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Preface

“Cogito, ergo sum”
René Descates

This act of thinking, of doubting one’s own existence, served philosopher
René Descartes (1596-1650) as proof of his own reality; while other knowledge,
feeling or sensation could be a product of imagination, there has to be a thinking
being – the self – for there to be a thought (Descartes, 1984). It is not only
great philosophers who have wondered about the reality of the perceived world,
for it seems that it comes to every consciousness – the question, what am I?
One could not possibly count the number of works, from the ancient Greeks to
today’s self-aid best-sellers, that have tackled in this question.

This question is often paired with another: where am I? Where is this voice –
that one identifies with one-self – coming from? It might seem a shallow question
(as the voice is clearly a product of one’s own brain) however in most ancient
societies they would without doubt say it was the heart talking. According to
Aristotle (384-322 b.C.), the “mind” resides in the heart, and the rational nature
of man is owed to the great capacity of the brain to cool blood overheated by
the heart1 (Bear et al., 2007).

During the Renaissance, Descartes defined a mechanistic theory to explain
animal behavior based on cerebral function. The brain would only control hu-
man behavior in its animal part though, since – according to Descartes – the
man has an intellect, a soul (“l’esprit”) given by God, where their special abil-
ities reside. Descartes started in this way two lines of thought that are still
extraordinarily influential. On one side, the mechanistic philosophy, according
to which knowledge of the “machine” is enough to know and explain its behav-
ior. On the other, the mind-body dualism, that still persists in today’s society
(Bear et al., 2007).

The study of the mind followed the same path as other phenomena of Nature,
and during the first half of the 19th a definite shift towards empirical knowledge
occurred, necessarily assisted by fundamental experimental breakthroughs that

1Although Hippocrates (460-379 b.C.) already suggested that the brain might be responsible
for thoughts and feelings, his views did not become universally accepted (Bear et al., 2007).
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provided new ways to study the brain. In 1823 Jean Pierre Flourens (1794-
1867) studied for the first time the functionality of different brain areas in a
systematic manner by carrying out localized lesions in the brain of living ani-
mals, and describing their effects on motor functions, sensibility and behavior
(Pearce, 2009). Shortly after, Paul Broca (1824-1880), after working with brain-
damaged patients, suggested that certain regions of the brain were responsible
for particular functions, that is, that the different cognitive abilities are dis-
tributed through the brain (Schiller, 1992). The hypothesis was also supported
by observations of epileptic patients by John Hughlings Jackson (1835-1911) –
who correctly inferred the organization of the motor cortex by watching the
progression of seizures through the body (Critchley and Critchley, 1998) – and
led to the division of the brain in the so-called Broca areas (Bear et al., 2007).

In parallel with this study of brain functionality and anatomy, research in
a microscopic scale was for the first time possible thanks to the improvement
of the microscope and the development of new experimental techniques that
allowed us to visualize individual cells for the first time. Camillo Golgi (1843-
1926) developed in 1873 an experimental procedure using a silver chromate salt
to reveal the intricate structure of individual neurons (DeFelipe, 2015), that
was used by Santiago Ramón y Cajal (1852-1934) in his seminal works (Ramón
y Cajal, 1911). Golgi and Ramón y Cajal shared the Nobel Prize in Physiology
in 1906 for their extensive observations, descriptions, and categorizations of
neurons throughout the brain. Their work finally let up to the formation of the
neuron doctrine, the hypothesis that the basic functional unit of the brain is the
neuron, by Ramón y Cajal (Guillery, 2004).

During the 20th century, neuroscience began to be recognized as a distinct
academic discipline in its own right, and the understanding of neurons and of the
function of the nervous system became increasingly precise and molecular. For
example, in 1952, Alan Lloyd Hodgkin (1914-1998) and Andrew Huxley (1917-
2012) presented a mathematical model for the transmission of electrical signals
in neurons of the giant axon of the squid, which they called action potentials, and
how they are initiated and propagated, known as the Hodgkin-Huxley model, that
granted them the Nobel Prize in Physiology in 1963. This model was shortly
followed by many others that simplified the dynamical equations (FitzHugh,
1961), or included new functionality (Kandel et al., 2000).

It is worth noting the remarkable change in mentality that allows one to
move from the mind-body dualism, that has so persistently soaked in modern
society, to a doctrine that essentially goes on to say that consciousness – that
is, how one perceives one-self – is “simply” owe to the dynamics – as complex as
it might be – of a (roughly) 50µm cell (Kandel et al., 2000). The fundamental
step, however, resides in the number of such cells (around 1011 in the human
brain) and their non-trivial (i.e. non-linear) synaptic interactions, of which one
can count up to 1015 (Kandel et al., 2000). As a matter of fact, ever since the
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publication of Santiago Ramón y Cajal’s drawings of neurons, it was clear that
these are connected to one another forming networks, and that the consideration
of neuron dynamics alone would not be enough to describe neural function, as
the synaptic interactions among neurons enable them to cooperate and give rise
to complex emergent phenomena – including consciousness (Boccaletti et al.,
2006; Telesford et al., 2011; Gastner and ódor, 2016; Marro and Chialvo, 2017).

It seems convenient then to adopt the theoretical tools of statistical mechan-
ics (Greiner et al., 2012), which deals with large systems of stochastically inter-
acting microscopic elements (these being atoms, spins, birds, cells or even people
(Field et al., 1995; Garcia-Ojalvo et al., 2004; Kiyono et al., 2005; Shmulevich
et al., 2005; Vandermeer et al., 2008; Moussaïd et al., 2009)), to study brain
function (Abbott and Kepler, 1990). Statistical mechanics does not seek to solve
exactly the motion of all particles at the microscopic level, but aims to describe
the emergent collective behavior – via a set of macroscopic observables (Marro
and Dickman, 2005) – of the system. Within this context, networks of neurons
– aka neural networks – are described by a graph in which nodes represent neu-
rons and links stand for synapses (Boccaletti et al., 2006). Neural networks were
initially defined as mathematical algorithms that tried to mimic brain function,
partly inspired by mathematical models of spin systems (Sherrington and Kirk-
patrick, 1975). These considered interacting entities (the spins) which a 2-state
dynamics (up and down), that included a temperature or noise parameter to
govern random fluctuations. The first of these was the Ising model, put forward
in 1920 by Wilhelm Lenz (1888-1957) and studied by Ernst Ising (1900-1998) as
a way to understand phase transitions and the behavior of magnets (Lenz, 1920;
Ising, 1925). The model was shown to present a spontaneous symmetry breaking
at a given temperature that corresponds to the phase transition – of a critical
nature – between an ordered and disordered state (Onsager, 1944; Brush, 1967;
Baxter, 2016). Making an analogy between spins and neurons (being both in-
teracting particles with up and down states), and between an ordered magnetic
state and a memory one, Shun’ichi Amari (1936) and then John J. Hopfield
(1933) defined the first neural network models to exhibit the mechanism known
as associative memory, that is, the ability of the brain to store and recall
memories (Amari, 1972; Hopfield, 1982).

The consideration of the brain as a neural network has revealed itself to be
extremely prolific, and to this date it has served to study several aspects of brain
function, such as associative (Hopfield, 1982) and working memory (Pantic et al.,
2002; Mongillo et al., 2008), the so-called cerebral up-and-down states with the
associated brain rhythms (Buzsaki, 2006; Holcman and Tsodyks, 2006; Mejías
et al., 2010; Torres and Marro, 2015), the role of sleep (Bazhenov et al., 2002),
or the development of the brain itself (Chechik et al., 1998). Similar approaches
are used to gain a system-level understanding of some brain disorders such as
epileptic seizures (Volman et al., 2011), Alzheimer’s disease (Greicius et al.,
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2004; Stam et al., 2008), autism (Geschwind and Levitt, 2007) or schizophrenia
(Faludi and Mirnics, 2011).

In most studied cases, brain function is found to be best reproduced when
the considered models operate at – or near – a critical point (that is, the point
of a second-order phase transition) (Chialvo, 2004; Eguiluz et al., 2005; Chialvo
et al., 2008; Bonachela et al., 2010). This evidence has lead up to the so-called
criticality hypothesis, according to which the brain – and other living systems,
for that matter – would extract a large number of benefits such as maximal
dynamical range, maximal sensitivity to environmental changes, or an optimal
trade-off between stability and flexibility, from operating in the vicinity of a
phase transition (aka, at this “edge of chaos”) (Chialvo, 2006; Muñoz, 2018).
The question remains however of how the brain is placed (or tuned) at such
a rather specific point. In this regard, the celebrated paradigm Self-Organized
Criticality (SOC) seems to offer a framework that explains, without any fine
tuning, the prevalence of critical points in Nature (Valverde et al., 2015; Muñoz,
2018)2.

Interestingly, however, imaging studies of brain activity at the resting state
have revealed that the brain actually wanders around a broad region near a
critical point, instead of staying in it (Tagliazucchi et al., 2012). This suggests
that the region where cortical networks operate is not just a critical point, but
a whole extended region around it. In the framework of statistical mechanics,
extended critical-like regions – known as Griffiths phases (GP) – can emerge
from structural or quenched disorder (Griffiths, 1969; Noest, 1986), such as is
the case of the patterns of connectivity in the brain (Muñoz et al., 2010; Villegas
et al., 2014). Given that disorder is an intrinsic and unavoidable feature of neural
systems, GPs are expected to have a relevant role in many dynamical aspects
(Treviño III et al., 2012).

Nowadays, the underlying architecture of neural networks, as well as the
question of how the structure and function of neural networks are related, is
being considered in terms of large-scale connectomes or maps of connections
(Bullmore and Sporns, 2009). Overall, biological neural networks have been
found to display a structure that is not random nor regular, that at the same
time segregates in different regions but presents short distances among them
(i.e. a small-world structure), and splits in communities of regions more closely
connected within themselves than with the rest of the brain in a hierarchical
manner (a hierarchical-modular structure), and in which the relevant magni-
tudes, such as the number of neighbors, span many orders of magnitude (with
indications of being scale-free) (Sporns et al., 2005; Achard et al., 2006; Bas-
sett et al., 2006; Zhou et al., 2006; Stafford et al., 2014). Interestingly, recent

2As Per Bak put it in his seminal work, “the aim of the science of self-organized criticality
is to yield insight into the fundamental question of why Nature is complex, not simple, as the
laws of physics imply” (Bak et al., 1987).
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studies on in-vitro cultures have also shown that its synchronization capabilities
are strongly influenced by the dimensionality of the underlying network, sug-
gesting that several features of brain dynamics might be a consequence of its
3-dimensional embedding (Severino et al., 2016).

Overall, these topological properties of the human connectome are thought
to be fundamental to support both distributed processing and efficient inte-
gration of information (Bullmore and Sporns, 2012). Finding such networks
of connections and relating their structural properties to the emerging cogni-
tive functions is thus considered to be a fundamental question in neuroscience
(Sporns, 2011; Gastner and ódor, 2016).

Neural networks are not static, as they change constantly in time subjected
to internal and external stimuli. The formation of the brain, in particular,
requires the creation of the enormous number of neurons and glia cells that
conform it, and of all the synaptic connections among neurons. It does not
seem realistic that the information needed to built an efficient network of such
dimensions could be fully encoded in the genetic code – as large and complex
as this might as well be (Kauffman, 1993; Shmulevich et al., 2005; Nykter
et al., 2008). Consequently, one might ask whether the complex structure of
the neural system could arise from simple growth mechanisms. Models in which
networks are gradually formed, for instance by addition and/or deletion of nodes
and edges, or by the rewiring of the latter, have long been studied in various
contexts (Berg et al., 2004; Johnson et al., 2009; Navlakha et al., 2015). The
idea behind all such evolving network models is that there should be general,
relatively simple “microscopic” mechanisms which can give rise to these complex
structures without the need for previous high levels of information or a propos
tuning (Newman, 2003; Albert, 2005). Certain evolution rules have thus been
shown to generate network topologies with particular properties, such as small-
world, scale-free, or hierarchical-modular structures (Watts and Strogatz, 1998;
Barabási and Albert, 1999; Bianconi and Rahmede, 2016). These rules often
give rise to phase transitions, such that qualitatively different kinds of network
topologies can ensue depending on parameters.

In most studied networks the evolution of the structure – or topology – is
invariably linked to the state of the network and vice versa (Gross and Blasius,
2007). Consequently, models in which the evolution of network structure is in-
trinsically coupled with an activity model that runs on the nodes of the network
– the so-called co-evolving or adaptive network models – have gained attention as
a way to approximate the evolution of real systems (Sayama et al., 2013). Some
interesting dynamic phenomena occur repeatedly in adaptive networks, such as
the formation of complex topologies, robust dynamical self-organization, spon-
taneous emergence of different classes of nodes, generally through a complex
mutual dynamics of both activity and topology (Vazquez et al., 2008; Su et al.,
2013; Wiedermann et al., 2015).
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Within this overall context, the aim of this thesis is to investi-
gate, combining mathematical models and computational simulations,
the collective behavior that may emerge in neural networks due to
the symbiotic relationship between their complex, heterogeneous and
time changing structure and the non-linear physiological dynamics of
their components, as neurons and synapses.

In particular, the main objectives of this thesis are:

i) The development of a biologically-inspired adaptive model of brain matu-
ration and evolution that couples neural activity and topology dynamics,
and that can reproduce experimental temporal profiles of the synaptic den-
sity in the brain during infancy and young adulthood. We will also study
its inherent emerging behavior due to the interplay between structural
and physiological dynamics, and ask if new phases appear and how these
– and the associated phase transitions – affect the memory capabilities of
the system (chapter 2).

ii) The study of the determinant role of the synaptic density of the brain, both
during infancy and adulthood, in its emergent cognitive abilities (chapters
3 and 4). The synaptic density of the brain varies largely during devel-
opment, as a great number of synapses are created to be then gradually
pruned. On this thesis we will study whether there are any computa-
tional advantages of going through such non-trivial evolution, and how
the stability of the memories – both static and dynamic – depend on the
intensity and extension of the pruning process and on the emergence of
hubs (highly connected neurons) on the network. This is to be related
to results in autism spectrum disorder, where a deficit in synaptic has
been found, and schizophrenia, where there are evidences of an excessive
pruning, and the cognitive impairment associated with these disorders.

iii) To develop a simple theoretical framework to study synchronization and
frustrated synchronization phenomena in complex networks of neural os-
cillators, as a function of the topological features of the network, and relate
them to similar phenomena observed in actual brain networks (chapters 5
and 6). One of the most studied features of brain dynamics is the emer-
gence of synchronization at different rhythms, a phenomenon observed
both in-vivo with EEG (electro-encephalogram) recordings and in in-vitro
studies of neuronal activity. It has been argue that synchronization is fun-
damental for the brain to establish large-scale integration of distributed
information (Varela et al., 2001). A characteristic feature is the emergence
of temporal and spatial heterogeneous patterns of oscillations, which have
been related to the non-trivial structure of the brain, but whose role and
significance on brain dynamics is yet to be fully understood. In particular,
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little is known of the effect of the non-trivial geometrical structure of the
brain on its cognitive capabilities.

The structure of the thesis is as follows:
In chapter 1 we present an inductive, non-extensive picture of brain dy-

namics and its study, and we discuss the state of the art of some areas involved
in brain research. We try to present a brief physiological description of the
systems of interests, together with some archetypal or ground-breaking models,
with particular attention to those that are used during the original chapters of
this thesis. In particular, we start describing the basic dynamics of individual
neurons and synapses (section 1.1), to then introduce the concept of neural net-
works and connectomes (section 1.2). We go on to consider how such networks
might arise, and in section 1.3, we present some mathematical models of net-
work evolution that give rise to non-trivial topologies. Finally, in section 1.4
we focus on the collective properties that may emerge on neural systems as a
consequence of the non-linear microscopic dynamics and the complex changing
structure described in the previous sections. In particular, we discuss the proper-
ties of associative memory and synchronization (presenting the Amari-Hopfield
and Kuramoto models respectively to describe them), and the criticality hy-
pothesis. Finally we present the mathematical framework of adaptive networks,
in which the structure and dynamics of a system are naturally coupled, as a
way to close our description of neural systems. Notice that this description is
necessarily biased towards the results and models that are most relevant to the
original chapters of this thesis. We do not seek to cover all aspects of brain func-
tion, physiology, or dynamics, but rather to present a convincing case for the
relevance – and necessity – of statistical physics and complex system approaches
in neuroscience.

In the chapters that follow, we present the original scientific con-
tributions of this thesis.

In chapter 2 we present an adaptive model of brain evolution by combin-
ing a familiar auto-associative neural network with an evolving mechanism for
the birth and death of synapses, that we use to describe synaptic pruning (an
extensive decrease of synaptic density occurring during infancy). The question
of how structure and function are related in neural systems is a fundamental
question in neuroscience, and with this model we try to shed some light in this
regard. We find that a feedback loop arises leading to two qualitatively differ-
ent types of behavior. In one, the network structure becomes heterogeneous and
dissasortative, and the system displays good memory performance; furthermore,
the structure is optimized for the particular memory patterns stored during the
process. In the other, the structure remains homogeneous and incapable of pat-
tern retrieval. These findings provide an inspiring picture of brain structure and
dynamics, are compatible with experimental results on early brain development,
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and give a satisfactory explanation of synaptic pruning. We finally show that
other evolving networks – such as those of protein interactions – might share the
basic ingredients for this feedback loop and other questions, and indeed many
of their structural features are as predicted by our model.

In chapter 3 we demonstrate that, as a consequence of the reported feedback-
loop between form and function, hubs emerge in the system that greatly improve
its tolerance to noise, and that are correlated to the patterns memorized in the
network. Moreover, we also show that oscillations in the activity of the system
among the memorized patterns of activity can occur, depending on model pa-
rameters, reminding mind dynamical processes. We show that such oscillations
have their origin in the destabilization of memory attractors due to the prun-
ing dynamics, that reduce the degree of the associated neuron hubs, inducing
a kind of structural disorder or noise in the system at a long-term scale. This
constantly modifies the synaptic disorder induced by the interference among
the many patterns of activity memorized in the system. We also demonstrate
that the observed new intriguing oscillatory behavior is to be associated only
to long-term synaptic mechanisms during the network evolution dynamics, and
it does not depend on short-term synaptic processes, as assumed in other stud-
ies and which are not present in our model. We finally show that the region
of the parameter space associated with such oscillations is maximum when in-
termediate values of the stationary synaptic density are considered, since for
sub-optimal connectivity network activity eventually becomes random, whereas
for super-optimal ones the memories are stable and typically no oscillations are
observed. We relate this result to some of the cognitive deficits associated with
autism (where a defect of pruning has been observed) and schizophrenia (in
which there are indications of an excess of pruning in some brain areas).

In chapter 4 we extend the proposed model for synaptic pruning to repro-
duce experimental profiles of temporal connectivity, including a transient period
of relatively high connectivity during infancy, and to investigate if such initial
growth has an important role on the emergent behavior of the system and on
its computational properties. Thus, using a simple computational approach, we
demonstrate that the consideration of this initial transient leads to an increased
stability of the memory (ordered) states, such that there is a discontinuous phase
transition between the ordered memory phase and a disordered one as a function
of the transient density, with an associated bi-stability region. Furthermore, we
prove that intermediate values of the initial synaptic density allow the system to
reach the ordered state with a minimum energy consumption, a result that we
also show to be robust to details of the synaptic pruning model considered. Fi-
nally, we show that the stationary state of the system is ultimately determined
by the level of heterogeneity of the network prior the beginning of synaptic
pruning. Our results here could thus explain why the experimental curves of
synaptic density follow their characteristic profiles during infancy and, eventu-
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ally, anomalies such as autism and schizophrenia associated, respectively, with
a deficit or an excess of pruning that occur during early infancy and adulthood,
respectively.

In the chapters that follow, we try to shed light on the origin of the complex
spatio-temporal patterns of neural activity repeatedly observed in the cortex. In
order to do so, we consider the relationship between the underlying geometrical
structure of in-vivo neural networks and their synchronization capabilities. Bi-
ological neural network develop on a 3D space that is bounded by the cranium.
However, typically in-vitro studies ignore this fact and consider 2D neuronal
cultures. Similarly, the question of how the network’s geometrical properties
affect neuronal dynamics has been mostly unexplored from a theoretical point
of view. Interestingly, however, recent in-vitro studies of neural activity indicate
that the dynamics of networks of neuronal cultures are strongly dependent on
the network geometry, and in particular on its dimensionality, so that 3D neu-
ronal cultures produce more complex and varied patterns of oscillations than
2D ones.

In order to tackle this question from a theoretical point of view, in chapter 5
we consider a simple mathematical framework to study how the synchronization
capabilities of a neural network might be affected by different features of its com-
plex structure. In particular, we study the interplay between network geometry
and the synchronization dynamics of coupled oscillators following Kuramoto dy-
namics. We use a complex network model called Complex Network Manifold that
allows us to generate networks with a given geometrical and spectral dimension
ds, that are also small-world (and thus have an infinite Hausdorff dimension) and
have a highly modular structure. We also demonstrate that CNMs with a given
integer spectral dimension ds can be embedded in a ds−1-dimensional euclidean
space. Using this framework, we show that the synchronization properties of the
network are directly affected by its spectral dimension, and that a wide region of
frustrated synchronization, displaying complex patterns of oscillatory behavior,
emerges for ds ≥ 4. Interestingly, these results imply that cortical networks,
despite being embedded in a 3D space, could display a spectral dimension equal
to four, the critical dimension for the onset of a global synchronous phase.

In chapter 6 we extend the numerical results obtained in chapter 5 and
show that the spectral dimension of a complex network is determinant for the
synchronization phenomena that it can display. In particular, we develop a
mathematical framework to prove that the globally synchronized phase can only
be thermodynamically stable for ds > 4, whereas for ds > 2 phase entrainment
of the oscillators can occur. We then test our predictions on an extended frame-
work of the Complex Network Manifolds model used in chapter 5. With the
considered extension, the spectral dimension of the networks can hold fractional
values as well, depending on the symmetries of the underlying structure. Conse-
quently, these networks present a more tunable spectral dimension, and therefore
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constitute an ideal framework to study the interplay between network geometry
and synchronization.

Finally, in chapter 7 we present the main conclusions of this thesis, focusing
on the fundamental role of the interplay between network structure and function,
and on the possible implications of our findings. We finally discuss on the
plausibility and possible extensions of the models considered and developed in
this thesis.

Granada, June 2019



Resumen en castellano

“Cogito, ergo sum”
René Descates

Este pensamiento, el dudar de la existencia de uno mismo, sirvió al filó-
sofo René Descartes (1596-1650) como prueba de su propia realidad; mientras
cualquier otro conocimiento, sentimiento o sensación podía ser un producto de
la imaginación, ha de haber un ser pensando – uno mismo – para que haya
pensamiento (Descartes, 1984). Los grandes filósofos no han sido los únicos en
preguntarse por la realidad del mundo percibido, ya que parece llegar a toda
consciencia, la pregunta, ¿qué soy yo? Resultaría imposible contar el número de
trabajos, desde la antigua Grecia a los actuales libros de auto-ayuda, que han
intentado, con mayor o menor éxito, enfrentarse a esta pregunta.

Y es una pregunta que usualmente aparece acompañada por otra: ¿dónde
estoy? ¿Dónde reside esta voz, que uno identifica consigo mismo? Puede parecer
una pregunta banal, puesto que la voz es claramente un producto de mi cerebro,
sin embargo en la mayoría de las culturas clásicas nos dirían, sin duda alguna,
que es el corazón quien habla. De acuerdo con Aristóteles (384-322 a.C.), sin ir
más lejos, la “mente” reside en el corazón, y la naturaleza racional del hombre
se debe a la gran capacidad del corazón para enfriar la sangre “sobrecalentada”
por el corazón3 (Bear et al., 2007).

Ya durante el Renacimiento Descartes definió una teoría mecanicista para
explicar el comportamiento animal basada en la función cerebral. No obstante,
el cerebro sólo controlaría el comportamiento humano en su parte animal dado
que, de acuerdo a Descartes, el hombre tiene un intelecto, un alma (“l’espirit”)
dado por Dios, donde residen sus habilidades especiales. De este modo Descartes
dio lugar a dos líneas de pensamiento que son aún tremendamente influyentes.
Por un lado, la filosofía mecanicista, de acuerdo a la cual el conocimiento de
la “máquina” basta para conocer y explicar su función. Por otro, el dualismo
mente-cerebro, que aún persiste en la sociedad actual (Bear et al., 2007).

3Aunque Hipócrates (460-379 a.C.). ya sugirió que el cerebro podría ser responsable de los
pensamientos y las sensaciones, sus teorías no fueron universalmente aceptadas (Bear et al.,
2007).

xi
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El estudio de la mente, no obstante, siguió el mismo camino que otros fenó-
menos de la Naturaleza y durante la primera mitad del sigo XIX hubo un cambio
definitivo en favor del conocimiento empírico, necesariamente asistido por el de-
sarrollo de hitos experimentales que permitieron nuevas formas de estudiar el
cerebro. En 1823 Jean Pierre Flourens (1794-1867) estudió por primera vez la
funcionalidad de distintas áreas cerebrales de un modo sistemático, realizando
lesiones localizadas en el cerebro de animales vivos y describiendo sus efectos
en la función motora, la sensibilidad y el comportamiento del animal (Pearce,
2009). Poco tiempo después Paul Broca (1824-1880), tras trabajar con sujetos
que presentaban daño cerebral, sugirió que ciertas regiones cerebrales eran re-
sponsables de funciones particulares, esto es, que las distintas habilidades cogni-
tivas tiene lugar de forma distribuida en el cerebro (Schiller, 1992). La hipótesis
fue reforzada por las observaciones experimentales de pacientes con epilepsia por
John Hughlings Jackson (1835-1911), que infirió correctamente la organización
del cortex motor observando la progresión de los ataques epilépticos en el cuerpo
(Critchley and Critchley, 1998). Finalmente se formuló la división del cerebro
regiones funcionales denominadas areas de Broca (Bear et al., 2007).

En paralelo con este estudio de la funcionalidad del cerebro y su anatomía,
por primera vez fue posible investigar a escala microscópica gracias a la mejora
del microscopio y al desarrollo de nuevas técnicas experimentales, que permi-
tieron por primera vez visualizar células individuales. En concreto, Camillo
Golgi (1843-1926) desarrolló en 1873 un procedimiento experimental basado en
un cromato de plata para revelar la intrincada estructura de las neuronas indi-
viduales (DeFelipe, 2015), que fue después utilizado por Santiago Ramón y Cajal
(1852-1934) en sus trabajos seminales (Ramón y Cajal, 1911). Golgi y Ramón
y Cajal compartieron el premio Nobel en medicina en 1906 por sus extensas
observaciones, descripciones y categorizaciones de las neuronas en el cerebro.
Su trabajo finalmente llevó finalmente a Ramón y Cajal a formular la doctrina
de la neurona, la hipótesis de que la unidad funcional básica del cerebro es la
neurona (Guillery, 2004).

Durante el siglo XX, la neurociencia empezó a ser reconocida como una dis-
ciplina académica propia, y la compresión de las neuronas y de la funcionalidad
del sistema nervioso empezó a ser cada vez más precisa y molecular. Por ejem-
plo, en 1952, Alan Lloyd Hodgkin (1914-1998) y Andrew Huxley (1917-2012)
presentaron un modelo matemático para la transmisión de señales eléctricas en
el axón gigante del calamar, que denominaron potenciales de acción, y cómo se
inician y propagan, conocido como elmodelo de Hodgkin-Huxley, por el que se les
concedió el premio Nobel de medicina en 1963. Inspirados por este modelo, poco
después se desarrollaron muchos otros simplificando las ecuaciones involucradas
(FitzHugh, 1961), o incluyendo nueva funcionalidad (Kandel et al., 2000), por
ejemplo.

Es remarcable el enorme cambio de mentalidad que permite pasar de la
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dualidad mente-cuerpo, que tan persistentemente ha percolado en la sociedad
moderna, a una doctrina, la de la neurona, que esencialmente viene a decir que
la consciencia, esto es, cómo uno se percibe a sí mismo, es “simplemente” un
fenómeno emergente debido a las dinámicas, tan complejas como puedan ser,
de un célula con poco más de 50µm de tamaño (Kandel et al., 2000). El paso
fundamental, no obstante, reside en el enorme número de dichas células (alrede-
dor de 1011 en el cerebro humano) y en sus complejas interacciones sinápticas
(no lineales), de las que uno puede contar más de 1015 (Kandel et al., 2000).
De hecho, desde la publicación de los famosos dibujos de neuronas por parte
de Santiago Ramón y Cajal, ha estado claro que éstas están conectadas entre
sí formando redes, y que la consideración únicamente de la dinámica neuronal
individual no será suficiente para describir la función neuronal. Así, las in-
teracciones sinápticas entre las neuronas les permiten cooperar, dando lugar a
comportamientos complejos emergentes, incluyendo la consciencia (Boccaletti
et al., 2006; Telesford et al., 2011; Gastner and ódor, 2016; Marro and Chialvo,
2017).

Parece fundamental entonces adoptar las herramientas teóricas de la física
estadística (Greiner et al., 2012), que ya trabaja con grandes sistemas de el-
ementos microscópicos estocásticos que interactúan entre sí (ya sean átomos,
espines, pájaros, células o incluso personas) (Field et al., 1995; Garcia-Ojalvo
et al., 2004; Kiyono et al., 2005; Shmulevich et al., 2005; Vandermeer et al.,
2008; Moussaïd et al., 2009)), para estudiar la funcionalidad del cerebro (Ab-
bott and Kepler, 1990). La mecánica estadística no busca resolver de forma
exacta el movimiento de todas las partículas involucradas a nivel microscópico,
sino describir el comportamiento emergente, mediante un conjunto de observ-
ables macroscópicos (Marro and Dickman, 2005), del sistema. En este contexto,
se definen las redes de neuronas, o redes neuronales, descritas por un grafo en el
que los nodos representan neuronas mientras que las aristas representan sinap-
sis (Boccaletti et al., 2006). Las redes neuronales fueron inicialmente definidas
como algoritmos matemáticos para reproducir la función cerebral, parcialmente
inspirados por los modelos matemáticos de los sitemas de espines (Sherrington
and Kirkpatrick, 1975). A su vez, éstos consideran partículas binarias (con es-
tados “up” y “down”, o arriba y abajo), que interactúan entre sí en presencia de
un baño térmico a una temperatura dada o ruido que gobierna las fluctuaciones
aleatorias. El primero de estos modelos fue el modelo de Ising, formulado en 1920
by Wilhelm Lenz (1888-1957) y estudiado por Ernst Ising (1900-1998) como una
forma de entender los cambios de fase y el comportamiento de los imanes (Lenz,
1920; Ising, 1925). Pronto se demostró que el modelo presentaba una ruptura
espontánea de la simetría a una temperatura dada, que corresponde con el cam-
bio de fase, de naturaleza crítica, entre un estado ordenado y otro desordenado
(Onsager, 1944; Brush, 1967; Baxter, 2016). Realizando una analogía entre es-
pines y neuronas, siendo ambos partículas con dos estados que interactúan entre
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sí, y entre un estado magnético ordenado y uno de memoria, Shun’ichi Amari
(1936) primero y John J. Hopfield (1933) después definieron el primer modelo
de red neuronal capaz de exhibir el mecanismo conocido como memoria aso-
ciativa, esto es, la habilidad del cerebro para almacenar y recuperar memorias
(Amari, 1972; Hopfield, 1982).

La consideración del cerebro como una red neuronal ha demostrado ser ex-
tremadamente prolífica y, hasta la fecha, ha servido para estudiar diversos as-
pectos de la funcionalidad cerebral como la memoria asociativa (Hopfield, 1982)
y dinámica (Pantic et al., 2002; Mongillo et al., 2008), los llamados estados
“arriba” y “abajo” con los asociados ritmos cerebrales (Buzsaki, 2006; Holcman
and Tsodyks, 2006; Mejías et al., 2010; Torres and Marro, 2015), el papel del
sueño (Bazhenov et al., 2002) o el desarrollo del cerebro en sí mismo (Chechik et
al., 1998). Perspectivas similares se usan para obtener un entendimiento global
del sistema en casos de desordenes cerebrales como ataques epilépticos (Volman
et al., 2011), la enfemedad del Alzheimer (Greicius et al., 2004; Stam et al.,
2008), el autismo (Geschwind and Levitt, 2007) o la esquizofrenia (Faludi and
Mirnics, 2011).

En la mayoría de los casos estudiados se ha encontrado que la funcionalidad
del cerebro se reproduce de forma más natural cuando los modelos considerados
operan en (o cerca de) un punto crt́ico, esto es, el punto correspondiente a una
transición de fase de segundo orden) (Chialvo, 2004; Eguiluz et al., 2005; Chialvo
et al., 2008; Bonachela et al., 2010). Esta evidencia ha llevado a formular
la llamada hipótesis de criticalidad, de acuerdo a la cual el cerebro, y otros
sistemas en general, extrae un gran número de beneficios al operar cerca de
una transición de fase, en el llamado “borde del caos”. Entre estos destacan un
máximo rango dinámico, sensibilidad máxima a estímulos o cambios externos,
o un compromiso óptimo entre estabilidad y flexibilidad, por ejemplo (Chialvo,
2006; Muñoz, 2018). No obstante, aún es necesario esclarecer cómo se coloca
o ajusta el cerebro en una configuración tan particular. En este contexto, el
celebrado paradigma de Criticalidad Auto-organizada (SOC por sus siglas en
inglés) parece ofrecer un marco teórico para explicar, sin necesidad de un ajuste
preciso de los parámetros, la prevalencia de los puntos críticos en la naturaleza
(Valverde et al., 2015; Muñoz, 2018)4.

Recientes estudios de la actividad cerebral mediante fMRI han revelado que
el cerebro, en su estado de reposo, no permanece en un único punto dinámico,
sino que deambula en una amplia región a su alrededor (Tagliazucchi et al.,
2012). De acuerdo a esta observación, la región en la que operan las redes
corticales no sería solo un punto crítico, sino toda una región extendida a su
alrededor. En el ámbito de la mecánica estadística, estas regiones pseudo-

4 Como Per Bak escribió en su trabajo seminal, “el objetivo de la ciencia de la criticalidad
auto-organizada es ayudar a comprender la cuestión fundamental de por qué la naturaleza es
compleja, y no sencilla, como las reglas de la física implican” (Bak et al., 1987).



xv

críticas, conocidas como fases de Griffths (GP por sus siglas en inglés), pueden
emerger en sistemas con desorden estructural o “congelado” (Griffiths, 1969;
Noest, 1986), como el producido por los patrones de conectividad no triviales en
el cerebro (Muñoz et al., 2010; Villegas et al., 2014). Dado el desorden es una
propiedad intrínseca e inevitable de los sistemas neuronales, las fases de Griffiths
podrían tener un papel muy relevante en muchos de los aspectos dinámicos del
cerebro (Treviño III et al., 2012).

Actualmente la arquitectura subyacente de las redes neuronales, además de la
relación entre su estructura y función, se considera en términos de “conectomas”
o mapas de conexiones a gran escala (Bullmore and Sporns, 2009). A partir de
ellos se ha encontrado que las redes neuronales biológicas presentan una estruc-
tura que no es totalmente aleatoria ni tampoco regular, que está segregada en
diferentes regiones que se mantienen a corta distancia (la llamada estructura de
“mundo pequeño” ) y se dividen en comunidades de regiones más estrechamente
conectadas entre ellas que con el resto del cerebro de una manera jerárquica
(estructura jerárquico-modular) en las cuales las magnitudes relevantes, como
el número de vecinos, abarcan varios órdenes de magnitud (con indicaciones de
ser invariantes de escala) (Sporns et al., 2005; Achard et al., 2006; Bassett et
al., 2006; Zhou et al., 2006; Stafford et al., 2014). Curiosamente, estudios re-
cientes en cultivos in-vitro han mostrado que sus capacidades de sincronización
están fuertemente influenciadas por la dimensionalidad de la red subyacente,
sugiriendo que diversas características de la dinámica del cerebro podrían ser
consecuencia de su naturaleza tridimensional.

En general, las propiedades topológicas del conectoma humano podrían ser
fundamentales para mantener tanto un procesamiento distribuido de la infor-
mación como su integración eficiente (Bullmore and Sporns, 2012). Encontrar y
caracterizar estas redes de conexiones, y relacionar sus propiedades estructurales
con la funcionalidad cognitiva emergente, se considera por tanto un problema
fundamental en neurociencia en la actualidad (Sporns, 2011; Gastner and ódor,
2016).

Las redes neuronales no son estáticas, sino que cambian constantemente su-
jetas a estímulos internos y externos. La formación del cerebro, en particular,
requiere la creación de las enormes cantidades de neuronas y células de glía que
lo conforman, y de todas las conexiones sinápticas entre neuronas. No parece
realista pues que la información necesaria para construir una red eficiente de
tales dimensiones pueda estar plenamente codificada en el código genético – por
grande y complejo que éste sea (Kauffman, 1993; Shmulevich et al., 2005; Nyk-
ter et al., 2008). Por ello, cabe preguntarse si la compleja estructura del sistema
neuronal podría surgir de mecanismos de crecimiento simples. Los modelos en
los que las redes se forman gradualmente, por ejemplo mediante la adición o
eliminación de nodos y enlaces, o mediante el reenlazado de estos últimos, se
han estudiado ampliamente en varios contextos (Berg et al., 2004; Johnson et
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al., 2009; Navlakha et al., 2015). La idea detrás de tales modelos es que deberían
existir unas reglas generales relativamente simples de mecanismos “microscópi-
cos” que den lugar a estas estructuras complejas sin la necesidad de grandes
cantidades de información previa o ajuste de parámetros (Newman, 2003; Al-
bert, 2005). Se ha encontrado, pues, que ciertas reglas evolutivas pueden dar
lugar a topologías particulares, como la de mundo pequeño, la invarianza de
escala o estructuras jerárquico-modulares (Watts and Strogatz, 1998; Barabási
and Albert, 1999; Bianconi and Rahmede, 2016). Estas reglas a menudo dan
lugar a transiciones de fase tales que pueden desarrollarse topologías de red
cualitativamente diferentes en función de los parámetros del sistema.

En la mayoría de las redes estudiadas, la evolución de la estructura (o
topología) está invariablemente ligada al estado de la red y vice-versa (Gross
and Blasius, 2007). Así, los modelos en los que la evolución de la estructura de
la red está intrínsecamente acoplada con un modelo de actividad neuronal que
se desarrolla sobre ella (las llamadas redes adaptativas o co-evolutivas) se uti-
lizan como forma de aproximar la evolución de sistemas reales (Sayama et al.,
2013). Algunos fenómenos dinámicos ocurren de forma repetida en las redes
adaptativas, como son la formación de estructuras complejas, la emergergencia
de auto-organización dinámica robusta o la aparición de clases de nodos fun-
cionalmente distintas (Vazquez et al., 2008; Su et al., 2013; Wiedermann et al.,
2015).

Dentro de este contexto general, el objetivo de esta tesis es in-
vestigar, combinando modelos matemáticos y simulaciones computa-
cionales, el comportamiento colectivo emergente en las redes neu-
ronales biológicas debido a la relación simbiótica entre su estructura
compleja, heterogénea y cambiante en el tiempo, y la dinámica fisi-
ológica no-lineal de sus constituyentes, como son neuronas y sinapsis.

En particular, los principales objetivos de esta tesis son:

i) Desarrollar un modelo adaptativo, inspirado en las redes neuronales bi-
ológicas, de la maduración y evolución del cerebro, que acople la actividad
neuronal con la dinámica de la topología de la red subyacente, y que re-
produzca perfiles temporales experimentales de la densidad sináptica en
el cerebro durante la infancia. También estudiaremos el comportamiento
emergente en este modelo debido a la inter-relación entre la dinámica de
la estructura y la fisiología, y analizaremos si aparecen nuevas fases y
cómo éstas, y las transiciones de fase asociadas, afectan a la capacidad de
memoria del sistema (capítulo 2).

ii) Estudiar el papel fundamental de la densidad sináptica del cerebro, tanto
durante el desarrollo como en la madurez, en sus capacidades cognitivas
emergentes (capítulos 3 y 4). La densidad sináptica del cerebro varía am-
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pliamente durante el desarrollo, cuando se crean y destruyen (o podan)
un gran número de sinápsis. En esta tesis estudiaremos las posibles ven-
tajas computacionales que un desarrollo tan poco trivial puede tener. Así
mismo, analizaremos cómo la extensión del proceso de poda y la posible
aparición de nodos centrales altamente conectados (denominados “hubs”)
puede afectar a la aparición y estabilidad de las memorias, tanto estáticas
como dinámicas.

iii) Desarrollar un marco teórico sencillo para estudiar la sincronización y
fenómenos de sincronización frustrada en redes complejas de osciladores
neuronales, como función de las características topológicas de la red, y
relacionarlas a fenomenos similares observados en circuitos y redes cere-
brales reales (capítulos 5 y 6). Una de las propiedades mejor estudiadas
de la dinámica cerebral es la aparición de estados de sincronización en
diferentes ritmos, un fenómeno observado in-vivo con grabaciones EEG
(electroencefalograma) y en estudios in-vitro de la actividad neuronal. Se
ha argumentado que la sincronización es fundamental para que el cere-
bro establezca una integración a gran escala de la información distribuida
(Varela et al., 2001). Una propiedad característica es la aparición de pa-
trones de oscilación temporas y espacialmente heterogéneos, los cuales se
han relacionado a la estructura no trivial del cerebro, pero cuyo papel y
significancia en la dinámica cerebral está todavía por entender. En partic-
ular, poco es sabido del efecto de las estructuras geométricas no triviales
del cerebro en sus capacidades cognitivas.

La estructura de esta tesis es como sigue:

En el capítulo 1 presentamos una imagen inductiva y no extensiva de la
dinámica cerebral y su estudio y discutimos las investigaciones más recientes
sobre el cerebro. Intentamos presentar una descripción fisiológica breve de los
sistemas de interés, junto a algunos modelos arquetípicos o revolucionarios con
especial atención a aquellos que son utilizados en los capítulos originales de esta
tesis. En particular, comenzamos describiendo la dinámica básica de neuronas y
sinapsis individuales (sección 1.1), para después introducir el concepto de redes
neuronales y conectomas (sección 1.2). Proseguimos considerando cómo surgen
dichas redes y, en la sección 1.3, presentamos algunos modelos matemáticos de
evolución de la red que dan lugar a topologías no triviales. Finalmente, en la
sección 1.4 nos centramos en las propiedades colectivas que pueden emerger en
sistemas neuronales como consecuencia de la dinámica microscópica no lineal
y la compleja estructura cambiante descrita en secciones previas. En partic-
ular, discutimos las propiedades de la memoria asociativa y la sincronización
(presentando los modelos de Amari-Hopfield y Kuramoto respectivamente para
describirlos), y la hipótesis de criticalidad. Finalmente, presentamos el marco
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matemático de redes adaptativas, en las cuales la estructura y la dinámica del
sistema están naturalmente acopladas, como fin de nuestra descripción de los
sistemas neuronales. Nótese que esta descripción está necesariamente sesgada
hacia los resultados y modelos más relevantes para los capítulos originales de
esta tesis. No buscamos cubrir todos los aspectos de la función cerebral, fisi-
ología, o dinámica, sino presentar un esquema convincente de la relevancia – y
necesidad – de la física estadística y de los sistemas complejos en la neurociencia.

En los capítulos que siguen presentamos las contribuciones cientí-
ficas originales de esta tesis.

En el capítulo 2 presentamos un modelo adaptativo de la evolución del
cerebro combinando un conocido modelo red neuronal auto-asociativa (el mod-
elo de Amari-Hopfield) con un mecanismo para la creación y poda de sinapsis, y
lo utilizamos para describir la poda sináptica (la extensa eliminación de sinapsis
durante la infancia y la adolescencia). Con este modelo intentamos arrojar luz
sobre la cuestión fundamental en neurociencia de cómo se relacionan la estruc-
tura y función de los sistemas neuronales. En concreto, encontramos que debido
al acoplamiento entre forma y función emerge un bucle de retroalimentación que
da lugar a dos comportamiento cualitativamente distintos. En uno, la estruc-
tura de la red es heterogénea y disasortativa, el sistema muestra la propiedad
de memoria asociativa y, más aún, la estructura de la red es óptima para los
patrones de actividad aprendidos en el proceso. En la otra, la estructura per-
manece homogénea y la red es incapaz de recuperar memorias. Estas eviden-
cias son compatibles con los resultados experimentales en el desarrollo humano
temprano, y sugieren una explicación satisfactoria de la poda sináptica. Para
terminar, mostramos que otras redes evolutivas, como las redes de interacciones
entre proteínas, podrían compartir algunos de los ingredientes básicos de este
bucle de retroalimentación; y de hecho muchas de sus propiedades estructurales
concuerdan con las predichas por nuestro modelo.

En el capítulo 3 demostramos que, como consecuencia del bucle de retroal-
imentación entre forma y función mostrado en el capítulo 2, aparecen hubs en
la red que aumentan enormemente su tolerancia al rudio, y que además están
correlacionados con los patrones memorizados por red. Además, mostramos
que pueden aparecer oscilaciones en la actividad del sistema entre los patrones
memorizados, dependiendo de los parámetros del modelo, que se asemejan a
los procesos mentales dinámicos. Mostramos que el origen de estas oscilaciones
está en la desestabilización de los atractores de memoria debido a la dinámica
de la poda, que reduce el número de conexiones (o grado) de los hubs asociados
con dicho patrón. Esto genera un ruido o desorden estructural a largo plazo
y modifica constantemente el desorden inducido por la interferencia entre los
distintos patrones aprendidos por el sistema. Este comportamiento se debe úni-
camente a los mecanismos de plasticidad estructural asociados a la evolución
de la red, y no depende de otros mecanismos sinápticos o neuronales a cortas
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escalas temporales, como sucede en otros estudios, ya que no están presentes
en nuestro modelo. Para terminar, en este capítulo mostramos que el área en
el espacio de parámetros asociada con dichas oscilaciones es máxima cuando se
consideran valores intermedios de la densidad sináptica estacionaria, dado que
para valores sub-óptimos la actividad de la red acaba dominada por el ruido,
mientras que para valores mayores las memorias estáticas son estables y no se
producen oscilaciones entre ellas. Estos resultados se relacionan con las obser-
vaciones experimentales en los trastornos del espectro autista y la esquizofrenia.
En el primer caso se ha reportado un defecto de poda sináptica en algunas áreas
cerebrales, mientras que en el segundo hay indicaciones de un exceso de poda.

En el capítulo 4 extendemos el modelo de poda sináptica propuesto en el
capítulo 3 para reproducir los perfiles experimentales de densidad sináptica du-
rante la infancia. En concreto, éstos incluyen un periodo inicial de alta conectivi-
dad, y en este capt́ulo investigamos el efecto que esto puede tener en el compor-
tamiento emergente del sistema y sus propiedades computacionales. Mediante
un enfoque computacional sencillo demostramos que la consideración de este pe-
riodo inicial de alta densidad aumenta considerablemente la estabilidad de las
memorias, de modo que hay un cambio de fase discontinuo de una fase de memo-
ria a una de ruido, como función de la densidad inicial, y con la aparición de la
asociada región de bi-estabilidad. Además, probamos que valores intermedios
de la densidad inicial permiten al sistema alcanzar el estado ordenado con un
consumo mínimo de energía, y demostramos que este resultado es robusto frente
a detalles del modelo de poda sináptica considerado. Finalmente mostramos que
el estado estacionario del sistema está determinado en última instancia por el
nivel de heterogeneidad en la red cuando comienza la poda sináptica. Nuestros
resultados en este capítulo podrían explicar por qué las curvas experimentales
de densidad sináptica siguen sus característicos perfiles durante la infancia y,
eventualmente, relacionarlos con las anomalías observadas en el trastorno del
espectro autista o la esquizofrenia, por ejemplo.

En los capítulos venideros, intentamos arrojar luz en el origen de los com-
plejos patrones espacio-temporales de la actividad neuronal repetidamente ob-
servados en el córtex. Para ello, consideramos la relación entre la estructura
geométrica subyacente en redes neuronales ín vivo y sus capacidades de sin-
cronización. Las redes neuronales biológicas se desarrollan en un espacio 3D
delimitado por el cráneo. Sin embargo, los estudios in vitro usualmente igno-
ran este hecho y consideran cultivos 2D. De una forma similar, la manera en
que las propiedades geométricas de la red afectan a la dinámica neuronal ha
sido casi inexplorada desde el punto de vista teórico. Curiosamente, estudios
recientes in vitro de actividad neuronal indican que la dinámica de redes en cul-
tivos neuronales es fuertemente dependiente de la geometría y, en particular, de
su dimensionalidad, de manera que cultivos neuronales 3D producen patrones
de oscilación más complejos y variados que los 2D.
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Para afrontar esta cuestión desde un punto de vista teórico, en el capítulo 5
consideramos un marco matemático simple para estudiar cómo las capacidades
de sincronización de una red neuronal pueden ser afectadas por diferentes as-
pectos de su estructura compleja. En particular, estudiamos la interrelación
entre la geometría neuronal y la dinámica sincronización de osciladores acopla-
dos siguiendo la dinámica de Kuramoto. Usamos un modelo de red compleja
que genera redes que son variedades (llamado CNM por las siglas en inglés de
Complex Network Manifold). Este modelo nos permite generar redes con una di-
mensión geométrica y espectral ds dada, que son también de pequeño mundo (y,
por tanto, tienen una dimensión de Haussdorf infinita) y tienen una alta estruc-
tura modular. Adicionalmente, demostramos que los CNMs con una dimensión
espectral ds dada pueden embeberse en un espacio euclídeo ds − 1-dimensional.
Usando este entorno, mostramos que las propiedades de sincronización de la red
están directamente afectadas por su dimensión espectral y que una amplia región
de sincronización frustrada, que exhibe patrones complejos de comportamiento
oscilatorio, emerge para ds ≥ 4. De acuerdo con estos resultados, las redes
neuronales corticales, a pesar de estar embebidas en un espacio 3 dimensional,
podrían tener una dimensión espectral igual a cuatro, la dimensión crítica para
la aparición de un estado sincronizado global.

En el capítulo 6 extendemos los resultados numéricos obtenidos en el capí-
tulo 5 y mostramos que la dimensión espectral de una red compleja es determi-
nante en los fenómenos de sincronización que pueden tener lugar sobre ella. En
concreto, desarrollamos un marco matemático para demostrar que la fase glob-
almente sincronizada solo puede ser termodinámicamente estable para ds > 4,
mientras que para ds > 2 puede ocurrir arrastre de fases de los osciladores. A
continuación comprobamos nuestras predicciones teóricas dentro de un marco
extendido de CNMs (capítulo 5). Con la expansión considerada, la dimensión
espectral de las redes puede tomar valores fraccionarios, dependiendo de las
simentrías subyacentes en la estructura. Por tanto, estas redes presentan una
dimensión espectral altamente modificable, y constituyen un marco ideal para
estudiar la relación entre la geometría de la red y fenómenos de sincronización.

Finalmente, en el capítulo 7 presentamos las conclusiones principales de
esta tesis, centrándonos en el papel fundamental de la inter-relación entre la
estructura y la función de una red, y en las posibles aplicaciones de los resultados
obtenidos. Para acabar discutimos la plausibilidad y posibles extensiones de los
modelos considerados y desarrollados en esta tesis.

Granada, junio de 2019
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Chapter 1

Actual perspectives in the
study of neural systems

Made up by about 1011 neurons (and roughly the same number of glia cells)
and 1015 synapses (Kandel et al., 2000), the brain is a paradigm of a

complex system whose study involves the cooperation of many research fields,
from biophysics to psychology, including physics mathematics and computer sci-
ence. Descriptions of microscopic processes at the neuronal level are increasingly
precise, and new experimental techniques allow the observation of brain activ-
ity at different levels. It is now more evident than ever that a comprehensive
description of brain dynamics requires the consideration of the emergent behav-
ior arising form the non-trivial cooperation among many elementary units such
as neurons, synapses and glia cells. Departing from the occidental mechanistic
point of view, holistic representations that consider brain functioning as a whole
are becoming more relevant. As so, the brain is considered as a paradigmatic
example of a complex system in which high level brain functions, such as cogni-
tion, emerge from the interaction among its microscopic components (Telesford
et al., 2011; Marro and Chialvo, 2017).

At the mesoscopic level, the brain is made up by large, highly structured
neuronal assemblies, and takes care of the processing of information and of
high-level cognitive abilities (Bear et al., 2007). Experimental observations re-
currently correlate many of these cognitive functions with the co-activation of
different areas of the cerebral cortex, the outer layer of the mammal (and hu-
man) brain. The cerebral cortex (or simply the cortex) is mainly composed
by the neuron cell bodies or somas (constituting the so-called gray matter),
while internally the nerves (or axons) constitute the white matter (see panel
1). The study of the functioning of the cerebral cortex has been the focus of
much attention since the pioneering works by Ramón y Cajal (Ramón y Cajal,
1911, 1995). Over a century ago K. Brodmann described a parcellation of the

1



2 Chapter 1. Actual perspectives in the study of neural systems

cortex in the so-called “Broadmann areas”, based on the cytoarchitectural or-
ganization of neurons (Strotzer, 2009). Many of these regions have since been
associated with particular brain functions, such as vision or memory (Bliss and
Collingridge, 1993; Kandel et al., 2000; Cardin et al., 2008). It is nowadays
accepted however that brain functions are not restricted to a particular brain
area, but occur distributed throughout the whole brain (Amit, 1989; Felleman
and Van, 1991; Bullmore and Sporns, 2009; Stafford et al., 2014). As such,
even in the resting state (that is, the brain’s activity state when the subject
is resting) it has been observed a consistent activation of several brain areas,
that consequently are functionally inter-correlated constituting the commonly
named Resting State Networks (RSN) (Fraiman et al., 2009).

The emergent observed behavior and dynamics of the brain is widely as-
sumed to depend not only on the non-linear dynamics and interactions among
its constituents, but also on the existence of an underlying complex and hierar-
chical structure of connections among the basic brain elements. This complex
systems approach for the study of the brain is similar to those applied in other
research areas combining concepts from network science, statistical physics and
dynamical systems to study, e.g., social networks, epidemic spreading or the
functioning of gene regulatory networks, to name a few. Within this approach,
real-world systems are modeled as a collection of elements linked by pairwise
connections. The underlying structure of connectivity powerfully shapes the pat-
terns of interaction and the communication between the elements of the system,
which in turn govern its global behavior. These patterns unfold dynamically
across time in response to endogenous and exogenous perturbations. In partic-
ular, brain networks extend across a broad range of spatial and temporal scales,
and can be assembled from various recording and mapping techniques that cap-
ture (usually pairwise) relationships among elements (Avena-Koenigsberger et
al., 2018).

It has been recently observed that brain networks repeatedly show indica-
tions of a small-world structure (Sporns and Zwi, 2004; Achard et al., 2006;
Stam et al., 2006; Achard and Bullmore, 2007; He et al., 2007; Wang et al.,
2009) in which there are many short range connections but also some long-
range ones, such that any two nodes in the network can be connected by a path
with a small number of intermediate nodes. There are often also evidences of
a scale-free structure, as it is observed in brain functional networks (Eguiluz
et al., 2005) – in which most neuron make little connections but some are very
highly connected, constituting the so called hubs.

