach space Y . Then, f is called weak-* measur-
able if the following function is measurable

t ∈ [0, T ] −→ 〈f(t), y〉 ,

for any y ∈ Y .

Of course, measurable functions are weakly measurable, but the reverse statement is gen-
erally false. Indeed, the following theorem clarifies the relation between both definitions.

Theorem A.0.2 (Pettis’ measurability theorem, [105]). Let X be a Banach space and consider a
Banach-valued function f : [0, T ] −→ X . Then, f is measurable if, and only if, the following conditions
hold true:

1. f is weakly measurable.

2. f is essentially separably valued, i.e., there exists a negligible setN ⊆ [0, T ] such that f([0, T ]\N)
is a (norm) separable subset of X .

In particular, when X is a separable Banach space the second condition trivially fulfils and,
consequently, measurable and weakly measurable functions agree. For the dual case

measurable =⇒ weakly measurable =⇒ weak-* measurable,

but none of the reverse is necessarily true as depicted in the examples in [105, p. 43]. Once this
concepts are sets, one is able to extend the notion of Lebesgue integral of scalar functions to a
Banach-valued version via the use of simple functions. In that way we arrive at the concept of
Bochner integrable function and Bochner integral.

Definition A.0.3 (Bochner integral [105]). Let X be a Banach space and consider a Banach-valued
function and consider a simple function g like in Definition A.0.1 for associated to E1, . . . , Ek ⊆ [0, T ]
pairwise disjoint measurable subsets and x1, . . . , xk ∈ X . We define its Bochner integral via the formula

∫

[0,T ]
g(t) dt =

k∑

i=1

|Ei|xi.

For a general measurable function f : [0, T ] −→ X , we will say that it is Bochner integrable if the fol-
lowing scalar function t ∈ [0, T ] 7−→ ‖f(t)‖X is Lebesgue-integrable. Equivalently, there is a sequence
of simple functions {fn}n∈N such that

lim
n→∞

∫

[0,T ]
‖fn(t)− f(t)‖X dt = 0.

Its Bochner integral is then defined by
∫

[0,T ]
f(t) dt = lim

n→∞

∫

[0,T ]
fn(t) dt.

Bochner integral allows extending most of the ideas in classical measure theory for scalar
functions (dominated convergence theorem, absolute continuity of integral, Lebesgue points
theorem, etc). More interestingly, one can define the analogue of Lebesgue spaces.
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Definition A.0.4 (Lebesgue–Bochner spaces [105]). Consider a Banach space X . We define

Lp(0, T ;X) := {f : [0, T ] −→ X : f is measurable and ‖f‖X ∈ Lp(0, T )} ,

for any 1 ≤ p ≤ ∞. In this way, Lp(0, T ;X) becomes a Banach endowed with the norms

‖f‖Lp(0,T ;X) = ‖‖f‖X‖Lp(0,T ).

Notice that as it is the case for the classical Lebesgue spaces of scalar functions, we always identify
functions that agree almost everywhere in [0, T ], that is, we quotient such space by the relation

f ∼ g ⇐⇒ f(t) = g(t) for almost every t ∈ [0, T ].

Our next goal is to recall the duality properties in Lebesgue–Bochner spaces.

Lemma A.0.5 (Isometrical embedding [105]). Let X be a Banach space, 1 ≤ p <∞ and define

Φp : Lp
′
(0, T ;X∗) −→ Lp(0, T ;X)∗,
f 7−→ Φp[f ],

〈Φp[f ], g〉 :=

∫

[0,T ]
〈f(t), g(t)〉 dt,

for any g ∈ Lp(0, T ;X). Then Φp is a linear isometry.

The above result allows embedding Lp
′
(0, T ;X∗) isometrically into Lp(0, T ;X∗). However,

it is not clear whether Φp is onto like in the scalar case. This is the content of the following
result.

Theorem A.0.6 (Riesz representation [36, 105]). Let X be a Banach space. Then, Φp is surjective if,
and only if, X∗ verifies the Radon–Nikodym property (RNP) with respect to Lebesgue measure in [0, T ].

The spaces characterizing the above representability property were firstly called Gelf’and
spaces and can be characterized as those spaces so that any absolutely continuous functions f :
[0, T ] −→ X are differentiable almost everywhere, see [105, Definition IV.3.1]. Later, RNP was
proved as the key point for Banach-valued meausures to verify the Radon-Nikodym theorem
and both concepts were unified. Specifically, Gelf’and spaces agree with the spaces that verify
the RNP with respect to Lebesgue space, see [105, Theorem IV.3.2]. In addition, as shown
in [105, Corollary V.3.8], a space verifies RNP with respect to Lebesgue measure in [0, T ] if,
and only if, it verifies RNP with respect to every finite measure space. As a consequence, we
simply say RNP independently on the fixed measure space. Several classical results attempt
to characterize the spaces with RNP but a comprehensive classification has not been achieved
so far. The most important examples of such Banach spaces were found by Philips, Dunford
and Pettis and can be summarized in the following result, [105, Corollary III.2.13 and Theorem
III.3.1].

Proposition A.0.7. Let X be a Banach space:

1. (Philips) If X is reflexive, then X has the RNP.

2. (Dunford-Pettis) If X = Y ∗ is a separable dual, then X has the RNP.

Remark A.0.8. In this thesis, we are interested in applying the duality result in Theorem B.0.1 to
several situations in order to endow the corresponding Lebesgue-Bochner space with a weak-* topology
so that weak-* compactness can be derived from Alaouglu-Bourbaki theorem. Let us illustrate a few
examples:
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1. If X = Lq(Rd) with 1 < q <∞, then reflexivity guarantees

Lp
′
(0, T ;Lq

′
(Rd)) ≡ Lp(0, T ;Lq(Rd))∗,

for any 1 ≤ p <∞. Similar comments follow for X = W k,q(Rd) with k ∈ N and 1 < q <∞.

2. If X = C0(Rd), then X∗ = M(Rd) is the space of finite Radon measures in Rd. Of course,
reflexivity is not true and first criterion by Philips does not work. Also, notice that the map

Φ : Rd −→ M(Rd),
x 7−→ δx,

allows embedding Rd as an uncountable and discrete subset ofM(Rd). Of course, this prevents
M(Rd) from being separable and, in turns, we cannot expect that such space verifies RNP.

The second example in last Remark shows that the classical representation in Theorem B.0.1
fails for Lp(0, T ;C0(Rd)) and one has to find an alternative representation for its dual space.
Although this idea was explored in the seminal paper [36], the authors did not account for
a simple representation in terms of nice spaces, as they based their results in the theory of
vector-valued measures. However, another approach was later obtained through the existence
of lifting, see [173, 174]. To that end, we shall introduce the following short of weak-* Lebesgue-
Bochner spaces.

Definition A.0.9 ([124, 173, 174, 239]). Consider a Banach space X . We will define

Lpw(0, T ;X∗) :=

{
f : [0, T ] −→ X∗ :

〈f, x〉 ∈ Lp(0, T ) for all x ∈ X,
and sup

‖x‖X≤1
‖ 〈f, x〉 ‖Lp(0,T ) <∞,

}

for any 1 ≤ p ≤ ∞. Notice that the above just implies that f is weak-* measurable but not (strongly)
measurable. In this way, Lpw(0, T ;X∗) becomes a Banach space endowed with the norm

‖f‖Lpw(0,T ;X∗) = sup
‖x‖X≤1

‖ 〈f, x〉 ‖Lp(0,T ).

Again, we actually identify it with its quotient by another (different) relation

f ≈ g ⇐⇒ 〈f(t), x〉 = 〈g(t), x〉 a.e. t ∈ [0, T ], for any x ∈ X.

Notice that for ≈, the negligible subset of [0, T ] depends on x ∈ X , as opposed to ∼ in Definition A.0.4.

Notice that, by definition, the weak-* Lebesgue–Bochner spaces are larger than their stronger
versions, i.e.,

Lp(0, T ;X∗) ⊆ Lpw(0, T ;X∗),

although the identity is not necessarily true. See more details about this relation in the follow-
ing remark.

Remark A.0.10. 1. WhenX is separable, we can span the unit ballBX with a countable subset and
prove that relations ∼ and ≈ do agree. In addition, for any f ∈ Lpw(0, T ;X∗), ‖f‖X ∈ Lp and

‖f‖Lpw(0,T ;X∗) = ‖‖f‖X‖Lp(0,T ).

Nevertheless, it does not amount to saying that f ∈ Lp(0, T ;X∗) because f is merely weak-*
measurable, but not (strongly) measurable.
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2. However, when X∗ is separable not only we recover all the above (notice that it implies that X
is separable), bur also, a similar result to Pettis measurability theorem like in A.0.2 ensures that
weak-* and strong measurability agree and we can them conclude that

Lp(0, T ;X∗) = Lpw(0, T ;X∗),

with equality of norms ‖ · ‖Lp(0,T ;X∗) = ‖ · ‖Lpw(0,T ;X∗).

These spaces have proved useful to complete the representability properties of the dual
space of Lebesgue–Bochner spaces when X∗ fails the RNP. This is the main result in this part,
whose proof can be found in [173] and [174, p. 95 and 99] and a more simplified exposition has
been given in [239, Theorem 10.1.16] [124, Theorems 12.2.11 and 12.9.2].

Theorem A.0.11. Let X be a Banach space, set 1 ≤ p <∞ and consider the mapping

Φ̃p : Lp
′
w (0, T ;X∗) −→ Lp(0, T ;X)∗,

f 7−→ Φ̃p[f ],

〈
Φ̃p[f ], g

〉
=

∫

[0,T ]
〈f(t), g(t)〉 dt,

for any g ∈ Lp(0, T ;X). Then, Φ̃p is a surjective isometry.

Corollary A.0.12. Consider any 1 ≤ p <∞. Then,

Lp
′
w (0, T ;M(Rd)) ≡ Lp(0, T ;C0(Rd))∗.

Finally, observe that the above ideas can be actually extended to Sobolev-type spaces Bochner
and weak Bochner spaces.

Definition A.0.13 (Sobolev–Bochner spaces). Consider a Banach space X . We define

W 1,p(0, T ;X) :=
{
f : [0, T ] −→ X : f ∈ Lp(0, T ;X) and f ′ ∈ Lp(0, T ;X)

}
,

for any 1 ≤ p ≤ ∞, where f ′ denotes the distributional derivative in the space of Banach-valued distri-
butions D′((0, T ), X). In this way, the vector space W 1,p(0, T ;X) becomes a Banach spaces endowed
with the norms

‖f‖W 1,p(0,T ;X) :=
(
‖f‖pLp(0,T ;X) + ‖f ′‖pLp(0,T ;X)

) 1
p
.

Definition A.0.14 (Weak-* Sobolev–Bochner spaces). Consider a Banach space X . We define

W 1,p
w (0, T ;X∗) :=

{
f : [0, T ] −→ X∗ :

〈f, x〉 ∈W 1,p(0, T ) for all x ∈ X,
and sup

‖x‖X≤1
‖ 〈f, x〉 ‖W 1,p(0,T ) <∞,

}

for any 1 ≤ p ≤ ∞. Again, notice that it does not imply that f and the distributional derivative f ′

are (strongly) measurable, but just weak-* measurable. In this way, the vector space W 1,p
w (0, T ;X∗)

becomes a Banach spaces endowed with the norms

‖f‖W 1,p(0,T ;X) := sup
‖x‖X≤1

‖ 〈f, x〉 ‖W 1,p(0,T ).

Again, by definition we have the relation

W 1,p(0, T ;X∗) ⊆W 1,p
w (0, T ;X∗),

and similar comments to those in Remark A.0.10 follow. Since we will not use it in this thesis,
we will not address here the duality properties of the Sobolev–Bochner and their weak versions.

427





APPENDIX B

Weak versions of the Banach-valued Ascoli–Arzelà theorem

In this appendix, we will continue the lines in the preceding part and we shall now recall some
weak version of the Ascoli-Arzelà theorem for Banach-valued functions. Although the proof
is often referred as folklore, we will give a simple derivation supported by classical arguments
inspired in Cantor diagonalization method as in the standard proof of the scalar case of Ascoli–
Arzelà theorem. The main idea is to replace Weierstrass theorem in the scalar case, by other
more sophisticated (weak or weak-*) compactness results originated in the classical Alaoglu-
Bourbaki theorem.

Theorem B.0.1. Let X be a Banach space and consider the associated space C([0, T ], X∗), where X∗

represents the topological dual of X endowed with its dual norm. Consider some sequence {fn}n∈N in
C([0, T ], X∗) and assume that the following condition are fulfilled

(Uniform boundedness) sup
n∈N

max
t∈[0,T ]

‖fn(t)‖X∗ =: M < +∞, (B.0.1)

(Uniform equicontinuity) ∀ ε > 0, ∃ δ > 0 s.t. sup
n∈N

max
|t1−t2|<δ

‖fn(t1)− fn(t2)‖X∗ ≤ ε. (B.0.2)

Then, there is a subsequence {fσ(n)}n∈N and some limiting f ∈ C([0, T ], X∗) such that fσ(n) → f in
C([0, T ], X∗ − weak ∗), that is to say,

lim
n→∞

max
t∈[0,T ]

|
〈
fσ(n)(t)− f(t), x

〉
| = 0, ∀x ∈ X.

Here 〈·, ·〉 represents the duality pairing of the Banach space X and its topological dual X∗.

Proof. Let us consider the intervals

In(t) :=

(
t− 1

n
, t+

1

n

)
∩ [0, T ],

for any t ∈ [0, T ] and each n ∈ N and notice that {In(t) : t ∈ [0, T ]} defines an open covering
of [0, T ] for each fixed n ∈ N. By compactness, let us select some finite subset Sn ⊆ [0, T ]
so that {In(t) : t ∈ Sn} is still a covering for each fixed n ∈ N and define the countable set
S := ∪n∈NSn. Since it is countable we can enumerate all their elements

S = {si : i ∈ N}.

429



CONCLUSIONS AND PERSPECTIVES

• Step 1: Cantor diagonal argument.
For t = s1 (the first item) notice that {fn(s1)}n∈N is a bounded sequence of X∗ by virtue of

(B.0.1). Then, the Alaouglu-Bourbaki theorem allows extracting a subsequence {fσ1(n)(s1)}n∈N
that converges weakly * in X∗. For t = s2 (the second item) notice that {fσ1(n)(s2)}n∈N is again
a bounded sequence of X∗ and the Alaouglu-Bourbaki theorem allows finding a new sub-
sequence {fσ2(n)(s2)}n∈N that converges weakly *. Obviously, {fσ2(n)(s1)}n∈N also converges
weakly * to the above limit in the preceding step by construction. By induction, we obtain a
family of nested subsequences {fσk(n)} that verify that {fσk(n)(si)}n∈N weakly * converges for
every i = 1, . . . , k and each k ∈ N. Consider the Cantor diagonal subsequence corresponding to
the choice σ(n) := σn(n), that is, {fσ(n)}n∈N ≡ {fσn(n)}n∈N and notice that all the above imply
that

{fσ(n)(si)}n∈N converges weakly ∗, (B.0.3)

for every i ∈ N.
• Step 2: Weak-* Cauchy condition.
Let us now fix x ∈ X\{0} and ε > 0. Assumptions (B.0.2) imply that there exists δ = δx,ε > 0

so that the following inequality holds true

‖fσ(n)(t1)− fσ(n)(t2)‖X∗ ≤
ε

3‖x‖X∗
, (B.0.4)

for every |t1 − t2| ≤ δ and any n ∈ N. Consider k = kx,ε ∈ N large enough so that 1
k < δ. Since

Sk consists of finitely many terms, it is clear that the convergence (B.0.3) implies the existence
of some N = Nx,ε ∈ N so that

|
〈
fσ(n)(s)− fσ(m)(s), x

〉
| ≤ ε

3
, (B.0.5)

for each n,m ≥ N and for each s ∈ Sk. Recall that {Ik(s) : s ∈ Sk} is a finite open covering of
[0, T ] and consider any t ∈ [0, T ]. Then, we take si ∈ Sk for some i ∈ N so that t ∈ Ik(si), that
is, |t− si| < 1

k < δ. Consequently for any n,m ≥ N we obtain

|
〈
fσ(n)(t)− fσ(m)(t), x

〉
|

≤ |
〈
fσ(n)(t)− fσ(n)(si), x

〉
|+ |

〈
fσ(n)(si)− fσ(m)(si), x

〉
|+ |

〈
fσ(m)(si)− fσ(m)(t), x

〉
|

≤ 2ε

3
+ |
〈
fσ(n)(si)− fσ(m)(si), x

〉
|

≤ ε,

where we have applied (B.0.4) in the third line and (B.0.5) in the last one. This amounts to the
weak * Cauchy-type condition

max
t∈[0,T ]

| 〈fσn(t)− fσm(t), x〉 | ≤ ε, (B.0.6)

for all n,m ≥ N .
• Step 3: Convergence in C([0, T ], X∗ −weak ∗).
In particular (B.0.6) allows showing that {

〈
fσ(n)(t), x

〉
}n∈N converges as n → ∞ for every

t ∈ [0, T ] and x ∈ X . Then, Banach–Steinhauss’ theorem about uniform converges guarantees
that for every t ∈ [0, T ] there exists f(t) ∈ X∗ so that

{fσ(n)(t)}n∈N ∗
⇀ f(t) in X∗.
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Taking limits as m→∞ in (B.0.6) implies

max
t∈[0,T ]

|
〈
fσ(n)(t)− f(t), x

〉
| ≤ ε,

for all n ≥ N , what proves the convergence part of the thesis. The only that remains is to show
the continuity of the limit f ∈ C([0, T ], X∗) but it clearly follows by taking limits n→∞ in the
uniform equicontinuity condition (B.0.2).