Many natural systems of interconnected non-linear elements evolve over time
into a critical state, characterized by avalanche dynamics that are scale-free and
can be characterized by a power-law (Muñoz, 2018). According to the criticality
hypothesis, this critical state might allow the system to satisfy the competing
demands of information transmission and network stability. In the case of brain
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dynamics, it has been suggested that the brain might also take advantage of
the largest variety of metastable states that is found near a critical point, which
would allow neuronal groups to generate a larger diversity of flexible collective
behaviors (Fraiman et al., 2009). Different experimental evidences also seem
to support this possibility (see Chialvo et al., 2008 and references therein).
For instance, the propagation of spontaneous activity in cortical networks is
often associated with avalanche processes with scaling exponents corresponding
to those of a critical branching process, namely −3/2 for avalanche sizes and
−2 for avalanche lifetimes, and scale invariance of network dynamics has been
observed over many order of magnitude (Beggs and Plenz, 2003).

It has recently been suggested that a necessary requirement for the emer-
gence of avalanches of neural activity is the balance between excitatory and
inhibitory dynamics (Beggs and Plenz, 2004; Santo et al., 2018). However, the
question remains of how the brain is posed at criticality. Mechanisms of Self-
Organized Criticality (SOC) are often found to be in place in neural systems
(Muñoz, 2018) as a means to achieve a critical state without any fine tuning
(Bak et al., 1987). Other mechanisms have also been recently associated with
the observed criticality in living systems. In particular, in a complex network
structure with a hierarchical-modular architecture, as observed in the brain,
the singular critical point is replaced by an extended critical-like region akin to
a Griffiths phase (Moretti and Muñoz, 2013), providing an extended region of
critical-like behavior.

The emergence of non-trivial structures, as well as complex emerging dynam-
ics, is also a hallmark of co-evolving networks. In these systems, the underlying
network also evolves in time in a way that is coupled with the dynamic state
of its constituents. Examples of co-evolving systems are most communication
networks, information networks such as gene or neural networks, and similarly
social networks (Gross and Blasius, 2007). In the case of the brain, it has been
widely reported that its network structure changes dramatically in time from
conception to adulthood and elderly (Santos and Noggle, 2011). The brain is
initially made up by a rapid proliferation of synapses after birth, which is then
followed by an extensive process of synaptic pruning. This is thought to be
some kind of optimization process to minimize the energy consumed by the brain
and also the amount of genetic information that otherwise would be necessary to
code an efficient network. This process goes on into adulthood, when synaptic
connections continue to change, allowing for adaptation to a changing environ-
ment. Co-evolving systems have repeatedly been shown to present advantageous
emerging dynamics, such as SOC, spontaneous division of labor (in which classes
of topologically and functionally distinct nodes arise from homogeneous popu-
lations), formation of complex topologies and complex system dynamics due to
the combination of local and topological degrees of freedom (Gross and Blasius,
2007; Vazquez et al., 2008; Wiedermann et al., 2015; Williams et al., 2019a).
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In this chapter we deepen in these ideas and the experimental methods
and models used to describe them, some of which we will use in the models
developed in the original chapters of this thesis. We start in section 1.1 by giving
a basic biological description of the main basic brain’s constituents, neurons and
synapses, and present a few archetypal mathematical models used to describe
them. We then consider the structure of the neural system, aka connectome,
and present the state of the art of connectome obtention and analysis on section
1.2. On section 1.3 we discuss the changes undergone by the brain during its
development, and finally on section 1.4 we present the study of brain networks
under the framework of statistical mechanics and complex systems and introduce
some related models that are later used in this thesis.

The brain (Box 1.1)
The brain is the largest component and major functional unit of the
Central Nervous System (CNS), and it is often the main structure referred
to when speaking of the nervous system. It consists ofa (Kandel et al.,
2000):

Midbrain

Pons

Spinal cord

Brainstem
 Medulla

Cerebellum

Forebrain (cerebrum)

Diencephalon

oblongata

Thalamus
Hypothalamus
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• The brainstem, constituted by the medulla, the pons and the mid-
brain, is involved in arousal and alertness mechanisms and it medi-
ates autonomic control of the organs such as the heart, blood vessels,
pupillae, among others.

• The cerebellum handles and processes sensory stimuli, motor in-
formation as well as balance, and it is also involved in language as
well as cognitive functions. The body of the cerebellum holds more
neurons than any other structure of the brain, but is also more ex-
tensively understood and includes fewer types of different neurons.

• The diencephalon is composed by the thalamus and the hypotha-
lamus. The thalamus acts as a linkage between incoming pathways
from the peripheral neural system to the cerebral hemispheres, and
it connects the cerebellum and basal ganglia with the cerebrum.
It is involved in wakefulness, consciousness and in motivation. It
also engages in primitive emotions or feelings such as hunger, thirst
and maternal bonding, partly regulated through the secretion of
hormones from the pituitary gland.

• The cerebrum is composed by the two cerebral hemispheres and
the corpus callosum connecting them. The hemispheres are made up
by various structures, including the cortex, basal ganglia, amygdala
and hippocampus. Together, they control a large portion of the
functions of the human brain such as emotion, memory, perception
and motor functions, and stand for the cognitive capabilities of the
brain. In particular, the cortex, made up by gray matter covering
the surface of the brain, is involved in several high level cognitive
functions, such as planning and everyday tasks. The hippocampus
is involved in storage of memories, the amygdala plays a role in
perception and communication of emotion, and the basal ganglia
play a major role in the coordination of voluntary movement.

aFigure adapted from (Commons, 2018).
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1.1 A microscopic picture of the nervous system
The basic constituents of nervous systems – although not the only ones – are neu-
rons and synapses. These are responsible for the processing and transmission of
information by means of electrical and/or chemical signaling. Nowadays, there
coexist highly detailed multi-dimensional mathematical models for neuronal ac-
tivity and synaptic transmission, that specifically describe time variations of
individual cell and synapse states, together with highly abstract models in the
framework of statistical mechanics. In these last models, the dynamics of in-
dividual cells is highly simplified in order to study the emergent behavior of a
system comprised by a great number of them, under different circumstances.
Here, we introduce the basic characteristics of these elements and the interac-
tions among them, and present some common individual neuron and synaptic
mathematical model descriptions.

1.1.1 Neurons

A neuron is an electrically excitable cell that receives, processes and transmits
information through electrical and chemical signals, and it is typically considered
the basic element of information processing in the brain, according to the neuron
doctrine (Ramón y Cajal, 1995).

A typical neuron, as represented in figure 1.1, consists on a central cell
body or soma, a receiving pole consisting on a tree of soma extensions called
dendrites and an output pole or axon, which is a long and thin extension of the
soma. The soma houses the cell nucleus and most of the genetic expression and
synthetic machinery to elaborate proteins, lipids, sugars and other constituents
of cytoplasm environment. Its boundary constitutes the membrane of the
cell, which presents communication sites or channels that connect the interior
of the cell with the extracellular medium. These are constituted by specific
transmembrane macro-molecules and control the level of excitability of the cell.

The axon typically extends from the soma forming a single branch that
establishes connections or synapses to the dentrites of other neurons. The
shape of a neuron can vary greatly. For instance, simplest neurons (appearing
on the nervous system of invertebrates) present only a single process giving rise
to the axon and dendrites, whereas the brain of vertebrates is mostly conformed
by multipolar neurons, with multiple processes, which may give rise to more
complex geometrical and topological structures (Mejías, 2009).

Neurons communicate with each other through the transmission of action
potentials (APs) or spikes. These consist on rapid, self-regenerating electrical
signals induced by the flow of ions through voltage-gated ion channels in the
membrane of the neuron. Ion channels are specific protein structures in the
membrane of the neuron that allow the flux of ions from the intracellular to
the extracellular mediums, and vice-versa. Voltage-gated channels in particular
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Figure 1.1: Schematic view of a typical neuron indicating the soma, the dendrites
and the axon. As shown in the figure, many axons are covered with a layered
myelin sheath made of Schwann cells – in the case of neurons in the peripherical
nervous system (PNS) – or oligondendrocytes – in the case of neurons in the
CNS – which are particular types of glia cells. The myeling sheath accelerates
the transmission of electrical signals along the axon. These are separated by
the nodes of Ranvier, which are gaps in the mylening sealth, highly rich in ionic
channels, that serve to regenerate the action potentials travelling along the axon
(Kandel et al., 2000). Figure adapted from (Commons, 2019).

are controlled by the voltage difference between both media, opening or closing
according to its current value.

The voltage difference between the intra and extracellular media comes from
different ion concentrations in each one, being Na+ and Cl− most abundant
outside the cell, and K+ and several organic anions inside. In the absence of an
external stimulus, i.e. at the resting state, there is an excess of negative charges
inside the cell, which is actively maintained by ion pumps spread out along the
membrane. This causes the membrane potential at rest to have a typical value of
approximately −65mV (Koch, 2004). When a positive external current arrives
at the cell, it depolarizes the membrane by increasing the positive charge in the
intracellular medium. If the depolarization reaches the so called neuron firing
threshold, there is an increasing activation of voltage-gated Na+ channels that
produces even further depolarization. This, in turn, makes more voltage-gated
Na+ channels open, leading to a fast feedback loop of increasing depolarization.

At this point the membrane potential is close to the Na+ equilibrium poten-
tial, and two processes start to actively re-polarize the membrane: a high number
of voltage-gated Na+ channels close whereas voltage-gated K+ channels open,
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producing an increasing efflux of K+ to the extra-cellular medium. This results
in a positive net current from the neuron to the extra-cellular medium and in
its fast hyper-polarization below the resting potential. At this low membrane
potential many Na+ channels activate again, resulting in a slow depolarization
of the membrane until the resting potential is reached again. The overall vari-
ation of the membrane potential since the arrival of the external input at the
neuron resting state, until this is reached again, constitutes the AP.

Once an AP is generated, it propagates along the axon due to the existence of
many voltage-gated channels distributed along the membrane. When it reaches
the pre-synaptic terminals of the pre-synaptic neuron, a number of biophysical
processes take place to transmit the information encoded in the AP to the post-
synaptic neuron, constituting the synaptic transmission.

1.1.2 Models of neurons

It is hardly surprising that during the last decades a huge number and variety
of mathematical models have been developed to describe neuronal dynamics.
These include different levels of detail (such as the neuron’s varying morphology
and functionality), range from simple binary models to high dimensional sets
of coupled equations, and typically consider some source of non-linearity and
stochasticity (Koch, 2004). Nowadays we count with highly detailed models for
a great number of particular neurons, such as pyramidal neurons, interneurons,
Purkinje cells, granule cells, or different types of motor neurons, to name a few
(Masoli et al., 2015; Eyal et al., 2018; Haney et al., 2019). A comprehensive
description of the literature is beyond the scope of this section, where we will
just present some important neuron modeling milestones.

The Hodgkin and Huxely model constitutes a paradigmatic model for
the generation of APs. First described in 1952, it is a phenomenological model
that characterizes the ionic mechanisms underlying the generation of an AP by
treating the neuron membrane as an electrical circuit. The dynamics of the
membrane potential of the cell V (t) is described as a set of nonlinear differential
equations depending on the external current arriving at the cell I(t) and a set
of ion channels. The model includes the description of two voltage-gated ion
channels, Na+ and K+, represented by electrical conductances Gi(V, t) that
depend on both voltage and time, and a passive leakage channel L represented
by a linear conductance GL (see figure 1.2).

HH-like neuron models constitute a successful phenomenological description
of neural activity than can describe a wide range of phenomenology, and can
also be improved by considering additional ionic currents. However, the high
number of variables and non-linearities present in these models precludes an an-
alytic treatment. Moreover, it was considered prohibitive for statistical physics
analysis of even mesoscopic systems, when the HH model is used to define the
neuron dynamics in a neural population. Therefore, more simplified scenarios
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are typically considered, such as the FitzHugh-Nagumo model (FitzHugh,
1961; Koch, 2004), which reduces the system to a set of two coupled differen-
tial equations, or the so-called threshold-firing neuron models, such as the
integrate-and-fire (Lapicque, 1907; Brunel and Van Rossum, 2007) or the
Izhikevich models (Izhikevich, 2004). These models include an auxiliary con-
dition for the generation of a spike, simplifing the non-linearities of the equations
and allowing for faster and simpler computations (see the appendix A).

Further simplifications of the neuron dynamics can be taken, leading us to
binary neuron models, in which the state of each neuron is a binary variable:
the neuron can either fire (S(t) = 1) or be silent (S(t) = 0). The first model
within this framework is the McCulloch and Pitts neuron model, proposed
in 1943 (McCulloch and Pitts, 1943). This is simply an element that returns a
Heaviside step function, Θ(t), of the sum of its inputs,

S(t+ 1) = Θ [RI(t)− θ] , (1.1)

where R is the resistance and θ a voltage threshold parameter. This model soon
received interest due to its simplicity. It was shown for instance that sets of these
“artificial neurons” could be used to implement any logical gate (Peretto, 1992).
It is commonly employed to construct perceptrons and other artificial intelligence
structures, since it is computationally the fastest neuron model available (Amit,
1989).

Variations of this model are commonly used to analyze the emerging be-
havior of large sets – i.e. networks – of interacting neurons, such as in the
Amari-Hopfield model (see section 1.4.1 and also Amari, 1972; Hopfield, 1982;
Amit, 1989). These binary neural network models are widely used for instance
when one seeks to explore the emergence of one characteristic collective behavior
from the microscopic dynamics, such as associative memory or synchronization
phenomena. In this framework even more abstract models are usually consid-
ered, such as the Kuramoto model (Kuramoto, 1975), the voter model (Castel-
lano et al., 2009) or the contact process model (Gardiner et al., 1985; Muñoz
et al., 2010). In this thesis we make use of such models – in particular of the
Amari-Hopfield and the Kuramoto models – together with a complex underlying
networked structure to study how the interplay between form (i.e. structure)
and function may affect the emerging dynamics of neural systems.

1.1.3 Synapses

Synapses mediate the communication between neurons as they take care of
transmitting APs from the pre-synaptic to the post-synaptic neuron. A typical
neuron establishes about 1000 synaptic contacts with other neurons which gives
1014 synaptic connections over the whole brain (Kandel et al., 2000).

There are two basic mechanisms through which synapses transmit infor-
mation: electrical and chemical. Electrical synapses are formed by specific
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Figure 1.2: (a) First published intracellular recording of an AP belonging
to the squid giant axon (adapted from Hodgkin and Huxley, 1939). The ver-
tical scale indicates, in mV , the potential of the internal electrode used to
perform the recording. (b) Equations of the Hodgkin-Huxley model, where
Cm is the membrane capacitance and x = m,h, n are phenomenological vari-
ables that describe the activation and inactivation of the ionic conductantes as
GNa = m(t)3h(t)ḠNa, GK = n(t)4ḠK . Ḡi and Vi are respectively the maxi-
mum conductance and the reversal potential of the corresponding ionic channel
i. x∞ are the steady state values of the active conductance variables, and τx
the time constants for channel activation and inactivation. (c) Membrane po-
tential dynamics as obtained with the Hodgkin-Huxley model (top panel), the
FitzHugh-Nagumo model (second panel), the Izhikevich model (third panel) and
the integrate-and-fire model (bottom panel).
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protein structures called gap junctions that join the pre- and post-synaptic mem-
branes directly, forming channels that connect the cytoplasm of both cells. The
pre- and post-synaptic membranes therefore have to be close to each other, be-
ing the typical distance about 3.5nm (Kandel et al., 2000). The information
is transmitted directly by the flow of ions from one cell to the other, making
electrical synapses bidirectional. Chemical synapses, on the other hand, are
unidirectional and do not involve a physical contact between the neurons (the
membranes are typically separated 20 ∼ 40nm by the synaptic cleft (Squire et
al., 2012)), but are mediated by chemical messengers called neurotransmitters.

Chemical synapses are most commonly found in the long distance connec-
tions between neurons, allowing them to form complex networks of connections.
On the contrary, electrical synapses typically constitute a form of local connec-
tivity, and are mostly found between local clusters of inhibitory neurons (Galar-
reta and Hestrin, 2001; Connors and Long, 2004). Electrical synapses conduct
nerve impulses faster, and therefore are commonly found in neural systems re-
quiring fast responses, such as defensive reflexes (Purves et al., 2018). However,
they lack gain – the signal in the postsynaptic neuron is usually smaller than
that of the presynaptic neuron due to the membrane resistance.

In electrical synapses, the response is always the same sign as the source. On
the contrary, when an AP arrives at a chemical synapse, it can produce either
an excitatory or an inhibitory effect on the post-synaptic neuron. Excitatory
synapses produce the depolarization of the post-synaptic neuron, thus making
it more likely to spike. This is typically due to the influx of Na+ or Ca2+

ions through the post-synaptic ion channels, increasing its membrane potential.
Inhibitory synapses, on the other hand, induce the hyperpolarization of the
post-synaptic cell, typically via an efflux of K+ ions from the cell to the ex-
tracellular medium or an influx of Cl− ions into the cell. In the majority of
neural circuits (such as those of the hippocampus or several cortical regions),
each neuron projects only one type of synapse, either excitatory or inhibitory
(Sossin et al., 1990). This phenomenological principle (known as Dale’s law) im-
plies that neurons themselves can be classified as either excitatory or inhibitory.
Interestingly, a balance between excitation and inhibition is thought to be nec-
essary for the emergence of oscillations in the activity of neuronal populations,
as observed experimentally (Brunel and Wang, 2003).

The effect of a synapse also depends on the time scale of the response, which
is determined by specific post-synaptic repceptors. For instance, the major
neurotransmitter involved in excitatory synpases is glutamate, and there exist
mainly two kinds of receptors associated with it: α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors, which have a fast kinetics (∼ 3ms),
and N-Methyl-D-aspartic acid (NMDA) receptors, with a much slower kinetics
(∼ 100ms) (Koch and Segev, 1998). Therefore, the excitatory postynaptic cur-
rent can constitue a short event or be consistent in time. Similarly, the most
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(a) (b)

Figure 1.3: Schematic view of an electrical (a) and a chemical (b) synapse. In
the electrical synapse there is a flux of intra-cellular ions (blue dots) through the
gap junction (in green). In the chemical synapses the transmission occurs via
the influx of Ca2+ ions (red dots) into the pre-synaptic terminal after the arrival
of an AP. This induces the release of neurotransmitters (green dots), contained
in synaptic vesicles located at the ready releasable pool, into the synaptic cleft.
The neurotransmitters then bind to specific post-synaptic receptors (in green)
which allow the entrance of extracellular ions such as Na+ and K+ (blue dots).
The used vesicles are replaced by other vesicles coming from the reserve pool
– depicted in the figure as the region delimited by blue lines, which in turn
represent the synapsin fibers (Evergren et al., 2007) – or recycled to be used
again. Figure adapted from Torres, 2010.

common neurotransmitter found in inhibitory synapses, gamma-aminobutyric
acid (GABA), can bind to fast receptors (GABAa) or to slow ones (GABAb),
producing instantaneous or prolonged hyperpolarizations in the postynaptic cell.

1.1.4 Synaptic plasticity

Synapses can change with time, either through the modification of the synaptic
efficacy or synaptic weight – that is, the strength or amplitude of the synaptic
connection – or the creation and elimination of synapses (structural plasticity).
These changes are thought to be essential for learning and memory, and to
present computational advantages as well (Abbott and Nelson, 2000; Zucker
and Regehr, 2002).

Structural plasticity plays a major role on brain development, during which
there is first a massive overproduction of synapses, later followed by exten-
sive synaptic pruning as the individual matures (Huttenlocher and Dabholkar,
1997; Sowell et al., 2003). In humans, for example, synaptic density at birth is
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about twice what it will be at puberty. Structural plasticity goes on into adult-
hood, where there is an ongoing experience-dependent creation and pruning of
synapses that balance each other. This allows cortical networks to have vari-
ability to adapt and develop efficient structures (Knoblauch and Sommer, 2016),
and it has also been associated with recovery from brain injuries (Holtmaat and
Svoboda, 2009).

Synaptic strength also changes to adapt to external signals and perform
different brain functions, such as memory (Abbott and Kepler, 1990; Song et
al., 2000). Depending on the temporal scale at which changes occur, one can
distinguish between long-term synaptic plasticity (LTSP) and short-term
synaptic plasticity (STSP). LTSP takes place at the time scale of minutes
or more and leads to permanent changes in the synaptic weights, whereas STSP
causes changes in the synaptic strengths at the time scale of hundreds of ms.
Its study did not begin until the last decades of the 20th century, when it was
reported that the amplitude of post-synaptic potentials at short time scales
could depend on the activity of the presynaptic neuron (Bertram et al., 1996;
Abbott and Regehr, 2004). Synapses which present this property are called
activity-dependent synapses, or simply dynamic synapses.

1.1.4.1 Long-term synaptic plasticity

The biophysical mechanisms that provide long-term modifications at synapses
are still debated, although the common assumptions include changes in the
release probability of neurotransmitters, insertion or removal of post-synaptic
receptors or changes in their conductances, to name a few (Gruart et al., 2006).

Long-term synaptic changes are thought to be behind the process of memory
and learning; as first hypothesized by Donald Hebb (Hebb, 1949),

“Let us assume that the persistence or repetition of a reverberatory ac-
tivity (or “trace”) tends to induce lasting cellular changes that add to its
stability. (...) When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some growth pro-
cess or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.”

or, as it has since be summarized, “neurons that fire together wire together”.
This hypothesis has lead to the theory of Hebbian or associative learning, ac-
cording to which memories are held collectively in the neural network by the
corresponding modifications of the synaptic weights. Mathematically, in a neu-
ral network made up by N neurons, the memories consist on a set of P patterns
of activity that are set to be attractors of the activity dynamics of the system
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(Hopfield, 1982). This can be attained by defining the synaptic weights as

wij = 1
Na0 (1− a0)

P∑
µ=1

(ξµi − a0)
(
ξµj − a0

)
, (1.2)

where a0 = 〈ξµi 〉 is the mean activity of the patterns. This learning rule can be
combined with a binary neuron model such as the McCulloch and Pitts model
(as defined in Eq. 1.1) to define a neural network with the associative memory
property (see section 1.4.1).

The definition 1.2) constitutes the final step of a learning process that can
be implemented as a synaptic plasticity mechanism. A prolific one is spike
timing-dependent plasticity (STDP), which explicitly defines the long-term
changes in the synaptic efficacies induced by the relative firing patterns of the
pre-synaptic and post-synaptic neurons. An important aspect of the STDP
theory is the temporal causality in the firing of the neurons: firing of the post-
synaptic neuron following repeated arrival of pre-synaptic spikes induces long-
term potentiation, whereas if this firing precedes the arrival of the pre-synaptic
spikes, it leads to the long-term depression of the synapse. The change in the
synaptic weight is then given by

∆wij =
N∑
f=1

N∑
n=1

W
(
tni − t

f
j

)
, (1.3)

where tfj are the arrival times of the pre-synaptic spikes at the synapse, and
tni are the firing times of the post-synaptic neuron. W (x) is called the STDP
function that characterizes the change in the synaptic efficacy. A common choice
is

W (x) =
{
A+ exp(−x/τ+) if x > 0,
A− exp(x/τ−) if x < 0,

(1.4)

which has been used to fit experimental data (Zhang et al., 1998), with typical
values for the time constants τ+ = τ− = 10ms. STDP rules are often paired
with homeostatic mechanisms to prevent saturation or divergence of the synaptic
weights, which could lead to epileptic-like behavior. STDP mechanisms have
been observed in different species, including the rat, locust, cat and human, and
in different brain regions, such as the cortex or hippocampus (Sjostrom et al.,
2008).

1.1.4.2 Short-term synaptic plasticity

Short-term synaptic plasticity appears under repetitive pre-synaptic stimula-
tion, and can lead to a decrease in the post-synaptic response (short-term
depression, STD) or to an increase (short-term facilitation, STF) (Ab-
bott et al., 1997; Markram et al., 1997; Abbott and Regehr, 2004). STD is
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caused by the depletion of neurotransmitters consumed during synaptic signal-
ing at the axon of the pre-synaptic neuron, and it has been found to be involved
in selective attention (Buia and Tiesinga, 2005), neural population oscillations
(Pantic et al., 2002) and up and down cortical transitions, for instance (Hol-
cman and Tsodyks, 2006; Mejías et al., 2010). STF in turn is caused by the
influx of Ca2+ into the axon terminal after spike generation, which increases the
release probability of neurotransmitters (Tsodyks and Markram, 1997). It has
been related to working memory tasks (Romani et al., 2006), slow oscillations
(Melamed et al., 2008) and an increased storage capacity (Mejías and Torres,
2009; Mejías et al., 2012).

Synapses in different cortical areas can have varied forms of plasticity, show-
ing either STF or STD, or a mixture of both forms. The combination of STD
and STF leads to a competition between both opposite tendencies, produc-
ing a maximum of the post-synaptic response for a given pre-synaptic firing
rate (Tsodyks and Markram, 1997). Therefore, STSP provides a synapse-level
mechanism to control the gain of post-synaptic responses in an activity depen-
dent manner (Abbott et al., 1997). The time-scale of STSP concurs with many
neural processes such as motor control, speech recognition and working memory
(Romani et al., 2006; Mongillo et al., 2008; Brunel and Lavigne, 2009). It is
therefore plausible that STSP might serve as a neural substrate for processing
of temporal information on the relevant time scales.

One of the most successful models of dynamic synapses was proposed by
Tsodyks and Markram (Tsodyks and Markram, 1997; Tsodyks et al., 1998).
It consists in a phenomenological coarse-grained description of the neurotrans-
mitters concentration via a set of coupled differential equations. Under this
model, neural networks with STSP have been found to present richer dynamical
behaviors, such as the emergence of network bursts of activity (or population
spikes), avalanches, or dynamical memories (Pantic et al., 2002; Torres et al.,
2007a). In particular, STF allows synapses to hold the memory trace of an
input without recruiting persistent firing of neurons, providing a very econom-
ical working memory (Mongillo et al., 2008), whereas STD has been shown to
help discrimination between rhythmic inputs of different periods (Karmarkar
and Buonomano, 2007). Moreover, in attractor neural networks, STD has been
shown to degrade the memory capacitiy of the network, i.e.the maximum num-
ber of memories that can be effectively stored and retrieved (Torres et al., 2002),
whilst inducing hoping (or wandering) among different memories (Pantic et al.,
2002; Cortes et al., 2006; Marro et al., 2007b; Torres et al., 2007a; Torres et
al., 2007b). Interestingly, the inclusion of STF can compensate for the lost of
memory capacity (Mejías, 2009; Mejías and Torres, 2009; Mejías et al., 2012).
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1.2 The structure of the neural system

In the previous section we have presented a brief description of the basic con-
stituents of a neural system, neurons and synapses, and we have emphasized the
relevance of synapses on the transmission of information, memory, and other
high level brain cognitive abilities. However, it is not only the existence of such
connections that is necessary for the brain’s emergent dynamics. On the con-
trary, the underlying network structure made up by these connections is thought
to be essential for brain functioning as well (Damoiseaux and Greicius, 2009;
Sporns, 2011; Shen et al., 2015). This line of thought is not exclusive to brain
research, as the conceptual simplicity of a network is widely used to capture the
essence of cooperation in many complex systems, such as social, ecological or
industrial networks (Wasserman and Faust, 1994; Albert et al., 1999). These
systems share intricate microscopic dynamics – which, as we have seen in the
case of neurons and synapses, are characterized by non-linear dependencies –
together with a non-trivial network structure, which is thought to be essential
for the emerging dynamics of the system.

In the brain, the underlying structure – or map – of connections, usually
referred to as connectome, has been the focus of attention of much experimen-
tal and theoretical research in the last decades. Modern brain mapping tech-
niques include Magnetic Resonance Imaging (MRI) techniques (Mori and
Tournier, 2013) and Electro- and Magnetic- encephalograms (EEG and
MEG) (Niedermeyer and Silva, 2005; Boto et al., 2018). They produce in-
creasingly large data-sets of anatomical connections, describing actual physical
interactions among brain areas, and functional connectivity describing correla-
tions among the activity of different neural populations or brain areas. Struc-
tural or anatomical connectivity describes physical connections between neurons
that range from the microscopic scale of local circuits to large-scale networks
of mesoscopic pathways. Functional connectivity, on the other hand, represents
correlations between the activity of pairs of regions that may or may not be
physically connected, and that are distributed over the brain and often spatially
afar (Friston, 1994). The emerging network thus depends on the specific task
that the individual is engaged on when the data is recorded. For instance, a
network that recurrently appears on resting state studies of brain activity is the
so-called default mode network (DMN). The DMN is composed by regions that
usually decrease their activity during task performance when compared with the
average brain activity at rest (Shulman et al., 1997) and has been associated
with self-conscious and social tasks, such as thinking about oneself, remember-
ing the past or planning for the future (see Raichle et al., 2001; Smith et al.,
2009 and also panel 1.2.3 .

Characterizing the relationship between functional and anatomical connec-
tomes at different scales may be useful to explore the emergent dynamics of the
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system due to its structural connectivity (Zhou et al., 2006; Honey et al., 2007;
Honey et al., 2009). Moreover, its use in clinical research, using the comparison
with control populations, could be useful, for instance, to reveal connectivity ab-
normalities in neurological and psychiatric disorders (Stam et al., 2008; Leistedt
et al., 2009; Wang et al., 2009).

The analysis of structural and functional connectivity in the cerebral cortex
of mammals, including the rat (Burns and Young, 2000), cat (Scannell et al.,
1999), monkey (Felleman and Van, 1991) and human (Crick and Jones, 1993)
has revealed common organizational principles that are also shared with so-
cial, biological, and technological networks (Newman, 2011). These include a
small-world structure, in which clusters of nodes segregate into tightly coupled
neighborhoods, yet maintain very short distances among nodes across the entire
network (Tononi et al., 1994); a community structure so that different commu-
nities of modules can be identified; or a scale-free structure, such that there
are nodes with very different number of neighbors (and often the distribution
of such number follows a power-law) and there exist highly connected nodes or
hubs (Barabási and Albert, 1999). Other recurrent properties are the presence
of non-trivial correlations among the nodes (either assortative or dissasortative)
or the emergence of hierarchical structures.

Overall, these properties indicate a structure that is not random nor regular,
therefore deemed as a complex network. This structure is though to be essential
to support the emergence of complex dynamics on natural systems. In the
brain, for instance, a community structure is thought to be fundamental for a
distributed processing of information (such that each module takes case of a
different functional process). Similarly, a small-world structure is related to the
co-expression of segregated processing of information – which usually requires
tightly coupled clusters of nodes – with the integration of information coming
form different systems, a fact that requires long-distance shortcuts (Sporns and
Zwi, 2004; Achard et al., 2006; Bassett et al., 2006; He et al., 2007; Deuker et al.,
2009). In the following, we will characterize some common statistical measures
of a network’s topological structure that are useful for brain research, as it is
detailed in subsection 1.2.1. We then present the most common experimental
methods used to obtain functional and structural connectomes in subsection
1.2.1 and analyze the main features that characterize the topological structure
of connectomes in section 1.2.3.
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Complex Networks (Box 1.2)
The presence of the small-world (SW) and scale-free (SF) properties is
a constant in the underlying structure of many systems. SW networks
present an admixture of properties of two trivial network structures: lat-
tices (fully ordered) and random networks (fully disordered). Lattices
are ordered graphs with a geometric structure. Mathematically, a lattice
is a graph whose drawing, embedded in an Euclidean space Rn, forms a
regular tiling. On the opposite site, random networks, such as Erdos-
Renyi (ER) networks, are constructed simply by randomly connecting
pairs of nodes with an uniform probability (Newman, 2011). Lattices
typically have high clustering and long characteristic paths, whereas ER
networks have small clustering and small characteristic paths. SW net-
works are characterized by short distances between nodes, equivalent to
ER networks, but relatively large clustering, equivalent to lattices. Firstly
found in large social networks (Travers and Milgram, 1967), SW networks
are ubiquitous in Nature and society, having since been found in genetic,
metabolic, ecological and information systems. Watts and Strogatz first
proposed a mathematical graph that depicted the emergence of small-
world properties. Such graph combined ordered lattice-like connections
with a small admixture of random links (Watts and Strogatz, 1998).

Random LatticeSmall-World

Similarly, whereas both lattices and ER networks have an homoge-
neous topology (all nodes have similar, or equal, degrees), many real
world systems present heterogeneous topologies, characterized by nodes
with very different degrees and the emergence of hubs (highly connected
nodes). In some cases, the distribution of these degrees follows a power-
law, and thus the corresponding networks are deemed scale-free, since
nodes with all possible degrees are present in the network in the large-
size limit. Scale-free networks are robust with respect to random deletion
of nodes but highly vulnerable to targeted attack on the hubs, often result-
ing in disintegration of the network (Barabási and Albert, 1999). Note
that the topology of scale-free networks cannot be efficiently captured
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by random sampling, since most nodes are low degree, and hubs will be
under-represented. Scale-free networks are also known to show facility of
synchronization and fast processing (Lago-Fernández et al., 2000).

Interestingly, many systems have also been found to posses amodular
structure: their nodes can be divided in sets of modules so that the
number of intra-module connections is much higher than that of inter-
module connections. A modular structure is thought to be necessary for
the segregated processing of information.

Small-worldness, degree heterogeneity and a community structure are
hallmarks of a complex network, signs of a structure that is not random
nor fully ordered. They are commonly found for instance in the C-elegans
and the sapiens connectomes, as shown below (figure 1.4).

Figure 1.4: A representation of the C-elegans worm structural connectome
(left) and the sapiens functional one (right) highlying the community
structure of the networks (by indicating each community’s nodes in a
different color) and heterogeneous structures, with node sizes proportional
to their degree (Li et al., 2004; Hagmann et al., 2008).

1.2.1 Some relevant network definitions

A network is a graph indicating the connections (links or edges) of a set of N
nodes. It can be defined by its adjacency matrix eij , with eij = {1, 0} indi-
cating the presence or absence of an edge among nodes i and j, respectively.
The network is said to be undirected if eij = eji∀(i, j), and directed other-
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wise. Most biological networks, such as trophic, genomic, or neural networks,
are directed. There are however some real-world networks that are naturally
undirected, such as the network of electrical synapses in the brain, functional
connectomes and most social networks. Moreover, undirected networks allow
for deeper mathematical approaches, including the definition of a Hamiltonian
description (Amit, 1989). Similarly, according to the nature of the links, net-
works can be further classified as binary, if they only consider the existence or
not of a link, or weighted, if the links can have different strengths depending on
some assumptions. For instance, in functional brain networks the strength of
an edge may represent the level of correlation between the activity of the two
nodes (see section 1.2.2). In this section we focus on the definition of common
used network measures for undirected binary networks (Newman, 2011).

Firstly, a network is connected if there exists a path between every pair of
nodes, where a path is an ordered sequence of distinct nodes and edges linking
a source node j to a target node i. In a disconnected network (i.e., not
connected), there often exists a giant component which is a connected sub-
network that contains most of the nodes in the network. In the following, we
will consider the network to be connected.

The most basic measure of a network is its nodes’ degrees, ki = ∑N
j=1 eij .

The degrees of all nodes in the network characterize the degree distribution,
p(k). Its mean value, κ = N−1∑N

i=1 ki, is usually considered a measure of the
edge density of the network. According to the degree distribution, a network
can be homogeneous, if all nodes have similar (or equal) degrees, or hetero-
geneous, if there exist nodes with different degrees (see panel 1.2). This can be
measured with the homogeneity parameter g = exp(−σ2

k/κ
2), where σ2

k is
the variance of the degrees of the nodes. Homogeneous networks present g → 1
(with g = 1 in the case of sparse networks with p(k) = δk0,k), whereas g < 1
for heterogeneous networks. Scale-free networks are a particular example of
heterogeneous networks which are very common in Nature, and exhibit degree
distributions that are roughly power-law (and therefore g → 0). A hall-mark of
heterogeneous networks is the emergence of high degree nodes or hubs, which
play an important role in integrating information in the network. These ba-
sic network characteristics usually strongly influence higher order measures, so
that network statistics are usually compared to those of null-models (Gotelli
and Graves, 1996; Dormann et al., 2009). These have simple random or ordered
topologies whilst preserving the basic network’s characteristics: size N , density
κ, and typically also degree sequence (Maslov and Sneppen, 2002).
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Network dimensions (Box 1.3)
The common concept of the Euclidean dimension often need to be
extended to more general spaces. In topological spaces without a metric,
for instance, the concept of dimension is generally associated with the
Lebesgue covering dimension, which is a topological invariant. First
define an open cover of a topological space X as a family of open sets
whose union contains X. The order of a cover is the smallest number n
(if it exists) such that each point of the space belongs to at most n sets in
the cover. A refinement of a cover C is another cover, each of whose sets
is a subset of a set in C. The covering dimension of X is the minimum
value of n such that every open cover C of X has an open refinement with
order n+ 1 or below. If no such minimal n exists, the space is said to be
of infinite covering dimension. The Lebesgue dimension is integer, as the
Euclidean dimension.

Early in the 20th century the Hausdorff or fractal dimension was
introduced as a measure of roughness or chaos by mathematician Felix
Hausdorff. This extends the euclidean dimension to non-integer metric
spaces by measuring the local size of a space X taking into account the
distance between points. Consider the number N(r) of balls of radius at
most r required to cover X completely. When r is very small, N(r) grows
polinomially with 1/r. For a sufficiently well-behaved X, the Hausdorff
dimension is the unique number dH such that N(r) scales as rdH as r → 0.

Interestingly, the Hausdorff dimension is commonly extended to com-
plex networks changing the concept of area by that of neighbors, and that
of distance for jumps over the network (so it is equivalently to consider an
implicit metric in which each link in the network has length equal to 1).
Therefore, the topological dimension on a network measures how the
number of neighbors of any given node grows when moving 1 2, 3, ..., r
steps away from it: Nr(r) ∼ rdT for large values of r. Networks with the
SW property have local neighborhoods quickly covering the whole net-
work, that is, Nr grows exponentially with r, formally corresponding to
dT →∞. Instead, large-worlds have a finite topological dimension, while
dT = 0 describes fragmented networks.

Finally, the concept of dimensionality can also be applied to the spec-
tral properties of the network. The spectral dimension dS characterizes
the scaling of the eigenvalues of the associated Laplacian matrix L, with
elements Lij = δij − eij/ki. L has real eigenvalues λ1 ≤ λ2 ≤ ... ≤ λN ,
with λ1 = 0 by construction. For many complex networks λ2 remains
finite as the networks size N grows; the network is then said to display
a spectral gap. In networks with a hierarchical ordering of clusters, how-
ever, the spectral gap approaches zero as N →∞. This ensures that one
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can define the spectral dimension dS , which characterizes the power-law
scaling of the density of eigenvalues ρ(λ) for λ � 1 as ρ(λ) ≈ λdS/2−1.
The spectral dimension characterizes the propagation of a random walk
on the network, as well as its synchronization capabilities.

In the case of the brain, dimensionality is known to play a major role
on its emerging behavior, and several features of brain dynamics are a con-
sequence of its 3D embedding (Severino et al., 2016). The mammalian
cerebral cortex, in particular, is a profoundly convoluted and compact
six-layered surface. The classical explanation for its folded appearance
is that it is a solution to the problem of packing a large surface area
into a restricted volume. However, inter-layer connections create a non-
trivial geometry that shows a fractal architecture – recent measures give
a dimension D = 2.8 ± 0.05 (Kiselev et al., 2003) – that is thought to
heavily influence brain function (Griffin, 1994). The extent of folding
of the mammalian cerebral cortex, which is characterized by the fractal
dimension, is an important factor that influence a species’ cognitive abili-
ties and sensori-motor skills (Toro et al., 2008; Sun and Hevner, 2014). In
humans, for instance, the complexity of the cortex folding increases with
normal brain development (Blanton et al., 2001).

Consequently, considering the 3D embedding of biological networks
might be highly relevant to study brain function. In particular, in-vitro
studies comparing 2 and 3D neuronal cultures indicate that the latter
exhibit morphological and biochemical features resemblant of in-vivo sys-
tems that are lost in 2D ones (Irons et al., 2008; Puschmann et al., 2013;
Severino et al., 2016; Kuehn and Sereno, 2018). Moreover, 3D cultures
minimize cellular stress, an inherent feature of standard 2D cell culture
systems, and have been shown to support richer dynamical repertoires
(Severino et al., 2016). Similarly, the synchronization properties of a net-
work are known to be influenced by the network topological and spectral
dimension (Barahona and Pecora, 2002; Chavez et al., 2005; Donetti et
al., 2005). Consequently, it is clear that the underlying dimensions of
neural systems play a determinant role of their dynamics. In chapters 5
and 6, we tackle on the issue of how the different dimensions of neuronal
networks may affect their emergent collective behavior.
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On a higher level or organization, network motifs can be analyzed to
identify highly frequent patterns of local interconnections potentially indicating
common models of information processing. Biological and technological net-
works contain several characteristic motifs such as feed-forward loops, feed-back
loops and bidirectional loops, with distinct frequencies of individual loops likely
having specific functional implications (Gollo and Breakspear, 2014).

More elaborate network statistics aim at measuring functional integration
and segregation, quantifying centrality of individual regions or pathways, or
testing the network’s resilience to damage. In the following subsections we
present some common topological measures used in brain research and their
possible interpretation in functional and structural connectomes. In table 1.1
there is a summary of these magnitudes and their calculations.

1.2.1.1 Functional segregation

Functional segregation in the brain represents the ability of specialized process-
ing within densely interconnected groups of brain regions. In anatomical net-
works, the presence of clusters suggests the potential for segregated functional
activity, whereas in functional networks, it might be indicative of a segregated
neural processing (Sporns, 2011).

Measures of segregation therefore quantify the presence of clusters or mod-
ules. The simplest one is the clustering coefficient, C, which measures the
number of triangles in the network, that is, the proportion of a node’s neighbors
that are connected themselves1. High clustering indicates a high probability of
local connections, suggesting a more dense connectivity with local nodes than
with the rest of network (Watts and Strogatz, 1998). Interestingly, many real
world networks have been found to present high clustering, whereas random
sparse networks have a vanishing clustering coefficient as their size increases (in
fact C ∼ N−1 as N →∞; see Newman, 2011).

Many networks have been found to have a macroscopic structure organized
in communities, called community ormodular structure, made up by groups
of nodes that are more densely connected among themselves than with the rest
of the network (see panel 1.2). The modular structure of a network is measured
with the modularity Q (Newman, 2004). Modularity algorithms try to find
a division of the network that maximizes the number of within-group links,
whilst minimizing the inter-group links (Girvan and Newman, 2002), maximizing
Q. However, the optimal modular partition of most large networks cannot be
found and it is typically estimated with optimization algorithms (Danon et
al., 2005) that usually sacrifice accuracy for computational speed (Newman,

1The mean clustering coefficient is normalized individually for each node and may be there-
fore disproportionately influenced by nodes with a low degree in heterogeneous networks. A
classical variant of the clustering coefficient, known as the transitivity, T , is normalized
collectively and consequently does not suffer from this problem (Newman, 2003).
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Measures of topological structure
Degree ki = ∑

j eij
Characteristic path length ` = 1

N

∑N
i=1 `i = 1

N

∑N
i=1

1
N−1

∑
j 6=i dij

dij : distance between i and j, i.e. minimum number of jumps necessary to go from i
to j in the network

Global efficiency E = 1
N

∑N
i=1Ei = 1

N

∑N
i=1

1
N−1

∑
j 6=i d

−1
ij

Modularity Q = ∑
u∈M

[
auu − (∑v∈M auv)2

]
M : set of non-overlapping modules
auv: proportion of links that connect nodes in module u with nodes in module v

Q = 1
l

∑
ij

(
eij − kikj

l

)
δm,mj

mi: module containing node i
Clustering coefficient Ci = 2ti

ki(ki−1)
for ki > 2, and 0 otherwise
ti: number of triangles around node i, ti = 1

2
∑
j,h eijejheij

Mean clustering coefficient C = 1
N

∑N
i=1Ci

Transitivity T = # of closed triples
# of all triplets

where a triplet is a set of 3 nodes connected by either 2 (open triplet) or 3
(closed triplet) undirected links

Closeness centrality `
[−1]
i = N−1∑

j 6=i dij

Betweenness centrality bi = 1
(n−1)(n−2)

∑
h,j 6=i

ρhj(i)
ρhj

ρhj : number of shortest paths between h and j
ρhj(i): number of shortest paths between h and j that pass through i
Participation coefficient yi = 1−∑m∈M

(
ki(m)
ki

)2

M : set of modules
ki(m): number of links between i and all nodes in module m

Degree distribution p(k) = ∑N
i=1 δk,ki

Average neighbor degree knn,i =
∑

j
eijkj

ki

Assortativity coefficient r =
l−1
∑

(i,j)∈L kikj−
[
l−1
∑

(i,j)∈L 1/2(ki+kj)
]2

l−1
∑

(i,j)∈L 1/2(k2
i+k2

j )−
[
l−1
∑

(i,j)∈L 1/2(ki+kj)
]2

Small-world coefficient S = C/Crand
`/`rand

Table 1.1: Mathematical definitions of complex network measures. These defi-
nitions correspond to binary undirected networks; expanded definitions for di-
rected and/or weighted networks exist for most of these magnitudes: clustering
and transitivity (Onnela et al., 2005; Fagiolo, 2007), modular structure (Leicht
and Newman, 2008), assortativity (Barrat et al., 2004; Leung and Chau, 2007).
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2006; Blondel et al., 2008). Some algorithms also detect overlapping modular
structure, acknowledging the fact that single nodes may simultaneously belong
to multiple nodes (Palla et al., 2005).

1.2.1.2 Functional integration

Functional integration in the brain is the ability to combine specialized infor-
mation arriving from distributed regions (Sporns et al., 2005). Distances in the
network are thought be indicatives of the capability for functional integration,
since short distances indicate easily achievable communication2. In a network,
the topological distance between two nodes, dij , is the number of nodes in the
shortest path between them. The most common measure of functional integra-
tion is the characteristic path length ` of the network, that is, the average
shortest path length between all pairs of nodes (Watts and Strogatz, 1998). `
only exists for connected networks, as it diverges for disconnected ones. In such
cases, the global efficiency E (the average of the inverse shortest path lengths)
is used. Given that ` is primary influenced by long paths and E by short ones, it
has been suggested that E might be more meaningful as a measure of integration
(Achard and Bullmore, 2007).

The scaling of ` with the size of the network N gives information on the
topological dimension of the network (see panel 1.2.1). If ` ∼ N1/dT , the
network is said to have (finite) topological dimension dT . For instance, in a
lattice ` ∼ N1/dE , where dE is the Euclidean dimension of the lattice. In
random and SW networks, however, the scaling of ` with N is slower due to
the long-range connections, and the topological dimension is infinite. For SW
networks, in particular, ` ∼ ln(N). In fact, the small-world property can be
alternatively defined as the scaling ` ∼ lnN

ln〈k〉 . Given that lnN � N as N →∞,
this implies that distances in a random network are orders of magnitude smaller
than the size of the network (Newman, 2011).

1.2.1.3 Measures of centrality

Measures of centrality detect nodes that are important for different tasks, and
the simplest of them is simply the node’s degree, ki. In modular networks,
degree-based measures of within and between module connectivity are used to
classify nodes in distinct functional groups (Guimerà and Amaral, 2005). For
instance, the participation coefficient yi indicates the fraction of a node’s
intermodular links. It therefore reflects the diversity of intermodular connections

2It is worth noting, however, that functional connectomes already contain information about
integrated activity, since two correlated regions will appear as connected in these networks.
Paths in these networks represent sequences of statistical associations and may not correspond
to information flow, so that they are less straightforward to interpret (Honey et al., 2009).



26 Chapter 1. Actual perspectives in the study of neural systems

of individual nodes, so that nodes with high participation coefficient act as
connector hubs.

Another common measure of centrality is the closeness centrality `
[−1]
i ,

defined as the inverse of the average shortest path length from one node to all
other nodes. Similarly, the betweenness centrality bi measures the fraction
of all shortest paths in the network that go through a given node. Its definition
can be naturally extended to links to detect important anatomical of functional
connections (Brandes, 2001). Centrality is also an indicator of integration, since
central nodes tend to facilitate integration.

1.2.1.4 Measures of network resilience

Anatomical brain connectivity influences the capacity of neuro-pathological le-
sions to affect functional brain activity. Measures of resilience quantify anatom-
ical features that reflect network vulnerability to damage. One of such features
is the degree distribution p(k) (Barabási and Albert, 1999). For instance,
complex networks with power-law degree distributions may be resilient to grad-
ual random deterioration, but highly vulnerable to disruptions of high-degree
central nodes. Most real-life networks do not have perfect power-law degree dis-
tributions but ones that locally behave power-law-like. Another useful measure
of resilience is the assortativity coefficient r, which measures the correlation
between the degrees of connected nodes (Newman, 2002). Assortative networks,
with r > 0, are likely to have a comparatively resilient core of interconnected
high-degree hubs. On the contrary, dissasortative networks, with r < 0, are
likely to have widely distributed and consequently vulnerable high-degree hubs
(Pastor-Satorras et al., 2001; Piraveenan et al., 2008). Most real-world networks
are dissasortative, with the exception of social networks. Interestingly, dissasor-
tativity has been shown to emerge naturally on scale-free (and more generally
heterogeneous) networks (Johnson et al., 2011).

1.2.2 Connectome generation

A connectome is a map of connections between different brain areas. It may
refer to physical connections among the units (structural connectivity) or to
functional connections, reflecting the effective relation in the activity of the
nodes. This concept is expected to help to understand how the underlying
structure of a neural network allows for and affects the functional states of the
brain (Hagmann, 2005; Sporns et al., 2005).

The information encoded by a connectome depends greatly on the technique
used for its construction and the scale of the map of connectivity. Mapping mi-
croscopic connections is highly invasive, and their immense number makes ob-
taining microscopic maps of whole brain areas experimentally intractable with
current techniques. Moreover, these connections are highly dynamic, making
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it difficult to define and extract a static network. Therefore, information at
this level is only available for individual, small brain areas or in-vitro neuronal
cultures, and the construction of a whole connectome has only been possible for
the worm Caenorhabditis elegans (Li et al., 2004; Varshney et al., 2011). Most
brain studies have considered either macroscopic or mesoscopic approaches, with
regions ranging from anatomically distinct brain areas to sets of hundreds of neu-
rons. There is growing evidence that in this scale many of the functional and
cognitive properties of the brain emerge due to the collective activity of many
neurons. However, this adds the problem of defining the nature of the nodes
and links in the connectome, which typically requires combinations of brain
mapping methods, anatomical parcellation schemes, and measures of connec-
tivity. Nodes should ideally represent brain regions with coherent patterns of
external connections (so that they share most of their neighborhoods), and they
should completely cover the surface of the cortex without overlapping. Given
that the eventual parcellation is study-dependent, comparison across different
studies (for inter-subject or inter-species comparisons, for instance) is difficult
(Horwitz, 2003).

The two most used techniques nowadays to extract connectome data are
Magnetic Resonance Imaging (MRI) and Electro- and Magnetic-encephalograms
(EEG and MEG). Magnetic Resonance Image (MRI) techniques are based
on the response of water, a main component of biological tissue, to magnetic
fields due to the magnetic moment µ of the protons conforming the water
molecule. They are commonly used to measure the structure of biological tissue
in hospitals, including guided stereo-tactic surgery and radio-surgery for treat-
ment of intracranial tumors (Brown and Nelson, 2016) or control for Alzheimer’s
disease and epilepsy (Sadek, 2013). In brain research, MRI techniques provide
3D structural pictures of the brain and also functional information of the re-
lation between different regions, providing the foundation for both structural
and functional connectomes, respectively using fMRI (functional MRI) or DTI
(diffusion tensor imaging) procedures.

DTI techniques make it possible to estimate the location, orientation, and
anisotropy of the brain’s white matter tracts – or nerves – in a non-invasive
manner. Nerves are covered in a myeling shield that facilitates the diffusion of
water through them (see figure 1.1). Once the image has been taken, a diffusion
tensor D can be obtained in each voxel that describes diffusion anisotropy. The
direction (and directionality) of the nerve is indicated by the main eigenvector
of D, providing a directed network of anatomical connections. DTI has also
various clinical applications requiring the localization of white matter tracts.

It is also possible to obtain functional connectomes with MRI techniques
using fMRI, which measures the blood flux in biological tissue. The blood flux
indicates the local level of oxygen consume, which in turn is used as a proxy for
neural activity. Given the temporal activity of each voxel x, V (x, t), a correlation
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matrix between voxels can then be obtained as

r (x1, x2) = 〈V (x1, t)V (x2, t)〉 − 〈V (x1, t)〉 〈V (x2, t)〉
σx1σx2

, (1.5)

where 〈·〉 represents a temporal average and σx ≡
〈
V (x, t)2〉 − 〈V (x, t)〉2. Two

voxels x1 and x2 are said to be correlated if r(x1, x2) is greater than a threshold
value rc (Dodel et al., 2002). The threshold is arbitrarily determined, and
ideally networks should be characterized across a wide range of values. Given
that the correlation matrix is symmetric, functional connectomes are undirected
networks. The connection can either be positive or negative, depending on the
sing of the correlation.

Another important technique is EEG recordings, which measure brain activ-
ity via external electrodes. It provides information on functional connectivity
only and with lower spatial resolution than MRI since individual electric poten-
tials are low, making it necessary to integrate the activity of mesoscopic regions
made up by millions of neurons. However, it is non-invasive, nor does it im-
ply any risks or exposure to radiation and, furthermore, it can provide better
temporal resolution than fMRI. Similarly, MEG techniques detect the magnetic
fields generated by ionic currents using SQUID sensors (superconducting quan-
tum interference devices) and it is also non-invasive. MEG images have higher
spatial resolution than EEG and similarly high temporal resolution.

1.2.3 Connectome characterization

Systematic investigations of structural and anatomical cortical networks show
the recurrent appearance of small-word characteristics3 (Hilgetag et al., 2000;
Chialvo, 2004; Sporns and Zwi, 2004; Eguiluz et al., 2005), and common occur-
rence of feed-back and feed-forward loops, given the high frequency of reciprocal
connections (Kötter and Stephan, 2003) and abundance of short cycles (Sporns
et al., 2000). These distributed cluster structures provide pathways for efficient
recurrent processing, supporting the coordinated expression of both functional
segregation and integration (Tononi et al., 1998; Sporns et al., 2000), and it
might support synchronous processing (Kaiser and Hilgetag, 2004; Masuda and
Aihara, 2004) or efficient information exchange (Latora and Marchiori, 2001) as
well.

Several studies have also revealed a hierarchical community structure (Bas-
sett et al., 2008), as well as a backbone of densely interconnected hubs, thus
providing a shortest path structure that facilitates coordinated processing of
information (Heuvel et al., 2012). Hub nodes are of particular importance in

3It is worth mentioning however the study by Gallos et al., 2012, suggesting that functional
brain networks consist of a myriad of densely connected local moduli, which altogether form
a large world structure; however, incorporating weak ties into the network converts it into a
small-world preserving an underlying backbone of well-defined moduli.
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multiple cognitive domains (Fornito et al., 2012), and disruption of hub connec-
tivity is increasingly recognized as a hallmark of neurological and psychiatric
disorders (Rubinov and Bullmore, 2013). The fundamental role of anatomical
hubs in brain dynamics often implies that they act as functional hubs as well
(Honey et al., 2009; Shen et al., 2015).