Corollary B.0.2. Let X be a reflexive Banach space and consider the associated space C([0, T ], X).
Consider some sequence {fn}n∈N in C([0, T ], X) and assume that the following condition are fulfilled

(Uniform boundedness) sup
n∈N

max
t∈[0,T ]

‖fn(t)‖X =: M < +∞, (B.0.7)

(Uniform equicontinuity) ∀ ε > 0, ∃ δ > 0 s.t. sup
n∈N

max
|t1−t2|<δ

‖fn(t1)− fn(t2)‖X ≤ ε. (B.0.8)

Then, there is a subsequence {fσ(n)}n∈N and some limiting f ∈ C([0, T ], X) such that fσ(n) → f in
C([0, T ], X − weak), that is to say,

lim
n→∞

max
t∈[0,T ]

|
〈
x∗, fσ(n)(t)− f(t)

〉
| = 0, ∀x∗ ∈ X∗.

Here 〈·, ·〉 represents the duality pairing of the Banach space X and its topological dual X∗.

Proof. Consider the canonical isometry of X into its bidual X∗∗

J : X −→ X∗∗,

where 〈J(x), x∗〉 = 〈x∗, x〉, for every x ∈ X and x∗ ∈ X∗. Recall that by reflexivity we can
identify X-weak with X∗∗-weak *. Then, the corollary follows from a simple application of
Theorem B.0.1 to the sequence {J(fn)} ∈ C([0, T ], X∗∗).
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APPENDIX C

The Hardy–Littlewood–Sobolev inequality

Since it is used along this thesis, we briefly recall the Hardy–Littlewood–Sobolev inequality for
the reader’s convenience. We split the classical result into three distinguished parts. Firstly, we
recall the Lq integrability of fractional integrals Iβf := | · |−(d−β) ∗ f associated with a Riesz
kernel |x|−(d−β) and a Lp density f . Secondly, we shall address the case of L∞ bounds for Iβf .
Finally, we address the fall-off of fractional integrals in terms of the corresponding decay of the
corresponding densities.

Definition C.0.1 (Weak Lp spaces). For any 1 ≤ p ≤ ∞ we define the weak Lp space as follows

Lp,∞(Rd) := {f : Rd −→ R : f is measurable and sup
λ>0

λµf (λ)1/p <∞},

where µf represents the distribution function of f , that is,

µf (λ) =
∣∣∣{x ∈ Rd : |f(x)| > λ}

∣∣∣ , for all λ ≥ 0.

So defined, Lp,∞(Rd) becomes a quasinormed space with the quasinorm

‖f‖Lp,∞(Rd) := sup
λ>0

µf (λ)1/p.

Theorem C.0.2 (Hardy–Littlewood–Sobolev inequality). Consider any exponent β ∈ (0, d) and set
1 ≤ p < q <∞ so that the following identity fulfils

1

q
=

1

p
− β

d
.

Then:

1. If p > 1 then there exists C > 0 so that

‖Iβf‖Lq(Rd) ≤ C‖f‖Lp(Rd),

for every f ∈ Lp(Rd).
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2. If p = 1, then there exists C > 0 so that

‖Iβf‖Lq,∞(Rd) ≤ C‖f‖L1(Rd),

for every f ∈ L1(Rd).

We refer to [278, Theorem 1.2.1] for the standard proof, that follows from Marcinkiewicz’
interpolation theorem, see [279, Theorem 2.4]. Notice that in the above Theorem C.0.2, we must
exclude q = ∞ the case. Hence, simple Lp integrability of f is not enough to ensure that
the factional integral can be bounded. In the following result, we address such later case by
requiring further assumptions on f .

Theorem C.0.3. Consider any exponent β ∈ (0, d) and set 1 ≤ p < q ≤ ∞ so that

1

q
<
β

d
<

1

p
.

Then, there exists a constant C > 0 so that

‖Iβf‖L∞(Rd) ≤ C‖f‖
(β
d
− 1
q

)/( 1
p
− 1
q

)

Lp(Rd)
‖f‖(

1
p
−β
d

)/( 1
p
− 1
q

)

Lq(Rd)
,

for every f ∈ Lp(Rd) ∩ Lq(Rd).

We omit the proof and refer to [137, 278]. The above Theorem C.0.2 quantifies the decay of
fractional integrals Iβf in Lp spaces. However, it is possible to derive some pointwise decay of
Iβf from pointwise fall-off of f at infinity. This is the content of our last result.

Theorem C.0.4. Consider any exponent β ∈ (0, d) and set any measurable function f : RN −→ R.
Then, we have:

1. If f = O(|x|−ρ) as |x| → +∞, where β < ρ < d then,

|Iβf(x)| ≤ C‖|x|ρf‖L∞(Rd)|x|−(ρ−β),

holds for every x ∈ Rd. Here, C stands for a positive constant that depends on d, β and ρ but does
not depend on f .

2. The optimal decay |x|−(d−β) is obtained in the compactly supported case, i.e.,

|Iβ(x)‖ ≤ C‖f‖L∞(Rd)|x|−(d−β),

for every x ∈ Rd, as long as f ∈ L∞(Rd) has compact support inside some ball BR0(0). Now, not
only does C depend on d and β but also on the size R0 > 0 of the support.

Proof. • Step 1. First item.
Fix any constant 0 < R < 1 (e.g., R = 1/2) and split the integral we are interested in into

the next two parts ∫

Rd

1

|x− y|d−β f(y) dy = I1 + I2,

where
I1 =

∫

BR|x|(0)

1

|x− y|d−β f(y) dy, I2 =

∫

Bc
R|x|

1

|x− y|d−β f(y) dy.
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In order to estimate I1, notice that

y ∈ BR|x|(0) =⇒ |x− y| ≥ (1−R)|x|.

Therefore, I1 is bounded by
∫

BR|x|(0)

1

|x− y|d−β |f(y)| dy ≤ K

(1−R)d−β
1

|x|d−β
∫

BR|x|(0)

1

|y|ρ dy

=
Kωd

(1−R)d−β
1

|x|d − β

∫ R|x|

0
rd−1 1

rρ
dr

=
Kωd
d− ρ

Rd−ρ

(1−R)d−β
1

|x|ρ−β .

Here K := ‖|x|−ρf‖L∞(Rd) and ωd stands for the (d − 1)-dimensional area of the unit sphere
in Rd. It is worth remarking that we are dealing with finite integrals as a consequence of the
hypothesis ρ < d. Similarly, the second integral, I2, can also be split as follows
∫

BR|x|(0)c

1

|x− y|d−β |f(y)| dy

=

∫

BR|x|(x)\BR|x|(0)

1

|x− y|d−β |f(y)| dy +

∫

(BR|x|(0)∪BR|x|(x))c

1

|x− y|d−β |f(y)| dy.

An analogous argument can be used to obtain the next upper bound of the first term
∫

BR|x|(x)\BR|x|(0)

1

|x− y|d−β |f(y)| dy

≤
∫

BR|x|(x)

1

|x− y|d−β |f(y)| dy ≤ K
∫

BR|x|(x)

1

|x− y|d−β
1

|y|ρ dy

= K

∫

BR|x|(0)

1

|x− y|ρ
1

|y|d−β dy ≤
Kωd
β

R−β

(1−R)ρ
1

|x|ρ−β .

This time, integrals are finite due to the hypothesis β < ρ. Regarding the second term, let us de-
compose the integral into two parts once more. The appropriate subdomains to be considered
are

A = {y ∈ (BR|x|(0) ∪BR|x|(x))c : |x− y| ≤ |y|},
B = {y ∈ (BR|x|(0) ∪BR|x|(x))c : |x− y| > |y|}.

Let us complete the proof of the first inequality with the following estimates for the integrals
over A and B, which follow from the same reasoning involving the hypothesis β < ρ:

∫

A

1

|x− y|d−β |f(y)| dy

≤ K
∫

A

1

|x− y|d−β
1

|y|ρ dy ≤ K
∫

A

1

|x− y|d−β+ρ
dy ≤ K

∫

BR|x|(x)c

1

|x− y|d−β+ρ
dy

= Kωd

∫ +∞

R|x|
rd−1 1

rd−β+ρ
dr =

Kωd
ρ− β

1

Rρ−β
1

|x|ρ−β ,∫

B

1

|x− y|d−β |f(y)| dy
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≤ K
∫

B

1

|x− y|d−β
1

|y|ρ dy ≤ K
∫

B

1

|y|d−β+ρ
dy ≤ K

∫

BR|x|(0)c

1

|y|d−β+ρ
dy

= Kωd

∫ +∞

R|x|
rd−1 1

rd−β+ρ
dr =

Kωd
ρ− β

1

Rρ−β
1

|x|ρ−β .

• Step 2. Second item.
Let us start with |x| > 2R0, so that

∣∣∣∣
(

1

|x|d−β ∗ f
)

(x)

∣∣∣∣ ≤
∫

BR0
(0)

1

|x− y|d−β |f(y)| dy.

Notice that whenever y ∈ BR0(0), then one has

|x− y| ≥ |x| − |y| ≥ |x| −R0 =

(
1− R0

|x|

)
|x| ≥ 1

2
|x|.

Therefore ∣∣∣∣
(

1

|x|d−β ∗ f
)

(x)

∣∣∣∣ ≤
2d−β

|x|d−β ‖f‖L1(Rd) ≤ 2d−β|BR0(0)|
‖f‖L∞(Rd)

|x|d−β .

The case |x| ≤ 2R0 is easier since

y ∈ BR0(0) =⇒ |x− y| ≤ |x|+ |y| < 3R0,

and consenquently, Young’s inequality for the convolution of Lp functions leads to
∣∣∣∣
(

1

|x|d−β ∗ f
)

(x)

∣∣∣∣ ≤
∫

B3R0
(x)

1

|x− y|d−β |f(y)| dy =

∫

B3R0
(0)
|f(x− y)| 1

|y|d−β dy

= |f | ∗
(
χB3R0

(0)
1

|x|d−β
)

(x) ≤
∥∥∥∥

1

|x|d−β
∥∥∥∥
L1(B3R0

(0))

‖f‖L∞(Rd)

≤ (2R0)d−β
∥∥∥∥

1

|x|d−β
∥∥∥∥
L1(B3R0

(0))

‖f‖L∞(Rd)

|x|d−β ,

where 1 ≤ 2R0
|x| has been used in the last inequality.
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APPENDIX D

Set-valued maps and Filippov existence theory

D.1 Filippov theory in the autonomous case

This appendix is devoted to summarize the main basis and tools in the so called Filippov exis-
tence theory. This theory is applicable to an autonomous ODE

{
ẋ = F (x),
x(0) = x0,

where the right hand side F = F (x) is a discontinuous vector field. An analogue theory can
be developed for non-autonomous right hand side F = F (t, x) with a explicit dependence on
time. For simplicity, we shall address first the time-independent case and will postpone the
non-autonomous case to the following section. The heuristic idea to solve such system for a
general discontinuous F = F (x) is to replace the above dynamical system by an appropriate
differential inclusion {

ẋ ∈ F(x),
x(0) = x0,

where F : Rd −→ 2R
d

is a set-valued map with nice properties that extends the single-valued
map F in the sense

F (x) ∈ F(x), for all x ∈ Rd.

For more information about this topic, we refer to the textbooks [14, 130]. Let us first introduce
the necessary notation that will be used here on: 2R

d
stands for the power set of Rd, |N | for the

Lebesgue measure of any measurable set N ⊆ Rd, co(A) is the convex hull of A and co(A) =
co(A) is its closure. For every convex set C we denote

m(C) := {x ∈ C : |x| ≤ |y| for all y ∈ C},

that is the element of minimal norm of C, i.e. m(C) = πC(0), where πC is the orthogonal
projection operator over the convex set C. The main ingredient will be the Fillipov set-valued
map of Filippov’s convexification of a given single-valued measurable map.
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Definition D.1.1. Let F : Rd −→ Rd be any measurable map. The Filippov set-valued map F :

Rd −→ 2R
d is defined for any x ∈ Rd as follows

F(x) :=
⋂

δ>0

⋂

|N |=0

co (F (Bδ(x) \ N )) .

Before we discuss why the Filippov set-valued map in Definition D.1.1 is well-behaved, let
us recall some useful extension of standard definitions for single-valued functions case to the
set-valued setting that will be used along this thesis.

Definition D.1.2. Let F : Rd −→ 2R
d be a set-valued map.

1. (Lower and upper inverse)
The lower and upper inverses of F are respectively defined as follows

F−(B) := {x ∈ Rd : F(x) ∩B 6= ∅},
F+(B) := {x ∈ Rd : F(x) ⊆ B},

for any subset B ⊆ Rd.

2. (Lower and upper semicontinuity)

• F is called lower semicontinuous when

O ⊆ Rd open =⇒ F−(O) is open.

A sequencial characterization of such property is that for any sequence {xn}n∈N ⊆ Rd, any
x ∈ Rd such that xn → x and any X ∈ F(x) there exists {Xn}n∈N ⊆ Rd with Xn → X .

• F is called upper semicontinuous when

O ⊆ Rd open =⇒ F+(O) is open.

A sequencial characterization of such property is that for any sequence {xn}n∈N, any x ∈ Rd
such that xn → x, and any open set O ⊇ F(x) there exists n0 ∈ N such that O ⊇ F(xn)
for every n ≥ n0.

3. (Graph of a set-valued map)
The graph of the set-valued map F is defined as follows

Graph(F) := {(x,X) : X ∈ F(x), x ∈ Rd}.

In particular, the graph ofF is closed if, and only if, for any couple of sequences {xn}n∈N, {Xn}n∈N ⊆
Rd and any couple x,X ∈ Rd such that Xn ∈ F(xn) for any n ∈ N and xn → x, we have that
X ∈ F(x).

4. (One-sided Lipschitz-continuity)
The set-valued map F is called one-sided Lipschitz with constant L > 0 when for every couple
x, y ∈ Rd and any X ∈ F(x), Y ∈ F(y) the following inequality fulfils

|(X − Y ) · (x− y)| ≤ L|x− y|2.

The main interest in considering such map can be summarized in the next couple of results,
see for instance [14, Theorem 2.1.3, Theorem 2.1.4, Proposition 2.1.1].
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Lemma D.1.3. Let F : Rd −→ Rd be any measurable map and consider its Filippov set-valued map F .
Then,

1. F(x) is a closed and convex set for every x ∈ Rd.

2. F (x) ∈ F(x) for almost every x ∈ Rd.

3. If F is continuous at x ∈ Rn, then F(x) = {F (x)}.

4. If F takes non-empty values, then F is has closed graph.

5. If F has closed graph and m(F)(Ux) lies in a compact set for some neighborhood Ux of each
x ∈ Rd, then F is upper semicontinuous.

6. If F is locally essentially bounded, thenF is upper semicontinuous, it takes non-empty values and
m(F)(Ux) lies in a compact set for some neighborhood Ux of each x ∈ Rd.

7. If F is essentially bounded, then F is upper semicontinuous, it takes non-empty values and
m(F)(Rd) lies in a compact set.

Here m(F) stands for the map m(F)(x) := m(F(x)) for every x ∈ Rd.

Lemma D.1.4. Let F : Rd −→ 2R
d be any set valued-map with non-empty closed and convex val-

ues. Assume that F is upper semicontinuous and consider the following initial value problem (IVP)
associated with any given initial datum x0 ∈ RN :

{
ẋ ∈ F(x),
x(0) = x0.

1. If m(F)(Ux) lies in a compact set for some neighborhood Ux of any x ∈ Rd, then (IVP) has an
absolutely continuous local-in-time solution.

2. If m(F)(Rd) lies in a compact set, then (IVP) has an absolutely continuous global-in-time solu-
tion.

Putting together Lemmas D.1.3 and D.1.5 we arrive at the next result.

Lemma D.1.5. Let F : Rd −→ Rd be any measurable map and consider its Filippov set-valued map F .
Consider the following initial value problem (IVP) associated with any given initial datum x0 ∈ Rd:

{
ẋ ∈ F(x),
x(0) = x0.

1. If F is locally essentially bounded, then (IVP) has an absolutely continuous local-in-time solution.

2. If, in addition, F is globally essentially bounded, then such a solution is indeed global.

The solutions to such differential inclusion are called solutions in Filippov’s sense to the orig-
inal discontinuous dynamical system. To deal with uniqueness we first introduce the next
technical result.

Lemma D.1.6. Let F : Rd −→ Rd be a measurable and locally essentially bounded map and consider
its associated Filippov set-valued map F : Rd −→ 2R

d . If F verifies the one-sided Lipschitz-condition
a.e., then F also verifies it in the set-valued sense, see Definition D.1.2.
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Proof. Consider any couple x, y ∈ Rd and fix X ∈ F(x), Y ∈ F(y). Also fix any δ > 0 (assume
δ < 1 without loss of generality) and any negligible set N . Using the definition of H, the
following properties hold true

X ∈ co
(
F (Bδ(x) \ N )

)
and Y ∈ co

(
F (Bδ(y) \ N )

)
.