Despite the common existence of hubs, a scale-free structure has only been
partially found on structural networks, where hubs have low maximum degrees,
due to the saturation of the number of synaptic connections (Sporns and Zwi,
2004). On the contrary, functional networks exhibit robust power-law like degree
distributions, indicating that there is always a small but finite number of brain
sites having broad “access” to most other brain regions. In particular, functional
networks of the human visual and motor cortex where found to present a scale-
free degree distribution with a power-law exponent of −2, and also a power-law
scaling of the number of neighbors at a given distance (notice however that linear
metric in the cortex is unclear due to extensive folding of brain tissue) (Eguiluz
et al., 2005). These networks where also shown to have small ` (comparable
with those of equivalent random networks), large C and assortative correlations
(Newman, 2002). The properties above have been found to be robust within
subjects, tasks and brain locations, and over a wide range of thresholds used to
define the associated connectivity matrices (Eguiluz et al., 2005).

A recurrent question in connectome analysis is how the underlying anatom-
ical structure gives rise to the network of functional connections (Sporns, 2012)
and how spontaneous brain dynamics at large scale organize into the rela-
tively few spatiotemporal patterns revealed experimentally (Fox and Raichle,
2007). Direct comparison between anatomical and functional connectomes is
not straightforward: functional networks tend to be denser than anatomical
ones (they typically contain numerous connections between anatomically uncon-
nected regions (Damoiseaux and Greicius, 2009)), whereas anatomical networks
typically present higher efficiency and stronger connections (Honey et al., 2007).
A way to study the emergence of functional connections from the anatomical
ones is by simulating neural dynamics over a structural network and inferring the
functional network from it, which can then be compared to those obtained from
experimental data (Jirsa and Kelso, 2000; Sporns, 2004). These hybrid modeling
studies (Chialvo, 2010) often suffice to capture relevant spatio-temporal aspects
of brain dynamics – such as the emergence of strucutres having a well-established
neurobiological meaning as the cortical DMN (see panel 1.2.3) – provided that
the dynamical regime is critical. This contributes to the plausibility of the so-
called criticality hypothesis, according to which the brain operates near a critical
a point, which would hold computational and dynamical benefits (see section
1.4.3).

Across subject comparisons of connectivity maps can be useful to detect
possible abnormalities of network connectivity associated with various brain
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disorders (Bassett et al., 2008), although the differences in methodology across
studies still make between-subject comparisons difficult (Sporns et al., 2005).

Interestingly, during the past decade there has been a great number of exper-
imental descriptions of connectomes of different species, with a growing degree
of precision, opening the gate for inter-species connectome comparison. In the
macaque, for instance, anatomical and functional networks alike show modular
structure and extensive overlap, and anatomical modules correspond to groups
of specialized functional areas, a result also found for other species such as the
cat and rhesus monkey (Young, 1992; Hilgetag et al., 2000; Stephan et al.,
2000). A first level inter-species comparison relates to the structure of the un-
derlying network, with the question of whether the differences in connectivity
are associated with differences in brain functionality. However, the limitations
in across-subjects studies magnify for inter-species comparisons as connectomes
of different species are obtained through different techniques and at different
scales, and therefore describe different things. For instance, the C-elegans con-
nectome describes neuron-neuron synaptic interaction, whereas available data
on the macaque and the cat describe correlations among macroscopic regions.
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Default mode network (Box 1.4)
The cerebral cortex exhibits spontaneous activity even in the absence of
any apparent task or external stimuli (Raichle, 2011). The large scale net-
works of these interacting regions make up theResting State Networks
(RSN), of which the most widely studied one is the default mode net-
work (DMN) (shown in figure 1.5, see also Acerra and Moseley, 2005).
The DMN is composed by regions that usually decrease their activity
during task performance (Shulman et al., 1997) when compared with the
average brain activity at rest, suggesting the existence of a “default mode”
of brain function that remains active during rest in an organized manner
(Raichle et al., 2001). It is particularly associated with self-conscious
and social tasks, such as thinking about oneself, remembering the past or
planning for the future (Raichle et al., 2001).

The DMN is marked by a balance of positive and negative correlations
and is disrupted in many disorders (Fox and Raichle, 2007), including
autism (Kennedy et al., 2006), Alzheimer’s disease (Greicius et al., 2004),
depression (Greicius et al., 2007), schizophrenia (Williamson, 2007), and
attention deficit hyper-activity disorder (Tian et al., 2006), as well as
the comatose state (Norton et al., 2012). It has also been shown to be
disrupted in patients suffering from long-term pain (Foss et al., 2006),
which may indicate that the long-term interference with DMN (caused by
the constant pain perception) may eventually cause plastic changes in the
brain. Such brain state alterations can be regarded as a displacement from
an optimal dynamical point (Haimovici et al., 2013). It has been proposed
that, in the normal brain, the DMN proves “a balance of opposing forces”
to enhance “the maintenance of information for interpreting, responding
to, and even predicting environmental demands” (Raichle and Mintun,
2006). Therefore, an unbalanced DMN suggests that these functions may
be compromised.
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Figure 1.5: Representations of the functional DMN (left) obtained with
fMRI and its anatomical substrate (right), as obtained with DTI.
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1.3 Non-equilibrium neural networks

Most networks are not static, they are instead subjected to an undergoing dy-
namical process of addition and removal of nodes and links that may depend on a
non-trivial manner on topological, dynamical and environmental factors (Holme
and Saramäki, 2012; Williams et al., 2019b). The development of the vertebrate
brain for instance – and in particular of the cerebral cortex – reflects a complex
interplay of experiential and genetic factors. Pre- and pots-natal environmental
events – such as sensory stimuli, hormones, parent-child relationships, stress or
psychoactive drugs – affect cerebral development (Kolb et al., 2012).

It is typically assumed that the majority of neurons in the brain are produced
during fetal development. Synaptic density however keeps increasing after birth,
reaching a peak during infancy. Then an extensive process of synaptic prun-
ing begins which eliminates roughly half of all synaptic connections (Rakic et
al., 1986; Huttenlocher and Dabholkar, 1997; Iglesias et al., 2005). It therefore
affects hugely the structure of the underlying network and its emerging cognitive
abilities, and deficits in this process have been related to some neurological dis-
orders (Keshavan et al., 1994; Geschwind and Levitt, 2007; Faludi and Mirnics,
2011; Tang et al., 2014; Presumey et al., 2017).

There are multiple models in the literature that simulate the development
of a neural network, from topological models such as the Barabási-Albert model
(BA) (Barabási and Albert, 1999), to biologically plausible models that try
to mimic microscopic phenomena (Iglesias et al., 2005; Morrison et al., 2008).
Topological models typically ignore any biological mechanism or constrain to
reproduce some properties of the underlying structure, such as the evolution of
the mean degree or the scaling of the distributions of degrees, weights or dis-
tances in the network, among others (Holtmaat and Svoboda, 2009; Johnson
et al., 2010a; Navlakha et al., 2015). Biologically inspired models of synaptic
pruning consider more detailed physiological processes. For instance, less effi-
cient synapses can be pruned following competitive learning rules together with
STDP and some sort of homeostasis mechanism (Chechik et al., 1998, 1999;
Iglesias et al., 2005; Morrison et al., 2008).

Different mechanisms have been related to the growth and pruning of synap-
tic connections during brain development. In particular, glia cells in the brain
(known as microglia) play a major role in shaping and rewiring synaptic connec-
tions as they phagocytose pre- and post-synaptic components of “weak” synapses
(Paolicelli et al., 2011). Microglia are highly motile cells (Nimmerjahn et al.,
2005), and they interact extensively with synapses in an activity-dependent man-
ner that affects the functional maturation of the synapse (Miyamoto et al., 2013),
influencing synaptic transmission (Wake et al., 2009; Tremblay et al., 2010). In-
terestingly, synaptic pruning co-occurs with an increased density of microglia in
the CNS, and involves extensive microglial phagocytosis of synapses. Defects
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in microglia physiological function have been related to brain diseases, so that
a reduction in the function and number of synapses, along with an activation
of microglia, is an early event in the pathogenesis of Alzheimer’s disease, Hunt-
ington’s disease, and other neurodegenerative diseases (Perry and O’Connor,
2010). Similarly, microglia mal-function has been related to autism spectrum
disorder and obsessive compulsive disorder (Chen et al., 2010; Derecki et al.,
2012), and it has been suggested to play a role in schizophrenia as well (Derecki
et al., 2012).

Similaryl, spontaneous and sensory-evoked pre-synaptic activity, as well as
glutamate, act as trophic factors to guide new synaptic spines growth (Lee et al.,
1980; Frank, 1997; Klintsova and Greenough, 1999; De Roo et al., 2007), and
other mechanisms of cooperation among neurons have also been proposed, such
as STDP (see section 1.1.4 and also Deger et al., 2012, 2016). Similarly, synaptic
pruning can be promoted by apoptosis4, the programmed death of the cells,
which has been observed ubiquitously in developing nervous systems (Cowan et
al., 1984; Luo and O’Leary, 2005; Low and Cheng, 2006). Alternatively, neurons
might eliminate whole processes, or disassemble individual synaptic contacts, in
what constitutes an extremely dynamic process that targets weaker synapses
(Low and Cheng, 2006), allowing for a fine-tuning of the synaptic circuitry.
These mechanisms are promoted by complex neurochemical pathways of cell
signaling, that might depend on different dynamic functions such as the timing
of action potentials or the cell’s activity.

Long-term high resolution imaging studies of in-vivo neuronal structure
(Holtmaat et al., 2005; Holtmaat and Svoboda, 2009) have evidenced that
synaptic turnover goes on into adulthood, providing the brain with structural
plasticity as synaptic circuits continue to stabilize. Whereas the overall statis-
tics of synaptic density and the large-scale structure of cortical neurons, made
up by axonal and dendritic branches, are relatively stable, small synaptic struc-
tures, such as dendritic spines and axonal boutons are highly dynamic (Deger
et al., 2012; Miyamoto et al., 2013). Such an extraordinarily long phase of
developmental reorganization has implications on the impact of environmental
events on the development of human cognitive and emotional capacities, as well
as the late onset of human-specific neuropsychiatric disorders (Petanjek et al.,
2011).

Structural plasticity also provides another mechanisms for the formation
of long-term memory in the cortex. Apart from changes in the connection
strengths, learning could also depend on learning-induced changes in the cor-
tical wiring diagram (Chklovskii et al., 2004; Arcangelis et al., 2006). In this

4Apoptosis is thought to be responsible for the removal of a large percentage of excess
projections during early development (Cowan et al., 1984; Yuan et al., 2003), when there is
a neuronal competition for different growth factors such as the nerve growth factor, released
in limited amounts at the synapse and necessary for neuronal survival during development
(Oppenheim, 1989; Singh and Miller, 2005).
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learning mode, the storage capacity lies in the system’s flexibility to choose
which pre-synaptic units provide input to each postsynaptic unit. Weight and
wiring changes are not mutually exclusive, and experimental evidence suggests
that neurons and their synapses might be engaged in both forms of learning.
Given that in most areas of the brain, including the cerebral cortex, neurons are
sparsely connected, ongoing structural plasticity could improve substantially the
storage capacity compared with plasticity due to changes in synaptic strength
alone (Chklovskii et al., 2004; Knoblauch et al., 2010).

Similarly, recent studies have shown that the consideration of the underlying
geometrical restrictions found in neural networks can also have important effect
on their emergent structure. For instance, it was been shown that networks that
include information of the geometrical space of the cortex reproduce better the
clustering coefficients and characteristic path lengths found in cortical networks
(Kaiser and Hilgetag, 2004). The consideration of the underlying geometric
structure can also have implications on the emerging properties of the network,
such as its capability to reach a synchronized state (Millán et al., 2018a).

In the following subsections we present three statistical physics models of
network development that are latter used in the original chapters of this thesis to
model network structure. These models can be used to reproduce some features
of the underlying structure in the brain, such as its emerging topological or
geometrical properties, or to reproduce synaptic pruning. We finish the section
discussing the relevance of adaptive networks to model brain function.

1.3.1 Topological models of network growth

There are various examples in Nature of systems that develop scale-free patterns
of connectivity, including neural networks (Amaral et al., 2000), protein-protein
interaction networks (Newman, 2003), the world wide web and some social net-
works (Barabási and Albert, 1999). As discussed in section 1.2.1, scale-free
networks are characterized by hubs whose existence implies that the mean min-
imum path is typically small when compared to random networks or lattices
(Boccaletti et al., 2006), however they are highly vulnerable to damage to the
hubs (Mitra et al., 2008).

One of the most famous generative models for scale-free topologies is the
so called Barabási-Albert preferential attachment network model (BA)
(Barabási and Albert, 1999). It generates scale-free networks in systems of
increasing size N(t), by means of a local attachment rule applied to the new
nodes added to the network. More precisely, initially the network is made up
by N0 randomly connected nodes. At each time step a new node is added to
the network and linked to m (m ≤ N0) existing nodes with a probability Π(ki),

Π(ki) = ki∑N(t)
j=1 kj

. (1.6)
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Consequently, heavily linked nodes are more likely to gain a new edge, while
nodes with only a few links are unlikely to be selected. Notice however that the
number of low-degree nodes grows linearly with time, in such a way that the
asymptotic degree distribution is scale-free:

p(k) ∝ k−γ , (1.7)

with γ = 3.0±0.1 (Barabási and Albert, 1999). The distribution of the clustering
coefficient per node degree, defined as C(k) ≡ 〈Ci〉{i:ki=k} also behaves as a
power law,

C(k) ∝ k−1. (1.8)

This implies that low-degree nodes have higher clustering, so that they form
dense sub-graphs, that are interconnectes through hubs. BA networks are also
part of the small world networks family: the average path length is small, even-
tually shorter than in a random graph and, at the same time, the clustering
coefficient is significantly higher than for random networks.

1.3.2 Synaptic pruning

Synaptic pruning is thought to play a major role in the development of the
mammalian brain and the emergence of its cognitive abilities (Mimura et al.,
2003; Low and Cheng, 2006; Santos and Noggle, 2011). It has been shown that
it may represent an optimization strategy to minimize the energy consumed by
the existing synapses, which in a human at rest can account for a quarter of the
total energy consumed by the individual (Chechik et al., 1998, 1999), and also
the genetic information that otherwise would be needed to build an efficient and
robust network (Chechik et al., 1999; Navlakha et al., 2015). Synaptic pruning
is also a major mechanism to induce diversity in the synaptic connections and
to give rise to complex, heterogeneous synaptic circuits (Petanjek et al., 2011).
Given its relevance on brain development, certain brain disorders, such as autism
and schizophrenia, have been related to details of this process (Keshavan et al.,
1994; Geschwind and Levitt, 2007; Faludi and Mirnics, 2011; Kolb et al., 2012;
Fornito et al., 2015).

Modeling of synaptic pruning processes has attracted the attention of the
neuroscience community in the last decade. However, until now there is not a
clear theoretical framework in which synaptic pruning can be studied in depth.
This is one of the main objectives of the present thesis. To do so, we depart in
chapter 2 from a topological model that describes the creation and elimination
of edges in a network, much in the framework of the BA-model (Johnson et al.,
2010a). The model considers the evolution of a N -node network in which nodes
gain and lose edges according to stochastic rules that only consider information
(local and global) on the degrees. In order to implement this in a general
way, each node has a probability P li to lose a randomly selected edge, and a
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probability P gi to gain one to a randomly selected node. These probabilities are
assumed to factorize in two terms as

P gi = u(κ)π(ki)
P li = d(κ)η(ki),

(1.9)

where π and η are normalized functions, namely ∑N
k=1 π(k) = ∑N

k=1 σ(k) = 1.
Every time an edge is added into the network, two nodes increase their de-

grees: the original node i selected according to π(ki), and the randomly selected
node j that i is connected to, selected with probability (N − ki)−1, which in
the infinity size limit (N → ∞, κ → cte), is approximately N−1. Similarly,
every time an edge is removed from the network two nodes decrease their de-
gree, the node i with probability σ(ki) and the node j with probability kj/(Nκ).
Therefore, one can define the effective probabilities

π̃(k) ≡π(k) + 1
N

σ̃(k) ≡σ(k) + k

κN
,

(1.10)

which measure the probability that the degree k of a node is modified in one
unit.

Network evolution can now be seen as a one-step process (Van Kampen,
1992) with transition rates u(κ)π̃(k) for an increment and d(κ)σ̃(k) for a decre-
ment of the degrees. The expected value for the variation in p(k, t) at each time
step, which we equate with a temporal derivative, defines a master equation for
the degree distribution (Johnson et al., 2010a):

dp(k, t)
dt

=u(κ)π̃(k − 1)p(k − 1) + d(κ)σ̃(k + 1)p(k + 1)

− [u(κ)π̃(k) + d(κ)σ̃(k)] p(k, t).
(1.11)

If p(k, t) evolves to a stationary distribution pst(k), it must satisfy detailed
balance, given that it is a one step process (Van Kampen, 1992). Therefore, the
flux of probability from k to k+1 must equal the flux from k+1 to k, ∀k (Marro
and Dickman, 2005). This condition is also sufficient for dp(k,t)

dt to be zero, and
it can be written as

∂pst(k)
∂k

=
[

u(κst)π̃(k)
d(κst)σ̃(k + 1) − 1

]
pst(k), (1.12)

where we have substituted a difference for a partial derivative and defined κst ≡∑N
k=1 kpst(k). Setting π̃ and σ̃ to be normalized to 1, i.e. ∑N

k=1 p(k)π̃(k) =∑N
k=1 p(k)σ̃(k) = 1 ∀t, which is equivalent to saying that at each time step
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exactly Nu(κ) edges are created and Nd(κ) are destroyed, then in the stationary
state one must have

u(κst) = d(κst), (1.13)
since the the total number of edges is conserved. In this case, pst(k) will have
an extremum at ke if π̃(ke) = σ̃(ke + 1). This can be a maximum or a minimum
depending on the ratio between the numerator and the denominator in equation
2.19: it will be a maximum if the first is smaller than the latter for k < ke, and
viceversa for k > ke. Assuming only one extremum, a maximum then implies
a relatively homogeneous distribution, while a minimum means that pst(k) is
split in two, and therefore highly heterogeneous. Intuitively, if nodes with high
degree have a higher probability of gaining new edges than of losing them, their
degrees will continue to grow indefinitely, leading to heterogeneity. If, on the
other hand, highly connected nodes always lose more edges than they gain, the
network will be quite homogeneous. From this reasoning one can see that there
is a particularly interesting case, which turns out to be critical, when π(k) and
σ(k) are such that

π̃(k) = σ̃(k) ≡ ν(k) ∀k. (1.14)
According to Eq. 2.19 this means that, for large k, ∂pst(k)/∂k → 0, and pst(k)
flattens out – as a power law does.

The standard Fokker-Planck approximation for the one step process defined
by Eq. 2.19 is (Van Kampen, 1992):

∂p(k, t)
∂t

=1
2
∂2

∂k2 {[d(κ)σ̃(k) + u(κ)π̃(k)] p(k, t)}

+ ∂

∂k
{[d(κ)σ̃(k)− u(κ)π̃(k)] p(k, t)} .

(1.15)

For transition rates that meet the condition in Eq. 1.14, this can be rewritten
as

∂p(k, t)
∂t

=1
2 [u(κ) + d(κ)] ∂

2

∂k2 [ν(k)p(k, t)]

+ [u(κ)− d(κ)] ∂
∂k

[ν(k)p(k, t)] .
(1.16)

Ignoring boundary conditions, the stationary solution must satisfy, on one hand,
ν(k)pst(k) = Ak + B, so that the diffusion is stationary and, on the other,
u (κst) = d (κst), to cancel out the drift. For this situation to be reachable from
any initial condition, u(κ) and d(κ) must be monotonous functions, decreas-
ing and increasing respectively. Interestingly, experimental studies of synaptic
pruning in the neo-cortex also show that pruning rates are decreasing over time,
so that a greater number of synapses are pruned early in development and cir-
cuits are fine-tuned later in development. In this manner most of the synapses
are pruned early reducing energy consumption, whereas the network can slowly
fine-tune the relevant pathways, ultimately leading to more efficient and robust
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routing networks when learning is distributed throughout the network (Navlakha
et al., 2015). Decreasing pruning rates are also consistent with the developmen-
tal time-course of myelination, which shows sharp sigmoidal growth soon after
pruning begins (Dean III et al., 2014). By pruning aggressively early, myelin is
not unduly wasted on axons that may ultimately be lost.

This model has been used before to reproduce some topological aspects of
the process of synaptic pruning, such as the temporal evolution of the mean
connectivity or the scaling of the degree distribution in the mature brain. In
chapter 2 we present an extension of this model that includes the consideration
of the physiological activity of neurons, which is coupled with the network evo-
lution. Interestingly, we show that the interplay between form and function can
affect the phase diagram of the system, leading for instance to a stronger noise
tolerance or to an oscillatory activity, as shown in chapter 3.

1.3.3 Network geometry

Growing evidence indicates the need to go beyond traditional network schemes
and consider generalized network structures such as multilayer networks, formed
by several co-interacting networks (Boccaletti et al., 2014), and higher order net-
works that go beyond pairwise interactions (Bianconi and Rahmede, 2015; Wu
et al., 2015; Bianconi and Rahmede, 2016). These can be essential to analyze
brain networks, where sets of regions can interact together forming large com-
plexes that co-activate simultaneously (Giusti et al., 2016; Severino et al., 2016),
and other systems such as protein interaction networks, where typically biolog-
ical reactions involve the chemical interaction among several different proteins
(Wan et al., 2015).

There is simultaneously a growing interest in network geometry, and in par-
ticular in characterizing network curvature, with indications that several com-
plex networks have an hyperbolic structure which is believed to be beneficial for
routing algorithms and navigability (Boguna et al., 2009; Serrano et al., 2012).

Interestingly, both network geometry and the co-interaction of more than two
nodes can be described by simplicial complexes, which naturally introduce
d-node interactions and an underlying network geometry. Instead of considering
only nodes and links, simplicial complexes are made up by d-dimensional sim-
plexes. These are generalizations of triangles (in 2D) and tetrahedra (in 3D) to
arbitrary dimensions, and consider the co-interaction of their d+1 nodes. dimen-
sional simplex is a triangle and so on. Each simplex considers the co-interaction
of the d + 1 nodes conforming it. A simplicial complex has the following two
additional properties:

i) If a simplex α belongs to the simplicial complex K (i.e. α ∈ K), then also
all its faces α′ ⊂ α belong to the simplicial complex K (i.e. α′ ∈ K).
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ii) If two simplices α and α′ belong to the simplicial complex (i.e. α, α′ ∈ K),
either their intersection is null, i.e. α∩α′ = ∅ or their intersection belongs
to the simplicial complex, (i.e. α ∩ α′ ∈ K).

In particular, the theoretical framework of Network Geometry with Fla-
vor (NGF) (Bianconi and Rahmede, 2016) introduces a purely combinatorial
non-equilibrium evolution model of simplical complexes in which an hyperbolic
geometry emerges naturally. The skeleton of the NGF, or dual network, is
formed by the nodes and links.

Network Geometry with Flavour

A NGF of dimension d ≥ 1 is a simplicial complex formed by d-dimensional
simplices glued along their (d − 1)-dimensional faces. For example, a NGF
of d = 1 is formed by links glued at their end nodes, a NGF of d = 2 is
formed by triangles glued along their links, and a NGF of d = 3 is formed by
tetrahedra glued along their triangular faces. Each δ-face α can be characterized
by its generalized degree kd,δ(α), which is the number of d-dimensional simplices
incident to α. For instance, in d = 1 k1,0(α) is the number of links incident
to a node α, i.e. its degree. Similarly, in d = 2, k2,1(α) and k2,0(α) are the
number of triangles incident to a link or a node, respectively. By assigning to
each node a fixed energy εi from a distribution g(ε) (so that each face has energy
εα = ∑

i∈α εi) NGFs can have heterogeneous properties.
NGFs evolve in time according to a non-equilibrium dynamics that at each

time t adds a new d-dimensional simplex that is attached to a (d − 1)-face α
chosen with probability

Π[s]
α = 1

Z [s](t)
e−βεα (1 + snα) , (1.17)

where β ≥ 0 is a parameter of the model called equivalent to an inverse tem-
perature, s = {−1, 0, 1} is the flavor of the NGF and nα = kd,d−1(α) − 1 is
the number of d-dimensional simplices incident to α minus one. Z [s](t) is the
normalization,

Z [s](t) =
∑

α∈Sd,d−1

e−βεα (1 + snα) . (1.18)

The new simplex is formed by the nodes of α plus a new node i that is linked
to each node j ∈ α. Therefore, the total number of nodes N(t) at time t is
N(t) = t + d, considering that initially (t = 0) the NGF is formed by one
d-simplex.

The flavor s of the NGF has a strong influence on its geometrical and sta-
tistical properties. For instance, for s = −1 only 2 d-simplices can be attached
to each phase, and the resulting networks are manifolds. For s = 1, on the
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d=2

d=1

s=-1 s=0 s=1

Figure 1.6: Schematic picture of the temporal evolution of NGFs of flavor s in
dimension d = 1, 2. Figure adapted from (Bianconi and Rahmede, 2016).

δ
s −1 0 1

d− 1 B E PL
d− 2 E PL PL
≤ d− 3 PL PL PL

NGF (d, s, β) Equivalent Network
(1, 0, 1) BA model

(1, > 0, 1) Bianconi-Barabási model
(3, 0,−1) Stochastic Apollonian network

Table 1.2: On the left, the scaling of the distribution of the generalized degrees
kd,δ in NGF with flavor s and β = 0, indicating a binomial (B), exponential
(E) or power-law (PL) scaling. For d ≥ d

[δ,s]
c = 2 (δ + 1) − s the power-law

distributions are scale-dree, i.e., the second moment of the distribution diverges.
On the right, some examples of NGFs whose network skeleton is equivalent to
known network models (Andrade Jr et al., 2005; Krioukov et al., 2010; Bianconi
and Rahmede, 2015).

other hand, Π[0]
α is proportional to its generalized degree kd,d−1(α), providing a

generalization of the preferential attachment mechanism.
Using the master equation approach, it can be shown for β = 0 that, de-

pending on d, δ and s, the generalized degrees kd,δ can follow either a binomial,
exponential or power-law distribution (see table 1.2). In particular, NGFs are
scale-free as long as

d ≥ d[0,s]
c = 2− s. (1.19)

Therefore, NGFs are scale-free for d ≥ 3, 2, 1 respectively for s = −1, 0, 1. This
result also indicates that an explicit preferential attachment rule is not necessary
to generate scale-free networks in d > 1.

NGFs generated with these model have been used in a variety of scenarios,
including the modeling of quantum gravity (Bianconi et al., 2015). Moreover, a
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generalization of NGFs has been recently been proposed considering complexes
formed by gluing together not only simplicial complexes but also regular convex
polytopes, which are called cell complexes. These are less densely connected
that simplices and have been used to characterize self-assembled nanostructures
(Šuvakov et al., 2018) or granular materials (Papadopoulos et al., 2018), and
are also used for interdisciplinary applications such as protein interaction and
social networks. Note that cell-complexes in general can be formed by using any
convex polytope, and that a given cell-complex might be not pure, i.e. it can
be formed by different types of convex polytopes.

Simplicial and cell complexes thus provide an ideal theoretical setting to
analyze how the network underlying symmetries, dimensionality and geometry
might affect brain dynamics. Moreover NGFs have a tunable spectral dimension
(Mulder and Bianconi, 2018) and non-trivial spectral properties, and they can
be embedded in an euclidean space with a well-defined dimension. Consequently,
in this thesis we make use of their known geometrical and spectral properties to
study how these relate to the synchronization properties of a neural network in
chapters 5 and 6.
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1.4 Emergent dynamics in neural systems

The previous picture suggests that the brain, composed by a large number of
interacting elements, each one exhibiting nonlinear dynamics, might be studied
under the framework of complex systems, as it displays many signatures of
complexity and criticality. This framework has also been of use to study for
instance the emergence of associative memory in neural systems. This is
the ability to learn and remember the relationship between unrelated items,
such as people’s names, and is related, for instance, to the existence of internal
representations – of brain activity – of objects and concepts. Another recurrent
property of neural systems is the emergence of neural oscillations, consisting on
oscillations in the neural activity, which are observed throughout the CNS at
different scales. They have been related to several cognitive processes as varied
as memory, self-consciousness and vision; and overall are thought to provide a
means towards the integration of distributed information.

The variety of behaviors observed in the brain could be concomitant with
the existence of a critical state at which neural dynamics are posed. This idea,
known as the criticality hypothesis, suggests that the brain may take computa-
tional advantage by operating near a critical point. Interestingly, it has been
suggested that the emergence of a complex behavior can also be related to a
complex interplay between structure a dynamics (Hilgetag and Grant, 2000).

In this section we review the emergence of associative memory and synchro-
nization in neural systems, and present two archetypal models used to describe
them, which constitute an important part of the theoretical framework we are
going to use in the development of the original chapters of this thesis. We then
introduce the criticality hypothesis and finish the section and the chapter with
a short review of adaptive networks. and SOC in neural systems and present
some statistical physics models used to described them.

1.4.1 Associative memory: The Amari-Hopfield model

In the 1980s Hopfield formulated a neural network model that included the hy-
pothesis of Hebbian learning in order to study associative memory (Hopfield,
1982). The model consists in a network composed by N binary neurons, whose
states are given by si = {0, 1}, that indicate respectively a silent (resting po-
tential) or firing (emitting an action potential) neuron. S = {s1, ..., sN} is the
state of the set of neurons. In its original definition, the model considers a fully
connected network where each neuron i is connected to all other neurons but
self-connections are not allowed.

The model assumes the linear summation of sub-threshold inputs, so that
the incoming current at a neuron i (Kandel et al., 2000) or its local field potential
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is given by hi(t), defined as

hi(t) =
N∑
j=1

wijeij(t)sj(t). (1.20)

In the stochastic version of the model, the state of each neuron follows a prob-
abilistic dynamics according to

P [si(t+ 1) = 1] = 1
2
{

1 + tanh
[
T−1 (hi(t)− θi(t))

]}
, (1.21)

where

θi(t) = 1
2

N∑
j=1

wijeij(t) (1.22)

is the neuron’s threshold for firing. The noise parameter or temperature T
(T > 0) sets the level of stochasticity on the activity of the neurons (Bortz
et al., 1975). If T = 0 the evolution of the system is deterministic and the state
of a neuron at time t is completely determined by the states of its neighbors
at time t − 1. For T > 0, however, the evolution is stochastic and, as T is
increased, the thermal noise has a stronger effect. Computationally, the model
has been implemented essentially with two different updating protocols: par-
allel updating, also called Little dynamics, and randomly sequential updating,
i.e. Glauber dynamics, although other hybrid updating schemes have also been
explored (Marro et al., 2008; Torres et al., 2008).

Within this framework, a memory is represented by a pattern of activity
ξ ≡ {ξi, ..., ξN}, with ξi ∈ {0, 1}, that corresponds to a particular configuration
of the system. A set of P of such patterns, {ξν}ν=1,...,P , can be stored in the
system by the thoughtful definition of the synaptic weights, using for instance
the hebbian learning rule in Eq. 1.2. Via this rule, the activity patterns are
stored in the synaptic weights wij , that are reinforced by a positive quantity
δ = (ξνi − a0)(ξνj − a0) > 0 when a certain pattern ν contemplates both neurons
i and j in the same state, and are weakened when the same are in different
states, with δ < 0.

In the case of symmetric connections (wij = wji ∀i, j), as produced by the
hebbian learning rule, one can define the Hamiltonian of the system, very similar
to that of the Ising model, that can be written as

H(S) = −1
2

N∑
i=1

[hi(S)− θi] = −1
2
∑
i,j 6=i

wijsisj +
N∑
i=1

θisi. (1.23)

In the deterministic limit T → 0 the state of the neural network always reaches
a minimum of the associated Hamiltonian H(S). The macroscopic state of the
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system can thus be characterize by its overlap with each of the patterns,

mµ(S, t) ≡ 1
Na0 (1− a0)

N∑
i=1

(ξµi − a0) si(t). (1.24)

Let us consider a case with weak noise, i.e. low T , and few stored patterns,
or small memory load ᾱ ≡ P/N . If the initial state of the network S is close to
the pattern configuration ξµ, mµ(S) ≈ 1, the network will evolve towards such
a memory, being the state ξµ the attractor of network dynamics. For T = 0
there is a point-wise convergence to the memory attractors, both when using
Little and Glauber dynamics.

Each stored memory yields the appearance of two attractors in the dynamics
of the system, one associated with the corresponding activity pattern ξµ and the
other with the antipattern −ξµ. Due to this association between stored activity
patterns and dynamical attractors, Hopfield-like models are commonly denoted
as Attractor Neural Networks (ANN).

In the rest of the parameter space, the Amari-Hopfield model can be ana-
lytically solved within the statistical mechanics theory for spin-glasses using a
mean-field replica trick (Amit, 1989) in the replica symmetry limit. This mean-
field treatment allows us to characterize for instance the phases of the system,
the stability of such phases, or the maximum storage capacity ᾱmax, i.e.
the maximum number of patterns that can be recovered efficiently at a certain
temperature. A global picture of the network phases in the (T, ᾱ) diagram is
reported in figure 1.7, where one can observe four qualitatively different phases:

i) The memory or ferromagnetic phase (M), where the network exhibits
associative memory, corresponding to the region below the Tc line. The
memory states (also known as Mattis states) in which only the overlap
with a given pattern ξµ is non zero are the stable solutions corresponding
to the absolute minima of the free energy. This phase is (mathemati-
cally) equivalent to the ferromagnetic or ordered phase of interacting spin
networks (as in the Ising model).

ii) The spin-glass phase (SG) corresponds to the region between TM and
Tg = 1 +

√
ᾱ. The storage of a large number of different patterns in the

network gives rise to quenched noise as a consequence of the interference
between them in wij , which can destabilize such memory phase. Here
the absolute minima of the free energy correspond to “spurious” or mixed
states, in which the state of the system does not correspond to any of the
memories but to infinite combinations of them. Thus, the system is not
able to recover any memory. Note that even in the deterministic case,
at T = 0, there is a critical load parameter ᾱmax = 0.138 upon which
associative memory fails. ᾱmax defines the maximum storage capacity of
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the network Amit, 1989, that is, the maximum quantity of information
that can be stored and effectively retrieved from the network.

iii) The unstable memory phase (M+SG) corresponds to the region between
Tc and TM lines, where the spurious SG states are the absolute minima,
but memory solutions appear as local minima as well.

iv) The disordered, noisy or paramagnetic phase (P) corresponds to the region
over Tg, which indicates a continuous phase transition from an ordered
phase (either M or SG) to the paramagnetic one. Here the dynamics
of the system is disordered and completely dominated by thermal noise
(Amit, 1989).
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Figure 1.7: Phase diagram of the Hopfield model indicating the stable memory
phase (M), the unstable memory phase (M+SG), the spin-glass phase (SG) and
the paramagnetic disorder phase (P) in the case of a fully connected binary
network.

The emergent behavior of the Amari-Hopfield model has also been studied
on non-trivial network topologies, such as scale-free and small-world networks
(Torres et al., 2004; Boccaletti et al., 2006; Oshima and Odagaki, 2007). Such
systems have been shown to present the same phases as the canonical fully con-
nected model, with transition lines that depend on the topology. In particular,
it has been reported that, for heterogeneous networks and a single stored pat-
tern, the overlap reduces for T < Tc, so that memory is recovered but with more
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errors than in a fully connected network. However, the critical temperature di-
verges, Tc → ∞ as N → ∞, due to the presence of hubs that retain pattern
information. Therefore, the memory phase expands to much higher values of
thermal noise. On the other hand, the capacity of the network is known to
decrease as the mean connectivity of the network decreases (Torres et al., 2004).

Although the steady state of the general model defined above represents
an equilibrium system in the sense of the statistical mechanics, some non-
equilibrium versions of such model can be studied considering for instance synap-
tic plasticity. In this case, the phase diagram changes qualitatively, with the
emergence of new non-equilibrium dynamic phases, chaotic switching among
memory patterns and criticality (Marro et al., 2008; De Franciscis et al., 2010).
In chapters 2, 4 and 3 we consider a form of structural plasticity coupled with
the Amari-Hopfield model, and we show that the time-varying structure (as
produced by structural plasticity) can lead to the emergence of new phases and
extend the stability of the memory states to higher values of noise, for instance.

1.4.2 Brain rhytms and synchronization: The Kuramoto model

One of the most studied features of brain dynamics is the emergence of synchro-
nization at different rhythms, observed both in-vivo and in-vitro, and consisting
on alternate periods of coherence – during which many neurons fire within a nar-
row time window – inter-spaced by periods of relative quiescence (Linkenkaer-
Hansen et al., 2001; Buzsaki, 2006). EEG and MEG recordings repeatedly re-
port oscillations at particular frequencies, defining “bands” of frequencies such
as delta (0.5− 3.5 Hz), theta (3.5− 7 Hz), alpha (8− 13 Hz), beta (15− 25 Hz),
and gamma (30−70 Hz) bands. Specific oscillation patterns are associated with
particular cognitive processes: theta and gamma rhythms with memory encod-
ing and retrieval, alpha and gamma rhythms with attentional suppression and
focusing, whereas the gamma band is associated with global synchronization and
consciousness (Ward, 2003). Synchronization is also known to play a major role
in vision (Steinmetz et al., 2000; Matias et al., 2015), the circadian rhythms in
mammals (Komin et al., 2010) and pathologies such as epilepsy (Kandel et al.,
2000).

Synchronization is arguably how the brain achieves the large-scale integra-
tion of its many parallel, distributed information-processing activities, allowing
coherent cognition and behavior (Varela et al., 2001), being fundamental for
cognitive processes such as memory, attention, decision-making, and even con-
scious awareness (Ward, 2003). Therefore, shedding light on the origin, nature,
and functional meaning of such an intricate synchronization dynamics is a fun-
damental challenge in neuroscience (Buzsaki, 2006).

The archetypal Kuramoto model allows us to model synchronization with
a minimal design (Kuramoto, 1975, 2003; Acebrón et al., 2005), providing a
mathematical description of a large set of coupled oscillators. Its formulation
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was motivated by the behavior of systems of chemical and biological oscillators
(Kuramoto, 2003), and it has found widespread applications such as in neu-
roscience (Strogatz, 2000). The model makes several assumptions, including
that there is weak coupling, that the oscillators are identical or nearly identical,
and that interactions depend sinusoidally on the phase difference between each
pair of objects. In its usual formulation, the Kuramoto model consists in a set
of N coupled oscillators described by the following set of differential equations

θ̇i(t) = ωi + k
N∑
j=1

σij sin (θj(t)− θi(t)) (1.25)

where θi(t) is the phase of oscillator i at time t,
ωi is its natural or internal frequency and kσij is
the coupling strength between oscillator j and i.
The internal frequencies can be identical ωi = ω
or more in general they can be extracted from a
predefined probability distribution g(ω).

θ

The level of synchronization in the system is measured with the Kuramoto
order parameter, defined as

Z(t) = R(t)eiφ(t) = 1
N

N∑
j=1

eiθj(t) (1.26)

where 0 ≤ R ≤ 1 gauges the overall coherence and φ(t) is the average phase of
global oscillations.

Theoretical results are known for different limits of the Kuramoto model. In
an infinitely large population of fully connected oscillators, full synchronization
(ωi = ω ∀i) is only possible in the case of homogeneous frequencies (ωi = ω ∀i)
(Steinmetz et al., 2000). On the other hand, with frequency heterogeneity the
model exhibits a phase transition at a given value of k that separates a coherent
steady state (R > 0) from an incoherent one (R = 0).

Synchronization dynamics has also been studied on lattices. In particular,
in regular lattices of dimension d, it has been shown that global synchronization
is only possible for d > 4; in dimensions 2 < d ≤ 4 only entrained frequency syn-
chronization, but not phase synchronization, is observed, whereas in dimension
d ≤ 2 synchronization is not observed (Hong et al., 2005; Hong et al., 2007).
Interestingly, regimes of partial synchronization have also been found to emerge
in ring lattices. In such cases chimera states, consisting on incongruous inter-
connected parts, in which regions of coherent (phase and frequency locked) and
incoherent (drifting) oscillators coexist (Abrams and Strogatz, 2004; Abrams
et al., 2008; Laing, 2009) in simple variations of the Kuramoto model (Panaggio
and Abrams, 2015).
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In chapters 5 and 6 we show that a regime of frustrated synchronization,
characterized by global oscillations of R(t), can emerge in complex networks
with hierarchical and modular structure (Moretti and Muñoz, 2013; Villegas
et al., 2014) depending on their spectral dimension.

1.4.3 The criticality hyphotesis

Upon experimentally enhancing the spatio-temporal resolution of activity record-
ings, Beggs and Plenz made the remarkable finding that, actually, synchronized
outbursts of neural activity could be decomposed into complex spatio-temporal
patterns, thereon named neuronal avalanches (Beggs and Plenz, 2003). These
present a scale-free distribution of sizes, with an exponent of −3/2, and also a
scale-free distribution of lifetimes, with an exponent close to −2, in agreement
with a critical branching process (Beggs and Plenz, 2003, 2004; Petermann et
al., 2009; Hahn et al., 2010).

Scale-free avalanches of neuronal activity have since been consistently re-
ported to occur across neural tissues, preparation types, experimental tech-
niques, scales, and species (Hahn et al., 2010; Haimovici et al., 2013). They are
observed during the earliest time of the development of superficial layers in the
cortex requiring the presence of dopamine (a neuro-modulator) and a certain bal-
ance between excitatory and inhibitory synaptic transmission (Beggs and Plenz,
2003; Gireesh and Plenz, 2008). Moreover, EEG recordings indicate that, under
healthy conditions, no temporal scale is predominant and the power spectra of
brain activity decays as 1/f noise (Bullock et al., 2003). Scale-invariance is
also shown in human cognition (Ward, 2002), human motion (Nakamura et al.,
2007) and animal motion (Anteneodo and Chialvo, 2009).

These observations have been taken as empirical evidence backing the crit-
icality hypothesis. That is, the conjecture that the awake brain might extract
essential functional advantages – including maximal sensitivity to stimuli, large
dynamical repertoires and optimal computational capabilities – from operating
close to a critical point, separating two different phases (Chialvo, 2004, 2010).
Critical dynamics has been documented in species evolution (Bak, 2013), traffic
flow in highways (Bak, 2013), the internet (Takayasu et al., 2000) or rainfall dy-
namics (Peters and Neelin, 2006), among others (Beckers et al., 1990; Rauch et
al., 1995; Malamud et al., 1998; Lux and Marchesi, 1999; Cavagna et al., 2010).
The complexity of the brain might be yet another signature of an underlying
critical process. As the largest number of metastable states exists at a point near
the transition, the brain can then be accessing the largest repertoire of behaviors
in a flexible way (Chialvo, 2010; Expert et al., 2010; Bak, 2013). Importantly,
criticality is found to be associated with maximal information transfer (Beggs
and Plenz, 2003) and thus high efficacy of neuronal information processing.

Furthermore, some relevant aspects of brain dynamics have been be pre-
dicted from the structure assuming that the underlying dynamics are critical
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(Haimovici et al., 2013). Networks derived from correlations of fMRI signals
in human brains are indistinguishable from networks extracted from Ising mod-
els at critical temperature (Baliki et al., 2008). Consequently, the paradigm
of self-organized criticality (SOC) has been profusely adopted in neuroscience,
and interesting models inspired in SOC have been proposed to account for the
empirically observed scale-free avalanches of neuronal activity (Jensen, 1998;
Harris, 2002; Brunel and Hakim, 2008).

However, what those phases are, and what the nature of the putative crit-
ical point is, are questions that still remain to be fully settled. The nature
of such critical point is usually assumed to be the separation between a qui-
escent and an active phases, however several experimental investigations found
evidence that scale-free avalanches emerge in concomitance with collective os-
cillations, suggesting the presence of a synchronization phase transition (Santo
et al., 2018). Similarly, it is not clear whether the observed exponent values
appear as a generic consequence of how temporally-defined avalanches are mea-
sured (involving thresholding, time binning to discriminate their beginning and
end, or sub-sampling due to technological and empirical limitations). Further
explanations relate cortical dynamics to the point of marginal percolation of
activity (Poil et al., 2012) or the Ising model (Destexhe, 2009; Fraiman et al.,
2009).

1.4.4 Criticality in disordered media

The paradigm of self-organized criticality (SOC) has revealed itself to be rather
prolific when applied to the understanding of living systems, as it provides a
framework to explain, without the necessity of any fine tuning, the prevalence
of the critical point (Bak et al., 1987). Interestingly, however, fMRI analysis of
brain activity at the resting state have revealed that the brain actually wanders
around a broad region near a critical point, instead of staying in it (Tagliazucchi
et al., 2012). This suggests that the region where cortical networks operate is
not just a critical point, but a whole extended region around it.

The existence of an extended critical-like region is a well-known result in the
context of statistical mechanics when disordered media are considered (Griffiths,
1969; Noest, 1986), known as a Griffiths phase (GP). GPs are broad regions in
the parameter space exhibiting critical-like features and, thus, not requiring of
a too-precise fine tuning. Given that disorder is an intrinsic and unavoidable
feature of neural systems, GPs are expected to have a relevant role in many
dynamical aspects (Treviño III et al., 2012).

Computational and theoretical studies of spreading dynamics on top of both
artificial hierarchical-modular networks and the C. elegans connectome have
shown the emergence of an extended region characterized by generic power-
laws, akin to a GP (Vojta, 2006; Muñoz et al., 2010; Moretti and Muñoz, 2013).
It is noteworthy that disorder needs to be present at very different scales for
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GPs to emerge (otherwise rare-regions cannot be arbitrarily large); this is why a
hierarchy of levels is required (Muñoz, 2018). Plain modular networks without
the broad distribution of cluster sizes, characteristic of hierarchical structures,
are not able to support GPs.

Stretched critical regions, stemming from structural disorder, yield enhanced
functionality in a generic way, facilitating the task of self-organizing, adaptive
and evolutionary mechanisms selecting for criticality (Muñoz et al., 2010). Fur-
thermore, functional advantages usually ascribed to criticality, such as a huge
sensitivity to stimuli, are reported to emerge generically all along the GP. The
existence of a GP thus provides a more robust basis for the ubiquitous presence
of scale-free behavior in neural recordings, and might give us the key to under-
standing why broad regions around criticality are observed in fMRI experiments
of the brain resting state (Levina et al., 2007; Bonachela et al., 2010; Millman
et al., 2010; Tagliazucchi et al., 2012) .

GPs have previously been associated with large-world networks (that is,
networks with a finite topological dimension). In chapter 5 we demonstrate
that broad regions of frustrated synchronization, resembling a GP, can appear
on small-world networks too, and in chapter 6 we investigate how the existence
and properties of this region depend on the network’s spectral dimension.

1.4.5 Adaptive neural networks

There are many systems in which the evolution of their underlying networked
structure is invariable linked to the dynamical state of their nodes and links,
and vice-versa. These are called adaptive or co-evolutionary networks. One
familiar example are transport network, such as roads, power-grids, or wireless
communication networks, as well as the internet network (Gross and Blasius,
2007). In all these systems a high load on one connection can cause it to fail,
being an incentive for new additional connections. The same mechanisms can
arise in natural and biological distribution networks, such as the vascular sys-
tem and genetic and neural networks, and in chemistry and biology, including
protein interaction and ecological networks. Similarly, in social sciences net-
works different social states among the nodes can lead to the break-up of the
interactions.

Despite the diversity of scenarios in which adaptive networks appear, there
are a number of hallmarks associated with them. These include self-organization
towards critical behavior, frequently concomitant with the appearance of power-
law distributions, the formation of complex topologies and complex system-level
dynamics (Gross and Blasius, 2007; Wiedermann et al., 2015). Given that the
information can be stored and read from the topology, the dynamics of adaptive
networks involves local as well as topological degrees of freedom and it can
be more complex than that of similar non-adaptive models. In particular, the
dynamics on the network makes topological degrees of freedom accessible in
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every node, spreading information on topological properties across the network.
The local topological evolution can then react on this information and drive the
topology to a topological phase transition at which the dynamics on the network
is critical (Vazquez et al., 2008). It could explain, for instance, how neural and
genetic networks manage to exhibit dynamics that in many models appears
only in critical states at the edge of chaos (Gross and Blasius, 2007; Tetzlaff
et al., 2010; Muñoz, 2018). Similarly, the capability of adaptive networks to
form complex topologies could offer a highly elegant way to build up large-
scale structures from simple building blocks, such as in the growth of vascular
networks (Wiedermann et al., 2015).

Another recurrent property of adaptive networks is the spontaneous division
of labor with the emergence of classes of topologically and functionally distinct
nodes. It has been suggested that this is driven by the self-organization towards
a phase transition at which the critical slowing down of the turnover times
between emergent properties of nodes occurs (Gross and Blasius, 2007).

More fundamental work is still needed in order to understand how all these
properties emerge from the transfer of information between state and topology
and the subtle interplay between different time scales. Since adaptive networks
appear in many different fields and are already implicitly contained in many
models, a theory of adaptive networks can be expected to have a significant
impact on several areas of active research.

In chapter 2 of this thesis we present an adaptive model for synaptic pruning
in the brain, that can also account for structural plasticity. This naturally
produces heterogeneous degree distribution (where two distinct classes of nodes
appear, hubs and low-degree nodes), and it further shows the emergence of new
qualitative behavior such as a region of bistability between different phases or
an oscillatory region (see chapter 3).



Chapter 2

Concurrence of form and
function in developing
networks and its role in
synaptic pruning

In this chapter we investigate the fundamental question in neuroscience
of how the structure and function of neural systems are related. We

study this interplay by combining a familiar auto-associative neural net-
work with an evolving mechanism for the birth and death of synapses.
A feed-back loop then arises leading to two qualitatively different types
of behavior. In one, the network structure becomes heterogeneous and
dissasortative, and the system displays good memory performance; fur-
thermore, the structure is optimized for the particular memory patterns
stored during the process. In the other, the structure remains homo-
geneous and incapable of pattern retrieval. These findings provide an
inspiring picture of brain structure and dynamics, are compatible with
experimental results on early brain development, and may help to explain
synaptic pruning. Other evolving networks – such as those of protein in-
teractions – might share the basic ingredients for this feed-back loop and
other questions, and indeed many of their structural features are as pre-
dicted by our model. The study presented here has been published in
Millán et al., 2018c.

53
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2.1 Introduction

In the previous chapter we have briefly introduced some relevant mathematical
models that are typically used for the study of brain dynamics. As we have

seen, viewing the brain as a complex network allows us to understand how some
characteristic cognitive processes may emerge from the collective behavior of
neurons and synapses (Amari, 1972; Hopfield, 1982; Marro and Chialvo, 2017).
The structural properties of this underlying network thus affect the behavior
of the system in various ways (Modha and Singh, 2010; Telesford et al., 2011;
Voges and Perrinet, 2012; Gastner and ódor, 2016).

A main process that determines the properties of the underlying network is
synaptic pruning and the associated structural plasticity (Chechik et al., 1998,
1999), whose major role on brain maturation has been discussed in section 1.1.4.
Namely, synaptic pruning is a mechanism of network adaptation and develop-
ment – from a highly dense network to a sparser, more structured one – that
shapes the connectivity structure of the brain during infancy and young adult-
hood. This provides the brain with structural plasticity, that is, the ability to
develop, change and learn due to changes in its underlying structure (Holtmaat
et al., 2005; Holtmaat and Svoboda, 2009). The effect of synaptic pruning on
the brain’s cognitive capabilities can hardly be overestimated, being necessary
for the emergence of the diverse and complex connectivity structure that is
characteristic of biological neural networks and thought to be determinant for
their function (Iglesias et al., 2005; Holtmaat and Svoboda, 2009; Santos and
Noggle, 2011; Sporns, 2012; Navlakha et al., 2015). Moreover, defects in the
pruning process have been found in some cognitive disorders such as autism and
schizophrenia, which we discuss further in chapter 3 (Geschwind and Levitt,
2007; Sekar et al., 2016). Notice that neural circuits continue to change in
the mature brain, which also shows structural plasticity to some extend, as
they maintain the ability to grow and break synapses (Knoblauch and Sommer,
2016).

Synaptic pruning induces temporal changes in the structure of connections
(new synapses grow and others disappear) in response to spontaneous and
sensory-evoked neural activity (Lee et al., 1980; Frank, 1997; Klintsova and
Greenough, 1999; De Roo et al., 2007; Deger et al., 2012). Consequently, it
is reasonable to think that the evolution of network structure is intrinsically
coupled with the activity dynamics on the network. It is thus also natural to
consider a co-evolving neural network when seeking for a more precise mathe-
matical model to describe network evolution (see section 1.4.5 and also Gross
and Blasius, 2007; Vazquez et al., 2008; Sayama et al., 2013). Previous studies
of co-evolving brain networks have studied the temporal evolution of the mean
degree (Huttenlocher and Dabholkar, 1997), particular microscopic mechanisms
(Chechik et al., 1999), the development of certain computational capabilities
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(Eguiluz et al., 2005), or the effects of specific growth rules (Iglesias et al.,
2005). Other recent works have suggested evidence for the role of bistability
and discontinuous transitions in the brain, for instance in synaptic plasticity
mechanisms involved in learning (Litwin-Kumar and Doiron, 2014; Zenke et al.,
2015).

In this chapter we present a novel co-evolving model for synaptic pruning
and structural plasticity that combines the Amari-Hopfield neural network (see
section 1.4.1 and also Amari, 1972; Hopfield, 1982) with a plausible model of
network evolution (as presented in section 1.3.2; see also Johnson et al., 2010a).
In order to do so, we set the probabilities of synaptic growth and death to depend
on neural activity, as it has been empirically observed (Holtmaat and Svoboda,
2009). We consider the emergence of some general properties observed in actual
neural networks, including degree heterogeneity that roughly accords with scale-
free distributions, and negative degree-degree correlations i.e. dissasortativity
(see section 1.2.3), which strongly influence the dynamics of the system (Torres
et al., 2004; Franciscis et al., 2011).

Taken separately, the two models used to describe neuron and network dy-
namics exhibit a continuous phase transition: from a phase of memory to one of
noise in the case of the Amari-Hopfield model, and from heterogeneous to ho-
mogeneous networks in the case of the synaptic pruning model. Taken together,
the topological state of the networks affects the activity one, and viceversa. We
find that, for certain parameter ranges, the phase transition between memory
and randomness becomes discontinuous (i.e. resembling a first order thermody-
namic transition). Depending on initial conditions, the system can either evolve
towards heterogeneous networks with good memory performance, or homoge-
neous ones incapable of memory, as a consequence of a feed-back loop between
structure and function. To the best of our knowledge, this is the first time
that this feed-back loop, and the ensuing discontinuous transition, have been
identified. Also, in our model networks are generated which have optimal mem-
ory performance for the specific memory patterns they encode, thus allowing
for a greater memory capacity than would be possible in the absence of such a
mechanism. Our results thus suggest a more complete explanation of synaptic
pruning.

Finally, we also discuss the possibility that other biological systems – in
particular, protein interaction networks – also owe their topologies to a version
of the feed-back loop between form and function that we identify here, due to
the network properties that they share with neural networks.

2.2 Model construction

We define a co-evolving model of synaptic pruning that couples a traditional
associative memory model, the Amari-Hopfield model (AH) (see section 1.4.1
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and also Amari, 1972; Hopfield, 1982), with a preferential attachment model
for network evolution (see section 1.3.2; see also Johnson et al., 2010a). The
model is defined in this chapter to describe the basic mechanisms of synaptic
pruning, and we further use it in chapters 3 and 4 to explore other consequences
of the co-evolving dynamics. More precisely, in chapter 3 we will use this model
to investigate in detail the effect of combining thermal and quenched disorder
(arising from the competition among different stores memories), and in chapter
4 we analyze in depth the consequences of the initial overgrowth of synaptic
density that precedes synaptic pruning on the dynamics of the system, and on
its emergent behavior.

Our system consists in a time-dependent, symmetric, undirected, N -node
complex neural network (Boccaletti et al., 2006) where nodes stand for neurons
and edges represent synapses. The network is defined at time t by the adjacency
matrix eee(t), with elements eij(t) = {0, 1}, according to whether there exists or
not an edge between the pair of nodes (i, j), respectively. The degree of node
i at time t is defined as

ki(t) =
N∑
j=1

eij(t) (2.1)

and the mean degree of the network is

κ(t) = 1
N

N∑
i=1

ki(t). (2.2)

2.2.1 The neural network model

Following the familiar AH prescription presented in section 1.4.1 (Amit, 1989),
each neuron i is modeled as a stochastic binary unit, si(t) = {0, 1}, representing
respectively a silent and a firing neuron. Each edge (i, j) is characterized by
its synaptic weight wij , which defines the strength of the synapse. This is a
real variable defined by means of a set of P binary patterns of neural activity,
ξµi ∈ {0, 1}, µ = 1, ..., P , according to the Hebbian learning prescription (see
section 1.1.4.1):

wij = [κ∞a0 (1− a0)]−1
P∑
µ=1

(ξµi − a0)
(
ξµj − a0

)
, i 6= j

wii =0,
(2.3)

where κ∞ = κ(t → ∞) and a0 is the mean activation of the patterns, i.e.
a0 = 〈ξµi 〉. As seen in the previous chapter, this definition of the synaptic weights
makes the patterns ξµi attractors of the activity dynamics of the system, and
therefore it is the final step of a process of “learning” or “storing” the memories in
the synaptic weights. Given that wij = wji by construction (and that eij is also
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symmentric, as previously defined), the network is symmetric, in the spirit of
previous studies (Sompolinsky and Kanter, 1986). This is for simplicity and also
as a reference to compare with the canonical AH model (Amari, 1972; Hopfield,
1982). Earlier studies suggest that the inclusion of asymmetry could lead to
the induction of chaos, affecting learning, for instance causing the system to
oscillate among different states (Sompolinsky and Kanter, 1986). Here we have
decided to simplify the picture and consider symmetric networks, and we expect
that, given a reasonable definition of asymmetry, the main results of our work
would hold.

The local field at neuron i quantifies the incoming input from neighbor
neurons, and it is given by

hi(t) =
N∑
j=1

wijeij(t)sj(t). (2.4)

The equation is analogous to the canonical AH one (Eq. 1.20) with the inclusion
of the network’s topology through eij(t). The states of all neurons are updated
in parallel at every time step according to the probabilistic dynamics

P [si(t+ 1) = 1] = 1
2
{

1 + tanh
[
T−1 (hi(t)− θi(t))

]}
, (2.5)

where

θi(t) = 1
2

N∑
j=1

wijeij(t) (2.6)

is a neuron’s threshold for firing. The noise parameter or temperature T
(T > 0) sets the level of stochasticity on the activity of the neurons (Bortz
et al., 1975), so that if T = 0 the evolution of the system is deterministic and
the state of a neuron at time t is completely determined by the states of its
neighbors at time t− 1. For T > 0, however, the evolution is stochastic and, as
T is increased, the thermal noise has a stronger effect (see figure 1.7).

The definition in equation 2.6 is typically considered, in the case of static net-
works, when the biologically plausible {0, 1} code is used instead of the canonical
{±1} one, since it allows one to recover the phase diagram of the canonical, fully
connected AH model (Amit, 1989). Therefore, we maintain it when extending
the model to a time dependent topology, and it naturally leads to a dynamic
threshold. This is not a strong assumption since dynamic or adaptive thresh-
olds have been widely described in several neural systems. For instance, they
have been shown to create a nontrivial motion between the attractors of the
system (Horn and Usher, 1989; Itskov et al., 2011) and to have a major role in
stochastic resonance (Mejías and Torres, 2011) and in the functioning of sensory
systems (Fricker et al., 1999; Azouz and Gray, 2000, 2003; Cardin et al., 2008;
Kobayashi et al., 2009). Mechanisms of threshold adaptation have been found
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to help to avoid saturating activity during developmental changes (Turrigiano
et al., 1998), and to be related to homeostatic regulation mechanisms observed
in cortical neurons (Abbott and LeMasson, 1993; Turrigiano et al., 1998) and
to the emergence of self-organized criticality in neural systems (Uhlig et al.,
2013; Hobbiss et al., 2018). In our context, θi(t) depends only on the existing
synapses, which can be seen as a means of homeostasis since the response of a
neuron is regulated by the number and strength of its synaptic contacts, thus
avoiding silencing low-degree neurons and saturation of hubs. Furthermore, in
our model the term eij(t)wij in Eq. 2.6 characterizes the intensity of the synaptic
transmission between neurons i and j, so that the threshold dynamics depends
indirectly on the neural activity.

The overlap of the network state with each of these patterns determines
the global state of the system,

mµ(t) = [Na0(1− a0)]−1
N∑
i=1

(ξµi − a0) si. (2.7)

It follows from this definition that −1 ≤ mµ(t) ≤ 1. We say that the system is
in a memory state or, equivalently, that it has retrieved pattern µ, if mµ > 2/3
and mν → 0 ∀ν 6= µ. This indicates that the activity state of the network
strongly resembles that of pattern µ.

The canonical setting of this model, in the case of a fully connected network
and random orthogonal patterns, is described in detail in the previous chapter
(see subsection 1.4.1). In summary, it exhibits three characteristic phases. In
the absence of thermal noise, T = 0, the patterns ξµi are stable attractors of the
dynamics of the system for P < Pc = 0.138N , and the system is in what is called
the memory phase. Pc defines the maximum storage capacity of the network
(Amit, 1989), that is, the maximum quantity of information – or number of
patterns – that can be stored and effectively retrieved from the network. This
phase is (mathematically) equivalent to the ferromagnetic or ordered phase of
interacting spin networks (as in the Ising model). The storage of a large number
of different patterns in the network gives rise to quenched noise as a consequence
of the interference between them in wij , which can destabilize such memory
phase. Therefore, if P is further increased above Pc there is a discontinuous
phase transition to a spin-glass (SG) phase, in which there appear metastable
states – consisting in combinations of a macroscopic number of stored patterns
(therefore also called mixed states) – that trap the dynamics of the system.
Similarly, in the case of P = 1 there is a continuous phase transition as the
temperature increases from the memory phase to a noisy or paramagnetic phase
(also called disordered phase), at Tc = 1. In the paramagnetic phase there are
no stable attractors, and the dynamics of the system is driven by noise (Amit,
1989). Finally, in the more general case in which both T > 0 and P > 1, the
location of the phase transitions depends both on T and P (see figure 1.7 in
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chapter 1). We here consider an evolving network whose structure, contrary to
the canonical model above, changes constantly in time subjected to the pruning
dynamics, as we shall describe in the next section.

2.2.2 Activity dependent synaptic pruning model

The network structure changes in time following a preferential attachment pro-
cess that is a generalization of the topological synaptic pruning model presented
in the previous chapter (see subsection 1.3.2). At each time t, each node has
a probability P gi (t) of being assigned a new edge to another node, randomly
chosen, and a probability P li (t) of losing one of its edges. These are given by

P gi = u (κ)π (ki, Ii) ,
P li = d (κ) η (ki, Ii) ,

(2.8)

where the time dependency has been dropped for clarity. In this equation the
local probabilities π and η can depend on the node’s degree ki but also on the
physiological variable Ii = |hi − θi|. This is the scaled input that each neuron
receives as a consequence of the coupling with its neighbors, a sort of recurrent
current in the network, which is a measure of the present activity of the neural
medium reaching neuron i. In this way we couple the evolution of the network
with the neural dynamics, following the empirical observations that synaptic
growth and death are determined by neural activity (Lee et al., 1980; Frank,
1997; Klintsova and Greenough, 1999; De Roo et al., 2007). The probabilities
π and η are normalized over the network: ∑N

i=1 π(ki, Ii) = ∑N
i=1 η(ki, Ii) = 1.

The first terms on the right-hand side of each equation represent a global de-
pendence to account for the fact that such processes rely in some way on diffusion
of different molecules through large areas of tissue, and we take the mean degree
κ(t) at each time as a proxy. In order to describe synaptic pruning, we choose
these probabilities to be consistent with empirical data describing synaptic den-
sity in mammals during infancy (Huttenlocher and Dabholkar, 1997; Navlakha
et al., 2015). The simplest choice is (Johnson et al., 2010a; Millán et al., 2015;
Millán et al., 2018c)

u(κ(t)) = max
{
n

N

(
1− κ(t)

2κ∞

)
, 0
}

d(κ(t)) = n

N

κ(t)
2κ∞

,

(2.9)

where n is the number of edges to be added or removed at each step, which sets
the speed of synaptic turnover, and κ∞ = κ(t → ∞) is the stationary mean
degree. Notice also that equation 2.9 assures that u(κ) ≥ 0 ∀κ.

The definitions in Eq. 2.9 take into account that synaptic growth and death
relay in some way on the concentrations of various molecules (that can have an
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important role in synaptogenesis, as axonal growth factors), which can diffuse
through large areas of tissue and therefore cannot in general be considered local
(Klintsova and Greenough, 1999). Here, therefore, we consider κ(t) as a proxy
for the amount of resources consumed by the existing synapses in the network.
In an environment with a finite presence of nutrients, it is reasonable to think
that there is a competition for the existing resources, and that neurons are sen-
sitive to the amount of nutrients available to them, so that synapses are less
likely to grow, and more likely to atrophy, when the connectivity is high, and
viceversa, as assumed by equation 2.9. Finally, we note that experimental stud-
ies (Huttenlocher and Dabholkar, 1997) have revealed a fast initial overgrowth
of synapses associated with the transient existence of different growth factors.
This and other particular mechanisms could be accounted for by adding extra
factors in Eqs. 2.9. For example, an initial overgrowth of the synaptic density
can be reproduced by adding the term a exp(−t/τg) in the growth probability
(Johnson et al., 2010a). This is analyzed in more detail in section 2.3.2.

2.2.3 Monte Carlo simulations

In practice, numerical simulations are carried out via a Monte Carlo method
as follows [in particular, we make use here of the BKL algorithm (Bortz et al.,
1975)]. The initial conditions for the neural states are randomly distributed.
For the network topology we draw an initial degree sequence from a distribution
p(k, t = 0), and then place edges between nodes i and j with a probability pro-
portional to ki(0)kj(0), as in the configuration model (Newman, 2011; Courtney
and Bianconi, 2016). Then, at each time step t, the number of edges to be cre-
ated and destroyed is sorted according to two Poisson distributions with means
Nu (κ) and Nd (κ), respectively. As many times as needed according to this
draw, we choose a node i with probability π (ki, Ii) to be assigned a new edge to
another node randomly chosen; and similarly we choose a new node j according
to η (kj , Ij) to lose an edge from one of its neighbors, randomly chosen. This
process is done in a serial manner, and the same node can be selected more than
once (Bortz et al., 1975).

Notice that for each node i that gains or looses an edge eij , the degree of
the second node j to which that edge links also changes accordingly. Therefore,
there are in fact two paths that can lead to the change of a node’s degree: either
through the primary process with probability π(ki, Ii) for a gain (or η(ki, Ii) for
a loss), or when it is randomly connected to (or disconnected from) an already
chosen node. These secondary processes lead respectively to the probabilities
1/ (N − ki − 1) ≈ 1/N and ki/ (κN), disregarding degree-degree correlations.
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The effective values of the second factors in equation 2.8 are consequently

π̃i = 1
2

[
π(ki, Ii) + 1

N

]
,

η̃i = 1
2

[
η(ki, Ii) + ki

κN

]
,

(2.10)

where the 1/2 factor is included to assure normalization.
For the sake of simplicity, we shall consider π̃ and η̃ to be power-law dis-

tributed (Johnson et al., 2010a), which allows one to move smoothly from a
sub-linear to a super-linear dependence with a single parameter,

π̃i = Iαi
〈Iα〉N

,

η̃i = Iγi
〈Iγ〉N

,

(2.11)

which are normalized over the network, ∑N
i=1 π̃i = ∑N

i=1 η̃i = 1.
This leads to

π (Ii) = 1
Zπ

max
{

2 Iαi
〈Iα〉N

− 1
N
, 0
}
,

η (Ii, ki) = 1
Zη

max
{

2 Iγi
〈Iγ〉N

− ki
κN

, 0
}
,

(2.12)

which hold that π(Ii), η(Ii, ki) > 0 ∀i. The factor 1/Zx is included to assure
normalization: ∑N

i=1 π(Ii) = ∑N
i=1 η(Ii, ki) = 1. Notice that by construction the

death probability η depends on both Ii and ki, whereas the growth probability π
is independent of the degree. Given that, in the memory regime of the AHmodel,
Ii ∝ ki, as shown in figure 2.1c, one could consider the approximation η → η(Ii)
too. These definitions are most important, as they characterize the coupling
between neural activity and structure. However, the particular functions are an
arbitrary choice and other ones could be considered.

In our scenario, the parameters α and γ characterize the dependence of the
local probabilities on the local currents and account for the different proteins and
factors that control synaptic growth. These could be obtained experimentally,
although to the best of our knowledge this has not yet been done.

Finally, we impose further restrictions on the network. First of all, eij is a bi-
nary matrix, so that only one edge per pair of nodes is allowed and the strength
of the connection between two neurons, resembling the number of multiple con-
tacts between actual neurons (Fares and Stepanyants, 2009), is considered to
be given by wij . Moreover, we set the minimum degree of the network, ki = 1,
so that there cannot be any disconnected nodes, and we forbid self-connections,
eii = 0 ∀i. The maximum degree a node can have is therefore N −1. We do not
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impose a hard bound on it as other works have done (Knoblauch et al., 2014;
Knoblauch and Sommer, 2016). This would exclusively affect hubs, reducing
their connectivity. This might affect the memory capabilities of the network in
the limit P →∞ but, since we do not work on this limit, we do not expect any
changes on the qualitative behavior and main findings of our model.

2.2.4 The macroscopic state

The time scale for structure changes is set by the parameter n in Eq. 2.9, whereas
the time unit for activity changes, hs, is the number of Monte Carlo Steps (MCS)
that the states of all neurons are updated according to the Hopfield dynamics
between each structural network update. Our studies show a low dependence
on these parameters in the cases of interest, so we only report results here for
hs = 10 MCS and n = 10. We have also considered both Little and Glauber
dynamics to integrate the neural activity, with the same results (Amit, 1989).

The macroscopic activity state is characterized by the overlap, as defined
above. Results in the main section of this chapter are for P = 1, so we simplify
the notation and use m = m1. A discussion on the effect of learning more
patterns is included in subsection 2.4.2, whereas in chapter 3 we carry on an in
depth analysis of the combination of thermal (as given by T > 0) and quenched
(P > 1) disorder, showing that it can lead to the emergence of an oscillatory
regime (Millán et al., 2019b).

The network macroscopic state is described via the degree distribution
p(k, t) (p(k, t) ≥ 0 ∀k, t,∑N

k=1 p(k, t) = 1 ∀t) and some of the network properties
defined in the previous chapter (see subsection 1.2.1). In particular, it is of
interest here the homogeneity g(t),

g(t) = exp
(
−σ2(t)/κ2(t)

)
, (2.13)

where σ2(t) = 〈k2(t)〉 − κ2(t); the node’s clustering coefficient, Ci,

Ci(t) = 2ti(t)
ki(t) (ki(t)− 1) , (2.14)

where ti is the number of triangles incident to node i (ti = 1/2∑j,h aijaihajh);
the degree dependent clustering coefficient,

C(k, t) = 1
p(k, t)

N∑
i=1

Ci(t)δk,ki ; (2.15)

and the Pearson correlation coefficient applied to the edges,

r(t) = [klk′l]− [kl]2
[k2
l ]− [kl]2

, (2.16)
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where [·] = 1
κN

∑
l(·) stands for the average over edges (Boccaletti et al., 2006)

and the time dependence has been dropped for clarity. The homogeneity pa-
rameter indicates the degree of homogeneity and heterogeneity of the degree
distribution. In homogeneous networks all nodes have similar degrees and con-
sequently σ(t) is small and g approaches one, with the trivial case of g = 1 if
p(k, t) = δk,k1 . For heterogeneous networks, on the other hand, there are big
fluctuations in the degrees of the nodes and g(t)→ 0.

Finally, we notice that in this model r can be estimated as (Johnson et al.,
2010a)

r(t) = 〈k〉

〈
k2knn(k)−

〈
k2〉2〉

〈k〉 〈k3〉 − 〈k2〉2
, (2.17)

where knn (k) is the neighbors mean degree function,

knn,i = 1
ki

∑
j

aijkj . (2.18)

The Pearson correlation coefficient characterizes the degree-degree correlations,
which have important implications for network connectedness and robustness.
That is, whereas most social networks are assortative (r > 0), almost all other
networks, whether biological, technological or information-related, seem to be
generically dissasortative (r < 0), meaning that high degree nodes tend to have
low degree neighbors, and vice-versa. Previous studies showed that heteroge-
neous networks favor the emergence of dissasortative correlations (Boccaletti
et al., 2006; Johnson et al., 2010b; Williams and Del Genio, 2014).

In this chapter we will consider as order parameters the stationary overlap,
m = m(t→∞), the stationary homogeneity, g = g(t→∞) and the stationary
Pearson’s coefficient r = r(t → ∞). Measures of the global variables on the
stationary state are obtained by averaging during a long window of time: f =
∆t−1∑t0+∆t

t=t0 f(t).

2.3 Preliminary analysis

2.3.1 Topological limit

Consider first the topological limit of the model, which is equivalent to the model
defined in section 1.3.2. In this case network structure is de-coupled from neural
activity, so that the topology of the network is independent from its neural state.
In our model, this limit is obtained by substituting Ii → ki, so that η̃i = η̃ (ki)
and π̃i = π̃ (ki), whereas the global probabilities are still given by Eq. 2.9.

Following section 1.3.2, we can construct a master equation for the evolu-
tion of the degree distribution by considering network evolution as a one step
process with transition rates u(κ)π̃(k) for degree increment and d(κ)σ̃(k) for
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the decrement. Approximating the temporal derivative for the expected value
of the difference in a given p(k, t) we get, as in section 1.3.2:

dp(k, t)
dt

= u (κ) π̃ (k − 1) p (k − 1, t)

+ d (κ) η̃ (k + 1) p (k + 1, t)
− [u (κ) π̃ (k) + d (κ) η̃ (k)] p (k, t) ,

(2.19)

which is exact in the limit of no degree-degree correlations between nodes (John-
son et al., 2010a).

Depending on the parameters, three qualitatively different behaviors, leading
in practice to different phases, are possible for ki � 1 (see figure 2.1a):

i) If γ > α, then η̃(ki) > π̃(ki), and high degree nodes are more likely to lose
than to gain edges. Consequently, p∞(k) = p(k, t → ∞) is homogeneous,
g → 1, and the probability of having high degree nodes vanishes rapidly
from a maximum. This situation corresponds to the case α = 0.8, γ = 1.0
(purple circles) in figure 2.1a.

ii) If γ < α, then η̃(ki) < π̃(ki), and high degree nodes are more likely to
continue to gain than to lose edges. Since the stationary number of edges
Nκ(t) is fixed, this leads to a bimodal p∞(k), with g → 0, as shown by
the blue squares in figure 2.1a, for α = 1.2 and γ = 1.0.

iii) In the case γ = α, η̃(ki) = π̃(ki) and very connected nodes are as likely to
gain as to lose edges. Excluding low degrees, p∞(k) then decays as a power-
law with exponent µ ≈ 2.5, in accordance with long-range connections
observed in the human brain (Gastner and ódor, 2016) and measures of
protein interaction networks (Albert, 2005). This situation is illustrated
by the green diamonds in figure 2.1a, corresponding to α = γ = 1.0.

In figure 2.1b we show g(α) as obtained for the topological limit of the model
(γ = 1.0, purple squares), displaying the continuous phase transition (from ho-
mogeneous networks with g > 0 to heterogeneous ones with g = 0) described
above. Interestingly, we have found that the condition π̃(ki) = η̃(ki) is manda-
tory to obtain a critical behavior, despite previous preliminary studies assuming
the contrary (Johnson et al., 2010a). In particular, in the same figure we show
in green g for a different set of local probabilities (π(k) = kα/ (〈kα〉N) and
η(k) as before) that do not meet the aforementioned condition. The transition
in this case is a discontinuous one, which fails to produce scale-free networks.
The indicated lines in this panel follow from integration of the corresponding
master equations, whereas points are from Monte Carlo data. Deviations from
simulations are due to the emergence of small degree-degree correlations that
are not taken into account by the master equation.
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Figure 2.1: Topological limit and activity-topology coupling. (a) Sta-
tionary degree distributions p∞(k) for γ = 1.0 and the three different observed
phases: subcritical (α = 0.8, purple circles), critical (α = 1.0, green diamonds)
and supercritical (α = 1.2, blue squares). (b) g(α) for the topological limit of
our model (γ = 1.0, purple squares), and for a different set of local probabili-
ties as indicated in the main text, not inducing criticality (green circles). (c)
Normalized current of each neuron, IN,i, as a function of its normalized degree,
kN,i, showing the correlation between neural activity and topology that emerges
in our model system. The normalization is made by averaging over the total
current (〈I〉N) and degree (〈k〉N) of the network, respectively. Labels as in
panel (a). Results are for N = 3200 and γ = 1.0, and data from Monte Carlo
simulations have been averaged over 100 realizations. Error bars corresponding
to s.d. are too small to be appreciable.

Interestingly, in this topological limit the network structure is determined by
α and γ and this, in turn, characterizes the memory transition (see figure 2.2).
In this way, for α < 1, networks are homogeneous, and there is a continuous
transition from memory to noise. The critical temperature for this transition
moves from Tc = 1 for completely homogeneous networks for α � 1, to higher
T as the nodes degrees gain some heterogeneity, according to previous studies
(Torres et al., 2004). Similarly, for α > 1 the phase transition is delayed for
increasing α and N and it finally diverges in the thermodynamic limit (Leone
et al., 2002).

Finally, we notice also that, in this topological limit, γ = 1 corresponds to
choosing links at random for removal, given that the probability of choosing
an edge (i, j) is then pij = 1

ki
η̃ (ki) + 1

kj
η̃ (kj) = 1

〈k〉N . This can be seen as a
first order approximation to the pruning dynamics, where edges are randomly
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Figure 2.2: Phase diagram of the topological limit. Phase diagram of
the system in the topological limit Ii → ki. Without the physiology-structure
coupling, network structure is simply determined by α and γ and, this, in turn,
characterizes the memory transition. Data: N = 1600, γ = 1, κ0 = 20, κ∞ = 10,
n = 5.

removed, with the advantage that it induces powerful simplifications during
computations. Furthermore, the relevant parameter determining the behavior
of the system is the ratio between α and γ, whereas their absolute values only
affect quantitatively (see Supplementary Figure A.1). Therefore, in the following
we use γ = 1 and leave α as the control parameter of the network evolution.

2.3.2 Model fitting of experimental synaptic pruning profiles

The time evolution of κ(t) is controlled in our model by the global probabilities
u(κ) and d(κ), which can be chosen to model experimental data on synaptic
density during brain development (Johnson et al., 2010a; Millán et al., 2018c).
In particular, here we analyze and fit two experimental data-sets (figure 2.3):

i) A post-morten study of the synaptic densisty, ρ(t) ∝ κ(t), on the human
infant auditory cortex (Huttenlocher and Dabholkar, 1997). Measures of
synaptic density were obtained in autopsies by directly counting synapses
in tissues from different layers of the auditory cortex, and in partitular,
here we show the data for layes 1 (L1) and 2 (L2) in panel a.
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(a) (b)

Figure 2.3: Synaptic pruning profiles derived with our model. Exper-
imental data-sets on connectivity during infancy (points) and model fit (solid
lines). (a) Postmortem synaptic density in layes 1 (L1) and 2 (L2) of the hu-
man auditory cortex (Huttenlocher and Dabholkar, 1997). Inset on the right
shows the fit of the maximum on a log-log scale, labels as in the main plot.
(b) Synaptic density in the developing mouse somatosensory cortex (Navlakha
et al., 2015). We show the fit with the linear model (P1) and including the
growth factor (P2). Error bars of the data-points in both panels correspond to
s.d. as obtained in the original works.

ii) An electron microscopy imaging study of the mouse somatosensory cortex
that quantifies the number of longe-range synaptic connections (Navlakha
et al., 2015), shown in panel b.

Even though they correspond to different animals and have been obtained
through different techniques, both data-sets show the same overall behavior:
an extreme initial growth of synapses, followed by a maximum when pruning
begins and connectivity starts decreasing, until a plateau is reached. Synaptic
density decays roughly exponentially during pruning, and can be fitted by u(κ)
and d(κ) as given by Eq. 2.9. These describe the case in which synapses are less
likely to grow, and more likely to atrophy, when the connectivity is high, and
vice-versa, a situation that could easily arise in the presence of a finite quantity
of nutrients.

The evolution of the mean degree is given by

dκ(t)
dt

= 2 [u (κ(t))− d (κ(t))] . (2.20)

By substituting Eq. 2.9 into Eq. 2.20, we obtain the time evolution of κ(t),

κ(t) = κ∞
[
1− (1− κ0/κ∞) e−t/τp

]
, (2.21)
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Model 1
Data κ0 t0 κ∞ τp

L1 59.1 700 30.7 1600(300)
L2 1.2(2) 40.8 75.1 3800(100)

MSC 3.10 18.97 1.64 5.72(1)

Model 2
Data κ∞ τp a τg

L1 30.7 300(200) 33(5) 210(20)
L2 75.1 290(40) 700 2700(100)

MSC 1.64 2.2(2) 1.7(1) 4.0(2)

Table 2.1: Synaptic pruning profiles fitting parameters. Parameters used
for the fit in figure 2.3; κ0, t0 and κ∞ are obtained directly from the experimental
data. The three lower points in figure 2.3a (for t ≈ 5000) and the third point
from the right in figure 2.3b have been excluded from the fits.

where τp = Nκ∞/(2n), so that κ(t) decays exponentially from κ0 to κ∞, as-
suming that κ0 > κ∞ as in the case of interest. The best fit of Eq. 2.21 to
the two experimental data-sets is shown by the solid lines of the figure, the
corresponding parameters are indicated in table 2.1 (model 1).

The initial overgrowth of synapses that is observed in the experimental data
(Fig. 2.3) can be related to the transient existence of some growth factors. It
can be accounted for in our model by including a non-linear, time dependent
term, c(t) = a exp(−t/τg), in the growth probability u(κ). The solution is now

κ(t) = κ∞ [1 + b exp(−t/τg)− a exp(−t/τp)] , (2.22)

with b = aτg/(τg − τp), a = 1− κ0/κ∞+ b, and τp as before. With the inclusion
of this term, the evolution of κ(t) on both data-sets can be fully reproduced, as
shown in figure 2.3 (inset of panel a, on a log-log scale, and green line of panel
b (P2), the corresponding parameters are indicated in table 2.1 under model 2).

Summarizing, the present model can approximate the evolution of the
mean density of synapses in the mammal brain during infancy, and with
the inclusion of an initial growth factor it also reproduces the fast growth
and early maximum of the connectivity. Notice that this framework also
goes in line with previous studies that have highlighted the computational
benefits of a pruning process in which the pruning rate decreases with
time, as in our model, which can optimize both efficiency and robustness
when growth takes place locally throughout the network (Navlakha et
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al., 2015). In our model the decreasing rate is naturally obtained via a
simple, physiologically-inspired master equation for p(k, t). Even when
an extra growth factor is included, once pruning begins its rate decreases
over time, in accordance with (Navlakha et al., 2015).

In this chapter we focus on the effect that the coupling with neuronal phys-
iological activity has on network development and vice-versa, in the framework
of co-evolving growth models. Consequently, we consider here the simplest ver-
sion of the model, with linear dependence of u(κ) and d(κ) on κ(t), to illustrate
the effect of coupling structure and physiology. Non-linear global probabilities
could also be considered, but would add an extra level of complexity which we
will not explore here. In chapter 4 we study the effect of more realistic pruning
probabilities that consider the effect of the transient period of high connectivity
during infancy.

2.4 Emergent behavior of the co-evolving synaptic
pruning model

2.4.1 (T, α) phase diagram

In the presented coupling model, where pruning depends on Ii (see section
2.2), computer simulations depict a rich emergent phenomenology depending
on stochasticity (T ) and emerging degree heterogeneity (α). The effect of the
number of memorized patterns P is analyzed later in section 2.4.2 (and more
deeply in chapter 3), and we discuss the effect of γ in the supplementary figure
A.1. Other parameters, such as κ∞ or a0, were found to have only a quantitative
effect on the resulting phase diagram, and they are set as in a previous study
(Johnson et al., 2010a). Preliminary simulations suggested dependence on the
heterogeneity of the initial condition for the network structure (IC), so we con-
sider two different types of IC, namely, homogeneous, p (k, t = 0) = δ(k − κ0),
and heterogeneous, p (k, t = 0) ∝ k−2.5, networks, with fixed κ0.

Our coupling dynamics leads to a rich phenomenology, including discontin-
uous transitions and multistability. Three different phases can be identified by
monitoring the steady-state order parameters g(α, T ),m(α, T ) and the Pearson
correlation coefficient, r(α, T ), as illustrated in figure 2.4 (data for r(α, T ) is not
shown here since it provides similar information as g(α, T )). Analysis of these
and similar curves for different parameter values leads to the phase diagram in
figure 2.5. That is, there is a homogeneous memory phase for low α and
T that is characterized by high m, high g and low (negative, almost zero) r
(Fig. 2.4a, c for α = 0.5 and low T , and in Fig. 2.4b, d for T < 1.2 and low α).
The system is then able to reach and maintain memory, while the topological
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processes lead to a homogeneous network configuration. Due to the existence
of memory, there is a strong correlation between the physiological state of the
network, as measured by the currents Ii, and its topology, as reflected by the
degrees ki (see figure 2.1c).

A continuous increase in α leads through a topological phase transition
from homogeneous final networks (with roughly Poisson degree distributions)
to heterogeneous ones (with bimodal degree distributions). At the critical point
α = αtc(T ) the emergent networks are scale-free (i.e. with power-law-like degree
distributions). The phase transition is revealed in g(α) (Fig. 2.4b for T = 0.9, 1.0
and 1.1) as a fast (and continuous) decay to zero, and it also appears in m(α)
(Fig. 2.4d) where, after an initial growth with α, m then decreases at the
transition, and finally approaches a constant value for α > αtc(T ). This is a con-
sequence of the strong coupling between structure and memory, and it shows
that scale-free networks optimize memory recovery for a given set of control
parameters. We call this the heterogeneous memory phase, characterized
by high m, very low (almost zero) g and high negative r, indicating a memory
state with heterogeneous (bimodal) dissasortative structure. Interestingly, this
phase expands up to high noise levels as a consequence of network heterogeneity,
which increases memory performance as discussed in section 1.4.1 (Torres et al.,
2004; Franciscis et al., 2011). Moreover, memory recovery in turn favors net-
work heterogenization in a feed-back manner due to the microscopic dynamics,
enhancing the stability of the state. This is because Ii becomes proportional
to ki in the memory regime, whereas this correlation is reduced in disordered
neural states (see figure 2.1c).

As T is further increased, the dynamics is finally governed by noise, and the
stationary network is then homogeneous, resulting in the homogeneous noisy
phase, characterized by low (almost zero) m, high g and low (almost zero) r
(Fig. 2.4a, c for α = 0.5 and 1.0 and high T , and Fig. 2.4b, d for T > 0.9 and
low α).

A particularly interesting aspect of this phenomenology is that the nature
of the phase transition with T depends on α. For low α (α < αtc(T )) there is
a continuous (second order) transition with increasing T from a homogeneous
memory phase to a homogeneous noisy one through α = αmc (T ) (Fig. 2.4a, c for
α = 0.5). On the other hand, at higher α (α > αtc(T )) the transition from the
heterogeneous memory phase to the heterogeneous noisy one is discontinuous
(first order), and includes a bi-stability region (striped area in figure 2.5).
In this region simulations starting from heterogeneous IC reach the heteroge-
neous memory state, whereas those starting from homogeneous ones fall into the
homogeneous noisy one (Fig. 2.4b, d for T = 1.2, and Fig. 2.4a, c for α = 1.5).

The existence of multistability illustrates how memory promotes itself in a
heterogeneous network, which is a direct consequence of the coupled dynamics
in our model, and it is lost in the topological limit (see figure 2.2). This is
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Figure 2.4: Analysis of the transition lines in the phase diagram. Be-
havior along the dotted lines marked in figure 2.5, for N = 1600, κ∞ = 10
and n = 5. Panels (a) and (c) show g (T ) and m (T ) respectively for different
values of α, as indicated. Panels (c) and (d) correspond respectively to g (α)
and m (α), for different temperatures as indicated. Solid points are for homo-
geneous IC and empty ones for heterogeneous IC, in every panel. Notice that
some isolines go through the three phases: for T = 1.0 and 1.1 (panels b and
c) the system is initially in the homogeneous noisy phase, and an increase in
α leads through αmc (T ) to networks that are heterogeneous enough to maintain
memory, which further increases heterogeneity due to the feed-back loop (g (α)
decreases). A final increase in α leads through αtc(T ) to heterogeneous networks.
Similarly in panels a and c, the system visits for α = 1 the three phases: at
very low T , α is high enough to develop heterogeneous memory networks, but
a slight noise increase suppresses heterogeneity, until the noise is too high and
memory is also lost, leading to the homogeneous noisy phase. Data-points are
averaged over 30 realizations and error-bars correspond to the s.d.
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0 1 2

Figure 2.5: (T, α) phase diagram of the coupled model as obtained from
analysis of the control parameters (m, g and r). The transition lines αtc(T )
and αmc (T ) are indicated either with solid or dashed lines regarding to whether
they correspond to continuous or discontinuous transitions. The horizontal and
vertical dotted lines correspond to the cases illustrated in figure 2.4. Parameters
as in figure 2.4. Data-points are averaged over 10 realizations.

because heterogeneous networks present higher memory recovery than homo-
geneous ones for high noise levels, particularly for T > 1 (Torres et al., 2004;
Franciscis et al., 2011). At the same time, given that in our model the growth
and death of links depend on the activity of the nodes, the evolution of the
structure of the network is driven by its activity state. In this way, an ordered
state of the activity of the system – that is, a memory state – is needed in order
to allow for the formation of heterogeneous (ordered) structures. Hence, if the
network is in a noisy state, edge birth and death are random processes, and thus
lead to a homogeneous network configuration. On the contrary, in the memory
state there is a direct correlation between Ii and ki (Fig. 2.1b) that allows for the
emergence of structure – as given by the local probabilities. Correspondingly,
the physiological state directly depends on the network structure through the
currents Ii, thus closing a memory-heterogeneity feed-back loop. As a conse-
quence, homogeneous and heterogeneous IC evolve differently, which translates
into a multistability region for high α and T , and the presence of memory for
T > 1. A schematic view of this feed-back loop is shown in figure 2.6.
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Figure 2.6: Schematic view of the form-function coupling in the bi-stability
region (α, T > 1.0) of the presented coupled model. Homogeneous IC fall into
the noisy state since T > 1.0, and this leads to a random topological process
that does not increase heterogeneity, rendering the networks in the homogeneous
noisy state. Heterogeneous IC, on the other hand, are capable of initial memory,
which leads to further heterogeneization due to the structural plasticity, in a
feed-back loop manner that deems the heterogeneous memory state stable.

Therefore, a main observation here is that the model shows an intriguing
relation between memory and topology which induces complex transitions
that might be relevant for understanding actual brains. In particular, the
inclusion of a topological process allows for memory recovery when T > 1,
whereas the presence of thermal noise shifts the topological transition,
which in the topological limit occurs at α = 1, to α > 1. These find-
ings can also have implications for network design – for instance, to help
memory recovery optimization in noisy environments. It is worth noting
also that one does not need to know the specific patterns that induce the
synaptic weights in order to have a memory state, so that the definition
of memories is not essential – only an ordered state of neural activity.
Therefore, our results could be extended to other models of microscopic
activity, not necessarily based on a Hebbian learning, or to other systems
such as protein interaction networks (see section 2.5), as long as they
present a transition between an ordered and a disordered activity state.
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2.4.2 Memory storage capacity analysis

We have so far considered P = 1 for the sake of simplicity. However, for neural
networks – whether natural or artificial – to be useful, they must generally store
many different memory patterns. Something analogous seems also to be true
for other complex systems, such as gene regulatory networks, which switch be-
tween different configurations. We therefore go on to study the memory storage
capacity of the network – that is, how its memory capability depends on the
number of memorized patterns P .

As shown in figure 2.7a, the performance (as measured by the overlap m
of the recovered pattern) drops fast with P for random uncorrelated memory
patterns (a0 = 0.5) (Morelli et al., 2004). This is because networks in the
model are highly sparse, with values of κ/N ∈

[
10−3, 10−2], and can also be

heterogeneous, depending on α. Both sparseness and heterogeneity damage
severely the memory retrieval ability of the neural network. In this structures the
performance diminishes fast with P compared with the case of highly connected
and homogeneous neural networks, as discussed in section 1.4.1 (Stauffer et al.,
2003; Castillo et al., 2004; Morelli et al., 2004; Torres et al., 2004; Oshima and
Odagaki, 2007; Akam and Kullmann, 2014).

However, there is experimental evidence that the configurations of neural
activity related to particular memories in the animal brain involve many more
silent neurons, ξi = 0, than active ones, ξi = 1 (Akam and Kullmann, 2014).
In this case there is a positive correlation between different patterns due to the
sparseness, since a0 6= 0.5, which is also known to improve the storage capacity
of a neural network (Knoblauch et al., 2014; Knoblauch and Sommer, 2016),
and in particular that of heterogeneous and sparse neural networks (Morelli et
al., 2004). Consequently, we consider here this kind of activity patterns, and we
further define them as non-overlapping regions of active neurons, each consisting
of N/P neurons, so that they cover the whole network (and therefore the mean
activity of the patterns is a0 = P−1). This corresponds to a particular definition
of sparse or biased patterns, which in other works have been considered to be
randomly distributed with a given a0 (Knoblauch et al., 2014; Knoblauch and
Sommer, 2016), that allows for a good visualization of the activity of the network
by means of the raster plots.

In figure 2.7b we show m(P ) as obtained with this configuration, and find
that good memory performance can be maintained at higher P depending on
α. These curves are combined with analogous ones for g(P, α) to define the
phase diagram of panel c. This shows that for α < 1 memory is preserved
only for small P ; the structural noise (or quenched disorder) introduced by the
patterns having a similar effect to that of the thermal noise in figure 2.5. This
leads to a continuous (second order) transition from homogeneous-memory to
homogeneous-noisy networks as P is increased. On the other hand, for α > 1
the competition between different patterns boosts network heterogeneity, and
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Figure 2.7: Memory storage capacity analysis. Capacity curves (T = 0) for
(a) randomly distributed patterns (a0 = 0.5), and (b) patterns distributed in
small sets of active neurons (a0 ≈ 1/P ). m corresponds to the recovered pattern
in each case. Results are for N = 800 and are averaged over 50 realizations of
the system, with other parameters as before. Error bars correspond to the s.d.
Panels (c) and (d) show the phase diagram of the system, obtained as in figure
2.5, as a function of α and P , respectively for the full model and the topological
limit, and for activity patterns defined as in panel b. Data-points have been
averaged over 10 realizations.

the capacity of the network increases greatly. There is a transition from a
pure memory state to a spin-glass-like state (SG), in which a few patterns are
partially retrieved at the same time. However, due to the presence of hubs and
the correlation among patterns, this corresponds to high overlap which each of
the patterns (m ≈ 1), instead of a moderate value as one would expect in a
typical spin-glass phase1 (Amit, 1989).

1Interestingly, as we show in the following chapter, when larger values of the stationary
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This result is only possible thanks to the form and function coupling intro-
duced by the model. In the topological limit, as defined in section 2.3.1, on the
other hand, memory is lost for P > 4 (N = 800, Fig. 2.7), leading to much more
narrow memory phases (whether homogeneous for α < 1.0 of heterogeneous for
α > 1.0). Moreover, the SG states correspond in this case to moderate over-
lap values (mµ ≈ 0.6), thus indicating a real SG state. Therefore, the memory
storage capacity analysis reveals another significant difference between the topo-
logical and coupled versions of the model, since the coupled one allows for good
memory retrieval even at much larger numbers of patterns (P > 50) for α ' 1 –
that is, for the limiting case in which the emerging networks are approximately
scale-free. It follows that the emerging network topologies in the coupled ver-
sion do not owe their good memory performance solely to their power-law degree
distributions. Rather, the network is tuned for good memory performance on
the specific patterns encoded in the synaptic weights. In the following chapter
we consider in more detail the effect of quenched disorder in the system, when
different parameters are considered, and in particular study its interplay with
thermal noise considering also T > 0.

2.5 Protein interaction networks
Many complex systems can be described as networks which evolve under the
influence of node activity, and it is likely that the described structure-function
feed-back loop plays a role in these settings too. In particular, it could be
compatible with experimental and theoretical studies concerning protein inter-
action networks, which gather different types of metabolic interactions among
proteins. These can be either inhibitory or excitatory and also have different
strengths, as edges in our model. Moreover, network structure changes on an
evolutionary time scale, during the evolution of the species, and these changes
combine a random origin, typically due to mutations, with a “force” driven by
natural selection, which is likely to be activity dependent (Albert, 2005). The
similarities between this picture and our model suggest a parallelism concerning
the resulting network topologies as well.

Measurements on protein interaction networks show power-law distributions
of some important topological magnitudes:

i) degree distribution p(k) ∝ k−µ, with µ ≈ 2.5 (Albert, 2005);

ii) clustering coefficient C(k) ∝ k−ψ, with ψ ≈ 1 (metabolic networks) or 2
(protein interaction networks) (Maslov and Sneppen, 2002; Albert, 2005);

iii) and neighbors mean degree knn(k) ∝ k−ν , with ν ≈ 0.6 (Berg et al., 2004).

mean connectivity κ∞ are considered, the pure memory states gain stability in this region
(Millán et al., 2019b).
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Figure 2.8: Statistical comparison of the present co-evolving network
model with protein interaction networks: clustering coefficient C(k) (main
plot), neighbours mean degree knn(k) (top inset) and probability distribution
p(k) (bottom inset) after a long transient of network evolution for a point in
αtc(T ) (T = 0.5, α = 1.05), including a power-law fit of the tails. Data-points
are averaged over 100 realizations of the system.

We find that these magnitudes are also power-law distributed for networks in our
model near the transition αtc(T ) (figure 2.8), with exponents µM = 2.55± 0.01,
ψM = 0.98 ± 0.01 and νM = 0.95 ± 0.02, so there is a good agreement with µ
and ψ. Moreover, knn(k) decays in our model as a power-law for almost every
value of the parameters, which is related to the intrinsic topological dynamics
of the model, that creates an asymmetry between the nodes that gain and
loose edges (Berg et al., 2004). We find ν ≈ 0.5 for homogeneous networks
and ν ≈ 1.5 for bimodal ones, whereas scale-free networks lie in between, with
ν ≈ 1.0. It is likely that this parameter could be better reproduced with further
adjustments in the local probabilities, so as to reflect degree-degree correlations
among different proteins.

Interestingly, several studies have recently shown that there are specific pat-
terns in protein interaction networks that can be determined experimentally
(Turanalp and Can, 2008; Liu et al., 2017), and which could allow us to iden-
tify important biological substructures in the network (Ren et al., 2013; Xiong
et al., 2014). This information could be used, together with the model proposed
here, to determine the relevance of such patterns and of the complex interplay
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between the underlying structure of the network and its functional role, as in
the present study.

In conclusion, there are definite indications that some of the main topo-
logical properties of protein interaction networks could be qualitatively
reproduced with simple adjustments or extensions of our model. This
suggests a general mechanism underlying the dynamics of different bio-
logical systems, which is likely to extend as well to other contexts.

2.6 Discussion

It is well known that the brain stores information in synaptic conductances,
which mediate neural activity; and that this in turn affects the birth and death
of synapses. To explore what this feed-back might entail, we have coupled
an auto-associative or attractor neural network model with a model for the
evolution of the underlying network topology, which has been used to describe
synaptic pruning. Neural network models have long provided a means of relating
cognitive processes, such as memory, with biophysical dynamics at the cellular
level (see section 1.4). This coupled model includes the further ingredient of a
changing underlying network structure, in such a way that it can be used as a
more general and complete study of synaptic pruning and structural plasticity.
The intention behind our theoretical framework is to identify a minimal set of
ingredients which can give rise to observed phenomena. Specif details of a given
system could be added to the model, such as more realistic neuron and synaptic
dynamics (Sec. 1.1).

Taken separately, each of the two models involved exhibits continuous phase
transitions: between a phase of memory and one of noise in the neural network,
and between homogeneous and heterogeneous network topologies in the pruning
model. Our coupled model continues to display both of these transitions for cer-
tain parameter regimes, but a new discontinuous transition emerges, giving rise
to a region of coexistence of phases (also known as hysteresis). In other words,
situations with the same parameters but slightly different initial conditions can
lead to markedly different outcomes. In this case, whether the attractor neural
network is initially capable of memory retrieval influences the emerging net-
work structure, which feeds back into memory performance. There is therefore
a crucial feed-back loop between structure and function, which determines the
capabilities of the eventual system which the process yields. Our picture thus ad-
dresses how neural activity can impact on early brain development, and relates
specific dynamic processes in the brain to well-defined mathematical properties,
such as bistability and critical-like regions, or the emergence of a feed-back loop.

The models we have coupled in this work are the simplest ones able to
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reproduce the behavior of interest – namely, associative memory (Sec. 1.4.1)
and network topologies with realistic features (Sec. 1.3.2). However, there are
no indications to believe that this feed-back will disappear when using more
complex models, including the consideration of asymmetric networks, or more
realistic choices of the synaptic weights. Hebbian synapses have been considered
here as a standard way to define memory attractors, and therefore a useful
tool to understand the effect of heterogeneity, and its coupling with memory,
on network dynamics. More realistic scenarios could include time dependent
synapses, considering for instance learning (Song et al., 2000) or fast synaptic
noise (Cortes et al., 2006), which would indubitably add more complexity to
the model. Similarly, particular definitions of the memories could boost the
capacity of the network, and even create topologically induced oscillations. In
the following chapter, for instance, we go on to study the interplay between
thermal and quenched disorder in this model. The quenched disorder arises
naturally when considering P > 1 stored patterns of activity and T > 0, and
it leads to an oscillatory behavior for some parameter ranges, which can be
associated with oscillations of neural activity.

Interestingly, neural systems may not be the only ones to display the prop-
erties we have found to be sufficient for the existence of this feed-back loop
between structure and function. Networks of proteins, metabolites or genes also
adopt specific configurations (often associated to attractors of some dynamics),
and the existence of interactions between nodes might depend on their activity.
One may expect that the interplay between form and function we have described
in this work could play a role in many natural, complex systems. In this regard,
we have shown some evidence that protein networks seem to have topological
features which emerge naturally from the coupled models we have considered
here.

Finally, an unresolved question in neuroscience is why brain development
proceeds via a severe synaptic pruning – that is, with an initial overgrowth of
synapses, followed by the subsequent atrophy of approximately half of them
throughout infancy. Fewer synapses require less metabolic energy, but why not
begin with the optimal synaptic density? Navlakha and co-authors have shown
that network properties such as efficiency and robustness can be optimised by
a pruning rule which favors short paths (Navlakha et al., 2015). However, in
order for synapses to “know” whether they belong to short paths, some kind
of back-propagating signal must be postulated. Our coupled model provides a
simple demonstration of how network structure can be optimized by pruning,
as in Navlakha’s model, with a rule that only depends on local information at
each synapse – namely, the intensity of electrical current. Moreover, this rule is
consistent with empirical results on synaptic growth and death (Lee et al., 1980;
Frank, 1997; Klintsova and Greenough, 1999; De Roo et al., 2007). In this view,
a neural network would begin life as a more or less random structure with a
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sufficiently high synaptic density that is capable of memory performance. This
is in keeping with the description given by neuroscientists such as Kolb and
Gibb, who say of the initial 1014 synapses in the human brain: “This enor-
mous number could not possibly be determined by a genetic program, but rather
only the general outlines of neural connections in the brain will be genetically
predetermined” (Kolb and Gibb, 2011). Throughout infancy, certain memory
patterns are stored, and pruning gradually eliminates synapses experiencing less
electrical activity. Eventually, a network architecture emerges which has lower
mean synaptic density but is still capable, by virtue of a more optimal struc-
ture, of retrieving memories. Moreover, the network structure will be optimized
for the specific patterns it stored and, when the emerging networks are scale
free, it becomes possible to store orders of magnitude more memory patterns
via this mechanism as compared to the networks generated with the uncou-
pled (topological) version of the model. This seems consistent with the fact
that young children can acquire memory patterns (such as languages or artistic
skills) which remain with them indefinitely, yet as adults they struggle to learn
new ones (Gómez and Gerken, 2000; Kolb and Gibb, 2011). In chapter 4 we
show the fundamental effect that a long transient period of high connectivity,
as observed experimentally, may have on the cognitive abilities displayed by the
system.



Chapter 3

How Memory Conforms to
Brain Development

The brain is an illustrative example of a system in which a dynamic
complex network develops by the generation and pruning of synap-

tic contacts between neurons while memories are acquired and consoli-
dated. In this chapter we consider how the mechanisms responsible for
the evolution of brain structure affect and are affected by memory storage
processes. To do so we make use of the adaptive neural network model
presented in the previous chapter. We have already seen that such model,
based on recent experimental observations, assumes that the basic rules
for adding and removing synapses depend on local synaptic currents at
the respective neurons, in addition to global mechanisms depending on
the mean connectivity. In this way a feed-back loop between “form” and
“function” spontaneously emerges that influences the ability of the system
to optimally store and retrieve sensory information in patterns of brain
activity or memories. In particular, in this chapter we report that, as a
consequence of such feed-back-loop, oscillations in the activity of the sys-
tem among the memorized patterns can occur, depending on parameters,
reminding mind dynamical processes. Such oscillations have their origin
in the destabilization of memory attractors due to the pruning dynamics,
which induces a kind of structural disorder or noise in the system at a
long-term scale. This constantly modifies the synaptic disorder induced
by the interference among the many patterns of activity memorized in
the system. The work presented here has been published in Millán et al.,
2019b.

81
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3.1 Introduction

The complex interrelation between form and function plays an important role
in Nature and neural systems (Gross and Blasius, 2007; Vazquez et al.,

2008; Sayama et al., 2013). The idea has been efficiently developed in the field
of adaptive networks, in which a sort of coupling feed-back loop sets in between
the network dynamic activity and its topological structure. Outstanding phe-
nomena then emerge, some of which we have discussed in section 1.4.5. These
include self-organization into complex topologies that exhibit robust dynamics,
spontaneous differentiation of the nodes, or complex mutual dynamics in both
activity and topology, in any case mimicking many different conditions in Nature
(Bullmore and Sporns, 2009; Sayama et al., 2013; Millán et al., 2018c). This
framework has proved useful in understanding fundamental questions concern-
ing mammal brains, e.g., how structural and functional properties relate to each
other both at the level of models involving sets of neurons and synapses and at
the coarse-grained scale of connectomes and functional nets which is captured
by imaging techniques (Bullmore and Sporns, 2009; see also 1.2.

In the previous chapter we have addressed the question of how an efficient
brain network might develop by synaptic pruning after a sort of “wild” prolif-
eration of synaptic connections between neurons following conception (Chechik
et al., 1998; Iglesias et al., 2005; Santos and Noggle, 2011; Presumey et al., 2017;
see also section 1.3.2). Interestingly, certain brain disorders, such as autism spec-
trum disorder (ASD) and schizophrenia, have been related to details of synaptic
pruning (Keshavan et al., 1994; Geschwind and Levitt, 2007; Faludi and Mir-
nics, 2011; Kolb et al., 2012; Fornito et al., 2015). In particular, ASD has been
associated with a defect of synaptic pruning in certain brain areas (Tang et al.,
2014), whereas schizophrenia could be related to an excessive pruning (Sekar
et al., 2016).

In any case, it now seems clear that such synaptic pruning involves in some
way an optimization process, probably aimed at minimizing both energy con-
sumption and the genetic information that otherwise would be needed to build
an efficient and robust network (Chechik et al., 1999; Chklovskii et al., 2004;
Johnson et al., 2010a; Knoblauch et al., 2010; Navlakha et al., 2015). In par-
ticular, in the previous chapter we have shown that this process could greatly
improve memory retrieval under a noisy environment, such as it is the case in
biological systems (Millán et al., 2018c). Moreover, ongoing structural plasticity
in the adult brain has also been suggested to improve substantially the storage
capacity (Chklovskii et al., 2004; Knoblauch et al., 2010), and has been related
to graded amnesia, catastrophic forgetting, and the spacing effect (Knoblauch
et al., 2014; Knoblauch and Sommer, 2016). These results are based on the fact
that the number of potential synapses a neuron could develop, i.e. its potential
connectivity, is much greater than the actual number of synapses, and structural
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plasticity allows the system to explore different wiring possibilities (Stepanyants
et al., 2002; Fares and Stepanyants, 2009).

Here we analyze how the dynamical processes of adding and removing synapses
during brain development can affect the ability of the network to store and op-
timally retrieve a given set of memories. To do so we make use of the adaptive
network model defined in chapter 2. This combines the auto-associative Amari-
Hopfield neural network (see section 1.4.1 and also Amari, 1972; Hopfield, 1982)
with a preferential-attachment dynamics for network evolution in a way that has
been shown to accurately reproduce the observed variation of neuron connec-
tivity data on human brains during infancy (see section 1.3.2 and also Johnson
et al., 2010a; Millán et al., 2018b). As empirically observed (see Holtmaat and
Svoboda, 2009 and references therein) this model assumes that the probabilities
of growth and death of synapses depend on both the mean connectivity in the
system and the neural activity. In chapter 2 we have analyzed the effect of
thermal noise in the system and its emergent behavior. We have shown that the
coupling between neuronal activity and connectivity creates a feed-back loop
between form and function since the system activity influences its topology and,
in turn, is affected by the network structure through the synaptic currents the
neurons receive (Millán et al., 2018c). The system is then able to produce het-
erogeneous networks with the presence of hubs, similar to the ones observed in
actual neural systems (Van Den Heuvel and Sporns, 2011; Crossley et al., 2014;
Oh et al., 2014; Stafford et al., 2014), with high memory retrieval and noise
tolerance, depending on parameters.