Then, one can take a couple of sequences {Xn}n∈N ⊆ Rd and {Yn}n∈N ⊆ Rd such that Xn → X ,
Yn → Y and

Xn ∈ co
(
F (Bδ(x) \ N )

)
and Yn ∈ co

(
F (Bδ(y) \ N )

)
,

for every n ∈ N. Therefore, the Caratheodory theorem from convex analysis allows restating
Xn and Yn as a convex combination

Xn =
d+1∑

i=1

αni F (xni ) and Yn =
d+1∑

j=1

βnj F (ynj ),

where xni ∈ Bδ(x) \ N , ynj ∈ Bδ(y) \ N and the coefficients αni , β
n
j ∈ [0, 1] verify

d+1∑

i=1

αni = 1 =
d+1∑

j=1

βnj .

Note that

Xn =
d+1∑

i=1

d+1∑

j=1

αni β
n
j F (xni ) and Yn =

d+1∑

i=1

d+1∑

j=1

αni β
n
j F (ynj ).

By defining the constants

Mx := ess sup
z∈B1(x)

|F (z)| and My := ess sup
z∈B1(y)

|F (z)|,

we have

(Xn − Yn) · (x− y) =
( d+1∑

i,j=1

αni β
n
j

(
F (xni )− F (ynj )

))
· (x− y)

=

d+1∑

i,j=1

αni β
n
j

((
F (xni )− F (ynj )

)
· (x− y)

)

=

d+1∑

i,j=1

αni β
n
j

((
F (xni )− F (ynj )

)
· (xni − ynj )

+
(
F (xni )− F (ynj )

)
·
(
(x− xni )− (y − ynj )

))

≤
d+1∑

i,j=1

αni β
n
j

(
M |xni − ynj |2 + 2(Mx +My)δ

)

≤
d+1∑

i,j=1

αni β
n
j

(
M(|x− y|+ 2δ)2 + 2(Mx +My)δ

)

= M(|x− y|+ 2δ)2 + 2(Mx +My)δ.

Since the above property holds for arbitrary n ∈ N and 0 < δ < 1, we obtain

(X − Y ) · (x− y) ≤M |x− y|2.
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Lemma D.1.7. Let F : Rd −→ Rd be a measurable and essentially bounded vector field and consider
the Filippov set–valued map F : Rd −→ 2R

d
. In addition, assume that F verifies the local one-sided

Lipschitz condition. Then, the following initial value problem (IVP) associated with any initial config-
uration x0 ∈ RN enjoys one global-in-time absolutely continuous solution, that is unique forwards in
time {

ẋ ∈ F(x),

x(0) = x0.

Proof. The existence of global-in-time Filippov’s solutions follows from Lemma D.1.5. Let us
just discuss the uniqueness of solution. We consider two Filippov solutions x1 = x1(t) and
x2 = x2(t) with the same initial datum x0 and define

T := inf{t > 0 : x1(t) 6= x2(t)}.

Our main goal is to prove that T = +∞ by contradiction. We assume that T < +∞. Let us
define x∗ := x1(T ) = x2(T ) and take a small enough neighborhood V of x∗ so that F verifies
the one-sided Lipschitz condition in it. By continuity there is some ε > 0 so that x1(t), x2(t) ∈ V
for every t ∈ [T, T + ε]. Consequently,

d

dt

1

2
|x1 − x2|2 ∈ (F(x1(t))−F(x2(t))) · (x1(t)− x2(t)).

By the one-sided Lipschitz condition, there exists some constant M depending on x∗ such that

d

dt
|x1 − x2|2 ≤M |x1 − x2|2

for every t ∈ [T, T + ε]. By Grönwall’s lemma, one then obtains x1(t) = x2(t), for every
t ∈ [T, T + ε], and this contradicts the assumption on T < +∞.

D.2 Some remarks in the non-autonomous case

In Chapter 4, we need no apply a similar Filippov theory for non-autonomous vector fields.
The following Lemmas summarize the main results regarding the existence of absolutely con-
tinuous solution to differential inclusions, see [14, 130, 205, 249].

Lemma D.2.1. Let F : R+
0 ×Rd −→ Rd be any measurable map. Assume that for every compact subset

K ⊆ R+
0 × Rd there exists a nonnegative function mK ∈ L1

loc(R
+
0 ) such that

|F (t, x)| ≤ mK(t), ∀ (t, x) ∈ K. (D.2.1)

Consider its associated Filippov set-valued map with respect to the variable x, namely,

K[F (t, ·)](x) =
⋂

δ>0

⋂

|N |=0

co(F (t, Bδ(x) \ N )), (D.2.2)

for all (t, x) ∈ R+
0 × RN . Then, it satisfies the following properties:

1. K[F (t, ·)](x) is non-empty, convex and compact for a.e. t ≥ 0 and every x ∈ Rd.

2. The set-valued map t ∈ R+
0 7−→ K[F (t, ·)](x) is Effros-measurable for every x ∈ Rd.

3. K[F (t, ·)] is upper semicontinuous for a.e. t ≥ 0.
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4. For every compact subset K ⊆ R+
0 × Rd and the above mK ∈ L1

loc(R
+
0 ) one has

|m(K[F (t, ·)](x)| ≤ mK(t), ∀ (t, x) ∈ K. (D.2.3)

Here, m(C) = πC(0) and πC is the orthogonal projection operator onto the convex set C. In other
words, the above condition (D.2.3) equivalently reads

dist(0,K[F (t, ·)](x))) ≤ mK(t), ∀ (t, x) ∈ K.
The proof follows the same ideas as Lemma D.1.1 for autonomous fields and we omit it.

Our next result shows the appropriate conditions on the non-autonomous set valued map F
that guarantee the existence of absolutely continuous solutions to the differential inclusion.

Lemma D.2.2. Let F : R+
0 × Rd −→ 2R

d be any set-valued map. Assume that it fulfills the following
assumptions:

1. F takes non-empty, convex and compact values.

2. F(·, x) is Effros-measurable for every x ∈ Rd.

3. F(t, ·) is upper semicontinuous for a.e. t ≥ 0.

4. For every compact subset K ⊆ R+
0 × Rd there exists a nonnegative mK ∈ L1

loc(R
+
0 ) such that

|m(F(t, x))| ≤ mK(t), ∀ (t, x) ∈ K. (D.2.4)

Consider the following initial value problem (IVP) issued at any initial datum x0 ∈ Rd
{
ẋ ∈ F(t, x),
x(0) = x0.

Then, it has a local-in-time absolutely continuous solution. If the locally integably boundedness condi-
tion (D.2.4) holds true globally, i.e. with K replaced with the whole R+

0 × Rd, then a global-in-time
absolutely continuous solution exists.

A similar result can be found in [14, Theorems 2.1.3, 2.1.4] when F satisfies a stronger
assumption, namely, F is upper semicontinuous in the joint variables (t, x). However, for our
purposes in Chapter 4 (where time upper semicontinuity is missing) such result does not longer
apply. Fortunately, Lema D.2.2 provides a solution when there is not time upper semicontin-
uouty, see [130, Theorem 2.7.5] and [205, 249] for the detailed proofs. Note that such result
becomes a literal translation to the multivalued case of the classical Caratheodory’s existence
theorem for single-valued dynamical system. Finally, putting Lemmas D.2.1 and D.2.2 together,
we arrive at the next result (see [130, Theorem 2.7.8]).

Lemma D.2.3. Let F : R+
0 × Rd −→ Rd be any measurable map and assume that the local integrably

boundedness condition (D.2.1) is satisfied. Let K[F (t, ·)] be the Filippov set-valued map with respect to
x according to (D.2.2). Consider the following initial value problem (IVP) issued at any initial datum
x0 ∈ Rd {

ẋ ∈ K[F (t, ·)](x),
x(0) = x0.

Then, it has a local-in-time absolutely continuous solution. If the locally integably boundedness condi-
tion (D.2.1) holds true globally, i.e. with K replaced with the whole R+

0 × Rd, then a global-in-time
absolutely continuous solution exists.

Similarly, solutions to such differential inclusion are also called Filippov solutions to the orig-
inal discontinuous non-autonomous dynamical system associated with F = F (t, x).
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APPENDIX E

Measurable selections and Castaign representations of set-valued
maps

In this part, we recall to the reader all the main concepts to deal with measurable selections
Castaign-type representations of set-valued maps. For further details, we refer to [69, 197]. Such
techniques prove useful tools, that we use in Chapter 3. In particular, it allows identifying Fil-
ippov solutions of systems with discontinuous right hand side (recall Appendix D) as singular
limit of regularized systems when the convergence is very weak, but the structure of the Filip-
pov set-valued map is more explicit and is given in terms of an appropriate H-representation.
Compared to the results in the preceding Appendix D, the required regularity of the set-valued
map is much lower. Indeed, the main concept is a set-valued adaptation of classical measura-
bility condition for single-valued maps, namely, Effros measurability.

Definition E.0.1 (Effros measurability). Consider n,m ∈ N and any set-valued map F : Rn −→
2R

m . F is called Effros-measurable when the following property holds true (recall Definition D.1.2):

O ⊆ Rm open =⇒ F−(O) is measurable.

The following result constitutes the basis in the existence theory of measurable selections
for set-valued maps. See [197] for the original proof or the textbook [69, Theorem III.6] for this
and other related selection theorems.

Lemma E.0.2 (Kuratowski–Ryll–Nardzewski). Consider n,m ∈ N and any set-valued map F :
Rn −→ 2R

m with values in the non-empty and closed subsets of Rm. Assume that F is Effros-
measurable. Then, F has a measurable selection, i.e., there exists a measurable function F : Rn −→ Rm
such that

F (x) ∈ F(x), a.e. x ∈ Rn.

Sometimes, it is helpful to control how many of these single-valued measurable selections
of the Effros-measurable set-valued map do we need in order to essentially have the whole
set-valued map “represented” in some sense. This is the content of an intimately related result:
the Castaing representation theorem, see [69, Theorem III.30].

Lemma E.0.3 (Castaing). Consider any n,m ∈ N and any set-valued map F : Rn −→ 2R
m with

values in the non-empty and closed subsets of Rm. Assume that F is Effros-measurable. Then F has
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a Castaing representation, i.e., there exists a sequence {F k}k∈N of measurable maps F k : Rn −→ Rm
such that

F(x) = {F k(x) : k ∈ N}, a.e. x ∈ Rn.

For its applications when the right hand side of the differential inclusion is not only dis-
continuous but also unbounded (see Subsection 3.4.2), we require an adaptation of the above
theorem to allow for integrable representations of the set-valued map. The key observation
is that the Effros-measurability has to be improved to some extra integrability condition for
set-valued maps.

Lemma E.0.4. Consider n,m ∈ N and any set-valued map F : Rn −→ 2R
m with values in the non-

empty and closed subsets of Rm. Assume that F is Effros-measurable and strongly integrable, that is,
the single-valued map |F| is integrable, where |F| is defined by

|F|(x) := sup{|X| : X ∈ F(x)}, a.e. x ∈ Rn.

Then, every measurable selection of F is integrable. In particular, F enjoys a Castaing representation
consisting of integrable selections.

Proof. Let us take any measurable selection F of the set-valued F , that exists by Lemma E.0.2.
Then, by definition of |F| we obtain

|F (x)| ≤ |F|(x), a.e. x ∈ Rn.

Since |F| is integrable, the first part of the result holds true. The second one is a simple conse-
quence of the first one along with Lemma E.0.3.

Remark E.0.5. Notice that the same ideas as in the above result in Lemma E.0.4 also yield similar
statements for the spaces L1

loc(Rn) and L∞(Rn). Namely,

1. When F is locally strongly integrable, i.e., |F| ∈ L1
loc(Rn), then every measurable selection

belongs to the space L1
loc(Rn).

2. When F is strongly essentially bounded, i.e., |F| ∈ L∞(Rn), then each measurable selection
belongs to the space L∞(Rn).
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APPENDIX F

Optimal transport theory and Wasserstein distances

This appendix is devoted to introduce a brief presentation of the main tools of optimal trans-
port theory that will be used along the thesis. For a detailed presentation of these topics and
its applications we refer to the well known textbooks [9, 268, 296]. We split the contents into
several distinguished sections. The first ones focus on the classical theory of optimal transport
and classical Wasserstein distances in the space of probability measures whilst the last one in-
troduces a new Wasserstein-type distance that we will call the fiberwise quadratic Wasserstein
distance and will be of great use in Chapter 4, specifically in Section 4.4 to derive uniqueness of
weak measure-valued solutions to (4.1.3) with α ∈ (0, 1

2) for generic initial data without further
assumptions on the Ω-moments. Also, see Section 4.6 for analogue derivations in the critical
regime α = 1

2 .

F.1 The Monge–Kantorovich problem

Unless otherwise stated, in this thesis we shall restrict measurable spaces to the class of Polish
spaces, that is, complete separable metric spaces X endowed with its Borel σ-algebra B(X ).

Definition F.1.1 (Transference plans). Let (X ,B(X )) and (Y,B(Y)) be measurable spaces and con-
sider two probability measures µ ∈ P(X ) and ν ∈ P(Y). A transference plan (transport plan or
coupling) for µ and ν is any probability measure γ ∈ P(X × Y) so that µ and ν are their marginals,
that is,

(πx)#γ = µ and (πy)#γ = ν,

where πx and πy are the projections on X and Y respectively. We will denote the family of all those
transference plans by Π(µ, ν).

Definition F.1.2 (Transference plans and deterministic couplings). Let (X ,B(X )) and (Y,B(Y))
be measurable spaces and consider two probability measures µ ∈ P(X ) and ν ∈ P(Y). A measurable
map T : X → Y is a called a transference map (or transport map) if T#µ = ν. Any transference map
has the associated transference plan γT = (I, T )#µ, that is,

∫

X×Y
ϕ(x, y) d(x,y)γT =

∫

X
ϕ(x, T (x)) dxµ,

for any ϕ ∈ Cb(X × Y). Those special transference plans are called deterministic coupling.
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On the one hand, it is clear that transference plans always exist (just take the product mea-
sure µ⊗ν). On the other hand, transference maps do not necessarily exist, but it depends on the
properties of the measure µ. Indeed, the presence of atoms is fateful for them to exist. Notice
that the transport map T associated with a deterministic coupling is defined µ-a.e. in X and,
consequently we call it the transport map.

The main objective of the theory of optimal transport is to solve the Monge–Kantorovich
problem associated with a cost functional c : X × Y −→ [0,+∞]. That is, given µ ∈ P(X ) and
ν ∈ P(Y), we wonder about the solvability of

C(µ, ν) := inf
γ∈Π(µ,ν)

∫

X×Y
c(x, y) d(x,y)γ. (F.1.1)

Specifically, one wants to find a transference plan γ ∈ Π(µ, ν) at which the optimal value of the
transportation cost is achieved. Additionally, one may be interested in understanding when
the solution is unique and whether it is a deterministic coupling for an appropriate transport
map, that is, Monge’s problem. In the following, we state the main results about the existence of
solutions to both problems.

Theorem F.1.3 (Existence of optimal coupling). Let (X ,B(X )) and (Y,B(Y)) be Polish spaces and
consider two probability measures µ ∈ P(X ) and ν ∈ P(Y). Consider a cost functional c : X × Y −→
(−∞,+∞] that is lower semicontinuous so that there exist a couple of functions a : X −→ [−∞,+∞)
and b : Y −→ [−∞,+∞) with a ∈ L1(X , µ) and b ∈ L1(X , ν) and verifying

c(x, y) ≥ a(x) + b(x),

for all x ∈ X and y ∈ Y . Then, the Monge–Kantorovich problem (F.1.1) has a solution.

The proof is a clever application of Prokhorov’s compactness theorem to the subspace of trans-
ference plans Π(µ, ν) along with the lower semicontinuity with respect to the narrow topology
that holds for the transportation functional associated to the cost c, see [296, Theorem 4.1]. Such
abstract result is very often applied to nonnegative cost functionals that guarantee the lower
bound condition by just taking a, b = 0, see [268, Theorem 1.7]. More specifically, a typical sce-
nario is when X = Y and c = d2

2 is the squared distance of the Polish space X . Indeed, in such
particular case the solvability of the Monge–Kantorovich problem via transport map (Monge’s
problem) is easier to analyse. The classical result is due to Y. Brenier, that first solved it in the
Euclidean space.

Theorem F.1.4. Let c(x, y) = 1
2 |x− y|2 in Rd and consider µ, ν ∈ P(Rd) so that
∫

Rd
|x|2 dµ+

∫

Rd
|x|2 dν < +∞.