Here we develop on the effect that synaptic (or quenched) disorder result-
ing from the interference among many patterns of activity – stored by Hebbian
learning on the synaptic weights – has on the emergent behavior of the sys-
tem. We show that, as a consequence of the interplay between structural (i.e.
pruning), thermal and quenched disorder, oscillations can emerge in the activ-
ity of the model which imply visiting different memorized patterns, an emergent
behavior that had not been reported before in this model. This intriguing be-
havior is precisely due to long-term synaptic mechanisms associated with the
network evolution dynamics, and not to short-term synaptic processes, such as
synaptic depression and facilitation (Pantic et al., 2002; Marro et al., 2007a;
Torres et al., 2007a, 2008; Torres and Marro, 2015) or spike frequency adapta-
tion (Knoblauch and Palm, 2002; Ha and Cheong, 2017), which are not present
in our model. These have already been described to induce oscillations among
stored patterns of network activity, however the biophysical mechanisms behind
them are different from the topological rewiring process considered here, and
in particular they act on shorter time-scales – on the order of ms as opposed
to the time scale of hours or days in which synaptic rewiring can operate in
actual brains (Lee et al., 1980). It would be straightforward to extend the
present study by adding short-term mechanisms, and we hypothesize that the



84 Chapter 3. How Memory Conforms to Brain Development

interplay between different neuron and synaptic processes during learning and
brain evolution could give rise to other types of oscillatory phenomena associ-
ated with non-equilibrium phases not yet reported, a fact that we glimpse could
have strong computational implications.

3.2 Model and Methods
In this chapter, we make use of the evolving brain network model defined in the
previous one, but focus on the emerging behavior as a consequence of a finite
memory load (ᾱ = P/N 6= 0 when N � 1) and on the effect of the stationary
mean connectivity on the emerging dynamics of the system. Here we will review
the basic definitions of the model and introduce the new magnitudes used in this
chapter; the detailed derivation of the model can be found in section 2.2.

The system consists on a time-dependent, symmetric, undirected N -node
complex network (Boccaletti et al., 2006), defined at time t by the adjacency
matrix eij(t) = {0, 1}, in which each node represents a neuron and each existing
edge (eij(t) = 1) stands for a synapse. The topology changes in time following
a Markov process given by the probabilities P̃ gi and P̃ li that each node has to
increase and decrease its degree, namely

P̃ gi = u(κ)π̃i, P̃ li = d(κ)η̃i. (3.1)

where κ(t) is the mean connectivity as before, and the time dependence has
been dropped for clarity. π̃i and σ̃i are functions of the incoming current at
each neuron from its neighbors, Ii(t) – which depends on the neural activity
state. The global probabilities u(κ) and d(κ) determine the evolution of the
mean connectivity κ(t), and they can be defined to fit experimental measures
of synaptic density during infancy as in the previous chapter, namely

u(κ) = max
{
n

N

(
1− κ

2κ∞

)
, 0
}

d(κ) = n

N

κ

2κ∞
,

(3.2)

where κ∞ defines the stationary mean connectivity. Selecting an initial condition
κ0 > κ∞, equations 3.2 describe and exponential decay from κ0 to κ∞ (as given
by Eq. 2.21), according to the experimental data (see Sec. 2.3.2).

The local probabilities, on the other hand, set the degree structure of the
network, and here we consider

π̃i = Iαi
〈Iα〉N

,

η̃i = Ii
〈I〉N

,

(3.3)



Chapter 3. How Memory Conforms to Brain Development 85

which are normalized over the network, ∑N
i=1 π̃i = ∑N

i=1 η̃i = 1. The power-law
relation in π̃i allows us to explore both sub-and super-linear responses by just
modifying a single parameter, namely α. The probability η̃i, on the other hand,
is fixed in a linear response, which corresponds to edges being chosen at random
for removal, which can be seen as a first order approximation to the pruning
dynamics (Millán et al., 2018c). The macroscopic state of the network structure
is measured by the homogeneity parameter,

g(t) = exp
(
−σ2

k(t)/κ(t)
)
, (3.4)

where σ2
k(t) is the variance of the degrees of the nodes. g(t) equals 1 if p(k) =

δk0,k (homogeneous network) and tends to 0 for highly heterogeneous (bimodal)
networks. As we saw in the previous chapter, in the topological limit of the
model 2.3.1, there is a phase transition from homogeneous networks with g → 1
to heterogeneous ones with g → 0 as α increases.

Each neuron follows a stochastic Amari-Hopfield dynamics, where the level
of stochasticity is characterized by a noise parameter or temperature T ; T = 0
corresponding to the deterministic limit (Amit, 1989). This is the control pa-
rameter for the activity dynamics. Each synapse has associated a synaptic
weight wij ; these are defined to store a set of P patterns of activity ξµi follow-
ing the hebbian learning rule (Sec. 1.1.4.1; see also Hebb, 1949; Amit, 1989).
Consequently, the macroscopic activity state of the system is measured by the
overlap of the network state with each of the memorized patterns,

mµ(t) = [Na0(1− a0)]−1
N∑
i=1

(ξµi − a0) si. (3.5)

In this chapter it will also be of interest the degree dependent overlap, mµ(k, t),
defined as

mµ(k, t) = [Np(k, t)a0(1− a0)]−1
N∑
i=1

(ξµi − a0) siδk,ki (3.6)

where p(k, t) is the degree distribution of the network. Therefore, mµ(t) =∑N
k=1 p(k, t)mµ(k, t). mµ(k, t) indicates the contributions to the overlap of nodes

with different degrees k. Notice also that in general mµ(k, t) is not bounded by
±1, unless the patterns of activity are homogeneously distributed through the
neurons.

As in the previous chapter (Sec. 2.4.2), we consider a set of P activity
patterns with small mean activity a0 (so that they involve more silent that firing
neurons) and define them as non-overlapping regions of N/P active neurons, so
that they cover the whole network (and therefore a0 = P−1). This is following
the experimental evidence that the configurations of neural activity related to
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particular memories in the animal brain involve many more silent neurons, ξµi =
0, than active ones, ξµi = 1 (Chklovskii et al., 2004; Akam and Kullmann,
2014). Conveniently, it also introduces a positive correlation between different
patterns, which is known to improve the storage capacity of a neural network
(Knoblauch et al., 2014; Knoblauch and Sommer, 2016), and in particular that of
heterogeneous and sparse neural networks (Morelli et al., 2004). This definition
also allows for a good visualization of the activity of the network by means of
the raster plots.

Interestingly, the activity patterns defined here are such that when a number
Pr of them are recovered at the same time, in a SG-like state, the maximum
overlap that they can have is less than one. In order to see this, one can
decompose equation (3.5) in P sums, each over the neurons corresponding to
the region associated with each of the activity patterns, as

mµ = [Na0(1− a0)]−1
P∑
ν=1

N∑
i=1

(
ξµNν−N+i − a0

)
sNν−N+i, (3.7)

where N = a0N = N/P is the size of each region and the time dependency
has been dropped for clarity. Here, the first sum is over the P patterns stored
in the network, whereas the second one goes over the N neurons in the region
associated with each pattern. If the pattern µ is recovered together with other
Pr − 1 patterns, then the sum over ν can be split in three terms: the region
associated with the pattern µ, the ones corresponding to the other retrieved
patterns, and finally those of the non-retrieved patterns (which do not contribute
to the sum). Therefore, the overlap corresponding to this pattern is mµ =(
1− P−1)−1 [1− P−1 − (Pr − 1)P−1]. This yields

mµ = 1− Pr − 1
P − 1 ≤ 1, (3.8)

which only meets the equality in the case Pr = 1, that is, if only the pattern µ
is retrieved.

This scheme also allows us to define another measure of the overlap be-
tween the state of the system and the memorized patterns, considering only the
corresponding active neurons, as

mµ
1 (t) ≡ 1

a0N

N∑
i=1

si(t)ξµi , (3.9)

with mµ
1 ∈ [0, 1]. If is also of interest its binearized extension, mµ

B, defined as

mµ
B(t) ≡

{
1, if mµ

1 (t) > mth

0, otherwise.
(3.10)
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Therefore, mB(t) =
(
m1
B(t),m2

B(t), ...,mP
B(t)

)
indicates, in a binary code,

which combination of patterns is recovered at time t. Equivalently, the deci-
mal variable ds can be defined,

ds(t) ≡
P∑
µ=1

2µ−1mµ
B(t), (3.11)

which one can interpret as a one-dimensional variable indicating the global mem-
ory state of the system.

In the previous chapter we have shown that, within this framework, three
phases emerge depending on α, the parameter controlling pruning dynamics,
and T , which sets the thermal noise in the neuronal activity. These are a
homogeneous memory phase when both α and T are low (T, α < 1), in which
the network is capable of memory retrieval and the topology dynamics keeps a
homogeneous configuration; a heterogeneous memory phase for high α (α > 1)
in which the dynamics leads to bimodal networks (with the appearance of hubs
or highly connected nodes); and a homogeneous noisy phase for high noise T .
However, as we will depict in the next section, the combination of thermal noise
together with the introduction of a larger number of patterns of activity – which
induces interference among them – induces other non-reported non-equilibrium
phases characterized by the emergence of complex oscillations among the activity
associated with the stored patterns.

3.3 Results

In the previous chapter we have shown that the storage capacity of the network
can be greatly improved when the feed-back loop between structure and function
is considered (Millán et al., 2018c). This is because the interplay between form
and function gives rise to a topological structure that enhances the stability of
the memory attractors which are recovered during the evolution of the system.
In order to explore this interesting picture under other conditions, here we an-
alyze in detail the phase diagram of the system with respect to four relevant
parameters in the model, namely, α, κ∞, T and P . The first two characterize
the network structure dynamics, whereas the temperature, T , and the number
of stored patterns, P , account respectively for thermal and quenched disorder.
The last one is a consequence of the interference among many stored patterns,
and it can affect the recall process.

3.3.1 Steady state solutions for T = 0

We first analyze the behavior of the system at T = 0, that is, in the absence
of thermal fluctuations that can affect the stability of the fixed point solutions
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Figure 3.1: (P,α) phase diagrams of the system (T = 0). The phase
diagrams depict the steady-state of the system with respect to P and α at
T = 0 and for κ∞ = 60. (a-c) Fraction of patterns retrieved after a given
transient, gP (panel a); average overlap with these recovered patterns,mP (panel
b) and stationary homogeneity g (panel c). The pink stars on the diagrams
indicate the (P, α) points corresponding to the time series shown in figure 3.2.
A memory phase appears as a blue region in the diagram of gp and a high value
of mp, indicated by a yellow color. A SG phase appears as a blue region in
gp and a lower value of mp, indicated by a green color, whereas a noisy phase
appears as black in gp and mp. Similarly, homogeneous structures take place
for high values of g, indicated by a yellow region in the corresponding diagram,
whereas heterogeneous structures are for low values of g, indicated by a black
region. (d) Combined phase diagram using the information from panels a-c,
each phase indicated for a different color. The phase regions depicted here
correspond to κ∞ = 060, with the phase transitions indicated by the solid
lines. The corresponding phase transitions for κ∞ = 40 and κ∞ = 20 are
respectively shown by the dashed and dotted lines, as indicated in the figure.
The heterogeneous SG-like phase (Het.SG) appears only for small κ∞ (κ∞ = 20
in this case). The original diagrams for κ∞ = 20 and 40 used to make this figure
are shown in B.1 (appendix B). The network size was set here to N = 1600
and each point has been averaged over 10 realizations of the system.

of the system dynamics. As stated above, there are, however, other sources of
noise in our system which can have a prominent influence in its behavior. One
is the interference among stored patterns, which can significantly reduce the
memory retrieval ability of the system (Amit, 1989). Another is the pruning
dynamics; this is an intrinsic, structural noise that emerges due to the stochastic
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adding and removal of synapses associated with the network dynamics during
brain development, and which can dynamically affect the performance of the
system during memory acquisition and consolidation.
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Figure 3.2: Exemplary time series of the behavior of the system at
T = 0. We show the time evolution of the system at T = 0 and κ∞ = 60 in four
typical cases corresponding to different values of α and P , as marked with pink
stars in the phase diagrams of figure 3.1. Each composite panel illustrates the
overlap time series, mµ(t), (top graph), raster plots of neuron activity (bottom
graph) and the steady-state degree distribution of the network (inset), computed
at t = 106 Monte Carlo Steps and averaged over 10 realizations of the system.
The panels correspond respectively to α = 0.5 and P = 10 (a), α = 0.5 and
P = 30 (b), α = 1.5 and P = 10 (c), and α = 1.5 and P = 30 (d). In all
presented simullations we set N = 1600.

In this section we thus extend the study presented in section 2.4.2 (chapter
2), where we shown that the memory storage capacity of the network is opti-
mized when the activity-topology feed-back coupling is taken into account, and
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sparse correlated patterns are considered. Here, however, we seek a deeper
understanding of the dynamics of the system due to the interplay between
quenched and structural disorder and to define a framework that we will ex-
ploit when considering also the presence of thermal noise in the system (section
3.3.2). Furthermore, in this chapter we analyze also the role of the stationary
mean connectivity, κ∞, on the associated emergent dynamics and the stability
of the phases reported in chapter 2. The parameter κ∞, which is equivalent
to the synaptic density, holds physiological interests since it can be taken as a
measure of the extension of the process of synaptic pruning. From this point of
view, a brain that has undergone a more drastic synaptic pruning would have
smaller κ∞ than one that has been less pruned. This can be related to recent ex-
periments that have associated an excessive pruning in certain brain areas with
schizophrenia (Sekar et al., 2016), whereas ASD has been related to a defect of
synaptic pruning (Tang et al., 2014).

In order to undertake this analysis, in panels a, b and c of figure 3.1 we show
the corresponding phase diagrams of the system (depicting different phases or
kinds of behavior) with respect to P and α, for κ∞ = 60, and similar diagrams
can be found in appendix 3 for κ∞ = 20 and 40 (Fig. B.1). These depict some
non-equilibrium phases associated with different computational abilities during
memory recall. Panel a shows, in the steady state, the ratio of patterns that
can be retrieved with high overlap (mµ ≥ 0.66), namely

gP ≡ Pr/P, (3.12)

where Pr is the number of retrieved patterns. A value gP = 1/P indicates
a pure memory state, whereas larger values correspond to mixtures and SG-
like states (Amit, 1989), and gP = 0 corresponds to the noisy or non-memory
state. Meanwhile, panel b shows the mean overlap of the recovered patterns
during memory recall, namely mP , and finally panel c shows the stationary
mean homogeneity, g.

These diagrams show up different types of dynamical behavior. In order to
illustrate the characteristics of each one, in figure 3.2 we depict the time series
mµ(t) (top graph of each panel), raster plots showing the whole activity of the
system (bottom graph of each panel) and the steady-state degree distribution
(inset of each panel) for some particular values of α and P (and κ∞ = 60) as
indicated by the pink starts on the phase diagrams illustrated in figure 3.1.

Characterization of the non-equilibrium phases:

The integrated analysis of figures 3.1a, b, c and 3.2 shows the emergence of four
different non-equilibrium phases in the system, as indicated in the combined
phase diagram of figure 3.1d.
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i) The homogeneous memory phase emerges for very small P (P → 1)
and α < 1.5. It is characterized by high overlap with the recovered pattern
mp and large homogeneity g.

ii) The homogeneous SG phase1 appears for small P (30 > P > 1) and
small α (α < 1.0). In this region SG-like or mixture states – in which some
of the memories are partially retrieved at the same time – start to emerge,
as illustrated in figure 3.2a (α = 0.5, P = 10). As a consequence, both gP
and mP take intermediate values; the former since only a finite number
of patterns is retrieved, gp < 1 (light blue region of the diagram in figure
3.1a), the later because these patterns are retrieved at the same time, and
therefore the overlap is reduced, mp < 1 (green and light-blue region of the
diagram in figure 3.1b). In general, however, the observed SG-like states
present high values of the overlap with all the recovered patterns due to
the high correlation between memories we have considered in this work. In
this phase, the resulting network structure of the system is homogeneous
since α < 1, so that g approaches 1 and the degree distribution resembles
a Poisson distribution (see figure 3.1c and the inset of figure 3.2a).

iii) The homogeneous noisy phase appears for α < 1.0 and large P (P >
30). When P is increased the memories lose stability until there is a
transition from the SG-like state to the noisy one, where the network
structure remains homogeneous, as shown in figure 3.2b for the point α =
0.5 and P = 30. This is indicated by gP → 0 (black region in figure 3.1a),
mP → 0 (black region in figure 3.1b) and g → 1 (yellow region on the
bottom-right side of figure 3.1c).

iv) For α ≥ 1.0, on the other hand, there is a heterogeneous memory
phase in which just one (or very few) pattern is retrieved2, with mP ≈ 1.
The network structure is heterogeneous since α > 1 (see inset of figure
3.2c). As a consequence, gP → 1/P (dark-blue region in figure 3.1a), mP

approaches 1 (yellow region in figure 3.1b), and g → 0 (black region in
figure 3.1c). Memory is achieved due to heterogeneity and the presence
of hubs (see the inset of figure 3.2d, showing the appearance of hubs, and
figure 3.1c, indicating g → 0), which can maintain the information content
of the retrieved pattern even in the presence of the strong noise induced
by the interference with other stored patterns and the dynamic changes
of the network structure. Therefore, when P is increased the recovered

1Notice that this region was not previously observed or reported in chapter 2 since κ∞ was
too small for it to be appreciable, as we go on to discuss.

2 Consequently, we deem it a memory phase instead of a spin-glass-like one, since even
when a few patterns are recovered together, the overlap with each one of them is high, due to
the correlation among patterns.
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patterns remain stable, so that mP remains close to 1 and gP decreases as
1/P since only one pattern is retrieved.

The description of the different phases appearing on our system here shows
up two main differences with the phase diagram previously illustrated in figure
2.7 in chapter 2. First of all, the appearance now of the homogeneous-SG phase
between the homogeneous memory and homogeneous noisy phases. Secondly,
what was previously reported to be a heterogeneous SG-like state (for high α
and P ) appears now clearly as a memory-like phase. These differences are only
imputable to the different stationary mean connectivity, which in the previous
work reported in chapter 2 was set to a relatively small value of κ∞ = 10,
whereas now in the present work we have considered a larger value κ∞ = 60.
Consequently, there are indications of a strong influence of κ∞ on the particular
features of the emerging non-equilibrium phases in the system, as we discuss
next.

The role of κ∞ on the non-equilibrium phases for T = 0:

In order to see the influence of κ∞ on the nature of different emerging phases, in
figure 3.1d we show the integrated phase diagrams obtained for κ∞ = 60 (solid
lines), 40 (dashed lines) and 20 (dash-dotted lines). These have been made by
integrating information from the gp, mp, g and also Pr (Pr = gpP ) diagrams,
which can be seen in the appendix B (figures B.1 and B.2).

Larger values of κ∞ increase the tolerance of the system to quenched disor-
der, so that a bigger number of patterns can be stored. This is in line with the
known result that the information is stored in the synaptic weights, and there-
fore increasing the number of synapses also increases the amount of information
that the system can store (Amit, 1989). Consequently, when κ∞ is diminished,
the homogeneous SG region shrinks (in favor of the homogeneous noisy one),
until it is effectively lost for κ∞ = 10 as in Fig. 2.7 (chapter 2). Similarly, when
smaller values of κ∞ are considered the heterogeneous memory states (for large
P and α) lose stability, and SG-like states in which a few patterns are recovered
at the same time become more likely (see figure B.2 in appendix B). Hence, in
our previous study with κ∞ = 10 and N = 800 (Fig. 2.7, chapter 2), SG-like
states were more likely to occur than pure memory states (that appear for larger
values of κ∞.

Finally, it is worth noting too that the qualitative state of the system is
approximately independent of P for P > 20, as shown in figure 3.1, where one
can see that gp, mp and g remain essentially constant as P is increased with
constant α above P = 20, in agreement also with the previous studu in chapter 2.
Therefore, in the following we restrict our analysis to the most interesting region
P < 20 and do not analyze the large storage limit of the system (Knoblauch
et al., 2014; Knoblauch and Sommer, 2016). This is because our interest here is
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in characterizing the dynamic behavior arising as a consequence of the interplay
between structure and function under the presence of thermal and quenched
noise, rather than its storage capacity.

In summary, for T = 0, that is, when there are only two sources of noise
in the system (structural and quenched disorder), the stationary state for
a given P depends strongly on the network structure, determined by α
and κ∞. As so, for α > 1, the networks develop heterogeneous structures
in which hubs arise that are very densely connected with the rest of the
network, and can maintain information about the memories even when P
is very high. For α < 1, on the other hand, the network is always homo-
geneous, with every node having similar, low degree, and a SG-like phase
soon arises, which is then suddenly lost as the quenched disorder becomes
too strong and finally the system falls into the noisy state. Meanwhile,
small values of κ∞ can affect the stability of the memory states, lead-
ing to the shrinkage of the homogeneous SG phase (for α < 1) and the
conversion of pure heterogeneous memory states to heterogeneous SG-like
states (for α > 1).

3.3.2 Behavior of the system for T > 0

Our previous analysis has determined the phase diagram of the system at T = 0,
which characterizes the effect of the dynamical topological structure on the
memory capabilities of the system. In this section, we consider the effect of
thermal noise in our system’s emergent behavior. In order to do so, we analyze
the (T, α) phase diagrams of the system for different values of κ∞ and P , namely
P = 5, 10, 15 and 20, and for three values of κ∞ = 20, 40 and 60, as before.
The selected values of P correspond to the left region of diagrams in figure
3.1, where the phase transitions from memory to the SG and noisy states takes
place. In particular, in panels a, b and c of figure 3.3 we show the gp, mp and
g diagrams corresponding to κ∞ = 20 and P = 10, that show up the emergent
phases on the system. The diagrams for the other values of κ∞ and P are shown
in appendix B (Fig. B.3).

In order to illustrate better the behavior of the system in the cases of interest,
we also include in figure 3.4 the time series of mµ(t) is some exemplary (T, α)
points as indicated by the pink starts in the diagrams of figure 3.3. More
examples of the time evolution of the system for κ∞ = 20 and other values of
P are also shown in appendix B (Fig. B.4).

In the following, we first discuss the emergent behavior of the system as a
consequence of the combination of thermal, quenched and structural disorders,
to then analyze the role of the stationary synaptic density and the number of
stored patterns on such behavior.
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Figure 3.3: Emergent behavior of the system. (a-c) Phase diagrams of
the system with respect to α and T for P = 10 and κ∞ = 20, corresponding
respectively to gp, mp and g, as indicated in the label of the color bar. Pink
stars in the panels indicate the (T, α) point of the corresponding time series in
figure 3.4. Results are for N = 1600 and have been averaged over 5 realizations
of the system dynamics. In these panels a memory phase appears as a blue
region in the diagram of gp and a high value of mp, indicated by a yellow or
green color. A SG phase appears as an orange region in gp and a lower value
of mp, indicated by a green or blue color, whereas a noisy phase appears as
black in gp and dark-blue in mp. Finally, the oscillatory phase appears for high
values of gp (light yellow region) and relatively low values of mp (blue region).
Similarly, homogeneous structures take place for high values of g, indicated by
a yellow region in the corresponding diagram, whereas heterogeneous structures
are for low values of g, indicated by a black or dark blue region. (d) Relative
area of oscillatory behavior (as defined in the main text) as a function of κ∞
(main plot, corresponding to P = 10), and P (inset, with κ∞ as indicated in
the legend).

Emergence of neural activity oscillations:

The diagrams in figure 3.3 indicate the emergence of at least 4 different phases,
as we go on to describe. Firstly, in panel a we analyze gp (T, α), that is, the
number of patterns visited by the system after the transient evolution takes
place. For α > 1, we find that this number remains finite, and greater than
zero, up to very high values of the temperature (T ≈ 2.0), corresponding to the
blue region of the diagram. This indicates that the system is in amemory state
(or in a SG-like state in which only a small number of patterns are retrieved),
such as the one depicted in figure 3.4c and d. The stability of the memory
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state for T > 1 is possible due to the emergence of heterogeneous structures
(since α > 1), and consequently hubs, as indicated by g → 0 for α > 1 (black
region in figure 3.3c). Notice also that the overlap corresponding to these states,
mP , decreases as T is increased (Fig. 3.3b), indicating that these states are also
becoming less stable as the thermal noise becomes stronger. In these conditions,
only the more densely connected hub nodes are able to maintain information
about the memories, and these are the ones contributing the most to the overlap.

As α is decreased, however, the behavior shown in the diagrams becomes
more complex and different regions (phases) start to emerge. We find, as ex-
pected, that memory is completely lost for T � 1, i.e., due to the strong noise
the system falls into the noisy or non-memory state. Consequently, gp → 0
(black region in Fig. 3.3a) and mp � 1 (dark-blue region in Fig. 3.3b). In fact,
now networks are homogeneous (since α < 1) and there are no hubs that pre-
serve memory, as indicated by g → 1 in figure 3.3c, evidencing that the degree
distribution is homogeneous. A typical time series of mµ(t) for this situation is
shown in figure 3.4b.

For small values of T and α (T, α < 1), on the other hand, gP → 1 (orange
and yellow region on figure 3.3a), indicating that a great number of patterns are
being retrieved (Pr → P ) with a moderate value of the overlap mP , as indicated
by the green and blue region in figure 3.3b. Moreover, results in figure 3.3a
indicate that, at least in some cases, gP actually increases when T goes from
0 to 1 (see, e.g., the yellow area in figure 3.3a). That is, as the temperature
increases, more memories take place in the state of the system, with a relatively
high overlapmP . This is because, for α < 1, there is a wide region of oscillatory
behavior between the SG-like and the noisy phases corresponding to the yellow
area in the gp diagram in figure 3.3. An exemplary series of oscillations is
illustrated in figure 3.4a. Note that the observed oscillations occur at level of
the neuronal population as measured by the global network parameter mµ(t),
and not on the single neuron level – which appear as small, high-frequency
oscillations of mµ(t).

The oscillatory state emerges as a consequence of the interplay between
structural and thermal noise and the activity of network, since the process of
addition and removal of synapses, that creates a dynamical network structure,
together with the thermal noise, can make the recovered patterns unstable.
Moreover, given that α < 1, the structure of the networks remains homogeneous
and no real hubs emerge. Notice however that due to the non-trivial interplay
between activity and topology, in the region of oscillatory behavior the networks
display a more heterogeneous structure, and g < 1. This effect will be discussed
in more detail in section 3.3.3.
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Figure 3.4: Exemplary time series for T > 0. Time series of the overlap
mµ(t) for some representative cases of the system dynamical behavior, corre-
sponding to κ∞ = 20 and to P = 10 and 4 points of the (T, α) space, as
indicated by pink starts in the phase diagrams of figure 3.3. Namely, panels (a-
d) correspond respectively to the points (0.3, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1).
Results are for N = 1600.

The role of κ∞ on the neural oscillations for T > 0:

As in the case with T = 0, we have also analyzed the role of the stationary
mean connectivity, κ∞, on the phase diagram of the system for T > 0. In
particular, we have measured the relative area of the oscillatory region,
Ar, as a function of κ∞ and P , as shown in figure 3.3d (see also figure B.3 in
appendix B). Ar is defined as the ratio between the number of points in the
(T, α) space that display oscillatory behavior and the total number of points in
the considered region (which corresponds to 0 ≤ T ≤ 1.5, 0 ≤ T ≤ 1.5).

We find in our model that the area associated with the oscillatory behavior
(for α, T < 1) for a given κ∞ is maximum at intermediate values of P (see
the inset of Fig. 3.3d): for very small P there is a dominance of stable SG-
like states, whereas for large P the system falls easily on the noisy phase (see
Fig. B.3 in appendix B). Similarly, for a given P the greater extension of the
oscillatory phase is found for an intermediate κ∞, as indicated by the maximum
of Ar (κ∞, P = 10) in figure 3.3d. For instance, for P = 10 the noisy phase
extends to T < 1 for κ∞ = 20 (Fig. 3.3b) and the oscillatory region is small,
whereas for κ∞ = 60 (Fig. 3.3j) there is a combination of stable SG-like states
and oscillations for α, T < 1. Finally for κ∞ = 40 (Fig. 3.3f) the oscillatory
phase is most robust.

Consequently, the absence of dynamical memories in the system could be
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associated with a defect of the pruning process that causes κ∞ to be greater
than usual, and could be therefore associated with the cognitive abilities of
subjects with ASD. Interestingly, it has been recently reported that short-term
memory and episodic memory are impaired in ASD subjects (Poirier et al., 2011;
Lind et al., 2014), which is consistent with our findings here since, in order to
be able to recall a sequence of memories, it is first necessary to destabilize the
already recalled ones so as to allow the system to remember new ones. On
the other hand, schizophrenia is typically associated with erratic behavior (Loh
et al., 2007), which could be related to the high frequency memory oscillations
found here for smaller values of κ∞.

In summary, in this section we have found that the combination of ther-
mal, structural and quenched disorder, associated with the interference
among patterns, can give rise to oscillations among the memorized pat-
terns for α < 1 – that is, when the networks are homogeneous – and
T < 1, corresponding to the yellow region in figure 3.3a. The robustness
of the oscillatory region is maximum at both intermediate values of P
and κ∞. The effect of κ∞ hints a possible relation with the deficit and
excess of synaptic pruning observed in autism and schizophrenia (Loh et
al., 2007; Tang et al., 2014)

3.3.3 Emergence of hubs

The appearance of hubs and heterogeneity plays a significant role in the emergent
dynamics of the system. In particular, with a given level of noise (T > 0), the
topological structure of the network determines whether the system relaxes to
a memory state, wanders among different patterns or falls into a noisy state.
Therefore, here we discuss in more detail the emergence of hubs during the
network evolution and their effect on the emergent state of the system.

We first notice that, according to the previous analysis, for α < 1 networks
are homogeneous, as evidenced by the homogeneous degree distributions shown
in the insets of figure 3.2a, b. This is also revealed by the high value of the
homogeneity parameter g shown in figures 3.1 and 3.3 for α < 1, indicating that
the variance of ki is small. As a consequence, no real hubs can be defined, since
all nodes have similar low degree (given that κ∞ � N , so that the connectiv-
ity of the nodes is bounded). On the contrary, for α > 1 and in the case of
memory, networks are heterogeneous as evidenced by g → 0 (black regions in
the corresponding diagrams g(α, P ) and g(α, T ) respectively in figures 3.1 and
3.3). This indicates that there are nodes with very different degrees and, in par-
ticular, the degree distribution p(k, t) is bimodal and it splits in two, as shown
in the insets of figure 3.2c, d, with the emergence of hubs. Therefore, one can
set the connectivity threshold kth – that defines the minimum node’s degree to
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characterize it as a hub – at the value of k at which p(k, t→∞) presents a local
minimum between the two modes. This establishes a clear separation between
high and low degree nodes. In particular, in all cases studied here, we find that
a threshold kth = 2κ∞ also suffices to differentiate between homogeneous and
heterogeneous structures, since for α < 1 (homogeneous case) the maximum
degree of a network is always below 2κ∞.
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Figure 3.5: Emergence and effect of hubs in the system. (a,c) Temporal
evolution of the system in two representative cases of the dynamics for P = 5
and κ∞ = 20, corresponding to the emergent oscillatory behavior for T = 0.7
and α = 0.3 (panel a) and to the heterogeneous memory phase for T = 1.1 and
α = 1.1 (panel c). In these panels, the top plots representmµ(t), the middle ones
the homogeneity parameter g(t) and finally the bottom ones show the existing
hubs in the network at each time t, where active and inactive hubs are plotted
in different colors (respectively pink and green). (b,d) Snap-shot of the state of
the system in panels a and c, respectively, at time t0 = 5 ·105, as represented by
the degree-dependent overlap mµ(k, t0) and the number of nodes with degree k,
N(k, t0) = Np(k, t0). Results are for N = 1600.

Interestingly, due to the underlying stochastic rewiring process and to the
system’s finite size, there is always some variability in the degrees of the nodes
and, particularly in the region of oscillatory behavior, there is a relative increase
in the variability of ki with respect to the SG phase (as evidence by a decreased
g in the corresponding diagrams of figure 3.3). We argue that this is due to
the intrinsic coupling between activity and topology, and to the combination of
thermal (since T > 0), topological (due to the ongoing rewiring process) and
quenched (due to the learning of different patterns) disorder in the system. In
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the region of oscillatory behavior, the instability of the memories influences the
synaptic currents Ii creating variability, thus causing the observed increased
heterogeneity. This causes the emergence of relatively-high degree nodes that
correspond to the tail of the homogeneous distribution p(k, t → ∞) and that
might have an important effect on the system. Therefore, in order to explore
as well the dynamics of these relatively-high degree nodes, we have selected a
lower threshold, kth = 1.75κ∞, for the analysis of hub dynamics.

Hubs (and relatively-high degree nodes for the homogeneous case) dynamics
is investigated in figure 3.5, where we compare two different cases for P = 5 and
κ∞ = 20:

i) The first one (panels a and b) corresponds to the region of oscillatory
behavior for homogeneous networks (α < 1) and it is for T = 0.7 and
α = 0.3 (corresponding to the bottom-left graph of figure B.4a).

ii) The second one (panels c and d) corresponds to the heterogeneous-memory
phase (α > 1), and it is for T = 0.3 and α = 1.1 (corresponding to the
top-left graph of figure B.4a).

For each of these cases we show:

i) The temporal evolution of the system (panels a and c) as given by the
overlap mµ(t), the homogeneity g(t) and the hub raster plots, where we
represent the existing hubs at each time t, in different colors according to
their active or inactive state (respectively pink and green).

ii) The system’s state at a particular time t0 = 5 · 106MCS (panels b and d)
as given by the degree-dependent overlap mµ(k, t0) (defined in Eq. 3.6)
and the degree histogram N(k, t0) = Np(k, t0).

We observe, for α > 1 (panel c), that a great number of hubs emerge in the
system, and that almost all hubs correspond to the active nodes of the retrieved
pattern. Moreover, in this case mµ(k, t0) of the recovered pattern µ is larger
for high-degree nodes (figure 3.5d), indicating that they contribute most to the
overlap mµ(t0). On the contrary, for the non-recovered patterns ν, mν(k, t0)
remains small for all k. On the other hand, for α < 1, no real hubs emerge and
only transient relatively-high degree nodes are observed in figure 3.5a. These
do not only correspond to the recovered patterns but are scattered throughout
the network, and no significant correlation can be measured between the pattern
oscillations and the hubs dynamics. This causes instabilities that ultimately lead
to the oscillatory behavior (see figure 3.5b, indicating that relatively high-degree
nodes contribute more to mµ(k, t) of the recovered patterns but not only).
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In summary, figure 3.5 shows that, for α > 1, there are active hubs in the
system that correspond to the recovered pattern, making it stable. On
the other hand, for α < 1 no real hubs can emerge in the system, and
the transient relatively-high degree nodes are scattered throughout the
network, not only corresponding to the recovered pattern, thus inducing
the observed oscillatory behavior.

3.3.4 Quantitative analysis of the oscillatory behavior

In the previous sections we have shown the emergence of oscillations for α < 1
and T > 0, and their relation to the existence of transient relatively-high degree
nodes on the network. Here, we develop further on the structure and patterns
of these oscillations. For simplicity, we focus on the case of κ∞ = 20 and P = 5
as before, and in figure 3.6 we show a long time series corresponding to this
oscillatory phase (T = 0.7 and α = 0.3 as in the top graph of Fig. B.4a and
in Fig. 3.5a). Plots of the active-overlap parameter mµ

1 (t) (defined in Eq. 3.9;
panel a), its binearized versionmµ

B(t) (Eq. 3.10; panel b) and the global memory
state parameter ds(t) (Eq. 3.11; panel c) indicate that the state of the system
corresponds to oscillations between SG-like states in which either 2 or 3 patterns
are transiently retrieved. These plots also evidence that the oscillations do not
follow any clear periodic or regular pattern.

In order to analyze the pattern of oscillations, we show in figure 3.6d the
power spectra of mµ

B(t), Sµ(f), and of ds(t), Ss(f). Both of them display a
power-law decay with an exponent equal to −0.9, indicating that there is not
a dominant frequency of the oscillations, but that jumps between different pat-
terns occur at all time scales. This is in accordance with previous studies that
have repeatedly reported 1/f -type noise in brain activity under healthy condi-
tions, as discussed in section 1.4.3. It has been reported, for instance, in elec-
troencephalogram (EEG) and functional magnetic resonance (fMRI) measures
of human brain activity (Linkenkaer-Hansen et al., 2001; Voytek et al., 2015)
and also in behavioral processes related to human cognition and motion as well
as animal motion (Chialvo, 2010). 1/f noise indicates the existence of temporal
correlations within the data, and has been related to emerging self-organized
criticality in the brain (Chialvo, 2010).

Moreover, we also investigate the frequency of appearance of each global
state, as seen in figure 3.6e, which indicates that global states have different
probabilities of occurrence in each realization of the system. However, when
averaged over realizations, the mean probability of each state, ps, converges to a
uniform distribution ps → 1/Ns, where Ns = 20 is the total number of possible
2- and 3-pattern states (ps = 0.054(3) when averaged over 20 realizations).
Similarly, individual patterns may have different probability of appearance, pµ,
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in each realization of the dynamics, but when averaged over realizations pµ
converges to 1/P (pµ = 0.21(1)). Finally, we also computed the transition
matrix between global SG-like states (figure 3.6f) which indicates that, in a
given realization of the system, some transitions are preferred by the system
depending on the emergent coupling between activity and topology.
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Figure 3.6: Analysis of the oscillatory behavior of the system in a repre-
sentative point (T = 0.7, α = 0.3, P = 5, κ∞ = 20). (a-c) Temporal evolution
of the system as given respectively by the retrieved patterns at each time, mµ

1 (t),
the binearized variable mµ

B(t) indicating whether each pattern is active or not,
and finally the global memory state ds(t) as defined in the text, for a total time
of 107 MCS. These show that the system wanders through the different attrac-
tors without a periodic order. (d) Power spectra of mµ

B(t), Sµ(f), and of ds(t),
Ss(f), indicating a power-law scaling of Sµ(f) and Ss(f) with an exponent of
−0.9. (e) Probability of appearance of each global state, evidencing that only
2− and 3−pattern SG states are recovered. (f) Transition matrix of global
states, that is, the probability of jumping (times 10−3) from a given global state
s to another s′. Results are for N = 1600, and have been averaged over 20
realizations of the system in panels d and f .
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In summary, these results show that the oscillations are not periodic, but
occur at all time scales, and that all SG-like states are visited in a non-
periodic order. Interestingly however, in a given realization of the system
not all transitions are allowed, but only some of them occur. It could
be interesting to analyze in more detail in further studies whether the
coupling between structure and activity induces a particular pattern of
oscillations, and how the scaling of the frequency of oscillations depends
on the parameters of model.

3.4 Discussion

In this chapter we have reported on recent studies on the emergent behavior of
developing brain models in which structure and function cooperate and influ-
ence each other through a feed-back loop, thus affecting the system’s memory
storage and retrieval abilities (Millán et al., 2019b). We have made used of the
co-evolving synaptic pruning model defined in the previous chapter (Sec. 2.2)
to analyze how the learning of a larger number of memories, in combination
with thermal and structural disorder, affects the emergent behavior of the sys-
tem, and also the conditions under which such feed-back loop can enhance the
storage and retrieval of a set of correlated patterns. The emergent dynamics
and behavior of the system is therefore a consequence of the interplay between
structural, quenched and thermal disorder during its maturation. This is a
prominent example of how inter-synaptic factors at the network level can affect
the processing of information in developing brains in a nontrivial way.

The results presented in this chapter demonstrate that a heterogeneous net-
work can greatly improve the stability of the memory patterns, since its structure
is optimized to preserve information about them in the network hubs which, as
we have shown, correspond to the active neurons of the retrieved memories dur-
ing the recall process. Moreover, due to the structural plasticity, once a pattern
is retrieved, the ability of the system to recall it again increases thanks to prun-
ing optimization. This illustrates the constructive role of synaptic pruning to
consolidate memories in the memory phase of the system.

Our study also shows that the interplay between thermal noise, the inter-
ference among stored patterns and the dynamics driving the evolution of the
topology creates instabilities on the memory attractors, which can make the
system wander among different configurations for certain values of the parame-
ters.

Discussion of the emerging oscillatory behavior of the system
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The oscillations among stored patterns observed in our system are caused by
the topological synaptic plasticity due to the death and birth of synapses, which
change the energy landscape of the system. In fact, in the absence of this
rewiring process, this oscillatory phase is not present and the model would
reduce to an Amari-Hopfield model on top of a non-trivial fixed topology. This
has been shown to present the same phases as the canonical fully connected
version of the model, with transition lines that depend on the topology, so that
for instance the critical temperature diverges, Tc → ∞ as N → ∞, due to the
presence of hubs that retain pattern information, as discussed on section 1.4.1
(see also Amit, 1989).

Interestingly, the observed oscillatory behavior appears on the homogeneous
networks phase of the system. However, it is associated with an increased hetero-
geneity of the underlying structure due to the existence of transient relatively-
high degree nodes (whose degree is however smaller than typical hubs) that
emerge and disappear in time. Moreover, these relatively-high degree nodes do
not correspond in general to the active nodes of the transiently recovered pat-
terns, but appear distributed throughout the whole network, corresponding also
to active nodes of the rest of non retrieved patterns. This creates a non-trivial
time-dependent competition among the different patterns which, together with
the subsequent removal of some synapses during brain development, can make
the currently recalled attractor less stable, thus inducing the observed wandering
among the memories.

We have also analyzed the characteristics of these oscillations and shown that
the oscillatory pattern is not periodic but presents a power spectrum following a
power law scaling decay with an exponent of −0.9, so there are not any preferred
frequencies. This in accordance with previous studies repeatedly reporting 1/f
noise in brain activity under healthy conditions (Linkenkaer-Hansen et al., 2001;
Voytek et al., 2015) and also in behavioral processes (Chialvo, 2010), which
is related to the existence of temporal correlations within the data, and has
been related to emerging Self-Organized Criticality (SOC) in the brain (Chialvo,
2010), as discussed in chapter 1 (section 1.4.3).

Interestingly, the appearance of an oscillatory phase characterized by dy-
namical memories could be useful to enhance the learning and recalling of se-
quences of patterns of activity, as in episodic memories, without the necessity
of any external input or current forcing the retrieval of the memories in the
sequence. This type of oscillations has already been reported for brain models
with synapses enduring short-term synaptic plasticity, STSP (see section 1.1.4.2
and also Pantic et al., 2002; Cortés et al., 2006; Marro et al., 2007a; Torres et
al., 2007a, 2008). This occurs at the synapse level and depends on the activity
of the pre-synaptic neuron – which therefore depends closely on the synaptic
current Ii used in our model (Amit, 1989). However, STSP is caused by bio-
physical mechanisms controlling the release and recycling of neurotransmitters
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at the synapses during synaptic transmission and operates at short time scales
of the order of ms (Tsodyks and Markram, 1997). The activity dependent topo-
logical plasticity reported here, however, is the result of the interplay between
form and function in a developing brain, and the ongoing synaptic rewiring in
mature brains, which happens at the time scale of hours or days (Holtmaat and
Svoboda, 2009). Moreover, topological or structural plasticity allows the sys-
tem to explore more efficiently its dynamical phase space and it has been shown
to improve the capacity of neural networks by allowing them to organize in a
more efficient structure. Both mechanisms could happen at the same time in
actual systems, together with neuron level phenomena such as spike adaptation
(Knoblauch and Palm, 2002; Ha and Cheong, 2017). We hypothesize that the
combination of these mechanisms could lead to the extension of the oscillatory
behavior to other regions of the phase diagram, although results would strongly
depend on the relative time scale between structural plasticity and STSP, and
it could be an interesting approach for future works.

It is also worth noting that the reported oscillations in our system are for
the overlap function that is a measure of the activity of the whole neuron popu-
lation during memory recall processes. These occur in actual neural systems at
a long time scale – normally days or even years – as it is the case in our model.
Temporal changes at the single neuron level appear in our system as high fre-
quency fluctuations in the time dependent value of the overlap parameter. If
the level of stochasticity is low (low T ) and the network size is large enough
(N � 1), such single neuron fluctuations are very unlike to be significant on
mµ(t). In any case, the model output could be easily tuned up to obtain faster
of slower oscillations in the overlap function to match more realistically actual
experiments during learning and recalling. This could be done by varying some
model parameters to make the recall process more or less efficient in time, or
to allow the system to recall dynamic memories – such as episodic memories –
that are learned and recalled at different stimuli input frequencies.

Relation of the synaptic density κ∞ with neurological disorders

We have analyzed in detail how the dynamical behavior of the system depends
on the synaptic factors affecting the addition and removal of synapses and on
the number of stored patterns. In particular, the stationary mean connectivity
of the network, κ∞, has been shown to have a great effect on the emergent
behavior of the system. For instance, we have found that the absence of dy-
namical memories in the system, or the presence of memory oscillations with
long periods, is associated with a defect of the pruning process. Similarly, we
have shown that high frequency oscillations among patterns and more tendency
to noisy behavior occur when there is a pruning excess. The destabilization
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of recovered memories is necessary for instance to recall a sequence of memo-
ries, each during a short period of time, so as to allow the system to remember
new ones. One thus may argue that the induced instability and the associated
oscillatory behavior observed in our system could be positive for information
processing. This would allow neuronal media to explore different memories or
attractors, for instance following hetero-clinic orbits and, consequently, to pro-
cess more complex information, such as spatio-temporal patterns of information
(see Rabinovich et al., 2006 and references therein). Such emergent behavior
could also be useful to respond more efficiently to changing external stimuli,
as in episodic memory tasks, as it has been widely stated in previous works in
different neural systems (Cortés et al., 2006; Marro et al., 2008; Torres et al.,
2008).

The effect of the synaptic connectivity on the emergent behavior of the
system could perhaps be associated with cognitive abilities related to autism
spectrum disorders (ASD) and schizophrenia. It has recently been reported
that short-term memory and episodic memory are impaired in ASD subjects
(Poirier et al., 2011; Lind et al., 2014) and a pruning defect has also been
observed in some brain areas (Tang et al., 2014). The results presented in this
chapter could link both observations since they imply that in a less pruned brain,
which will consequently have a higher synaptic density, the memory attractors
are more stable. This implies a lower ability to remember sequences of patterns,
as described in episodic memory tasks in ASD patients, because it is harder
for the brain to forget the already recalled pattern due to its strong stability.
Results in our model also indicate that a lightly pruned brain could be forced
out of the memory phase into an oscillatory regime with an increase in the
number of stored patterns (see figure 3.3). These observations might provide an
interesting insight for experimental psychologists to design a cognitive strategy
or therapy to learn and recall sequences of patterns, that might improve the
cognitive abilities of patients with ASD.

On the other hand, we have demonstrated that high frequency oscillations
among patterns occur when there is a pruning excess, and this could be perhaps
associated with the erratic behavior observed in schizophrenia (Loh et al., 2007),
in which case the brain seems to present some areas with an excess of pruning
(Sekar et al., 2016). In this case our results here suggest that a learning therapy
based on increasing the number of stored memories would not be useful but
may in fact be detrimental, as it would make the memory activity patterns
more unstable. A learning therapy that moves the patient brain state near to
its stable memory phase, for instance, by stabilizing a few old useful memories,
could therefore be more convenient.

Limitations and possible extensions of the model
It is worth noting that some drastic assumptions have been made in order to



106 Chapter 3. How Memory Conforms to Brain Development

simplify the relevant scenario. Firstly, our study is for sparse correlated pat-
terns, as suggested by experimental studies (Chklovskii et al., 2004; Akam and
Kullmann, 2014), which are also known to improve the memory retrieval capa-
bilities of the network (Knoblauch et al., 2014; Knoblauch and Sommer, 2016)
and particularly so in the case of highly sparse and heterogeneous networks
(Morelli et al., 2004). Moreover, we have selected the patterns of activity to be
non-overlapping regions of activity, following previous works (Torres and Marro,
2015). This set up corresponds to a particular case that allows for a better vi-
sualization of the network dynamics and that has proven out to be useful to
investigate the interplay between structure and dynamics, i.e., between form
and function, together with the presence of thermal and quenched disorder, on
a developing neural network. Similarly, results are for the low storage regime
of the neural network, P � N , what allows us to study in detail the dynamical
behavior of the system that gives rise to memory wandering. However, given
that our qualitative results depend little on P for P > 20, we expect them to
hold when P is increased.

Further extensions of this work could also include the consideration of differ-
ent details of the synaptic pruning process, including for instance the growth of
synapses taking place after birth (Millán et al., 2018b), multiple synaptic con-
tacts between neurons (Knoblauch et al., 2014; Knoblauch and Sommer, 2016),
or a hard bound on the maximum degree of the nodes (Stepanyants et al., 2002;
Fares and Stepanyants, 2009). Moreover, more elaborated definitions of the
probabilities of growth and death of synapses (Eq. 2.11 and 2.9) could also
be considered, such as a mechanism of self-organization towards the stationary
mean connectivity (Chechik et al., 1999; Arcangelis et al., 2006; Lewis and Todd,
2007; Tetzlaff et al., 2010) or by explicitly including a dynamics for the available
nutrients (Tetzlaff et al., 2010). However these definitions would still need to
reproduce the basic characteristics of brain development and synaptic pruning,
that is, an initial fast decay of connectivity and an ongoing rewiring of edges
after the stationary mean connectivity has been reached. We expect that our
main results (existence of a feed-back loop between structure and activity, bista-
bility and emergence of oscillations) would still hold, at least qualitatively, with
these modifications, in accordance with previous studies (Millán et al., 2018b).
The consideration of a limit of the nodes’ maximum degree, for instance, would
primarily affect the hubs of bimodal networks. However, these typically form a
highly connected core in the network, so that the average path length between
nodes would not increase heavily. Therefore, we expect that this bound would
not have an important effect in the regime P � N in which we set the system
here.

In the following chapter we tackle the first of these considerations, and con-
sider a more realistic definition of the global probabilities u(κ) and d(κ) (Eq.
3.2) that also includes the initial overgrowth of the synaptic density that occurs
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in mammals following birth, as in Eq. 2.22 in chapter 2. One could also consider
biologically inspired pruning functions, that characterize for instance a specific
dependence on the concentration of different proteins and growth factors con-
trolling synaptic growth. These could be obtained experimentally, although to
the best of our knowledge it has not yet been done. Results in this chapter
could thus motivate neurobiologists to design experiments to describe the exact
probabilities involved in synaptogenesis and pruning, information that could be
easily incorporated in our theoretical framework. Similarly, it could also be
particularly interesting to include a learning dynamics that is also coupled to
the development of the neural network, thus modeling learning during infancy,
or to include an external current on the system, that could certainly be time
dependent, to analyze the effect of external inputs on associative memory and
memory wandering.





Chapter 4

Growth strategy determines
aspects of brain performance.

The interplay between structure and function is crucial in determining
some emerging properties of many natural systems. As we have seen in
previous chapters, different aspects of such interplay have a strong influ-
ence on the emergent behavior of evolving brain models, and can induce
the emergence of new intriguing dynamical phases. In addition, such
interplay can well reproduce experimental temporal profiles of synaptic
density. Following this motivation, in chapter we go deeper into the study
of the influence that new aspects associated with the evolution of actual
brains have on their cognitive properties. Consequently, we adapt here
the evolving neural network model presented in chapter 2 to include an
initial transient period of relatively high synaptic connectivity, as it is ob-
served experimentally. Using a simplified framework, we prove that the
existence of this transient is critical in providing ordered stationary states
that have the property of being able to store stable memories. In fact,
there is a discontinuous phase transition between the ordered memory
phase and a disordered one as a function of the initial transient synaptic
density. We also show that intermediate synaptic density values are opti-
mal in order to obtain these stable memory states with a minimum energy
consumption, and that ultimately it is the transient heterogeneity in the
network what determines the stationary state. Our results here could ex-
plain why the pruning curves observed in actual brain areas present their
characteristic temporal profiles and, eventually, anomalies such as autism
and schizophrenia associated, respectively, with a deficit or an excess of
pruning. A preprint of the results presented in this chapter can be found
in Millán et al., 2018b.
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4.1 Introduction

Aoong the thesis we have emphasized the relevance of considering a complex
networked structure to study natural and human systems; almost every biolog-
ical and social system, as well as many man-made structures, develops intricate
relations among its components, resulting in a network configuration that is
usually far from being homogeneous (Boccaletti et al., 2006; Newman, 2011). It
is then hardly surprising the tremendous amount of attention that research on
complex networks has received over recent decades, in order both to understand
and protect natural networks and to optimize technical designs.

In chapter 1 we have shown how most studied networks, and in particular
brain networks, present non-trivial topological features, such as high cluster-
ing and short minimum paths (small-worldness), modular structure, and cost-
efficient wiring (see section 1.2 for a more detailed discussion on the relevance of
complex networks in neuroscience, and also Albert, 2005; Eguiluz et al., 2005;
Gastner and ódor, 2016). The majority of known networks exhibit also highly
heterogeneous degree distributions (where the degree of a node is its number of
neighbors) and, except in the case of social networks, negative degree-degree cor-
relations – a property known as disassortativity (Ódor, 2013). In other words,
many networks of interest include a small number of highly connected nodes,
called hubs, which tend to be connected to low-degree nodes (Newman, 2003).
These properties influence the emerging dynamics of complex systems. For in-
stance, both degree heterogeneity and degree-degree correlations strongly influ-
ence the signal to noise ratio in certain dynamical systems (Maslov and Sneppen,
2002; Torres et al., 2004; Franciscis et al., 2011), for instance, whereas the syn-
chronization properties of a complex network strongly depend on its dimension,
as we discuss on the following chapters (Eytan and Marom, 2006; Millán et al.,
2019b).

In order to understand how such non-trivial networked structures come
about, much work has gone into investigating mechanisms of network evolu-
tion, some of which have been reviewed in chapter 1 (Berg et al., 2004; Johnson
et al., 2009; Navlakha et al., 2015), and have been the topic of the two previous
original chapters (2 and 3) of this thesis. In particular, we have already seen
that one main process that takes places in the development of neural systems is
synaptic pruning (section 1.3.2). This consists in an extensive pruning of synap-
tic connections than takes place during infancy, which results in the elimination
of about half the synapses in the brain. The process goes on into adulthood, as
mature brain circuits maintain the ability to generate new synapses, allowing
for structural plasticity in the brain. Both processes involve the growth and
death of synapses over time in an activity-dependent manner. Recent studies
have suggested that details of synaptic pruning may have large implications on
high-level brain functions, and they have been related to the emergence of some
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neurological disorders such as autism and schizophrenia (Faludi and Mirnics,
2011; Tang et al., 2014; see also section 3.4 in chapter 3). However, little is
so far known about the influence of synaptic pruning and the relatively high
synaptic connectivity during early brain development on its performance. It is
believed that the reason for reducing synaptic density is becoming more ener-
getically efficient (Chechik et al., 1999). But then a question arises, why not
begin life with the optimal synaptic density?