Assume that µ does not give mass to d − 1 surfaces of class C2. Then, the solution to the Monge–
Kantorovich problem (F.1.3) is unique and it is the deterministic coupling γT associated with a transport
map of the form

T (x) = ∇u(x), for µ-a.e. x ∈ Rd,

for some convex and lower semicontinuous function u : Rd −→ R ∪ {±∞}.
See [268, Theorem 1.22] and [296, Theorem 9.4] for some more recent proofs. This result

has several generalization to more general Polish spaces X and Y than the Euclidean space and
more general cost functionals than the squared distance, see [296, Theorems 5.30, 10.28, 10.38
and Corollary 9.3]. For our purposes we can skip all those details and will simply state the
analogue of Theorem F.1.4 in more general Riemannian manifolds, see [296, Theorem 10.41].
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Theorem F.1.5. Let (M, 〈·, ·〉) be a Riemannian manifold with nonnegative sectional curvature and
consider its Riemannian distance d(·, ·). Consider the cost functional c(x, y) = 1

2d(x, y)2 and set
µ, ν ∈ P(M) so that C(µ, ν) < +∞. Assume that µ is absolutely continuous with respect to the
volume measure. Then the solution to the Monge–Kantovich problem is unique and it is the deterministic
coupling γT associated with a transport map of the form

T (x) = expx(−∇ψ(x)), for µ-a.e. x ∈M.

Here expx represents the exponential map of the Riemannian manifold and ψ is d2

2 -concave, that is,

ψ(x) = inf
y∈M

(
ζ(y)− 1

2
d(x, y)2

)
,

for some function ζ on M .

Notice that Theorem F.1.5 reduces to the classical Theorem F.1.4 if M = Rd. Indeed, notice
that in such case

expx(−∇ψ) = x−∇ψ = ∇
(

1

2
|x|2 − ψ(x)

)
,

and u = 1
2 |x|2 − ψ(x) is convex and lower semicontinuous because ψ is d2

2 -concave, see [268,
Proposition 1.21].

F.2 The classical Wasserstein distances

Definition F.2.1 (Wasserstein space). Consider a Polish space (X ,B(X )) and p ∈ [1,∞). The p-th
Wasserstein space is defined by

Pp(X ) :=

{
µ ∈ P2(X ) :

∫

X
d(x, x0)2 dxµ <∞

}
,

where x0 ∈ X is any arbitrary point and the definition does not depend on the specific x0. For any
µ, ν ∈ Pp(X ) we define the p-th Wasserstein distance between µ and ν by

Wp(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫

X×Y
d(x, y)p d(x,y)γ

) 1
p

.

The case corresponding to p = 1 has a special representation via Kantorovich–Rubinstein
duality formula, that asserts

W1(µ, ν) = sup
[ϕ]C0,1≤1

∫

X
ϕd(µ− ν),

where [ · ]C0,1 denotes the Lipschitz seminorm, that is,

[ϕ]C0,1 = sup
x 6=y

|ϕ(x)− ϕ(y)|
d(x, y)

,

see [296, Theorem 5.10 and Remark 6.5]. Notice that all the above distances are achieved at
some transference plans γ ∈ Π(µ, ν) thanks to Theorem F.1.3. Indeed, Theorems F.1.4 and F.1.5
can be used to characterize when there is an optimal transport map. Specifically, if X = M
is a Riemannian manifold with nonnegative sectional curvature, p = 2 and the first measure
µ is absolutely continuous, the optimal transport map exists. We summarize the main metric
properties of the Wasserstein space in the following result.
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Proposition F.2.2. The Wasserstein space (Pp(X ),B(X )) with p ∈ [1,+∞) is again a Polish space
and the following conditions are equivalent for any sequence {µn}n∈N ⊆ Pp(X ) and any µ ∈ Pp(X ):

1. lim
n→∞

Wp(µn, µ) = 0.

2. µn → µ narrow in P(X ) and
∫

X
d(x, x0)p dxµ

n →
∫

X
d(x, x0)p dxµ.

3.
∫

X
ϕdµn →

∫

X
ϕ, for any continuous function ϕ : X −→ R so that there exists C > 0 with

|ϕ(x)| ≤ C(1 + d(x, x0)p) for all x ∈ X .

F.3 Riemannian structure of P2(M) and Benamou–Brenier formula

When (M, 〈·, ·〉) is a complete Riemannian manifold, the Wasserstein space (P2(M),W2) can be
regarded as an infinite dimensional Riemannian manifold. This comes back to F. Otto [237] that
used it to describe from a geometrical point of view the porous medium equation as a gradient
flow. Here, we shall briefly introduce a naive introduction to this topic that can be useful in
some parts of the thesis. For further details, see [9, 268, 296]

The starting observation is that round any point µ ∈ P2(M) we can take a pointed Gromov–
Hausdorff limit for a family of rescaled spaces P2(M) to define the tangent space TµP2(M) of
P2(M) at µ. Interestingly, such tangent space defined via the limiting process can be identified
with the following closed vector space

T̃µP2(M) := Span({∇ψ : ψ ∈ C1
c (M)})L

2(µ;TM)

with respect to the following norm of tangent vector fields

‖∇ψ‖L2(µ;TM) :=

(∫

M
|∇ψ|2 dµ

)1/2

.

Indeed, we can endow T̃µP2(M) (thus also TµP2(M)) with the associated inner product

〈∇ψ1,∇ψ2〉L2(µ;TM) :=

∫

M
〈∇ψ1,∇ψ2〉 dµ.

In this way, P2(M) acquires an infinite-dimensional Riemannian manifold structure. Although
this construction looks complicated, we can gain some intuition via the following result that
relates tangent vectors to curves of measures with velocity fields in the continuity equation for
such curves of measures.

Theorem F.3.1. Let (M, 〈·, ·〉) be a complete Riemannian manifold and consider any family of measures
{ντ}τ∈[0,1] ⊆ P2(M). Then, the following two properties take place:

1. Assume that the family {ντ}τ∈[0,1] is absolutely continuous in the Wasserstein space, that is, there
exists some nonnegative function δ ∈ L1(0, 1) so that

W2(ντ1 , ντ2) ≤
∫ t2

t1

δ(τ) dτ, for any 0 ≤ τ1 < τ2 ≤ 1.

Then, there exists another family {vτ}τ∈[0,1] of tangent fields with vτ ∈ T̃ντP2(M), so that
‖vτ‖L2(ν;TM) =

∣∣dντ
dτ

∣∣ for a.e. τ ∈ [0, 1] and the following continuity equation fulfils weakly
in the sense of measures

∂µτ
∂τ

+ div(vτµτ ) = 0. (F.3.1)
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2. Conversely, assume that there exists a family of tangent fields {vτ}τ∈[0,1] such that vτ ∈ T̃ντP2(M)

for a.e. τ ∈ [0, 1] and assume that
∫ 1

0 ‖vτ‖L2(ντ ;TM) dτ < ∞ and the above continuity equa-
tion holds true. Then, {ντ}τ∈[0,1] is absolutely continuous and

∣∣dντ
dτ

∣∣ ≤ ‖vτ‖L2(ντ ;TM) for a.e.
τ ∈ [0, 1].

Here |dντdτ | represent the metric derivative of the curve in the Wasserstein space, that is
∣∣∣∣
dντ
dτ

∣∣∣∣ = lim
ε→0

W2(ντ+ε, ντ )

ε
.

This suggest that vτ ∈ T̃ντP2(M) and the abstract tangent vectors dντ
dτ ∈ TντP(M) can be

identified as long as they are related though the continuity equation (F.3.1). Notice that in par-
ticular, this allows regardingP2(M) both as a metric space with distanceW2 and a Riemmanian
manifold with metric 〈·, ·〉L2(µ;TM). Fortunately, both structures are compatible and the Wasser-
stein distance is nothing but the associated Riemmanian distance of the infinite dimensional
Riemannian manifold. This is a consequence of the following result.

Theorem F.3.2. Let (M, 〈·, ·〉) be a complete Riemannian manifold and consider µ1, µ2 ∈ P2(M).
Then, there exists an absolutely continuous minimizing geodesic {ντ}τ∈[0,1] ⊆ P2(M). In addition,
if both µ1 and µ2 are absolutely continuous with respect to the volume measure, then the minimizing
geodesic is unique.

See [296, Corollaries 7.22, 7.23] for a proof and its relation with displacement interpolation (we
will not address such topic here). In particular, such result asserts that the Wasserstein space
(P2(M),W2) is a geodesic space as every couple of measures can be joint via a (Wasserstein)
minimizing geodesic. Recall that geodesic spaces are metric spaces so that its distance between
two points agrees with the inf of lengths of absolutely continuous curves curves joining both
points and it is achieved at some curve, that we call minimizing geodesic. This justifies the
following well known Benamou–Brenier formula for the Wasserstein distance.

Corollary F.3.3 (Benamou–Brenier). Let (M, 〈·, ·〉) be a complete Riemannian manifold and consider
µ1, µ2 ∈ P2(M). Then,

W2(µ1, µ2)2 = min

{∫ 1

0
‖vτ‖2L2(µτ ;TM) dτ : (F.3.1) holds, ντ=0 = µ1 and ντ=1 = µ2

}
.

Proof. By virtue of Theorem F.3.2, we have that

W2(µ1, µ2) = min

{∫ 1

0

∣∣∣∣
dντ
dτ

∣∣∣∣ dτ : {ντ}τ∈[0,1] ⊆ P2(M) is a.c., ντ=0 = µ1 and ντ=1 = µ2

}
.

(F.3.2)
In addition, it is easy to verify that minimizers of the above length functional can be taken with
constant-speed, that is,

∣∣dντ
dτ

∣∣ = Wp(µ
1, µ2) for a.e. τ ∈ [0, 1]. A similar argument shows that

those constant-speed geodesics also solve the minimization problem of the “kinetic energy”
functional, that is,

min

{∫ 1

0

∣∣∣∣
dντ
dτ

∣∣∣∣
2

dτ : {ντ}τ∈[0,1] ⊆ P2(M) is a.c., ντ=0 = µ1 and ντ=1 = µ2

}
.

This implies that W2(µ1, µ2)2 has to agree with such minimum of the kinetic energy and, by
applying Theorem F.3.1, we end the proof.
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See [268, Theorem 5.28] or [23] for the original derivation in the Euclidean space. Finally,
recall that geodesic have very particular tangent vectors. Indeed, in classical Riemannian ge-
ometry we known that those tangent vectors are parallel along the geodesic itself. In the par-
ticular case of Wasserstein geodesics, it must appear as a particular choice of the vector fields
{vτ}τ∈[0,1] in Theorem F.3.1. This is the content of the following result:

Theorem F.3.4. Let (M, 〈·, ·〉) be a complete Riemannian manifold, consider µ1, µ2 ∈ P2(M) and a
minimizing geodesic {ντ}τ∈[0,1] so that ντ=0 = µ1 and ντ=1 = µ2. Then, the following equation holds
true 




∂ντ
∂τ

+ div(∇ψτντ ) = 0,

∂ψτ
∂τ

+
1

2
|∇ψτ |2 = 0, ψτ=0 = ψ0,

(F.3.3)

for some initial datum ψ0 so that −ψ0 is d2

2 -concave. In particular,

W2(µ1, µ2)2 =

∫ 1

0
‖∇ψτ‖2L2(ντ ;TM) dτ =

∫ 1

0

∫

M
|∇ψτ |2 dντ dτ. (F.3.4)

See [296, p. 339].

F.4 The fiberwise quadratic Wasserstein distance in T× R

To start, we recall some useful tool coming form measure theory that allows describing the
disintegrations or conditional probabilities of probability measures defined in a product space.

Theorem F.4.1 (Disintegration). Let X and Y be separable complete metric spaces and define the
projection mapping

πY : X × Y −→ Y,
(x, y) 7−→ y.

Consider any Borel probability measure µ ∈ P(X × Y,B(X × Y )) and the Y -marginal probability
measure ν := (πY )#µ. Then, there exits a Borel measurable map

(Y,B(Y )) −→ P(X,B(X)),
y 7−→ µ(·|y),

such that the following formula holds true

∫

X×Y
ϕ(x, y)d(x,y)µ =

∫

Y

(∫

X
ϕ(x, y) dxµ(·|y)

)
dyν, (F.4.1)

for every Borel-measurable map ϕ : X × Y −→ R.

Such a family {µ(·|y)}y∈Y is called a disintegration of µ or conditional probabilities with
respect to y. It is uniquely defined ν-a.e. in Y , see [9, Theorem 5.3.1] and [102, III.70] for more
details.

In the following result, a new Wasserstein-type distance is introduce in a subspace of P(T×
R). This will be the cornerstone in our uniqueness result to avoid the assumption of bounded
Ω-moments of the solutions.
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Proposition F.4.2 (Fiberwise quadratic Wasserstein distance). Consider any probability measure
g ∈ P(R) and define the subspace of probability measures in P(T×R) that enjoy the same distribution
g of natural frequencies, namely,

Pg(T× R) := {µ ∈ P(T× R) : (πΩ)#µ = g} ,

where πΩ is the projection (N.1). Also, let us define the functional W2,g as follows

W2,g(µ
1, µ2) =

(∫

R
W2(µ1(·|Ω), µ2(·|Ω))2 dΩg

)1/2

, (F.4.2)

for every µ1, µ2 ∈ Pg(T×R), where {µ1(·|Ω)}Ω∈R and {µ2(·|Ω)}Ω∈R stand for their associated families
of disintegrations with respect to Ω. Then, (Pg(T× R),W2,g) is a metric space.

The proof is clear and is a consequence of (disintegration) Theorem F.4.1 along with the
fact that W2(·, ·) is a distance in P(T) and ‖ · ‖L2(R,dg) is a norm in L2(R, dg). Based on the
aforementioned Benamou–Brenier formulation of optimal transportation, we can restate the
fiberwise quadratic Wasserstein distance in terms of fiberwise Wasserstein geodesics. This is the
content of the following result.

Proposition F.4.3. Consider any probability measure g ∈ P(R) and µ1, µ2 ∈ Pg(T × R). For g-a.e.
Ω ∈ R consider a minimizing geodesic {ντ (·|Ω)}τ∈[0,1] so that

ντ=0(·|Ω) = µ1(·|Ω) and ντ=1(·|Ω) = µ2(·|Ω).

Consider the associated family of functions {ψτ (·|Ω)}τ∈[0,1] so that according to Theorem F.3.4 we have




∂ντ (·|Ω)

dτ
+ divz (∇ψτ (·,Ω)ντ (·|Ω)) = 0,

∂ψτ (·,Ω)

∂τ
+

1

2
|∇zψτ (·,Ω)|2 = 0, ψτ=0(·,Ω) = ψ0(·,Ω),

(F.4.3)

for a d2

2 -concave function −ψ0 with respect to z. Then, the following identity holds true

W2,g(µ
1, µ2)2 =

∫ 1

0

∫

T×R
|∇zψτ |2 d(z,Ω)µ

1 dτ (F.4.4)

=

∫

T×R
|∇zψτ |2 d(z,Ω)µ

1, ∀ τ ∈ [0, 1]. (F.4.5)

The proof is a clear application of Theorem F.3.4 in M = T to restate the Wasserstein
distance between the conditional probabilities W2(µ1(·|Ω), µ2(·|Ω)) in terms of the Hamilton–
Jacobi equation (F.3.3), along with definition (F.4.2) to glue all the fiberwise information to-
gether in a weighted g-dependent manner. We then omit it.

The relation between the classical quadratic Wasserstein distance W2 in P(T × R) and the
fiberwise version W2,g in Pg(T×R) is not completely apparent. We sketch the main relation in
the following result.

Proposition F.4.4. Consider g ∈ P2(T) and µ1, µ2 ∈ Pg(T× R). Then,

W2(µ1, µ2) ≤W2,g(µ
1, µ2).

The identity is true when the optimal transference plan γ0 ∈ Π(µ1, µ2) for the quadratic Wasserstein
distance W2 is symmetric with respect to the variables ω and ω′.
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Proof. • Step 1: Proof of the inequality.
Consider for g-a.e. Ω ∈ R the optimal coupling γ0,Ω ∈ Π(µ1(·|Ω), µ2(·|Ω)) for W2,g between

the conditional probabilities µ1(·|Ω) and µ2(·|Ω). Then, we can construct the probability mea-
sure γ ∈ P(T2 × R2) given by

γ := γ0,Ω(z, z′)⊗ δΩ(Ω′)⊗ g(Ω). (F.4.6)

Let us see first that γ ∈ Π(µ1, µ2). To such end, consider ϕ ∈ Cb(T× R) and note that
∫

T×R
ϕd(z,Ω)(π(z,Ω) #γ) =

∫

T2×R2

ϕ(z,Ω) d(z,z′)γ0,Ω dΩ′(δΩ) dΩg

=

∫

T2×R
ϕ(z,Ω) d(z,z′)γ0,Ω dΩg =

∫

T×R
ϕ(z,Ω) dz(πz#γ0,Ω) dΩg

=

∫

T×R
ϕ(z,Ω) dzµ

1(·|Ω) dΩg =

∫

T×R
ϕd(z,Ω)µ

1.

Then, π(z,Ω) #γ = µ1. Similarly note that
∫

T×R
ϕd(z′,Ω′)(π(z′,Ω′) #γ) =

∫

T2×R2

ϕ(z′,Ω′) d(z,z′)γ0,Ω dΩ′(δΩ) dΩg

=

∫

T2×R
ϕ(z′,Ω) d(z,z′)γ0,Ω dΩg =

∫

T×R
ϕ(z′,Ω) dz′(πz′#γ0,Ω) dΩg

=

∫

T×R
ϕ(z′,Ω) dz′µ

2(·|Ω) dΩg =

∫

T×R
ϕd(z′,Ω′)µ

2.

Then we also recover π(z′,Ω′) #γ = µ2. Also note that by definition

W2,g(µ
1, µ2)2 =

∫

R×T2

d(z, z′)2 d(z,z′)γ0,Ω dΩg =

∫

T2×R2

d(z, z′)2 d((z,Ω),(z′,Ω′))γ

=

∫

T2×R2

(d(z, z′)2 + (Ω− Ω′)2) d((z,Ω),(z′,Ω′))γ ≥W2(µ1, µ2)2,

where the extra term that has been added in the second line vanishes because of the presence
of δΩ(Ω′) in (F.4.6).
• Step 2: Proof of the identity.
Let us consider an optimal coupling γ0 ∈ Π(µ1, µ2) for W2(µ1, µ2) and assume that it is

symmetric with respect to the variables Ω and Ω′. Specifically, consider the map that swaps
those variables, i.e., S(z, z′,Ω,Ω′) := (z, z′,Ω′,Ω) and assume that

S#γ0 = γ0. (F.4.7)

Let us define the measure γ̃0 := π(z,z′,Ω) #γ0. Then, we can consider its family of conditional
probabilities with respect to g-a.e. Ω ∈ R, that is γ̃0(·|Ω) ∈ P(T2). Let us see that γ̃0(·|Ω) is a
transference plan between conditional probabilities, that is, γ̃0(·|Ω) ∈ Π(µ1γ̃0(·|Ω), µ2γ̃0(·|Ω))
for g-a.e. Ω ∈ R. Indeed, take ϕ ∈ C(T) and ψ ∈ Cb(R) and note that

∫

R
ψ(Ω)

∫

T
ϕ(z) dz(πz#γ̃0γ̃0(·|Ω)) dΩg =

∫

T2×R
ψ(Ω)ϕ(z) d(z,z′)γ̃0γ̃0(·|Ω) dΩg

=

∫

T2×R
ψ(Ω)ϕ(z) d(z,z′,Ω)γ̃0
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=

∫

T2×R2

ψ(Ω)ϕ(z) d((z,Ω),(z′,Ω′))γ0

=

∫

R
ψ(Ω)

∫

T
ϕ(Ω) dzµ

1γ̃0(·|Ω) dΩg.

Then, πz#γ̃
Ω
0 = µ1γ̃0(·|Ω). Similarly we obtain

∫

R
ψ(Ω)

∫

T
ϕ(z′) dz′(πz′#γ̃0γ̃0(·|Ω)) dΩg =

∫

T2×R
ψ(Ω)ϕ(z′) d(z,z′)γ̃0γ̃0(·|Ω) dΩg

=

∫

T2×R
ψ(Ω)ϕ(z′) d(z,z′,Ω)γ̃0

=

∫

T2×R2

ψ(Ω)ϕ(z′) d((z,Ω),(z′,Ω′))γ0

=

∫

T2×R2

ψ(Ω′)ϕ(z′) d((z,Ω),(z′,Ω′))γ0

=

∫

R
ψ(Ω′)

∫

T
ϕ(Ω′) dz′µ

2γ̃0(·|Ω′) dΩ′g,

where (F.4.7) has been used in the fourth line. Then, πz′#γ̃0γ̃0(·|Ω) = µ2γ̃0(·|Ω) g-a.e. Ω ∈ R. In
addition, notice that

W2,g(µ
1, µ2)2 ≤

∫

R×T2

d(z, z′)2 d(z,z′)γ̃0γ̃0(·|Ω) dΩg =

∫

R×T2

d(z, z′)2 d(z,z′,Ω)γ̃0

=

∫

T2×R2

d(z, z′)2 d((z,Ω),(z′,Ω′))γ0 = W2(µ1, µ2)2,

thus ending the proof.

Remark F.4.5. Consider the empirical measures

µ1 :=
1

2

(
δ(z1,Ω1) + δ(z2,Ω2)

)
and µ2 :=

1

2

(
δ(z2,Ω1) + δ(z1,Ω2)

)
,

for some z1, z2 ∈ T and Ω1,Ω2 ∈ R and define εz := d(z1, z2) and εΩ := |Ω1 − Ω2|. Then,

πΩ #µ
1 = πΩ #µ

2 =
1

2
(δΩ1 + δΩ2) =: g,

and, consequently, µ1, µ2 ∈ Pg(T× R). In addition

W2,g(µ
1, µ2)2 = ε2

z and W2(µ1, µ2)2 = min{ε2
z, ε

2
Ω}.

Therefore,
W2(µ1, µ2) < W2,g(µ

1, µ2), if εΩ < εz,
W2(µ1, µ2) = W2,g(µ

1, µ2), if εΩ ≥ εz.
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APPENDIX G

Vector calculus on hypersurfaces of the Euclidean space

In this Appendix, we recall some well known properties of differential operators on hypersur-
faces of the Euclidean space Rd. For convenience, whe shall restrict to the particular case d = 3
and will introduce some useful formulas for the gradient, curl and divergence operators on
compact surfaces S ⊆ R3 that enclose a bounded comain of R3. These formulas are necessary
at some technical points in Chapter 6 to study boundary integrals. We refer to the textbook
[299] for proofs and further details.

G.1 Musical isomorphisms and Riemannian gradient

Let us consider the vector spaces of smooth tangent vector fields along S and smooth 1-forms,
i.e., X(S) and Ω1(S) respectively. It is well known that these vector spaces can be identified
using the Riemannian metric on S by virtue of the musical isomorphisms

[ : X(S) −→ Ω1(S), ] : Ω1(S) −→ X(S)

V 7−→ V [, α 7−→ α].

These are defined as

V [(W ) = V ·W, α] · V = α(V ).

for any given V,W ∈ X(S) and α ∈ Ω1(S). The gradient vector field over S of any function
f ∈ C1(S) can be identified with the exterior differential 1-form over S through the musical
isomorphisms:

∇Sf := (dSf)].

If f ∈ C1(R3) is any extension of f , it turns out that ∇Sf is the tangential component to the
surface of the R3 gradient field∇f , that is,

∇Sf = −η × (η ×∇f) on S,

where η represents the outwards unitary normal vector field of S.
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G.2 Hodge star operator and codifferential

Recall that Hodge star operator ∗ acts on each k-forms space Ωk(S) as the bijection

∗ : Ωk(S) −→ Ω2−k(S),

given by
α ∧ ∗β = α · β dS,

where dS stands for the Riemannian area 2-form on S and α, β ∈ Ω1(S). The dot symbol here is
the pointwise inner product of k-forms induced by the musical isomorphisms. Its inverse can
be computed thought the next classical formula

∗∗ = (−1)k(2−k)I in Ωk(S).

Analogously,
δS : Ωk(S) −→ Ωk−1(S),

acts on each k-forms space Ωk(S) as

δSα := (−1)2k−1(∗dS∗)α.

Recall that δS is the adjoint of dS . Specifically, for any α ∈ Ω1(S) and ϕ ∈ C1(S) one has
∫

S
ϕ δSαdS =

∫

S
dSϕ · αdS,

where the above pointwise inner product is the one induced by the Riemannian metric in S
through the musical isomorphisms, i.e.,

∫

S
ϕ δSαdS =

∫

S
(dSϕ)] · α] dS =

∫

S
∇Sϕ · α] dS. (G.2.1)

G.3 Intrinsic divergence and curl of tangent fields

The divergence and curl of a tangent vector V ∈ X(S) are defined by the rules

divS V = −δS(V [) = (∗dS∗)(V [),

curlS V = (∗dS)(V [).

Using formula (G.2.1), we can show that for any V ∈ X(S) and ϕ ∈ C1(S) we have
∫

S
divS(V )ϕdS = −

∫

S
δS(V [)ϕdS = −

∫

S
∇Sϕ · V dS.

A similar formula can be found for curlS and it implies the well known integration by parts
formulas ∫

S
divS(V )ϕdS = −

∫

S
V · ∇SϕdS, ∀ϕ ∈ C∞(S),

∫

S
curlS(V )ϕdS = −

∫

S
V · (η ×∇Sϕ) dS, ∀ϕ ∈ C∞(S).
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G.4 A short list of useful formulas

For the reader convenience, we recall here some useful identities and properties involving the
operators∇S , divS and curlS .

- curlS(V ) = −divS(η × V ), for all V ∈ X(S).

- curlS(−η × (η × F )) = η · curlF , for all F ∈ C1(Ω).

- curlS(∇Sf) = 0, for all f ∈ C2(S).

- divS(η ×∇Sf) = 0, for all f ∈ C2(S).

- (Poincaré’s lemma) Assume that S is simply connected and consider any tangent vector
field V ∈ X(S) such that curlS(v) = 0. Then, there exists some f ∈ C2(S) such that
V = ∇Sf .

457





APPENDIX H

Potential theory for inhomogeneous integral kernels

Our goal here is to extend some results of classical potential theory to inhomogeneous kernels
like the fundamental solution of the Helmholtz equation Γλ(x) (see e.g. [83, 96, 138, 139, 201,
215, 214, 273, 278] in the case of homogeneous kernels). While there are some previous results
concerning the inhomogeneous case (see [84, 85, 228] for a study of Γλ(x) with non-zero λ), only
low order Hölder estimates have been obtained. Our approach roughly follows the treatment
of [167, 229] for the harmonic case (i.e., λ = 0), and we will introduce nontrivial modifications
to derive higher order Hölder estimates of generalized volume and single layer potentials in
the inhomogeneous setting. These regularity estimates are necessary in Section 6.3 of Chapter
6 to stablish existence and regularity of solutions to the inhomogeneous Beltrami equation with
Neumann boundary conditions (6.3.23). We divide our presentation into two parts:

- In the first section, we provide the main regularity properties of the inhomogeneous vol-
ume and single layer potentials associated with Γλ(x).

- In the second section, we used them to show that the boundary integral operator Tλ in
Theorem 6.3.14 of Section 6.3 enjoy appropriate regularity properties.

We emphasize that our results apply to exterior (unbounded) domains.

H.1 Inhomogeneous volume and single layer potentials

In our context, all the integral kernels to be considered come from the fundamental solution of
the 3-dimensional Helmholtz equation (6.3.5)

Γλ(z) =
eiλ|z|

4π|z| =
1

4π

(
cos(λ|z|)
|z| + i

sin(λ|z|)
|z|

)
, z ∈ R3 \{0}.

For λ = 0 we recover the Newtonian potential associated with the Laplace equation in R3,
[138, 139, 215, 214]. As for λ 6= 0, it is no longer homogeneous, the classical theory cannot be
directly applied.
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Fortunately, this kernel can be though to be “almost homogeneous” in the following sense.
Let us consider the functions





φλ(r) :=
eiλr

4πr
, r > 0,

ψλ(r) := φλ(r)− 1

4πr
≡ eiλr − 1

4πr
, r > 0.

(H.1.1)

From the definition one has the following split

Γλ(z) = φλ(|z|) =
1

4π|z| + ψλ(|z|) =: Γ0(z) +Rλ(z), (H.1.2)

that amounts to a decomposition of the inhomogeneous kernel Γλ(z) into the homogeneous
part Γ0(z) and an inhomogeneous remainder Rλ(z) exhibiting a lower order singularity at the
origin. The main argument supporting our subsequent results is that we do not need our whole
kernel to be purely homogeneous, but only the principal (or more singular) part. While high
order derivatives of harmonic potentials can be directly controlled through the harmonic kernel
Γ0(z) and the classical results [138, 139, 215, 214], it is also important to control the behavior of
the higher order derivatives of the remainder Rλ(z).

To this end, let us compute the derivative of ψλ(r)

ψ′λ(r) = iλ
1

4πr
+

(
iλ− 1

r

)
ψλ(r).

and note that since ψλ(r) is locally bounded near r = 0 and decay as r−1 at infinity, it is globally
bounded. Hence, a recursive reasoning leads to estimates for high order derivatives:

|ψ(m)
λ (r)| ≤ C

(
1 +

1

rm

)
, r > 0, (H.1.3)

for a nonnegative constant C = C(λ,m). It obviously turns into

|DγRλ(z)| ≤ C
(

1 +
1

|z||γ|
)
, (H.1.4)

for every z ∈ R3 \{0} and each multi-index γ, in contrast with the analogous bounds for Γ0(z):

|DγΓ0(z)| ≤ C 1

|z||γ|+1
. (H.1.5)

A basic fact is that, being inhomogeneous, Rλ(z) is one degree less singular than Γ0(z).
Thus, we will combine results of Calderón–Zygmund type for singular integrals (e.g. D2Γ0(z))
with a treatment in the spirit of Hardy–Littlewood–Sobolev theorem for weakly singular in-
tegral kernels (e.g. D2Rλ(z)) in the preceding Appendix C. See also [228] for a treatment of
pseudo-homogeneous kernels.

For the sake of completeness, we shall next introduce the kind of kernels to deal with in this
section. Let us consider a bounded domain D ⊆ Rd. A continuous function K = K(x, z), x ∈
D, z ∈ Rd \{0} is a weakly singular kernel of exponent β if there is C > 0 such that

|K(x, z)| ≤ C

|z|β , x ∈ D, z ∈ Rd \{0},
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for a given 0 ≤ β ≤ d − 1. In this thesis, the singular kernels that will appear are first order
partial derivatives of positively homogeneous kernel of degree −(d− 1), i.e.,

∂

∂zi
K(x, z), x ∈ D, z ∈ Rd \{0},

where K(x, z) satisfies
K(x, λz) = λ−(d−1)K(x, z),

for all x ∈ D, z ∈ Rd \{0}, λ > 0 and K(x, σ) is continuous for x ∈ D and σ ∈ ∂B1(0).
The same lines as in the classical result [214, Teorema 2.I] can be used to achieve bounds for

the single layer potential associated with Γλ(z) both in bounded and unbounded domains:

Theorem H.1.1 (Generalized single layer potential). Let G ⊆ R3 be a bounded domain with regu-
larityCk+1,α, Ω := R3 \G its outer domain and S = ∂G the boundary surface. Consider the generalized
single layer potential associated with the Helmholtz equation and generated by a density ζ along S,

(Sλζ)(x) :=

∫

S
Γλ(x− y)ζ(y) dyS, x ∈ R3 \S.

Then, the restrictions of Sλζ to the interior and exterior domain defines bounded linear operators

S−λ : Ck,α(S) −→ Ck+1,α(G), S+
λ : Ck,α(S) −→ Ck+1,α(Ω).

We omit the proof of this theorem since we are interested in a more singular regularity re-
sult that follows similar ideas. Specifically, we will study the regularity along the boundary
surface S of these generalized single layer potentials and other related potentials with inho-
mogeneous kernels via similar arguments to those in [214, Teorema 2.I]. The main goal of the
next results is to derive the classical Hölder–Korn–Lichtenstein–Giraud inequality for high order
estimates of Hölder type in the inhomogeneous case, i.e., the regularity of generalized volume
(or Newtonian) potentials with compactly supported densities both for interior and exterior
domains.

Lemma H.1.2. Let G ⊆ R3 be a bounded domain with regularity Ck+1,α and S = ∂G the boundary
surface. The generalized volume potential on G associated with the Helmholtz equation and a density ζ
in G,

(N−λ ζ)(x) =

∫

G
Γλ(x− y)ζ(y) dy, x ∈ G,

defines a bounded linear map N−λ : Ck,α(G) −→ Ck+2,α(G).

Proof. The proof follows the lines of [214, Teorema 3.II] for the harmonic case λ = 0, that we
extend to the inhomogeneous case.

A C1 estimate of N−λ ζ can be achieve by taking derivatives under the integral sign

∂

∂xi
(N−λ ζ)(x) =

∫

G

∂

∂xi
Γλ(x− y)ζ(y) dy, x ∈ G,

and using the local integrability of Γλ(z), ∇Γλ(z), along with the boundedness of G and the
fact that ζ ∈ C0(G):

‖N−λ ζ‖C1(G) ≤ C‖ζ‖C0(G) ≤ C‖ζ‖Ck,α(G).

Now, fix any multi-index γ with |γ| ≤ k and takes derivatives again under the integral sign to
get

Dγ ∂

∂xi
(N−λ ζ)(x) =

∫

G
Dγ
x

∂

∂xi
Γλ(x− y)ζ(y) dy.
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A recursive reasoning supported by some chained integrations by parts leads to

Dγ ∂

∂xi
(N−λ ζ)(x) = −

γ1∑

m1=1

∫

S
Dγ−m1e1
x

∂

∂xi
Γλ(x− y)D(m1−1)e1ζ(y)η1(y) dyS

−
γ2∑

m2=1

∫

S
Dγ−γ1e1−γ2e2
x

∂

∂xi
Γλ(x− y)Dγ1e1+(m2−1)e2ζ(y)η2(y) dyS

−
α3∑

m3=1

∫

S
Dγ−γ1e1−γ2e2−m3e3
x

∂

∂xi
Γλ(x− y)Dγ1e1+γ2e2+(m3−1)e3ζ(y)η3(y) dyS

+

∫

G

∂

∂xi
Γλ(x− y)Dγζ(y) dy.

Combining the preceding arguments with Theorem H.1.1 we arrive at
∥∥∥∥Dγ ∂

∂xi
(N−λ ζ)

∥∥∥∥
C0(G)

≤ K‖ζ‖Ck,α(G).