In order to analyze how details of this process might affect the cognitive
abilities of a neural system, in chapter 2 we have presented an original adap-
tive neural-network model that describes synaptic pruning. In our model, the
evolution of the structure of the network depends on its activity state, and vicev-
ersa. This creates a feed-back loop in which structure and function influence
each other. The proposed computational model combines a familiar associative
memory model, the Amari-Hopfield model (see sections 1.4.1 and 2.2.1), with
a preferential attachment model for network evolution (see section 1.3.2; see
also Millán et al., 2018c; Millán et al., 2019b), based on the fact that synap-
tic growth and death are related to neural activity (Klintsova and Greenough,
1999). This setup creates a feedback loop between structure and dynamics,
leading to two qualitatively different kinds of behaviors, as it has been previ-
ously shown (Millán et al., 2018c; Millán et al., 2019b). In one of them, the
network structure becomes heterogeneous and dissasortative, and the system
then displays good memory performance. In the other, the structure remains
homogeneous and incapable of pattern retrieval. In chapter 3 we have further
shown how the combination of thermal and quenched disorder in the system
can create instabilities in the memory atractors, giving rise to an oscillatory
behavior as observed experimentally.

In this chapter we extend the aforementioned adaptive network model to
consider the period of high synaptic connectivity that takes place during in-
fancy, before synaptic pruning begins. We show that, even in a simple case,
the transient period of high synaptic density can lead to an increased network
performance, in terms of memory retrieval, even in the presence of high levels
of noise.

The basic mechanism which our model illustrates needs not be restricted to
neural networks, but may help understanding also how other structures form,
e. g., in the case of protein interaction networks which also change in evolu-
tionary time scales in a way that is related to their physiological activity (Berg
et al., 2004), as we already discussed in section 2.5. In fact, as it is the case of
our model, most biological networks change with time, so that pruning may be
a general mechanism for network optimization trying to minimize energy con-
sumption in an environment of limited resources without the need for a great
amount of information specifying the initial topology.
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4.2 Synaptic pruning model
In this chapter we make use of the adaptive network model defined in chapter 2
to study the effect of the initial transient period of high connectivity. The full
derivation of the model can be found in 2.2; here we will review the most relevant
concepts and explain in detail the changes and new definitions introduced in this
chapter for the present study.

The system thus consists of a N -node undirected binary network whose
structure is given by the adjacency matrix eij(t). The state of each neuron is
given by the stochastic binary variable si(t), which follows an Amari-Hopfield
dynamics (as introduced in section 1.4.1) where the level of stochasticity is
characterized by a noise parameter or temperature T , with T = 0 corresponding
to the deterministic limit (Amit, 1989). Each synapse is characterized by its
strength, given by the synaptic weight wij . These are defined so that the network
learns or stores a pattern of activity ξi, that is, to make ξi an attractor of the
dynamics of the system1.

The macroscopic state of the system may thus be characterized by the over-
lap of the network with the memorized pattern, m(t), and its stationary value2,
m = m (t→∞). Namely,

m(t) = 1
Na0(1− a0)

N∑
i=1

(ξi − a0)si, (4.1)

where a0 = 〈ξi〉 is the mean activation of the pattern, introduced for normaliza-
tion purposes. m(t) = 1 indicates that the state of the network is equal to the
pattern, and the system is in a memory state, whereas m(t) = 0 corresponds to
the non-memory state. In a low noise situation, ξi is an atractor of the dynam-
ics of the system, whereas the inclusion of thermal and quenched disorder can
destabilize it, as discussed in chapters 2 and 3.

The topology changes in time following a Markov process given by the prob-
abilities P̃ gi and P̃ li that each node i has to gain and loose an edge at time t,
namely

P̃ gi = u(κ)π̃i P̃ li = d(κ)η̃i. (4.2)
where we have dropped the time dependency for clarity. Here κ(t) is the mean
connectivity of the network as before, and π̃i = π̃(Ii), σ̃i = σ̃(Ii), where Ii(t)
stands for the incoming current at each neuron from its neighbors.

As we have seen previously (section 2.2), the evolution of the mean connec-
tivity κ(t) only depends on the global variables u(κ) and d(κ) (provided that

1We decide to set the number of memorized patterns P to one for the sake of simplicity. In
chapters 2 (Sec. 2.4.2) and 3 we have already discussed the effect of learning more patterns,
which can lead to emergence of spin-glass phases and population neural activity oscillations.

2Measures of the global variables on the stationary state are obtained by averaging during
a long window of time: f̄ = ∆t−1∑t0+∆t

t=t0
f(t).
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π̃ and η̃ are normalized over network), and it is given (Johnson et al., 2010a;
Millán et al., 2018c) by

dκ

dt
= 2 [u (κ)− d (κ)] . (4.3)

Experimental evidence indicates a fast growth of the synaptic density following
birth and preceding synaptic pruning, whose impact on brain development is
yet to be fully clarified (Tang et al., 2014; Navlakha et al., 2015). In chapter 2
we have reproduced these profiles of synaptic density by considering an initial,
fast growth of synapses followed by synaptic pruning, namely (see section 2.3.2)

u (κ) = n

N

(
1− κ(t)

2κ∞
+ ag exp(−t/τg)

)
d (κ) = n

N

κ(t)
2κ∞

,

(4.4)

where τg and ag control the time-scale and intensity of the initial growth, κ∞ is
the stationary mean connectivity, and n/N characterizes the speed of synaptic
growth and death. This leads to

dκ

dt
= 2n
N

[
1− κ(t)

κ∞
+ ag exp(−t/τg)

]
, (4.5)

which has the solution
κ(t) = κ∞ [1− b exp(−t/τg) + c exp(−t/τp)] , (4.6)

where τp = Nκ∞/2n sets the temporal scale of the pruning process, b =
agτg (τp − τg)−1 and c = κ0/κ∞ + b − 1. This model for κ(t) – shown by the
dashed black line in figure ??a – has been shown to reproduce experimental data
of the mean synaptic density in the cortex in humans and rodents (see section
2.3.2 and also Johnson et al., 2010a; Millán et al., 2018c).

The local probabilities π̃ and η̃ introduce a dependence on the physiolog-
ical state of the neurons, and account for local heterogeneity in the network.
Following previous studies, we take π̃(Ii) ∝ Iαi (t) (α > 0), η̃(Ii) ∝ Ii(t), which
correspond to synapses being chosen at random for removal, which can be seen
as a first order approximation of pruning dynamics (Johnson et al., 2009). The
global order parameter used in this chapter to describe network structure is the
homogeneity parameter g(t), and its stationary value ḡ = g (t→∞). Namely,

g(t) = exp
(
−σ2

k(t)/κ(t)
)
, (4.7)

where σ2
k(t) is the variance of the degrees of the nodes. g(t) equals 1 if p(k) =

δk0,k (homogeneous network) and tends to 0 for highly heterogeneous (bimodal)
networks. In the topological limit of this model there is a continuous phase
transition from homogeneous networks (ḡ → 1) to heterogeneous ones (ḡ → 0)
as α increases, with a critical point αc = 1.0 in which scale-free networks emerge,
as reported in chapter 2, figure 2.1 (see also Johnson et al., 2010a; Millán et al.,
2018c).
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4.2.1 Emerging dynamics of the model

In chapter 2 we have analyzed the effect of the coupling between the local
structure of the network and the physiological dynamics (Millán et al., 2018c;
Millán et al., 2019b) during synaptic pruning (a = 0 in Eq. 4.4). Depending
on α, the parameter controlling the heterogeneity of the pruning dynamics, and
the temperature T setting the thermal noise in the system, three phases appear:

i) A homogeneous memory phase when both α and T are low, in which the
network displays memory and its structure is homogeneous.

ii) A heterogeneous memory phase for high α, in which the network is bimodal
(appearance of hubs).

iii) A homogeneous noisy phase for high noise T .

Finally, a bistability region emerges between the heterogeneous memory and the
homogeneous noisy phases, corresponding to moderate α values, 1 < α < 2, and
high temperature, T > 1, as a consequence of the coupling introduced by the
model. This is because heterogeneous networks are more tolerant to thermal
noise than homogeneous ones, so that the critical temperature Tc separating the
memory and non-memory phases diverges from Tc = 1 for homogeneous net-
works to Tc →∞ for heterogeneous ones, where the presence of hubs stabilizes
the memories (Torres et al., 2004; Franciscis et al., 2011; see also Sec. 1.4.1).

In the bi-stability region the stationary state of the system depends on its
initial network configuration: networks that are initially heterogeneous display
memory and enhanced heterogeneity during the whole evolution of the system,
whereas homogeneous ones fall into the noisy state. Consequently, the initial
overgrowth of synapses could have important consequences in the emerging be-
havior of the system in this region, since it changes the state of the system when
synaptic pruning begins. That is, the structure and memory state at which the
system is when synaptic pruning starts may depend on details of the process
that has let it there, such as the maximum number of synaptic contacts or its
duration. Therefore, in this chapter we analyze the effect of the non-trivial
transient of high connectivity preceding synaptic pruning on the dynamics of
the system on the bistability region (in particular, we fix α = 1.2, T = 1.3).

4.2.2 Linear approximation

One can easily see that κ(t) as given by Eq. 4.6 presents a maximum κ∗ = κ(t∗),
where

t∗ = τgτp
τp − τg

ln
(
τpb

τgc

)
. (4.8)
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Figure 4.1: Frozen-initial-density model of synaptic pruning. (a) The
black lines represent κ(t) as given by the realistic model (dashed line) and the
linear approximation model (solid line). The colored lines show two exemplary
temporal evolutions of the linear model with κ(t) as given by the black solid
line. We represent m(t) (colored solid lines) and g(t) (colored dashed lines) for
two realizations leading to two qualitatively different steady states: in green, a
series in which the network keeps memory (m = 0.35) and heterogeneity (ḡ =
1.0) in the steady state and, in purple, the opposite example. All parameters
are the same in both situations (N = 1600, n = 2, κ0 = 40 and κ∞ = 20
and ∆ = 5 · 104MCS). Panels (b) and (c) show, respectively, m(∆̃) and
ḡ(∆̃) for different system sizes, where ∆̃ = ∆/τp. Results are for κ0 = 40 and
κ∞ = 20. The parameter n is scaled with the network size, so that n = 5, 10, 20
respectively for N = 800, 1600, 3200.

Both t∗ and κ∗ depend non-trivially on a, τg and τp (since b and c are also
functions of a, τp and τg). Therefore, in order to study the effect of the non-
trivial transient of high connectivity on the emergent state of the system, here
we consider a first order approximation to this realistic pruning profile. In
particular, κ(t) is kept constant (and high), κ(t) = κ0, at the onset of the
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evolution (see solid black line in figure 4.1a), during a frozen-density time ∆,
by imposing that the same number of edges are created and destroyed, namely

u(t) = d(t) = d0 ∀t < ∆, (4.9)

where d0 = const and, in particular, we consider here d0 = n/N . Thereafter,
the mean degree is allowed to vary following the pruning dynamics. This allows
us to easily control the width (∆) and height (κ∗ = max(κt)) of the pruning
process, which fully characterize it.

4.3 Crucial role of the high-density transient
An exemplary evolution of the coupled system is shown in figure 4.1a. During
the initial frozen-density period (t < ∆) the mean connectivity is kept constant
(κ(t) = κ0 ≥ κ∞) but the network structure is allowed to vary, since d0N edges
are created and destroyed at each time step, providing a non-trivial transient of
network evolution. If κ0 is sufficiently large, the system can perform memory
retrieval throughout this period even though T > 1 – as indicated by m(t) sig-
nificantly different from zero. Given that α > 1 too, the underlying topological
dynamics starts creating hubs and heterogeneity throughout this period, and
thus g(t) decreases. Notice that the network only heterogenizes if it is able to
maintain memory, since otherwise the topological rewiring process is lead by
noise and the network remains homogeneous, as discussed in chapter 2. This a
consequence of the coupling between neural dynamics and topology.

Once t > ∆ synaptic pruning begins and κ(t) decays towards κ∞. Given
that T > Tc = 1.0, a fully homogeneous network would no be able to maintain
memory. In a highly heterogeneous network, however, the critical temperature
diverges with the system size, and the memory states can be stable even with
T > 1.0. Therefore, at this point the system can either fall into the noise
state and lose its heterogeneity (purple lines in figure 4.1a), or remain in the
heterogeneous memory state (green lines), showing multistability. If the system
remains in the memory state, it continues to heterogenize (g(t) → 0), to the
point that it can maintain memory performance as κ(t) → κ∞ (dashed green
line in figure 4.1a). On the other hand, if the neural network falls into the
noisy state (m(t) ≈ 0), neural activity – and hence synaptic growth and death
– becomes uncorrelated with node degree, and the topology reverts gradually to
a more homogeneous configuration (g(t)→ 1, dashed purple line), incapable of
memory.

In particular, we show in figure 4.1b, c that, for a given κ0, there is a dis-
continuous phase transition as a function of ∆. Note that we have re-scaled ∆
with τp as ∆̃ = ∆/τp in these panels. As ∆ is increased the system moves from
a phase governed by noise, m→ 0, in which networks are homogeneous, ḡ → 1
(which we shall call the homogeneous noisy phase), to one where networks
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Figure 4.2: Transition curves for models A and B. Stationary mean values
of the overlap, m (a,b)) and homogeneity, ḡ (c,d)) respectively for models A
(panels a and c) and B (panels b and d). Results are shown as function of ∆̃
and for different values of κ0 as indicated by the labels on top of the diagrams.
N = 1600 and other parameter values as in figure 4.1.

are heterogeneous, ḡ → 0, and they display memory, m > 0 (therefore called
heterogeneous memory phase) . A finite size analysis shows that the results
hold for increasing network size (figure 4.1b, c is for N = 800, 1600 and 3200).

4.3.1 Non-linear effect of the initial density

The initial density κ0 has a major effect on the dynamics, determining whether
the system will be able to maintain memory retrieval and the minimum ∆̃
necessary for it (see figure 4.2).

In the case κ0 = κ∞, κ(t) is trivially constant and, given that T > 1,
the system falls into the noisy state regardless of ∆̃ (see κ0 = 20 in figure
4.2a, c). This continues up to slightly higher initial densities (up to κ0 = 25),
where the memory state is reached even for very low ∆̃. One might expect that
the memory state would become easier to reach with higher κ0 but, in fact,
the opposite effect is obtained, and networks with increasing κ0 take longer
∆̃ to reach the heterogeneous memory phase, for κ0 � κ∞. This apparent
paradox is explained after a deeper look at the system. In fact, large κ0 implies
that networks are initially more homogeneous and take more time to become
heterogeneous under the topology dynamics. Besides, more edges have to be
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edges removed between t1 and t2 in the realistic model (dm, purple line) and
the linear approximation (dLm, green line). (b) Normalized error associated with
the linear approximation ε. Parameters as in figure 4.2.

pruned to make a significant change in the network, which slows down network
evolution. In consequence, very highly connected networks are more likely to
fall into the noise state for a given ∆̃.

4.3.1.1 Validity of the results

One relevant question at this point is how this result depends on the particular
definition of d0, since so far we have considered d0 = const ∀κ0,∆. However, one
may argue that the density of synaptic turnover should depend on the number
of existing synapses, d0 = f(κ0). In particular, in a more realistic scenario,
one can define d0 so as to approximate the mean number dm of links added
and removed in the realistic model between the two times t1 and t2 such that
κ(t1) = κ(t2) = κ0, t1 < t2; namely

dm ≡
1

t2 − t1

t2∑
t=t1

d(κ(t)). (4.10)

A parabolic approximation of κ(t) as given by Eq. 4.6 around κ∗ gives, for dm,

dm ≈ dLm ≡
1

4τp

(
κ∗ + 1

6D∆2
κκ∞

)
, (4.11)

where
D = τ−2

g

(
κ∗

κ∞
− 1

)
− c

(
1
τ2
g

− 1
τ2
p

)
e−t

∗/τp (4.12)

and ∆κ = κ∗ − κ0. As shown in figure 4.3, the percentage of error associated
with the linear approximation,

ε ≡ 100 |dm − d
L
m|

dm
, (4.13)
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is small.
Equation 4.11 suggests a scaling relation d0 ∝ κ0, and in particular one can

consider d0 = nκ0/N . In the following we refer to this definition as model
B, and to the former with d0 = n/N as model A. We show for both models
the corresponding phase transition curves in panels b and d of figure 4.2. Inter-
estingly, even though with model B the number of links rewired at each time
depends linearly on κ0, our main results hold as there is also in this case an
optimal, intermediate κ0 that requires a minimum time ∆ to achieve the sta-
tionary memory state, confirming the non-linear effect of the initial density on
the emerging behavior of the system.

4.3.2 Convergence to the memory state

The non-linear (or second order) effect of κ0 also implies that the complemen-
tary representation m(κ0) for a given ∆̃ shows a bell shape for intermediate ∆̃,
with a maximum at κA0 ≈ 27 and κB0 ≈ 40 respectively for models A and B (see
figure 4.4 panels a and b). From m(∆̃) one can explicitly measure the minimum
value of ∆̃ needed to achieve memory for a given density. More generally, we
define ∆̃a

min(κ0) as the minimum value of ∆̃ needed to reach a stationary mean
overlap equal to ma = 0.1a m, a = 1, 2, .., 10 for a given κ0. This definition
aims to measure how much time it takes for a given configuration to organize
into the heterogeneous state. Minimal values of ∆̃a

min indicate an optimal ini-
tial configuration to reach memory with a minimal energy consumption. Our
measures (figure 4.4 panels c and d) indicate a minimum ∆̃a

min for the same
connectivity as the maximum of m(κ0), namely κA0 and κB0 in both alternative
model descriptions. Therefore, memory is not only reached faster but it is also
stronger for the optimal κ0.

Finally, an integrated view of the effect of network dynamics and the emer-
gent behavior of the system can be obtained by the phase diagram of the system,
as shown in figure 4.5e, f , as a function of the control parameters ∆̃ and κ0.
These have been obtained by the integrated analysis of m(∆̃, κ0) and ḡ(∆̃, κ0),
which indicates the existence of a region of stationary memory and heteroge-
neous networks for both high ∆̃ and high κ0. The phase transition between
noise and memory moves to higher ∆̃ for higher κ0 in an approximately linear
manner, as previously discussed, leading to the contraction of the heterogeneous
memory region. On the other hand, very small κ0 never leads to memory, due
to the high thermal noise.

Summing up, our results show the benefit of intermediate densities with
respect to very high ones in order to achieve memory in a noisy environ-
ment. Interestingly, results hold when the density of synaptic turnover d0
is re-scaled linearly with the density of synapses κ0, indicating that the
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Figure 4.4: Crucial role of the high-density transient. (a,b) m(κ0) for dif-
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values of ∆, respectively for models A and B, with smaller times indicating a
faster stabilization of the memory state. (e,f) Two dimensional phase diagram
of the system, respectively for models A and B. These are obtained through
analysis of m(∆̃, κ0) and ḡ(∆̃, κ0), so that the heterogeneous memory phase is
defined by m > 0 (in particular, m ≥ 0.35) and ḡ → 0, whereas the homoge-
neous noisy one has m→ 0 and ḡ → 1. Parameter values as in Fig. 4.2. ∆̃ for
model B is defined as ∆̃ = ∆/1000.

longer transient time needed to reach the heterogeneous memory phase
for higher κ0 is not only due to the higher number of synapses that need
to be rewired. This result suggests why for an evolving network such
as the infant brain it is detrimental to initially grow a very high density
of synapses, since this increases the energy costs during growth and also
during the pruning process, and it does not improve memory retrieval or
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network structure. On the contrary, a neural network with intermediate
values of transient synaptic density would perform more efficiently dur-
ing pruning. Moreover, this would also be convenient in terms of energy
consumption.

4.4 Transient heterogeneity determines network per-
formance

We have shown a quadratic dependence of the system stationary state on κ0
(see figure 4.4), and discussed the presence of multistability for intermediate
values. However, what determines, on a given trial, the stationary state of the
system? Based on the results shown above, we propose that it is the transient
level of heterogeneity (that is, the heterogeneity at the onset of the pruning)
what determines the probability that the network will maintain memory.

In order to explore this hypothesis, we first define g∆ and m∆ as the values
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of g and m at the beginning of the pruning, that is,

g∆ ≡ g(t = ∆),m∆ ≡ m(t = ∆). (4.14)

These definitions allow us to explore how the stationary state depends on the
transient evolution of the system. In particular, for each value of ∆̃ and κ0
we measure the onset heterogeneity g∆ and the stationary overlap m. In figure
4.5a, b we show, respectively for models A and B, the measured values of m
as a function of g∆, with each curve corresponding to a fix value of κ∞ and
varying ∆̃, namely m

(
g∆
(
∆̃
))

. These panels show up two main findings.
Firstly, a continuous transition from the heterogeneous memory state to the
homogeneous noisy one as a function of g∆; and, secondly, a collapse of the
curves for different κ0. In consequence, g∆ determines whether the network will
be able to maintain memory once the pruning begins: high onset heterogeneity
(small g∆) implies stationary memory, whereas low heterogeneity (high g∆)
implies a stationary noisy state. These results are independent of κ0 and of the
model used, indicating that g∆ is a strong indicator of stationary memory.

Notice that g∆ depends not only on κ0 and ∆̃, but also on m∆, since the
rewiring process only promotes heterogeneity when the network displays mem-
ory. This is shown in figure 4.5c, d, where we display m (m∆(κ0)), with each
curve corresponding to a given value of ∆̃, and respectively for models A and
B. Since m∆ does not unequivocally determine the stationary state, the curves
do not collapse in this case. What it is obtained is a quadratic dependence of
m on m∆, indicating an optimal value of transient memory of m∆ ≈ 0.5. This
emerges because m∆ ≈ 0.5 strongly correlates with a minimum g∆, so that the
value of ∆̃a

min necessary for a stationary memory state is minimal for this value.
In this sense, if m∆ � 0.5, there is no transient memory because κ0 is too small
and, therefore, there is insufficient heterogeneity. On the other hand, if m∆ ≈ 1,
this is so because κ0 is large and the network is still very homogeneous when
pruning begins. In both cases, the network evolves towards a homogeneous con-
figuration. Note that this qualitative result does not depend on the particular
definition of d0 since it holds for both models A and B.

4.5 Discussion
In this chapter we have analyzed the fundamental role of the high synaptic-
density period that the brain undergoes during infancy. In order to do so, we
have made use of the adaptive network model for synaptic pruning defined in
chapter 2, and first presented in (Millán et al., 2018c). The model creates a
dependence of the final network structure and performance on the transient
synaptic density, as one should probably expect in Nature. In this model, the
introduction of a high fixed-density transient allows for network heterogenization
and for the settlement of a memory state under noisy conditions. We have
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analyzed in detail a point of the (T, α) phase space corresponding to the bi-
stablity area between heterogeneous memory and homogeneous noisy states (as
depicted on figure 2.4), where the system is most sensitive to the details of the
evolution and the initial conditions. This happens to correspond to high noise
T and also to large α, so that the system can heterogenize.

In these conditions, we have found that the model exhibits a discontinuous
(first order) phase transition as one varies the length of the transient period of
fixed density, ∆̃, and the value of this density, κ0. In fact, there is a quadratic
effect of κ0, such that medium values provide a faster and more stable evolution
towards a memory stationary state and there is an optimal κ0 that optimizes the
evolution into such a state. Therefore, our results could explain why real world
networks such as those in the brain do not create enormous numbers of synapses
to begin with during early development. Moreover, being able to achieve even-
tual good performance with a limited density would also be preferable in terms
of energy consumption. We have also shown that the transient heterogeneity de-
termines the stationary state of the system. Given the aforementioned feedback
loop, this depends on the transient memory m∆ and κ0, so that the stationary
state of the system is ultimately determined by its physiological history.

We have also analyzed the robustness of the results to details of the model
and the validity of the approximations considered. In particular, we have found
a more realistic approximation such that the density of synaptic growth and
death during the transient period of fixed connectivity is proportional to this
connectivity. We have found that the qualitative behavior of the system does
not depend on these details. Namely, there is also a discontinuous transition
from a homogeneous non-memory state to a heterogeneous memory one as the
duration ∆ of the transient period increases, whereas there is a non-linear de-
pendence on κ0, and the stationary state of the system is ultimately determined
by g∆. Therefore, the results presented in this chapter – namely the benefits of
a transient high connectivity period, the second order effect of κ0 and the cru-
cial effect of g∆ on the stationary state – are robust with respect to microscopic
details of the model.

A question this work clarifies is why brain development produces an ini-
tial growth of a great many synapses which are then gradually pruned. If the
final density is optimal for energy consumption, why should one go through
a transient state of twice this density? Our neural network with an evolv-
ing structure based on some simple biological considerations shows that the
memory performance of the system does indeed depend on whether it passed
through a transient period of relatively high synaptic density. A feedback loop
thus emerges between neural activity and network topology such that, begin-
ning with a random network, a transient state of high density can allow for the
subsequent pruning of synapses as the topology is optimized for memory perfor-
mance. Why, though, should the brain not begin with both the low density and
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high heterogeneity needed for good memory performance? We conjecture that
much less genetic information is needed to build a random neural network that
is subsequently shaped by its dynamics (under the influence of actual environ-
mental conditions), than to specify a particular structure. This would also be a
more robust developmental path. And why not begin with an even higher initial
density? Apart from energetic considerations, we have also seen that there is
an optimal initial synaptic density for a high performance neural network to
emerge.

As in the previous chapters, the results presented here may serve as a starting
point and a very suitable theoretical framework for studying the relationship
that may exist between certain neurological disorders that appear during brain
development, such as childhood autism and schizophrenia in young adults, and
different synaptic pruning profiles, as has recently been suggested (Tang et al.,
2014; Afroz et al., 2016; Sekar et al., 2016).



Chapter 5

Complex Network Geometry
and Frustrated
Synchronization.

Brain networks develop in a (bounded) 3D space that affects its develop-
ment and structure, a fact that is nonetheless typically ignored by in-vitro
studies, which usually consider 2D substrates. Interestingly, however,
it was recently shown that the dynamics of in-vitro neural networks is
strongly dependent on the network geometry, and that neuronal cultures
grown on 3D scaffolds are able to display more varied regimes of synchro-
nization, with a more stable synchronized regime (Severino et al., 2016).
However, the question of how synchronization phenomena depend on the
dimensionality and geometrical properties of the underlying network is
yet to be explored from the theoretical point of view, and results from
such study could have strong implications for the understaing of complex
enural systems like the brain. With the goal of helping fill this gap, in
this chapter we reveal the rich interplay between the geometrical proper-
ties of a network and the synchronization dynamics of coupled oscillators
on top of it. In order to do so, we make use of the theoretical frame-
work of a simplicial complex model of manifolds called Complex Network
Manifold (Bianconi and Rahmede, 2015). This model allows us to gen-
erate networks that combine a highly modular structure and small-world
properties, as indicated by an infinite Hausdorff dimension, with a finite
and tunable spectral dimension that is related to the inherent geometri-
cal substrate of the network. Within this set-up, we demonstrate that
the synchronization properties of a network are directly affected by its
the spectral properties and we show that, due to their highly modular
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structure, CNMs also have de-localized eigenvectors so they can support
that states of frustrated synchronization. In particular, we show the emer-
gence of large regions of frustrated synchronization for spectral dimension
ds ≤ 4, and that the synchronized regime is more stable in ds = 4 than
for ds = 2, 3. Interestingly, we also demonstrate that CNMs with a given
integer spectral dimension ds can be embedded in a ds − 1-dimensional
manifold. Consequently, cortical networks, embedded in a 3D space, could
display a spectral dimension equal to four, the critical dimension for the
onset of a global synchronous phase. The study presented here has been
published in Millán et al., 2018a.

5.1 Introduction

As we have seen in the previous chapters of this thesis, it is a well-known fact
that network topology strongly affects the dynamics and function of complex
networks (Watts and Strogatz, 1998; Barabási and Albert, 1999; Dorogovtsev
and Mendes, 2002; Boccaletti et al., 2006; Fortunato, 2010; Newman, 2011;
Barabási et al., 2016). Recent studies have started to suggest that a geometrical
perspective is also necessary, and growing attention has been devoted to analyze
networks from a geometrical viewpoint (Barthélemy, 2011; Serrano et al., 2011;
Bianconi, 2015; Clough and Evans, 2017). Consequently, there has been an
increasing number of works aiming at unveiling the hidden geometry of networks
using statistical mechanics (Boguná et al., 2010; Krioukov et al., 2010; Bianconi
and Rahmede, 2015; Wu et al., 2015; Bianconi and Rahmede, 2016, 2017; Mulder
and Bianconi, 2018; Silva et al., 2018), discrete geometry (Jost and Liu, 2014)
and machine learning tools (Bronstein et al., 2017; Muscoloni et al., 2017), to
name a few.

Characterizing the geometry of complex networks is particularly relevant
for brain research (Bullmore and Sporns, 2009; Giusti et al., 2016), where the
embedding in a three-dimensional space is essential to understand the wiring
diagram characterizing the connections between brain regions – or connectome
(Sporns, 2011; Vértes et al., 2012; Ercsey-Ravasz et al., 2013) – and also at a
more microscopic neuronal level. Interestingly, recent experimental results have
shown that the synchronization properties of neuronal cultures grown on 2D
slices differ considerably from those grown on 3D scaffolds. The latter turn
out to be much more likely to maintain synchrony and present two operating
regimes: a highly synchronized and a moderately synchronized one (Severino et
al., 2016). This result can be compared with results obtained in the framework
of the Blue Brain project where it has been observed that pairs of neurons
have more significant correlations in their dynamics if they belong to higher
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dimensional structures (Reimann et al., 2017).
These results reveal that not only network topology but also network geom-

etry plays a crucial role in determining the dynamical properties of a complex
network. However, the connection between network geometry and dynamics has
been so far mostly unexplored from a theoretical point of view. In this chapter,
we provide a theoretical framework based on simplicial complexes (Petri et al.,
2014; Bianconi and Rahmede, 2015; Wu et al., 2015; Bianconi and Rahmede,
2016; Giusti et al., 2016; Bianconi and Rahmede, 2017; Mulder and Bianconi,
2018; see also section 1.3.3) to investigate the effect of network geometry on
synchronization dynamics. Simplicial complexes are generalized network struc-
tures that go beyond pair-wise interactions. They are formed not only by nodes
and links, but also by triangles, tetrahedra, hypercubes, orthoplexes, etc. They
are thus made up by discrete geometrical building blocks, making them ideal
structures to investigate and model network geometry and topology (Bianconi,
2015; Giusti et al., 2016; Salnikov et al., 2018). Modeling network geometry
with simplicial and cell complexes has been for long the practice in quantum
gravity approaches, including Causal Dynamical Triagulations, Regge calculus
or Tensor networks, to name a few (Oriti, 2001; Ambjórn et al., 2005; Lionni,
2018). More recently, simplicial complexes (and also their generalization, cell
complexes, as discussed in chapter 6) have become very popular to model also
complex systems ranging from brain networks to social networks (Bianconi,
2015; Giusti et al., 2016; Iacopini et al., 2018; Millán et al., 2018a; Petri and
Barrat, 2018; Salnikov et al., 2018), in part supported by the fact that their ge-
ometrical properties are often retained if one considers their network skeleton,
i.e. the network formed exclusively by their nodes and links.

Similarly, synchronization phenomena are the subject of extensive research
in physical, biological, chemical and social systems (Pikovsky et al., 2003; Are-
nas et al., 2008). In the case of brain networks, synchronization is thought to be
essential for the integration and coordination of distributed information across
different brain areas (Varela et al., 2001). The emergence of brain rhythms has
been reported both on EEG and fMRI recording of the brain, with different fre-
quencies of synchronized activity allegedly related to different brain functions
(see section 1.4.2). Moreover, some brain disorders such as schizophrenia, autism
spectrum disorder, epilepsy and Alzheimer and Parkison disease have been re-
lated to abnormal neural synchronization autism and Alzheimer and Parkinson
disease have been associated with abnormal neural synchronization (Uhlhaas
and Singer, 2006).

The synchronization properties of a network are known to be influenced by
the network topology (Chavez et al., 2005) and by its spectral properties (Bara-
hona and Pecora, 2002; Donetti et al., 2005). For instance, the stability of
a fully synchronized state is known to depend crucially on the ratio between
the Fiedler eigenvalue (i.e. the smallest non zero eigenvalue) and the largest
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eigenvalue of Laplacian (Barahona and Pecora, 2002; Donetti et al., 2005). In
this regard, network geometries are typically characterized by having a Fiedler
eigenvalue that goes to zero in the large-size limit or, equivalently, by a finite
spectral dimension dS (Rammal and Toulouse, 1983; Burioni and Cassi, 1996;
Jonsson and Wheater, 1998; Burioni and Cassi, 2005; Durhuus et al., 2007),
which characterizes the return time distribution of the random walk. For in-
stance, Euclidean lattices in dimension d have spectral dimension d = dS , which
is also equal to the Hausdorff dimension of the lattice, dS = dH . However, in
general networks can have non-integer spectral dimension dS not equal to their
Hausdorff dimension.

Interestingly, non-trivial synchronization phenomena have been related to
complex network topologies. For instance, the emergence of frustrated synchro-
nization, characterized by large spatio-temporal fluctuations of the synchroniza-
tion order parameter, has been related to a complex network topology character-
ized by a hierarchical modular structure (Moretti and Muñoz, 2013). Similarly,
also in hierarchical modular networks it has been shown the appearance of rare-
regions of activity in the contact processes, in correspondence with the so-called
Griffith phase (Villegas et al., 2014; Safari et al., 2017; Cota et al., 2018). How-
ever, so far the considered network structures have a finite Hausdorff dimension
(Moretti and Muñoz, 2013) (i.e. they are large-world networks), whereas a large
number of brain networks are known to be small-world, that is, to have an in-
finite Hausdorff dimension (watts1998collective,bullmore2009; see also section
1.2). Therefore, exploring whether such dynamical phase can appear in small-
world networks has particular relevance in the field of neuroscience and neural
computation.

In this chapter we demonstrate that a finite spectral dimension of geometri-
cal networks can be combined with a complex modular network structure to give
rise to frustrated synchronization and spatio-temporal fluctuations of the order
parameter of the synchronization dynamics (Bianconi and Rahmede, 2015, 2016,
2017; Mulder and Bianconi, 2018). In this way, we provide a clear evidence of
the important effect that network geometry has on the dynamics of complex
networks. For this we make use of the mathematical framework of Complex
Network Manifolds (CNMs), which is a particular case of the Network Ge-
ometry with Flavor model presented in chapter 1 (see Sec. 1.3.3). We also
discuss here the geometrical, spectral and topological dimensions of CNMs, and
we demonstrate that, as a result of their complex network geometry, CNMs can
sustain frustrated synchronization for a large range of their parameter values,
with the stability of this phase crucially depending on the network dimensional-
ity. We finally show that the observed spatio-temporal fluctuations of the order
parameter associated with the frustrated synchronization regime appear when
the dynamics is strongly affected by localized eigenvectors, identifying “rare”
regions of activity, and driving global oscillations of the synchronization global
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order parameter.

5.2 Complex Network Manifolds

The framework of Complex Network Manifolds (CNMs) is a particular case of
the Network Geometry with Flavor (NGF) model (see Sec. 1.3.3), corresponding
to NGFs with flavor s = −1. Moreover, here we also select β = 0, so that there
is not intrinsic heterogeneity of the nodes1.

Therefore, the framework of CNM (Bianconi and Rahmede, 2015, 2016,
2017) consists on a non-equilibrium growing model of simplicial complexes of di-
mension d that generates discrete manifolds by subsequently gluing d-dimensional
simplices along their (d− 1) faces. At each time t a new simplex is added to a
(d− 1)-face α with probability

Πα = 1− nα∑
α′(1− nα′)

, (5.1)

where nα is the incidence number of the face, indicating the number of d-
dimensional simplices incident to it minus one.

Many structural properties of CNMs have been studied. For instance, the
degree distribution p(k) is exponential for dimension d = 2 and scale-free for
d > 2. The exact asymptotic expression has been derived by Bianconi and
Rahmede, 2017 (see appendix C, and it is given for d = 2 by

p(k) = 1
d+ 1

(2
3

)k−d
, (5.2)

with k ≥ 2, whereas for d > 2 it is given by

p(k) = d− 1
2d− 1

Γ [(1 + (2d− 1)/(d− 2)]
Γ [d/(d− 2)]

Γ [k − d+ d/(d− 2)]
Γ [k − d+ 1 + (2d− 1)/(d− 2)] , (5.3)

with k ≥ d. It is easy to see that, for k � 1,

p(k) ≈ k−γ , (5.4)

with
γ = 2 + 1

d− 2 , (5.5)

so that CNMs are scale-free for d > 2. In particular, for d = 3 we obtain γ = 3,
whereas for d = 4, γ = 5/2. In figure 5.2.1a we show the agreement between the
analytic expression given by Eqs. C.1 and C.2 (in appendix C) (dashed lines)
and the computational results (data points).

1The codes for generating the Complex Network Manifolds, which are equivalent to the
Network Geometry with Flavor s = −1 (Bianconi and Rahmede, 2016), can be found in this
public repository (Bianconi, n.d.).
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Figure 5.1: Degree distribution and small-word properties of CNMs.
The degree distribution p(k) of CNMs of N = 6400 nodes and dimensions
d = 2, 3 and 4 is plotted in panel a. Points represent results from numeri-
cal simulations whereas dashed lines stand for the analytical result as given by
Eq. C.1 and C.2. The mean minimum path ` is plotted versus N for d = 2, 3, 4
in panel b. Data points are from simulation results whereas dashed lines cor-
respond to the logarithmic fit. Numeric results have been averaged over 100
network realizations in both panels.

5.2.1 Network dimensions

Topological dimension

CNMs are small-world networks with an infinite Hausdorff dimension dH . This
can be seen by the logarithmic scaling of the mean minimum path (or charac-
teristic path length, as defined in table 1.1) ` between the nodes of the network
with the network size N , as shown in figure 5.2.1b, where points represent data
from numerical simulations of CNMs of dimension d and the solid lines stand
for the best logarithmic fit, as given by

` = ad log(N) + bd. (5.6)

The parameters from the fit are shown in table 5.1, and they clearly indicate that
CNMs of higher dimension d have a average shortest distance that grows always
logarithmically with the network size N but with different constant factor ad.

Geometric dimension

CNMs can either be considered as manifolds of dimension d with all the nodes
placed on the boundary of the manifold or as D = d− 1 dimensional manifolds
without boundary, as we go on to show. Consider first a CNM of dimension
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d ad bd R2

2 2.93(3) −1.45(9) 0.983
3 1.32(2) 0.17(4) 0.964
4 0.78(1) 0.79(4) 0.954

Table 5.1: Fitted parameters ad and bd determining the logarithmic growth of
the mean minimum path ` of CNMs of dimension d according to Eq. 5.6.

(a) (b)

Figure 5.2: Complex Network Manifold’s dimensions. The CNM con-
structed from d-dimensional simplicies with d = 3 can be interpreted either
(panel a) as a d = 3 dimensional manifold with boundary (topologically equiv-
alent to a sphere) or alternatively as a D = 2 dimensional manifold without
boundary tessellating the D = 2 dimensional surface of the sphere. Panel b
represents the projection of the D = 2 manifold on the plane with the Carte-
sian coordinates indicating the azimuth and elevation of point on the surface
of the sphere, respectively. Note that for better visualization purposes we have
omitted the links connecting nodes at the opposite sides of the plane. The node
colors indicate different communities detected using the Gen-Louvain algorithm
(Blondel et al., 2008; Mucha et al., 2010).

d = 3. The CNM can be embedded in a d = 3 dimensional sphere of radius one
without any crossing of the faces. To this end, we inscribe the first tetrahedron
(which is regular) in the 3D sphere, so that every node is placed on the sphere
and at equal distances. Then, we glue every added tetrahedron to the corre-
sponding existing face, and deform it so that the new node is also on the surface
of the sphere. In this picture the CNM constitutes a 3D bounded manifold, with
the links inside the ball and the nodes on the surface.

Interestingly, in this embedding all the nodes of the CNM are on the D = 2
dimensional surface of the sphere, so that the network can also be interpreted
as a tessellation of the D = 2 dimensional manifold formed by the surface of the
d = 3 sphere (see figure 5.2). In this D = 2 triangulated space, the elementary
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move of adding a new tetrahedron corresponds to the placement of a new node
in the middle of a randomly selected triangle of the D = 2 triangulation, and the
establishment of three new links between the new node and each of the nodes
of the selected triangle (in which case not only nodes but also links are on the
2D sphere). Most notably, this construction reveals that CNMs in d = 3 are
random Apollonian Networks (Andrade Jr et al., 2005; Andrade and Herrmann,
2005; Zhang et al., 2006).

Similarly, a CNM of dimension d = 4 can be interpreted either as a 4D
manifold with boundary or as the tessellation of a D = 3 space, in which case
all the links are super-imposed to the circumference. In this case, the addition
of a new 4-simplex corresponds to the selection of a tetrahedron forming the
tessellation of the D = 3 space, the placement of a new node in the middle of it,
and the establishment of four new links between the new nodes and each of the
existing nodes of the selected tetrahedron. Finally, a CNM of dimension d = 2
can be interpreted as a 2D manifold with boundary, with the nodes placed on
the circumference and the links inside the circle; or as the tessellation of the
D = 1 circumference.

Therefore, one can naturally associate both dimension d and dimension D
of its natural embedding spaces to the CNM formed by simplices of dimension
d.

5.2.2 Spectral and localization properties

The spectral properties of complex networks have been shown to be particularly
relevant to reveal the interplay between network structure and synchronization
dynamics on the network. However, less is known about the relationship between
the spectral and geometrical properties of complex networks. With the aim to
help fill this gap, here we characterize the spectral properties of the normalized
Laplacian matrix L associated with CNMs of dimension d. L has elements

Lij = δij − eij/ki, (5.7)

where eij define the adjacency matrix (with 0 entries for non-connected nodes
and 1 entries for connected ones) and ki is the degree of node i in the associated
network skeleton.

The normalized Laplacian has real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . In
a large number of complex networks, the second smallest (or Fiedler) eigenvalue
λ2 remains finite as the network size increases. In this case, the network is said
to present a spectral gap. On the contrary, CNMs, like regular lattices, have a
spectral gap that approaches zero for large network sizes (see figure 5.3). This
ensures that one can define the spectral dimension dS (see box 1.2.1), which
characterizes the power-law scaling of the density of eigenvalues ρ(λ) for λ� 1
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Figure 5.3: Spectral properties of Complex Network Manifolds. Panel
a shows the cumulative distribution of eigenvalues ρc(λ) for CNMs of dimension
d = 2, 3, 4. Solid (black) lines indicate the power-law fit of ρc(λ). Panel b shows
the cumulative distribution Pc(Y ) of the participation ratio Y of the CNMmodes
(legend is the same as in panel a). Data are extracted from a single realization
of CNMs of size N = 6400.

as (Rammal and Toulouse, 1983; Burioni and Cassi, 1996)

ρ(λ) ' λdS/2−1. (5.8)

ds can be calculated starting from the associated cumulative distribution ρc(λ)
determining the probability that a random eigenvalue is less than λ, i.e.

ρc(λ) =
∫ λ

0
dλ′ρ(λ′) ' λdS/2. (5.9)

For finite D-dimensional lattices, it holds that dS = D (where D is both the
Euclidean and the Hausdorff dimension) but, in general, the spectral dimension
does not have to coincide with the Hausdorff dimension of the network nor with
the dimension of the space it tessellates (Rammal and Toulouse, 1983; Wu et al.,
2015).

Remarkably, CNMs formed by d-dimensional simplices have spectral dimen-
sion

dS ' d (5.10)
as we have checked numerically for dimensions d = 2, 3, 4. Indeed, in figure 5.3a,
we show the cumulative eigenvalue distribution ρc(λ) and the fitted power-law
behavior for small λ, which yields dS = 2.00(2) for d = 2, dS = 3.02(4) for
d = 3, dS = 3.96(8) for d = 4.

The eigenvectors of the normalized Laplacian are also useful to reveal rele-
vant properties of the CNMs. Given that the normalized Laplacian is an asym-
metric matrix, it is characterized by a set of left uλL and a set of right eigenvectors
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uλR which, in general, do not coincide. Left and right eigenvectors associated
with the same eigenvalue are normalized according to the condition

N∑
i=1

uλi,Lu
λ′
i,R = δλ,λ′ . (5.11)

The localization of any given eigenvector can be quantified using the partici-
pation ratio Y , which is an indicator of the number of nodes on which such
an eigenvector has a significantly different from zero value, i.e.

Y =
[
N∑
i=1

(
uλi,Lu

λ
i,R

)2
]−1

. (5.12)

In figure 5.3b we show that a very large fraction of eigenvectors are localized on
a small fraction of nodes, as indicated by a small value of their participation
ratio Y compared with the total number of nodes of the network, N . This differs
from what happens in regular lattices, where eigenfunctions (oscillation modes)
are typically delocalized.

5.3 Synchronization dynamics
Synchronization of specialized groups of neurons is often regarded as a neural
basis for binding and integrating distributed information in the brain (Sporns et
al., 1989; Singer et al., 1997; Tononi et al., 1998), and it has been repeatedly re-
ported both on EEG and fMRI recordings of brain activity. It is now commonly
accepted that synchronization plays an important role in brain functioning and
dysfunctioning (Glass, 2001; Varela et al., 2001; Schnitzler and Gross, 2005;
Buzsaki, 2006; Uhlhaas and Singer, 2006) and some brain disorders such as
schizophrenia, epilepsy, autism and Alzheimer and Parkinson disease have been
associated with abnormal neural synchronization (Uhlhaas and Singer, 2006).
For instance, a prominent example of pathophysiologic neuronal synchronization
are epileptic seizures appearing in epilepsy, which affects approximately 1% of
the world’s population (Duncan et al., 2006).

The topological organization of brain connectomes has an important role in
enabling complex functionality and synchronization, and the wiring architecture
of mammalian and nematode neural systems shows several network attributes of
an efficient processing and communication structure (Kaiser and Varier, 2011;
Van Den Heuvel and Sporns, 2011), as discussed in section 1.2. For instance, a
number of recent computational models of epileptic activity take into account
the connectivity patterns of neural networks seen in the epileptic brain (Netoff
et al., 2004; Percha et al., 2005; Dyhrfjeld-Johnsen et al., 2007; Morgan and
Soltesz, 2008). Together with findings obtained from an in-vitro study (Srinivas
et al., 2007), these stress the importance of non-random synaptic topologies for
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hyper-excitability and synchronization, as well as for the emergence of certain
types of epileptic seizures. Network approaches are also expected to help inter-
preting the complex synchronization phenomena seen on the EEG of epilepsy
patients (Wendling et al., 2005; Feldt et al., 2007). However, little is known
about the effect of the network dimensionality on the emerging synchronization
phenomena. Consequently, here we go on to study the synchronization proper-
ties of coupled oscillators running on top of CNMs as a function of the network
dimensionality.

5.3.1 Synchronization model

Here we make use of the Kuramoto model (Kuramoto, 1975) to study synchro-
nization phenomena. This model is commonly used in brain research to simulate
the interaction of cortical brain areas by means of coupled phase oscillators, as
a way to model brain interactions through synchrony. Simulation studies em-
ploying the Kuramoto model have investigated synchronization patterns in the
cortical brain networks of the cat (Gómez-Gardeñes et al., 2010), the macaque
(Honey and Sporns, 2008) and the human (Kitzbichler et al., 2009; Villegas
et al., 2014), for instance, showing correspondence with resting-state functional
data supportive of the applicability of the model (Cabral et al., 2014; Vuksanović
and Hövel, 2014).

The oscillators obey a normalized Kuramoto dynamics (Kuramoto, 1975;
Strogatz, 2000; Pikovsky et al., 2003; Acebrón et al., 2005; Arenas et al., 2008).
This is a particular case of the Kuramoto model presented in chapter 1 (section
1.4.2), so that the phase θi of each node changes in time according to

θ̇i(t) = ωi + σ
N∑
j=1

eij
ki

sin(θj − θi), (5.13)

where σ is the control parameter tuning the overall coupling strength, and ωi
is the node’s internal frequency, which is independently drawn from a normal
distribution with mean 0 and variance 1, i.e. N (0, 1) 2. This definition corre-
sponds to a specific case of the Kuramoto model in which the coupling strength
between each pair of oscillators depends only on the degree of the input node:
σij = σ/ki. This is done in order to attenuate the effect of the heterogeneous
degree distributions and to emphasize that of network geometry.

In order to quantify the degree of synchronization, we employ the standard

2Previous studies on frustrated synchronization on complex networks have shown that
whereas the particular choice of the distribution can affect quantitatively the phase transi-
tion between an asynchronous and a synchronous phases, its qualitative properties are quite
robust (Villegas et al., 2014).
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Kuramoto order parameter, defined as in Eq. 1.26, namely

Z(t) = R(t)eiφ(t) = 1
N

∑
j

eiθj(t), (5.14)

where R(t) ∈ [0, 1] is a real variable (function of t) that quantifies the level
of global synchronization, and φ(t) gives the average global phase of collective
oscillations (Kuramoto, 1975; Watts and Strogatz, 1998; Pikovsky et al., 2003).

Several previous works have analyzed the effect that the underlying network
topology has on the synchronization properties of Kuramoto oscillators:

i) In fully connected networks, as well as in random Poissonian networks,
the dynamics of the Kuramoto model yields a continuous phase transition
from an incoherent state (with R ' 0) to a coherent one (with R ' 1) at
the critical coupling σc (Kuramoto, 1975; Strogatz, 2000; Acebrón et al.,
2005).

ii) In regular lattices of dimension d it has been shown that global synchro-
nization is only possible for d > 4; in dimensions 2 < d ≤ 4 only entrained
frequency synchronization, but not phase synchronization, is observed,
whereas in dimension d ≤ 2 synchronization is not observed (Hong et al.,
2005; Hong et al., 2007).

Furthermore, as mentioned above, it has been recently shown that also a regime
of frustrated synchronization – akin to a Griffith phase (Moretti and Muñoz,
2013) – characterized by global oscillations of R(t), can emerge in complex net-
works with hierarchical and modular structure (Villegas et al., 2014). This
regime has been previously associated only with large-world networks, i.e. net-
works with a finite Hausdorff dimension (Moretti and Muñoz, 2013). In what
follows we illustrate that it is the network spectral dimension what mostly de-
termines the resulting synchronization properties, so that small-world networks
– with an infinite Haussdorf dimension – of which CNMs are an example here,
can also display a regime of frustrated synchronization.

5.3.2 Synchronization and Frustrated Synchronization

Numerical analysis of the Kuramoto dynamics on CNMs reveals, for a wide
range of coupling values, a frustrated synchronization phase in which the global
order parameter has large temporal fluctuations. In figure 5.4 we show the global
order parameter R(Tf ) calculated at large times Tf for a given fixed CNM of size
N and given internal frequencies {ωi}i=1,2,...,N , and for different values of the
coupling σ; the same figure (bottom panels) also shows some examples of typical
time series of the global order parameter R(t) for D = 1, 2, 33. One can observe

3In the electronic supplementary material of Millán et al., 2018a we show activity movies
depicting the oscillator dynamics on top of the CNMs for some representative cases.
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Figure 5.4: Frustrated synchronization. (a-c) Synchronization order pa-
rameter R(Tf ) plotted versus the coupling strength σ respectively for D = 1,
D = 2 and D = 3, for a single network realization of N = 1600 nodes. Here,
we have taken Tf = 500 in all graphs. (d-f) R(t) time series respectively for
D = 1, D = 2 and D = 3, for σ values as indicated with the arrows in the cor-
responding a − c panels. Integration of system dynamics are carried out using
the MATLAB ode45 function, which uses a non-stiff 4-th order integration
algorithm with adaptive steps.

that there are regimes (of values of the coupling strength σ) in all dimensions
where the synchronization dynamics does not reach a steady state with small
fluctuations around a mean value. However, the capability of the network to
maintain a synchronized state depends on its dimension: while for D = 1 a
synchronized steady state is never reached, for D = 3 a synchronized phase
is observed (on a finite network) for large values of the coupling σ between
the oscillators. The synchronization properties in the case D = 2 reveal an
intermediate scenario with respect to the cases D = 1 and D = 3, with a wide
region of large oscillations of the global synchronization parameter R(Tf ), i.e.
frustrated synchronization.

In order to characterize the frustrated synchronization phase and to assess
whether a true synchronization transition is observed for CNMs of D = 2 and
D = 3, we have performed an extensive computational analysis of the considered
Kuramoto dynamics averaged over different CNMs and different realizations of
the internal frequencies. As a way to characterize network oscillations, in figure
5.5 the average order parameter R and its standard deviation σR, calculated
after a transient time, are shown as a function of the coupling constant σ. The
large values of the standard deviation indicate the region of the phase space in
which frustrated synchronization is observed. Our finite size analysis (see figure
5.5) reveals the strong influence of the CNM dimension on the macroscopic
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dynamics. In D = 1 global synchronization is never achieved for large network
sizes, indicating that in the large-size (thermodynamic) limit synchronization is
impossible. On the other hand, synchronization in CNMs withD = 2 andD = 3
is possible for small networks but gets delayed to higher couplings for increasing
system sizes, and a much broader regime of large fluctuations is observed in the
D = 2 case.

These numerical observations can be understood in connection with the spec-
tral dimension of the corresponding CNM. In fact, by linearizing the Kuramoto
dynamics, it is possible to extend the results obtained in Hong et al., 2005 for
regular lattices to complex networks with finite spectral dimension (Mulder and
Bianconi, 2018). These theoretical considerations reveal that for dS ≤ 2 net-
works cannot synchronize, whereas for dS > 4 there is always a critical value of
the coupling above which synchronization is possible. Finally, for 2 < dS ≤ 4
global synchronization is not possible but an entrained synchronized state can
be observed.

Interestingly, CNMs show that is possible to realize tessellations of a D = 3
space that have spectral dimension dS = 4. These networks have the critical
spatial dimension for the onset of the synchronized state. This suggests that
it could be possible to have marginal synchronization in three-dimensionally
embedded networks, such as cortical networks in the brain.

5.3.3 Spatio-temporal fluctuations of the order parameter

Here, we investigate further the regime of frustrated synchronization by char-
acterizing the spatio-temporal fluctuations of the order parameter. As a matter
of fact, CNMs are characterized by significantly modular structures that can be
revealed by community detection methods. Due to the geometrical structure
of the networks, nodes within each community are not only more densely con-
nected, but they also are close in the embedding space. In order to give a visual
representation of these communities, in figure 5.6 we visualize single instances
of CNMs in D = 1, D = 2, D = 3 and plot, by employing different colors, the
communities found by using a standard (Gen-Louvain) algorithm for community
detection (Blondel et al., 2008; Mucha et al., 2010).