To complete the proof, we consider the derivatives of order k + 2. For 1 ≤ j ≤ 3 we then have

Dγ ∂2

∂xi∂xj
(N−λ ζ)(x) = −

γ1∑

m1=1

∫

S
D
γ−m1e1+ej
x

∂

∂xi
Γλ(x− y)D(m1−1)e1ζ(y)η1(y) dyS

−
γ2∑

m2=1

∫

S
D
γ−γ1e1−γ2e2+ej
x

∂

∂xi
Γλ(x− y)Dγ1e1+(m2−1)e2ζ(y)η2(y) dyS

−
α3∑

m3=1

∫

S
D
γ−γ1e1−γ2e2−m3e3+ej
x

∂

∂xi
Γλ(x− y)Dγ1e1+γ2e2+(m3−1)e3ζ(y)η3(y) dyS

+

∫

G

∂2

∂xi∂xj
Γλ(x− y)Dγζ(y) dy.

Similar estimates for the boundary terms can be obtained in C0,α(G) by virtue of Theorem
H.1.1, while the last term requires an adaptation of the ideas in the harmonic case [214, Teorema
3.II]. We first split it into two parts and use again integration by parts in the second term
∫

G

∂2

∂xi∂xj
Γλ(x− y)Dγζ(y) dy

=

∫

G

∂2

∂xi∂xj
Γλ(x− y)(Dγζ(y)−Dγζ(x)) dy +Dγζ(x)

∫

G

∂

∂xj

∂

∂xi
Γλ(x− y) dy

=

∫

G

∂2

∂xi∂xj
Γλ(x− y)(Dγζ(y)−Dγζ(x)) dy −Dγζ(x)

∫

S

∂

∂xi
Γλ(x− y)ηj(y) dyS

=:F (x)−H(x).

The idea behind such decomposition is that Theorem H.1.1 yields

‖H‖C0,α(G) ≤ K‖η‖C0,α(G) ‖ζ‖Ck,α(S)

and we can cancel an α power of the singularity in F (x):

|F (x)| ≤ [Dγζ]α,G

∫

G

∣∣∣∣
∂2

∂xi∂xj
Γλ(x− y)

∣∣∣∣ |x− y|α dy.
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Bearing the estimates (H.1.4) and (H.1.5) in mind, along with the local integrability of |z|α−3

and the boundedness of G, we find the following C0 estimate

‖F‖C0(G) ≤ K‖ζ‖Ck,α(G).

Let us finally show the local α-Hölder property for F , i.e.,

|F (x1)− F (x2)| ≤ C‖ζ‖Ck,α(G)|x1 − x2|α,

for every x1, x2 ∈ G such that |x1 − x2| < δ and some small δ > 0 (the global one follows from
the boundedness of F ). To this end, consider a neighborhood U of x1 with B2d(x

1) ⊆ U ⊆
B7d(x

1) an taking Euclidean norms, we finally arrive at

|F (x1)− F (x2)| ≤
∫

G∩B7d(x1)

∣∣∣∣
∂2Γλ(x1 − y)

∂xi∂xj

∣∣∣∣ |(Dγζ(y)−Dγζ(x1))| dy

+

∫

G∩B8d(x2)

∣∣∣∣
∂2Γλ(x2 − y)

∂xi∂xj

∣∣∣∣ |(Dγζ(y)−Dγζ(x2))| dy

+

∫

G\B2d(x1)

∣∣∣∣
∂2Γλ(x1 − y)

∂xi∂xj
− ∂2Γλ(x2 − y)

∂xi∂xj

∣∣∣∣ |Dγζ(y)−Dγζ(x1)| dy

+ |Dγζ(x1)−Dγζ(x2)|
∫

G\U

∣∣∣∣
∂2Γλ(x2 − y)

∂xi∂xj

∣∣∣∣ dy,

(H.1.6)

where in the last three terms we have respectively used that G ∩ B7d(x
1) ⊆ G ∩ B8d(x

2), G \
B7d(x

1) ⊆ G \B2d(x
1) and G \B7d(x

1) ⊆ G \ U .
The first and second terms in (H.1.6) can be bounded as desired by virtue of the α-Hölder

property forDγζ and the fact thatD2Γλ(z) = O
(
|z|−3

)
. For both cases, note that the underlying

kernel |z|−(3−α) is integrable “near the origin”. Regarding the third term in (H.1.6), the mean
value theorem shows

∣∣∣∣
∂2Γλ
∂zi∂zj

(x1 − y)− ∂2Γλ
∂zi∂zj

(x2 − y)

∣∣∣∣ ≤ C
|x1 − x2|
|x1 − y|4 , ∀ y ∈ G \B2d(x

1).

In this case, the same ideas bring to light the underlying kernel |z|−(4−α) that is “integrable at
infinity” and gives rise to the desired estimate for the third term. Concerning the last term in
(H.1.6), we are done as long as one notices that Dγζ ∈ C0,α(G) and shows

∫

G\U

∣∣∣∣
∂2Γλ(x2 − y)

∂xi∂xj

∣∣∣∣ dy ≤ C,

for some positive constant C depending on δ but not on d = |x1 − x2|. There are two different
situations to be analyzed, either 2d ≤ dist(x1, S) or 2d > dist(x1, S). See Figure H.1 for a sketch
of the geometrical disposition of the different components.

First, if 2d ≤ dist(x1, S), let us define U := B2d(x
1). In such case, ∂(G \ U) = S ∪ ∂B2d(x

1).
Then, we obtain that

∫

G\U

∂2Γλ(x2 − y)

∂xi∂xj
dy

=

∫

S

∂Γλ(x2 − y)

∂xi
ηj(y) dyS −

∫

∂B2d(x1)

∂Γλ(x2 − y)

∂xi

(y − x1)j
|y − x1| dyS. (H.1.7)
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1)

b

b
x̃
1

U ≡ B4d(x̃
1)

Figure H.1: Right: U = B2d(x
1) in the first case. Left: U = B4d(x̃

1) in the second case.

On the one hand, Theorem H.1.1 provides a bound for the first term of (H.1.7). On the other
hand, note that a combination of the control of∇Γλ(z) at infinity (see Equations (H.1.4)–(H.1.5))
along with the estimate

sup
y∈∂B2d(x1)

1

|x2 − y|2 ≤
1

|x1 − x2|2 ,

entail the aforementioned bound for the second term in (H.1.7).
Secondly, let us consider the opposite case 2d > dist(x1, S). Now the configuration is

slightly different. Let us fix some x̃1 ∈ S so that |x1− x̃1| = dist(x1, S) and define U := B4d(x̃
1).

Since x2 ∈ B3d(x̃
1) then, B2d(x

1) ⊆ U ⊆ B7d(x
1). This time,

∫

G\U

∂2Γλ(x2 − y)

∂xi∂xj
dy =

∫

S

∂Γλ(x2 − y)

∂xi
ηj(y) dyS −

∫

∂(U∩G)

∂Γλ(x2 − y)

∂xi
νj(y) dyS. (H.1.8)

The first term in (H.1.8) can be bounded through the same reasonings as above, thus we focus
on the second term that will follow the idea in [214, Lemma 2.IV]. To this end, define some
cut-off function ξ

(
|y−x̃1|
d

)
for ξ ∈ C∞c (R+

0 ) such that





ξ(r) = 1, r ∈
[
0, 7

2

]
,

ξ(r) ∈ (0, 1), r ∈
(

7
2 , 4
)
,

ξ(r) = 0, r ≥ 4,

and consider the split
∫

∂(G∩B4d(x̃1))

∂Γλ(x2 − y)

∂xi
νj(y) dyS

=

∫

G∩∂B4d(x̃1)

∂Γλ(x2 − y)

∂xi
νj(y) dyS

+

∫

S∩B4d(x̃1)

∂Γλ(x2 − y)

∂xi

[
1− ξ

( |y − x̃1|
d

)]
νj(y) dySr

+

∫

S∩B4d(x̃1)

∂Γλ(x2 − y)

∂xi
ξ

( |y − x̃1|
d

)
νj(y) dyS.

(H.1.9)
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Bear in mind again that x2 ∈ B3d(x̃
1) and∇Γλ(z) = O(|z|−2) when |z| → +∞. In the first term,

note that y ∈ G ∩ ∂B4d(x̃
1) and consequently, |y − x2| ≥ d, what shows the boundedness of

such term. For the second term, we have that y ∈ S ∩ B4d(x̃
1) but, in order that y belongs to

the support of the cut-off function, one has to assume |y − x̃1| ≥ 7
2d. Thus, |y − x2| ≥ d

2 and a
similar reasoning now yields

∣∣∣∣∣

∫

S∩B4d(x̃1)

∂Γλ(x2 − y)

∂xi
νj(y) dyS

∣∣∣∣∣ ≤
C̃

|x1 − x2|2 |S ∩B4d(x̃
1)|.

The upper bound for the second term is done once we note that for regular surfaces |S ∩
B4d(x̃

1)| ≤ Cd2. To prove the corresponding bound for the third term in (H.1.9), we consider
the potential

S(x) =

∫

S

∂Γλ(x− y)

∂xi
ξ

( |y − x̃1|
d

)
νj(y) dyS, x ∈ G,

whose C0,α estimate follows again from Lemma H.1.1:

‖S‖C0,α(G) ≤ C
∥∥∥∥ξ
( | · −x̃1|

d

)
νj

∥∥∥∥
C0,α(S)

≤ C
(

1 +
1

dα

)
.

Let us now fix 0 < δ < 1 small enough so that x − θη(x) ∈ G for every couple x ∈ S and
0 < θ < 4δ. Thus, S(x̃1 − 4dη(x̃1)) = 0 and consequently,

|S(x2)| = |S(x2)− S(x̃1 − 4dη(x̃1))| ≤ C

dα
|x2 − x̃1 + 4dη(x̃1)|α ≤ C

dα
(3d+ 4d)α ≤ C̃.

Remark H.1.3. In the above reasoning, the property |S ∩ B4d(x̃
1)| ≤ Cd2 for regular surfaces was

essential. This is a regularity property intimately connected with deep issues in harmonic analysis.
Indeed, a surface S is said to be Alhfolrs–David regular when

|S ∩BR(x)| ≤ CR2,

for every couple x ∈ S, R > 0 and some nonnegative constant C. These surfaces (originally curves)
arise from the study of singular integrals along curves [96], and had already appeared in the works of
A. Calderón (e.g., [52]) on L2 estimates for the Cauchy integral along Lipschitz curves. His results were
improved by G. David [96] to the more general setting of Alhfors–David curves and S. Semmes [273]
generalized these results to the d-dimensional framework. Specifically, Ahlfors–David regularity was
shown to control singular integral operators that are much more general than the Cauchy integral. Of
course, Ck,α surfaces are Ahlfors–David regular.

Lemma H.1.4. Let G ⊆ R3 be a bounded domain with regularity Ck+1,α, Ω := R3 \G its exterior
domain and S = ∂G the boundary surface. The generalized volume potential on Ω associated with the
Helmholtz equation and generated by a density ζ in G

(N+
λ ζ)(x) =

∫

G
Γλ(x− y)ζ(y) dy, x ∈ Ω,

defines a bounded linear map N+
λ : Ck,α(G) −→ Ck+2,α(Ω).
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Proof. Our argument is based on some ideas of [214, Teorema 3.II]. Consider R > 0 such that
G ⊆ BR(0) and let us estimate ‖N+

λ ζ‖Ck+2,α(Ω) in R3 \BR(0) and Ω2R where Ω2R := B2R(0) \G.
Set

dR := min{|x− y| : x ∈ R3 \BR(0), y ∈ G} > 0,

and assume that dR < 1.
Equations (H.1.2), (H.1.4) and (H.1.5) yield

|Dγ
xΓλ(x− y)| ≤ C̃ 1

d
|γ|+1
R

,

for every multi-index γ and every x ∈ R3 \BR(0) and y ∈ G. One can then take derivatives un-
der the integral sign and obtain the desired estimate for the Ck+2,α norm in R3 \BR(0). On the
other hand, consider ζ ∈ Ck,α(R3) some extension though Calderón’s theorem (see Proposition
6.4.1 in Chapter 6). Then,

(N+
λ ζ)(x) =

∫

B2R(0)
Γλ(x− y)ζ(y) dy −

∫

Ω2R

Γλ(x− y)ζ(y) dy,

for every x ∈ Ω2R. Since Ω2R ⊆ B2R(0), the triangle inequality yields:

‖N+
λ ζ‖Ck+2,α(Ω2R) ≤

∥∥∥∥∥

∫

B2R(0)
Γλ(· − y)ζ(y) dy

∥∥∥∥∥
Ck+2,α(B2R(0))

+

∥∥∥∥
∫

Ω2R

Γλ(· − y)ζ(y) dy

∥∥∥∥
Ck+2,α(Ω2R)

.

Finally, note that both domains are bounded and, consequently, Lemma H.1.2 and Proposition
6.4.1 apply and yield the desired estimate

‖N+
λ ζ‖Ck+2,α(Ω2R) ≤M‖ζ‖Ck,α(B2R(0)) ≤MCP‖ζ‖Ck,α(G).

Now, we focus on similar bounds for singular and weakly singular kernels in the whole
space Rd. This results are classical in the homogeneous harmonic case, Γ0(z), and can be found
in [139, 215, 214]. However, not only will we need harmonic potentials, but we will also deal
with general singular and weakly singular kernels. To this end, we remind [167, Satz 3.4, Satz
5.4].

Theorem H.1.5 (Weakly singular kernels). Let us consider 0 ≤ β ≤ d − 1, 0 < α < 1 and
K(x, z), x ∈ D, z ∈ RN \{0} a weakly singular integral kernel of exponent β satisfying the following
three hypothesis:

1. For each x ∈ D
K(x, ·) ∈ C1(Rd \{0}).

2. For each x ∈ D and z ∈ Rd \{0}

|∇zK(x, z)| ≤ C

|z|β+1
.

3. For all x1, x2 ∈ D and z ∈ Rd \{0} one has

|K(x1, z)−K(x2, z)| ≤ C
|x1 − x2|α
|z|β .
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Then, the generalized volume potential generated by a density ζ in Rd,

(NKζ)(x) :=

∫

Rd
K(x, x− y)ζ(y) dy, x ∈ D,

defines a bounded linear map for each positive radius R

NK : C0,α
c (BR(0)) −→ C0,α(D).

Theorem H.1.6 (Singular kernels). Consider 0 < α < 1 and K(x, z), x ∈ D, z ∈ Rd \{0} a kernel
satisfying the following hypotheses:

1. K(x, z) is positively homogeneous of degree −(d− 1) with respect to the second variable, i.e.,

K(x, λz) = λ−(d−1)K(x, z),

for all x ∈ D, z ∈ Rd \{0} and λ > 0.

2. K(x, z) has the following regularity properties for every x ∈ D and each indices 1 ≤ i, j ≤ d:

K ∈ C1(D × (Rd \{0})), K(x, ·) ∈ C2(Rd \{0}),
∂K

∂xi
∈ C(D × (Rd \{0})), ∂K

∂xi
(x, ·) ∈ C1(Rd \{0}),

∂K

∂zi
∈ C(D × (Rd \{0})),

∂2K

∂zi∂xj
∈ C(D × (Rd \{0})), ∂2K

∂zi∂zj
∈ C(D × (Rd \{0})).

3. The first derivatives of K(x, z) are Hölder-continuous with exponent α with respect to x in the
sense that, for each x1, x2 ∈ D, z ∈ Rd \{0} and for all index 1 ≤ i ≤ d,

∣∣∣∣
∂K

∂xi
(x1, z)−

∂K

∂xi
(x2, z)

∣∣∣∣ ≤C
|x1 − x2|α
|z|d−1

,

∣∣∣∣
∂K

∂zi
(x1, z)−

∂K

∂zi
(x2, z)

∣∣∣∣ ≤C
|x1 − x2|α
|z|d .

Then, the generalized volume potential defines a bounded linear map for every positive radius R > 0

NK : C0,α
c (BR(0)) −→ C1,α(D).

Moreover, for every 1 ≤ i ≤ d,
∂

∂xi
(NKζ) = N ∂K

∂xi

ζ +N ∂K
∂zi

ζ.

Notice that the singular integral kernel ∂K
∂zi

has an associated singular integral operator
N ∂K

∂zi

, where the integrals require to be understood in the sense of Cauchy principal values

by virtue of the cancellation properties arising from the homogeneity in z of the original kernel
K(x, z). Another interesting remark, that explains some differences between volume potentials
in the whole Rd and volume potentials in a bounded domain, is the change of variables formula

(NKζ)(x) =

∫

Rd
K(x, x− y)ζ(y) dy =

∫

Rd
K(x, z)ζ(x− z) dz, (H.1.10)
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which lets us take derivatives in any of the fwo factors. When the kernel is not sufficiently well
behaved, we can put the derivatives on the density, or the other way round. Obviously, it is no
longer valid for densities on G, where the integration by part argument in the proof of Lemma
H.1.2 is required, producing new boundary term that must be studied via Theorem H.1.1.

As a consequence, one can prove the next two corollaries, where higher order derivatives
of these generalized volume potentials can be considered.