Given a community partition, one can explore the differences between the
dynamical state of these communities with a “mesoscopic” synchronization pa-
rameter

Zmod,n(t) = Rmod(t)eiφmod(t) = 1
|Cn|

∑
i∈Cn

eiθi , (5.15)

where Cn is the set of nodes in the nth community and |Cn| indicates the total
number of nodes in the community. Here,

Rmod(t) = |Zmod(t)| (5.16)
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Figure 5.5: Synchronization transition. (a-c) Synchronization order param-
eter R, and (d-f) its variance σR for D = 1 (a,d), D = 2 (b,e) and D = 3
(c,f). Different lines are drawn for different networks sizes: N = 100 (blue),
200 (green), 400 (red), 800 (cyan), 1600 (pink) and 3200 (black). The data
are averaged over 50 realizations of the CNMs and the internal frequencies. A
finite size scaling analysis shows decay in the synchronization order parameter
with network size for every dimension (from 2 to 4) indicating that synchroniza-
tion fades away in the infinite-network-size (thermodinamic) limit (Hong et al.,
2007).

is a real variable taking values in the range [0, 1].
Figure 5.7 displays the trajectory of Zmod(t) in the complex plane for some

exemplary modules of CNMs in D = 1, 2, and D = 3, for coupling values that
maximize σR as indicated in the caption. In these plots, a circular trajectory
describes a situation in which Rmod(t) is constant in time, with full synchro-
nization of the module corresponding to Rmod(t) = 1. Random trajectories
around (0, 0) describe unsynchronized modules. Partially synchronized mod-
ules, on the other hand, may describe more complex, i.e. chaotic, trajectories.
We can distinguish between trajectories that oscillate within a circular crown
of relatively large radius, in which Rmod(t) oscillates between different states of
partial synchronization, and trajectories that visit the center (unsynchronized
state) too.

Figure 5.7 also displays the time series Rmod(t) and the spectral decompo-
sition S(f) of the temporal series Rmod(t)− 〈Rmod(t)〉 for the considered exem-
plary modules. Interestingly, the spectral decomposition shows that, whereas
some frequencies are in fact dominant, different modules can oscillate in rather
different ways, indicating diverse synchronization states.

This numerical analysis reveals the relevant spatio-temporal fluctuations ob-
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(a) (b) (c)

Figure 5.6: Geometric representation and community structure of
Complex Network Manifolds. CNMs of N = 400 nodes and dimension
D = 1 (a), D = 2 (b) and D = 3 (c) are visualized and their corresponding
community structures, as detected using the Gen-Louvain algorithm (Blondel
et al., 2008; Mucha et al., 2010), are indicated by different colors. D = 2
and D = 3 CNMs are displayed by using their holographic representation, as
indicated in section 5.2.1. In D = 2 the 2-dimensional coordinates indicate
the elevation and azimuth of the nodes on the surface of a sphere, respectively.
Finally, the D = 1 CNM is represented on a bounded 2-dimensional manifold.
The holographic 1-dimensional representation is equivalent to this one but all
links should be superimposed on the circumference.

served in the frustrated synchronization phase where different modules synchro-
nize at different frequencies. Due to the geometrical structure of CNMs, these
modules correspond to spatially localized regions.

5.3.4 Communities and localized eigenvectors

In order to reveal the relation between the community structure of CNMs and
their spectral decomposition, we have characterized the localization properties
of the eigenvectors on the network communities. To this end we have evaluated
for each eigenvector λ the community participation ratio YQ, defined as

YQ =

 C∑
n=1

∑
i∈Cn

uλi,Lu
λ
i,R

2

−1

, (5.17)

where Cn indicates the nth community and C is the total number of commu-
nities. The community participation ratio YQ ∈ [1, C] indicates the number of
communities on which the eigenmode is localized. Figure 5.8 indicates that a
large number of eigenvectors are localized in one or a few communities. Thus,
diverse modes are activated at different communities (and at different local cou-
pling strengths), justifying the emergence of local patches of synchronization
and overall frustrated synchronization. This therefore explains the fact that in
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Figure 5.7: Spatio-temporal fluctuations of the order parameter. (a-c)
Representative plots of the trajectory of the system on the phase space defined
by Re[Zmod], Im[Zmod] respectively for D = 1, σ = 5.0 (a), D = 2, σ = 3.5 (b)
and D = 3, σ = 3.0 (c). (d-f) Corresponding time series of Rmod(t), respectively
for panels a-c, with the time t in seconds. (g-i) Spectral decomposition S(f) of
the previous time series, with the frequency f in units of 103[t]−1, respectively
for D = 1, 2, 3.

the frustrated synchronization phase we observe a dynamics highly correlated
with the modular structure of the network.

5.3.5 Coarse graining of the frustrated synchronization dynam-
ics

As we have discussed on chapter 1, brain activity is typically measured by
coarse graining brain dynamics to the level of brain regions and constructing a
correlation matrices. Interestingly, different experiments might start from larger
of smaller partitions of the brain, corresponding to different levels of coarse
graining of the bottom level neuronal dynamics. Here we investigate the effect
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Figure 5.8: Localization of the eigenmodes. (a-c) Distribution P (YQ) of
the community participation ratio YQ of a single realization of N = 6400 nodes
of a CNM respectively D = 1, 2 and 3. The total number of communities in
these networks are: 30 (a), 18 (b) and 12 (c). Observe that Y can be larger in
lower dimensions; this is because the modularity is smaller in lower dimensions
and the community-detection algorithm divides the network in more communi-
ties. Modularity analyses are performed via the Generalized Louvain algorithm
(Blondel et al., 2008; Mucha et al., 2010).
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Figure 5.9: Correlations between modules and coarse graining of the
frustrated synchronization dynamics. The matrix of Pearson correlations
among the dynamical state of each pair of communities is reported for a fine
grained partition (a) and a coarse grained one (b) of a CNM of N = 1000 nodes
and dimension D = 2.

of coarse graining the frustrated synchronization dynamics on CNMs by using
the local order parameter Rmod,n, which describes the internal synchronization of
each module of the CNM, to compare the synchronization dynamics at different
levels of network coarse graining.

Consequently, we run twice the Gen-Louvain algorithm in order to obtain
a fine partition into modules of the CNM (with D = 2), whereas retaining
high modularity. This fine-grain partition is formed by 79 communities and
has Q = 0.66. We then measure the Pearson correlation coefficient between
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the activity (as indicated by Rmod,n) of every pair of modules (see figure 5.9a).
Subsequently, we coarse grain further these modules by reducing their number
to about one half, by considering the aggregation generated by running a single
linkage clustering to the correlation matrix (see figure 5.9b). The resulting coarse
grained partition is formed by 30 communities and has Q = 0.60.

We observe that the modularity of the coarse grained partition remains high,
thus revealing once more the coupling between the synchronization dynamics
and the network topology. Moreover, we find that the coarse grained dynamics
remains non-trivial, as revealed by a complex correlation matrix, indicating a
sort of invariance under network hierarchical coarse graining. A similar behavior
of the dynamics under coarse graining is observed in the frustrated synchroniza-
tion phase of CNMs of other dimensions D.

5.4 Discussion

In this chapter we have shown the rich interplay between network geometry and
synchronization dynamics by investigating the Kuramoto model running on top
of Complex Network Manifolds (CNMs). We have shown that these networks –
defined by discrete manifolds – combine the small-world property with a highly
modular structure in which frustrated synchronization characterized by spatio-
temporal fluctuations of the order parameter of the synchronization dynamics
emerge (Bianconi and Rahmede, 2015, 2016, 2017; Mulder and Bianconi, 2018).
Consequently, they provide an ideal theoretical setting to explore the interplay
between network geometry and brain dynamics.

In this chapter we have first presented (some of) the geometrical, spectral and
topological properties of CNMs build in dimension d. In doing so we have illus-
trated how a CNM build in dimension d can be seen as d-dimensional manifold
with boundary (in which the nodes are placed), or equivalently as the tessella-
tion of a D = d− 1 closed manifold. Furthermore, we have shown that, despite
being small-world (that is, with an infinite Hausdorff dimension), CNMs have
a spectral dimension equal to that of the embedding space, d = dS , as lattices
do. Interestingly, however, whereas the eigenvectors of lattices are de-localized
over the network, CNMs have a hierarchical-modular structure and consequently
their eigenvectors are localized in the network communities.

Given the determinant role of the spectral dimension of a network on its
emergent synchronization capabilities, we have then compared the synchroniza-
tion properties of CNMs of different dimensions. In particular, we observe that
both CNMs with D = 3 and D = 2 sustain a regime of frustrated synchroniza-
tion where spatio-temporal fluctuations of the order parameter are observed.
Consequently, our work in this chapter reveals that non-trivial synchronization
states can emerge even in small-world networks, with an infinite topological di-
mension, provided that the spectral dimension is finite. In this regime, network
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modules are characterized by different synchronization frequencies. However,
finite CNMs in D = 3 are much more favorable to sustain synchronized states
than CNMs in D = 2. Regions of frustrated synchronization provide an ideal
substrate for complex brain behavior, large dynamical repertoires, and optimal
trade-offs between local segregation and global integration (Villegas et al., 2014).

Moreover, our study shows evidence that CNMs that can be embedded in
dimension D = 3 may have spectral dimension dS = 4, i.e. the critical spectral
dimension for the onset of a global synchronous phase. This allows us to ob-
serve both a fully synchronized regime and a frustrated synchronization regime
on a finite network. These results help shedding light on the experimental find-
ing that 3D scaffolds of neuronal cultures favor neuronal network dynamics, as
recorded in calcium activity experiments, with respect to 2D geometries. They
further support the hypothesis that some relevant features of brain dynamics
are a consequence of its 3D topology, as experimentally observed by Severino
et al., 2016.

We finally show that the observed spatio-temporal fluctuations of the order
parameter associated with the frustrated synchronization regime appear when
the dynamics is strongly affected by localized eigenvectors. These identify “rare”
regions of activity, and drive the global oscillations of the synchronization global
order parameter. Consequently, on a wider perspective the work presented
in this chapter reveals the important role of the spectral dimension and the
localization of eigenvalues in promoting the frustrated synchronization phase.
Moreover, it opens new research lines to relate network geometry and brain
dynamics. In particular, whereas most previous studies have focused on the
topological structure of the networks, these findings indicate that the spectral
properties of cortical networks may also play a fundamental role in determining
its synchronization abilities. In the following chapter we provide a theoretical
framework for the numerical results presented here.



Chapter 6

Synchronization in Network
Geometries with Finite
Spectral Dimension

Recently there is a surge of interest in characterizing network geometry
and topology and their effect on the dynamics running on top of them.
This might be particularly relevant for the case of neural dynamics, in
which the underlying network of connections is greatly influenced by the
3D limited space where it develops. In this chapter we show that the
spectral dimension plays a fundamental role in establishing a clear rela-
tion between the topological and geometrical properties of a network and
its dynamics. Specifically, we explore the role of the spectral dimension
ds in determining the synchronization properties of the Kuramoto model.
We show that the synchronized phase can only be thermodynamically
stable for spectral dimensions above four and that phase entrainment of
the oscillators can only be found for spectral dimensions greater than
two. Given that in the previous chapter we showed that networks with
ds = 4 can be embedded in a 3D space, this implies that cortical neural
networks can have the critical dimension for the onset of full synchroniza-
tion, while also being able to display regimes of partial synchronization.
In order to prove the validity of our analytical predictions, we finally an-
alyze the emerging synchronization phenomena on an extended version of
the Complex Network Manifolds model used in chapter 5. As we show in
this chapter, in this extended framework the networks can show a frac-
tional spectral dimension too, giving rise to a more rich scenario. The
work presented here has been published in Millán et al., 2019a.
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6.1 Introduction

As we have seen in the previous chapter, CNMs made up by simplicial complexes
have an infinite Hausdorff dimension together with a modular structure and
a finite spectral dimension. Interestingly, it has been recently shown that is
is also possible to built up CNMs considering not only simplicial complexes
but also cell complexes made up by regular polytopes. This allows for more
degrees of freedom and the creation of networks with different spectral and
topological properties embedded in the same geometrical space (Bianconi and
Rahmede, 2015, 2016, 2017). Much like CNMs made up by simplicial complexes,
the network skeleton of cell complexes have also been show to display finite
spectral dimension, heterogeneous degree distribution, the small-world property
(infinite Hausdorff dimension dH =∞) and rich community structure on top of
an emergent hyperbolic geometry (Mulder and Bianconi, 2018). This suggests
that a finite spectral dimension is not only a very strong indication of a rich
underlying geometry of network structures, but is also compatible with the main
universal properties of complex networks, including brain networks (Bullmore
and Sporns, 2009; Sporns, 2011; Reimann et al., 2017; see also 1.2).

Predicting the properties of synchronization dynamics on network geome-
tries is a fundamental statistical mechanics problem that can be crucial to un-
derstanding the relationship between structural and functional brain networks
(Ódor and Hartmann, 2018). Even though the interplay between complex net-
work structure and synchronization dynamics has been extensively studied (Ku-
ramoto, 1975; Strogatz, 2000; Barahona and Pecora, 2002; Pikovsky et al., 2003;
Acebrón et al., 2005; Chavez et al., 2005; Arenas et al., 2008; Villegas et al.,
2014; Expert et al., 2017; Cota et al., 2018), so far most works have only consid-
ered complex networks where the smallest non-zero eigenvalue of the Laplacian
(the so called Fidler eigenvalue) is well separated from zero, i.e. the networks
display a spectral gap and do not display a finite spectral dimension. Moreover,
as we have largely argued in the previous chapter, and as recent work are starting
to point out, network geometry can have a profound effect on synchronization
dynamics (Severino et al., 2016; Reimann et al., 2017; Millán et al., 2018a). In
particular, it has been found that neuronal cultures have synchronization prop-
erties strongly affected by their dimensionality, so that 2D neuronal cultures
display weaker synchronization properties than neuronal cultures grown in 3D
scaffolds (Severino et al., 2016). Additionally, large-scale numerical models of
the brain generated in the framework of the Blue Brain project (Reimann et al.,
2017) reveal that neurons in the brain can be thought of as forming a simpli-
cial complex where neurons belonging to higher dimensional simplices are more
correlated.

In chapter 5 we shown numerical evidence that the synchronization dynamics
of Kuramoto oscillators (Kuramoto, 1975) running on top of CNMs are strongly
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influenced by the dimensionality of the network, and that strong spatio-temporal
fluctuations might appear depending on parameters (Millán et al., 2018a). In
this chapter we shed light in these numerical results by developing a theoretical
framework to investigate the synchronization properties of the Kuramoto model
on networks with a finite spectral dimension.

In particular, in this chapter we first characterize the spectral properties of
CNMs. We show that, despite having a finite spectral dimension as Euclidean
lattices do, CNMs, with their underlying hyperbolic network geometry (Bianconi
and Rahmede, 2017), are in fact very different from regular Euclidean lattices.
Thus, we demonstrate that in general the spectral dimension of a CNM does not
coincide with its geometrical dimension unless the underlying building blocks
are simpleces. Furthermore, a notable difference with lattices is that the eigen-
vectors of CNMs are not in general de-localized over the network as the Fourier
basis is on an Euclidean lattice. Instead, they can be very localized on a small
fraction of nodes, reflecting the symmetries and hierarchical-modular structure
of the network.

We then derive analytically general results on the predicted stability of the
synchronized phase in the linear approximation of the Kuramoto model, de-
pending on the spectral dimension of the underlying network. We thus extend
the known result for Euclidean lattices of dimension d, where the synchronized
phase of the Kuramoto model is thermodynamically stable only for d > 4 (Hong
et al., 2005; Hong et al., 2007), and show that in complex networks with fi-
nite spectral dimension, the Kuramoto model can yield a synchronized state
in the infinite network limit only for spectral dimensions dS > 4. For spectral
dimensions dS ∈ (2, 4] instead, only an entrained synchronization phase can be
observed in the large network limit, whereas we also prove that for dS ≤ 2 the
linear approximation is not valid due to the divergence of the correlations.

We analyze the effect of the localization of the eigenvectors of CNMs on the
properties of the entrained phase synchronization, which is known to display
strong spatio-temporal fluctuations of the order parameter (Millán et al., 2018a).
This phase, also called frustrated synchronization (Villegas et al., 2014; Cota
et al., 2018), has a very rich structure and can be interpreted as an extended
critical region to be related to the smeared phase observed in critical phenomena
on hyperbolic networks, such as percolation (Boettcher et al., 2012; Bianconi and
Ziff, 2018). Finally, we test our analytical results numerically and show evidence
that CNMs can display entrained phase synchronization also for dimensions
d > 4 as long as that the spectral dimension dS ≤ 4.

6.2 The spectral dimension

Diffusion on network structures is typically studied using the properties of suit-
ably defined Laplacian operators. On an undirected network of N nodes and
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adjacency matrix e, the normalized Laplacian L is a N ×N matrix of elements

Lij = δij −
eij
ki
. (6.1)

The normalized Laplacian operator is typically used for characterizing the ran-
dom walk on a given network, or a diffusion dynamics in which, starting from
each node i, there is a well defined probability of diffusion to every neighbor
node. For instance, the random walk can be characterized by studying the
equation for the probability πi(t) that a random walker is at node i at time t
given by

πi(t) = −
∑
j

Ljiπj(t− 1). (6.2)

Given the initial condition πi(0) = δi,i0 , this equation has solution

πi(t) =
∑
λ

e−λtuλi v
λ
i0 , (6.3)

where vλ and uλ are the right and left eigenvectors corresponding to the eigen-
value λ.

While L is asymmetric, an alternative definition of the normalized Laplacian
considers the symmetric matrix L̂ of elements

L̂ij = δij −
eij√
kikj

. (6.4)

Interestingly, is it easy to show that the spectrum of L and the spectrum of L̂
are the same. Therefore, although the normalized Laplacian L is asymmetric, it
has a real spectrum and non-negative eigenvalues. Additionally, the normalized
Laplacian L has the following spectral properties:

i) L has always one zero eigenvalue λ = 0 with degeneracy equal to the
number of components of the network. So if a network is connected the
zero eigenvalue has degeneracy one.

ii) In a connected network the right and left eigenvectors corresponding to
the zero eigenvalue λ = 0 are given by

vλ=0
i = 1√

〈k〉N
(1, 1, . . . 1),

uλ=0
i =

√
〈k〉N(µ1, µ2, . . . , µN ), (6.5)

where

µi = ki
〈k〉N

(6.6)
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is the invariant measure of the random walk on the network. The right vλ
and left uλ eigenvectors of L are related to the eigenvectors wλ of L̂ by

uλi =
√
kiw

λ
i ,

vλi = 1√
ki
wλi . (6.7)

Therefore, if follows that the elements uλi and vλi are simply related as

uλi = kiv
λ
i . (6.8)

Moreover, since the eigenvectors wλ are orthogonal, we have

N∑
i=1

uλi v
λ′
i =

N∑
i=1

(
wλi

)2
= δ(λ, λ′). (6.9)

iii) The effective number of nodes over which the λ eigenmode is localized can
be measured using the participation ratio Y (Millán et al., 2018a; see
also Sec. 5.2.2 in the previous chapter) defined as

Y =
[
N∑
i=1

(uλi vλi )2
]−1

=
[
N∑
i=1

(wλi )4
]−1

.

In networks with distinct geometrical properties, the density of eigenvalues
ρ(λ) of the normalized Laplacian follows the scaling relation

ρ(λ) ' λdS/2−1 (6.10)

for λ � 1, where dS is called the spectral dimension of the network. In d-
dimensional Euclidean lattices, dS = d. More in general, it can be shown that dS
is related to the Hausdorff dimension dH of the network by the dis-inequalities
(Jonsson and Wheater, 1998; Durhuus et al., 2007)

dH ≥ dS ≥ 2 dH
dH + 1 . (6.11)

Therefore, for small-world networks, which have infinite Hausdorff dimension
dH =∞, it is only possible to have finite spectral dimension dS ≥ 2.

We observe here that, in presence of a finite spectral dimension, the cumu-
lative distribution ρc(λ) evaluating the density of eigenvalues λ′ ≤ λ follows the
scaling

ρc(λ) ' λdS/2, (6.12)
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for λ � 1. In presence of a finite spectral dimension it is possible to evaluate
the scaling with the network size of the smallest non-zero eigenvalue λ2 of a
connected network (also called the the Fidler eigenvalue) by imposing that

ρc(λ2) = 1
N
, (6.13)

i.e. the eigenvalue λ2 is the smallest non zero eigenvalue. From this relation
and the scaling of the cumulative density of eigenvalues we get

λ2 ∝ N−2/dS . (6.14)

Therefore, the Fidler eigenvalue λ2 → 0 as N →∞ and we say that in the large
network limit the spectral gap closes.

6.3 Complex Network Manifolds: a model with tun-
able spectral dimension

As we have seen in the previous chapter, simplicial complexes and cell complexes
are natural objects to be considered when investigating network geometry. In
fact, they can be intuitively interpreted as geometrical network structures built
from geometrical building blocks. A pure d-dimensional simplicial complex, as
defined in chapter 1 (Sec. 1.3.3) is formed by d-dimensional simplices (fully
connected networks of d + 1 nodes) such as nodes (d = 0), links (d = 1),
triangles (d = 2) , tetrahedra (d = 3) etc., glued along their d − 1-faces1.
Interestingly, instead of simpleces, one can also construct geometrical complexes
by subsequently gluing together regular polytopes along their faces, constituting
the so-called cell complexes (Mulder and Bianconi, 2018).

The framework of Complex Network Manifolds (CNMs) can also be extended
to cell complexes in general, considering regular polytopes as their building
blocks. Therefore, initially (at time t = 1), the CNM is formed by a single
d-dimensional polytope. At any subsequent step (at time t > 1), a new d-
dimensional polytope is glued to a (d− 1)- face α with probability

Πα = 1− nα∑
α′(1− nα′)

, (6.15)

where nα is the incidence number of face α, given by the number of d-dimensional
polytopes incident to it minus one. Since in dimension d > 4 there are only three
types of convex regular polytopes, namely the simplices, the hypercubes and
the orthoplexes, here we focus on CNM formed by these d-dimensional building
blocks.

1A δ-face of a d-dimensional simplex, is a δ-dimensional simplex with δ < d formed by a
subset of its nodes, as defined in section 1.3.3.
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The resulting CNMs (Mulder and Bianconi, 2018) have exponential degree
distribution for d = 2 and power-law degree distribution for d > 2, with power-
law exponent γ given by

γ = 1 + F − 2
f − 2 , (6.16)

where F and f are respectively the number of faces of the regular polytope and
the number of (d− 1)-faces incident to each node. By using the fact that F and
f are given for the different regular polytopes of dimension d by

F = d+ 1, f = d, simplices,
F = 2d, f = d, hypercubes,
F = 2d, f = 2d−1, orthoplexes,

(6.17)

we derive that the power-law exponent γ of the degree distribution is given by

γ = 2 + 1
d−2 , simplices,

γ = 3 + 2
d−2 , hypercubes,

γ = 3 + 1
2(d−2)−1 , orthoplexes.

(6.18)

Interestingly, we notice that only CNM built using simplices have a scale-free
degree distribution with γ ∈ (2, 3] in dimension d > 2.

6.3.1 Spectral properties of CNMs

CNMs follow simple combinatorial rules that do not take into account any em-
bedding space. However, these structures display an emergent hyperbolic ge-
ometry characterized by an infinite Hausdorff dimension dH =∞ (the networks
are small-world, Millán et al., 2018a) together with a finite spectral dimension
dS ≥ 2.

In this section we investigate numerically the spectral properties of the skele-
ton of CNMs, that is, the network formed exclusively by its nodes and links.
Figure 6.1 shows the cumulative distribution of eigenvalues ρc(λ) as obtained
for the simplices (panel a), hypercubes (panel b) and orthoplexes (panel c), and
for dimensions d = 2, 3, 4 and 5, as indicated in the legend. A finite size study
of this spectrum reveals that λ2 approaches zero in the large network limit, as
predicted in presence of a finite spectral dimension dS . Moreover, ρc(λ) obeys
Eq. 6.12 for λ � 1, which allows us to obtain the spectral dimension dS as a
function of d (see figure 6.1d) by performing a power-law fit to ρc(λ) for λ� 1.
We notice that the spectral dimension dS increases with the dimension of the
regular polytope d for simplices, hypercubes and orthoplex as well. However,
the growth of dS with d saturates for hypercubes and orthoplexes, while it does
not appear to saturate for simplices. Therefore, we conclude that the spectral
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Figure 6.1: Cumulative distribution of eigenvalues and spectral dimen-
sion. (a-c) ρc(λ) for CNM of dimension d = 2, 3, 4 and 5, respectively for the
simplex, hypercube and orthoplex. (d) Fitted spectral dimension of CNMs as
a function of the dimension d of their building blocks. Results are for N = 6400
and the cumulative distribution of eigenevalue ρc(λ) is averaged over 100 real-
izations of the network.

dimension dS does not only depend on the dimension d of the polytopes form-
ing the building blocks of the cell complex, but also on the specific nature and
symmetry of these polytopes.

Finally, we also extend the results of the localization of the eigenvectors
of CNMs, obtained in the previous chapter for simplicial complexes, in figure
6.2. This reveals that the participation ratio Y follows a very heterogeneous
distribution P (Y ) (panels a, d and g of figure 6.2), including many eigenvectors
localized on a small number of nodes compared to the total number of nodes
of the network, as opposed to the Fourier basis of Euclidean lattices, for with
Y = N for all eigenmodes. Consequently, the cumulative distribution Pc(Y )
can be significantly high also for values of Y much smaller than the number of
nodes N of the network, i.e. Y � N (panels b, e and h of Fig. 6.2). Finally,
notice also that the dependence of the participation ratio Y on λ can be highly
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Figure 6.2: Participation ratio Y of CNMs. Probability distribution P (Y )
(a,d,g), cumulative distribution Pc(Y ) (b,e,h), and the average value of Y (λ)
(c,f,i), for CNMs formed by simplices (panels a, b, c), hypercubes (panels d, e, f)
and orthoplexes (panels g, h, i) of dimension d = 2, 3, 4, 5 as indicated in the
label.

non-trivial (panels c, f and i of Fig. 6.2) and it is likely to be affected by the
symmetries of the CNM (Sanchez-Garcia, 2018).

6.4 Kuramoto dynamics on networks with finite spec-
tral dimension

In order to study synchronization dynamics on CNMs – which we take as an
archetypal model of networks with finite spectral dimension – we consider the
Kuramoto model, as in chapter 5 (see also section 1.4.2). In particular, consider
a system of N coupled oscillators i = 1, 2, . . . , N with phases θi(t) obeying the
following dynamical equation,

θ̇i(t) = ωi + σ
N∑
j=1

eij
ki

sin(θj − θi), (6.19)
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where ki is the degree of node i, eij the adjacency matrix of the network, and σ
the control parameter tuning the strength of the coupling between nodes. Each
internal frequency ωi is independently drawn from a normal distribution with
mean 0 and variance 1, i.e. N (0, 1). We note that sometimes the Kuramoto
model is defined by omitting ki in Eq. 6.19, however our choice here is dictated
by the desire to screen out the effect of having heterogeneous degree distribu-
tions. Therefore, the considered dynamics is designed to be independent of the
degree distribution so that the effect of having networks with different spectral
dimension can be revealed.

6.4.1 Theoretical predictions

In order to study the stability of the synchronized phase, we have linearized the
Kuramoto dynamics in Eq. 6.19 assuming that |θi − θj | � 1 for every pair of
neighbor nodes. In this way we get the linear system of equations

θ̇i(t) = ωi − σ
N∑
j=1

Lijθj , (6.20)

for i = 1, 2, . . . , N , where L is defined in Eq. 6.1.
In order to evaluate the stability of the synchronized state, we use an ap-

proach already established for finite lattices (Hong et al., 2005; Hong et al.,
2007). Specifically we calculate the average fluctuation of the phases over the
entire network by evaluating W 2 given by

W 2 = 1
N

〈
N∑
i=1

[θi(t)− θ]2
〉
, (6.21)

where in Eq. 6.21 θ is given by

θ = 1
N

N∑
i=1

θi(t), (6.22)

in the linear approximation. In presence of a thermodynamically stable syn-
chronized phase, the average fluctuations of the phases W 2 should remain
bounded. Therefore, if W 2 diverges with the network size N , the synchronized
phase is unstable. By considering networks having a finite spectral dimension
dS we obtain (see appendix D) that, in the large network limit (N → ∞), W 2

diverges as long as dS ≤ 4. Specifically we can show that W 2 obeys the scaling

W 2 ∼


N4/dS−1 if dS < 4,
ln(N) if dS = 4,
const if dS > 4.

(6.23)
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It follows from this derivation that the synchronized state cannot be thermody-
namically stable in networks with spectral dimension dS ≤ 4.

The linear approximation is valid only if the coupling term of each oscillator
with the phases of the linked oscillators is small. Therefore in order for the linear
approximation to hold we must require that the vector Lθ has small elements.
A global parameter that can establish the sufficient condition for the failure of
the linear approximation is the correlation C defined as

C = 1
N

〈
θTLθ

〉
. (6.24)

In fact, if the correlation C diverges the linear approximation cannot be valid.
In a network with finite spectral dimension dS we have obtained (see detailed
derivation in appendix D) that C obeys the following scaling with N ,

C ∼


N2/dS−1 if dS < 2,
ln(N) if dS = 2,
const if dS > 2.

(6.25)

Therefore, for spectral dimension dS ≤ 2 the correlations among the phases of
nearest neighbor nodes diverge and the linear approximation fails.

So far we have shown that for spectral dimension dS < 2 the linear approx-
imation fails, while for spectral dimensions dS ∈ (2, 4] the linear approximation
can be valid but the synchronized phase is not thermodynamically stable. In or-
der to uncover the phenomenology for spectral dimensions dS ∈ (2, 4], we follow
the approach used by Hong et al., 2005; Hong et al., 2007 for regular lattices.
We start by characterizing the fluctuations observed in phase velocities across
the nodes of the network

V 2 = 1
N

N∑
i=1

〈[
ψi − ψ̄

]2〉
, (6.26)

where ψi indicates the phase velocity of node i,

ψi = θ̇i, (6.27)

and ψ̄ the average of the phase velocities over the network

ψ̄ = 1
N

N∑
i=0

ψi. (6.28)

In appendix D we show that, as long as the linear approximation is valid, i.e.
dS > 2, the fluctuations observed in phase velocities vanish in the large network
limit, i.e.

V 2 → 0 as N →∞. (6.29)

This analysis therefore reveals that for spectral dimensions dS ∈ (2, 4] phase
entrainment takes place as long as the linear approximation is valid.
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In summary, in this section we have shown that the stability of the syn-
chronized phase depends crucially on spectral dimension of the network.
In particular, we have shown that the linear approximation is only valid
for dS > 2, since the correlations among the phases of the nodes diverge
otherwise. For dS > 4 the synchronized phase is thermodynamically
stable, and finally for ds ∈ (2, 4] the synchronized phase is not thermody-
namically stable and phase entrainment of the oscillators occurs instead.

6.5 Kuramoto model on Complex Network Mani-
folds

In this section we test out theoretical predictions with numerical simulations
of the Kuramoto dynamics running over CNMs, which have a tunable spectral
dimension, as previously discussed (Sec. 6.2). The macroscopic state of syn-
chronization of the system at each time t is characterized by the Kuramoto order
parameter

Z(t) = R(t)eiφ(t) = 1
N

N∑
j=1

eiθj(t), (6.30)

where R(t) ∈ [0, 1] is a real variable that quantifies the level of global syn-
chronization, and φ(t) gives the average global phase of collective oscillations
(Kuramoto, 1975; Pikovsky et al., 2003). Therefore, R(t) ≈ 0 corresponds to
the noisy or non-coherent state, whereas R(t) ≈ 1 corresponds to the coherent
or synchronized state.

We simulated the Kuramoto dynamics by integrating the system of Eqs.
6.19 in MATLAB using the ode45 function, which uses a non-stiff 4-th order
integration algorithm with adaptive time steps. Simulations are run for a total
time Tf , and for different realizations of the CNMs, formed by d-dimensional
simplices, hypercubes and orthoplexes.

As expected from results in chapter 5 and our previous theoretical discussion,
our numerical analysis reveals that CNMs can display a frustrated synchroniza-
tion phase with fully entrained phases in which the global order parameter R(t)
has large temporal fluctuations. The typical range of values of the coupling
constants where we observe this phase depends both on the spectral dimension
dS and the network size N . In figure 6.4 we show single instances of the time
series R(t) of the global order parameter defined on CNMs of size N = 3200
for representative values of the coupling σ and for the different polytopes and
dimensions. Characteristic states of frustrated synchronization can be observed
for σ = 5.0 (red lines) and d = 3, 4 for CNMs formed by simplex, hypercubes
and orthoplex (panels d-i); and also for d = 5 for CNMs formed by hypercubes
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Figure 6.3: Exemplary time series of the synchronization parameter.
The time series are for σ = 5, 11 and 16, as indicated in the legend, and CNM
formed by simplices (a,d,g,j), hypercubes (b,e,h,k), and orthoplex (c,f,i,l) of
dimensions d = 2 (a-c), d = 3 (d-f), d = 4 (g-i), and d = 5 (j-l).
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Figure 6.4: Synchronization transition. Average order parameter R̄ and its
standard deviation stdR as functions of the coupling constant σ for CNM formed
by simplices (a-d), hypercubes (e-h), and orthoplexes (i-l), for dimension d = 2
(a,e,i), d = 3 (b,f,j), d = 4 (c,g,k), and d = 5 (d,h,l). Results are shown for
different network sizes N = 100, 200, 400, 800, 1600 and 3200 as indicated in
the legend. Results are for Tf = 1000 and have been averaged after equilibration
for 20 realizations of the networks and internal frequencies.
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and orthoplex (panels k and l).
In general, for CNMs formed by a finite number of nodes N , as the coupling

constant σ increases we can generally distinguish between three phases:

i) For very small values of the coupling constant σ, the order parameter
R(t) ≈ 0, i.e. the oscillators are not coherent (as shown for example in
panels a and b of figure 6.3).

ii) For large values of the coupling constant σ we observe a synchronized
phase and a stationary time-series of R(t) with large values of R(t) [see
for instance σ = 11.0 (green lines) and σ = 16.0 (blue lines) in panels a
and b of figure 6.4].

iii) In the intermediate range of values of the coupling constant σ, we observe
the frustrated synchronization regime of phase entrainment where the or-
der parameter R(t) is not stationary [see for instance σ = 5.0 (red lines)
in panels d− f of figure 6.4].

We now seek to investigate the thermodynamical stability of these phases in
the large network limit as a function of the spectral dimension dS . According
to the results in section 6.2, for d = 2 CNMs have spectral dimension dS ≈ 2,
whereas for 2 < d ≤ 5 CNMs formed by simplices have spectral dimension dS
that in first approximation can be assumed to be dS ≈ d and CNM formed by
hypercubes and orthoplexes have spectral dimension dS ∈ (2, 3). Consequently,
our theoretical expectation is that for d = 2 we cannot observe entrained phases,
that for 2 < d ≤ 4 we can observe entrained phases and the synchronized
phase cannot be thermodynamically stable. Moreover for d = 5 our predictions
are that CNMs formed by simplices can display a thermodynamically stable
synchronized phase while CNM formed by hypercubes and orthoplexes cannot
display a thermodynamically stable synchronized phase.

In order to test these predictions we have numerically studied as functions
of the coupling σ the mean value R̄ and the standard deviation stdR of the
order parameter R(t), averaged after the transient evolution over different real-
izations of CNMs. In particular, in figure 6.4 we display R̄ and stdR for CNM
formed by simplices, hypercubes and orthoplex of dimension d = 2, 3, 4, 5 and
increasing network sizes N . The de-coherent or unsynchronized phase corre-
sponds to the regime where R̄ is low. The synchronized phase corresponds to
the regime where R̄ is high and the fluctuations stdR are low. Finally, the frus-
trated synchronization phase corresponds to values of the coupling where both
R̄ and stdR have significantly high values. As the network size N increases we
observe different scenarios depending on the value of the spectral dimension dS .
For spectral dimension dS ≈ 2 in the large network limit the system remains in
the de-coherent state. This occurs for all considered CNM of dimension d = 2.
For spectral dimension dS ∈ (2, 4] we observe that the synchronized phase is not
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Figure 6.5: Orbit diagrams of the Kuramoto dynamics on CNMs.
The diagrams correspond to CNMs formed by simplices (a,d,g,j), hypercubes
(b,e,h,k), and orthoplexes (c,f,i,l) for d = 2, 3, 4 and 5, respectively from top
to bottom. The orbit diagrams are represented by the extremes (maxima and
minima) R∗ taken by R(t) for t > 0.8Tf . Results are for N = 3200, Tf = 1000
and a given realization of the networks structure.

thermodynamically stable as the values of coupling constant where the onset of
this phase is observed increase with the network size and do not converge to
a finite value. It occurs for CNM formed by simplices of dimension d = 3, 4
and for CNM formed by hypercubes and orthoplexes of dimension d = 3, 4, 5.
Finally for spectral dimension dS > 4 we observe that the synchronized phase
is thermodynamically stable as the onset of this phase occurs at a finite value
of σ in the large network limit (this is only observed for simpleces with d = 5).

The properties of the frustrated synchronization phase observed in CNMs are
here furthermore investigated by means of the orbit diagrams (Strogatz, 2018)
(see figure 6.5). These are measured as the extrema R∗ (maximum and mini-
mum) of the time series R(t) for each coupling σ. Therefore, a fixed stationary
state is represented by one point corresponding to the mean value, as it appears
in the synchronized state observed for high values of σ provided that d > 2.
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This situation corresponds to one of full synchronization if R∗ = 1 or to partial
synchronization if R∗ < 1, in which some nodes remain unsynchronized. For
spectral dimensions dS ∈ (2, 4], on the other hand, we observe that as the value
of the coupling constant σ is lowered and we enter in the frustrated synchro-
nization phase, oscillatory states appear with a given number of extrema that
depends on the network and frequency realization. These typically correspond
to intereference among different locally synchronized regions, whose sizes scale
as N (Millán et al., 2018a), which gives rise to a chaotic behavior as the coupling
constant σ is decreased. Finally, in the case dS ≈ d = 2 the synchronized state
is never reached.

In summary our numerical study of the synchronization properties of
CNM indicates that the phase diagram of the model depends critically on
the spectral dimension dS as predicted by our theoretical investigation.

6.6 Conclusions

This work investigates the role of the spectral dimension dS on the synchro-
nization properties of the Kuramoto model. Using a linear approximation we
have shown that the synchronized phase cannot be thermodynamically stable
for spectral dimension dS ≤ 4. Therefore a necessary condition to observe a
synchronized regime in the thermodynamic limit is that dS > 4. We have also
shown that the considered linear approximations cannot be valid for dS ≤ 2,
since the correlations C diverge. Finally, we have shown that a for spectral di-
mension dS ∈ (2, 4] phase entrainment takes place in the large network limit as
long as the linear approximation is valid, i.e. the fluctuations in phase velocities,
V 2, vanish asymptotically in time, so that the phases of the nodes are totally
entrained.

In order to consider a concrete example where to test these theoretical deriva-
tions, we have characterized the synchronization dynamics of the normalized
Kuramoto model taking place on Complex Network Manifolds which have a
tunable spectral dimension. These networks define discrete manifolds with the
small-world property (infinite Hausdorff dimension) and highly modular struc-
ture, and provide an ideal theoretical setting to explore the interplay between
network geometry and synchronization dynamics (Millán et al., 2018a).

CNMs have significant spectral properties and display a finite spectral di-
mension. In particular, we have found that CNMs based on simplicial complexes
have a spectral dimension dS increasing almost linearly with the dimension d of
the simplices, whereas CNMs formed by d-dimensional hypercubes and ortho-
plexes have a spectral dimension dS that saturates with d. Having a tunable
spectral dimension, CNMs can be compared to Euclidean lattices that have a
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spectral dimension dS equal to their Hausdorff dimension, i.e. dS = dH . How-
ever, CNMs have a hyperbolic structure with dH = ∞ and we always observe
dS < dH . Moreover, a closer look at the localization properties of the eigen-
vectors of CNMs reveals more significant differences with respect to Euclidean
lattices. In fact, contrarily to the Fourier eigenvector of Euclidean lattices, a
large fraction of eigenmodes of CNMs are highly localized on few nodes of the
network, reflecting the symmetries of the building block structure.

We have subsequently studied numerically the Kuramoto dynamics on CNMs
testing our theoretical predictions on the nature of the synchronization dynam-
ics as a function of the spectral dimension dS . We have shown that an entrained
synchronization regime emerges for spectral dimensions dS ∈ (2, 4] and that, for
this range of values of the spectral dimension, finite CNMs with high coupling
constant σ reach also a synchronized phase but this phase is not thermody-
namically stable. Moreover we show that for spectral dimension dS = 5 the
synchronized phase is thermodynamically stable.

In conclusion our work reveals that non-trivial synchronization states can
emerge even in small-world networks, with an infinite Hausdorff dimension pro-
vided that the spectral dimension is finite. These results reveal deep connections
between geometry and synchronization dynamics and are potentially very use-
ful to further investigate the relation between structural and functional brain
networks.



Final conclusions and outlook

“For the many, not the few”
Jeremy Corbyn

The brain is a paradigmatic example of a complex system with a wide and
rich dynamical repertoire arising from the non-linear dynamics of its billions
of constituents, connected in a non-trivial manner. As we presented in the
introduction to this thesis, approaches to understanding brain dynamics were
first made in a behavioral manner to then become increasingly precise in a
microscopic scale. It has been made clear, however, that an integrated view of
brain dynamics will be necessary if one seeks to explain how memory, speech,
or consciousness may emerge from those little cells and the connections among
them.

In this thesis we have tackled in the problem of the interplay between brain
structure and function, and how this may affect its emergent cognitive abilities.
We have thus considered the framework of biologically inspired neural networks,
that have long provided a means of relating cognitive processes, such as memory
or brain rhythms, with biophysical dynamics at the cellular level. In particular,
we have studied two fundamental problems in this thesis. Firstly, how the com-
plex structure of brain networks might develop from simple rules based on the
microscopical activity, and how this developing structure in turn affects neuronal
activity. Secondly, the establishment of a link between the inherent geometrical
structure of cortical networks and brain – and in particular synchronization –
dynamics.

Interplay between form and function in developing neural
networks

In chapter 2 we have presented a mathematical description of how neural net-
works might be formed during infancy and continue to develop through adult-
hood, and in particular during the process of synaptic pruning (SP). The pre-
sented model takes into account the intrinsic coupling of the developing network
– as given by a tunable preferential attachment model of SP (Johnson et al.,
2010a) – with neuronal physiology – as modeled by the Amari-Hopfield (AH)
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model (Amit, 1989). Taken separately, each of these models exhibits continuous
phase transitions between ordered and disordered phases: between memory and
noise in the AH model, and between heterogeneous and homogeneous networks
in the synaptic pruning one. Interestingly, the phases of the AH model are
known to depend on the underlying structure, so that, in the case of hetero-
geneous networks, the transition from memory to noise is delayed and occurs
at higher noise levels, eventually diverging with the size of the system (Torres
et al., 2004; Boccaletti et al., 2006; Oshima and Odagaki, 2007).

As a consequence of the form and function interplay, a feed-back loop ap-
pears in the coupled model such that heterogeneous networks can only develop
when the system is in a memory – or ordered – phase. Otherwise, the neu-
ronal currents leading synaptic growth and death become randomly distributed
and uncorrelated with the degrees of the nodes, eventually leading to a Poisson
(homogeneous) degree distribution. Interestingly, this memory-heterogeneity
coupling leads in the high noise region to the existence of a discontinuous tran-
sition with an associated region of bi-stability or co-existence of phases. In
particular, we have found the structure of the underlying network at the onset
of synaptic pruning to be determinant for the eventual structure and memory
capabilities of the system, so that an initially relatively heterogeneous neural
network is able to maintain a memory state despite the presence of high noise
in the system. The existing memory will in turn allow the network to become
more heterogeneous, thus stabilizing the memory state even further. On the
contrary, a homogeneous network in the same conditions will fall into the noisy
state (due to the high noise) and consequently remain homogeneous. The state
of the network prior SP is that crucial for its development. Our picture thus
addresses how neural activity can impact on early brain development.

In chapter 3 we explore further how learning a larger number of memories
– or patterns of activity – in a situation with thermal and structural noise
affects the emergent behavior of the system. We have found that heterogeneous
network can greatly improve the stability of the memory patterns, since its
structure is optimized to preserve information about them in the network hubs.
These correspond to the active neurons of the retrieved memories during the
recall process and play a central role in memory maintenance. Moreover, due
to the structural plasticity, once a pattern is retrieved, the ability of the system
to recall it again increases thanks to pruning optimization. This illustrates the
constructive role of synaptic pruning to consolidate memories in the memory
phase of the system.

Moreover, we have found that, due to the interplay between thermal noise,
the interference among stored patterns and the dynamics driving the evolution
of the topology, the memory attractors become unstable under certain condi-
tions, leading to oscillations of the activity of the system among different stored
memories. The reported oscillations appear on the homogeneous networks phase
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of the system, but they are associated with an increased heterogeneity. This is
caused by the transient existence of some relatively-high degree nodes, that
appear distributed through the network, creating a non-trivial time-dependent
competition among the different memories. Interestingly, the oscillations are not
periodic but present a power spectrum that decays as f−0.9 – so that there are
no preferred frequencies. This is to be related to experimental studies report-
ing the so-called 1/f noise in brain activity under healthy conditions (Chialvo,
2010).

The stability of the reported phases depends crucially on the stationary
synaptic density, so that a deficit on synaptic pruning, leading to increased
synaptic density, can cause an absence of dynamical memories. Similarly, high
frequency oscillations among patterns – and more tendency towards noisy be-
havior – occur in our model when there is a pruning excess that leads to a de-
creased connectivity. Interestingly, the existence of this oscillatory phase could
be relevant to enhance the learning and recalling of sequences of patterns of
activity, as in episodic memories, without invoking any external input (Marro
et al., 2008; Torres et al., 2008). Remarkably, short-term and episodic memory
are imparied in ASD subjects (Poirier et al., 2011; Lind et al., 2014), where also
a pruning defect has been observed (Tang et al., 2014), two independent obser-
vations that are linked by the results presented here. Similarly, schizophrenia
and related disorders are usually associated with erratic behavior, and also an
excessive pruning has been reported in some brain areas (Loh et al., 2007; Sekar
et al., 2016). Curiously, these results suggest that a lightly pruned brain – as in
the case of ASD – could be forced out of the memory phase into an oscillatory
regime by increasing the number of stored patterns, an observation that could
help experimental psychologists to design new cognitive strategies that might
help improving the cognitive abilities of patients with ASD. On the contrary, in
the case of schizophrenia a more convenient strategy would consist on stabilizing
some of the memory states, as for instance a few old useful memories.

In chapter 4, finally, we have analyzed the fundamental role of the high
synaptic density period that the brain goes through during infancy, inspired by
the finding in chapter 2 that the evolution of the system is strongly dependent
on the state in which synaptic pruning starts. We have thus introduced a high
fixed-density transient at the beginning of network evolution, which can allow
the network to maintain memory and heterogenize even under noisy conditions,
in a situation of high noisy and high pruning control parameter α (so that
the system can heterogenize). We have found a discontinuous transition as the
duration and intensity of the initial transient of high synaptic density increase,
in such a way that the stationary state of the system is determined by the degree
of heterogeneity when synaptic pruning begins. Interestingly, we have also found
that are is an optimal value of the initial high connectivity that allows for a faster
and more stable evolution towards the memory state, requiring a shorter time
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in the high density state. This is convenient in terms of energy consumption,
since less synapses have to be grown, maintained, and pruned. Therefore, it
could explain why brain networks do not create enormous numbers of synapses
during development.

A question this part of the thesis aimed to clarify is why brain development
proceeds via a severe synaptic pruning – that is, with an initial overgrowth of
synapses, followed by the subsequent atrophy of approximately half of them
throughout infancy. It is clear that fewer synapses require less metabolic en-
ergy, but why not start with the optimal synaptic density? Our adaptive neural
network model shows that the memory performance of the system does indeed
depend on whether it passed through a transient period of relatively high synap-
tic density. Furthermore, it also provides a simple demonstration of how network
structure can be optimized by pruning with a rule that only depends on local
information at each synapse – the intensity of electrical current – that is con-
sistent with empirical results on synaptic growth and death (Lee et al., 1980;
Klintsova and Greenough, 1999; De Roo et al., 2007). In this view, a neural net-
work would begin life as a more or less random structure with a sufficiently high
synaptic density that is capable of memory performance. Throughout infancy,
certain memory patterns are stored, and pruning gradually eliminates synapses
experiencing less electrical activity. Eventually, a network architecture emerges
which has lower mean synaptic density but is still capable, thanks to a more
optimal structure, of retrieving memories. Moreover, the network structure will
be optimized for the specific patterns it stored. This seems consistent with the
fact that young children can acquire memory patterns (such as languages or
artistic skills) which remain with them indefinitely, yet as adults they struggle
to learn new ones (Gómez and Gerken, 2000; Kolb and Gibb, 2011).

Interestingly, the reported feed-back loop between form and function might
be relevant not only to neural networks but also to other biological and en-
gineering systems that also evolve in time and activity dependent manner. In
particular, we have shown in chapter 2 that networks of proteins – which change
in an evolutionary time scale – show evidences of sharing the topological features
that emerge naturally from the adaptive network model presented in this thesis,
and may thus also benefit from the reported feedback loop between structure
and function.

Finally, it is worth noting that the model can be extended in various ways,
such as the consideration of learning or short-term synaptic plasticity, or more
realistic choices of neuronal and synaptic dynamics (Fares and Stepanyants,
2009; Knoblauch et al., 2014). Moreover, more elaborated definitions of the
probabilities of growth and death of synapses could also be considered, such
as a mechanism of self-organization towards the stationary mean connectivity
(Chechik et al., 1999; Arcangelis et al., 2006; Tetzlaff et al., 2010). Interest-
ingly, one could also consider biologically inspired pruning functions, character-
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izing specific dependences on the concentration of different proteins and growth
factors, that could be obtained experimentally – although to the best of our
knowledge it has not yet been done. Results in these chapters could thus mo-
tivate neurobiologists to design experiments to describe the exact probabilities
involved in synaptogenesis and pruning, information that could be easily incor-
porated in our theoretical framework.

Effect of network dimensionality on brain networks

In chapters 5 and 6 we have explored another aspect of the structure of neural
networks that might affect their emergent cognitive capabilities, which is that
of the network dimensionality. According to recent experimental works, the
synchronization properties of in-vitro neuronal cultures strongly depend on the
dimensionality of the substrate, so that 3D systems are able to display a more
varied regime of synchronization than 2D ones, and that they are also more
likely to display highly synchronized states (Severino et al., 2016). Following
these observations, we have studied synchronization dynamics, as defined by
the Kuramoto model, on top of a complex networks model called Complex Net-
works Manifolds (CNMs) that characterizes networks with a inherent geomet-
rical nature and relevant properties for neural networks. In particular, CNMs
combine the small-world (SW) property (i.e. infinite Hausdorff dimension) and
hierarchical-modular structure with a finite and tunable spectral dimension.

In this context, in chapter 5 we have studied CNMs based on simplicial
complexes of dimension d, which have relevant spectral properties. In particular,
we have shown that:

i) CNMs have a finite spectral dimension dS = d. Interestingly, we also show
that CNMs build in dimension d can be embedded in a d− 1-dimensional
manifold, so that one could hypothesize that cortical networks in a 3D
space could actually have dS = 4.

ii) The eigenvectors of CNMs are localized in the network communities, as
opposed to those of regular lattices, which are de-localized over the entire
network.

We have then shown the fundamental role of these properties on synchronization
dynamics:

i) We have found the emergence of a wide region of frustrated synchronization
– where spatio-temporal fluctuations of the order parameter are observed
– due to the localization of the eigenvectors on the network communities.
This demonstrates that frustrated synchronization can emerge even in
SW networks with an infinite Hausdorff dimension as long as the spectral
dimension is finite.
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ii) CNMs with d = 4 are more likely to sustain synchronized states than
CNMs in d = 3, 2 when the system size increases. Together with the
finding that CNMs with ds = d can be embedded in (d − 1)-dimensional
spaces, this suggest that in-vivo brain networks could present enhanced
synchronization properties due to their non-trivial geometrical structure.

Finally, in chapter 6 we have demonstrated theoretically that the synchro-
nization state of the Kuramoto model in the thermodynamical limit depends
crucially on the spectral dimension dS . Using a linear approximation, we have
shown that the synchronized phase cannot be thermodynamically stable for
spectral dimension dS ≤ 4, whereas for dS ∈ (2, 4] only phase entrainment can
take place in the large network limit as long as the linear approximation is valid.
Finally we have shown that the considered linear approximation cannot be ap-
plied for dS ≤ 2, since the correlations C diverge. We have then tested our
theoretical results with numerical simulations of the Kuramoto model running
on top of an extended version of the Complex Network Manifolds framework
that considers not only simplicial complexes but also cell complexes made up
by hypercubes and orthoplexes. This allows for a more tunable (and fractional)
spectral dimension, thus providing an ideal theoretical setting to explore the in-
terplay between network geometry and synchronization dynamics. In particular,
whereas for CNMs based on simplicial complexes dS ≈ d, the spectral dimen-
sion of CNMs formed by d-dimensional hypercubes and orthoplexes eventually
saturates. We have also found that a large fraction of eigenmodes of CNMs
are highly localized on a few nodes of the network, reflecting the symmetries
of the building blocks structure. We have then studied numerically the Ku-
ramoto dynamics running on top of CNMs. We have found that a frustrated
synchronization regime with entrained phases emerges for spectral dimensions
dS ∈ (2, 4]. For this range of values of dS , finite CNMs with high coupling
constant σ also reach a synchronized phase. However, this phase is not thermo-
dynamically stable as the minimum coupling σ necessary to reach the synchro-
nized state diverges with the network size. On contrary, we have shown that for
spectral dimension dS = 5 the synchronized phase is thermodynamically stable.

In conclusion, our work in chapters 5 and 6 exposes that non-trivial syn-
chronization states can emerge even in small-world networks, with an infinite
Hausdorff dimension provided that the spectral dimension is finite. These re-
sults reveal deep connections between geometry and synchronization dynamics
and might provide an useful approach to further investigate, for instance, the
relation between structural and functional brain networks.

Some of the fundamental problems in science and society reside in finding
an appropiate description of real systems when these involve complex non-linear
dynamics, or are too large, or not large enough; i.e., the problem to move from
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the few – the detailed microscopical description of individual elements – to the
many – the collectivity, e.g. the brain. With the models and results presented
in this thesis we hope to have highlighted the necessary interplay between a
system’s activity dynamics and structure, when both are heterogeneous and
non-linear. In such situation, we have seen that non-equilibrium phases can
emerge, with the associated phase transitions, suggesting novel paths to unveil,
for instance, different brain functions or cognitive deficit associated to neuro-
logical disorders. This is of intrinsic relevance for the statitiscal physicist – it is
fun – but it seems also fundamental to understand how thoughts are thought...
and how theses are written.
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“Fast response and temporal coherent oscillations in small-world networks.”
Physical Review Letters 110.84.