Corollary H.1.7. Let us consider 0 ≤ β ≤ d − 1, 0 < α < 1, k,m ∈ N so that β + m ≤ d − 1
and K(x, z), x ∈ D, z ∈ Rd \{0}, a weakly singular integral kernel of exponent β verifying the next
hypothesis for each couple of multi-indices γ1, γ2 with |γ1| ≤ k and |γ2| ≤ m:

1. Dγ1+γ2
x K(x, z) is weakly singular with exponent β and Dγ1

x D
γ2
z K(x, z) is the sum of weakly

singular integral kernels with exponents raging from β to β + |γ2|, i.e.,

∣∣Dγ1+γ2
x K(x, z)

∣∣ ≤ C

|z|β ,

|Dγ1
x D

γ2
z K(x, z)| ≤ C

(
1

|z|β +
1

|z|β+|γ2|

)
.

2. For every x ∈ D,

(Dγ1+γ2
x K)(x, ·), (Dγ1

x D
γ2
z K)(x, ·) ∈ C1(Rd \{0}).

3. For all x ∈ D, z ∈ Rd \{0},
∣∣∇zDγ1+γ2

x K(x, z)
∣∣ ≤ C

(
1

|z|β +
1

|z|β+1

)
,

|∇zDγ1
x D

γ2
z K(x, z)| ≤ C

(
1

|z|β +
1

|z|β+|γ2|+1

)
.

4. For any x1, x2 ∈ D, z ∈ RN \{0},

|Dγ1+γ2
x K(x1, z)−Dγ1+γ2

x K(x2, z)| ≤
C

|z|β |x1 − x2|α,

|Dγ1
x D

γ2
z K(x1, z)−Dγ1

x D
γ2
z K(x2, z)| ≤ C

(
1

|z|β +
1

|z|β+|γ2|

)
|x1 − x2|α.

Then, the generalized volume potential defines a bounded linear operator for every positive radius R

NK : Ck,αc (BR(0)) −→ Ck+m,α(D).

Moreover, for every multi-index γ = γ1 + γ2 so that |γ1| ≤ k and |γ2| ≤ m

Dγ(NKζ) =
∑

δ≤γ1

(
γ1

δ

)(
N
D
δ+γ2
x K

Dγ1−δζ +NDδxDγ2
z KD

γ1−δζ
)
.

Corollary H.1.8. Let 0 < α < 1, k ∈ N, x ∈ D, z ∈ Rd \{0} and K(x, z) be a weakly singular
kernel, which has the following properties:

1. K(x, z) is positively homogeneous of degree −(d− 1) in the second variable.
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2. K(x, z) has the regularity properties

Dγ
xK ∈ C1(D × (Rd \{0})), (Dγ

xK)(x, ·) ∈ C2(Rd \{0}),
∂

∂xi
Dγ
xK ∈ C(D × (Rd \{0})),

(
∂

∂xi
Dγ
xK

)
(x, ·) ∈ C1(Rd \{0}),

∂

∂zi
Dγ
xK ∈ C(D × (Rd \{0})),

∂2

∂zi∂xj
Dγ
xK ∈ C(D × (Rd \{0})), ∂2

∂zi∂zj
Dγ
xK ∈ C(D × (Rd \{0})),

for each couple of indices 1 ≤ i, j ≤ d and each multi-index γ with |γ| ≤ k.

3. The derivatives of K(x, z) with respect to x up to order k are α-Hölder continuous,
∣∣∣∣
(
∂

∂xi
Dγ
xK

)
(x1, z)−

(
∂

∂xi
Dγ
xK

)
(x2, z)

∣∣∣∣ ≤C
|x1 − x2|α
|z|d−1

,

∣∣∣∣
(
∂

∂zi
Dγ
xK

)
(x1, z)−

(
∂

∂zi
Dγ
xK

)
(x2, z)

∣∣∣∣ ≤C
|x1 − x2|α
|z|d ,

for each x1, x2 ∈ D, z ∈ Rd \{0}, each index 1 ≤ i ≤ d and |γ| ≤ k.

Then, the generalized volume potential defines a bounded linear operator for every positive radius R

NK : Ck,αc (BR(0)) −→ Ck+1,α(D).

Moreover, for every multi-index γ with |γ| ≤ k and any index 1 ≤ i ≤ d:

∂

∂xi
Dγ
x (NKζ) =

∑

δ≤γ

(
γ

δ

)(
N ∂

∂xi
DγxK

Dδ−γζ +N ∂
∂zi

DγxK
Dδ−γζ

)
.

When the constants C appearing in the statements of the above results do not depend on
the chosen bounded domain D, the above estimates can be extended from Hölder estimates
over D, to global estimates in Rd. This is the case for the integral kernels which do not depend
on the variable x (e.g., Γ0(z), Rλ(z) and Γλ(z)). In this way, we get the next result in the spirit
of Lemmas H.1.2 and H.1.4.

Lemma H.1.9. The generalized volume potential in R3 associated with the Helmholtz equation

(Nλζ)(x) :=

∫

R3
Γλ(x− y)ζ(y) dy, x ∈ R3,

defines a bounded linear operator for every positive radius R

Nλ : Ck,αc (BR(0)) −→ Ck+2,α(R3).

Combining the above results, we can estimate generalized volume potentials in Ω whose
densities have compact support in Ω by means of an appropriate splitting. Using Calderón’s
extension theorem (Proposition 6.4.1), for every ζ ∈ Ck,αc (Ω) there exists an extension ζ ∈
Ck,αc (R3), so

N+
λ ζ =

(
Nλζ

)∣∣
Ω
−N+

λ

(
ζ
∣∣
G

)
in Ω.

Then, Lemmas H.1.4 and H.1.9 lead to the following result:
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Theorem H.1.10 (Generalized volume potential). Let G ⊆ R3 be a bounded domain with regularity
Ck+1,α, Ω := R3 \G its exterior domain and S = ∂G the boundary surface. The generalized volume
potential associated with the Helmholtz equation and generated by a density ζ in Ω,

(N+
λ ζ)(x) =

∫

Ω
Γλ(x− y)ζ(y) dy, x ∈ Ω,

defines a bounded linear operator for every positive radius R

N+
λ : Ck,αc (BR(0) \G) −→ Ck+2,α(Ω).

H.2 Regularity of the boundary integral operator Tλ

The next step is to analyze the regularity properties of the boundary integral operator Tλ
(6.3.24) arising in the boundary integral equation (6.3.23) associated with the boundary data
η × u in Theorem 6.3.14 of Chapter 6. Firstly, we split the operator Tλ into

Tλ =MT
λ + λSTλ .

MT
λ ζ is known as the magnetic dipole operator, which is the tangent component of the electric

field generated by a dipole distribution with density ζ ∈ X(S), i.e.,

(MT
λ ζ)(x) :=

∫

S
η(x)× curlx (Γλ(x− y)ζ(y)) dyS, x ∈ S.

STλ ζ is the tangential component of the generalized single layer potential generated by ζ,

(STλ ζ)(x) =

∫

S
Γλ(x− y)η(x)× ζ(y) dyS, x ∈ S.

The integral kernel of STλ is weakly singular over S, so this integral is absolutely convergent
under suitable hypotheses for ζ. The integral inMT

λ is absolutely convergent under minimal
assumption on ζ. Indeed, although the integral kernel looks singular over S let us see this it
is again weakly singular when ζ is a tangent vector field on S. Notice that, given any tangent
field ζ ∈ Xk,α(S) along S, one can split

η(x)× (∇xΓλ(x− y)× ζ(y)) = (η(x)− η(y)) · ζ(y)∇xΓλ(x− y)− η(x) · ∇xΓλ(x− y) ζ(y).

Consequently, the j-th coordinate of the integrand in (MT
λ ζ)(x) read

(η(x)× (∇xΓλ(x− y)× ζ(y)))j

=

3∑

i=1

(ηi(x)− ηi(y))ζi(y) ∂xjΓλ(x− y)− η(x) · ∇xΓλ(x− y) ζj(y),

and, the corresponding the j-th coordinate of the integrand of (STλ ζ)(x) takes the form

(Γλ(x− y)η(x)× ζ(y))j =

3∑

i=1

Γλ(x− y)(ei × ej) · η(x)ζi(y),

respectively. Consider any extension η̃ ∈ Ck+4,α
c (R3) of the outward unit normal vector field η

to the compact surface S and define the kernels

KDλ (x, z) = η̃(x) · ∇Γλ(z),

Ki,j
λ (x, z) = (η̃i(x)− η̃i(x− z)) ∂zjΓλ(z), K̃i,j

λ (x, z) = (ei × ej) · η̃(x) Γλ(z).
(H.2.1)
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Then, we have the associated splitting of the operatorsMT
λ and STλ

(MT
λ ζ)j(x) =

3∑

i=1

T
Ki,j
λ
ζi − TKDλ ζj , (STλ ζ)j(x) =

3∑

i=1

T
K̃i,j
λ
ζi, (H.2.2)

where the integral operators in the above decomposition are

(TKDλ
ζj)(x) =

∫

S
KDλ (x, x− y)ζj(y) dyS,

(T
Ki,j
λ
ζi)(x) =

∫

S
Ki,j
λ (x, x− y)ζi(y) dyS, (T

K̃i,j
λ
ζi)(x) =

∫

S
K̃i,j
λ (x, x− y)ζi(y) dyS.

(H.2.3)
Since every C2 compact surface satisfies

|η(x) · (x− y)| ≤ L|x− y|2, |η(x)− η(y)| ≤ L|x− y|,

for each x, y ∈ S, then all the preceding integral kernels are weakly singular. In particular, we
do not need to regard these integrals in the Cauchy principal value sense.

The study of Hölder estimates for all these potentials can be performed along the same lines
as in [167, Satz 4.3, Satz 4.4]. In that work, the author dealt with the homogeneous harmonic
case λ = 0, where the kernels have a simpler form. In our case λ 6= 0, we will decompose the
3-dimensional kernels into a homogeneous part and an inhomogeneous but less singular part
as in (H.1.2). Then, we will consider a coordinate system over S which allows transforming
the integrals over S into integrals over planar domains by means of a change of variables. The
homogeneous and more singular parts will satisfy the hypothesis in Corollary H.1.8 and the
terms in the remainder will verify those in Corollary H.1.7. We remark here that Ck+5 bound-
aries are needed precisely for the operators in (H.2.3) of first and second type to be bounded
from the space Ck,α(S) into the space Ck+1,α(S). However, we only need Ck+4 boundaries to
ensure the corresponding result for only the third kind of operators in (H.2.3) (see [167, Satz
4.3, Satz 4.4] for the homogeneous harmonic case λ = 0). Our regularity result then reads as
follows:

Theorem H.2.1. Let G be a bounded domain of class Ck+5, S = ∂G the boundary surface, η ∈
Ck+4(S,R3) the outward unit normal vector field along S and any extension η̃ ∈ Ck+4

c (R3,R3) of η.
Let KDλ (x, z), Ki,j

λ (x, z) and K̃i,j
λ (x, z) be the kernels given by (H.2.1) Then, the associated boundary

operators TKDλ , TKi,j
λ

and T
K̃i,j
λ

given by (H.2.3) are bounded

TKDλ
: Ck,α(S) −→ Ck+1,α(S),

T
Ki,j
λ

: Ck,α(S) −→ Ck+1,α(S), T
K̃i,j
λ

: Ck,α(S) −→ Ck+1,α(S).

As a consequence, the next linear operators are also bounded

MT
λ : Xk,α(S) −→ Xk+1,α(S), STλ : Xk,α(S) −→ Xk+1,α(S).

Proof. Since the kernel K̃i,j
λ (x, z) can be analyzed through a similar reasoning (as shown in

[167] for the case λ = 0), we will restrict our analysis to the kernels Ki,j
λ (x, z) and KDλ (x, z),

which were not explictely studied in [167]. Let us then split these inhomogeneous kernels
into a homogeneous part and some less singular part (see the decomposition (H.1.2) and the
functions φλ and ψλ in (H.1.1)). To this end, notice that

KDλ (x, z) =
φ′λ(|z|)
|z| η̃(x) · z, Ki,j

λ (x, z) = (η̃i(x)− η̃i(x− z))
φ′λ(|z|)
|z| zj , (H.2.4)
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Consequently, one can decompose,

Ki,j
λ (x, z) = Ki,j

λ,0 +Ki,j
λ,1, KDλ (x, z) = KDλ,0 +KDλ,1, (H.2.5)

where each factor take the form,

Ki,j
λ,0(x, z) := − 1

4π
(η̃i(x)− η̃i(x− z))

zj
|z|3 , K

i,j
λ,1(x, z) := (η̃i(x)− η̃i(x− z))

ψ′λ(|z|)
|z| zj ,

KDλ,0(x, z) := − 1

4π
η̃(x) · z

|z|3 , KDλ,1(x, z) := η̃(x) · ψ
′
λ(|z|)z
|z| .

(H.2.6)

Notice that the associated integral operators only involve values x, y ∈ S. Define

dS := 2 max
x,y∈S

|x− y|,

and take x ∈ S, z ∈ BdS (0). Thus, an easy computation yields the following relations, that will
be steadily used along the proof,

|z|−β1 + |z|−β2 ≤
(

1 + dM−mS

)
|z|−M , |z|β1 + |z|β2 ≤

(
1 + dM−mS

)
|z|m, (H.2.7)

for any couple of exponents β1, β2 ≥ 0 and any z ∈ BdS (0). Here m and M stand for the
minimum and maximum values i.e.,

m := min{β1, β2} and M := max{β1, β2}.

Another useful remark is that fλ(r) := ψ′λ(r)/r, arising in (H.2.6), can be controlled by
(H.1.3) as follows

|f (m)
λ (r)| ≤ C

(
1

r
+

1

rm+2

)
, r > 0,

|f (m)
λ (r)| ≤ C̃ 1

rm+2
, r ∈ (0, dS) .

(H.2.8)

for some C > 0 that does not depend on m and some C̃ depending on m and dS .
Let us study the boundedness of the integral operators associated with the integral kernels

Ki,j
λ,n and KDλ,n for n = 0, 1. To this end, let us consider a finite covering of S by M coordinate

neighborhoods Σ1, . . . ,ΣM ⊆ S endowed with the associated local charts µm ∈ Ck+5(Dm,Σm)
that enjoy homeomorphic extensions up to the boundary of the planar disks Dm ⊆ R2. Also
consider the associated partition of unity of class Ck+5, {ϕm}Mm=1 ⊆ Ck+5(S), subordinated to
the above open covering. The Jacobian of each chart will be denoted by

Jm(s) :=

∣∣∣∣
(
∂µm
∂s1

× ∂µm
∂s2

)
(s)

∣∣∣∣ , s ∈ Dm.

All the above notation then yields the decompositions

(T
Ki,j
λ,n
ζ)(µm(s)) =

M∑

m′=1

∫

Dm′
Ki,j
λ,n(µm(s), µm(s)− µm′(t))ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt, (H.2.9)

(TKDλ,n
ζ)(µm(s)) =

M∑

m′=1

∫

Dm′
KDλ,n(µm(s), µm(s)− µm′(t))ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt. (H.2.10)
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We will study the most singular casem′ = m and then show how the casem′ 6= m follows from
it. An important fact is that we will extract the most singular homogeneous parts of Ki,j

λ,0(x, z)

and KDλ,0(x, z) by virtue of the split (H.2.5). However, the change of variables in the coordinate
neighborhoods Σm gives rise to new inhomogeneous planar kernels,Ki,j

λ,0(µm(s), µm(s)−µm(t))

and KDλ,0(µm(s), µm(s) − µm(t)). To solve this difficulty, we will decompose them again into
the more sigular homogeneous part, which stands for a planar homogeneous kernel of degree
−1, and some inhomogeneous but less singular term. Then, we will prove the corresponding
regularity results for each term through Corollaries H.1.7 and H.1.8.

Since both Ki,j
λ,0(x, z) and KDλ,0(x, z) can be studied by means of a similar reasoning, we will

just analyze one of them, e.g. Ki,j
λ,0(x, z). In fact, KDλ,0(x, z) stands for the integral kernel of the

adjoint operator of the harmonic Neumann–Poincaré operator, that was studied in [167, Satz
4.4]. Inspired by [167, Lemma 4.2], let us expand µm(s)− µm(t) though Taylor’s theorem up to
second order; that is,

|µm(s)− µm(t)| = (Pm(s, s− t) +Qm(s, s− t))1/2 , (H.2.11)

where,

Pm(s, u) :=

2∑

p,q=1

∂µm
∂sp

(s) · ∂µm
∂sq

(s)upuq =

2∑

p,q=1

gpqm (s)upuq = ((gpqm (s))u) · u, (H.2.12)

Qm(s, u) := −2

2∑

p,q,r=1

∂µm
∂sp

(s) ·
(∫ 1

0
(1− θ) ∂

2µm
∂sq∂sr

(s− θu) dθ

)
upuqur

+

2∑

p,q,r,l=1

(∫ 1

0
(1− θ) ∂

2µm
∂sp∂sq

(s− θu) dθ

)
·
(∫ 1

0
(1− θ) ∂

2µm
∂sr∂sl

(s− θu) dθ

)
upuqurul. (H.2.13)

First, Pm(s, u) is positively homogeneous on u of degree 2 with respect to u and the following
control is achieved (see [167, Satz 4.2])

1

C
|u|2 ≤ |Pm(s, u)| ≤ C|u|2,

|Qm(s, u)| ≤ C|u|3,
1

C
|u|2 ≤ |Pm(s, u) +Qm(s, u)| ≤ C|u|2.

|Dγ
sPm(s, u)| ≤ C|u|2,

|Dγ
sQm(s, u)| ≤ C|u|3,

|Dγ
s (P (s, u) +Q(s, u))| ≤ C|u|2,∣∣∣∣

∂

∂ui
Dγ
sPm(s, u)

∣∣∣∣ ≤ C|u|,∣∣∣∣
∂

∂ui
Dγ
sQm(s, u)

∣∣∣∣ ≤ C|u|2,∣∣∣∣
∂

∂ui
Dγ
s (P (s, u) +Q(s, u))

∣∣∣∣ ≤ C|u|,∣∣∣∣
∂2

∂ui∂uj
Dγ
sPm(s, u)

∣∣∣∣ ≤ C|u|0,∣∣∣∣
∂2

∂ui∂uj
Dγ
sQm(s, u)

∣∣∣∣ ≤ C|u|,∣∣∣∣
∂2

∂ui∂uj
Dγ
s (P (s, u) +Q(s, u))

∣∣∣∣ ≤ C|u|0.