Laing, C. R. (2009). “Chimera states in heterogeneous networks.” Chaos: An
Interdisciplinary Journal of Nonlinear Science 19.1.

Lapicque, L. (1907). “Recherches quantitatives sur l’excitation electrique des
nerfs traitee comme une polarization.” Journal de Physiologie et de Patholo-
gie Generalej 9.

Latora, V. and M. Marchiori (2001). “Efficient behavior of small-world net-
works.” Physical Review Letters 87.19.

Lee, K. S., F. Schottler, M. Oliver, and G. Lynch (1980). “Brief bursts of high-
frequency stimulation produce two types of structural change in rat hip-
pocampus.” Journal of Neurophysiology 44.2.

Leicht, E. A. and M. E. J. Newman (2008). “Community Structure in Directed
Networks.” Physical Review Letters 100 (11).

Leistedt, S. J. et al. (2009). “Altered sleep brain functional connectivity in
acutely depressed patients.” Human Brain Mapping 30.7.

Lenz, W. (1920). “Beitrag zum Verständnis der magnetischen Erscheinungen in
festen Körpern.” Z. Phys. 21.

Leone, M., A. Vázquez, A. Vespignani, and R. Zecchina (2002). “Ferromagnetic
ordering in graphs with arbitrary degree distribution.” The European Phys-
ical Journal B-Condensed Matter and Complex Systems 28.2.

Leung, C. and H. Chau (2007). “Weighted assortative and disassortative net-
works model.” Physica A: Statistical Mechanics and its Applications 378.2.



Bibliography 187

Levina, A., J. M. Herrmann, and T. Geisel (2007). “Dynamical synapses causing
self-organized criticality in neural networks.” Nature physics 3.12.

Lewis, M. D. and R. M. Todd (2007). “The self-regulating brain: Cortical-
subcortical feedback and the development of intelligent action.” Cognitive
Development 22.4.

Li, S. et al. (2004). “A map of the interactome network of the metazoan C.
elegans.” Science.

Lind, S. E., D. M. Williams, D. M. Bowler, and A. Peel (2014). “Episodic mem-
ory and episodic future thinking impairments in high-functioning autism
spectrum disorder: An underlying difficulty with scene construction or self-
projection?” Neuropsychology 28.1.

Linkenkaer-Hansen, K., V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi
(2001). “Long-range temporal correlations and scaling behavior in human
brain oscillations.” Journal of Neuroscience 21.4.

Lionni, L. (2018). Colored discrete spaces: higher dimensional combinatorial
maps and quantum gravity. Springer.

Litwin-Kumar, A. and B. Doiron (2014). “Formation and maintenance of neu-
ronal assemblies through synaptic plasticity.” Nature Communications 5.

Liu, G. et al. (2017). “Functional diversity of topological modules in human
protein-protein interaction networks.” Scientific Reports 7.1.

Loh, M., E. T. Rolls, and G. Deco (Nov. 2007). “A Dynamical Systems Hypoth-
esis of Schizophrenia.” PLoS Computational Biology 3.11.

Low, L. K. and H.-J. Cheng (2006). “Axon pruning: an essential step underlying
the developmental plasticity of neuronal connections.” Philosophical Trans-
actions of the Royal Society of London B: Biological Sciences 361.1473.

Luo, L. and D. D. O’Leary (2005). “Axon retraction and degeneration in devel-
opment and disease.” Annual Review of Neuroscience 28.

Lux, T. and M. Marchesi (1999). “Scaling and criticality in a stochastic multi-
agent model of a financial market.” Nature 397.6719.

Malamud, B. D., G. Morein, and D. L. Turcotte (1998). “Forest fires: an example
of self-organized critical behavior.” Science 281.5384.

Markram, H., J. Lübke, M. Frotscher, and B. Sakmann (1997). “Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs.” Science
275.5297.

Marro, J., J. Torres, and J. Cortes (2008). “Complex behavior in a network
with time-dependent connections and silent nodes.” Journal of Statistical
Mechanics: Theory and Experiment 2008.02.

Marro, J. and D. R. Chialvo (2017). La mente es crítica: descubriendo la ad-
mirable complejidad del cerebro. Universidad de Granada.

Marro, J. and R. Dickman (2005). Nonequilibrium phase transitions in lattice
models. Cambridge University Press.



188 Bibliography

Marro, J., J. J. Torres, and J. M. Cortés (2007a). “Chaotic hopping between
attractors in neural networks.” Neural Networks 20.2.

Marro, J., J. J. Torres, and J. M. Cortés (2007b). “Chaotic hopping between
attractors in neural networks.” Neural Networks 20.2.

Maslov, S. and K. Sneppen (2002). “Specificity and stability in topology of
protein networks.” Science 296.5569.

Masoli, S., S. Solinas, and E. D’Angelo (2015). “Action potential processing in
a detailed Purkinje cell model reveals a critical role for axonal compartmen-
talization.” Frontiers in Cellular Neuroscience 9.

Masuda, N. and K. Aihara (2004). “Global and local synchrony of coupled neu-
rons in small-world networks.” Biological Cybernetics 90.4.

Matias, F. et al. (2015). “On the basic mechanisms of anticipated synchroniza-
tion in neuronal circuits.” BMC neuroscience 16.1.

McCulloch, W. S. and W. Pitts (1943). “A logical calculus of the ideas immanent
in nervous activity.” The Bulletin of Mathematical Biophysics 5.4.

Mejías, J. F. (2009). “Short-term synaptic plasticity: computational implications
in the emergent behavior of neural systems.” PhD thesis. Universidad de
Granada.

Mejías, J. F., B. Hernandez-Gomez, and J. J. Torres (2012). “Short-term synap-
tic facilitation improves information retrieval in noisy neural networks.” Eu-
rophysics Letters 97.4.

Mejías, J. F., H. J. Kappen, and J. J. Torres (2010). “Irregular dynamics in up
and down cortical states.” PLoS One 5.11.

Mejías, J. F. and J. J. Torres (2009). “Maximum memory capacity on neural
networks with short-term synaptic depression and facilitation.” Neural Com-
putation 21.3.

— (2011). “Emergence of resonances in neural systems: the interplay between
adaptive threshold and short-term synaptic plasticity.” PLoS One 6.3.

Melamed, O. et al. (2008). “Slow oscillations in neural networks with facilitating
synapses.” Journal of Computational Neuroscience 25.2.

Millán, A. P., J. J. Torres, and G. Bianconi (2018a). “Complex Network Geom-
etry and Frustrated Synchronization.” Scientific Reports 8.9910.

Millán, A. P., J. J. Torres, S. Johnson, and J. Marro (2018b). “Growth strategy
determines network performance.” arXiv:1806.01878.

Millán, A. P., J. J. Torres, S. Johnson, and J. Marro (2018c). “Concurrence of
form and function in developing networks and its role in synaptic pruning.”
Nature Communications 9.1.

Millán, A. P., J. J. Torres, and G. Bianconi (2019a). “Synchronization in network
geometries with finite spectral dimension.” Physical Review E 99.2.

Millán, A. P., J. J. Torres, and J. Marro (2019b). “How Memory Conforms to
Brain Development.” Frontiers in Computational Neuroscience 13.



Bibliography 189

Millán, A., J. Torres, S. Johnson, and J. Marro (2015). “Evolution of brain
network structure under a critical condition as induced by local currents.”
Int. J. Complex Systems in Science 5.1.

Millman, D., S. Mihalas, A. Kirkwood, and E. Niebur (2010). “Self-organized
criticality occurs in non-conservative neuronal networks during ’up’ states.”
Nature physics 6.10.

Mimura, K., T. Kimoto, and M. Okada (2003). “Synapse efficiency diverges due
to synaptic pruning following overgrowth.” Physical Review E 68.3.

Mitra, B., N. Ganguly, S. Ghose, and F. Peruani (2008). “Generalized theory
for node disruption in finite-size complex networks.” Physical Review E 78.2.

Miyamoto, A., H. Wake, A. J. Moorhouse, and J. Nabekura (2013). “Microglia
and synapse interactions: fine tuning neural circuits and candidate molecules.”
Frontiers in cellular neuroscience 7.

Modha, D. S. and R. Singh (2010). “Network architecture of the long-distance
pathways in the macaque brain.” Proceedings of the National Academy of
Sciences 107.30.

Mongillo, G., O. Barak, and M. Tsodyks (2008). “Synaptic theory of working
memory.” Science 319.5869.

Morelli, L. G., G. Abramson, and M. N. Kuperman (2004). “Associative mem-
ory on a small-world neural network.” The European Physical Journal B-
Condensed Matter and Complex Systems 38.3.

Moretti, P. and M. A. Muñoz (2013). “Griffiths phases and the stretching of
criticality in brain networks.” Nature Communications 4.

Morgan, R. J. and I. Soltesz (2008). “Nonrandom connectivity of the epileptic
dentate gyrus predicts a major role for neuronal hubs in seizures.” Proceedings
of the National Academy of Sciences 105.16.

Mori, S. and J.-D. Tournier (2013). Introduction to diffusion tensor imaging:
And higher order models. Academic Press.

Morrison, A., M. Diesmann, and W. Gerstner (2008). “Phenomenological models
of synaptic plasticity based on spike timing.” Biological cybernetics 98.6.

Moussaïd, M. et al. (2009). “Experimental study of the behavioural mechanisms
underlying self-organization in human crowds.” Proceedings of the Royal So-
ciety B: Biological Sciences 276.1668.

Mucha, P. J. et al. (2010). “Community structure in time-dependent, multiscale,
and multiplex networks.” Science 328.5980.

Mulder, D. and G. Bianconi (2018). “Network Geometry and Complexity.” Jour-
nal of Statistical Physics 173.3-4.

Muñoz, M. A. (2018). “Colloquium: Criticality and dynamical scaling in living
systems.” Reviews of Modern Physics 90.3.

Muñoz, M. A., R. Juhász, C. Castellano, and G. ódor (2010). “Griffiths phases
on complex networks.” Physical Review Letters 105.12.



190 Bibliography

Muscoloni, A. et al. (2017). “Machine learning meets complex networks via
coalescent embedding in the hyperbolic space.” Nature Communications 8.1.

Nakamura, T. et al. (2007). “Universal scaling law in human behavioral organi-
zation.” Physical Review Letters 99.13.

Navlakha, S., A. L. Barth, and Z. Bar-Joseph (July 2015). “Decreasing-Rate
Pruning Optimizes the Construction of Efficient and Robust Distributed
Networks.” PLoS Computational Biology 11.7.

Netoff, T. I. et al. (2004). “Epilepsy in small-world networks.” Journal of neu-
roscience 24.37.

Newman, M. E. J. (2006). “Modularity and community structure in networks.”
Proceedings of the National Academy of Sciences 103.23.

Newman, M. E. J. (2002). “Assortative Mixing in Networks.” Physical Review
Letters 89 (20).

— (2004). “Fast algorithm for detecting community structure in networks.”
Physical Review E 69 (6).

Newman, M. E. (2003). “The structure and function of complex networks.” SIAM
Review 45.2.

— (2011). Networks: an introduction. Oxford University Press.
Niedermeyer, E. and F. L. da Silva (2005). Electroencephalography: basic princi-

ples, clinical applications, and related fields. Lippincott Williams & Wilkins.
Nimmerjahn, A., F. Kirchhoff, and F. Helmchen (2005). “Resting microglial

cells are highly dynamic surveillants of brain parenchyma in vivo.” Science
308.5726.

Noest, A. J. (1986). “New universality for spatially disordered cellular automata
and directed percolation.” Physical review letters 57.1.

Norton, L. et al. (2012). “Disruptions of functional connectivity in the default
mode network of comatose patients.” Neurology.

Nykter, M. et al. (2008). “Gene expression dynamics in the macrophage exhibit
criticality.” Proceedings of the National Academy of Sciences 105.6.

Ódor, G. (2013). “Spectral analysis and slow spreading dynamics on complex
networks.” Physical Review E 88.3.

Ódor, G. and B. Hartmann (2018). “Heterogeneity effects in power grid network
models.” Physical Review E 98.2.

Oh, S. W. et al. (2014). “A mesoscale connectome of the mouse brain.” Nature
508.7495.

Onnela, J.-P., J. Saramäki, J. Kertész, and K. Kaski (2005). “Intensity and
coherence of motifs in weighted complex networks.” Physical Review E 71
(6).

Onsager, L. (1944). “Crystal statistics. I. A two-dimensional model with an
order-disorder transition.” Physical Review 65.3-4.

Oppenheim, R. W. (1989). “The neurotrophic theory and naturally occurring
motoneuron death.” Trends in Neurosciences 12.7.



Bibliography 191

Oriti, D. (2001). “Spacetime geometry from algebra: spin foam models for non-
perturbative quantum gravity.” Reports on Progress in Physics 64.12.

Oshima, H. and T. Odagaki (2007). “Storage capacity and retrieval time of
small-world neural networks.” Physical Review E 76.3.

Palla, G., I. Derényi, I. Farkas, and T. Vicsek (2005). “Uncovering the over-
lapping community structure of complex networks in nature and society.”
Nature 435.814.

Panaggio, M. J. and D. M. Abrams (2015). “Chimera states: coexistence of
coherence and incoherence in networks of coupled oscillators.” Nonlinearity
28.3.

Pantic, L., J. J. Torres, H. J. Kappen, and S. C. A. M. Gielen (2002). “Associa-
tive Memory with Dynamic Synapses.” Neural Computation 14.12.

Paolicelli, R. C. et al. (2011). “Synaptic pruning by microglia is necessary for
normal brain development.” science 333.6048.

Papadopoulos, L., M. A. Porter, K. E. Daniels, and D. S. Bassett (2018). “Net-
work analysis of particles and grains.” Journal of Complex Networks 6.4.

Pastor-Satorras, R., A. Vázquez, and A. Vespignani (2001). “Dynamical and
Correlation Properties of the Internet.” Physical Review Letters 87 (25).

Pearce, J. (2009). “Marie-Jean-Pierre flourens (1794–1867) and cortical local-
ization.” European neurology 61.5.

Percha, B., R. Dzakpasu, M. Żochowski, and J. Parent (2005). “Transition from
local to global phase synchrony in small world neural network and its possible
implications for epilepsy.” Physical Review E 72.3.

Peretto, P. (1992). An introduction to the modeling of neural networks. Vol. 2.
Cambridge University Press.

Perry, V. H. and V. O’Connor (2010). “The role of microglia in synaptic stripping
and synaptic degeneration: a revised perspective.” ASN neuro 2.5.

Petanjek, Z. et al. (2011). “Extraordinary neoteny of synaptic spines in the
human prefrontal cortex.” Proceedings of the National Academy of Sciences
108.32.

Petermann, T. et al. (2009). “Spontaneous cortical activity in awake monkeys
composed of neuronal avalanches.” Proceedings of the National Academy of
Sciences 106.37.

Peters, O. and J. D. Neelin (2006). “Critical phenomena in atmospheric precip-
itation.” Nature Physics 2.6.

Petri, G. and A. Barrat (2018). “Simplicial Activity Driven Model.” arXiv preprint
arXiv:1805.06740.

Petri, G. et al. (2014). “Homological scaffolds of brain functional networks.”
Journal of The Royal Society Interface 11.101.

Pikovsky, A., M. Rosenblum, and J. Kurths (2003). Synchronization: a universal
concept in nonlinear sciences. Vol. 12. Cambridge University Press.



192 Bibliography

Piraveenan, M., M. Prokopenko, and A. Y. Zomaya (2008). “Local assortative-
ness in scale-free networks.” Europhysics Letters 84.2.

Poil, S.-S., R. Hardstone, H. D. Mansvelder, and K. Linkenkaer-Hansen (2012).
“Critical-state dynamics of avalanches and oscillations jointly emerge from
balanced excitation/inhibition in neuronal networks.” Journal of Neuroscience
32.29.

Poirier, M., J. S. Martin, S. B. Gaigg, and D. M. Bowler (2011). “Short-term
memory in autism spectrum disorder.” Journal of Abnormal Psychology
120.1.

Presumey, J., A. R. Bialas, and M. C. Carroll (2017). “Advances in Immunology.”
Vol. 135. Academic Press. Chap. Chapter Two - Complement System in
Neural Synapse Elimination in Development and Disease.

Purves, D. et al. (2018). Neuroscience. Oxford University Press.
Puschmann, T. B. et al. (2013). “Bioactive 3D cell culture system minimizes

cellular stress and maintains the in vivo-like morphological complexity of
astroglial cells.” Glia 61.3.

Rabinovich, M. I., P. Varona, A. I. Selverston, and H. D. Abarbanel (2006).
“Dynamical principles in neuroscience.” Reviews of Modern Physics 78.4.

Raichle, M. E. (2011). “The restless brain.” Brain Connectivity 1.1.
Raichle, M. E. and M. A. Mintun (2006). “Brain Work and Brain Imaging.”

Annual Review of Neuroscience 29.1. PMID: 16776593. eprint: https://
doi.org/10.1146/annurev.neuro.29.051605.112819.

Raichle, M. E. et al. (2001). “A default mode of brain function.” Proceedings of
the National Academy of Sciences 98.2. eprint: https://www.pnas.org/
content/98/2/676.full.pdf.

Rakic, P. et al. (1986). “Concurrent overproduction of synapses in diverse regions
of the primate cerebral cortex.” Science 232.4747.

Rammal, R. and G. Toulouse (1983). “Random walks on fractal structures and
percolation clusters.” Journal de Physique Lettres 44.1.

Ramón y Cajal, S. (1911). “Histologie du syste me nerveux de I’Homme et des
verte be s.” Maloine (Paris) 2.

— (1995). Histology of the Nervous System of Man and Vertebrates (History of
Neuroscience, No 6)(2 Volume Set). Oxford: Oxford University Press.

Rauch, E. M., M. M. Millonas, and D. R. Chialvo (1995). “Pattern formation
and functionality in swarm models.” arXiv preprint adap-org/9507003.

Reimann, M. W. et al. (2017). “Cliques of neurons bound into cavities provide
a missing link between structure and function.” Frontiers in Computational
Neuroscience 11.

Ren, J., J. Wang, M. Li, and L. Wang (2013). “Identifying protein complexes
based on density and modularity in protein-protein interaction network.”
BMC Systems Biology 7.4.

https://doi.org/10.1146/annurev.neuro.29.051605.112819
https://doi.org/10.1146/annurev.neuro.29.051605.112819
https://www.pnas.org/content/98/2/676.full.pdf
https://www.pnas.org/content/98/2/676.full.pdf


Bibliography 193

Romani, S., D. J. Amit, and G. Mongillo (2006). “Mean-field analysis of selective
persistent activity in presence of short-term synaptic depression.” Journal of
Computational Neuroscience 20.2.

Rubinov, M. and E. Bullmore (2013). “Fledgling pathoconnectomics of psychi-
atric disorders.” Trends in Cognitive Sciences 17.12.

Sadek, R. A. (2013). “Regional atrophy analysis of MRI for early detection
of alzheimer’s disease.” International Journal of Signal Processing, Image
Processing and Pattern Recognition 6.1.

Safari, A., P. Moretti, and M. A. Muñoz (2017). “Topological dimension tunes
activity patterns in hierarchical modular networks.” New Journal of Physics
19.11.

Salnikov, V., D. Cassese, and R. Lambiotte (2018). “Simplicial complexes and
complex systems.” European Journal of Physics 40.1.

Sanchez-Garcia, R. J. (2018). “Exploiting symmetry in network analysis.” arXiv
preprint arXiv:1803.06915.

Santo, S. di, P. Villegas, R. Burioni, and M. A. Muñoz (2018). “Landau–Ginzburg
theory of cortex dynamics: Scale-free avalanches emerge at the edge of syn-
chronization.” Proceedings of the National Academy of Sciences 115.7.

Santos, E. and C. A. Noggle (2011). “Synaptic Pruning.” Encyclopedia of Child
Behavior and Development. Ed. by S. Goldstein and J. A. Naglieri. Boston,
MA: Springer US.

Sayama, H. et al. (2013). “Modeling complex systems with adaptive networks.”
Computers & Mathematics with Applications 65.10. Grasping Complexity.

Scannell, J. et al. (1999). “The connectional organization of the cortico-thalamic
system of the cat.” Cerebral Cortex 9.3.

Schiller, F. (1992). Paul Broca: Founder of French anthropology, explorer of the
brain. Oxford University Press, USA.

Schnitzler, A. and J. Gross (2005). “Normal and pathological oscillatory com-
munication in the brain.” Nature reviews neuroscience 6.4.

Sekar, A. et al. (2016). “Schizophrenia risk from complex variation of comple-
ment component 4.” Nature 530. Article.

Serrano, M. Á., M. Boguná, and F. Sagués (2012). “Uncovering the hidden
geometry behind metabolic networks.” Molecular Biosystems 8.3.

Serrano, M. Á., D. Krioukov, and M. Boguñá (2011). “Percolation in self-similar
networks.” Physical Review Letters 106.4.

Severino, F. P. U. et al. (2016). “The role of dimensionality in neuronal network
dynamics.” Scientific Reports 6.

Shen, K. et al. (2015). “Network structure shapes spontaneous functional con-
nectivity dynamics.” Journal of Neuroscience 35.14.

Sherrington, D. and S. Kirkpatrick (1975). “Solvable model of a spin-glass.”
Physical Review Letters 35.26.



194 Bibliography

Shmulevich, I., S. A. Kauffman, and M. Aldana (2005). “Eukaryotic cells are
dynamically ordered or critical but not chaotic.” Proceedings of the National
Academy of Sciences 102.38.

Shulman, G. L. et al. (1997). “Common blood flow changes across visual tasks:
II. Decreases in cerebral cortex.” Journal of Cognitive Neuroscience 9.5.

Silva, D. C. da et al. (2018). “Complex network view of evolving manifolds.”
Physical Review E 97.3.

Singer, W. et al. (1997). “Neuronal assemblies: necessity, signature and de-
tectability.” Trends in cognitive sciences 1.7.

Singh, K. K. and F. D. Miller (2005). “Activity regulates positive and negative
neurotrophin-derived signals to determine axon competition.” Neuron 45.6.

Sjostrom, P. J., E. A. Rancz, A. Roth, and M. Hausser (2008). “Dendritic ex-
citability and synaptic plasticity.” Physiological Reviews 88.2.

Smith, S. M. et al. (2009). “Correspondence of the brain’s functional architecture
during activation and rest.” Proceedings of the National Academy of Sciences
106.31.

Sompolinsky, H. and I. Kanter (1986). “Temporal association in asymmetric
neural networks.” Physical Review Letters 57.22.

Song, S., K. D. Miller, and L. F. Abbott (2000). “Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity.” Nature Neuroscience
3.9.

Sossin, W. S., A. Sweet-Cordero, and R. H. Scheller (1990). “Dale’s hypoth-
esis revisited: different neuropeptides derived from a common prohormone
are targeted to different processes.” Proceedings of the National Academy of
Sciences 87.12.

Sowell, E. R. et al. (2003). “Mapping cortical change across the human life span.”
Nature Neuroscience 6.3.

Sporns, O. (2004). “Complex neural dynamics.” Coordination Dynamics: Issues
and Trends. Springer.

— (2011). Networks of the brain. MIT Press.
— (2012). Discovering the Human Connectome. MIT press.
Sporns, O., J. A. Gally, G. N. Reeke, and G. M. Edelman (1989). “Reentrant

signaling among simulated neuronal groups leads to coherency in their os-
cillatory activity.” Proceedings of the National Academy of Sciences 86.18.

Sporns, O., G. Tononi, and G. M. Edelman (2000). “Theoretical neuroanatomy:
relating anatomical and functional connectivity in graphs and cortical con-
nection matrices.” Cerebral Cortex 10.2.

Sporns, O., G. Tononi, and R. Kötter (2005). “The human connectome: a struc-
tural description of the human brain.” PLoS Computational Biology 1.4.

Sporns, O. and J. D. Zwi (2004). “The small world of the cerebral cortex.”
Neuroinformatics 2.2.

Squire, L. et al. (2012). Fundamental neuroscience. Academic Press.



Bibliography 195

Srinivas, K. V., R. Jain, S. Saurav, and S. K. Sikdar (2007). “Small-world net-
work topology of hippocampal neuronal network is lost, in an in vitro glu-
tamate injury model of epilepsy.” European Journal of Neuroscience 25.11.

Stafford, J. M. et al. (2014). “Large-scale topology and the default mode network
in the mouse connectome.” Proceedings of the National Academy of Sciences
111.52.

Stam, C. et al. (2008). “Graph theoretical analysis of magnetoencephalographic
functional connectivity in Alzheimer’s disease.” Brain 132.1.

Stam, C. J. et al. (2006). “Small-world networks and functional connectivity in
Alzheimer’s disease.” Cerebral Cortex 17.1.

Stauffer, D., A. Aharony, L. da Fontoura Costa, and J. Adler (2003). “Efficient
Hopfield pattern recognition on a scale-free neural network.” The European
Physical Journal B-Condensed Matter and Complex Systems 32.3.

Steinmetz, P. N. et al. (2000). “Attention modulates synchronized neuronal firing
in primate somatosensory cortex.” Nature 404.6774.

Stepanyants, A., P. R. Hof, and D. B. Chklovskii (2002). “Geometry and struc-
tural plasticity of synaptic connectivity.” Neuron 34.2.

Stephan, K. E. et al. (2000). “Computational analysis of functional connectivity
between areas of primate cerebral cortex.” Philosophical Transactions of the
Royal Society of London B: Biological Sciences 355.1393.

Strogatz, S. H. (2000). “From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators.” Physica D: Nonlinear
Phenomena 143.1-4.

— (2018). Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. CRC Press.

Strotzer, M. (2009). “One century of brain mapping using Brodmann areas.”
Clinical Neuroradiology 19.3.

Su, G., Z. Ruan, S. Guan, and Z. Liu (2013). “Explosive synchronization on
co-evolving networks.” Europhysics Letters 103.4.

Sun, T. and R. F. Hevner (2014). “Growth and folding of the mammalian cere-
bral cortex: from molecules to malformations.” Nature Reviews Neuroscience
15.4.

Šuvakov, M., M. Andjelković, and B. Tadić (2018). “Hidden geometries in net-
works arising from cooperative self-assembly.” Scientific Reports 8.1.

Tagliazucchi, E., P. Balenzuela, D. Fraiman, and D. R. Chialvo (2012). “Criti-
cality in large-scale brain fMRI dynamics unveiled by a novel point process
analysis.” Frontiers in Physiology 3.

Takayasu, M., H. Takayasu, and K. Fukuda (2000). “Dynamic phase transition
observed in the Internet traffic flow.” Physica A: Statistical Mechanics and
its Applications 277.1-2.

Tang, G. et al. (2014). “Loss of mTOR-Dependent Macroautophagy Causes
Autistic-like Synaptic Pruning Deficits.” Neuron 83.5.



196 Bibliography

Telesford, Q. K. et al. (2011). “The brain as a complex system: using network
science as a tool for understanding the brain.” Brain Connectivity 1.4.

Tetzlaff, C. et al. (2010). “Self-organized criticality in developing neuronal net-
works.” PLoS Computational Biology 6.12.

Tian, L. et al. (2006). “Altered resting-state functional connectivity patterns of
anterior cingulate cortex in adolescents with attention deficit hyperactivity
disorder.” Neuroscience Letters 400.1-2.

Tononi, G., G. M. Edelman, and O. Sporns (1998). “Complexity and coherency:
integrating information in the brain.” Trends in Cognitive Sciences 2.12.

Tononi, G., O. Sporns, and G. M. Edelman (1994). “A measure for brain com-
plexity: relating functional segregation and integration in the nervous sys-
tem.” Proceedings of the National Academy of Sciences 91.11.

Toro, R. et al. (2008). “Brain size and folding of the human cerebral cortex.”
Cerebral cortex 18.10.

Torres, J. (2010). “Modeling Biological Neural Networks.” Handbook of natural
computing. Ed. by G. Rozenberg, T. Bäck, and J. N. Kok. Editorial Springer
Verlag.

Torres, J. J., J. M. Cortes, J. Marro, and H. J. Kappen (2007a). “Competi-
tion Between Synaptic Depression and Facilitation in Attractor Neural Net-
works.” Neural Computation 19.10.

Torres, J. J., J. Marro, J. M. Cortes, and B. Wemmenhove (2008). “Instabilities
in Attractor Networks with Fast Synaptic Fluctuations and Partial Updating
of the Neurons Activity.” Neural Networks 21.9.

Torres, J. J., J. M. Cortes, J. Marro, and H. J. Kappen (2007b). “Attractor
neural networks with activity-dependent synapses: The role of synaptic fa-
cilitation.” Neurocomputing 70.10-12.

Torres, J. J. and J. Marro (2015). “Brain performance versus phase transitions.”
Scientific Reports 5.

Torres, J. J., M. A. Muñoz, J. Marro, and P. Garrido (2004). “Influence of
topology on the performance of a neural network.” Neurocomputing 58.

Torres, J. J., L. Pantic, and H. J. Kappen (2002). “Storage capacity of attractor
neural networks with depressing synapses.” Physical Review E 66.6.

Travers, J. and S. Milgram (1967). “The small world problem.” Phychology Today
1.1.

Tremblay, M.-È., R. L. Lowery, and A. K. Majewska (2010). “Microglial in-
teractions with synapses are modulated by visual experience.” PLoS biology
8.11.

Treviño III, S., Y. Sun, T. F. Cooper, and K. E. Bassler (2012). “Robust detec-
tion of hierarchical communities from Escherichia coli gene expression data.”
PLoS computational biology 8.2.



Bibliography 197

Tsodyks, M. V. and H. Markram (1997). “The neural code between neocor-
tical pyramidal neurons depends on neurotransmitter release probability.”
Proceedings of the National Academy of Sciences 94.2.

Tsodyks, M., K. Pawelzik, and H. Markram (1998). “Neural networks with dy-
namic synapses.” Neural Computation 10.4.

Turanalp, M. E. and T. Can (2008). “Discovering functional interaction patterns
in protein-protein interaction networks.” BMC Bioinformatics 9.1.

Turrigiano, G. G. et al. (1998). “Activity-dependent scaling of quantal amplitude
in neocortical neurons.” Nature 391.6670.

Uhlhaas, P. J. and W. Singer (2006). “Neural synchrony in brain disorders:
relevance for cognitive dysfunctions and pathophysiology.” neuron 52.1.

Uhlig, M., A. Levina, T. Geisel, and M. Herrmann (2013). “Critical dynamics
in associative memory networks.” Frontiers in Computational Neuroscience
7.

Valverde, S. et al. (2015). “Structural determinants of criticality in biological
networks.” Frontiers in physiology 6.

Van Den Heuvel, M. P. and O. Sporns (2011). “Rich-club organization of the
human connectome.” Journal of Neuroscience 31.44.

Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry. Vol. 1.
Elsevier.

Vandermeer, J., I. Perfecto, and S. M. Philpott (2008). “Clusters of ant colonies
and robust criticality in a tropical agroecosystem.” Nature 451.7177.

Varela, F., J.-P. Lachaux, E. Rodriguez, and J. Martinerie (2001). “The brain-
web: phase synchronization and large-scale integration.” Nature reviews neu-
roscience 2.4.

Varshney, L. R. et al. (2011). “Structural properties of the Caenorhabditis ele-
gans neuronal network.” PLoS Computational Biology 7.2.

Vazquez, F., V. M. Eguíluz, and M. S. Miguel (2008). “Generic Absorbing Tran-
sition in Coevolution Dynamics.” Physical Review Letters 100 (10).

Vértes, P. E. et al. (2012). “Simple models of human brain functional networks.”
Proceedings of the National Academy of Sciences.

Villegas, P., P. Moretti, and M. A. Muñoz (2014). “Frustrated hierarchical syn-
chronization and emergent complexity in the human connectome network.”
Scientific Reports 4.

Voges, N. and L. U. Perrinet (2012). “Complex dynamics in recurrent cortical
networks based on spatially realistic connectivities.” Frontiers in Computa-
tional Neuroscience 6.

Vojta, T. (2006). “Rare region effects at classical, quantum and nonequilibrium
phase transitions.” Journal of Physics A: Mathematical and General 39.22.

Volman, V., M. Perc, and M. Bazhenov (2011). “Gap junctions and epileptic
seizures–two sides of the same coin?” PLoS One 6.5.



198 Bibliography

Voytek, B. et al. (2015). “Age-related changes in 1/f neural electrophysiological
noise.” Journal of Neuroscience 35.38.

Vuksanović, V. and P. Hövel (2014). “Functional connectivity of distant corti-
cal regions: role of remote synchronization and symmetry in interactions.”
NeuroImage 97.

Wake, H. et al. (2009). “Resting microglia directly monitor the functional state
of synapses in vivo and determine the fate of ischemic terminals.” Journal of
Neuroscience 29.13.

Wan, C. et al. (2015). “Panorama of ancient metazoan macromolecular com-
plexes.” Nature 525.7569.

Wang, L. et al. (2009). “Altered small-world brain functional networks in chil-
dren with attention-deficit/hyperactivity disorder.” Human Brain Mapping
30.2.

Ward, L. M. (2002). Dynamical Cognitive Science. MIT press.
— (2003). “Synchronous neural oscillations and cognitive processes.” Trends in

Cognitive Sciences 7.12.
Wasserman, S. and K. Faust (1994). Social Network Analysis: Methods and Ap-

plications. Vol. 8. Cambridge University Press.
Watts, D. J. and S. H. Strogatz (1998). “Collective dynamics of “small-world”

networks.” Nature 393.6684.
Wendling, F. et al. (2005). “Interictal to ictal transition in human temporal

lobe epilepsy: insights from a computational model of intracerebral EEG.”
Journal of Clinical Neurophysiology 22.5.

Wiedermann, M. et al. (2015). “Macroscopic description of complex adaptive
networks coevolving with dynamic node states.” Physical Review E 91.5.

Williams, O., L. Lacasa, A. P. Millán, and V. Latora (2019a). “Measuring the
memory of a temporal network.” in preparation.

Williams, O. E., F. Lillo, and V. Latora (2019b). “Effects of memory on spread-
ing processes in non-Markovian temporal networks.” New Journal of Physics.

Williams, O. and C. I. Del Genio (2014). “Degree correlations in directed scale-
free networks.” PLoS One 9.10.

Williamson, P. (May 2007). “Are Anticorrelated Networks in the Brain Relevant
to Schizophrenia?” Schizophrenia Bulletin 33.4. eprint: http://oup.prod.
sis.lan/schizophreniabulletin/article- pdf/33/4/994/5426555/
sbm043.pdf.

Wu, Z., G. Menichetti, C. Rahmede, and G. Bianconi (2015). “Emergent com-
plex network geometry.” Scientific Reports 5.

Xiong, W., L. Xie, S. Zhou, and J. Guan (2014). “Active learning for protein
function prediction in protein–protein interaction networks.” Neurocomput-
ing 145.

Young, M. P. (1992). “Objective analysis of the topological organization of the
primate cortical visual system.” Nature 358.152.

http://oup.prod.sis.lan/schizophreniabulletin/article-pdf/33/4/994/5426555/sbm043.pdf
http://oup.prod.sis.lan/schizophreniabulletin/article-pdf/33/4/994/5426555/sbm043.pdf
http://oup.prod.sis.lan/schizophreniabulletin/article-pdf/33/4/994/5426555/sbm043.pdf


Bibliography 199

Yuan, J., M. Lipinski, and A. Degterev (2003). “Diversity in the mechanisms of
neuronal cell death.” Neuron 40.2.

Zenke, F., E. J. Agnes, and W. Gerstner (2015). “Diverse synaptic plasticity
mechanisms orchestrated to form and retrieve memories in spiking neural
networks.” Nature Communications 6.

Zhang, L. I. et al. (1998). “A critical window for cooperation and competition
among developing retinotectal synapses.” Nature 395.6697.

Zhang, Z., F. Comellas, G. Fertin, and L. Rong (2006). “High-dimensional Apol-
lonian networks.” Journal of Physics A: Mathematical and General 39.8.

Zhou, C. et al. (2006). “Hierarchical organization unveiled by functional con-
nectivity in complex brain networks.” Physical Review Letters 97.23.

Zucker, R. S. and W. G. Regehr (2002). “Short-term synaptic plasticity.” Annual
Review of Physiology 64.1.





Appendix A

Supplementary Information
for Chapter 2

In this appendix we discuss the effect of the topological parameter γ on the
emergent behavior of the adaptive neural network model presented in chapter
2.

A.1 Effect of γ on the emerging phases of the system

In panels a, b and c of figure A.1 we show the phase diagrams of the system
respectively for γ = 0.5, 1.0 and 1.5; and for n = 10, κ0 = 20, κ∞ = 10 and
N = 1600. Results for γ = 1.0 hold qualitatively for other values, but the
region corresponding to each phase depends on γ. Due to the structure-memory
coupling, the critical value αc is depends slightly on the temperature, as shown
in the main paper for γ = 1.0. Data has been averaged over 20 realizations.

In panel d we show p∞(k) in some representative cases:

• Main plot. Three (T, α) points corresponding respectively to the ho-
mogeneous memory (0.5, 0.5), homogeneous noise (1.5, 0.5) and heteroge-
neous memory (0.5, 1.5), as indicated in the caption. The homogeneous
distributions are fairly similar, whereas the heterogeneous one is bimodal.

• Inset i1. Comparison between homogeneous (red circles) and heteroge-
neous (blue squares) IC in the bistability region (T = α = 1.5). Homo-
geneous IC fall into the noisy homogeneous phase, whereas heterogeneous
ones maintain memory and organize into a bimodal distribution.

• Inset i2. Examples of p∞(k) along the critical transition αtc(T ) for T = 0.5
and different values of γ, as indicated in the caption. Results are are
mostly independent on γ, showing a heterogeneous and roughly scale-free
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behaviour, but given the finite size of the system the exponent cannot be
measured.

Data in this panel has been averaged over 100 realizations.

Figure A.1: Parameter analysis.



Appendix B

Supplementary Information
for Chapter 3

In this appendix we include some supplementary information and figures for
chapter 3.

B.1 Behavior of the system at T = 0

Figure B.1 shows the (P, α) phase diagrams of the system in the absence of
thermal noise (T = 0), representing the fraction of recovered patterns gp, the
average overlap with these patterns, mp, and the stationary homogeneity in the
network, ḡ. The diagrams are for three values of κ∞ = 20, 40 and 60 as indicated
in the caption. Similarly, figure B.2 shows the phase diagrams indicating the
number of recovered patterns Pr(P, α) for the same set of values of κ∞.

B.2 Behavior of the system at T > 0

Figure B.3 shows the phase diagrams of the system with respect to α and T ,
T > 0, for P = 5, 10, 15 and 20, and for κ∞ = 20, 40, 60. In each case
we show three diagrams: gp, mp and ḡ, as indicated in the label of the color
bar. In this figure a memory phase appears as a blue region in the diagram of
gp and a high value of mp, indicated by a yellow or green color. A SG phase
appears as an orange region in gp and a lower value of mp, indicated by a green
or blue color, whereas a noisy phase appears as black in gp and dark-blue in mp.
Finally, the oscillatory phase appears for high values of gp, (light yellow regions
in the corresponding diagrams) and relatively low values of mp (associated blue
regions of the corresponding diagrams). Similarly, homogeneous structures take
place for high values of ḡ, indicated by a yellow region in the corresponding
diagram, whereas heterogeneous structures are for low values of ḡ, indicated by
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Figure B.1: Phase diagrams at T = 0. These depict the steady-state of
the system with respect to P and α at T = 0 and κ∞ = 20, 40 and 60,
respectively from left to right. The top panels (a-c) show the fraction of patterns,
gp, retrieved after a given transient, and the middle ones (d-f) the average
overlap with these different patterns, mp, and finally the bottom ones (g-i)
the stationary homogeneity of the network ḡ. The network size was set here to
N = 1600 and each point has been averaged over 10 realizations of the dynamics.

(a) (b) (c)

Figure B.2: (a-c) Diagrams indicating the number of recovered patterns Pr with
respect to P and α at T = 0 and respectively for κ∞ = 20, 40 and 60.

a black or dark blue region.
Finally, figure B.4 shows some representative time series of the overlapmµ(t)

corresponding to the points marked in the diagrams of figure B.3 with pink stars.
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Figure B.3: Phase diagrams of the system with respect to α and T for four
different values of P , in particular for P = 5, 10, 15 and 20 respectively from
left to right, and for three values of κ∞ = 20, 40, 60, respectively from top to
bottom. In each panel we show three diagrams: gp, mp and ḡ, as indicated in
the label of the color bar. Pink stars in panels (a) to (d) indicate the (T, α)
point of the corresponding time series in figure 3.4. Results are for N = 1600
and have been averaged over 5 realizations of the system dynamics.
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Figure B.4: Time series of the overlap mµ(t) for some representative cases of the
system dynamical behavior, corresponding to κ∞ = 20 and to P = 5, 10, 15
and 20, respectively from panel a to d. In each composite panel, we illus-
trate the behavior of the system on for 4 points of the (T, α) space, as indi-
cated by pink starts in the corresponding phase diagrams of figure 3.3. Namely,
panel a is for the points (0.7, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1); panel b is for
(0.3, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1); and finally panels c and d are for the
points (0.1, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1). We have selected slightly dif-
ferent points for each P so as to show an example of the oscillatory behavior
in each case, and the region of its appearance depends on P . Results are for
N = 1600.
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Supplementary Information
for Chapter 5

In this appendix we provide additional information about the structure of Com-
plex Network Manifolds regarding their degree distribution and small-word char-
acteristic. Moreover we report additional information on the Complex Network
Manifolds that have been used in the activity movies in Millán et al., 2018a.

C.1 Degree distribution and Hausdorff dimension of
Complex Network Manifolds

The degree distribution p(k) of Complex Network Manifold (Bianconi and Rahmede,
2015, 2016) is exponential for dimension d = 2 and scale-free for d > 2. The
exact asymptotic expression has been derived in Bianconi and Rahmede, 2017
and is given for d = 2 by

p(k) = 1
d+ 1

(2
3

)k−d
, (C.1)

with k ≥ 2 whereas for d > 2 it is given by

p(k) = d− 1
2d− 1

Γ [(1 + (2d− 1)/(d− 2)]
Γ [d/(d− 2)]

Γ [k − d+ d/(d− 2)]
Γ [k − d+ 1 + (2d− 1)/(d− 2)] , (C.2)

with k ≥ d. Therefore, for d > 2 Complex Network Manifolds are scale-free
with a power-law scaling

p(k) ≈ k−γ , (C.3)

valid for k � 1, and power-law exponent γ

γ = 2 + 1
d− 2 . (C.4)
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Therefore, for d = 3 we obtain γ = 3 and for d = 4 we obtain γ = 5/2 = 2.5.
In Fig. C.2a we show the agreement between the analytic expression (dashed
lines) and the computational results (data points).

k

p(
k)

10-8

10-6

10-4

10-2
d=2
d=3
d=4

N
102 103

10

0
1041 10 102 103 104

1

5

(a) (b)

Figure C.1: Degree distribution and small-word properties of Complex
Network Manifolds. (a) Degree distribution p(k) of CNMs of N = 6400
nodes and dimensions d = 2, 3 and 4. Points represent results from numerical
simulations whereas dashed lines stand for the analytical result as given by
Eq. C.1 and C.2. (b) Network diameter D versus the network size N for
dimensions d = 2, 3, 4. Data points are from simulation results whereas dashed
lines correspond to the logarithmic fit. Numeric results have been averaged over
100 network realizations in both plots.

The logarithmic scaling of the average shortest (hopping) distance ` be-
tween the nodes of the network with the network size N , is known to reveal the
small-world (Watts and Strogatz, 1998) nature of a network. By investigating
numerically the scalling of ` with N we show that Complex Network Manifolds
are small world. Our result are reported in Fig. C.2b where points represent
data from numerical simulations of Complex Network Manifold of dimension d,
whereas the solid lines stand for the best logarithmic fit, as given by

` = ad log(N) + bd. (C.5)

The parameters from the fit are shown in the Table C.I, and they clearly
indicate that the Complex Network Manifolds of higher dimension d have a
average shortest distance that grows always logarithmically with the network
size N but with different constant prefactor ad.
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d ad bd R2

2 2.93(3) −1.45(9) 0.983
3 1.32(2) 0.17(4) 0.964
4 0.78(1) 0.79(4) 0.954

Table C.I: Fitted parameters ad and bd determining the logarithmic growth of
the average shortest (hopping) distance ` of Complex Network Manifolds in
dimension d according to Eq. C.5.

C.2 Complex Network Manifolds that have been used
for the movies of temporal activity

Further Supplementary Materials include the movies for the temporal activity
of three Complex Network Manifolds in D = 1, D = 2 and D = 3 respectively.
These networks have N = 200 nodes and random assignment of their internal
frequencies. The activity of the nodes is recorded for different values of the
coupling constant σ by coloring the nodes according to a color code depending
on cos(θ).

In figure C.2 as a reference we plot the R(T ) curve as a function of the
coupling constant σ as recorded for the Complex Network Manifolds captured
by the movies.

(a) (b) (c)

Figure C.2: Frustrated synchronization for the CNMs shown in the
movies. The synchronization order parameter R(T ) is plotted versus the cou-
pling strength σ for D = 1 (a), D = 2 (b) and D = 3 (c), for a single
network realization of N = 200 nodes. The arrows indicate the coupling con-
stants σ at which the movies are recorded (for D = 1, σ = 3, 29 for D = 2
σ = 0.75, 4.00, 8.74 for D = 3 σ = 0.75, 3.25, 7.25).
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In this appendix we will investigate the stability of the synchronized phase by
considering the linearized dynamical system given by Eqs. 6.20. The normalized
Laplacian L appearing in Eqs. 6.20 and defined in Eq. 6.1 is diagonalizable
with eigenvalues {λi}i=1,2,...,N , numbered in increasing order, 0 = λ1 < λ2 ≤
λ3, . . . ,≤ λN , and therefore can be written as

P−1LP = D, (D.1)

where P is the matrix whose columns are the right eigenvectors vλ and and
P−1 is the matrix whose rows are the left eigenvectors uλ of L. Notice that
we always have P−1P = I, where I indicates the identity matrix, due to the
normalization condition of the eigenvectors given by Eq. 6.9.

The vector θ = (θ1, θ2, . . . , θN )T can be projected both in the base of the
right and left eigenvectors, so θi can either be expressed as

θi =
∑
λ

θRλ v
λ
i ,

θi =
∑
λ

θLλu
λ
i , (D.2)

or, equivalently,

θ = PθR,
θ = [P−1]TθL, (D.3)

where we have indicated with θR and θL the column vector of elements θRλ and
θLλ , respectively. Inverting these relations we have that θR and θL are given by

θR = P−1θ,

θL = PTθ. (D.4)
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Similarly, we can also consider the vector ω of elements ωi, and project it
along the bases of the right and the left eigenvectors,

ω = PωR,
ω = [P−1]TωL. (D.5)

Inverting these relations we obtain

ωR = P−1ω,

ωL = PTω, (D.6)

where the elements ωR,L have the averages〈
ωR,Lλ

〉
= 0.〈

ωRλ ω
L
λ′

〉
=

N∑
i=1

N∑
j=1
〈ωiωj〉uλi vλ

′
j = δλ,λ′ . (D.7)

The linearized Eq. 6.20 can also be projected along the bases of right and
left eigenvectors, obtaining

dθRλ
dt

= ωRλ − σλθRλ ,

dθLλ
dt

= ωLλ − σλθLλ . (D.8)

These equations can be solved obtaining, for λ 6= 0,

θ
R/L
λ (t) = e−σλtθ

R/L
λ (0) + ω

R/L
λ

σλ
(1− e−σλt), (D.9)

and, for λ = 0,

θ
R/L
λ (t) = θ

R/L
λ=0 (0) + ω

R/L
λ=0 t. (D.10)

D.1 Stability of the synchronized phase

In order to evaluate the stability of the synchronized state, we use an approach
already established for finite lattices (Hong et al., 2005; Hong et al., 2007) and
calculate the average fluctuation of the phases over the entire network by
evaluating W 2 given by

W 2 = 1
N

〈
N∑
i=1

[θi(t)− θ]2
〉
, (D.11)
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where

θ = 1
N

N∑
i=1

θi(t). (D.12)

In presence of a thermodynamically stable synchronized phase, the average fluc-
tuations of the phases W 2 should remain bounded. Therefore, if W 2 diverges
with the network size N , the synchronized phase is unstable.

Since θ can be expressed equivalently in the base of right and left eigenvectors
as expressed in Eqs. D.3, and the right eigenvector is given by the first of Eqs.
6.5, we can calculate θ in terms of θL and θR as

θ =

√
〈k〉
N
θLλ=0(t)

θ =
∑
λ

θRλ (t) 1
N

∑
i

vλi (D.13)

Using the explicit solution of θLλ (t) and θRλ (t) given by Eq. D.9 and Eq. D.10,
and using Eqs. D.7 we can express

〈
θ

2〉 as

〈
θ

2〉 = 1
N

〈
θLλ=0(t)θRλ=0(t)

〉
+

√
〈k〉
N
θLλ=0(0)θRλ=0(0)

×
∑
λ 6=0

e−σλt
1
N

N∑
i=1

vλi . (D.14)

Therefore asymptotically in time, for t→∞, we obtain〈
θ

2〉 = 1
N

〈
θLλ=0(t)θRλ=0(t)

〉
. (D.15)

We now note that W 2 can be equivalently expressed as

W 2 = 1
N

〈
θTθ

〉
−
〈
θ

2〉
. (D.16)

Using Eq. D.4 we note that
〈
θTθ

〉
has a simple expression in terms of θL and

θR, i.e. 〈
θTθ

〉
=
〈

[θL]TP−1P[θR]
〉

=
〈

[θL]TθR
〉
. (D.17)

Using the solution of the Kuramoto dynamics Eq. D.9 and Eqs. D.7 we get〈
[θL]TθR

〉
=
〈
θLλ=0(t)θRλ=0(t)

〉
+

∑
{λ}|λ 6=0

[
e−2σλtθRλ (0)θLλ (0) + 1

(σλ)2 (1− e−σλt)2
]
. (D.18)
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Finally using Eq. D.16 together with Eqs. D.15-D.18, it results that asymp-
totically in time for t→∞

W 2 =
∫ λmax

λ2
dλρ(λ) 1

(σλ)2 . (D.19)

Since the Fidler eigenvalue λ2 satisfies the scaling expressed in Eq. 6.14 and
goes to zero in the infinite network limit, using the scaling in Eq. 6.10 for the
density of eigenvalues ρ(λ) we obtain the following results.

i) For spectral dimension dS < 4 the average fluctuation of the phases W 2

diverges as

W 2 ' O
(
λ
dS/2−2
2

)
(D.20)

ii) For spectral dimension dS = 4 the average fluctuation of the phases W 2

diverges as

W 2 ' O(− lnλ2). (D.21)

iii) Only for spectral dimension d > 4 the average fluctuation of the phases
W 2 converges.

Specifically, by inserting the scaling of the Fidler eigenvalue Eq. 6.14 with
the network size N we obtain

W 2 ∼


N4/dS−1 if dS < 4
ln(N) if dS = 4
const if dS > 4.

(D.22)

It follows from this derivation that the synchronized state cannot be ther-
modynamically stable in networks with spectral dimension dS ≤ 4.

D.2 Correlations between phases and validity of the
linear approximation

The linear approximation is valid only if the coupling term of each oscillator with
the phases of the linked oscillators is small. Therefore in order for the linear
approximation to hold we must require that the vector Lθ has small elements.
A global parameter that can establish the sufficient condition for the failure of
the linear approximation is the correlation C defined as

C = 1
N

〈
θTLθ

〉
. (D.23)
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In fact, if the correlation C diverges the linear approximation cannot be valid.
The correlation can be expressed in the basis of eigenvalues of the normalized

Laplacian getting the simple expression

C = 1
N

∑
λ

〈
θLλλθ

R
λ

〉
. (D.24)

By using the explicit expression for θL/Rλ given by Eq. D.9 it is easy to show
that

C = 1
N

∑
{λ}|λ 6=0

λ

[
e−2σλtθRλ (0)θLλ (0) + 1

(σλ)2 (1− e−σλt)2
]

which gives in the asymptotic limit t→∞

C =
∫ λN

λ2
ρ(λ) 1

σ2λ
dλ. (D.25)

By inserting the scaling of the Fidler eigenvalue with the network size N
given by Eq. 6.14, we obtain

C ∼


N2/dS−1 if dS < 2
ln(N) if dS = 2
const if dS > 2.

(D.26)

Therefore, for spectral dimension dS ≤ 2 the correlations among the
phases of nearest neighbor nodes diverge and the linear approximation
fails.

D.3 Entrained phases
So far we have shown that for spectral dimension dS < 2 the linear approxima-
tion fails, while for spectral dimensions dS ∈ (2, 4] the linear approximation can
be valid but the sychronized phase is not thermodynamically stable. In order
to uncover the phenomenology for spectral dimensions dS ∈ (2, 4], we follow the
approach used by Hong et al., 2005; Hong et al., 2007 for regular lattices. This
analysis will reveal that for spectral dimensions dS ∈ (2, 4] phase entrainment
takes place as long as the linear approximation is valid.

We start by characterizing the fluctuations observed in phase velocities across
the nodes of the network

V 2 = 1
N

N∑
i=1

〈[
ψi − ψ̄

]2〉
(D.27)
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where ψi indicates the phase velocity of node i

ψi = θ̇i, (D.28)

and ψ̄ the average of the phase velocities over the network

ψ̄ = 1
N

N∑
i=0

ψi. (D.29)

The phase velocities ψ = (ψ1, ψ2, . . . , ψN )T can be projected into the basis of
right and left eigenvectors of the normalized Laplacian getting

ψR = P−1ψ,

ψL = PTψ. (D.30)

By using the solution of the linearized dynamics, Eqs. D.9 and D.10, it is easy
to show that with the linear approximation we have

ψ
R/L
λ (t) = θ̇λ

R/L = −σλe−σλtθR/Lλ (0) + ω
R/L
λ e−σλt, (D.31)

and for λ = 0

ψ
R/L
λ (t) = ω

R/L
λ=0 . (D.32)

Using the same procedure used previously for the derivation of θ̄, it is easy
to show that the average phase velocity ψ̄ can be expressed equivalently as

ψ̄ =

√
〈k〉
N
ψLλ=0(t),

ψ̄ =
∑
λ

ψRλ (t) 1
N

∑
i

vλi . (D.33)

From these expressions, and using Eqs. D.7, it follows that〈
ψ̄2
〉

= 1
N

〈
ψLλ=0(t)ψrλ=0(t)

〉
. (D.34)

Finally using again Eq. D.7 we get that

V 2 = 1
N

〈
[ψL]TψR

〉
−
〈
ψ̄2
〉

(D.35)

scales in the asymptotic limit t→∞ as

V 2 ∼
∫ λmax
λ2

dλρ(λ)e−2σλt ∼ t−dS/2.
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This result implies that asymptotically in time the fluctuations in the
phase velocities vanish, i.e.

V 2 → 0 (D.36)

as t→∞. This result implies that the phases of the oscillators are totally
entrained as long as the linear approximation is valid.
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