(H.2.14)

hold for each s ∈ Dm, u ∈ R2 such that s− u ∈ Dm and every multi-index with |γ| ≤ k.
Our homogenization procedure follows from the next decomposition

Ki,j
λ,0(µm(s), µm(s)− µm(t)) = H i,j

λ,0(s, s− t) +Ri,jλ,0(s, s− t),
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where the homogeneous part H i,j
λ,0(s, u) and the remainder Ri,jλ,0(s, u) take the form

H i,j
λ,0(s, u) := − 1

4π
Pm(s, u)−3/2

2∑

p,q=1

∂(η̃ ◦ µm)i
∂sp

(s)
∂(µm)j
∂sq

(s)upuq,

Ri,jλ,0(s, u) := R̃i,jλ,0(s, u) + R̂i,jλ,0(s, u).

Above, the remainder is split into

R̃i,jλ,0(s, u) := − 1

4π

(
(Pm(s, u) +Qm(s, u))−3/2 − Pm(s, u)−3/2

)

×
{ 2∑

p,q=1

∂(η̃ ◦ µm)i
∂sp

(s)
∂(µm)j
∂sq

(s)upuq

}
,

R̂i,jλ,0(s, u) := − 1

4π
(Pm(s, u) +Qm(s, u))−3/2

×



−

2∑

p,q,r=1

(∫ 1

0
(1− θ)∂

2(η̃ ◦ µm)i
∂sp∂sq

(s− θu) dθ

)
∂(µm)j
∂sr

(s)upuqur

−
2∑

p,q,r=1

∂(η̃ ◦ µm)i
∂sp

(s)

(∫ 1

0
(1− θ)∂(µm)j

∂sq∂sr
(s− θu) dθ

)
upuqur

+
2∑

p,q,r,l=1

(∫ 1

0
(1− θ)∂

2(η̃ ◦ µm)i
∂sp∂sq

(s− θu) dθ

)(∫ 1

0
(1− θ)∂

2(µm)j
∂sr∂sl

(s− θu) dθ

)
upuqurul



 .

Note again that small values of u = s−t are involved here, thus leading to estimates like (H.2.7)
for u.

Let us next analyze each term in the above decomposition for Ki,j
λ,0(µm(s), µm(s) − µm(t)).

Firstly, sincePm(s, u) is positively homogeneous on uwith degree 2, thenH i,j
λ,0(s, u) is positively

homogeneous on u with degree −1. The regularity properties in the second part in Corollary
H.1.8 can be straighforwardly checked. Let us then concentrate on the regularity properties in
the third part of such corollary and, to this end, let us compute the next partial derivative

Dγ
sH

i,j
λ,0(s, u) = − 1

4π

∑

σ≤γ

(
γ

σ

)
Dσ
s

(
Pm(s, u)−3/2

)



2∑

p,q=1

Dγ−σ
s

(
∂(η̃ ◦ µm)i

∂sp
(s)

∂(µm)j
∂sq

(s)

)
upuq


.

Define the homogeneous function h(t) := t−3/2 and use the chain rule to arrive at

Dσ
s

(
Pm(s, u)−3/2

)
=

∑

(l,β,δ)∈D(σ)

(Dδh)(Pm(s, u))
l∏

r=1

1

δr!

(
1

βr!
Dβr
s Pm(s, u)

)δr
.

(Recall the definition of D(σ) in (N.3) for the above chain rule). By virtue of (H.2.14),
∣∣∣Dγ

sH
i,j
λ,0(s, u)

∣∣∣ ≤ C|u|−1.

Let us take derivatives with respect to u and arrive at

∇uDγ
sH

i,j
λ,0(s, u)

474



CONCLUSIONS AND PERSPECTIVES

=− 1

4π

∑

σ≤γ

(
γ

σ

)
∇uDη

s

(
Pm(s, u)−3/2

)



2∑

p,q=1

Dσ−γ
s

(
∂(η̃ ◦ µm)i

∂sp
(s)

∂(µm)j
∂sq

(s)

)
upuq




− 1

4π

∑

σ≤γ

(
γ

σ

)
Dσ
s

(
Pm(s, u)−3/2

)



2∑

p,q=1

Dσ−γ
s

(
∂(η̃ ◦ µm)i

∂sp
(s)

∂(µm)j
∂sq

(s)

)
∇u(upuq)


 ,

that can be similarly estimated by means of (H.2.14):
∣∣∣Dγ

s∇uH i,j
λ,0(s, u)

∣∣∣ ≤ C|u|−2.

Thus, H i,j
λ,0 has the regularity properties required in Corollary H.1.8, so

∥∥∥∥
∫

Dm

H i,j
λ,0(·, · − t)ϕm(µm(t))ζ(µm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm)

≤M‖ζ‖Ck,α(Σm).

Let us now move to the remainder Ri,jλ,0(s, u) and show that the hypothesis in Corollary
H.1.7 are satisfied too. On the one hand, in the first term R̃i,jλ,0(s, u) in Ri,jλ,0(s, u) one can arrange
terms by Barrow’s rule as

(Pm(s, u) +Qm(s, u))−3/2 − Pm(s, u)−3/2 = −3

2
Qm(s, u)

∫ 1

0
(Pm(s, u) + θQm(s, u))−5/2 dθ.

Therefore, a Dγ
s derivative of R̃i,jλ,0(s, u) takes the form

Dγ
s R̃

i,j
λ,0(s, u) =

1

4π

3

2

∑

σ≤γ

(
γ

σ

)
Dσ
s

(
Qm(s, u)

∫ 1

0
(Pm(s, u) + θQm(s, u))−5/2 dθ

)

×
2∑

p,q=1

Dγ−σ
(
∂(η̃ ◦ µm)i

∂sp
(s)

∂(µm)j
∂sq

(s)

)
upuq.

Define the homogeneous function h̃(t) = t−5/2, a similar argument shows that

Dσ
s

(
Qm(s, u)

∫ 1

0
(Pm(s, u) + θQm(s, u))−5/2 dθ

)

=
∑

ρ≤σ

(
σ

ρ

)
Dρ
s(Qm(s, u))

∫ 1

0
Dσ−ρ
s

(
(Pm(s, u) + θQm(s, u))−5/2

)
dθ

=
∑

ρ≤σ

(
σ

ρ

)
Dρ
s(Qm(s, u))

∫ 1

0

∑

(l,β,δ)∈D(σ−ρ)

(Dδh̃)(Pm(s, u) + θQm(s, u))

×
l∏

r=1

1

δr!

(
1

βr!
Dβr
s (Pm(s, u) + θQm(s, u))

)δr
dθ.

Now, the estimates in (H.2.14) yields
∣∣∣Dγ

s R̃
i,j
λ,0(s, u)

∣∣∣ ≤ C|u|0,∣∣∣∂ulDγ
s R̃

i,j
λ,0(s, u)

∣∣∣ ≤ C|u|−1,
∣∣∣∂ul1ul2D

γ
s R̃

i,j
λ,0(s, u)

∣∣∣ ≤ C|u|−2.
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These estimates ensure that all the hypotheses in Corollary H.1.7 are satisfied, so
∥∥∥∥
∫

Dm

R̃i,jλ,0(·, · − t)ϕm(µm(t))ζ(µm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm)

≤M‖ζ‖Ck,α(Σm).

Regarding the second term R̂i,jλ,0(s, u) of Ri,jλ,0(s, u) we can use a similar argument. First,

Dγ
s R̂

i,j
λ,0(s, u) =

1

4π

∑

σ≤γ

(
γ

σ

)
Dσ
s

(
(Pm(s, u) +Qm(s, u))−3/2

)

×





2∑

p,q,r=1

Dγ−σ
s

((∫ 1

0
(1− θ)∂

2(η̃ ◦ µm)i
∂sp∂sq

(s− θu) dθ

)
∂(µm)j
∂sr

(s)

)
upuqur

+

2∑

p,q,r=1

Dγ−σ
s

(
∂(η̃ ◦ µm)i

∂sp
(s)

(∫ 1

0
(1− θ)∂(µm)j

∂sq∂sr
(s− θu) dθ

))
upuqur

−
2∑

p,q,r,l=1

Dγ−σ
s

((∫ 1

0
(1− θ)∂

2(η̃ ◦ µm)i
∂sp∂sq

(s− θu) dθ

)(∫ 1

0
(1− θ)∂

2(µm)j
∂sr∂sl

(s− θu) dθ

))
upuqurul

}
,

and the higher-order chain formula leads again to

Dσ
s

(
(Pm(s, u) +Qm(s, u))−3/2

)

=
∑

(l,β,δ)∈D(σ)

(Dδh)(Pm(s, u) +Qm(s, u))

l∏

r=1

1

δr!

(
1

βr!
Dβr
s (Pm(s, u) +Qm(s, u))

)δr
.

Consequently, the estimates in (H.2.14) show that
∣∣∣Dγ

s R̂
i,j
λ,0(s, u)

∣∣∣ ≤ C|u|0,∣∣∣∂ulDγ
s R̂

i,j
λ,0(s, u)

∣∣∣ ≤ C|u|−1,
∣∣∣∂ul1ul2D

γ
s R̂

i,j
λ,0(s, u)

∣∣∣ ≤ C|u|−2,

and Corollary H.1.7 yields
∥∥∥∥
∫

Dm

R̂i,jλ,0(·, · − t)ϕm(µm(t))ζ(µm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm)

≤M‖ζ‖Ck,α(Σm)

Now we move to Ki,j
λ,1(x, z) that can be expanded as

Ki,j
λ,1(µm(s), µm(s)− µm(s− u))

= fλ(|Pm(s, u)+Qm(s, u)|1/2)
2∑

p,q=1

(∫ 1

0

∂(η̃i ◦ µm)

∂sq
(s− θu) dθ

)(∫ 1

0

∂(µm)j
∂sq

(s− θu) dθ

)
upuq.

Then, the Dγ
s derivative of Ki,j

λ,1(µm(s), µm(s)− µm(t)) takes the form

Dγ
sK

i,j
λ,1(µm(s), µm(s)− µm(s− u))

=
∑

σ≤γ

(
γ

σ

)
Dσ
s

(
fλ(|Pm(s, u) +Qm(s, u)|1/2)

)
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×




2∑

p,q=1

Dγ−σ
s

((∫ 1

0

∂(η̃i ◦ µm)

∂sq
(s− θu) dθ

)(∫ 1

0

∂(µm)j
∂sq

(s− θu) dθ

))
upuq


 .

Again, by the chain derivative formula we obtain

Dσ
s

(
fλ((Pm(s, u) +Qm(s, u))1/2)

)

=
∑

(l,β,δ)∈D(σ)

Dδ(fλ(·1/2))
∣∣∣
Pm(s,u)+Qm(s,u)

l∏

r=1

1

δr!

(
1

βr!
Dβr
s (Pm(s, u) +Qm(s, u))

)δr
.

Notice that (H.2.8) leads to
∣∣∣∣
dk

drk

(
fλ(r1/2)

)∣∣∣∣ ≤ C̃
1

rk+1
, ∀ r ∈ (0, dmS ) .

Consequently, (H.2.14) proves the upper bounds
∣∣∣Dγ

sK
i,j
λ,1(µm(s), µm(s)− µm(s− u))

∣∣∣ ≤ C|u|0,
∣∣∣∂ul1D

γ
sK

i,j
λ,1(µm(s), µm(s)− µm(s− u))

∣∣∣ ≤ C|u|−1,
∣∣∣∂ul1ul2D

γ
sK

i,j
λ,1(µm(s), µm(s)− µm(s− u))

∣∣∣ ≤ C|u|−2,

so the hypotheses in Corollary H.1.7 are satisfied and
∥∥∥∥
∫

Dm

Ki,j
λ,1(µm(·), µm(·)− µm(t))ϕm(µm(t))ζ(µm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm)

≤M‖ζ‖Ck,α(Σm).

In order to complete the proof of the theorem, let us show how to deal with the terms
m′ 6= m in (H.2.9) and (H.2.10). The idea is to obtain estimates over Σm ∩ Σm′ and Σm \ Σm′

separately. First,

∥∥∥∥∥

∫

Dm′
Ki,j
λ (µm(·), µm(·)− µm′(t))ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt

∥∥∥∥∥
Ck+1,α(µ−1

m (Σm∩Σm′ ))

≤ C
∥∥∥∥∥

∫

Dm′
Ki,j
λ (µm′(·), µm′(·)− µm′(t))ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt

∥∥∥∥∥
Ck+1,α(Dm′ )

≤ C̃‖ζ‖Ck,α(Σm′ )
.

Second, define Cm′ := µ−1
m′ (suppϕm′), Km′ := µm′(Cm′) and dm,m′ := dist

(
Σm \ Σm′ ,Km′

)
> 0

as in Figure H.2. This avoids the singularity near z = 0 in the preceding kernels. Hence,

Dγ
s

∫

Dm′
Ki,j
λ (µm(s), µm(s)− µm′(t))ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt

=
∑

(l,(δ1,δ2),β)∈D(γ)

∫

Cm′

(
Dδ1

x D
δ2

z K
i,j
λ

)
(µm(s), µm(s)− µm′(t))

×
[

l∏

r=1

1

δ1
r !δ

2
r !

(
1

βr!
Dβrµm(s)

)δ1
r
(

1

βr!
Dβrµm(s)

)δ2
r

]
ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt.
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S

Σm = µm(Dm)
Σm′ = µm′(Dm′)

Km′ = µm′(Cm′)

dm,m′

Figure H.2: Overlapping coordinate neighborhoods Σm and Σm′ .

for each s ∈ µ−1
m (Σm \ Σm′). Since |Dδ1

x D
δ2

z K
i,j
λ (x, z)| ≤ C̃|z|−|δ2| for every z ∈ Bdm,m′ (0), then

∣∣∣∣∣D
γ
s

∫

Dm′
Ki,j
λ (µm(s), µm(s)− µm′(t))ϕm′(µm′(t))ζ(µm′(t))Jm′(t) dt

∣∣∣∣∣ ≤
C

d|γ|
|Cm′ |‖ζ‖C0(Σm′ ),

Here, 0 < d < 1 is such that d < dm,m′ for every m′ 6= m. Since one can take any |γ| ≤ k + 2 by
the regularity of S, then we obtain the desired estimate for m′ 6= m and the result follows.
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Université de Toulouse III, December 2011.

[39] , Simple bounds for convergence of empirical and occupation measures in 1-Wasserstein
distance, Electron. J. Probab. 16 (2011), no. 83, 2296–2333.
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[96] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Scient.
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[112] R. Dobrushin, Vlasov equations, Funct. Anal. Appl. 13 (1979), no. 2, 115–123.

[113] T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward, Chaotic stream-
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tentialtheorie in den Räumen hölderstetiger Funktionen (German), Ph.D. thesis, University of
Bayreuth, January 1992.

[168] D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical feature of escape panic, Nature
407 (2000), 487–490.

488



CONCLUSIONS AND PERSPECTIVES

[169] H. Helmholtz, On integrals of the hydrodynamical equations, which express vortex-motion, Phi-
los. Mag. 33 (1867), no. 226, 485–512.

[170] H. Hildenbrandt, C. Carere, and C. K. Hemelrijk, Self-organized aerial displays of thousands
of starlings: a model, Behav. Ecol. 21 (2010), no. 6, 1349–1359.

[171] S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher, Square function/non-tangential maximal
function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Amer. Math.
Soc. 28 (2015), 483–529.

[172] A. Ioffe, Existence and relaxation theorems for unbounded differential inclusions, J. Convex
Anal. 13 (2006), no. 2, 253–262.

[173] A. Ionescu Tulcea and C. Ionescu Tulcea, On the Lifting Property II. Representation of Linear
Operators on Spaces LrE , 1 5 r <∞, J. Math. Mech. 11 (1962), no. 5, 773–795.

[174] , Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete.
2. Folge, vol. 48, Springer-Verlag, Berlin, Heidelberg, 1977.

[175] P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction, Ann. Inst. Henri Poincaré
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